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Abstract. Despite much progress, general-purpose secure multi-party computation
(MPC) with active security may still be prohibitively expensive in settings with large
input datasets. This particularly applies to the secure evaluation of graph algorithms,
where each party holds a subset of a large graph.
Recently, Araki et al. (ACM CCS ’21) showed that dedicated solutions may provide
significantly better efficiency if the input graph is sparse. In particular, they provide an
efficient protocol for the secure evaluation of “message passing” algorithms, such as the
PageRank algorithm. Their protocol’s computation and communication complexity
are both Õ(M · B) instead of the O(M2) complexity achieved by general-purpose
MPC protocols, where M denotes the number of nodes and B the (average) number of
incoming edges per node. On the downside, their approach achieves only a relatively
weak security notion; 1-out-of-3 malicious security with selective abort.
In this work, we show that PageRank can instead be captured efficiently as a restricted
multiplication straight-line (RMS) program, and present a new actively secure MPC
protocol tailored to handle RMS programs. In particular, we show that the local
knowledge of the participants can be leveraged towards the first maliciously-secure
protocol with communication complexity linear in M , independently of the sparsity of
the graph. We present two variants of our protocol. In our communication-optimized
protocol, going from semi-honest to malicious security only introduces a small com-
munication overhead, but results in quadratic computation complexity O(M2). In
our balanced protocol, we still achieve a linear communication complexity O(M),
although with worse constants, but a significantly better computational complexity
scaling with O(M · B). Additionally, our protocols achieve security with identifiable
abort and can tolerate up to n − 1 corruptions.
Keywords: Multi-Party Computation · Active Security · RMS Programs · Zero
Knowledge Proofs

1 Introduction
Secure multi-party computation (MPC) [Yao86, GMW87, BGW88, CCD88, RB89] allows
analysing distributed data without revealing anything but the outcome of the analysis.
Traditionally, security in MPC protocols is considered relative to two types of adversaries:
passive and active adversaries. In the passive model, all parties are expected to follow the
protocol honestly, whereas the active (and more realistic) model also captures adversaries
which send incorrect messages or stop sending messages altogether.
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RMS programs. In this work, we focus on computing restricted multiplication straight-
line (RMS) programs. In programs of this type, only additions and multiplications with
input values are performed. This means that whenever two values are multiplied, one of
them is known to at least one of the parties participating in the computation. While every
program can be captured by an RMS program with exponential size, polynomial-size RMS
programs are known to capture the class of polynomial-size branching programs and circuits
of constant fan-out and logarithmic depth (i.e., in the complexity class NC1) [BGI16].

Graph algorithms. A particular class adhering to the structure of RMS programs are
certain graph algorithms [SvHA+19, CSA21, AFO+21, vEDvdB+24]. Here, an analysis is
performed on a dataset in a graph structure, where each party knows everything about
a part of the graph but should not learn anything about the parts belonging to the
other parties. Furthermore, the topology of the entire graph should remain secret. A
recent example use case of this is collaborative fraud detection [vEDvdB+24]. In this case,
the parties are financial institutions who want to perform some analysis on their joint
transaction graph. While each institution has a full view of its own customers, banks are
not allowed to share this information due to data protection regulations, and thus need to
rely on MPC techniques in order to detect potential high-risk customers more effectively.

Generic approaches. General-purpose protocols, such as the line of work on secret-
sharing based protocols with active security in the preprocessing model [BDOZ11, DPSZ12],
require the parties to input the full transaction graph to the protocol. Further, in order
to ensure correctness, the parties have to jointly perform computation steps, resulting in
communication and computation complexity scaling with the size of the transaction graph,
and thus quadratic in the number of nodes. Even if the (average) number of outcoming
edges in the graph is assumed to be public knowledge, it is not straightforward to improve
over the quadratic communication complexity, since it has to remain secret which nodes
are connected. As a transaction graph can easily contain millions of bank accounts, generic
secret-sharing based protocols become impractical to use in this scenario.

Optimized graph algorithms. To overcome this, Araki et al. [AFO+21] propose a secret-
sharing based protocol which performs significantly better for message passing algorithms
on sparse graphs. Namely, they achieve a communication complexity of Õ(M ·B), where
B is the average number of incoming edges per node. Yet, their communication complexity
still scales quasilinear in the number of edges, rather than linear in the number of nodes.
While one could hope to improve the protocol complexity by logarithmic factors, it is
inherent for their and other secret-sharing based approaches that the communication
complexity scales with the number of edges, rather than with the number of nodes, since
the description of the graph (which is of size O(M ·B)) has to be secret-shared between
the parties.

Building on homomorphic encryption, on the other hand, [SvHA+19, vEDvdB+24]
show that in the semi-honest security model this can be circumvented. The idea behind
their approach is that additively homomorphic encryption allows to exploit the “local”
information of the parties by simply letting the party that knows the required information
perform that part of the computation locally, without sharing their local view of the graph
to the other parties, resulting in linear communication complexity O(M).

The issue when going from semi-honest to malicious security is that the parties have
to commit to their local view of the graph to be able to prove they follow the protocol
correctly, removing the advantage of the passive case. In fact, relying on maliciously secure
approaches from additively homomorphic encryption, such as Cramer et al. [CDN01], again
results in quadratic complexity in the number of nodes, even for sparse graphs.

1.1 Our Contributions
In this work, we show that building on recent improvements on communication-succinct
zero-knowledge proofs (ZKPs) [BCC+16, BBB+18, BCS16, AC20, ACC+22], we can
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Table 1: Comparison of various actively secure protocols for T iterations of a (simplified)
PageRank/RiskPropagation algorithm, where we omit constant factors and low order
terms. Further, we omit dependencies on the number of parties n, since the dependencies
are similar for all approaches. Here, each party Pi owns Mi nodes which sum up to
the total number of nodes, denoted by M . Furthermore, B is the average number of
incoming edges per node with B a known upper bound on B (i.e., for sparse graphs B
is a small constant and for dense graphs B equals the number of nodes M). The entries
low.comm and low.comp indicate the communication and computation optimized variants
of our protocol, respectively. The overall complexity of the actively secure protocol equals
Passive + Overhead Active.

Techniques
Corruption
Threshold

Communication
(messages pp)

Computation
(operations pp) Rounds

Identifiable
AbortPassive Overhead

Active
Passive Overhead

Active
[DPSZ12] SS+MAC t ≤ n − 1 T M2 T M2 T M2 T M2 T no
[CSA21] Outs. SS 1-out-of-2 T M2 T M2 T M2 T M2 T no

[AFO+21] Outs. SS 1-out-of-3 T MB log B T MB log B T MB log B T MB log B T B log B no
[CDN01] HE+ZKP t ≤ n

2 − 1 T Mi T M2 T MiB T M2 T yes
low.comm HE+ZKP t ≤ n − 1 T Mi log M T MiB M2 T yes
low.comp HE+ZKP t ≤ n − 1 T Mi Mi +T log M T MiB T M T yes

achieve a communication complexity which scales linearly in the number of nodes also in
the malicious case. We give a comparison of our approach to related work in Table 1.

In order for the compressed Σ-protocol framework of [ACC+22] to be compatible with
the underlying additively homomorphic encryption scheme, we present a new instantiation
of compressed Σ-protocols. More precisely:

• We adopt the framework of [ACC+22] to construct vector commitment schemes from
additively homomorphic encryption schemes such as Paillier encryption;

• We capture linear statements over additively homomorphic encryptions as a class of
“morphisms”, and show that the theory of compressed Σ-protocols [AC20, ACC+22]
can be applied to such statements.

Overall, these techniques lead to an improved per-party communication overhead of an
additional O(logM) group elements, where M is the number of nodes in the graph,
resulting in the first maliciously secure protocol where the communication complexity
scales with the number of nodes rather than edges. We refer to this as the low.comm version
of our protocol. Since our protocol relies on zero-knowledge proofs, we further achieve
security with identifiable abort, thereby disincentivizing malicious behaviour. Finally, our
protocol can tolerate the optimal corruption threshold of up to n− 1 malicious parties.

Since this approach still has a computation complexity of O(M2), we further present a
more balanced variant of the protocol, which we refer to as low.comp, where we exploit
the structure of the considered class of graph algorithms.

• We identify a structure common to relevant graph algorithms which we generalize as
vector-RMS programs.

• We deploy the amortization technique for Σ-protocols (as made explicit in, e.g., [AC20])
to amortize over each level of the identified vector-RMS programs.

We show that these improvements allow us to reduce the computation complexity to
O(M ·B) group exponentiations per level whenever the vector-RMS program is sufficiently
balanced (as is the case in the motivating applications), at the cost of increasing the
communication overhead to an additional O(M) group elements. For typical transaction
graphs of millions of nodes, this is a significant improvement over previous approaches
where the M2 scaling in communication quickly becomes infeasible. For the optimized
graph approach of [AFO+21], the amount of per-party communication also grows quickly
in practice due to the scaling in M instead of only the local nodes Mi. Furthermore,
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the upper bound B leaks information about the topology of the graph, which might be
undesirable.

We further show that in the low.comm variant of the protocol, the concrete computa-
tional efficiency can be improved by introducing a new sparse blinding technique, which
we explain in the following and for which we show concrete efficiency improvements by
providing an implementation in Section 7.

• We introduce a new blinding mechanism, with which we obtain zero-knowledge
for compressed Σ-protocols [AC20, ACC+22] using a single blinding coefficient,
rather than a full blinding vector. This is achieved by adding an additional cheap
rerandomization step at each round of compression.

We observe that the graphs considered (e.g., stemming from transaction networks)
are typically very sparse. More precisely, we show how to exploit the sparseness as
follows. Since only one coefficient of the secret sparse vector is blinded, its sparseness is
preserved. Further, as the number of exponentiations in a vector exponentiation gx is
equal to the Hamming weight of x, this strategy significantly reduces the overall number
of exponentiations. It should be noted that the aforementioned approach for amortizing in
each layer of the vector-RMS program to lower the computation reduces the sparseness
of the input vectors significantly and therefore diminishes the improvements gained from
the sparse blinding strategy in the low.comp variant. On the other hand, in the low.comm
variant, where we amortize over all layers of the program, our techniques are applicable to
reduce the quadratic computation overhead in practice when proving knowledge of the
opening of the commitment to the entire graph of size M2.

Since this improvement does not provide an asymptotic change as our other contributions
do, we have implemented the new sparse blinding mechanism and measured its performance
when proving knowledge of a commitment opening. The results can be found in Section 7.
For the transaction graph scenario where each node only makes 3 out of a total of 6
million possible transactions, we can save over 80% of the work of proving knowledge of
a commitment opening in the low communication variant. However, we stress that our
construction also leads to significant performance gains for less sparse input vectors.

1.2 Related Work
Active security for graph algorithms. In Table 1, we give an estimate for the asymptotic
complexities of using generic actively secure MPC protocols ([DPSZ12, CDN01]), existing
works for actively secure MPC protocols tailored to graph algorithms ([CSA21, AFO+21])
and our solution, either tailored to communication efficiency (low.comm) or computation
efficiency (low.comp), when executing T rounds of (simplified) PageRank/RiskPropagation.

Here it can be seen that for both the generic secret-sharing based solutions of [DPSZ12,
CSA21] as well as for the generic homomorphic encryption-based solution of Cramer et
al. [CDN01], communication scales quadratically in the number of nodes M , which quickly
becomes infeasible for large graphs. Moreover, each party needs to perform in the order of
M2 operations in each round as they need to perform computations on the entire graph.
Here we assume that secret shares or encryptions of edges ei,j ∈ {0, 1} are labeled by the
corresponding nodes (i, j). Because of this, the parties need to share M encryptions or
secret shares for each of the M nodes in order to hide the structure of the graph. Araki et
al. [AFO+21] use a more specialized approach in which only non-zero edges need to be
secret shared and updates are executed simultaneously for all nodes. In particular, their
solution is able to exploit the sparsity of the input graph if an upper bound B on the
in-degree of each node is known to the computing parties.

Both solutions tailored to graph algorithms [CSA21, AFO+21] rely on the idea of
decoupling the input parties from the computing servers by letting the parties secret share
their input graph to the servers. This approach supports a more general class of functions
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than we do, but cannot exploit the local structure of RMS programs. Moreover, it allows
for a better scaling in the number of input parties. This is beneficial in a scenario where a
large number of input parties, possibly with limited resources, each hold a small portion
of the graph dataset. However, this setting provides a weaker security guarantee since
it requires a majority of the computing servers to be honest and there is no way for the
input-providing parties to verify that the computation was done correctly or the servers
did not collude to steal the inputs/outputs of the computation.

