
Practical Proofs of Parsing for Context-free Grammars

Harjasleen Malvai
UIUC/IC3

Siam Hussain
Chainlink Labs

Gregory Neven
Chainlink Labs

Andrew Miller
UIUC/IC3

Abstract
We present a scheme to prove, in zero-knowledge (ZK),

the correct parsing of a string in context-free grammar (CFG).
This is a crucial step towards applications such as proving
statements about web API responses in ZK.

To the best of our knowledge, this is the first ZK scheme to
prove the correctness of CFG parsing with complexity linear
in the length of the string. Further, our algorithm flexibly
accommodates different ZK proof systems. We demonstrate
this flexibility with multiple implementations using both
non-interactive and interactive proof paradigms.

Given general-purpose ZK programming frameworks,
our implementations are not only compact (e.g., around
200 lines of code for the non-interactive version) but also
deliver competitive performance. In the non-interactive
setting, proving the correct parsing of a ≈ 1KB string takes
24 seconds, even for grammars with 210 production rules. In
the interactive setting the same proof takes just 1.6 seconds.

1 Introduction

Much of the world’s digital information is structured
according to standard formats that make them easier to
process or parse by machines: static web pages are structured
as HTML, dynamic web APIs usually communicate using
JSON or XML, and email adheres to the SMTP standard.

Usually, a receiving machine will parse the entire docu-
ment before locating and extracting the relevant information
for its particular purposes. Imagine, however, a situation
where the receiver does not have access to the full document.
The document may be too large to download or store, for
example, or the sender may not want to reveal its full contents.
How can the receiver still be convinced that the document
is correctly formatted, and that it contains some information
that the sender chooses to reveal?

A zero-knowledge proof (ZKP) enables a prover to
convince a verifier that they know a piece of information
satisfying a certain condition, without having to reveal that

information. Until recently, truly practical ZKPs only existed
for simple mathematical or cryptographic statements, e.g.,
to prove knowledge of the discrete logarithm of a group
element. Recent advances, however, have greatly improved
the efficiency of ZKPs – it is now feasible to create a succinct
proof of arbitrary statements that can be expressed as a circuit
or as executable code.

This paper presents simple, efficient zero-knowledge
proofs of correct parsing for the broad class of languages
covered by context-free grammars (CFGs), which in partic-
ular includes the HTML, JSON, and XML languages that are
popular in web services.
Applications. As a motivation for our work, consider the
following practical applications:

• TLS-certified data: Most modern web servers protect their
communication with clients using the Transport Layer Se-
curity (TLS) protocol. A client may want to convince an
external verifier of some statement about the content of the
communication with a server, but may not want to reveal
the full transcript because it contains sensitive or irrelevant
information.

Some examples to motivate this requirement are as follows.
A bank customer may want to prove financial liquidity
by showing a partial account balance without revealing
credentials or full financial details. An influencer may
share engagement stats with sponsors while keeping her
profile private. A blogger may include a verifiable quote
from an article from a reputable source. A whistleblower
may expose illegal content on a protected forum while
preserving the privacy of innocent users.

In general, exchanges with web APIs consist of transmitting
structured documents, most commonly JSON or XML [23],
transmitted over TLS. A recent line of work on TLS
oracles [3, 27, 33, 38, 45] allows the TLS client to prove
the authenticity of a TLS transcript with cryptographic
guarantees. While the frameworks for proving authenticity
(or provenence) of data from TLS oracles could be
used off-the-shelf, simply proving authenticity of a TLS

1

transcript is not sufficient for the fine-grained statements
in the examples above. To this end, it is necessary to parse
and filter content, using zero-knowledge. Unfortunately,
the infrastructure for this purpose in existing work is rather
brittle. For wider adoption of a TLS oracle solution, the first
step is to provide simple and efficient algorithms for proofs
of correct parsing, which may be easily implemented, even
by non-expert programmers.

• Identity provision: Attribute authorities in an identity
management (IDM) system certify users’ attributes by
issuing credentials, tokens or claims that can be verified
by third parties. IDM systems often face a bootstrapping
problem where existing authorities lack the knowledge,
trust, or infrastructure to vet certain user attributes, while
organizations with these capabilities do not issue tokens
in a suitable format. Privacy-preserving IDM systems are
particularly affected by this problem, because they require
user attributes to be certified in a special cryptographic
format, e.g., anonymous credentials [17, 32, 34, 36].

Many vetting entities do give users access to their infor-
mation in some form, whether by issuing signed OAuth,
SAML, or JSON web tokens, or through a simple TLS in-
terface. Proofs over structured data can break the deadlock
by letting users prove a selection of their vetted attributes to
a “re-issuing” authority, who verifies the proof and issues
a credential of the appropriate form on the same attributes.

• Proving email authenticity: DomainKeys Identified Email
(DKIM) [24] has email headers signed by the sender’s
domain, so that the receiver can verify that the message
indeed originated from that domain. While originally
intended to prevent email spoofing, it is also often used
to prove the authenticity of leaked emails. Proofs over
structured data make it possible to disclose only selected
fields in the DKIM header, e.g., to reveal the sender but to
hide the recipient address (who probably leaked the email).

• Light clients for smart contracts: Blockchains with support
for smart contracts, like Ethereum and its many associated
Layer-2 chains [15, 37], usually certify the root hash of the
contracts’ full state, either by including a Merkle root hash
of the states in the block header, or by checkpointing the
root hash at regular intervals.

Suppose that a smart contract on a Layer-1 chain needs to
be convinced about a statement about the state of second
contract on a Layer-2 chain, also known as a “rollup”. It is
usually possible to reveal and authenticate the full state of
the second contract using a simple Merkle proof. But if the
full state of the second contract is too large to upload to the
Layer-1 chain (which is rather likely, as the whole raison
d’être of rollups is to be cheaper and more efficient than the
Layer 1), or if the full state contains sensitive information
that cannot be revealed on the Layer-1 chain (in particular,
for zero-knowledge rollups that guarantee transaction

privacy), it would be useful to upload just the required
information, with a zero-knowledge proof of its authenticity
with respect to the root hash of the Layer 2 chain. Our
proofs of correct parsing can be used if the smart contract
organizes its state in a context-free language such as JSON.

Related work. So far, work on proving privacy-preserving
statements about strings in CFGs has relied either on (1)
assumptions [45] about what is known about the string
ahead-of-time, (2) partial redaction or revelation [35], or
(3) executing [1, 2, 4] parsing algorithms in a ZKP system.
Schemes in the first category assume that a JSON/XML
only contains certain fields or each field has a unique key,
resulting in a grammar that is not really a CFG due to such
domain-specific assumptions. Schemes in the second category
reveal the skeleton of the JSON (which reveals, for example,
absence/presence of a field). For the third category, a naive im-
plementation of input-oblivious parsing executes all possible
branches for every character in the string, resulting in impracti-
cally slow proof generation. A more efficient implementation
in [1] runs the parser through a ZK Virtual Machine (ZKVM)
which hides the memory access pattern from the verifier.
However, since even in plaintext the complexity of parsing in
CFG is quadratic in input length, the complexity of the result-
ing proving scheme is at best quadratic. Moreover, currently
there are no known ZKVMs for interactive proofs, which
make those schemes impractical for proving correct parsing
of strings obtained through interactive protocols like TLS.

On the other hand, parse trees for context-free grammars
can be generated very quickly in a regular processor today,
which leads to the crux of our solution.
Problem statement. Our main construction is a protocol for
a prover to prove to a verifier, that it generated a valid parse
tree for a string s, committed in a commitment com, based
on a publicly known CFG G .
Key insights. Observe that the applications that we are
concerned with only require ensuring the correctness of
the parse tree according to a CFG. Meaning, we only need
to verify the correctness of a generated parse tree for a
committed string, not actually emulate generating this tree
in ZKP! The parse tree for a string of length n in a CFG
has O(n) nodes and edges, with only a small constant
overhead [42]. In the proposed approach, the parse tree of
the string is generated locally and input to the ZKP system
as a private witness. The number of statements to be proven
in ZKP is significantly smaller for proving the correctness
of a parse tree compared to that for generating the parse tree.

The main idea of this construction exploits the fact that by
definition, (1) a parse tree’s leaves, concatenated from left to
right must equal the original string, (2) every node in the tree
must be a symbol in the grammar, and, (3) every non-leaf
node branches out according to the rules of the grammar,
thus reducing a parsing proof problem to a sequence of
set-membership proof problems.

