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Abstract. In this paper, we present two new provable nonce-misuse-
resistant AEAD modes based on tweakable block ciphers and universal
hash functions. These new modes target equipping high-speed applica-
tions with nonce-misuse-resistant AEAD (MRAE). The first mode, Low
Latency Synthetic IV (LLSIV), targets similar performance on single-core
platforms to SCT-2, while eliminating the bottlenecks that make SCT-2
not fully parallelizable. The enhanced parallelism allows LLSIV to encrypt
significantly more blocks on parallel platforms, compared to SCT-2, in
the same amount of time. It is based on the NaT MAC. The second
mode is Low Latency Decryption-Fast SIV (LLDFV) which offers rate-1
decryption along side parallelizable low-latency encryption. It is faster
than decryption-fast SIV (DFV) on all platforms. We also propose LLSIV
with a reduced-round TBC in an adhoc mode of operation that we label
as pruned LLSIV (pLLSIV). This leads to a significant performance im-
provement, making pLLSIV even faster than online TBC-based schemes
that are not MRAE-secure. We evaluate the performance of LLSIV and
pLLSIV using a pipelined FPGA architecture.

LLSIV can also be instantiated based on AES and PolyVal. This instanti-
ation uses straightforward composition, so we present it in Appendix F
for completeness comparing its performance to AES-GCM-SIV.
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1 Introduction

In 2006, Rogaway and Shrimpton [33]| presented the Deterministic Authenti-
cated Encryption (DAE) security notion to address the problems of nonce-based
Authenticated Encryption with Associated Data (AEAD). They also introduced
a construction known as the Synthetic Initial Vector (SIV) construction. Ever
since, it has become one of two blueprints for building DAE and nonce-Misuse-
Resistant AE (MRAE), the other blueprint being the Encode-then-Encipher
(EtE) framework [9]. The SIV construction works as follows: First, the plain-
text and associated data (AD) are absorbed by a variable-input-length Pseudo-
Random Function (PRF) to generate a block T of fixed length. Then, T is used
both as an authentication tag and an IV for an IV-based encryption scheme.



This process is depicted in Figure 1(a). Typically, the security of the encryption
layer breaks down if the IV is repeated. Thus, the scheme can only offer up to
Birthday Bound (upBB) security with respect to the tag size.
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Fig. 1. The evolution of SIV-like constructions. (a) The original SIV construction. (b)
The nSIV construction. (c) The nSIV construction using nonce-based Pseudo-Random
MAC. (d) The SCT-2k mode. (e) Conceptualization of the HBS mode.

This limitation has motivated a line of research into combining the concepts
DAE and NAE into MRAE. The idea is to build a scheme that acts as an NAE
scheme when the nonce uniqueness is ensured, and the security does not drop
drastically when the nonce is repeated a small number of times. This has been
exemplified by the line of research surrounding the Deoxys-Il AEAD scheme [26,
30,27, 12], which is the winner of the defence-in-depth track of the CAESAR
competition.! In [30], Peyrin and Seurin proposed the Synthetic Counter-in-
Tweak (SCT) mode. Later, the designers of Deoxys modified it to SCT-2 [26]
which uses the Nonce-as-Tweak (NaT) MAC [13] as the PRF and the CounTeR-~
in-Tweak (CTRT) IV-and-nonce-based encryption mode. The SCT-2 mode is
depicted in Figure 1(d). A security proof for a two-key version of SCT-2 was
given in [12] under the name GNSIV-N and we shall be using this version in our
discussion. We shall be referring to this version as SCT-2k. The goal of these
constructions is to use the properties of the Tweakable Block Cipher (TBC) to
achieve what is known as graceful degradation: If the nonce is unique, the scheme
has almost full Beyond Birthday Bound (BBB) security, while the security drops
linearly with the maximum number of nonce repetitions, reaching upBB security

! https://competitions.cr.yp.to/caesar.html



if the nonce becomes a constant. In [27], the authors extended this concept to
define the nonce-based SIV (nSIV) construction, depicted in Figures 1(b) and
(c). They also generalized the security analysis of NaT to define the nonce-based
Pseudo-Random MAC (nPRM) security notion, which is quite different from,
and more flexible than, simple PRFs. These concepts were also used to design
other nSIV-based schemes such as Romulus-M [22].

One of the main features of Deoxys-1l that makes it appealing for high speed
applications is its internal parallelism. The NaT scheme uses a Universal Hash
Function (UHF) followed by a TBC. The UHF is implemented using the sum of
TBCs construction used in PMAC-1 [32]. On the other hand, the CTRT mode
process the counters and plaintext blocks completely in parallel. It was shown
in several works that by exploiting the internal parallelism, the performance
of Deoxys-Il can be improved drastically [26-28]. In particular, the advantage
of pipelined hardware accelerators of block ciphers have been demonstrated in
multiple recent works, with sometimes upward of 50x speed-up compared to
sequential implementations [21, 34, 36, 38, 40].

Related Work on Hash Stealing: One of the ideas we propose in this paper is using
what can be viewed as “hash stealing”. A similar idea was proposed by Iwata and
Yasuda in 2009 in the Hash-Block-Stealing (HBS) mode [25] but does not seem
to have received a lot of attention. We represent this idea in Figure 1(e). Their
scheme is based on block ciphers and does not achieve graceful MRAE security.
In fact, the security bound in [25] is even lower than the birthday bound, as
it is O(¢?1?/2™), where [ is the maximum length of the queries. If the scheme
is used is an application where only a few queries are very long and the rest
are reasonably short, then the total complexity allowed is ¢ < gl. Thus, when
G212 ~ 2", o < 22 and the scheme maybe difficult to use when the input space
mixes long and short messages.
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Fig. 2. Data flow (a) without hash stealing, (b) with hash stealing, (¢) with both hash
stealing and decryption-fast techniques.