By contrast, our solution is able to exploit the local nature as well as the sparsity of these
graphs since each party only needs to perform updates on its own portion of the transaction
graph. Furthermore, using the techniques from [AC20, ACC+22], the parties can prove
they performed the updates correctly with only logarithmic communication overhead in
the number of nodes, while unfortunately suffering quadratic computation overhead. We
also present a more balanced trade-off which increases the communication overhead to
linear while achieving linear computation overhead. Notably, the communication of our
protocols does not scale with the density of the graph (e.g., B ·M or M2) but only with
the number of nodes M . Our approach is best suited for the scenario where there is a
smaller number of input parties, with enough resources, each holding a large portion of
the input graph. Our solution provides security against a threshold of up to all but one
corrupted parties and allows each of the parties to verify that computations were done
correctly. This leads to our protocol realizing security with identifiable abort, meaning
that a cheating party can be identified and therefore excluded from future computations.
If a public bulletin board is used, our solution even allows external parties to verify the
computations were done correctly or to identify a cheating party.

Comparison with HSS for RMS programs. The line of work on homomorphic secret
sharing (HSS) [BGI16, DHRW16, BCG+17, FGJS17, OSY21, RS21, BKS19, COS+22]
also gives dedicated MPC solutions for RMS programs. We note though that this approach
is less suitable for the considered setting, since the share sizes scale with the size of the
input (even for passive security), again resulting in quadratic communication overhead.
Further, HSS operations are computationally more expensive, and all approaches not
building on fully-homomorphic encryption are limited to the 2-party setting. An advantage
of building on HSS compared to our approach is the small round complexity: there the
parties do not have to communicate during the computation, whereas our protocol requires
a round of communication for each level of the RMS program.

1.3 Technical Overview
The main construction presented in this work is an actively secure MPC protocol for RMS
programs, based on an additively homomorphic encryption scheme (AHE).

RMS programs and AHE. An RMS program over a ring Zm consists of addition and
multiplication gates, with the restriction that “memory values” (those which are output of
previous gates) can be multiplied by inputs to the program but not by other memory values.
AHE is well-suited to securely evaluate programs of this type, since additions between
encrypted values c1 := Enc(pk, x1) and c2 := Enc(pk, x2) can be computed by any party as
c1 ∗ c2 = Enc(pk, x1 + x2) and multiplications between an encrypted value c := Enc(pk, x)
and an input value a ∈ Zm can be evaluated locally by the party holding the input as
ca = Enc(pk, a · x). This observation was also made in previous works [SvHA+19] in the
context of securely evaluating the PageRank algorithm and [vEDvdB+24] for a secure
money laundering detection algorithm called “RiskPropagation” on the joint transaction
graph of several financial institutions in the passive setting. We will use the PageRank
and RiskPropagation algorithms as leading examples in this overview.

Passively secure evaluation of PageRank/RiskPropagation. The idea of [SvHA+19] to
securely evaluate the PageRank algorithm of [BP98] with n parties is as follows. Consider a
graph of M nodes of which each party Pi holds a set of nodes V i ⊂ [M ] and a set of incoming
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edges S(j) for each j ∈ V i. First, each party encrypts their initial PageRank values using
an additively homomorphic encryption scheme and broadcasts them as zj

0. Then, in round
t = 1, . . . , T , each party computes their updated PageRank values zj

t :=
∏

i∈S(j) z
j
t−1,

which can be seen as an inner product between the j-th row ai
j of their private adjacency

matrix Ai and the vector of previous round encrypted PageRank values zt−1 := (zj
t−1)j∈[M ].

In the final round T , the parties perform a joint distributed decryption, such that each
party learns the decryptions of zj

T for j ∈ V i. RiskPropagation works in a similar way, but
with the entries of the adjacency matrix being weighted by incoming transaction amounts.

PageRank/RiskPropagation as vector-RMS programs. We observe that the PageRank
and RiskPropagation algorithms can both be captured as an RMS program with particularly
nice structure: (i) It can be split up into T rounds, where each round only depends on
output values of the previous rounds. (ii) The main computational operation to be
performed by the parties is an inner product of a private vector with an encrypted vector.
(iii) The computation is balanced: every round, each party has to perform M inner product
operations on vectors of length M . We capture programs that satisfy all three properties
as balanced vector-RMS programs.

Active security. Our starting point is the CDN framework [CDN01], which achieves
active security by having parties prove in zero-knowledge (by means of commitments and
Σ-protocols) that operations are performed correctly. Namely, for an RMS program, we
require proofs of plaintext knowledge (for encryptions of inputs which are broadcast) and
proofs of correct multiplication. However, naively applying these methods results in a
relatively inefficient protocol – for instance, in each round of PageRank/RiskPropagation,
parties have to send M proofs of correct multiplication for each node they update, resulting
in an O(T ·M2) communication overhead in total.

Efficient proofs for AHE statements. We first observe that instead of parties committing
to each entry of their input separately, they can use vector commitments. To make the
message space of the commitment scheme compatible with the additively homomorphic
encryptions, we show that the strategy to transform a commitment scheme into a vector
commitment scheme presented in [ACC+22] can be adopted to transform the encryption
scheme itself into a vector commitment scheme. Applying this to Paillier encryption, we
construct a “Paillier-vector-commitment”, which nicely composes with the Paillier encryp-
tion scheme used to instantiate the passive protocol. We further show that compressed
Σ-protocol theory [AC20, ACC+22] can be deployed to prove linear statements over Paillier
encryptions, resulting in proofs with logarithmic communication.

Amortizing many proofs. We propose two variations of our MPC protocol: the first,
which we call low.comm, achieves very low communication costs; the second, low.comp, is
more balanced and has lower computational complexity while still being quite communication-
efficient (see comparison in Table 1). This separation arises from the use of two distinct
methods to amortize the costs of Σ-protocols to prove multiple related statements.

In low.comm mode, each party Pi commits to its whole input (private adjacency matrix)
in a single large vector commitment. Once the whole program has been evaluated (before
the decryption step), Pi broadcasts a single proof that all operations were computed
correctly, by amortizing over many proofs with the same secret.

On the other hand, low.comp mode exploits the structure of the balanced vector-RMS
program by having Pi commit to each row of its adjacency matrix in a separate vector
commitment. Then, in each round of the protocol (corresponding to one layer of the
program), Pi provides a single proof that it correctly computed all the inner products
(multiplication between a row of the adjacency matrix and a vector of encrypted values).
This is possible through an amortization technique which allows proving knowledge of
multiple pre-images of the same homomorphism.

Reducing computation time via sparse blinding. The main computational cost of our
proofs comes from vector exponentiations of the form gx, which scale with the number of
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non-zero entries of x. In standard Σ-protocols, the input vector is blinded by a random
vector, which means the exponentiation is expensive even if the initial input is sparse. We
show that blinding the entire input vector is in fact not required for compressed Σ-protocols.
Intuitively, they reveal less information to the verifier (due to the reduced communication
complexity), and thus require less blinding than a standard Σ-protocol. Our strategy is to
introduce a single blinding coefficient in each round, which turns out to be sufficient to
achieve zero-knowledge and preserve knowledge soundness. This sparse blinding technique
greatly reduces the number of exponentiations the prover must compute when the input
is sparse, and could be of independent interest for other zero-knowledge applications as
well, such as proving knowledge of a sparse witness for more general arithmetic circuits
using the techniques of [AC20]. In the context of our MPC protocol, although some of the
amortization methods we employ do not necessarily preserve sparseness, this optimization
represents a significant improvement in prover time for the proof relative to a large vector
commitment in our low.comm protocol.

The remainder of this work is structured as follows. Section 2 introduces several relevant
concepts and examples. In Section 3 we construct vector commitments from an AHE
scheme. In Section 4 we describe the basic Σ-protocol and the amortization techniques
which will be used in our proofs, and in Section 5 we show how it can be compressed. Using
all the tools from previous sections, we present our MPC protocol (in its two variants)
in Section 6. Finally, in Section 7 we discuss the implementation of our zero-knowledge
proofs and some experimental results.

2 Preliminaries
2.1 Restricted Multiplication Straight-Line (RMS) Programs
Restricted Multiplication Straight-line (RMS) programs can be seen as a form of arithmetic
circuits which distinguish input values from memory values and impose a restriction on
multiplication – two memory values cannot be multiplied.

Definition 1 (RMS programs). An RMS program over a ring R consists of a sequence
of instructions of the four types below, in which we denote the representation of a value
x ∈ R as an input or in memory by Ix or Sx, respectively.

• Load input into memory: Load(Ix)→ Sx.
• Add values in memory: Add(Sx, Sy)→ Sx+y.
• Multiply input by memory value: Mult(Ix, Sy)→ Sxy.
• Output memory value: Output(Sx)→ x ∈ R.

We introduce the notion of a Vector-RMS program, in which multiplications by input
values followed by addition of the resulting memory values are grouped together as an inner-
product operation. We do so since our MPC protocols save the most in communication
complexity with respect to other approaches when the evaluation of an RMS program can
be written in terms of these inner product operations for relatively large vectors.

Definition 2 (Vector-RMS programs). A vector-RMS program over a ring R consists
of a sequence of instructions on global input values x ∈ R and vectors of local input
values y ∈ Rn. The program is organized into layers t = 1, . . . , T , such that operations on
memory values only use memory values from previous layers, and the program is evaluated
layer by layer. We denote by St

x the representation of a value x ∈ R as a layer t memory
value and Iy for the representation of a vector y ∈ Rn as a local input value, and write
Su

x := (Su1
x1
, . . . , Sun

xn
) for a vector of memory values with x := (x1, . . . , xn) ∈ Rn and

u := (u1, . . . , un) ∈ [T ]n.
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• Load inputs into memory: Load(Ix)→ S1
x.

• For each layer t = 2, . . . , T :
– Add values in memory: Add(Su

x , S
v
y )→ St

x+y for u, v ∈ [t− 1].
– Multiply input by memory value: Mult(Ix, S

u
y )→ St

xy for u ∈ [t− 1].
– Compute inner product: Prodn(Su

x , Iy)→ St
⟨x,y⟩ for u ∈ [t− 1]n.

• Output memory value: Output(ST
x )→ x ∈ R.

Example 1 (PageRank/RiskPropagation). We recall the simplified describtion of the
PageRank/RiskPropagation algorithms we presented in the introduction. The inputs to
the algorithm consist of a set V consisting of M nodes together with an initial attribute
value x1

j for each node j ∈ V , the M ×M (weighted) adjacency matrix A := (aj)j∈[M ]
indicating the (weighted) edges between the nodes in V . The algorithms can be seen as a
vector-RMS program as follows:

• The initial attribute values are loaded into memory: Load(Ix1
j
)→ S1

x1
j
.

• For each round t = 2, . . . , T :
– Compute the inner product between aj and the previous round attribute values

xt−1 := (xt−1
1 , . . . , xt−1

M ): ProdM (St−1
xt−1 , Iaj

)→ St
xt

j
.

• Output the round T attribute values: Output(ST
xT

j

)→ xT
j .

2.2 Additively Homomorphic Encryption
An additively homomorphic encryption (AHE) scheme is an encryption scheme which
allows a party to compute encryptions of the sum of two messages or the product of a
known scalar and a message by performing operations on the encryptions of these messages
which only need the public key. A threshold additively homomorphic encryption scheme
additionally splits up the secret key in shares, gives each party one of these shares, and
allows the parties to successfully decrypt a ciphertext if and only if a certain threshold of t
out of n parties agree to do so. We moreover require the parties to be able to compute
re-randomized encryptions of messages using only the ciphertext and the public key.

Formally, a TAHE scheme consists of a tuple of PPT algorithms AHE := (Gen,Enc,Dec)
together with a key distribution protocol ΠKD, a threshold decryption protocol ΠDEC, and
is parametrized by a number of parties n, a threshold t, a message ring family (Mλ,+, ·)λ,
randomness space family (Rλ)λ and ciphertext group family (Cλ, ∗)λ such that:

- Gen(1λ)→ (pk, sk1, . . . , skn). Takes as input the security parameter λ and outputs a
public key pk and secret key shares sk1, . . . , skn.