2

In addition to having a more efficient implementation
in ZK, as prior works have done (e.g. [5]), we exploit
programming language concepts to make CFG parsing
more amenable to ZK. In ZK programming, all branches
of input-dependent conditional statements must be executed.
We observe that (1) if a grammar is in what is known as
Chomsky Normal Form (CNF), then, the nodes in the parse
tree have a much more limited branching factor, (2) every
CFG can be translated into CNF, and (3) property (1) of CNF
allows significantly simpler, efficient proof of a parse tree.
Practical realization. The proposed scheme is protocol ag-
nostic and can be implemented in any proof system which pro-
vides proofs of NP statements. We demonstrate this with two
realizations optimized for two different proving paradigms
- a non-interactive proof based on arithmetic circuit and an
interactive proof based on Boolean circuit. The complexities
of these two versions are O(|s| log(|P|)) for arithmetic circuit
and O((|s|+ |P|) log3(|s|+ |P|)) for Boolean circuit, where
|s| and |P| are string length and grammar size (number of
rules), respectively. For a 1KB string and a grammar with 210

production rules (on par with JSON), proof generation with a
non-interactive ZK for the arithmetic circuit takes 24 seconds.
In the same setting, proving with an interactive ZK protocol
based on the Boolean circuit takes just 1.6 seconds.
Comparison with Reef [5]. In a recent work, Angel, et
al. [5] propose an efficient proof of regular expression parsing.
However, (1) parsing of regular expressions is significantly
more straightforward than parsing context-free grammars,
since they can be parsed by finite automatons, which require
no backtracking, and (2) given that they work with finite au-
tomatons, their focus is on integrating finite automatons with
a recursive proof system for practical gains. Moreover, they
closely integrate with a particular ZKP system and program
representation while our insight is more extensible and, can
be used with any black-box proof system and commitment
scheme. Besides, our scheme is amenable to recursive proof
techniques and parallelization, and hence be combined with
the techniques of Reef for further practical improvement.

2 Background and Definitions

In this section, we provide the requisite background relating
to parsing and context-free grammars, as well as the cryp-
tographic primitives which we will use in our constructions.

2.1 Strings, grammars and parsing
We use the notation x‖y to denote the concatenation of two
strings x and y and |x| to denote the bit length of x.

Definition 1. We denote a context-free grammar (CFG) as
G = (V,Σ,S,P) where V is a set of non-terminal symbols,
Σ a set of terminal symbols, S∈V the starting symbol, and
P⊂V×(V∪Σ)∗ a set of production rules.

Given a context free grammar G , let L(G) denote the
language generated by G , i.e., the set of all strings that can
be generated by starting from the starting symbol S and
following production rules in P until ending up with a string
of terminal symbols.

For a string s a parser determines if s∈L(G), also written
as s ∈ G , by constructing a parse tree for s. The parse tree
represents a sequence of production rules which can then be
used to extract semantics.

Definition 2 (Chomsky Normal Form). A context-free
grammar G = (V,Σ,S,P) is said to be in Chomsky normal
form if P⊂V×(V 2∪Σ), i.e. any production yields either a
pair of non-terminal symbols or a single terminal symbol.

Remark 1. Any context-free grammar G can be translated
into another grammar G ′ in Chomsky normal form such that
L(G)=L(G ′) [42].

Remark 2. Given a string s of length n, if s is in a context-
free grammar G , written in Chomsky normal form, then the
parse tree of s contains 3n−1 nodes [42].

2.2 Cryptography background
Zero-knowledge proofs. We will use the notation R(x,w) to
represent a relation, i.e. R : (x,w)→{0,1} and if R(x,w)= 1
we say that (x,w) satisfies R. A zero-knowledge proof scheme
is a cryptographic protocol between two parties, a prover and a
verifier. The prover and verifier agree upon a relation R and the
prover would like to show that it knows some input (x,w) that
satisfies R, without sharing w with the verifier. In particular, if
the prover honestly generates a proof π such that the verifier,
upon running the verification algorithm, is convinced that the
prover knows an input (x,w) that satisfies R (a property called
completeness). Further, the verifier learns nothing about the
witness w, other than what it would learn by looking at R and x
(this is the property of zero-knowledge). Finally, a prover who
does not know a valid input (x,w) cannot generate a proof that
verifies according to the verification algorithm (soundness1).

By convention, if R is the relation that is being proven
using a zero-knowledge proof, then we say that x is the public
input known to both the prover and the verifier and w is the
secret input known only to the prover. We abstract out the
use of a concrete zero-knowledge proof scheme and instead,
define an ideal functionality FZK in fig. 15.
Vector commitments. A vector commitment scheme [16]
is a cryptographic primitive that allows a party to commit
to a vector (v1,...,vq), and later prove that a particular value
vi is committed at a particular position i. Merkle trees are a
well-known instantiation of vector commitments, but there
are others. We formally define the primitive in Def. 3. Note

1Note that the property formulated here is actually called knowledge
soundness and is a technical requirement for UC proof formalization. For
more details, see, e.g. [25].

3

that most works focusing on vector commitments (e.g. [40])
define vector commitments that can admit updates, of the
form: replace element vi at position i with a new value
v′i. In our case, since we do not need this capability, we
define a simpler kind of vector commitment scheme, which
we formally call a static vector commitment and defin in
detail in Def. 3 (see App. B). Informally, a static vector
commitment scheme VC provides algorithms VC.KeyGen
to generate public parameters, VC.Commit to commit to a
vector, VC.ProveCom to generate a proof that a particular
position in the committed vector opens to a given value with
respect to the commitment generated by VC.Commit and
finally, VC.VerCom which verifies a proof of the value at a
given position in the vector with respect to a commitment.

Another useful primitive, when using vector commitments
is an aggregatable static vector commitment, which supplies
the additional algorithms VC.ProveAgg to generate a sigle
proof for the corresponding values for a batch of vector
indices and VC.VerAgg, which verifies a batch of index-value
pairs with respect to a commitment.

Note that any static vector commitment can be transformed
into an aggregatable static vector commitment naively
by instantiating the algorithm VC.ProveAgg by calling
VC.ProveCom on each desired entry (i, vi) and returning
the vector of proofs πi output by these invocations of
VC.ProveCom. Correspondingly, VC.VerAgg would call
VC.VerCom on each (i,vi,πi). In the rest of this work, when
we refer to vector commitments, we will mean aggregatable
static vector commitments, unless stated otherwise.

Accumulators. We define a slightly different primitive than
a vector commitment scheme, called an accumulator. Note
that the accumulators required in this work do not need to
support dynamic operations, such as insertions or deletions
(e.g. those defined by Camenisch and Lysyanskaya [12]).
We simply want a tool to commit to unordered sets, so we
provide definition and security properties more akin to the
definitions in the work of Baric and Pfitzmann [7].

A static accumulator Acc comes with algorithms
Acc.KeyGen (to generate some public parameters to commit
to sets up to a specific size), Acc.Commit to commit to a set,
Acc.ProveMem to prove the membership of a particular ele-
ment in the set and Acc.VerMem to verify the proof of mem-
bership of a given element in a set with respect to its commit-
ment. A more formal definition, Def. 4, is provided in App. B.

We only require sound accumulation schemes for our
construction, i.e. an adversary should not be able to prove
membership of an element not originally committed in the
accumulator. We define this property more formally in Def. 5.

Note that some accumulation schemes also support
non-membership proofs, but we omit that functionality for
simplicity since it is not required for our applications. For
more details on accumulators, see, for example [13, 28].

3 Components of proving correct CFG pars-
ing

In this section, we provide intuition and then a more detailed
algorithm for proving that a string s parses according to a
context-free grammar G . So far, we have made no distinction
between proving that s parses according to a grammar G and
proving that a particular parse tree is the parse-tree of the
string s according to G . For the rest of this paper, we actually
provide proof of the stronger statement that a particular
tree is the parse tree of a given string s with respect to the
grammar G .

3.1 A toy grammar
We first introduce a toy grammar to use as a running
example. We define Gtoy = (Vtoy,Σtoy,Stoy,Ptoy) as follows:
Stoy = {S}, Vtoy = {S, A, B, C, AComma, BColon,
Colon, Comma}, Σtoy = {b, c, ’:’, ’,’} and define
Ptoy in fig. 1. Note that Gtoy is in Chomsky normal form.
Some examples of strings in Gtoy are:

• b:c

• bb:c,b:cc

We consider the parse tree for the string bb: c, b: cc,
given in fig. 2. Observe that the tree in fig. 2 has the following
properties:

• The leaves, ordered left to right, concatenate to the string
bb: c, b: cc and are actually terminals in Gtoy.

• All non-leaf nodes are non-terminals in the grammar
Gtoy.

• Consider a non-leaf node and its children, for example,
the node labelled S and its children AComma and A.
When ordered left-to-right, the children of S, are the
right hand side of a production rule, specifically: S→
AComma A. This applies to all non-leaf nodes.

Also, since Gtoy is in Chomsky normal form, if a non-leaf
node has two children, these children must be non-terminals.
Otherwise, this non-leaf node must have exactly one child
and it must be a terminal node in the grammar.

In Section 3.2, we will generalize these observations to
create a protocol for a party to prove the correctness of a
parse tree for a given string in a particular grammar.

3.2 Conditions for correctness of a parse tree
Recall that a parse tree for a grammar consists of applications
of production rules from that grammar to form a tree whose
root is a starting symbol, whose leaves are terminal symbols
in the grammar and whose non-leaf nodes are non-terminals.
In our construction, we assume for simplicity that the parse

4

S
AComma S
AComma A

AComma
A Comma

A
BColon C

BColon
B Colon

B
b
BB

Colon
’:’

C
c
CC

Comma
’,’

Figure 1: Production rules for the toy grammar Gtoy.