Contribution: In this paper, we propose three new TBC-based MRAE modes:
LLSIV, pLLSIV and LLDFV. LLSIV revisits the idea of hash stealing, briefly in-
troduced in [25] in the context of DAE. We show that using TBC, we can get



very good security bounds while maintaing a 2-step encryption flow, shown in
Figure 2(b). Next, we show two more improvements. LLDFV combines the design
principle of LLSIV with the decryption-fast SIV (DFV) [29] to achieve a 2-step
data flow for both encryption and decryption, shown in Figure 2(c). Note that
this provides a significant improvement over both LLSIV and DFV, where the
latter requires 4 sequential steps for encryption and 3 sequential steps for de-
cryption. We also propose an adhoc mode called pLLSIV (pruned LLSIV), where
we exploit the limitations of the adversaries against LLSIV and the cryptana-
lytic results on the SKINNY-128-384 TBC to give an MRAE design that is faster
than even online SKINNY-based AEAD. These results are summed up in Ta-
ble 1. We compare SCT-2k, LLSIV and pLLSIV using pipelined implementations
of SKINNY-128-384. LLSIV can also be instantiated using PolyVal and AES (in
the ideal cipher model) and is quite competitive compared to AES-GCM-SIV [17],
but we leave this instantiation to Appendix F.

Outline The preliminaries are provided in Section 2. A summary of the approach
is given in Section 3. The analysis of LLSIV is given in Section 4 and the analysis
of LLDFV is given in Section 5. The performance comparison of LLSIV, security
arguments of pLLSIV and FPGA-based comparisons are given in Section 6.

Scheme| Security Security Speed Up
Argument Claim
LLSIV | Provable ey qa < 2'%% /1, Parallel Encryption
oo <2128/t < 2128

LLDFV | Provable e, qq < 284 Both directions,
all platforms

pLLSIV | Adhoc |l < 26 q4,0. < 2%t <« 2!12] Both directions,
all platforms

Table 1. Proposed modes and their security when instantiated with a n-bit TBC
and a €1-AU and e2-AXU hash functions (e1,e2 = O(l/2’C +1/2™). ge and ¢q are the
number of encryption and decryption queries, respectively. o. is the overall encryption
data complexity. ¢ is the maximum time elapsed by the adversary, counted in primitive
(offline) calls to the underlying TBC. p is the maximum number of nonce repetitions
in encryption queries. [ is the maximum length of any query, measure in n-bit blocks.
The security of LLDFV is reduced to the underlying AEAD scheme, thus we omit the
time complexity from the summary. Speed-up is in comparison to a non-hash stealing
variant, e.g., SCT-2k or DFV. The data complexity is measured in measured in n-bit
blocks. Note that for all schemes n = 128 bits, while the key size k of the TBCs and
hash functions shall be specified for each instantiation.



2 Preliminaries

Let {0,1}* be the set of all finite bit strings including the empty string e. For
X € {0,1}*, | X]| is its bit length. For an integer i > 0, {0,1}" is the set of all bit
strings of length i bits and {0, 1}=! is the set of all bit strings of length at most
i bits. For an integer [ < 1, | X|; is the length of X € {0,1}* in I-bit blocks, i.e.,
| X =[|X]/l]if X # eand | X|; = 1if X = e. For two bit strings X and Y, X ||V’
is the concatenation of the two strings. 0° is the string consisting of i zero bits
and 1|0% is written as 10%. For X € {0,1}* with |X| > 4, msb;(X) is the leftmost
i bits of X and 1sb;(X) is the rightmost ¢ bits of X. Let X be a uniformly

sampled bit string from the set X', we write X & X For X € {0,1}*, pad,, (X)
is the de-facto one-zero padding: Let |X| mod n = . Then, pad, (X) = 107!
if X =¢, pad,(X) = X if i = 0, and pad,(X) = X||10" !, otherwise. Let
0 < i < 2% be an integer, then i, be the b-bit binary representation of 4, such
that if ¢ # 5, i # jp. If b is understood from context, we write 1.

Authenticated Encryption with Associated Data (AEAD). We define the syntax
of AEAD using nonce and AD, then we describe the special cases where either
of these inputs are not available/not used. Let NAE = (NAE.Enc, NAE.Dec) be
an NAE scheme. NAE.Enc takes as input a key K € K and a tuple (N, A, M) €
N x A x M, and returns a ciphertext C € M and a tag T € T, such that
|M| = |C|. We shall define M = {0,1}* and T = {0,1}" for a fixed small 7.
NAE.Dec takes as input a key K € K and a tuple (N, A,C,T) e N x AX M X T,
and returns either an invalid symbol L or a plaintext M € M.

If A = ¢, we shall follow the notation of [29] and refer to the scheme as
pNAE. If N' = ¢, then we refer to the scheme as DAE. If AV # ¢ but the nonce
can be repeated, then we refer to the scheme as MRAE.

MRAEFE Security. Let MRAE be an AEAD scheme. We define two security no-
tions. The privacy notion is the indistinguishability of ciphertexts from random
string. Let A be a nonce-repeating adversary against MRAE. A has access to
one oracle and makes unique queries of the form (N, A, M). A makes g. queries.
Given N € N, N appears in at most p queries. If N' = ¢, then u = q.. Let $

be the oracle that takes as input the tuple (N, A, M) and returns C & {0, 1}IMI

and T & {0,1}7. Then, the advantage of A against the nonce-misuse privacy of
MRAE is defined as

AdViReBE (A) = [ Pr[K & K : AMRAEENS 1] — Pr[AS — 1))

Let B be a nonce-repeating adversary against MRAE. B has access to two oracles.
It makes ¢. queries of the form (N, A, M) to its first oracle and g4 queries the
form of (N, A, C,T) to its second oracle. B does not repeat queries and does not
request queries from its second oracles that have been previously generated by
the first oracle. Then, the advantage of B against the nonce-misuse authenticity
of MRAE is defined as

Advim e (B) < pr(f¢ & g BMRAEENCMRAEDec 04 MRAE]



where B forges MRAE means that for any query B makes to its second oracle,
it receives a plaintext M* #.1.