- ΠKD is an n-party protocol, secure against n− t corruptions, which takes as input the
security parameter λ, computes (pk, sk1, . . . , skn) ← Gen(1λ) and outputs (pk, ski)
to party Pi for each i ∈ [n].

- Enc(pk, x; ρ)→ c. Takes as input a public key pk, a plaintext message x ∈Mλ and
randomness ρ ∈ Rλ, and outputs a ciphertext c ∈ Cλ.

- Dec((pk, sk1, . . . , skn), c)→ x. Takes as input a public key pk, corresponding secret
key shares (sk1 . . . , skn) and a ciphertext c ∈ Cλ and outputs a plaintext message
x ∈Mλ.

- ΠDEC is an n-party protocol, secure against n− t corruptions, which takes as input a
set of ciphertexts C, a public key pk and corresponding secret key shares ski from
all honest parties, and outputs {Dec((pk, sk1, . . . , skn), c) : c ∈ C} to all parties.

- RAHE
pk (·) → ρ. Takes various inputs, which will be detailed below, and outputs

randomness ρ ∈ Rλ.
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We require these to satisfy the following properties for all λ ∈ N and all (pk, sk1, . . . , skn)←
Gen(1λ), where we often omit the subscripts λ and pk, and the superscript AHE, as long
as they are clear from the context:

- Correctness: For all x ∈ M, all ρ ∈ R and c ← Enc(pk, x; ρ), it holds that
Dec((pk, sk1, . . . , skn), c) = x.

- Homomorphic properties: For all a ∈ Z, all x1, x2 ∈ M, all ρ1, ρ2 ∈ R and
c1 ← Enc(pk, x1; ρ1), c2 ← Enc(pk, x2; ρ2), it holds that

c1 ∗ c2 = Enc(pk, x1 + x2;R(x1, x2, ρ1, ρ2)),
ca

1 = Enc(pk, a · x1;R(x1, a, ρ1)).
- Randomization Property: For all x1, x2 ∈ M and at least one of ρ1, ρ2 ∈ R

sampled uniformly, R(x1, x2, ρ1, ρ2) is distributed uniformly in R.
- Threshold Semantic Security: Let A be any PPT algorithm that receives as

input 1λ, the public key pk and the secret keys {ski}i∈C of a subset C ⊂ [n] of at
most n− t parties, and outputs two messages x0, x1 ∈Mλ and some arbitrary value
s ∈ {0, 1}∗. Let

Xi(λ,C) :=
{

(s, ci ← Enc(pk, xi; ρ))
∣∣∣∣∣ (pk,sk1,...,skn)←Gen(1λ)
(x0,x1,s)←A(1λ,C,pk,{ski}i∈C )

ρ
$←−Rλ

}
Then we require the distribution ensemblesX0 andX1, whereXi := {Xi(λ,C)}λ∈N, C⊂[n]
and C is any subset of size at most n− t, to be computationally indistinguishable.

Remark 1. Note that by the randomization property, multiplying any ciphertext c :=
Enc(pk, x; ρ) with a fresh encryption of zero c0 := Enc(pk, 0; ρ0), with ρ0

$←− R, results in a
ciphertext c∗c0 = Enc(pk, x;R(x, 0, ρ, ρ0)) which is distributed identically to an encryption
of x with uniformly distributed randomness.
Example 2 (Paillier Encryption). Paillier’s well known public key cryptosystem [Pai99]
has message space M := ZN , randomness space R := Z∗N and ciphertext space C := Z∗N2 ,
and consists of the following algorithms:

- Gen : On input 1λ, samples (N, p, q) where N = pq and p, q are λ-bit primes (with
all but negligible probability in λ) and outputs pk := N , sk := (N,ϕ(N)), where ϕ is
the Euler phi function.

- Enc : On input a public key pk = N , a message x ∈ ZN and randomness ρ ∈ Z∗N ,
outputs c := [(1 +N)x · ρN mod N2].

- Dec : On input a private key sk = (N,ϕ(N)) and a ciphertext c ∈ Z∗N2 , computes
y := [cϕ(N) mod N2]−1

N and outputs x :=
[
y · ϕ(N)−1 mod N

]
.

It is an IND-CPA secure public key encryption scheme under the decisional compos-
ite residuosity (DCR) assumption, which states that the distributions of (N, r) and
(N, [rN mod N2]), over (N, p, q) $←− Gen(1λ) and r $←− Z∗N2 , are computationally indistin-
guishable. The homomorphic and randomization properties follow directly from the fact
that the map ψ(a, b) := [(1 +N)a · bN mod N2] is an isomorphism ψ : ZN × Z∗N → Z∗N2 .
Note that the randomization function is given by R(x, x′, ρ, ρ′) := [ρ · ρ′ mod N ]. A key
distribution protocol ΠKD and a threshold decryption protocol ΠDEC, together with a proof
of threshold semantic security, were first given in two concurrent works [DJ00, FPS00], the
details of which are out of scope for this work. Note that Damgård and Jurik [DJ01] also
constructed a generalization of Paillier’s cryptosystem over moduli Ns+1 for s ∈ N, with
message space ZNs , together with key distribution and threshold decryption protocols.
The homomorphic and randomization properties follow similarly as for Paillier’s scheme,
and security again holds under the DCR assumption.

We discuss some other examples of AHE schemes, and to what extent they fit into our
framework, in Appendix B.
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2.3 Commitment Schemes
We give the definition of a homomorphic vector commitment scheme, in which one can
commit to a vector x ∈ Mn of fixed length n ∈ N in a single value c ∈ C, and restrict
ourselves to the case where M = Zm for some m ∈ N. A homomorphic single-value
commitment scheme will simply be the special case where n = 1.

Formally, a vector commitment scheme consists of a tuple of PPT algorithms COM :=
(Gen,Com,Open), and is parametrized by a message ring family (Mλ,+, ·)λ, a randomness
space family (Rλ)λ, a commitment group family (Cλ, ∗)λ and a vector length n ∈ N.

- Gen(1λ, n,m) → pp. Takes as input the security parameter λ, the vector length n
and the modulus m, and outputs public parameters pp.

- Com(pp,x; r)→ c. Takes as input the public parameters pp, a vector x ∈Mn
λ and

randomness r ∈ Rλ, and outputs a commitment c ∈ Cλ.
- Open(pp, c,x, r)→ b. Takes as input the public parameters pp, a commitment c ∈ Cλ,

a vector x ∈Mn
λ and randomness r ∈ Rλ, and outputs a bit b ∈ {0, 1}.

- RCOM
pp (·) → r. Takes various inputs, which will be detailed below, and outputs

randomness r ∈ Rλ.

We require these to satisfy the following properties for all λ, n,m ∈ N and all pp ←
Gen(1λ, n,m), where we often omit the subscripts λ and pp, and the superscript COM, as
long as they are clear from the context:

- Correctness: For all x ∈ Mn, r ∈ R and c ← Com(pp,x; r), it holds that
Open(pp, c,x, r) = 1.

- Hiding: Let A be a PPT (resp. any) algorithm that receives 1λ and the public
parameters pp, and outputs two vectors x1,x2 ∈ Mn and some arbitrary value
s ∈ {0, 1}∗. Let

Xi(λ) :=
{

(s, ci ← Com(pp,xi; r))
∣∣∣∣ pp←Gen(1λ,n,m)
(x1,x2,s)←A(1λ,pp)

r
$←−R

}
Then we say that the commitment scheme is computationally (resp. statistically)
hiding if the distribution ensembles Xi := (Xi(λ))λ∈N are computationally (resp.
statistically) indistinguishable for i ∈ {1, 2}. We say that the commitment scheme is
perfectly hiding if it is statistically hiding and the distribution ensembles are identical.

- Binding: Let A be a PPT (resp. any) algorithm that receives as input 1λ and
the public parameters pp, and outputs two vectors x1,x2 ∈Mn and corresponding
randomness r1, r2 ∈ R. Then we say that the commitment scheme is computationally
(resp. statistically) binding if the following probability is bounded by some negligible
function negl : N→ R>0 for all λ ∈ N:

Pr
[
Com(pp,x1; r1) = Com(pp,x2; r2)

∣∣∣∣ pp←Gen(1λ,n,m)
(x1,r1,x2,r2)←A(1λ,pp)

x1 ̸=x2

]
We say that the commitment scheme is perfectly binding if it is statistically binding
and the probability is equal to 0.

- Homomorphic properties: For all a ∈ Z, all x1,x2 ∈ Mn, r1, r2 ∈ R and
c1 ← Com(pp,x1; r1), c2 ← Com(pp,x2; r2), it holds that

c1 ∗ c2 = Com(pp,x1 + x2;R(x1,x2, r2, r2)),
ca

1 = Com(pp, a · x1;R(x1, a, r1)).

- Randomization Property: For all x1,x2 ∈ Mn and at least one of r1, r2 ∈ R
sampled uniformly, R(x1, x2, r1, r2) is distributed uniformly in R.
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2.3.1 Commitments from public-key encryption.

It is well known that public-key encryption schemes can also be used as commitment
schemes. Suppose we have an IND-CPA secure public-key encryption scheme PKE :=
(Gen,Enc,Dec) with message space M, randomness space R and ciphertext space C.
Intuitively, we can use this as a single-value commitment scheme with message space M,
randomness space R and commitment space C by running (pk, sk) ← Gen(1λ), setting
pp := pk and defining c := Com(pp, x; r) := Enc(pk, x; r). In order to open the commitment
c, the original message x and the randomness r used to encrypt can be revealed and it
can be checked whether c = Enc(pk, x; r). As we will see shortly, PKE needs to satisfy the
additional condition that one is able to efficiently check the validity of a public key pk.

In order to show that this indeed yields a valid single-value commitment scheme, we
prove that it is computationally hiding and perfectly binding:

- Computationally Hiding: Follows from IND-CPA security of PKE as the hid-
ing experiment for a single-value commitment scheme is equal to the IND-CPA
experiment.

- Perfectly Binding: Follows from the correctness of PKE as long as the decryption
function is uniquely determined for given public parameters pp := pk. This is
immediate for any validly generated keypair (pk, sk) ← Gen(1λ), and thus the
commitment scheme is perfectly binding if it is possible to efficiently check the
validity of a public key pk.

2.3.2 Vector Commitments from single-value commitments.

A recent result by Attema et al. [ACC+22] shows that it is possible to turn a homomorphic
single-value commitment scheme over a ring Zm into a homomorphic vector commitment
scheme over Zn

m. Next to the conditions specified in Section 2.3 with n = 1, the single-value
commitment scheme needs to satisfy an additional zero-opening property, which is defined
as follows.

Definition 3 ([ACC+22, Def. 2]). Let COM′ := (Gen′,Com′,Open′) be a homomorphic
single-value commitment scheme with message ring Zm. Then we say that COM′ satisfies
the zero-opening condition if there exists an efficiently computable function R such that
for any commitment c := Com′(pp, x; r) we have

cm = Com′(pp, 0;R(c)).

The construction of a vector commitment scheme COM for Zn
m from a single-value

commitment scheme COM′ over Zm is detailed in Figure 1.
Remark 2. In [ACC+22, Thm. 1] it is proven that if COM′ is a perfectly hiding and
computationally binding single-value commitment scheme, then the construction in Figure 1
gives a vector commitment scheme COM which is perfectly hiding and computationally
binding as well. However, in this work we will be constructing a vector commitment scheme
by using single-value commitments from an additively homomorphic public-key encryption
scheme, which are computationally hiding and perfectly binding. Therefore, we prove in
Section 3 that using such commitments results in a vector commitment scheme which is
computationally hiding as well as computationally binding.

2.4 Interactive Proofs
An interactive proof for an NP-relation R is a protocol which allows a prover to convince
a verifier that it knows a witness w for a given statement x, such that (x,w) ∈ R. We will
consider Σ-protocols with the standard properties of completeness, k-special soundness
and special honest verifier zero-knowledge.
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Figure 1 Vector Commitment Scheme for Zn
m

• Gen(1λ, n,m) for λ, n,m ∈ N:
– Generate pp′ ← Gen′(1λ, 1,m).
– For i = 1, . . . , n, sample ai

$←− Zm and ri
$←− R.