S

AComma A

A Comma BColon C

BColon C ‘,’ B Colon C C

B Colon c b ‘:’

B B ‘:’

b b

c c

Figure 2: Parse tree for the string bb:c,b:cc in Gtoy.

tree we would like to prove the correctness of, is generated
according to the grammar G=(V,Σ,S,P) in Chomsky normal
form, where V is the set of non-terminals, Σ is the set of
terminals, S is the set of start symbols and P is the set of
production rules. While our construction can be generalized
to a context-free grammar in any form, it is simpler to explain
and implement it obliviously if we assume the grammar is
in Chomsky normal form.
Correctness conditions. A binary tree T = (Verts,
root, Edges) is a directed graph with vertices Verts,
root node root ∈ Verts, and edges Edges ⊆ Verts ×
Verts×{left,right} that is

• binary, i.e., all v ∈ Verts have at most one left
child l and at most one right child r such that
(v,l,left),(v,r,right)∈Edges;

• connected, i.e., for all v∈Verts there exists a path from
root to v, meaning that there exists (v0,...,vm)∈Verts∗
with v0 = root, vm = v, and (vi,vi+1,·) ∈ Edges for all
0≤ i<m;

• acyclic, i.e., there exists no v∈Verts with a path from
v to v.

A parse tree (T, label) conforming to the grammar G

consists of a binary tree T = (Verts, root, Edges) and a
labeling function label :Verts→V such that:

• the root of the tree is labelled with a valid start symbol, i.e.
label(root)∈S.

• each node v ∈ Verts forms a valid production rule of G
with its children, meaning that either

– v has two children (v, l,left),(v,r,right) ∈ Edges
and (label(v),label(l),label(r))∈P, or

– v only has a left child (v, l, left) ∈ Edges and
(label(v),label(l))∈P, or

– v has no children and label(v)∈Σ.

The tuple (T,label) is a parse tree of a string s according to
grammar G if and only if it is a valid parse tree conforming
to G and the concatenation of the labels of the leaf nodes,
ordered depth-first from left to right, is the string s. See
Figure 2 for an example parse tree in our toy grammar.

3.3 Algorithm for proving correctness of a
parse tree

We first propose an appropriate data structure to represent the
parse tree in zero-knowledge proof programming frameworks.
A first approach could be to model the binary tree T and the
labeling function label in a simple structure: and refer to the

1 struct Vertex:
2 # Strawman for structs to represent a tree
3 label: Terminal | Non−Terminal
4 children: Array<Vertex>

Figure 3: A simple representation for the parse tree node.

tree with a pointer to the root node.
Recall that in zero-knowledge proofs, recursive functions

and data structures most often need to be fully unrolled at com-
pile time. This points to two shortcomings of our struct. First,
when traversing the children array, the size of the circuit must
be fixed at compile time to use its worst-case length. Using
the Chomsky Normal form of the grammar easily resolves this
issue, however, because a node in a CNF parse tree can have
at most two children. Thus, we can update our vertex struct to:

1 struct Vertex:
2 # Strawman for structs to represent a tree
3 label: Terminal | Non−Terminal
4 childL: Vertex | None
5 childR: Vertex | None

Figure 4: A simple representation for the parse tree node of a string
in a Chomsky Grammar Form.

5

The second shortcoming is that a recursive struct is not
ideal for a ‘proof-system and grammar agnostic‘ algorithm
to proof parsing, because the depth of a parse tree varies
considerably between grammars.

Our third attempt therefore avoids recursive structs by ob-
serving that for a grammar G in Chomsky Normal Form and
a string s of length n, the parse tree consists of 3n−1 vertices
and 3n−2 edges. Thus, we could update the vertex representa-
tion to consist of its label and a unique index, such as its index
in a depth-first traversal of the tree, and let an edge consist
of a pair of vertices (parent and child). While this approach is
obviously input-oblivious, in that we only use non-recursive
structs, it is not obvious how one might ensure that the graph
represented by these vertices and directed edges is acyclic (i.e.,
a tree), without running a cycle detecting algorithm. Even this
issue has a simple workaround: if the array of edges input is
ordered as follows: (v1,v2)<(v3,v4) if (v1.index<v3.index)
OR ((v1 = v3) AND (v2.index < v4.index)), thus, we can
impose this condition as well.

Upon implementing, however, we found that such a
tree representation consisting of nodes and edges, without
consolidated productions, led to a slowdown in verifying a
tree, since one of the properties to be verified for the tree is
that each production is in the set of valid productions. Thus,
we finally arrive at the following, two simple structs:

1 struct Vertex:
2 label: Terminal | Non−Terminal
3 id: int # The DFS index of this node

Figure 5: A vertex in the parse tree of a string in a grammar in
Chomsky Normal Form.

1 struct Prod:
2 # Struct that demarcates each production in the tree
3 parent: Vertex
4 left: Vertex
5 right: Vertex | None
6 # None case happens if childL represents a terminal

Figure 6: The production struct.

Then, we define a parse tree Π = Prods, where Prods
is the array of all productions sorted by the parent index.
The length of Prods is 2n−1, because that’s the number of
non-leaf nodes in the parse tree.

To prove that the tree is a correct parse tree conforming to
the grammar for string s, we can use the following algorithm
that traverses the tree in depth-first order using a stack:

Claim 1. If the check_parse_tree algorithm from Figure 7
returns true, then Prods represents a valid parse tree of
string s according to grammar G=(V,Σ,S,P).

We provide the full proof for this claim in App. A.

1 function check_parse_tree(Prods,s,P):
2 n = |s|
3 stack = empty
4 expected = new Vertex(S, 0)
5 leaf_counter = 0
6 assert(|Prods| == 2n−1)
7 for i in 0..2n−2:
8 (parent, left, right) = Prods[i]
9 assert(parent == expected)

10 assert(left != None)
11 assert(left.id == parent.id + 1)
12 if right == None:
13 assert((parent.label, left.label) ∈P)
14 assert(s[leaf_counter] == left.label)
15 leaf_counter += 1
16 if i < 2n−2:
17 expected = stack.pop()
18 assert(expected.id == left.id + 1)
19 else:
20 assert((parent.label, left.label, right.label) ∈P)
21 expected = left
22 stack.push(right)
23 assert(leaf_counter == |s|)
24 assert(stack == empty)

Figure 7: The parse tree verification algorithm.

3.4 Instantiating assertions in Figure 7
Here, we briefly discuss the tools that can be used to
instantiate the various assert statements.
Checking membership in production rules. The checks
for production rules in the committed grammar (lines 7
and 20) are simple set membership proofs. This can be
instantiated by committing to the set P of production rules
using a set accumulator as defined in Def. 4.
Checking string consistency. We discuss various instantia-
tions for checking string consistency in Sec. 4. Here, we note
that if the string is committed using any vector commitment,
as defined in Def. 3, the check on line 14 can be instantiated
using the constraints for the VC.VerMem operation, with
the index being the leaf_counter. Note that if the vector
commitment to the string supports a VC.VerAgg operation
which is more efficient that individually verifying string
characters, the proving algorithm could be optimized by
batch verifying the items of the string.

4 Efficient Proof Generation

We implement the check_parse_tree algorithm in
Figure 7 in two proof systems: (i) a non-interactive proof
based on an arithmetic circuit, and (ii) an interactive proof
based on a Boolean circuit. The optimization strategies in
these two systems differ from each other due to the nature
of the circuits and efficiencies of different components

6

in different proof systems. In this section we present the
optimizations in both systems. Finally, we discuss recursion
supporting proof systems and how they can be used to prove
correct parsing for significantly larger strings in practice.

Note that these strategies can be carried over to any proof
system which has similar properties to the stated proof
system. In particular, the optimizations in Sec. 4.1 can be
applied to any arithmetic circuit-based implmentation and
those in Sec. 4.2 can be applied to any boolean circuit-based
solution. Finally, in Sec. 4.3, we provide trade-offs and con-
siderations when using a recursion-supporting proof system.

4.1 Non-interactive Proof: Arithmetic Circuit
4.1.1 Building Blocks

Accumulator. An accumulator allows committing to a set of
unique elements and then proving that a particular value is a
member of that set. In particular, we use a simple accumulator,
without additional properties such as insertion or deletion,
defined in Def. 4. We use the well-known Merkle tree as the
accumulator in our implementation. It requires O(log(n))
hash functions per membership proof for a set of size n.
Oblivious stack. The primary challenge in oblivious stack
is hiding the push/pop patterns. At every push/pop operation,
a condition c is provided as the prover’s private input and the
operation only happens if c is true. In a naive implemen-
tation, the stack is instantiated with d locations where d is
the maximum possible depth. At every conditional operation,
all d locations needs to be updated through a multiplexer
circuit. The complexity of each operation would be O(d).
In our design, the circuit maintains a running hash st of the
stack state after every operation. For every push, the circuit
computes st ′=H(x‖st) and set the new value of st to st ′ only
if c is true. For every pop, the prover commits to the hash
preimage x‖st and the circuits verifies that the new state st ′

satisfies st ′=H(x‖ st) if c is true, st ′= st otherwise. Thus
the complexity of every operation is O(1), and is independent
of the stack depth. Note that this technique is akin to the basic
stack presented in Reef [5], for recursive proving but we
found that it was beneficial even in the absence of a recursive
prover setting to implement a DFS traversal of the parse tree.