When understood in context, we will use nr— to refer to the same security
notions when the adversary is nonce respecting and d— when the scheme is
deterministic, i.e., N = ¢.

Tweakable Block Cipher (TBC) A TBC is a mapping F : K x T x {0,1}" —
{0,1}™ such that for any choice of K € K, and any choice of T,, € T, Y «
E(K,T,,X) is a permutation of {0,1}". Let perm, ,, be the set of all tweakable
permutations of {0,1}" with tweak space 7. We say 7 : T x {0,1}" — {0,1}"™ is
a tweakable permutation if for every choice of T € T, Y « #(T, X) is a permu-
tation of {0,1}", and @ : T x {0,1}™ — {0,1}™ is the inverse tweakable permu-
tation such that @7 (77 (M)) = M. We write EL(X) to indicate E(K,T, X). A
(Ge, qa,t)-adversary A against the strong Tweakable Pseudo-Random Permuta-
tion (sSTPRP) security of E is an algorithm that has oracle access to a tweakable
permutation of {0,1}™ as well as its inverse, makes g. queries to the first oracle,
qq queries to the second oracle and runs in time at most t. It outputs a single
bit. The advantage of A against the sSTPRP security of E is given by

Stpr ° $ B (B ) ™! ~ 8 @
AdvEPP(A) = [Pr(K « K : AP0 1] — Pr[f < perm,, : AT — 1],

where 7 is sampled uniformly from the set of all tweakable permutations, i.e., for
each choice of tweak T' € T, 7(T,-) is a uniformly random permutation. We call
7 a Tweakable Uniformly Random Permutation (TURP). Let B be an adversary
that has has only access to the first oracle and makes ¢. queries, then

AdVEP(B) & |Pr[K & K: APk 1] — Prfft & perm, ,, : AT - 1]].

Universal Hash Function (UHF) Let H : K x X — Y be a keyed hash function
with key space K, input space X and output space ). Let € > 0. We say H is
€1-Almost Universal (e1-AU) if for any distinct X; and X5 € X

Pr[K & Kp: Hx(X1) = Hg(X2)] < €.

Beside, We say H is ea-Almost XOR Universal (eo-AXU) if for any distinct X3
and X, € X and for any Y € ),

Pr[K & Kp, : Hi(X1) ® Hi(X2) = Y] < es.

Nonce-as-Tweak (NaT) [13] Let E : K x N x {0,1}" — {0,1}" be a TBC and
H:KpxM — {0,1}" be an e-AU hash function. Then, the NaT MAC is given
by

NaT[E, H]k x, (N, M) = EX (H, (M)). (1)

Besides, let Ver be the oracle that takes as input M € M and T' € {0,1}",
and returns T if NaT[E, H|g i, (N,M) = T and L, otherwise. Let $ be the



oracle that returns a uniformly random n-bit block for each plaintext-nonce pair
(N,M) € N x M and Rej is the oracle that outputs L for all queries. Then,
Cogliati et al. [13] show that for any adversary A that makes g, queries to the
first oracle and ¢, queries to the second oracle and runs in time ¢, there exists
an adversary A’ than runs in time O(t+ (¢m + ¢ )tr) and makes g, + ¢, queries
to E, such that,

AdVES(A) < |Pr[K & KKy & K 2 ANTVer 1] - Pr[ASRe = 1| <

AdVEP(A") £ 20 = Dame + 57— + e, (2)

where ty is the upper bound on the time needed to compute H and p is the
maximum number of times a given N € N is repeated in different queries to the
first oracle.

The XOR-Hash Let E : K x (D x T x {0,1}") x {0,1}"* — x{0,1}" be a TBC,
where D = {1,2,3,4,5,6} and Z be the set of non-negative integers < Ilyax
for a constant l,.x € N. Then, the TBC-based version of XOR-Hash XH :
ICx ({0, 1}S2nhmax x {0, 1} S2nlmax) — {0, 1}" is given by Algorithm 1. The XOR-
Hash is a known construction and was used in other designs [12, 23]|. However, it
requires careful assignment of message blocks, padding and domain separators.
We describe it in this section for the sake of completeness. We shall also discuss
it in Section 6. Otherwise, we will refer to it as a black-box construction.

Algorithm 1 The XOR-Hash Function

1: XH(K, A, M) 8  di—2+3(i—1)
2: return XH; (K, A) ® XHz2(K, M) 9: end if
10: X, < 0"
3: XHi (K, X) 11: d+ 1433 —1)
4 X1, Xoy.o, Xo & pad,, (X) 12: for i € {07”"11/512';(2} do
5: if X =€V |X| mod 2n # 0 then 13: Xn+— X EK’Z’ 2 (Xai41)
6:  dy < 3+3(i—1) 14: end for
7: else 15: Xp ¢ X @ B2 (X, )

16: return X,

Cogliati et. al. [12] proved that if the underlying TBC is unpredictable against
any adversary running in time O(¢ + 1) and making queries of at most 2! queries
to the TBC, with advantage at most €, then the described hash function is e-AU
against all adversaries making queries of length at most [ blocks and running

in time ¢t. They also conjectured that for a standard selection of the TBC, € =
O(l/2F +1/2m)