Set gi := Com′(pp′, ai; ri).
– Output pp = (pp′, g1, . . . , gn).

• Com(pp,x; r) for x := (x1, . . . , xn) ∈ Zn
m and r ∈ R:

– Output Com′(pp′, 0; r) ∗ gx1
1 ∗ · · · ∗ gxn

n .
• Open(pp, c,x, r) for c ∈ C, x ∈ Zn

m and r ∈ R:
– If c = Com(pp,x; r) output 1, otherwise output 0.

- Completeness: If (x,w) ∈ R, the verifier accepts with probability 1.
- k-special soundness: In a 3-move protocol, given a statement x and k accepting

transcripts with distinct verifier messages, it is possible to efficiently extract a witness
w such that (x,w) ∈ R.

- Special honest verifier zero-knowledge (SHVZK): There exists a simulator
which, on input a statement x and uniformly random verifier messages, can efficiently
generate a transcript identically distributed to an interaction between the prover
with input (x,w) ∈ R and the verifier.

We defined special soundness only for 3-move protocols, but we also consider the generalized
notion of (k1, . . . , kℓ)-special soundness for (2ℓ+1)-move protocols, as defined in [ACC+22],
which implies knowledge soundness.

2.4.1 Composition of protocols.

Given two interactive proofs Π1 and Π2, we denote by Π2 ⋄Π1 their composition, defined
as follows. On input a statement and witness pair (x;w), it consists of an execution of
Π1(x;w) in which the final message z sent by the prover is replaced by an execution of
Π2(x′; z), where the statement x′ can be publicly computed from the transcript of Π1.

2.4.2 Exceptional challenge sets.

In the interactive protocols we present, the verifier’s challenges are elements of a ring Zm,
where m is not necessarily a prime. For soundness to hold, we need the verifier to sample
challenges from an exceptional subset E ⊆ Zm. We say that E is exceptional if e− e′ is an
invertible element of Zm for all distinct e, e′ ∈ E . Note that the cardinality of the largest
exceptional subset of Zm is equal to the smallest prime p dividing m. A smaller challenge
set leads to a larger knowledge error, which can mostly be overcome by parallel repetition
of the protocol. However, for the compressed protocols in Section 5, the challenge set
needs to have at least cardinality 3. For this reason we assume in this work that 2 ∤ m.
For even moduli m, it is possible to work over an extension of the ring Zm to allow for
larger challenge set (see [ACC+22]).

In some cases it is not possible to efficiently determine an exceptional subset of Zm,
such as when m = N = pq is the product of two large primes p and q as is the case for
the message space of the Paillier encryption scheme. In this case the probability that
gcd(e− e′, N) > 1 for uniformly random e, e′ $←− ZN is negligible, so it suffices to sample
challenges from the whole ring ZN . This does however have the consequence that the
resulting protocol has computational soundness under the assumption that factoring N is
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intractable. Alternatively one can adapt the relation underlying the protocol such that a
witness for the new relation is either a witness for the original relation or a factor of N .

3 Vector Commitments from AHE
In this section we construct a homomorphic vector commitment scheme from a homomorphic
single-value commitment scheme using the construction from [ACC+22] and single-value
commitments coming from an additively homomorphic encryption scheme. Since a single-
value commitment scheme obtained in this way is computationally hiding and perfectly
binding, we present an adapted version of [ACC+22, Thm. 1]. Note that AHE additionally
needs to satisfy the zero-opening condition from Definition 3.

Example 3. The Paillier encryption scheme as defined in Example 2 satisfies the
zero-opening condition from Definition 3. That is, for all x ∈ ZN , ρ ∈ Z∗N and C :=
Enc(pk, x; ρ) := gx · ρN mod N2, we have

Enc(pk, 0; [C mod N ]) = CN mod N2.

Theorem 1. When based on a homomorphic single-value commitment scheme COM′ for
Zm satisfying the conditions in Section 2.3 with computational hiding, perfect binding
and satisfying the zero-opening condition from Definition 3, the construction COM from
Figure 1 is a computationally hiding and computationally binding homomorphic vector
commitment scheme for Zn

m.

Proof. The proof proceeds similarly to [ACC+22, Thm. 1], so we focus on the areas that
are different. Consider an adversary A against the hiding property of COM, then we can
use it to construct an adversary A′ against the hiding property of COM′, on input 1λ,
pp′ ← Gen′(1λ,m), as follows:

• For i = 1, . . . , n, sample ai
$←− Zm and ri

$←− R, and put gi := Com′(pp′, ai, ri). Put
pp := (pp′, g1, . . . , gn).

• Query (x0,x1, s)← A(1λ, pp) and put xb :=
∑n

i=1 aix
b
i for b ∈ {0, 1}.

• Output (x0, x1, s) to the challenger and receive (s, cb)
(where cb ← Com′(pp′, xb; r′) for b $←− {0, 1}, r′ $←− R).

• Query b′ ← A(s, cb) and output b′.

Then we claim that A′ distinguishes between the distributions of (s, c0) and (s, c1) with
at least the probability that A wins the hiding experiment. This holds because: (1)
A′ generates the public parameters pp identical to Gen(1λ, n,m); (2) The element cb is
identically distributed to Com(pp,xb; r) with r $←− R since

Com′(pp′, xb; r′) =
n∏

i=1
Com′(pp′, ai; ri)xb

i ∗ Com′(pp, 0; r)

= Com(pp,xb; r), for r := R(xb,−xb, r′, r̃),

where r̃ is the randomness of
∏n

i=1 Com′(pp′, ai; ri)−xb
i which can be defined through

the homomorphic properties of Com′, and r is distributed uniformly random in R by
the randomization property since r′ is distributed uniformly random in R. Since COM′
is computationally hiding, A′ succeeds with at most negligible probability and COM is
computationally hiding.

Now consider an adversary A against the binding property of COM, then we can
use it to construct an adversary A′ against the hiding property of COM′ , on input 1λ,
pp′ ← Gen′(1λ,m), as follows:
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• Sample i∗ $←− [n] and a0
i∗ , a1

i∗
$←− Zm, output (a0

i∗ , a1
i∗) to the challenger and receive

gi∗ (where gi∗ ← Com′(pp′, ab
i∗ ; ri∗) for b $←− {0, 1}, ri∗ $←− R).

• For i ̸= i∗, sample ai
$←− Zm, ri

$←− R and put gi := Com′(pp′, ai; ri).
Put pp := (pp′, g1, . . . , gn).

• Query (x, r,x′, r′)← A(1λ, pp).
• If Com(pp,x; r) = Com(pp,x′; r′) and xi∗ ̸≡ x′i∗ mod m:

– Let d := gcd(xi∗ − x′i∗ ,m), let e be the multiplicity with which d divides m as
an integer and let M := m/de. Note that M ≥ 2.

– If a0
i∗ ̸≡ a1

i∗ mod M , output the bit
b := (a1

i∗
?≡ −(xi∗ − x′i∗)−1 ·

∑
i ̸=i∗ ai(xi − x′i) mod M).

– Else, sample b $←− {0, 1} and output b.
• Else, sample b $←− {0, 1} and output b.

The idea behind the reduction is the following. If the adversary A successfully outputs
(x, r,x′, r′) with Com(pp,x; r) = Com(pp,x′; r′), x ̸= x′, then perfect binding of Com′
implies that

∑
aixi ≡

∑
aix
′
i mod m. With probability ≥ 1/n we have xi∗ ̸≡ x′i∗ mod m

since if A succeeds, x and x′ differ in at least one coordinate. If this is the case we can solve
for the i∗-th coordinate and compute ai∗ := −(xi∗ − x′i∗)−1 ·

∑
i ̸=i∗ ai(xi − x′i) mod M .

If a0
i∗ ̸≡ a1

i∗ mod M this means that A′ can distinguish between Com′(pp′, a0
i∗ ; ri∗) and

Com′(pp′, a1
i∗ ; ri∗). Since M ≥ 2 we have a0

i∗ ̸≡ a1
i∗ mod M with probability ≥ 1/2.

Working out the probabilities we see that A′ succeeds with probability at least ε/(4n)+1/2,
where ε is the success probability of A. Since COM′ is computationally hiding and n is
polynomial, it follows that A succeeds with at most negligible probability and COM is
computationally binding.

The homomorphic properties of COM follow from the homomorphic and zero-opening
properties of COM′ completely analogous to [ACC+22, Thm. 1]. The same goes for the
randomization property.

Remark 3 (Setup). We would like to run the setup algorithm Gen(1λ,M,m) of COM
without the need for a trusted setup. In our construction from a threshold AHE scheme
as the underlying single-value commitment scheme, the public parameters pp := pk are
already generated as part of the key distribution protocol ΠKD, and knowledge of ≤ n− t
secret key-shares skj does not break the hiding property by the threshold security of
AHE. Furthermore, the basis elements gi := Enc(pk, ai; ri) need to be generated with
ai

$←− Zm, ri
$←− R not known to any of the parties, since otherwise this would break the

binding property of COM. This can be realized by letting each party Pj sample ai,j
$←− Zm,

ri,j
$←− R and publish gi,j := Enc(pk, ai,j , ri,j) together with a proof of plaintext knowledge

(as in Example 4). The parties then verify each other’s proofs and compute the basis
elements as gi := gi,1 ∗ · · · ∗ gi,n. As long as at least one of the parties is honest, and
therefore sampled ai,j , ri,j uniformly random, the resulting gi have the desired distribution.

In case the base elements are simply random elements of the commitment space, we can
do better by using a public PRF F to sample the base elements as F (k, 1), . . . , F (k,M),
where the seed k can be generated using, for example, a secure coin-tossing protocol.
Note that this is the case when we use Paillier encryptions (Example 2) as the underlying
single-value commitment scheme, and that sampling uniformly random elements in ZN2

has negligible statistical distance to sampling uniformly random elements in Z∗N2 .

4 Standard Σ-Protocols
In this section we will describe a standard Σ-protocol for proving knowledge of a pre-image
of a “homomorphism” Ψn which takes as inputs a vector x of length n ∈ N over a ring Zm

and some “randomness” γ from a finite set S, and outputs an element Ψn(x; γ) of a group
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Figure 2 Standard Σ-protocol ΠΣ for relation RΨ

Parameters: m,n,S,H
Input(C,Ψn; x, γ)
C = Ψn(x; γ)

Prover Verifier

a $←− Zn
m, ρ

$←− S
A := Ψn(a; ρ) A−−−−−−−−−−−−−−−−→

e←−−−−−−−−−−−−−−−− e $←− E
z := a + e · x

σ := R(a, e · x, ρ, R(x, e, γ)) z,σ−−−−−−−−−−−−−−−−→ Ψn(z;σ) ?= A ∗ Ce

(H, ∗). The map Ψn : Zn
m × S → H is not a homomorphism in the mathematical sense

since we do not assume a group structure on the set S, but we rather require it to satisfy
the following homomorphic properties. There exists an efficiently computable function
R which takes various inputs, as detailed below, and has outputs in S, such that for all
x,x′ ∈ Zn

m, all γ, γ′ ∈ S, all a ∈ Z and all C ∈ H:

- Multiplication: Ψn(x; γ) ∗Ψn(x′; γ′) = Ψn(x + x′;R(x,x′, γ, γ′));
- Scalar Multiplication: Ψn(x; γ)a = Ψn(a · x;R(x, a, γ));
- Randomization: If at least one of γ, γ′ is sampled uniformly at random from S,

then R(x,x, γ, γ′) is distributed uniformly in S.
- Zero-opening: Cm = Ψn(0;R(C)).

We show that when these conditions are satisfied, there exists a standard zero-knowledge
Σ-protocol for proving knowledge of a pre-image (x, γ) ∈ Zn

m × S such that Ψn(x; γ) = C
for some public element C ∈ H. In Section 4.1 we give examples of morphisms Ψn to show
that this immediately gives a proof of plaintext knowledge for an additively homomorphic
encryption scheme and a proof of correct multiplication of a vector of ciphertexts with a
vector of committed exponents. These two proofs form the main building blocks in our
actively secure MPC protocol in Section 6. Additionally it gives a protocol for proving
knowledge of a commitment opening satisfying a constraint, which is the main building
block for constructing zero-knowledge arguments for arithmetic circuits in [AC20] (see
Example 5 and Appendix A). We furthermore show in Section 4.2 that is possible to
amortize the proofs over multiple witnesses for the same morphism and in Section 4.3 that
it is possible to amortize over the same witness for multiple morphisms for some specific
choices of morphisms. The standard protocol is given in Figure 2, where E ⊂ Zm denotes
an exceptional subset (see Section 2.4.2).