4.1.2 Circuit Design

Grammar correctness. We need to prove that every member
of the production array Prods is a member of the set P
(lines 13 and 20 of the check_parse_tree algorithm
in Figure 7). In our implementation, we make a slight
modification in the representation of each Prod . We specify
a special symbol for None and represent each terminal Prod
as (parent,left,None). Following this convention for both
Prods and P allows us to merge the two operations in lines 13
and 20 into one and take it out of the if condition. In our im-
plementation, the Merkle root of P is a public input. For each

element in Prods, the prover provides a Merkle proof of mem-
bership in P. Each proof requires log(|P|) hash operations
which makes the complexity of this step O(|s| log(|P|)).
String consistency. At line 14 of the check_parse_tree
algorithm, we assert that all the terminal left labels concate-
nate to form the input string s. This operation requires private
index access which in general have a complexity of O(|s|) per
access resulting in a total complexity of O(|s|2). In our design,
we employ similar ideas to the oblivious stack. We initialize a
hash chain hs=hash(′ ′). For every element Prods[i] in Prods,
we compute the hash h′s = hash(hs ‖Prods[i].left.label).
Then the hash hs is updated to h′s if Prods[i] is a terminal,
if not hs is unmodified. The final value of hs is compared
against the hash chain computed on the characters in s. The
complexity of this step is O(|s|).
Tree consistency. This check is performed by direct appli-
cation of the oblivious stack. Since the check_parse_tree
algorithm requires 2(2|s| − 1) push/pop operations, the
complexity of this step is O(|s|).

4.2 Interactive Proof: Boolean Circuit

4.2.1 Building Blocks

Unlike arithmetic circuit in non-interactive proofs, hash
functions are one of the most expensive operations in
Boolean circuit in interactive proofs. However, comparison
operation is pretty cheap in Boolean logic which leads to
efficient data-oblivious sorting. Comparison is also a crucial
component of the oblivious stack design used in our work.
In this section, we first present three building blocks of the
Boolean circuit implementation of the parser - oblivious
sorting, counting the number of unique elements in an
array and oblivious stack,. Then we present an efficient
implementation of the check_parse_tree algorithm of
Figure 7 in Boolean circuit.
Oblivious sorting. The sorting circuit is based on bitonic
sort [8] which requires O(nlog2(n)) comparisons and has a
depth of O(log2(n)), where n is the number of elements in the
array. In this work, we use a constant round ZK protocol, there-
fore the number of rounds is independent of the circuit depth.
Each comparison requires b AND gates where b is the number
of bits in each element. Thus the complexity of the oblivious
sort in terms of the number of AND gates is O(bnlog2(n))
Counting the unique elements in an array. Counting the
number of unique elements in a sorted array is straight
forward. Perform equality check between each pair of
adjacent elements, and increment the counter if they are not
equal. It has a complexity of O(bn).
Oblivious stack. As mentioned in the previous section, the
complexity of each push/pop in a naive implementation
would be O(d). We use the oblivious stack design presented
in [44]. It proposes a hierarchical structure with log(d) levels.
Each level i holds 5 slots of depth 2i. The i-th slot is updated

7

at each 2i-th push/pop. The amortized cost of each push/pop
operation is O(b log(d)).

We are now ready to present the optimize Boolean circuit
design for Algorithm 7. We use the sorting and stack
operations as black boxes in the rest of the section. They can
be replaced with better designs, if available.

4.2.2 Circuit Design

Grammar correctness. We need to prove that every member
of the production array Prods is a member of the set P.
In Boolean circuit, the most practical way of checking
the membership of a single value in a set is linear scan,
which requires O(|P|) equality checks. Thus checking the
membership of each element in Prods individually would
require O(|s||P|) equality checks. We present a more efficient
batch membership check which reduces the amortized cost.
In our design, we concatenate P and Prods to form the
combined array P′=P‖ prods. If each element of Prods is
a member of P, the number of unique elements in P′ should
be equal to |P|. The most expensive operation in counting
the unique elements is sorting which has a complexity of
O(b(|s|+|P|)log2(|s|+|P|)).
String consistency. In this step (line 14 of the
check_parse_tree algorithm), we assert that all
the terminal left labels concatenate to form the input string s.
This operation requires private index access which in general
have a complexity of O(b|s|) per access resulting in a total
complexity of O(b|s|2). We present an optimized circuit
based on the observation that the private indices appear in
an increasing order (see line 15 of the algorithm). In the
proposed circuit, all the left child vertices are collected in an
array s′ where the id is modified as follows. If the production
is non-terminal, id is set to 2|s|−1 (higher than the maximum
number of productions). Otherwise, id is left unmodified.
Then, the array s′ is sorted. If the parse tree indeed correspond
to the committed string s, the first |s| elements of s′ after
sorting should be equal to s. The complexity of this step is
the same as sorting which is O(b|s| log2(|s|)).
Tree consistency. This check is performed by direct
application of the oblivious stack circuit with a depth of
|s|. The amortized cost of each push/pop is O(b log(|s|)).
Since the check_parse_tree algorithm requires
2(2|s|−1) push/pop operations, the complexity of this step
is O(b|s|log(|s|)).
Overall complexity. The complexity of the end-to-end
implementation is O(b(|s|+|P|) log2(|s|+|P|)). We can set
b=O(log(|s|)). Moreover, in most practical settings, |s|�|P|.
Therefore, the end-to-end complexity is O(|s| log3(|s|)).
Switching to the hash based design. In Sec. 4.1, we
presented an arithmetic circuit based on hash chains with a
complexity of O(|s|). It requires 20|s| instances of the hash
function. If the number of AND gates in the Boolean circuit of
the hash function is h, the total number of AND gates is 20h|s|.

The number of AND gates in the proposed Boolean circuit is
5|s| log3(|s|). Therefore, we could switch to the hash based
design if log3(|s|) > 4h. The string length |s| that satisfies
this condition would be impractically large for any known
hash circuit.

4.3 Recursion-supporting proof systems
While non-interactive proof systems such as PLONK [30]
or Groth’16 [31] provide efficient verification and small
proof size, they rely on one-time trusted setup, sometimes
followed by setup for a given program and a higher prover
complexity to speed up proof and verification time. The setup
for program often incurs high RAM overhead (see e.g. the
discussion in [10]). As a concrete example, in the case of our
Noir implementation, the setup for a proof of correctness for
the parse tree of a string of size 29 with respect to a grammar
of size 27, had maximum occupied RAM2 over 10GB, while
a proof for the same required over 11.5GB.

As the authors of Reef [5] pointed out, one workaround for
the RAM limitations for a proof system is to use a recursive
proof system.

4.3.1 Recursive proofs to overcome RAM limitations

IVC-based proving. The algorithm in fig. 7 has repeated
applications of the same function in a for loop, which is
particularly amenable incrementally verifiable computation
(IVC) [39]. In our instantiation of an IVC-based implemen-
tation, each IVC iteration after the first one consists of (1)
verifying the proof generated by the previous IVC iteration
and, (2) generating a proof for the next batch of K iterations
of the for loop in lines 7-22 of fig. 7, for a pre-selected
parameter K. The proof generated by the last such iteration
is then verified by the verifier.
Passing state between IVC provers. Since we use a
hash-chain to implement the stack, iteration i checks that the
end-state of its stack hashes to some public input hi, and hi
is used as the starting hash of the stack state in iteration i+1.
Similarly, the most recent state of the requisite variables (e.g.
the leaf counter that tracks the string traversal) can be passed
from on iteration of the IVC prover to the next.

4.3.2 Parallelized proving for faster wall-clock time

A chain of proofs, as is used in IVC is more efficient on the
RAM front, however, requires each proving iteration to wait
for its predecessor’s proof to be generated. Inspired by [18],
we propose distributing the proof generation using recursive
proofs.
Simple PCD tree. One solution for leveraging parallelism in
proof generation is proposed in Chiesa et al.’s work. Figure 9

2Maximum resident set size measured using the gtime [29] command
on a Mac.

8

P1 P2 Pn πn
π1,hstack,

leafCount,expected
... Final output

Figure 8: An illustration of an IVC-based solution to implementing fig. 7, here each node represents a proof of K iterations of the for loop
and the requisite state is passed on to the next prover, along with the proof π generated by prover Pi.

shows an example of such a technique for generating proof of
correct parsing. The iterations in fig. 7 are proven in batches
similar to the IVC case. However, instead of verifying the
proof for one batch in the prover for the next (e.g. P1 and P2
in fig. 8) proofs for two consecutive sets of iterations can be
generated independently e.g. by P1 and P2. A third prover
P3 then verifies (1) the proofs generated by P1 and P2, and
(2) the provenance of the relationship between the iterations
proven by P1 and P2 by ensuring that the output state of
the needed variables by the end of the iterations proven by
P1 is the same as the input state of those variables used by
the iterations proven by P2. We end up with a dependency
graph between provers, where Pi points to P j if P j will
verify the proof output by Pi and in the simplest form, this
graph is a binary tree, as in fig. 9. Although, naively such
a scheme results in twice as many provers as in the IVC
case, depending on the proof system, the non-leaf (recursive)
provers such as P5 and P6, may be more efficient than large
leaf provers. Most importantly, provers on the same level in
the tree can be run in parallel providing benefits in wall-clock
time on multi-core devices, as we will see in Sec. 5.5.
PCD tree trade-offs. In the simple PCD tree described
above, observe the following: (1) the tree is binary, and (2)
certain provers only verify proofs, while others actually prove
iterations of the algorithm in fig. 7. This can be changed in
various ways, for instance by increasing the arity of the PCD
tree i.e. verifying more proofs at a time in a recursive prover,
and additionally by combining PCD and IVC. In Sec. 5.5 we
discuss this in a bit more detail.

5 Implementation and Evaluation

In this section, we describe our implementations of the
parsing proof protocol across two proof systems and in the
context of recursion (see Sec. 5.1), followed by an evaluation
across relevant experimental setups (which are described
in Sec. 5.2). Finally, we provide detailed evaluation for our
non-interactive (see Sec. 5.3) and interactive (see Sec. 5.4)
implementations, followed by a simulated evaluation for
our recursive solution, based on microbenchmarks of its
components in Noir, in Sec. 5.5.