3 Hash stealing, the bottlenecks of nSIV and new modes

Our goal is to take advantage of the possible internal parallelism the underlying
encryption and hashing modes, and eliminate the bottlenecks of SIV/SCT-2k.
Simultaneously, we want to take advantage of the recently popularized prove-
the-prune methodology. The first bottleneck comes from the requirement of
SIV/SCT-2k that the IV /tag T be indistinguishable from a random block. This
requires transforming the hashed (A, M) pair using a PRF, as exemplified by
the application of 7 in Figure 1(d). This call to a fixed length PRF (in this case
implemented using a TBC) cannot be done in parallel to either parts of the con-
struction, and represents a significant bottleneck to speeding up instantiations
of SIV/SCT-2k on parallel platforms, especially for short messages. This leads
to the 3-step data flow depicted in Figure 2(a). Our goal is two find 2-step data
flows, where the encryption and decryption algorithms are implemented using
two parallelizable steps. First, we propose a new TBC-based mode called LLSIV
which manages to use hash stealing to have a 2-step encryption, while maintain-
ing 3-step decryption. Then, we propose another new mode called LLDFV which
achieves 2-step encryption and decryption, as we explain later in the paper.

The other technique that cannot be fully used in SIV-based schemes (in-
cluding SCT-2k) is the prove-then-prune framework. This framework has be-
come popular in the recent years with designs/constructions such as the Orthros
PRF (7], the ForkCipher [3], the Masked Iterate-Fork-Iterate (mifi) framework [2],
and other forked constructions [16]. The basic idea of this framework is to de-
sign constructions that are proven secure when the underlying primitive is an
idealized primitive, then argue that the way the primitive is used inside the con-
struction limits the adversary’s capability, so the number of rounds inside the
primitive can be reduced. In the context of SIV, this can be done to the prim-
itive calls inside the UHF, since the adversary does not observe their outputs
and usually the outputs are XORed together. It was indeed done in one instance
of the Estate family of AEAD algorithms [11]. However, this cannot be done to
the calls that are part of the encryption phase of the algorithm without further
studies and without increasing the overhead, since for these calls, the adversary
can see, and choose, their inputs and outputs, with almost no restrictions.

To resolve both these bottlenecks, we propose the LLSIV mode of operation,
depicted in Figure 3. Rather than using the output of a PRF as the IV for the
CTRT encryption mode, we show that it is sufficient to use the outcome of a UHF
as an IV for a CTRT-like mode. The first block of the CTRT mode is used as
the tag. One could see that each output block is an instance of the NaT MAC.
Without pruning, the construction has the same speed as SCT-2k on single-
core platforms, but has faster encryption performance on parallel platforms.
This comes at the cost of using the inverse function (decryption) to be able to
compute the I'V during decryption. Moreover, by using the mifi mindset, we can
prune not only the UHF, but also the TBC calls. We can speed up the TBC calls
by about 35%. We give instantiations based on the SKINNY-128-384 TBC and
a pruned version of it. We also give an instantiation based on PolyVal and AES
for comparison with AES-GCM-SIV.



Next we propose the LLDFV mode, depicted in Figure 4. It uses the same
technique used to optimize SCT-2k, which can be also applied to optimize the
DFV technique recently proposed by Minematsu [29], reducing the number of
TBC calls in a TBC-based instantiation of DFV by one call, and allowing using
the fast decryption speed up with the encryption speed up from reducing the
number of calls and parallelism.

4 Low Latency SIV and its security

The LLSIV AEAD scheme is described in details in Algorithm 2. A diagram for
the case of 3 full blocks is depicted in Figure 3. In this section, we study the
security of the LLSIV construction.
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Fig. 3. The LLSIV with 3 plaintext block: M = M| Maz||Ms

Algorithm 2 The LLSIV Scheme.

1: EnCKth(N,A,M) 10: DeCK,Kh(N,A,C,T)
2: IV < UHF(Ky, A, M) 11: Cy,...,C. & C
30 My,...,Mpy <~ M 12: IV « (EY™M)~Y(T)
4: T« EYN (V) 13: forie {1,...,c} do
5: for i € {1,...,m} do 4: M; + C; @, EZN(IV)
6: Ci  M; &g, BN (IV) 15: end for
7: end for 16: M < My||...||Mm
8 C« Cif...[|Cm 17: IV* <~ UHF(Kx, A, M)
9: return (C,T) 18: if IV = IV* then

19: return M

20: else

21: return L

22: end if




The scheme closely resembles the NaT MAC introduced in [13], where instead
of generating one nonce-based block, we generate m + 1 blocks with the nonce
and a counter as a tweak. However, the analysis differs in two main ways:

1. The decryption function uses one call to the TBC in the inverse direction
to decrypt the tag. Hence, the forgery analysis relies on the strong TPRP
(STPRP) security of the TBC.

2. The authors of [13] used the H-Coefficient technique for proving that their
construction is a secure PRF-MAC when the number of nonce repetitions is
small. In the proof, the challenger reveals K} at the end of the game. The
adversary can then link each message with its hash value in both verification
and MAC queries. This is not directly possible here, since the adversary does
not know the message during decryption/verification queries. The security
proof of Romulus-M [22] overcomes this challenge by modifying the authen-
ticity game to give the adversary oracle access to the encryption and MAC
parts, separately, giving the adversary more power to choose the forgeries,
then reduces the authenticity to the security of the MAC. Using a sequence
of hybrid arguments, we are able to employ the same trick.

Our goal in the security proof of authenticity is to construct an appropriate
auxiliary oracle that allows us to:

— prevent the adversary from inferring any information on the decryption of
T.
— be able to reduce the security to the security bound of NaT.