Theorem 2. Protocol ΠΣ from Figure 2 is a complete, special honest verifier zero-
knowledge, 2-special sound protocol for the relation

RΨ := {(C,Ψn; x, γ) : C = Ψn(x; γ)}.

Proof. Completeness: Follows directly from the homomorphic properties of Ψn.
SHVZK: We can construct a simulator on input public parameters m,n,S,H and a

statement C,Ψn as follows. Sample e $←− E , σ $←− S and z $←− Zn
m, put A := Ψn(z;σ) ∗C−e,

and output the transcript (A, e,z, σ). It is clear that this is an accepting transcript, and
that it is distributed identically to a real transcript by the randomization property of R(·).

Special soundness: Let (A, e,z, γ), (A, e′, z′, γ′) be two accepting transcripts with
e ̸= e′ for the same statement C,Ψn and with respect to the same public parameters
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m,n,S,H. From the accepting condition we have

Ce−e′
= Ψn(z − z′; σ̂), σ̂ := R(z,−z′, σ, R(z′,−1, σ′))

Since e, e′ are distinct and sampled from an exceptional subset of Zm, there exists a β ∈ Z
such that β · (e − e′) = 1 + km for some k ∈ Z. By the zero opening condition and the
homomorphic properties of Ψn we can write

C = Ψn(z − z′; σ̂)β ∗Ψn(0;R(C))−k

= Ψn(β · (z − z′);R(β(z − z′), 0, R(z − z′, β, σ̂), R(0,−k,R(C))))

So we conclude that we can efficiently extract a witness for the statement C,Ψn.

4.1 Examples
Example 4 (Proof of Plaintext Knowledge). The standard protocol from Figure 2
immediately gives us a proof of plaintext knowledge for an additively homomorphic
encryption scheme AHE as in Subsection 2.2 with message space M := Zm and which
satisfies the zero opening condition from Definition 3, by letting Ψ1(x; γ) := Enc(pk, x; γ).

Example 5 (Proof of Commitment Opening). Let COM be a homomorphic vector
commitment scheme over Zn

m constructed from a homomorphic single value commitment
scheme COM′ over Zm satisfying the zero-opening condition of Definition 3. Then COM
satisfies an analogous zero-opening condition. That is, let pp = (pp′, g1, . . . , gn) and
C := Com(pp,x; γ) = Com′(pp′, 0; γ) ∗ gx1

1 ∗ · · · ∗ gxn
n . Then by construction C is a valid

commitment under Com′ and hence we have

Cm = Com′(pp′, 0;R′(C)) = Com(pp,0;R(C)), R(C) := R′(C).

Hence by letting Ψn(x; γ) := Com(pp,x; γ), the protocol from Figure 2 gives us a protocol
for proving knowledge of an opening of a commitment. We show in Appendix A how to
extend this protocol to additionally prove that x satisfies some linear form constraints.

Example 6 (Proof of Correct Multiplication). Let C := (C1, . . . , Cn) be public, valid
ciphertexts of an additively homomorphic scheme AHE with message space Zm and
ciphertext space C′, and again let COM be a homomorphic commitment scheme over Zn

m

with commitment space C constructed from a homomorphic single value commitment
scheme COM′ over Zm. Then by plugging in the map

Ψn(x; γ, ρ) := (Com(pp,x; γ),Cx ∗ Enc(pk, 0, ρ))

into the protocol from Figure 2, this gives us a protocol for proving knowledge of an opening
(x, γ, ρ) additionally satisfying some relation Cx ∗ Enc(pk, 0, ρ) = B ∈ C′. It remains to
show that Ψn satisfies the homomorphic, randomization and zero-opening condition.

Let R be the randomization function of COM with randomness space R and let R′
be the randomization function of AHE with randomness space R′. Then for x,x′ ∈ Zn

m,
γ, γ′ ∈ R and ρ, ρ′ ∈ R′, let z := [x + x′ mod m]. We have

Ψn(x; γ, ρ) ∗Ψn(x′; γ′, ρ′) = (Com(pp, z; γ̂),Cx+x′
∗ Enc(pk, 0; ρ̂)) = (⋆)

with γ̂ := R(x,x′, γ, γ′) and ρ̂ := R′(0, 0, ρ, ρ′). We can pick k ∈ Zn such that x + x′ =
z +m · k and put ρ̃ := R′(0, 0, ρ̂, R(Ck)). Then

(⋆) = (Com(pp, z; γ̂),Cz ∗ Enc(pk, 0; ρ̃)) = Ψn(z; γ̂, ρ̃).
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Figure 3 Amortized Σ-protocol Πam-x for relation Rmulti-x

Parameters: m,n, k,S,H
Input(C1, . . . , Ck,Ψn;
x1, . . . ,xk, γ1, . . . , γk)
Ci = Ψn(xi; γi), ∀i

Prover Verifier

a $←− Zn
m, ρ

$←− S
A := Ψn(a; ρ) A−−−−−−−−−−−−−−−−→

e←−−−−−−−−−−−−−−−− e $←− E
z := a +

∑k
i=1 e

i · xi

σ := R(a,
∑k

i=1 e
i · xi, ρ, ϕk) z,σ−−−−−−−−−−−−−−−−→ Ψn(z;σ) ?= A ∗

∏k
i=1 C

ei

i

Moreover, the randomization property follows directly from the randomization properties
of R and R′. Similarly, for a ∈ Z, let z := [a ·x mod m], γ̂ := R(x, a, γ) and ρ̂ := R(0, a, ρ).
Then

Ψn(x; γ, ρ)a = (Com(pp, z; γ̂), Ca·x ∗ Enc(pk, 0; ρ̂)) = Ψn(z; γ̂, ρ̃),

where ρ̃ = R(0, 0, ρ̂, R(Ck)) with k ∈ Zn such that a · x = z +m · k. For A ∈ C, B ∈ C′
the zero-opening condition follows directly from the zero-opening conditions of COM and
AHE as

(Am, Bm) = (Com(pp,0;R(A)),Enc(pk, 0;R′(B))) = Ψn(0;R(A), R′(B)).

4.2 Amortizing over Pre-Images
We can apply standard techniques from Σ-protocol theory to amortize the costs of proving
knowledge of many pre-images of the same homomorphism Ψn. This lets us do so at the
same communication costs of a single proof. The amortized protocol is given in Figure 3,
where we use the shorthand ϕk for the efficiently computable value defined recursively by
ϕ1 := R(x1, e, γ1) and for j ≥ 2:

ϕj := R(ej · xj ,

j−1∑
i=1

ei · xi, R(xj , e
j , γj), ϕj−1).

Theorem 3. The protocol Πam-x from Figure 3 is a complete, special honest verifier
zero-knowledge, (k + 1)-special sound protocol for the relation

Rmulti-x := {(C1, . . . , Ck,Ψn; x1, . . . ,xk, γ1, . . . , γk) : Ci = Ψn(xi; γi), ∀i ∈ [k]}.

Proof. Completeness: Follows directly from repeatedly applying the homomorphic
properties of Ψn.

SHVZK: We can construct a simulator on input public parameters m,n, k,S,H
and a statement C1, . . . , Ck,Ψn as follows. Sample e $←− E , σ $←− S and z $←− Zn

m , put
A := Ψn(z;σ) ∗

∏k
i=1 C

−ei

i and output the transcript (A, e,z, σ). It is clear that this is
an accepting transcript, and that it is distributed identically to a real transcript by the
randomization property of R(·).
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Special soundness: Let (A, e1, z1, σ1), . . . , (A, ek+1, zk+1, σk+1) be k + 1 accepting
transcripts for the same statement C1, . . . , Ck,Ψn, with respect to the same public param-
eters m,n, k,S,H and with pairwise distinct challenges ei ≠ ej for i ̸= j. Consider the
(k + 1)× (k + 1) Vandermonde matrix with entries in Zm

V =


1 1 · · · 1
e1 e2 · · · ek+1
...

... . . . ...
ek

1 ek
2 · · · ek

k+1

 , (1)

which has determinant
∏

i<j(ej − ei) ∈ Zm. Since ej − ei is invertible for all i ̸= j, V
is invertible over Zm. Hence for each j ∈ [k + 1] there exist bj ,dj ∈ Zk+1 such that the
j-th unit vector 1j can be written as 1j = V bj + m · dj over the integers. Recall that
the accepting condition gives Ψn(zj ;σj) = A ∗

∏k
i=1 C

ei
j

i for all j ∈ [k + 1]. Thus for each
v ∈ [k] we can write

Cv =
k+1∏
j=1

(
Abv+1,j

k∏
i=1

C
ei

jbv+1,j

i

)
∗ (Adv+1,1

k∏
i=1

C
dv+1,i+1
i )m

=
k+1∏
j=1

Ψn(zj ;σj)bv+1,j ∗Ψn(0;R(Adv+1,1

k∏
i=1

C
dv+1,i+1
i ))

= Ψn(x̃v; γ̃v),

where x̃v :=
∑k+1

j=1 bv+1,j · zj and γ̃v can be computed efficiently from the values zj , σj ,
bv+1,j , dv+1,j , ej , A,Ci, for j ∈ [k + 1], i ∈ [k] using the homomorphic properties of Ψn.
Hence for each v ∈ [k] we can efficiently extract a witness (x̃v, γ̃j) such that Cv =
Ψn(x̃v; γ̃j).

By plugging the morphism from Example 4 (resp. Example 6) into the protocol
from Figure 3, one can prove knowledge of many plaintexts (resp. correctness of many
multiplications) at the cost of one. These amortized protocols are main building blocks of
our actively secure MPC protocol for vector-RMS programs in Section 6.

4.3 Amortizing Proofs of Correct Multiplication
For some specific classes of morphisms it is possible to amortize the cost of proving
knowledge of a pre-image for many morphisms. We will detail below the specific example
of proving correctness of many multiplications of a single vector of committed exponents
with many different ciphertext vectors, since it will be part of our actively secure MPC
protocol in Section 6. More formally, we show that proving knowledge of a witness for the
relation

Rk-mult := {(P,B1, . . . , Bk,C1, . . . ,Ck; x, r, γ1, . . . , γk) :
P = Com(pp,x; r) ∧Bi = Cx

i ∗ Enc(pk, 0; γi),∀i ∈ [k]}

can be reduced to proving knowledge of a witness for the relation

RΨ := {(C,Ψn,e; x, r, γ) : C = Ψn,e(x; r, γ)}, C := (P,
k∏

i=1
Bei

i ),

Ψn,e(x; r, γ) := (Com(pp,x; r),
k∏

i=1
Cei·x

i ∗ Enc(pk, 0; γ)),
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Figure 4 Argument of knowledge Πam-mult for relation Rk-mult.
Reduction from Rk-mult to RΨ.

Parameters: m,n, k, pp,S,H
Input(P,B1, . . . , Bk,C1, . . . ,Ck;

x, r, γ1, . . . , γk)
P = Com(pp,x; r)

Bi = Cx
i ∗ Enc(pk, 0; γi),

for all i ∈ [k]
Prover Verifier

e←−−−−−−−−−−−−−−−− e $←− E

γ := ϕk
x,r,γ−−−−−−−−−−−−−−−−→ Com(pp,x; r) ?= P ,∏k

i=1 Cei·x
i ∗ Enc(pk, 0; γ) ?=∏k

i=1 B
ei

i

for a challenge e $←− E sampled by the verifier. Note that the latter relation is a special case
of the relation RΨ from Theorem 2. The argument of knowledge protocol for Rk-mult, which
reduces Rk-mult to RΨ, is given in Figure 4. We use the shorthand ϕk for the efficiently
computable value defined recursively as

ϕi := R(0, 0, R(0, ei, γi), ϕi−1) for i ≥ 2, ϕ1 := R(0, e, γ1),

where R is the randomization function of AHE.

Theorem 4. The protocol Πam-mult from Figure 4 is a complete and computationally
(k + 1)-special sound protocol for the relation Rk-mult, where soundness holds under the
assumption that COM is binding.