5.1 Proof Systems

We implement the presented parsing algorithm in two
different proof systems. For the non-interactive proof, we use
Noir [22] with the Barretenberg [19] backend. For interactive

Π

Proot

P5

P1

π1

P2

π2

π5

P6

P3

π3

P4

π4

π6

Figure 9: An illustration of a parallelized prover using a recursive
proof-system. Each of P1 through P4 verifies 1/4 of the iterations
in fig. 7 and receives as public input the hash of the stack state, the
expected parent for the next production and leaf count at the start
and end of its iterations and outputs their proofs π1 through π4. P5
verifies π1 and pi2 with their public inputs (and similarly with P6).
P5 takes as input the starting state of the variables for P1 and the
end state for P2, similarly for P6. Finally Proot has as public input
the expected final leaf count at the end of fig. 7 and verifies that the
stack depth at the start and end of P1 and P4 is 0. The final proof
π is verified by the verifier.

proof we use Quicksilver [43] from emp-toolkit [41]. Note
that the techniques described in Section 4 are fairly generic
and cam be implemented in most of the available proof
systems of the respective classes with minimal modification.
Noir’s non-interactive proof system. Noir [22] is a zero-
knowledge proof-programming framework, with Rust-like
syntax as well as a package manager and build-system called
Nargo [21], similar to Rust’s Cargo [26]. Noir compiles
to an intermediate language called ACIR, designed with
the intention of allowing different proof-systems, which
they refer to as backends, to translate the ACIR into their
respective constraint systems and correspondingly generate
proofs. As of this writing, the latest version of Noir’s
toolchain (specifically Nargo) is 0.32.0 [20], which provides
language support for recursion. However, as of this writing,
the only backend that we found to be compatible with Nargo
0.32.0 is the default backend prover, provided by Aztec Labs,
called Barretenberg which, by default uses the PLONK [30]
proof system with the BN254 elliptic curve [6, 11].
Recursion in Noir. Noir also provides support for recursive

9

proving through a standard library verify_proof function
in the Noir language. The verify_proof takes as input a
proof and a verification in field-form, the public inputs for
this proof and a key hash, which can be part of a public input
to ensure the correct program is being recursively verified.
We found, however, that the output proof sizes for a program
that includes a call to verify_proof and one that doesn’t
are actually different, necessitating the need for 3 different
implementations to get even an IVC proof. These three
implementations are: (1) a base implementation to prove that
some K iterations of fig. 7’s loop run correctly, (2) a second
implementation that includes the base implementation as
well as a called to verify_proof with the input proof an
array of 93 field elements, and (3) a third imeplementation
which is exactly the same as (2) except the type of the input
proof from the previous iteration is an array of 109 field
elements. Note that (2) can only verify the proof generated by
(1), while the prover implemented in (3) supports verification
for both itself and the proof generated by (2).
Quicksilver. The most efficient non-interactive proofs at
present are based on Vector Oblivious Linear Evaluation
(VOLE) [9]. Primary benefits of this proving paradigm are (i)
constant round, which makes the proving time independent
of circuit depth, and (ii) small communication per gate,
especially for large circuits. We chose Quicksilver in this
work because it reports the fastest proving/verification time.
Quicksilver is part of the emp-toolkit library which provides
an integrated circuit design and proof system. We used v0.2.1
of the library.

5.2 Experimental Setup
In our evaluation, we used two different platforms for
non-interactive and interactive proofs since the requirements
of the two proof systems are widely different - the non-
interactive proofs are compute-intensive while the interactive
proofs depends on the network bandwidth.

• For the non-interactive proof, we use AWS EC2 instance
g3.8xlarge which has 32 CPUs and 244 GB memory.

• For the interactive proof, we use two (one as prover, one
as verifier) AWS EC2 instances c6gn.8xlarge which
has 32 CPUs, 64 GB memory and a bandwidth of 50
Gbps.

5.3 Non-interactive proof without recursion

Let us first provide an idea of the practicality of the
proposed design. For a grammar with 1024 rules (on par with
the size of JSON grammar), proving the correct parsing of
strings with 29 characters (1KB in UTF-16) take 24.5 seconds.
We now provide evaluations in a wide range of the parameter
sizes.

|s| in log scale

P
ro

of
 g

en
er

at
io

n
tim

e
(s

)

4

6

8

10

20

6 7 8 9

|P| = 2^7 |P| = 2^8 |P| = 2^9 |P| = 2^10

Figure 10: Run-time in the non-interactive proof as a function of the
string length |s| and grammar size |P|. As this graph shows, the string
size is the dominant factor in determining the cost for the prover,
even if we use a simple MT-based accumulator to commit to P.

Proving time. We show the proof generation time with Noir
as a function of the string length |s| and grammar size |P|
in Figure 10. As explained in Section 4.1, the number of
constraints is linear in |s| and logarithmic in |P|. Therefore,
the proof generation time mostly depends on |s|.

Note that the proving time does not include the time to
generate the proving keys and witnesses.
Verification time. As expected, the verification time for the
PLONK prover underlying Noir’s implementation consis-
tently takes about the same time on a laptop, independently of
the instance size (i.e. |s| and |P|). Our verifier on a commidity
machine with an Apple M1 Max processor and 32GB of
RAM, the verifier consistently took under 0.14ms.
Proof Size. The proof size is 2.37KB irrespective of the string
length or grammar size.

5.4 Interactive Proof
For this evaluation, we set the number of bits in each label
to 16 (enough for UTF-16 encoding) and the number of bits
in the each id to 25 (enough for a string with 107 characters
or 1MB size).

First, we provide an idea of the practicality of the proposed
design. For a grammar with 1024 rules (on par with the size
of JSON grammar), proving the correct parsing of strings
with 212 and 216 characters (8KB and 128KB, respectively)
take 16.8 seconds and 6.7 minutes, respectively. In the
interactive setting, we were even able to prove the correct
parsing of a 219 character (1GB) string in 1 hour. We now
provide evaluations in a wide range of the parameter sizes.
Number of AND gates. As a protocol-agnostic evaluation of
our implementation in the non-interactive proof system, we
present the number of AND gates as a function of the string
length |s| and grammar size |P| in Figure 11. For shorter
strings, the number of AND gates depends both on the string
length and grammar size. However, for longer strings, the
performance is dictated by the string length. Moreover, the

10

|s| in log scale

N
um

be
r o

f A
N

D
 g

at
es

1E+0
6

1E+0
7

1E+0
8

1E+0
9

1E+1
0

1E+1
1

6 8 10 20

|P| = 2^7 |P| = 2^8 |P| = 2^9 |P| = 2^10 |P| = 2^11

Figure 11: Number of AND gates in the interactive proof as a
function of the string length |s| and grammar size |P|

|s| in log scale

P
ro

vi
ng

/V
er

ifi
ca

tio
n

Ti
m

e
(s

)

0.1

1

10

100

1000

1000
0

6 8 10 20

|P| = 2^7 |P| = 2^8 |P| = 2^9 |P| = 2^10 |P| = 2^11

Figure 12: Run-time in the interactive proof as a function of the
string length |s| and grammar size |P|.

number of comparisons in bitonic sort is the "next power of 2"
of the length of the input array. Therefore, often the grammar
size does not have any effect on the total number of AND gates.
Runtime. We now present the run-time with Quicksilver in
Figure 12. In the interactive setting prover and verifier have
the same run-time. The run-time follows the trend in the
number of AND gates, as expected.
Cost breakdown in different steps. We show the cost break
down in terms of the number of AND gates at different steps of
the proof described in Section 4.2 in Figure 13. It shows that
the grammar size dominates the total cost for shorter strings
but is largely inconsequential for larger strings. Moreover, the
share of the cost by string consistency check increases with
increase in string length. This is because the tree consistency
check has a complexity of O(|s| log2(|s|)) whereas the string
consistency check has a complexity of O(|s| log3(|s|)).

5.5 Recursive proof-based solution

In this section, we discuss the prover time for a simulated
PCD solution. We describe the formulae one can use for such
an estimation, based on the average time for generating one
recursive proof and the proofs for a subset of the productions

|n| in log scale

0%

25%

50%

75%

100%

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

tree string grammar|P| = 8

|n| in log scale

0%

25%

50%

75%

100%

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

tree string grammar|P| = 10

|n| in log scale

0%

25%

50%

75%

100%

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

tree string grammar|P| = 7

|n| in log scale

0%

25%

50%

75%

100%

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

tree string grammar|P| = 11

|n| in log scale

0%

25%

50%

75%

100%

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

tree string grammar|P| = 9

Figure 13: Cost breakdown in terms of number of AND gates as a
function of the string length |s| and grammar size |P|.