First, we address the nm — priv security. We will replace all the TBC calls in
encryption queries with random functions, using [22, Lemma (6)]. Then, we will
bound the probability that two pairs (A1, M) # (Aa, Ms) have the same hash.
If the hash value never repeat, then all the function calls have unique inputs.
We refer to Appendices A and B for the proofs of Lemma 1 and Theorem 1, as
the former is an adaptation from [22] and the latter is a standard hybrid games
proof. For nm — auth, we will define a sequence of hybrid games that will be used
to reduce the authenticity of LLSIV to the integrity of the NaT MAC [13]. We
note that whether the security bounds of LLSIV achieve BBB security depends
on the selection of the UHF. However, there are several selections of the hash
function with security bounds of the form 1/2", /2% 1/2". In our proposals, we
use the XOR-Hash, presented in Section 2.

Lemma 1. (Adapted from [22, Lemma (6)]) Consider a PRF-adversary A against
the TURP 7 : T x {0,1}* x {0,1}" — {0,1}". A makes q; queries with the first
input i € I, such that Y, .7 q; = o. Any pair (i,N) € I x {0,1}* appears in
at most p queries. Then, the advantage of A against the PRF security of 7 is
bounded by

(b —1)o

AdvE(A) < o



Theorem 1. Let A be an NM privacy adversary against LLSIV that can repeat
a nonce at most p times in encryption queries. A makes q. queries of total
ciphertext size o, blocks. Let A run in time at most t. Then, there exists a
(Ge+0e,t+O0(qetr +0¢))-TPRP adversary A’ against the underlying TBC such
that
nm—priv T (/L*l)(q‘+0")

AdviTs T (A) < AdvEP(AY) + (1 — 1)gee + 2—n
Here, the hash function UHF : ICp, x {0,1}* x {0,1}* — {0,1}" is an e-AU hash
function and runs in time at most ty.

Lemma 2. Consider a TBC E : K x T x {0,1}" x {0,1}" — {0,1}". Consider
the construction I': R R
E(K,i,N,(E)"'(K,0,N, X))

where i € I\ {0}. Then, for any adversary G that runs in times t and makes
q queries to I', there exists an adversary G' against the strong TPRP security
of E that makes q encryption queries, q decryption queries and runs in time
t'=O0(t+ q), such that

AdvPP(G) < AdvEPR(G).

Proof. First, we replace all the calls of E with a TURP #. Let P : {0,1}™ x
{0,1}™ — {0, 1}" be the tweakable permutation corresponding to @(0, -, ). For a
given N € {0,1}", Py is a one-to-one mapping from {0,1}" to {0, 1}". Consider
a different family of random permutations 6. We define the game G1 as the
game where the oracle performs the queries 7 (i, N, ﬁo(N , X)) and the game G2
as the game where the oracle performs the queries &(i, N, X). We recall that
the adversary’s goal is to distinguish between its oracle and a TURP. Since
both 7 and & are TURPs and P, is a one-to-one mapping, then the probability
distribution of the responses in both games is identical and the distinguishing
advantage is 0. This concludes the proof.

Note that the different tweaks play an important role. Py is indeed part of the
same TURP family as the other calls. However, the TURP assumption ensures
that since the tweak 0 never appears in any calls other than Py, the outputs of
these calls are sampled uniformly and independently of the input-output pairs
of P,. Note also that in G1, we do not rely on the randomness of Py, but only
on its bijectivity for a given nonce.

Theorem 2. Let B be an NM authenticity adversary against LLSIV that can
repeat a nonce at most u times in encryption queries. B makes q. queries of total
ciphertezt size o, blocks and qq decryption/verification queries of total ciphertext
size 04. Let B run in time at most t,. Then, there exists a (qe+qa+0c+ 04, ts+
O((ge +9d)tg +0e+04))-sTPRP adversary B’ against the underlying TBC and
a (Ge,qa,to + O((ge + qa)ty + 0c + 04))-nPRM adversary B" against the NaT
MAC, such that

AV (B) < AdvEPT(BY) + AdviE(B”)
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dd
2% —
The hash function UHF : ICp, x X — {0,1}™ is an e-AU hash function and runs in
time at most tgy. X = A x M is the product of the associated data and plaintext
domains.

< AdvEFP(B') +2(p — 1)gee + + pigac.

Proof. We will define a sequence of hybrid games and bound the transition
probability between these games. Let E; be the event that the adversary wins
in game Gi.
GO: The oracle implements the real-world construction. in Algorithm 2.
G1: We replace the TBC with a TURP 7. Let (7)~! = .

| Pr[Eo] — PriE1]| < AdvP™®(B).

G2: We modify the calls during the encryption/decryption phase to be a function
of T without first calculating I'V, as indicated in lines 6 and 14 of Algorithm 3.
This change does not affect the security of the scheme. Thus,

| Pr[Ey] — Pr[Ey]| = 0.

Algorithm 3 The oracles of game G2 in the proof of Theorem 2.

1: EnCK,Kh(N,A7M) 10: DeCK,Kh(N,A,C,T)
2: IV « UHF(Ku, A, M) 11: C4,...,C. & C
3 Mi,...,Mpn &M 12: IV « &%N(T)
4: T + 70N(IV) 13: for i€ {1,...,c} do
5: for i€ {1,...,m} do 4: M+ C; @, 7N (@"N(T))
6: Ci < M; @, 7NN (T)) 15: end for
7: end for 16: M < M| ... ||Mm
8: C+Ci...||ICm 17: IV* + UHF(Ky, A, M)
9: return (C,T) 18: if IV = IV™ then

19: return M

20: else

21: return L

22: end if

G3: We change the oracles by applying the transformation in Lemma 2 to lines
6 and 14 of Algorithm 3. Since 7 is a TURP, then Lemma 2 implies

| Pr[E,] — Pr[E3]| = 0.

G4: As shown in Algorithm 4, we change the equality check during verifica-
tion to check the equality of the tag T instead of I'V. Note that the tweakable
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permutation 7 ensures that
(N, T)=(N*,T") & (N,IV) = (N*,IV™).
Thus, changing which variable to check has no implication on the security, i.e.,
| Pr[E5] — Pr[E,)| = 0.