Proof. Completeness: Follows directly from the homomorphic properties of AHE.
Special soundness: Consider the k + 1 accepting transcripts (e1,x1, r1, γ1), . . . ,

(ek+1,xk+1, rk+1, γk+1) for the same statement P , B1, . . . , Bk,C1, . . . ,Ck, with respect to
the same public parameters m,n, k, pp,S,H and with pairwise distinct challenges ei ≠ ej

for i ̸= j. By the first part of the verification equation, we have that Com(pp,xi; ri) = P for
all i ∈ [k]. So either we can break the binding property of COM or x1 = x2 = · · · = xk =: x.
Again consider the (k + 1) × (k + 1) Vandermonde matrix V as in equation (1). Since
ej − ei is invertible for all i ̸= j, V is invertible over Zm. Hence for each j ∈ [k + 1] there
exist bj ,dj ∈ Zk+1 such that the j-th unit vector 1j can be written as 1j = V bj +m · dj

over the integers. By the second part of the verification equation, we see that for any
v ∈ [k]:

Bv =
k+1∏
j=1

(
k∏

i=1
B

ei
jbv+1,j

i

)
∗

(
k∏

i=1
B

dv+1,i+1
i

)m

=
k+1∏
j=1

(
k∏

i=1
C

ei
j ·x

i ∗ Enc(pk, 0, γj)
)bv+1,j

∗
k∏

i=1
B

dv+1,i+1
i

= Cx
v ∗

(
k∏

i=1
(Bi ∗C−x

i )dv+1,i+1

)m

∗
k+1∏
j=1

Enc(pk, 0; γj)bv+1,j

= Cx
v ∗ Enc(pk, 0; γ̃v),
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Figure 5 Compression Mechanism ΠC for relation RΨ

Parameters: m,n,S,H
Input(C,Ψn; x, γ)
C = Ψn(x, γ)

Prover Verifier

ρA, ρB
$←− S

A := Ψn((0,xL); ρA)
B := Ψn((xR,0); ρB) A,B−−−−−−−−−−−−−−−−→

e←−−−−−−−−−−−−−−−− e $←− E
z := xL + e · xR

σ := ϕ(x, γ, ρA, ρB , e)
z,σ−−−−−−−−−−−−−−−−→ Ψn((ez, z);σ) ?= A ∗ Ce ∗Be2

where γ̃v can be computed efficiently using the randomness function R of AHE. Hence
we can efficiently extract a witness x, r, γ̃1, . . . , γ̃k such that P = Com(pp,x; r) and
Bv = Cx

v ∗ Enc(pk, 0; γ̃v) for each v ∈ [k].

Post-composing the reduction Πam-mult with the standard protocol ΠΣ from Figure 2
or the compressed protocol Π from Figure 6 lets us prove knowledge of a witness for k
multiplication relations at the cost proving knowledge of a witness for a single relation.
This allows us to amortize the proofs of essentially all the operations a party performs in
the actively secure MPC protocol for RMS programs in Section 6.
Remark 4. Another class of morphisms for which we can amortize the cost of proving
knowledge of a pre-image for many different morphisms is that of linear forms, which is a
main building block in zero-knowledge proofs for arithmetic circuits [AC20]. Since we will
not make use of this in our MPC protocols we move the discussion to Appendix A.

5 Compressed Σ-Protocols with Sparse Blinding
In Figure 5 we describe the compression mechanism with which we can reduce proving
knowledge of a vector of length n to proving knowledge of a vector of length n/2. For n
a power of 2 and a vector x ∈ Zn

m, we denote by xL and xR the left and right halves of
x, i.e. x = (xL,xR) ∈ Zn/2

m × Zn/2
m . We also use as shorthand the efficiently computable

function ϕ defined as follows:

ϕ(x, γ, ρA, ρB , e) := R((exL,xL + exR), (e2xR,0), α, β),

where α := R((0,xL), ex, ρA, R(x, e, γ)), β := R((xR,0), e2, ρB).
Theorem 5. The compression mechanism ΠC from Figure 5 is a complete and 3-special-
sound protocol for the relation RΨ.
Proof. Completeness: Follows from the definition of ϕ and the homomorphic properties
of Ψn.

Special soundness: Let (A,B, e1, z1, σ1), (A,B, e2, z2, σ2) and (A,B, e3, z3, σ3) be
three accepting transcripts for the statement (C,Ψn), with common first message (A,B)
and distinct challenges e1, e2, e3 ∈ E . Consider the Vandermonde matrix with entries in
Zm

V =

 1 1 1
e1 e2 e3
e2

1 e2
2 e2

3

 ,
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which has determinant (e3 − e2)(e3 − e1)(e2 − e1). Since ei − ej is invertible for i ̸= j, V
is invertible over Zm. Therefore there exist a1, a2, a3, k1, k2, k3 ∈ Z such that0

1
0

 = V

a1
a2
a3

+m

k1
k2
k3


holds over the integers. Recall that the accepting condition gives Ψn((eizi, zi);σi) =
ACeiBe2

i for i = 1, 2, 3. Then

C = Aa1+a2+a3Ce1a1+e2a2+e3a3Be2
1a1+e2

2a2+e2
3a3(Ak1Ck2Bk3)m

= Ψn((e1z1, z1);σ1)a1Ψn((e2z2, z2);σ2)a2Ψn((e3z3, z3);σ3)a3Ψn(0;R(Ak1Ck2Bk3))
= Ψn(x̃; γ̃),

where x̃ =
∑3

i=1 ai(eizi, zi) and γ̃ can be computed from the values ai, ki, ei, C, A, B.
This shows we can compute a witness (x̃, γ̃) for the statement (C,Ψn) and relation RΨ.

We show how the compression mechanism can be composed with the basic Σ-protocol to
give a zero-knowledge proof of a pre-image of the map Ψn, with communication complexity
logarithmic in n. Moreover, we require only a logarithmic number of “blinding” elements
(consisting of the variables a, ρi

A, ρ
i
B). Compared to the naive approach, which uses a

blinding vector a of length n, this significantly decreases the computation costs of the
prover when the input vector x is sparse.

Consider the protocol Π′Σ obtained from the basic protocol ΠΣ of Figure 2 by replacing
the blinding vector a $←− Zn

m sampled by the prover by a := (a, 0, . . . , 0), where a $←− Zm.
Clearly Π′Σ still satisfies completeness and 2-special soundness, although it is no longer
zero-knowledge. The compressed protocol is obtained as the composition of this modified
basic protocol and the compression mechanism: Π = ΠC ⋄ · · · ⋄ΠC ⋄Π′Σ . A full description
is given in Figure 6, where we use the maps Ψi defined recursively from Ψn = Ψ2ℓ as
follows for i ∈ {1, 2, . . . , 2ℓ−1}:

Ψi(y; ρ) := Ψ2i((eℓ−log i+1y,y); ρ).

In addition to the homomorphic properties defined in Section 4, the morphism Ψn needs
to satisfy the following indistinguishability condition in order for the protocol in Figure 6
to be computational special honest-verifier zero-knowledge.

- Indistinguishability: For a uniform γ $←− S, the distributions of Ψn(x; γ) and Ψn(0; γ)
are computationally indistinguishable.

Note that the morphisms in all the examples presented in Section 4.1 satisfy the
indistinguishability condition. For the proof of plaintext knowledge in Example 4 this
follows from the semantic security of AHE. For the proof of commitment opening in
Example 5 this follows from the hiding property of COM. For the proof of correct
multiplication in Example 6 this follows from the hiding property of COM and the semantic
security of AHE, under the assumption that C1, . . . , Cn are valid ciphertexts.

Theorem 6. The compressed protocol Π is a complete, (2, 3, . . . , 3)-special-sound and
computational special honest-verifier zero-knowledge protocol for RΨ.

Proof. Completeness: Follows from the completeness of Π′Σ and ΠC.
Special soundness: Follows from the 2-special-soundness of Π′Σ and 3-special-

soundness of ΠC. An extraction algorithm for Π can be obtained by combining the
extraction procedures of ΠC and Π′Σ .
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Figure 6 Compressed Σ-protocol Π for relation RΨ

Parameters:
m,n = 2ℓ,S,H

Input(C,Ψn; x, γ)
C = Ψn(x; γ)

Prover Verifier

a $←− Zm, ρ
$←− S

a := (a, 0, . . . , 0) ∈ Zn
m

A0 := Ψn(a; ρ) A0−−−−−−−−−−−−−−−−→
e1←−−−−−−−−−−−−−−−− e1

$←− E
x1 = (x1

L,x
1
R) := a + e1x C1 := A0 ∗ Ce1

γ1 := R(a, e1x, ρ, R(x, e1, γ))
ρ1

A, ρ
1
B

$←− S
A1 := Ψn((0,x1

L); ρ1
A)

B1 := Ψn((x1
R,0); ρ1

B) A1,B1−−−−−−−−−−−−−−−−→
e2←−−−−−−−−−−−−−−−− e2

$←− E

x2 := x1
L + e2x1

R C2 := A1 ∗ Ce2
1 ∗B

e2
2

1
γ2 := ϕ(x2, γ1, ρ

1
A, ρ

1
B , e2)

...
...

...

ρℓ
A, ρ

ℓ
B

$←− S
Aℓ := Ψ2((0,xℓ

L); ρℓ
A)

Bℓ := Ψ2((xℓ
R,0); ρℓ

B) Aℓ,Bℓ−−−−−−−−−−−−−−−−→
eℓ+1←−−−−−−−−−−−−−−−− eℓ+1

$←− E

z := xℓ
L + eℓ+1xℓ

R Cℓ+1 := Aℓ ∗ C
eℓ+1
ℓ ∗Be2

ℓ+1
ℓ

σ := ϕ(xℓ, γℓ, ρ
ℓ
A, ρ

ℓ
B , eℓ+1)

z,σ−−−−−−−−−−−−−−−−→ Ψ1(z;σ) ?= Cℓ+1

Zero-knowledge: The simulator generates a transcript (A0, e1, A1, B1, . . . , Aℓ, Bℓ,
eℓ+1, z, σ) as follows. Sample e1, . . . , eℓ+1 ← E , z ← Zm and ρ1

A, . . . , ρ
ℓ−1
A , ρ1

B , . . . , ρ
ℓ
B,

ρ, σ ← S. Then set A0 := Ψn(0; ρ), Ai := Ψn(0; ρi
A) for 1 ≤ i ≤ ℓ − 1, and Bi :=

Ψn(0; ρi
B) for 1 ≤ i ≤ ℓ. Finally, define C1, . . . , Cℓ as in the real protocol and let

Aℓ := Ψ1(z;σ) ∗ C−eℓ+1
ℓ ∗B−e2

ℓ+1
ℓ .

Let us now check that the distribution of the simulated transcript is computationally
indistinguishable from that of an honest transcript. First, the simulated challenges
e1, . . . , eℓ+1 are sampled as in the real protocol and the prover’s messages A1, . . . , Aℓ−1,
B1, . . . , Bℓ are all of the form Ψn(0, δ) for freshly sampled δ, which are computationally
indistinguishable from Ψn(y, δ) for any y by the indistinguishability property of Ψn.
Observe that in the real protocol z is uniform (even when conditioned on the aforementioned
elements of the transcript), due to a← Zm sampled by the prover. The first message A0
is indistinguishable in the real and simulated transcripts, since ρ is independent from the
other variables discussed so far. Conditioned on the previous transcript elements, σ is
uniform in the real protocol since ρA is uniform. Finally, in both the real and simulated
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transcript Aℓ ∈ H is the unique element which satisfies the verification equation.

Remark 5. The communication costs of Π consist of 2ℓ+ 2 elements of Zm and 1 element
of S sent from prover to verifier, and ℓ+ 1 elements of Zm sent from verifier to prover.
Remark 6. We have shown that the protocol Π is computationally SHVZK based on the
assumption that Ψn(x; ρ) ≈c Ψn(0; ρ). However, if the map Ψn has the stronger property
that Ψn(x; ρ) is uniformly distributed in H (for uniform ρ), then the real and simulated
transcripts are identically distributed and Π achieves perfect SHVZK. This is the case for
Pedersen commitments, for example.