11

to be verified for a given string.
Note that the simplicity of our original algorithm still

holds, the additional complexity introduced in the solution
here is only for a recursive solution using PCD.
IVC recursion. While IVC recursion provides an improve-
ment in concrete proving time on a machine due to reducing
RAM consumption, we do not evaluate it here since (1) we
believe the wall-clock time performance of the parallelizable
proof will be better on most modern machines, and (2) this
solution works very similarly to the implementation already
discussed at length in [5].
Calculating wall-clock time for a recursive prover. To
calculate this time, let us first define a few variables. Let tbase
be the time it takes to generate the proof for K iterations of
the for loop in fig. 7 and let trec be the amount of time for
proving the verification of two proofs. To use a scheme as
illustrated in fig. 9 to generate parallel proofs for a string
with 2n−1 characters i.e. 2n−1 productions. Let us assume
that there are enough available cores such that each prover at
the same depth of the tree can run in parallel. Then, the wall
clock time for generating a fully parallelized proof, given
pre-generated witnesses, would be

tbase×
2n

K
+trec×(log2n/K−1).

Recall that in Noir, the proof size of the proof generated by
a prover that contains a verify_proof call (i.e. implements
a recursive verifier) and a prover that does not verify another
proof are different. If the recursive verifier for a non-recursive
proof runs in time t ′rec and the recursive verifier for a recursive
proof runs in time trec. In fig. 9, the time t ′rec would correspond
to the time for P5 and P6 to generate their proofs and trec
would correspond to the time taken by Proot to generate its
proof. Then the formula above can be updated to

tbase×
2n

K
+t ′rec+trec×(log2n/K−2).

Working with limited cores. Now, suppose we would like
to use a machine with C cores to generate the proof for a
string with 2n−1 characters (2n−1 productions). Then, the
wall clock time for generating a parallelized proof, given
pre-generated witnesses in general, would be

tbase×
2n

CK
+trec×

(
log(2n/K)−1

∑
i=1

⌈
2n

2iCK

⌉)
.

As before, in Noir, the prover that verify the outputs of
non-recursive provers have a run-time t ′rec slightly lower than
trec and this leads to the formula:

tbase×
2n

CK
+t ′rec×

⌈
2n

2CK

⌉
+trec×

(
log(2n/K)−1

∑
i=2

⌈
2n

2iCK

⌉)
.

We measured the time for the recursive verifiers t ′rec and
trec to generate proofs of 2 verifications.

|s| in log scale

W
al

l c
lo

ck
 p

ro
vi

ng
 ti

m
e

in
 s

ec
on

ds

0

500

1000

1500

2000

2500

15 16 17 18 19 20

Arity: 4, Cores: 64 Arity: 2, Cores 64 Arity: 4, Cores: 32
Arity: 2, Cores: 32

Figure 14: Simulated wall-clock time for using a PCD-based
proving approach, as described in Section 5.5.

Evaluation of recursive solution wall-clock time. Based
on these formulae, and the empirical cost for proving in
Noir that (1) 2 verify_proof verifications output 1, (2) 4
verify_proof calls output 1, and (3) that 1024 iterations
of the for loop in fig. 7 verify, we simulate the numbers
in fig. 14. The arity denotes the number of proofs verified
by a non-leaf node in the PCD tree, and we simulate the
wall-clock proving time for 64 and 32 cores, assuming one
core can only run one prover at a time. This time will be
an over-estimate if more than one proof at a time can be
generated on a particular machine.

Note that given a 64-core machine, the arity-4 PCD Noir
implementation allows us to generate a proof even for a
string of size 220 in about 19 minutes.

The size of the final output proof should not be larger than
a few kB, barring any public inputs.

Note that we only discuss in detail a parallelizable solution
that relies on verifying two proofs in on prover, hence
building a binary tree-like structure of provers as in fig. 9. We
provide numbers for solutions where a PCD prover verifies
either two or four proofs. However, even more proofs can
be verified within the same prover in the Noir framework and
more generally in PCD solutions. In fact, one can build fairly
complex trees, even beyond n-ary trees whose nodes consist
of provers and a node A points to a node B if B verifies
the proof generated by A. We leave the exploration of such
designs for future work.

References

[1] https://github.com/risc0/risc0/tree/
main/examples/json. Accessed: Aug 31, 2024.

[2] Json parsing inside circuit. https://github.com/
o1-labs/o1js/issues/91. Accessed: March 22,
2024.

[3] TLSNotary. https://tlsnotary.org/.

12

https://github.com/risc0/risc0/tree/main/examples/json
https://github.com/risc0/risc0/tree/main/examples/json
https://github.com/o1-labs/o1js/issues/91
https://github.com/o1-labs/o1js/issues/91
https://tlsnotary.org/

[4] zkjson. https://github.
com/chokermaxx/zkjson/tree/
b485c3aa03e928958b67bf977eacb749cb1d7185.
Accessed: March 22, 2024.

[5] Sebastian Angel, Eleftherios Ioannidis, Elizabeth
Margolin, Srinath Setty, and Jess Woods. Reef: Fast
succinct non-interactive zero-knowledge regex proofs.
Cryptology ePrint Archive, 2023.

[6] arkworks Contributors. ark-bn254 crate documentation.
https://docs.rs/ark-bn254/latest/ark_

bn254/, 2024. Accessed: 2024-09-04.

[7] Niko Barić and Birgit Pfitzmann. Collision-free
accumulators and fail-stop signature schemes without
trees. In International conference on the theory
and applications of cryptographic techniques, pages
480–494. Springer, 1997.

[8] Kenneth E Batcher. Sorting networks and their appli-
cations. In Proceedings of the April 30–May 2, 1968,
spring joint computer conference, pages 307–314, 1968.

[9] Carsten Baum, Samuel Dittmer, Peter Scholl, and Xiao
Wang. Sok: vector ole-based zero-knowledge protocols.
Designs, Codes and Cryptography, 91(11):3527–3561,
2023.

[10] Wyatt Benno. Minimal space, maximum pace:
How memory efficient zero-knowledge proofs work.
https://blog.icme.io/minimal-space-maximum-pace-
how-memory-efficient-zero-knowledge-proofs-work/,
2024. Accessed: 2024-09-04.

[11] Jean-Luc Beuchat, Jorge E González-Díaz, Shigeo Mit-
sunari, Eiji Okamoto, Francisco Rodríguez-Henríquez,
and Tadanori Teruya. High-speed software implemen-
tation of the optimal ate pairing over barreto–naehrig
curves. In Pairing-Based Cryptography-Pairing 2010:
4th International Conference, Yamanaka Hot Spring,
Japan, December 2010. Proceedings 4, pages 21–39.
Springer, 2010.

[12] Jan Camenisch and Anna Lysyanskaya. Dynamic
accumulators and application to efficient revo-
cation of anonymous credentials. In Advances
in Cryptology—CRYPTO 2002: 22nd Annual
International Cryptology Conference Santa Barbara,
California, USA, August 18–22, 2002 Proceedings 22,
pages 61–76. Springer, 2002.

[13] Matteo Campanelli, Dario Fiore, Semin Han, Jihye
Kim, Dimitris Kolonelos, and Hyunok Oh. Succinct
zero-knowledge batch proofs for set accumulators.
Cryptology ePrint Archive, Paper 2021/1672, 2021.
https://eprint.iacr.org/2021/1672.

[14] Ran Canetti, Yehuda Lindell, Rafail Ostrovsky, and
Amit Sahai. Universally composable two-party and
multi-party secure computation. In Proceedings of
the thiry-fourth annual ACM symposium on Theory of
computing, pages 494–503, 2002.

[15] Darko Čapko, Srd̄an Vukmirović, and Nemanja Nedić.
State of the art of zero-knowledge proofs in blockchain.
In 2022 30th Telecommunications Forum (TELFOR),
pages 1–4. IEEE, 2022.

[16] Dario Catalano and Dario Fiore. Vector com-
mitments and their applications. In Public-Key
Cryptography–PKC 2013: 16th International
Conference on Practice and Theory in Public-Key
Cryptography, Nara, Japan, February 26–March 1,
2013. Proceedings 16, pages 55–72. Springer, 2013.

[17] David Chaum. Blind signatures for untraceable
payments. In Advances in Cryptology: Proceedings of
Crypto 82, pages 199–203. Springer, 1983.

[18] Alessandro Chiesa and Eran Tromer. Proof-carrying
data and hearsay arguments from signature cards. In
ICS, volume 10, pages 310–331, 2010.

[19] Aztec Protocol Contributors. Aztec protocol -
packages repository. https://github.com/
AztecProtocol/aztec-packages/tree/
1ca48a4355370644dceb6680643680f7e8cd5228,
2023. Accessed: 2024-09-04.

[20] Noir Contributors. Noir - a rust-
based zk-snarks language. https://
github.com/noir-lang/noir/tree/
5ef9daa8fb8d55b194d38d540a79dc29f0090351,
2023. Accessed: 2024-09-04.

[21] Noir Contributors. Noir lang - installation guide.
https://noir-lang.org/docs/getting_

started/installation/, 2024. Accessed: 2024-
09-04.

[22] Noir Contributors. Noir lang documentation. https://
noir-lang.org/docs, 2024. Accessed: 2024-09-04.

[23] Bryan Cooksey. Chapter 3: Api types and formats.
https://zapier.com/resources/guides/
apis/data-formats#. Accessed: March 22, 2024.

[24] Dave Crocker, Tony Hansen, and Murray Kucher-
awy. Rfc 6376: Domainkeys identified mail (dkim)
signatures, 2011.

[25] Ivan Damgård. On σ-protocols. Lecture Notes,
University of Aarhus, Department for Computer
Science, 84, 2002.