In the rest of the proof, we need to show that for any adversary B against G4,
there exists an adversary B” against the NaT MAC with the same number of
MAC and verification queries such that

Pr[Ey] < AdvE2™(B) < Advi2S (B”).

In order to do so, we follow the strategy proposed in the security proof of
Romulus-M [22].

Algorithm 4 The oracles of game G4 in the proof of Theorem 2.

1: EnCKth(N,A,M) 10: DECK,Kh(N,A,C,T)
2: IV < UHF(Ky, A, M) 11: C4,...,C. & C
3t My,...,My <~ M 12: fori € {1,...,c} do
4: T « 70N (IV) 13t M+ Ci &, "N (T)
5: for i€ {1,...,m} do 14: end for
6:  Ci< M; & 6N (T) 15: M« M| ... || M
7: end for 16: IV* <~ UHF(Kj, A, M)
8 C«T|Ci]...||Cnm 17: T* « 79N (Iv™)
9: return C 18: if T'=T" then

19: return M

20: else

21: return |

22: end if

G5: We give the adversary oracle access to ¢, and the adversary makes verifica-
tion queries on the form (N, A, M, T), rather than (N, A, C,T). The encryption
and decryption oracles in this case are depicted in Algorithm 5, where the ad-
versary uses the ¢ oracle to perform the omitted parts. We say B breaks the
authenticity of G5 if the second oracle returns T. This change can only increase
the adversary’s advantage. Note that the permutations of ¢ and 7 are sam-
pled independently, which was ensured in G3. We can see that the oracles in
Algorithm 5 are equivalent to the NaT construction. Thus,

Pr[E4] < PrlBs] < 2(j — 1)gee +

nQd + pgge
2 —p

which follows from Equation 2 [13, Theorem 1].
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Algorithm 5 The oracles of game G5 in the proof of Theorem 2.

1: EncKyKh(N, A7 M) 5: DeCKth(N,A,M,T)
2: IV < UHF(Kn, A, M) 6: IV* <~ UHF(Kn, A, M)
3: T« 7N (1V) 7 T 70N (V)
4: return T 8 if T =T" then

9: return T

10: else

11: return |

12: end if

The overall bound is reached by combing the different transition probabilities

as follows:
AdviTsy™(B) <

P + 3 I PrE,] — PrlEy 1]l < PrlBs] + 3 |PrlE,] - PrlE, ]
g=0 g=0

5 Low Latency DFV and its security

Minematsu [29] proposed the decryption fast SIV (DFV) framework as a way
to optimize the speed of DAE, where the decryption function can be done as
a rate-1 function, using an auxiliary tag, and the encryption part of SIV is
replaced by a pNAE scheme. Then, he proposed two generic constructions and
two dedicated designs. Minematsu [29] discussed several potential methods to
optimize his proposed framework to improve its efficiency, and demonstrated
that all the considered ideas lead to either insecure constructions or intractable
security proofs. However, Minematsu focused mainly on black-box construction
where a PRF/MAC is used and its output is used as part of the nonce for
the pNAE scheme, and did not study hash stealing. Naturally, our proposed
technique to construct LLSIV is not part of the ideas considered by Minematsu.
In this section, we consider an optimization of the DFV3 scheme by Minematsu
that requires one less primitive call. The proposed construction is depicted in
Figure 4 and Algorithm 6.

Instead of using the output of two PRFs as the nonce for a pNAE scheme, we
use the output of two universal hash functions. Consider the hash function XH
in Algorithm 1, which can be rewritten as

XH(A, M) = XH;(A) & XHy (M)

which is assumed to be e-AU hash function. We need an assumption on XH;(A)
on its own and how it interacts with XH(A, M) when the outputs of both func-
tions are concatenated. An obvious approach is to assume the hash function
defined by

XH'(X,i) = XH;(X)
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Fig. 4. The proposed LLDFV encryption (left) and decryption (right).

Algorithm 6 The LLDFV Scheme.

1: EncKp,K,Kh (A,M) 8: DecKp,K,Kh (A7 07 T’)

2: IV, < XHi(Kp, A) 9: T,V <~ T’

3: IV  XHa(Kp, M) 10: 1V = (E%)~N(T)

4 IV = IVy ® [V 11: IV, 4 XHi(Kp, A)

5 T « Ex(IVe) 12: M + pNAE.Dec,. (IV,|IVa,C,V)
6: (C,V) < pNAE.Ency (IVa|IVe, M) 13: return M !

7: return (C,T||V)

where the type (associated data (1) or plaintext (2)) is part of the input. We
assume that XH'(X,4) is both e-AU and e-AXU. Next, we define the overall
UHF:

ConcatXH(A4, M) + XHy(A4)||XH(A, M).

We can show that this function is a (2¢)-AU hash function. Similarly to Section 4,
we defer the proofs of privacy to Appendices C and D and focus on the proofs
of authenticity. We note that if a different UHF is used, the claims below do not
necessarily hold, and the two hash functions should use different keys.

Lemma 3. Given XH'(X,4) is e-AU and e-AXU, then ConcatXH(A, M) is (2¢)-
AU.

Using Lemma 3, we can then show the d — priv security of LLDFV.

Theorem 3. Let A be a (q.,t)-adversary against the NM privacy of LLDFV as
a deterministic AE scheme (i = q.). Then, there exists a (ge,t')-adversary A’
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and a (e, t')-adversary A" for t' = O(qe +1t) and t"" = O(qe +t), such that

—priv T nr—priv 0.5 2
Advi bRy (A) < Advg P(A)) + Advpyag (AT + Qqu + 3((126)6

where XH;(X) is an e-AU and e-AXU hash function.