6 Improved Actively Secure MPC for RMS Programs
In this section we present our construction of an actively secure MPC protocol for evaluating
a vector-RMS program (see Definition 2). To allow multiple parties to effectively evaluate
the program using their private inputs, we assume that for each layer the (encrypted)
memory values Ct,j and the gates ft,j used to compute them are labeled by an index (t, j)
with t ∈ [T ] and j ∈ [ℓ]. Moreover, we assume that each gate ft,j contains a description
of the party’s local input vector and the vector of previous layer memory values that
are needed to evaluate the gate. For more details see Figure 7. For conciseness we
only consider inner product gates between a party’s private input vector and a vector of
previous layer memory values in the protocol. Addition gates between memory values,
as well as multiplication gates between a public input value and a memory value can
simply be evaluated by every party taking part in the protocol, using the properties of
the additively homomorphic encryption scheme, without needing to prove anything about
these operations. The protocol allows a choice between low communication mode and
low computation mode, as described below. In both modes, we make use of the following
sub-protocol:

- π ← Πpk(C; x,γ): The amortized protocol from Figure 3 with the morphism from
Example 4, Cj = Enc(pk, xj ; γj), compiled into a non-interactive proof π.

Low Computation Mode (mode = low.comp) Lower computation complexity at the
cost of higher communication complexity by letting each party commit separately to all
their local input vectors and amortizing the proofs of correct multiplication over all the
gates ft,j = ⟨(i, k), O⟩ within a layer t that use the same global memory vector O. In this
mode, we use the following sub-protocol:

- π ← Πlow.comp((Pj , Bj)j∈[k],C; (xj , γj , ρj)j∈[k]): The protocol from Figure 3 with the
morphism from Example 4, with (Pj , Bj) = (Com(pp,xj ; γj),Cxj ∗ Enc(pk, 0; ρj)),
compressed using the mechanism from Section 5 and compiled into a non-interactive
proof π.

Low Communication Mode (mode = low.comm) Lower communication complexity
at the cost of higher computation complexity by letting each party commit to all their
local input vectors in a single compact commitment and amortizing all proofs of correct
multiplication over all layers and gates they evaluate. We make use of the following
sub-protocol:

- π ← Πlow.comm(P, (Bj ,Cj)j∈[k]; x, γ, (ρj)j∈[k]): The protocol from Figure 4 with
P = Com(pp,x; γ) and Bj = Cx

j ∗ Enc(pk, 0; ρj), compressed using the mechanism
from Section 5 and compiled into a non-interactive proof π.
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Figure 7 Protocol ΠRMS for Maliciously Secure Computation of vector-RMS program

Parameters: Parties P1, . . . , Pn. Public modulus m ∈ N, maximum local input vector
length M , maximum local input vectors ν := maxi(νi).

- Inputs: Party Pi holds local input vectors {xi,k}k∈[νi] ⊂ ZM
m , global input values

{yi,k}k∈[µi] ⊂ Zm.
- Program: Vector-RMS program f = {ft,j}t∈[T ],j∈[ℓ] with T layers, where layer T

consists of ℓ gates. Gates are of the form ft,j := ⟨(i, k), O⟩, where i ∈ [n], k ∈ [νi]
specifies the local input vector xi,k held by party Pi and O ∈ ([t− 1]× [ℓ])M

specifies the global memory vector. The description of the program moreover
includes maps ini : [νi]→ [ℓ] and sets Outi ⊂ [ℓ] for each i ∈ [n].

- Mode: An option mode ∈ {low.comm, low.comp}.

Setup. Each party Pi sends (sid, idi,m) to FKD and receives (pk, ski).

- If mode = low.comp, Pi sends (sid, idi, pk,M,m) to FCOM-Gen and receives
pp := (pk, g1, . . . , gM ).

- If mode = low.comm, Pi sends (sid, idi, pk, ν ·M,m) to FCOM-Gen and receives
pp := (pk, g1, . . . , gν·M ).

Program evaluation. The RMS program f is evaluated layer by layer, as follows.

• Load inputs in memory:
– For each k ∈ [µi], party Pi samples ρk

$←− R and broadcasts
C1,ini(k) := Enc(pk, yi,k; ρk) together with πini ← Πpk(C1,ini ; yi,ρ).

– If mode = low.comp, then for each k ∈ [νi], party Pi samples γk
$←− R and

broadcasts Ai,k := Com(pp,xi,k; γk).
– If mode = low.comm, then party Pi samples γ $←− R and broadcasts
Ai := Com(pp,xi; γ), where xi := (xi,1, . . . ,xi,νi

).
– Party Pi verifies the proofs πinj for all j ̸= i, and aborts if any of them do not

accept.
• Evaluate layers (t = 2, . . . , T ):

– For gate ft,j = ⟨(i, k), O⟩, party Pi samples ρt,j
$←− R and broadcasts

Ct,j := C
xi,k

O ∗ Enc(pk, 0; ρt,j), where CO := (Cu,v)(u,v)∈O.
∗ If mode = low.comp, Pi broadcasts
πi,t,O ← Πlow.comp((Ai,k, Ct,j)(k,j)∈It,O

,CO; (xi,k, γk, ρj)(k,j)∈It,O
), where

It,O ⊂ [νi]× [ℓ] is the set of indices (k, j) of local input vectors xi,k for
which ft,j = ⟨(i, k), O⟩ with the same O.
Party Pi verifies the proofs of all other parties after each round, and aborts
if any of them do not accept.

∗ If mode = low.comm, Pi broadcasts
πi ← Πlow.comm(Ai, (Ct,j ,C

′
t,j)(t,j)∈I ; xi, γi, (ρt,j)(t,j)∈I), where

I ⊂ [T ]× [ℓ] is the set of indices (t, j) for which ft,j = ⟨(i, k), O⟩ for some
k ∈ [νi] and O ∈ ([t− 1]× [ℓ])M , and C ′t,j := (0, . . . ,CO, . . . , 0) is the
vector of length ν ·M with CO at the k-th entry and zeros at all other
entries. (i.e., such that C

′xi
t,j = C

xi,k

O ).
Party Pi verifies the proofs of all other parties at the end of round T , and
aborts if any of them do not accept.

• Output final layer T values: For each j ∈ Outi, the value CT,j will be decrypted to
party Pi as follows:

– Party Pi samples rj
$←− Zm and ρj

$←− R, and broadcasts
COuti,j := Enc(pk, rj ; ρj) together with πOuti

← Πpk(COuti
; r,ρ).

– If the proof verifies, for j ∈ Outi, each party sends (sid, idi, (pk, ski), CT,j ∗ Cr)
to FDEC and receives z̃T,j ∈ Zm.

– Party Pi computes its output values zT,j := [z̃T,j − r mod m] for j ∈ Outi.
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Example 7 (PageRank/RiskPropagation). Coming back to the simplified version of the
PageRank/RiskPropagation algorithms as discussed in Example 1. Each party Pi has local
input vectors ai,k ∈ ZM corresponding to the rows of their local (weighted) adjacency
matrix and has global input values x1

k the initial attribute values for k ∈ [Mi], together with
an embedding ϕ : [Mi]→ [M ] of the local graph in the global graph. The corresponding
vector-RMS program consists of T layers with ℓ = M gates in each layer, where each gate
is of the form ft,j = ⟨(i, k),dt−1⟩ with dt−1 = ((t− 1, 1), . . . , (t− 1,M)) for each i ∈ [N ],
j ∈ [M ], k ∈ [Mi] and t = 2, . . . , T . Note that party Pi evaluates the gates ft,j for j = ϕ(k)
as Ct,j := C

ai,k

dt−1
∗ Enc(pk, 0, ρt,j) for each k ∈ [Mi].

- mode = low.comp: Pi publishes Mi commitments Ai,k. Moreover, It,dt−1 = {(k, ϕ(k)) :
k ∈ [Mi]}, which means that per round t = 2, . . . , T , party Pi amortizes the proofs over all
the gates they evaluate in that round. This results in O(Mi + T · logM) communication
overhead and O(T ·M) computation overhead. Unfortunately, the sparsity of the input
vectors ai,k ∈ ZM will largely be lost after the amortization from Figure 3, since we are
proving knowledge of a witness

∑Mi

k=1 e
k · ai,k for a random challenge e. It is hard to

predict how much we save by using sparse blinding compared to full blinding in this case.
- mode = low.comm: Pi only publishes a single commitment Ai and amortizes the

proofs over the gates ft,j for all t = 2, . . . , T and j ∈ ϕ([Mi]). This results in O(logM)
communication overhead and O(M2) computation overhead. Note that after the reduction
from Figure 4, the morphism that we plug into the compressed protocol from Figure 6 is
given by (for a random challenge e):

Ψ(ai; γ, ρ) : = (Com(pp,ai; γ),
∏

k∈[Mi], t∈[T ]

C
′ek+t·M ai

t,ϕ(k) ∗ Enc(pk, 0; γ))

= (Com(pp,ai; γ),
T∏

t=1
C

∑Mi

k=1
ek+t·M ai,k

dt−1
∗ Enc(pk, 0; γ)).

The computational complexity of the compressed protocol scales linearly in the evaluation
time of Ψ, which is dominated by the O(M2) complexity of computing the commitment to
a vector of length M2. However, note that the vector ai will in practice be very sparse,
i.e., more than 99% of its entries will be zero, which results in about a 80% saving in the
prover’s runtime for proving knowledge of a commitment opening as reported in Section 7.
Since the second component of Ψ has insignificant evaluation time O(T ·M) compared to
the first component for large inputs, e.g., of size M = 106, we predict a saving of around
80% in the prover’s runtime using our sparse blinding mechanism as opposed to using the
full blinding mechanism from [AC20, ACC+22].

Let AHE be a threshold additively homomorphic encryption scheme with message
space Zm with threshold τ as defined in Section 2.2 and which satisfies the zero-opening
condition of Definition 3. Furthermore, let FKD be an ideal key distribution functionality
which takes input (sid, idi,m) from party Pi for each i ∈ [n], and outputs (pk, ski) to
party Pi for i ∈ [n]. Let FDEC be an ideal distributed decryption functionality, which
takes as input (sid, idi, (pk, ski), C) from at least τ honest parties Pi and outputs the
set {Dec((pk, sk1, . . . , skn), c) : c ∈ C} to all parties. Finally, let FCOM-Gen be an ideal
functionality that takes as input (sid, idi, pp′,M,m) from each party Pi, where pp′ are
public parameters of a single-value commitment scheme COM′ over Zm, and outputs
pp := (pp′, g1, . . . , gM ) to each party, computed as in Figure 1.
Theorem 7. Let f be a vector-RMS program over Zm as defined in Definition 2. Consider
the setting where there are n parties P1, . . . , Pn and the ideal functionality FRMS where each
party Pi provides a set of local input vectors and global input values, and receives a subset
of final layer memory values. The protocol ΠRMS from Figure 7 realizes the functionality
FRMS against at most n − τ maliciously corrupted parties with identifiable abort in the
random oracle, FKD, FDEC, FCOM-Gen-hybrid model.
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Proof sketch. Since the main structure of the simulation strategy proceeds similarly to
[CDN01], we will only provide a sketch of the simulator and stress areas where it differs.
Note that by using interactive instead of non-interactive proofs, as in [CDN01], security
can also be proven in the standard model at the cost of increased round complexity.

We consider the scenario where an adversary A maliciously corrupts an arbitrary subset
c ⊂ [n] of at most n− τ parties (Pi)i∈c. The simulator Sim interacts with the corrupted
parties (Pi)i∈c and the ideal functionality FRMS on behalf of (Pi)i∈c, takes the role of
FKD, FDEC, FCOM-Gen and simulates the random oracle, as follows.

• To handle the setup, the simulator can run Gen(1λ)→ (pk, sk1, . . . , skn) and distribute
the secret key shares ski to the malicious parties i ∈ c. It can subsequently simulate
FCOM-Gen as in Figure 1 and distribute the public parameters pp to the malicious
parties.

• Upon receiving the input ciphertexts and proofs of plaintext knowledge of the
malicious parties, the simulator aborts if any of them do not verify. Using standard
techniques using rewinding and programming the random oracle the simulator can
extract the plaintexts corresponding to the global inputs of the malicious parties.

• The simulator simulates the input messages of the honest parties by broadcasting
random encryptions of zero and random commitments to zero vectors, which are
indistinguishable by the threshold semantic security of AHE and the hiding property
of COM, respectively. Moreover, the simulator uses the zero-knowledge simulator to
simulate the corresponding proofs of plaintext knowledge.