13

https://github.com/chokermaxx/zkjson/tree/b485c3aa03e928958b67bf977eacb749cb1d7185
https://github.com/chokermaxx/zkjson/tree/b485c3aa03e928958b67bf977eacb749cb1d7185
https://github.com/chokermaxx/zkjson/tree/b485c3aa03e928958b67bf977eacb749cb1d7185
https://docs.rs/ark-bn254/latest/ark_bn254/
https://docs.rs/ark-bn254/latest/ark_bn254/
https://eprint.iacr.org/2021/1672
https://github.com/AztecProtocol/aztec-packages/tree/1ca48a4355370644dceb6680643680f7e8cd5228
https://github.com/AztecProtocol/aztec-packages/tree/1ca48a4355370644dceb6680643680f7e8cd5228
https://github.com/AztecProtocol/aztec-packages/tree/1ca48a4355370644dceb6680643680f7e8cd5228
https://github.com/noir-lang/noir/tree/5ef9daa8fb8d55b194d38d540a79dc29f0090351
https://github.com/noir-lang/noir/tree/5ef9daa8fb8d55b194d38d540a79dc29f0090351
https://github.com/noir-lang/noir/tree/5ef9daa8fb8d55b194d38d540a79dc29f0090351
https://noir-lang.org/docs/getting_started/installation/
https://noir-lang.org/docs/getting_started/installation/
https://noir-lang.org/docs
https://noir-lang.org/docs
https://zapier.com/resources/guides/apis/data-formats#
https://zapier.com/resources/guides/apis/data-formats#

[26] Rust Project Developers. Cargo - the rust package
manager. https://doc.rust-lang.org/cargo/,
2024. Accessed: 2024-09-04.

[27] Jens Ernstberger, Jan Lauinger, Yinnan Wu, Arthur
Gervais, and Sebastian Steinhorst. Origo: Proving prove-
nance of sensitive data with constant communication.
Cryptology ePrint Archive, 2024.

[28] Nelly Fazio and Antonio Nicolosi. Cryptographic
accumulators: Definitions, constructions and applica-
tions. Paper written for course at New York University:
www. cs. nyu. edu/nicolosi/papers/accumulators. pdf,
24, 2002.

[29] Free Software Foundation. Gnu time command.
https://www.gnu.org/software/time/. Ac-
cessed: 2024-09-04.

[30] Ariel Gabizon, Zachary J Williamson, and Oana
Ciobotaru. Plonk: Permutations over lagrange-bases for
oecumenical noninteractive arguments of knowledge.
Cryptology ePrint Archive, 2019.

[31] Jens Groth. On the size of pairing-based non-interactive
arguments. In Advances in Cryptology–EUROCRYPT
2016: 35th Annual International Conference on the
Theory and Applications of Cryptographic Techniques,
Vienna, Austria, May 8-12, 2016, Proceedings, Part II
35, pages 305–326. Springer, 2016.

[32] Marios Isaakidis, Harry Halpin, and George Danezis.
Unlimitid: Privacy-preserving federated identity
management using algebraic macs. In Proceedings
of the 2016 ACM on Workshop on Privacy in the
Electronic Society, pages 139–142, 2016.

[33] Jan Lauinger, Jens Ernstberger, Andreas Finkenzeller,
and Sebastian Steinhorst. Janus: Fast privacy-preserving
data provenance for tls 1.3. Cryptology ePrint Archive,
2023.

[34] Kai Rannenberg, Jan Camenisch, and Ahmad Sabouri.
Attribute-based credentials for trust. Identity in the
Information Society, Springer, 2015.

[35] Chainlink Labs Research. Deco research series #3:
Parsing the response. https://blog.chain.link/
deco-parsing-the-response/, 2023. Accessed:
March 22, 2024.

[36] Michael Rosenberg, Jacob White, Christina Garman,
and Ian Miers. zk-creds: Flexible anonymous creden-
tials from zksnarks and existing identity infrastructure.
In 2023 IEEE Symposium on Security and Privacy
(SP), pages 790–808. IEEE, 2023.

[37] Ionut, Ros, ca, Alexandra-Ina Butnaru, and Emil Simion.
Security of ethereum layer 2s. Cryptology ePrint
Archive, 2023.

[38] Manuel B Santos. Peco: methods to enhance the privacy
of deco protocol. Cryptology ePrint Archive, 2022.

[39] Paul Valiant. Incrementally verifiable computation or
proofs of knowledge imply time/space efficiency. In
Theory of Cryptography: Fifth Theory of Cryptography
Conference, TCC 2008, New York, USA, March 19-21,
2008. Proceedings 5, pages 1–18. Springer, 2008.

[40] Weijie Wang, Annie Ulichney, and Charalampos
Papamanthou. {BalanceProofs}: Maintainable vector
commitments with fast aggregation. In 32nd USENIX
Security Symposium (USENIX Security 23), pages
4409–4426, 2023.

[41] Xiao Wang, Alex J. Malozemoff, and Jonathan Katz.
EMP-toolkit: Efficient MultiParty computation toolkit.
https://github.com/emp-toolkit, 2016.

[42] John Watrous. Parse trees, ambiguity, and chomsky
normal form. https://cs.uwaterloo.ca/ watrous/ToC-
notes/ToC-notes.08.pdf, 2008. Accessed: March 22,
2024.

[43] Kang Yang, Pratik Sarkar, Chenkai Weng, and Xiao
Wang. Quicksilver: Efficient and affordable zero-
knowledge proofs for circuits and polynomials over
any field. In Proceedings of the 2021 ACM SIGSAC
Conference on Computer and Communications
Security, pages 2986–3001, 2021.

[44] Samee Zahur and David Evans. Circuit structures for
improving efficiency of security and privacy tools. In
2013 IEEE Symposium on Security and Privacy, pages
493–507. IEEE, 2013.

[45] Fan Zhang, Deepak Maram, Harjasleen Malvai, Steven
Goldfeder, and Ari Juels. DECO: liberating web data
using decentralized oracles for TLS. In Proceedings of
the 2020 ACM SIGSAC Conference on Computer and
Communications Security, pages 1919–1938, 2020.

A Proof of Claim 1

In this section, we provide a detailed proof for the correctness
of the algorithm provided in Figure 7.

Proof. We focus on the for-loop starting on line 7 of Figure 7
and show that before each ith iteration, the array prefix
Prods[0..i − 1] represents a valid “partial” parse tree for
s[0..leaf_counter−1] according to G, in the sense that

14

https://doc.rust-lang.org/cargo/
https://www.gnu.org/software/time/
https://blog.chain.link/deco-parsing-the-response/
https://blog.chain.link/deco-parsing-the-response/
https://github.com/emp-toolkit

1. the labels of all Prods[j], 0 ≤ j < i, correspond to
valid production rules in the grammar G, meaning
that (Prods[j].parent.label, Prods[j].left.label) ∈ P
for “terminal” entries where Prods[j].right =
None, and (Prods[j].parent.label, Prods[j].left.label,
Prods[j].right.label) ∈ P for the other “non-terminal”
entries,

2. all Prods[j].parent, 0 < j < i, appear exactly once (with
the same index and label) as a child Prods[j′].left or
Prods[j′].right for some 0 ≤ j′ < j, while the root
Prods[0].parent never appears as a child,

3. the stack contains all “unused” right children
Prods[j].right that didn’t yet occur as a parent, appearing
on the stack in increasing order of j from bottom to top.

4. the parents Prods[j].parent.index, 0 ≤ j < i and the
left children of terminal entries Prods[j].left appear in
depth-first order, with their index being their sequence
number of such a traversal,

5. the labels of the left children of terminal entries
Prods[j].left.label concatenate to s[0..leaf_counter−1],

We use an induction argument to prove that these invariants
hold. They are trivially true before the first iteration i=0, as
leaf_counter is set to zero, the stack is empty, and the variable
expected is set to the root node with the start symbol S as
label and index 0.

We now show that if all invariants held before the i-th
iteration, then they also hold before the i + 1-st iteration.
Going over each of the invariants in order, invariant

1. holds because by the induction hypothesis, Prods[j],
0 ≤ j < i, correspond to valid production rules, and so
does Prods[i] by the checks in lines 13 and 20.

2. holds by the induction hypothesis for Prods[j].parent,
0≤ j< i. For Prods[i].parent, during the i−1st iteration,
the expected variable either gets set to the left child of
Prods[i−1] in line 21, which cannot have appeared yet
as a parent before, or to the most recent unused right
child popped from the stack in line 17. Line 9 in the
i-the iteration assures that Prods[i].parent is equal to the
expected node, which is therefore a previously unused
child node that appeared in an earlier entry Prods[j], j< i.

3. holds by the induction hypothesis and the fact that, if
Prods[i] is a non-terminal entry, its right node is pushed
to the top of the stack on line 22.

4. holds because, by the hypothesis, Prods[j].parent for
0≤ j< i already appear in depth-first order. If in the i-th
iteration, Prods[i].parent is terminal, the expected variable
is set to the most recent unused right child at the top of the
stack (line 17), and its index is verified to be one more than

Prods[i].left (line 18), which is indeed the next node and in-
dex in a depth-first order. IfProds[i].parent is non-terminal,
then expected is set to Prods[i].left (line 21) which was ver-
ified to have index one more than Prods[i].parent (line 11),
which is also the next node and index in depth-first order.
The check on line 9 in the i+1-st iteration ensures that
Prods[i+1].parent matches the expected node.

5. holds by the induction hypothesis and the fact that, if
Prods[i] is a terminal node, the next character in s is
verified against the label of the left child (line 14) and the
leaf_counter is increased by one (line 15).