Theorem 4. Let B be a (qe, qq4,t)-adversary against the authenticity of LLDFV
as a deterministic AE scheme (1 = q.). Then, there exists a (qe+qa,t')-adversary
B’ and a (ge, qa,t')-adversary B” fort' = O(qe+qq+1) and t’ = O(ge +qa+1),
such that

de

AW B) < AQVETR(B) + AdviE (B +2(

)6 + qeqad€

where XH;(X) is an e-AU and e-AXU hash function.

Proof. In order to proof this theorem, we construct a series of a hybrid games.
Let E; be the event that the adversary wins in game Gi. GO: The oracles are
the real world oracles. G1: First, E is replaced with a TURP.

| Pr[Eo] — Pr[E)]| < AdvSPP(B).

G2: The game terminates if during any two encryption queries (A;, M;) #
(Aj, M;), ConcatXH(A;, M;) = ConcatXH(A4;, M;).

| Pr{Ey] — P[] < 2(‘12)

G3: The game terminates if there exists a decryption query (A*,C*,T*) and an
encryption query (A;, M;) such that

(A%, T7) # (Ai, #(XH(A;, M;)))
and
ConcatXH(Ai, Mz) = XHl(A*)H(IJ(T*)

Since 7 is bijective, T* # T; implies this condition cannot happen. Thus, we only
need to look at when T* = T;, in which case the condition can only be satisfied
if A* # A; and XH;(A*) = XH;(A4;). Since there are at most g.qq such pairs,
then

| Pr[Es] — Pr[Es]| < geqae.

G4: We now consider an adversary B” that has oracle access to the underlying
pNAE scheme, 7, XH; and XHy. B” simulates the oracles of G3. From B point
of view, games G3 and G4 are indistinguishable.

| Pr[E3] — Pr[E4]| = 0.
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Besides, if G4 does not terminate, then all the queries made to pNAE.Enc
use unique nonces, and all the queries made to pNAE.Dec are non-trivial: non-
repeating and were not generated by queries to pNAE.Enc.

G5: We replace the pNAE decryption oracle with an ideal NAE rejection oracle:
all calls to pNAE.Dec return L. Thus,

| Pr[E,] — Pr[Es]| < Advgr,\,;\;“h(B”).

Besides, if G5 does not terminate, B cannot distinguish the oracles from ideal
oracles. Thus,
Pr[Es] = 0.

6 Skinny-based Instantiations and pLLSIV

In this section, we describe a simple instantiation of the LLSIV mode based on
the SKINNY-128-384 [8] TBC. We also describe the hardware architecture and
implementation of a fully pipelined accelarator for FPGAs and compare the cost
and performance of the proposed designs to the generalized version of SCT-2k
described in [12] under the name GNSIV-N, when both use the same TBC. We
also propose exploiting the adversary’s limitation against LLSIV and using a
reduced-round SKINNY-128-384.

The UHF. The topic of designing an e-AU hash function is a rich topic in
symmetric key cryptography. UHF can be designed in a variety of ways that are
outside the scope of our work. Since our goal is to design a TBC based scheme
to be compared with SCT-2k in terms of performance, we shall rely on the same
UHF used in SCT-2k: the XOR-hash defined in Algorithm 1. We will use the same
hash function for all our instantiations. We will use n = 128 bits and |K}| = 192
bits for LLSIV and SCT-2k, and the maximum length or AD or plaintext is 264
blocks. We refer to [12] for a detailed discussion of this hash function.

Tweakable Block Cipher. Choosing the TBC for a practical instantiation is not
an easy task. Several TBCs with large tweak sizes have been proposed in the past
decade, including Deoxys-TBC [26,12], SKINNY [8] and QARMA [5,6]. Any of
these TBCs can by used in LLSIV. We choose SKINNY for its hardware-optimized
round function and its maturity, with plenty of literature discussing its security.

Pruned LLSIV. When SKINNY-128-384 was first proposed in 2016 [8], it con-
sisted on 56 iterative rounds. Later, Guo et. al. [18] conjectured that 56 rounds
is an overkill, and proposed reducing the number of rounds to 40 rounds. Hence-
forth, we shall refer to the 40-round version as the fully secure version and use it
as the underlying TBC for any unpruned instantiation. Table 2 includes a list of
the most recent cryptanalytic results on SKINNY-128-384. The models that are
relevant for both SCT-2k and pLLSIV are the single key and chosen tweak mod-
els. We note that the best attacks in these models are those from [10] and [20],
respectively. However, this attacks are significantly beyond the security bounds
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of pLLSIV, where the time complexity is limited to 2'2% /i for k = 128. For ex-
ample, even for only 23 rounds, [10] requires time complexity of more than 2362,
The attacks from [20] against SKINNY-128-256 can only reach up to 22 rounds.

Model ‘Technique‘Ref.‘Number of Rounds‘Data‘ Time

D [39] 29 292.22 2373.48

Single Key MitM | [14] 23 2120 | 9368
DS-MitM | [35] 23 296 | 2872

Difft-MitM | [10] 25 2122:3] 9372.5

Int [20] 26 2121 | 9344

Chosen Tweak| o \rien | [35] 25 296 |9363.83
[19] 30 2125 2361

[31] 30 9122 | 9341

Related Key | Rectangle [15] 39 9123 | 9355
[37] 32 2123 2345

Table 2. A summary of the most recent notable cryptanalytic results on SKINNY-128-
384. ID: Impossible Differential. MitM: Meet in the Middle. DS-MitM: Demirci-Selguk
MitM. Diff-MitM: Differential MitM.