• At each layer the simulator verifies the (amortized) proofs sent by the malicious
parties and aborts if any of them do not verify or are not consistent with the
commitments provided by the malicious parties in the first round. Again using
standard techniques using rewinding and programming of the random oracle the
simulator can extract the vectors corresponding to the local inputs of the malicious
parties.

• The simulator simulates the layer evaluation messages of the honest parties by
broadcasting random encryptions of zero and using the zero-knowledge simulator to
simulate the corresponding proofs of correct multiplication.

• After having extracted all the inputs of the malicious parties over the various layers,
the simulator sends these to the ideal functionality FRMS and receives their outputs
zT,j for j ∈ Outi for each i ∈ c.

• At the final layer, upon receiving the ciphertexts Cr and proofs of plaintext knowledge
from the malicious parties, the simulator aborts if any of the proofs do not verify.
Using standard techniques using rewinding and programming the random oracle the
simulator can extract the plaintexts corresponding to the random blinding values r
of the malicious parties.

• The simulator simulates the honest parties’ ciphertexts and proofs of plaintext
knowledge similar to before.

• As the malicious parties send a ciphertext C to the ideal threshold decryption
functionality, the simulator checks if it matches CT,j ∗ Cr for a j ∈ Outi for some
i ∈ c and the corresponding ciphertext Cr the simulator received at the precious step,
and if the correct pk, ski are provided, and aborts if this is not the case. Otherwise,
the simulator returns z̃T,j := [zT,j + r mod m] to all of the parties.

7 Evaluation of Sparse Blinding Technique
Since the sparse blinding technique does not yield an asymptotic improvement, we have
implemented the compressed Σ-protocol construction presented in Sections 3 and 4 as well
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as the improvements from Section 5.
For the experiments, we are specifically interested in the prover complexity of this

construction when proving knowledge of a commitment opening. For this, we com-
puted theoretical bounds and evaluated the performance of our implementation. More
specifically, we measure the performance of this construction when generating a com-
pressed Σ-protocol for proving knowledge of a pre-image for a homomorphism of the
form Ψ(x; γ) = (Com(x; γ), L(x)) with x ∈ Zn

m the secret input vector, γ the randomness
used to make a commitment and L(·) an arbitrary linear form defined over Zm. We use
the compression strategy which consists of computing the new generators Ai, Bi for a
homomorphism with half of the input length after receiving each challenge, as in Figure 6.1

Bounds on Prover Complexity. We measure the prover complexity in terms of the
number of group exponentiations that the prover needs to perform. We start with an
n-dimensional vector x ∈ Zn

m that has Hamming weight k ≤ n, i.e., the parameter k
defines the sparsity of x. First, we compute both an upper and a lower bound on the
amount of group exponentiations that are performed by the prover. For the lower bound,
we assume the relative sparsity k/n of the vector to remain the same after each folding
operation. This is of course unlikely to happen, because it would require the nonzero
entries in the right and left half to coincide exactly. For the upper bound, we assume
the absolute sparsity k to remain the same after each folding operation. Concretely, this
results in the following bounds for the number of exponentiations:

n+ 2k + 4 logn+ log n
k
≤ #exp ≤ n+ 2k + 4 logn+ k log n

k
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Figure 8: Prover complexity (in number of exponentiations) and prover runtime (in
seconds), respectively, for proving knowledge of a Paillier vector commitment opening
using sparse blinding versus full blinding, for vectors of length 214, and varying Hamming
weight, with 2048-bit Paillier keys.

Performance. We measure the performance of the implementation for vectors x of size
|x| = 214 using 2048-bit Paillier keys. Furthermore, we let k range from 0 to 214 where
we randomly set k elements to m

2 and the other n− k to zero. Because the positions of
the zeros can influence the amount of exponentiations required, we run the (randomized)
experiments ten times and present the average results. We picked 100 evenly distributed
values for k. The results of this experiment, compared to the theoretical bounds, can be
found in figure 8.

1An alternative strategy would be to “decompress” the input vector after every iteration such that it
fits in the original homomorphism. However, this is strictly more complex than the approach we follow.
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As expected, blinding a vector with the maximum relative Hamming weight of 1 using
a logarithmic number of blinding elements still leads to 49205 exponentiations in total,
which is precisely the number of exponentiations always required when fully blinding the
vector. For sparser input vectors, we see the amount of exponentiations drop significantly.
When half of the input vector are zeros, we already save around 25% of the number of
operations. When only 1% of the inputs are non-zero, almost 66% of the exponentiations
are saved compared to blinding the entire vector. This is for example the case for the
transaction graph application, where each account is known to make only 2-3 transactions
per month while a typical dataset contains millions of accounts [vEDvdB+24].

Runtime. All experiments have been run on a laptop with an AMD Ryzen 7 Pro 4750U
with 4.1GHz and 16GB of RAM. Finally, we use the Gmpy2 library to perform modular
exponentiations. As can be seen in Figure 8, similar savings in runtime are observed
compared to the exponentiations, confirming the assumption that the majority of the
runtime is dominated by the modular exponentiations. When all entries in the input vector
are non-zero, we see that we can compress vectors of 214 Paillier ciphertexts of 2048 bits
in around 570 seconds. For vectors with only 1% of non-zero inputs, we see that fully
blinding the vector also results in a runtime of 570 seconds while using logarithmic blinding
reduces this to only 100 seconds, saving almost 80% of the runtime. This reduction is even
greater than the savings in number of exponentiations, which can be explained by the fact
that we also save some runtime in other parts of the algorithm due to how the compression
is currently implemented. Namely, all the non-zero entries of the vector are first filtered
and put into a list, after which this list is iterated to construct the commitments.

Note that currently the improved runtime for sparse inputs could lead to a side-channel
attack that leaks the sparsity of the input vector of the prover. In practice, this could be
overcome by assuming an upper bound in the sparsity of the input and simply adding
some dummy operations. Furthermore, the implementation should also be changed to run
in constant time regardless of the sparsity of the input.
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A Linear Forms and Arithmetic Circuits
Similar to [ACC+22, Prot. 1], we can extend the protocol for proving knowledge of an
opening of a commitment from Example 5 to additionally prove that an opening (x, γ)
satisfies some linear constraint L(x) = y ∈ Zm, where L : Zn

m → Zm is a linear form,
by letting Ψn(x; γ) := (Com(pp,x; γ), L(x)). As in the reduction in [AC20, Prot. 3],
it is possible to reduce proving knowledge of a witness for the morphism Ψn(x; γ) :=
(Com(pp,x; γ), L(x)) to proving knowledge of a witness for the morphism Ψ̃n(x; γ) :=
Com(pp, (x, e · L(x)); γ) for a random challenge e $←− E sampled by the verifier. This
comes at the cost of achieving computational soundness under the assumption that the
commitment scheme is binding and one extra round of communication (in which the verifier
sends e), but approximately halves the communication cost of the complete protocol when
post-composing the reduction with the compressed protocol Π from Figure 6.

When proving knowledge of a witness for many linear forms, i.e. for the morphism
Ψn(x, γ) := (Com(pp,x; γ), L1(x), . . . , Lk(x)) one can first apply a reduction similar to
[AC20, Prot. 7] to reduce this to proving knowledge of a witness for a single linear form
L̃e(x) :=

∑k
i=1 e

i · Li(x). Similar to the proof of Theorem 4 this reduction protocol is
computationally sound under the assumption that the commitment scheme is binding.
Subsequently, one can apply the reduction described in the previous paragraph to reduce
to proving knowledge of just a commitment opening. When finally composing with the
compressed protocol Π from Figure 6 this saves approximately a factor k in communication.

This shows that the concrete communication costs when using the techniques from
[ACC+22] to prove statements about arithmetic circuits can be lowered using the techniques
of [AC20]. Additionally this enables us to use the sparse blinding mechanism from Section 5
when proving statements about linear forms and arithmetic circuits in the more general
ring setting of [ACC+22], since the morphism Ψn(x, γ) := (Com(pp,x; γ), L(x)) does
not satisfy the indistinguishability condition as defined in Section 4 but the morphism
Ψ̃n(x; γ) := Com(pp, (x, e ·L(x)); γ) does. Another option would be to define the morphism
as Ψ̂(x; γ, ρ) := (Com(pp,x; γ), L(x) + ρ) with ρ ∈ Zm so that it fits our framework for
sparse blinding, but this approximately doubles the communication compared to the other
approach. We leave it to future work to explore more applications where our sparse
blinding mechanism can be useful to reduce the prover’s computational complexity.

B Other AHE Schemes
Example 8 (Exponential ElGamal). ElGamal’s cryptosystem [ElG85] can be turned from
a multiplicatively into an additively homomorphic encryption scheme by encrypting a
message x ∈ Zp in the exponent as (c1, c2) := (gr, hr · gx), where G = ⟨g⟩ is a cyclic group
of prime order p, h = gs is the public key and s ∈ Zp is the private key [CGS97]. The
downside of this adaptation is that decryption requires solving the discrete logarithm of
c−s

1 · c2 with respect to g, which requires to limit the message space to Zm for m ≪ p,
e.g., m = 232, to make sure the discrete logarithm is computable in reasonable time.
ElGamal’s cryptosystem is IND-CPA secure under the decisional Diffie-Hellman (DDH)
assumption [DH76], and threshold security with a corresponding key distribution and
threshold decryption protocol were shown by Pederson [Ped91b, Ped91a]. Exponential
ElGamal satisfies all the conditions necessary to fit in our framework (including the zero-
opening condition from Definition 3) if considered with Zp as the message space, except
for the existence of an efficient decryption protocol. Therefore, when used in the MPC
protocol for RMS programs Figure 7, the parties additionally need to prove that all the
plaintexts and committed exponents are small enough to allow for efficient decryption.
For this purpose the efficient range proofs of [AC20] can be adapted to our setting. We
leave it to future work to explore specific parameters and whether this approach can be
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competitive with a Paillier-based approach.

Example 9 (HSM-CL Encryption). Castagnos, Laguillaumie and Tucker [CLT18] intro-
duced a linearly homomorphic encryption scheme based on the hard subgroup membership
assumption (HSM). This scheme can be instantiated in the so-called CL framework [CL15]
of a group of unknown order which has a subgroup where the discrete logarithm prob-
lem is easy, for which a main candidate is the class group of a non-maximal order in
an imaginary quadratic number field. We will not go into the details, but in spirit the
HSM-CL encryption scheme is very similar to the exponential ElGamal scheme where
during decryption the discrete logarithm can be efficiently solved in the subgroup where
the discrete logarithm problem is easy. Braun, Damgård and Orlandi [BDO23] present a
key distribution and threshold decryption protocol for the HSM-CL encryption scheme and
extend the proof of plaintext knowledge of [CCL+20] with a proof of correct multiplication.
The scheme fits almost all the necessary conditions to fit in our framework except for the
zero-opening condition from 3. This causes issues with the (special) knowledge soundness
of our Σ-protocols, which is common for hidden order groups. Braun et al. solve this
issue by showing that for their MPC protocol it is sufficient to satisfy a relaxed notion of
soundness, where the plaintext can be extracted but not the randomness. We leave it to
future work to extend our results to the hidden order group setting.

Example 10 (Lattice-Based Encryption). Lattice-based AHE constructions are easy to
obtain; in fact, standard encryption schemes based on Learning with Errors (LWE) or
Ring-LWE enjoy these properties. In the context of these schemes it is necessary to prove
not only knowledge of a preimage of a homomorphism, but also that such a preimage
is short. Although this means the techniques in this work cannot be applied directly,
they can be used in conjunction with the compressed Σ-protocols for lattices developed in
[ACK21]. The resulting proofs enjoy statistical zero-knowledge and unconditional special
soundness, but proving that preimages are short introduces a soundness slack: a prover
who knows a preimage x such that ∥x∥ ≤ t can only convince a verifier that ∥x∥ ≤ αt for
some factor α > 1. Soundness slack has an impact on efficiency, as it demands choosing
larger parameters to achieve the desired level of security.

Another approach to proving statements about lattice-based encryption is presented
in [dPLS19], using Pederson commitments. These proofs have statistical zero-knowledge
and computational soundness based on the discrete logarithm problem. Compared to
lattice-based compressed Σ-protocols, this technique allows shorter proofs but has higher
computation costs.
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