After 2n−1 iterations, we therefore have that all entries in
Prods correspond to valid production rules, with each parent
apart from the root having appeared exactly once as a left
or right child of a previous parent. The 3rd invariant together
with the check in line 24 mean that there are no remaining
unused right children, and invariants 4 and 5 together with
the check in line 23 that leaf_counter == |s| mean that the
terminal nodes in depth-first order spell out the string s.

Now consider the binary tree T = (Verts, root, Edges)
with Verts = {0, ... , 3n − 2}, root = 0, and edge
(i, j, left), (i, j, right) ∈ Edges if and only if there
exists a 0 ≤ k < 2n− 1 such that Prods[k].parent.id= i and
Prods[k].left.id= j, respectively Prods[k].right.id= j. The
tree T is

• binary, because by the 4th invariant, all
Prods[k].parent.id are different;

• connected to the root, because by the 2nd invariant, all
parents appear exactly once as a child of a previous
node, and

• acyclic, because by the 4th invariant the indices of
children are always higher than that of the parent.

Also consider the labeling function label that is defined
by label(Prods[i].parent.id) = Prods[i].parent.label for
0≤ i<2n−1 and label(Prods[i].left.id)=Prods[i].left.label
for all terminal entries 0≤ i<2n−1. Together with the tree
T , this forms a valid parse tree conforming to the grammar
G of the string s because

• the root is labeled with the start symbol,

• by the 1st invariant, each node v∈Verts corresponds to
a valid production rule of G,

• and by the 5th invariant, the terminal nodes in depth-first
order correspond to the string s.

15

B Definitions for cryptographic primitives

Definition 3 (Static Vector Commitment Scheme). We define
a static vector commitment scheme, denoted VC as a tuple
of the following algorithms:

• pp←VC.KeyGen(1k,q): Given the security parameter
k and the size q of the maximum length vector to be
committed and outputs public parameters pp for it.

• (com, aux) ← VC.Commitpp((v1, ..., vm)): This algo-
rithm takes as input a vector (v1, ..., vm) of m ≤ q
elements, returns a commitment com and auxiliary data
aux.

• π ← VC.ProveCompp(i, vi, aux, com): This algorithm
takes at input a position i and corresponding value vi,
as well as aux information and outputs a proof π.

• 0/1 ← VC.VerCompp(i, vi, com,π): Given a value vi,
corresponding location i and a commitment com, this
algorithm verifies the proof π and outputs 0 or 1.

An aggregatable static vector commitment has the following
additional algorithms.

• π ← VC.ProveAggpp(I, (πi, vi)i∈I , aux, com): This
algorithm takes at input a set of positions I and
corresponding values vi with their respective proofs πi,
as well as aux information and outputs a proof π.

• 0/1← VC.VerAggpp(I,(vi)i∈I ,com,π): Given a set of
locations I and corresponding values vi, a commitment
com, this algorithm verifies the proof π and outputs 0
or 1.

Definition 4. A static accumulator or static accumulation
scheme, denoted Acc, as a tuple of the following algorithms

• pp←Acc.KeyGen(1k,q): Given the security parameter
k and the size q of the maximum length set to be commit-
ted, this algorithm outputs public parameters pp for it.

• (com,aux) ← Acc.Commitpp({e1, ...,em}): This algo-
rithm takes as input a set of (unique) elements (e1,...,em)
of m ≤ q elements, returns a commitment com and
auxiliary data aux.

• π ← Acc.ProveMempp(e, aux, com): This algorithm
takes at input a value e, as well as aux information and
outputs a proof π.

• 0/1←Acc.VerMempp(e,com,π): Given a value e and
a commitment com, this algorithm verifies the proof π

and outputs 0 or 1.

Definition 5. We say an accumulator scheme is sound if, the
following probability is negligible in the security parameter,
for any PPT adversary, A:
Pr[pp←Acc.KeyGen(1k,q),(com,aux)←Acc.Commitpp(E),

(e,π)←A(pp,1k,com,aux) :Acc.VerMempp(e,com,π)∧e /∈E].

Note that Def. 5 assumes correctly executed algorithms
Acc.KeyGen and Acc.Commit, i.e. pp and (com, aux) are
not generated by the adversary in the security definition. We
choose this approach, since in our case, we assume a trusted
execution of a setup phase for proving correct parsing and
the commitments generated therein are trusted.

C Standard Cryptographic Ideal Functional-
ities

The universal composability (UC) model, first defined by
Canetti in [14] is a strong model for proving security of
cryptographic protocols. Proving that a protocol is UC-secure
with respect to some functionality means that it can be
arbitrarily composed with other instances of the same or
other protocols without compromising security. Note that UC
security is proven with respect to a functionality. The ideal
functionality in this model is a description of the intended in-
terface of a protocol – an input-output API, if you will. One of
the most important results of [14] is the composition theorem.
Informally, the composition theorem states the following:
Let F be an ideal functionality and π be a protocol that is
UC secure with respect to F . Let φ be a protocol constructed
using F as a subroutine, such that φ is UC secure with respect
to another functionality G . Then, if the protocol φ′ is derived
by rewriting φ, replacing F with π, φ′ is also UC secure with
respect to G . In other words, we can build protocols modu-
larly, similarly to writing code, only using the APIs (i.e. ideal
functionalities) for complex subroutines, without concerning
ourselves with the specifics of the API are implemented.

In this section, we will provide ideal functionalities for var-
ious standard cryptographic primitives. For now, we restrict
ourselves to the ideal functionality FZK, parameterized by
a relation R, for showing that the relation R is satisfied by the
given inputs.

16

FZK

Parties: P , V , adversary A
Parameters: A relation R, security parameter 1λ.

1. On input (“prove”,sid,x,w) from P , if R(x,w)=1 this functionality
sends (“proven”,sid,P ,x) to V and A and halts. Otherwise, send
(“unproven”,sid,P ,x) to V and A and halt.

Figure 15: An ideal functionality, FZK, for zero-knowledge proofs, based on [14].

json
ws element

value
curlBracLeft membersInObj
sqBracLeft arrayElements
quoteLeft string
numberBase numberExponent
quoteLeft scalerSpecial

scalar
quoteLeft string
numberBase numberExponent
quoteLeft scalerSpecial

scalarSpecial
scalerSpecialTerm quoteRight

scalerSpecialTerm
trueLeft trueRight
falseLeft falseRight
nullLeft nullRight

falseLeft
termF termA

falseRight
termL falseCompRight

falseCompRight
termS termE

trueLeft
termT termR

trueRight
termU termE

nullLeft
termN termU

nullRight
termL termL

termT
t

termR
r

termU
u

termE
e

termF
f

termA
a

termL
l

termS
s

termN
n

members
memberLHS memberRHS
memberComma members

memberComma
member comma

membersInObj
ws curlBracRight
members curlBracRight

member
memberLHS memberRHS

memberKey
ws stringWS

memberRHS
ws element

memberLHS
memberKey colon

arrayElements
ws sqBracRight
elements sqBracRight

stringWS
string ws

elements
value ws
elementComma elements

elementComma
element comma

element
value ws

escapeU
’u’

escape
’"’
’\’
’/’
’b’
’f’
’n’
’r’
’t’
escapeU fourHexes

twoHexes
hex hex

fourHexes
twoHexes twoHexes

Figure 16: JSON grammar in Chomsky Normal form, modified from the grammar in ??

17

sqBracLeft
’[’

sqBracRight
’]’

curlBracLeft
’{’

curlBracRight
’}’

comma
’,’

quoteLeft
’"’

quoteRight
’"’

backSlash
’\’

colon
’:’

point
’.’

negation
’-’

string
quoteChars quoteRight

quoteChars
quoteLeft characters

characters
""
character characters

character
’0020’ . ’10FFFF’ - ’"’ - ’\’
’\’ escape

ws
""
’0020’
’000A’
’000D’
’0009’
ws ws

hex
’0’ . ’9’
’A’ . ’F’
’a’ . ’f’

digits
’0’ . ’9’
digit digits

digit
’0’ . ’9’

onenine
’1’ . ’9’

numberBase
integer fraction

termExpE
e
E

numberExponent
""
termExpE exponent

integer
digit
onenine digits
negation digit
negation onenine digits

fraction
""
point digits

exponent
sign digits
sign digits

sign
""
’+’
’-’

Figure 17: JSON grammar in Chomsky Normal form, modified from the grammar in ??. The production rules uses ‘-’ to denote a set minus
and ‘.’ to denote a range.

18

	Introduction
	Background and Definitions
	Strings, grammars and parsing
	Cryptography background

	Components of proving correct CFG parsing
	A toy grammar
	Conditions for correctness of a parse tree
	Algorithm for proving correctness of a parse tree
	Instantiating assertions in fig:parsing-proof-alg

	Efficient Proof Generation
	Non-interactive Proof: Arithmetic Circuit
	Building Blocks
	Circuit Design

	Interactive Proof: Boolean Circuit
	Building Blocks
	Circuit Design

	Recursion-supporting proof systems
	Recursive proofs to overcome RAM limitations
	Parallelized proving for faster wall-clock time

	Implementation and Evaluation
	Proof Systems
	Experimental Setup
	Non-interactive proof without recursion
	Interactive Proof
	Recursive proof-based solution

	Proof of Claim 1
	Definitions for cryptographic primitives
	Standard Cryptographic Ideal Functionalities