The situation in pLLSIV loosely resembles the situation of ForkSkinny [4].
The designers have discussed the applicability of different type of attacks to this
forked structure. We shall consider the pruned version pLLSIV to use 25 rounds
of SKINNY-128-384 for the TBC calls in both the UHF and the rest of the LL-
SIV mode. Figure 5 depicts conceptual cryptanalysis targets. Table 2 shows that
there are no distinguishers for any of the top or the bottom parts with time
complexity 2'?®. Besides, even if attacks improve, most attacks are not appli-
cable to this setup. For instance, if an adversary wants to attack the bottom
permutations alone, they would need either a chosen tweak known ciphertext
attack (the plaintext is unknown), which is a very restricted model, or an at-
tack on the inverse permutation cascaded with the forward permutation with a
different tweak, which can occur during decryption. However, while this is not
exactly the SKINNY TBC, it requires a distinguisher on 50 rounds of SKINNY
with dependent, but different, tweakeys. On the other hand, breaking the uni-
versality of the UHF requires finding a distinguisher for the top permutations,
while observing the effect through the bottom permutations, each including 25
rounds of SKINNY with two different keys. It also requires at least a distin-
guisher for 25 rounds of SKINNY-128-384 within our security claims in Table 3.
Meet-in-the-Middle (MitM) attacks and other attacks that require both chosen
plaintext and chosen ciphertext queries, simultaneously, are not applicable to
any of the individual TBC calls in pLLSIV. MitM attacks can be applied on P,
and Py, which generically has complexity of O(2'2%). To beat the generic attack,
the adversary needs a distinguisher on 25 rounds of SKINNY-128-384 within our
security claims.
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Fig. 5. Conceptual minimalist cryptanalysis targets in pLLSIV.

Last but not least, from the theoretical security bounds of LLSIV and the
cryptanalysis of SKINNY-128-384, the security claims are pLLSIV should be lim-
ited to the parameters in Table 3. The security claims of pLLSIV are significantly
conservative compared to what the attacks allow and are based on the require-
ments of the recently concluded NIST lightweight cryptography project [1].

Scheme Max. Length Data Time Key Size

pLLSIV 216 216 9l1Z 95198
LLSIV 204 2128/ 2128 192 + 128

Table 3. Security claims for pLLSIV and LLSIV. u is the number of nonce repetitions.

We note that given our parameters, pLLSIV requires 37.5 rounds per plaintext
block of 128-bits, which is less than one call of SKINNY (equivalent to 40 rounds).
This makes it not only faster than LLSIV and unpruned MRAE-secure TBC-
based schemes, but also faster than unpruned online AE schemes such as Deoxys-
AE-1l or Romulus-N, even using single core implementations.

Domain Separation and Keys. In the spirit of being conservative, and given
MRAE security requires extra memory overhead anyway, we restrict our self to
the case where the UHF uses a different key from other TBC calls. We also use
a different domain separator for the TBC calls used to generate the tag and
ciphertext blocks compared to the ones used in the UHF. We use 192 bits and
128 bits for the UHF key for LLSIV and pLLSIV, respectively. We use 128 bits for
the key of the other calls.

FPGA Pipelined Implementation of pLLSIV, LLSIV and SCT-2. In
order to demonstrate the differences between LLSIV, pLLSIV and SCT-2k on par-
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allel platforms, we have implemented all three algorithms using a fully pipelined
SKINNY implementation that computes one round per pipeline stage. We have
synthesized the implementations for Xilinx Kintex-7 FPGA using Vivado?. The
architecture of the hardware accelerator of LLSIV and pLLSIV is depicted in
Figure 6. The two algorithms differ in the number of rounds, which affects the
number of pipeline stages for the encryption core and the number of cycles for
the decryption circuit. The decryption circuit is a round-based implementation
of the SKINNY decryption algorithm. The implementation of SCT-2k differs from
that of LLSIV in that it does not need the decryption circuit but the tag is always
generated using the encryption pipeline, where only one stage is active at a time.
While the architecture requires to call the decryption circuit during verification
calls to process the tag, this circuit is not the full SKINNY-128-384 decryption
circuit, even for LLSIV. We note that this call to the decryption circuit only uses
0 values for both the domain separator and the counter. Thus, 128 bits of the
TBC tweak are fixed to 0 and can be ignored during the implementation, which
is a property of SKINNY. This gives us a little cost reduction in practice.

A,/M,
Cﬁ
.

Ae/Mo/N — B, i, DYy

M-~ C

Fig. 6. Simplified architecture of a fully pipelined hardware accelerator for LLSIV and
pLLSIV.

Table 4 shows the resource utilization of the FPGA implementations of dif-
ferent schemes. The LLSIV implementation almost the same number of flip flops
and 12.3% more Look Up Tables (LUTS), mainly due to the iterative decryp-
tion circuit. However, it needs 39 less cycles for encryption. Note that in this
implementation, 1 block needs 1.5 cycles. Thus, the LLSIV implementation can
encrypt 26 more blocks (416 bytes) in the same amount of time. pLLSIV is even
faster, being able to encrypt 69 more blocks (736 bytes) compared to SCT-2k.

In order to demonstrate the performance gain, Figure 7(Left) shows the
number of cycles needed to encrypt different numbers of plaintext blocks. Fig-

2 The choice of FPGA is arbitrary since the speed up is from the primitive and mode
design.
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Table 4. Synthesis results of the pipelined implementations of SCT-2k, LLSIV and
pLLSIV on the Xilinx Kintex-7 FPGA. a and m are the number of 128-bit blocks of
associated data and plaintext, respectively. The number of cycles is for the encryption
algorithm.

Scheme LUTs Flip Flops # of Cycles

SCT-2k 8230 20581 118+ a/2+ 3m/2
LLSIV 9243 20587 79+ a/2+ 3m/2
pLLSIV 5392 12907 49 + a/2 + 3m/2

ure 7(Right) shows the ratio between the number of cycles needed by SCT-2k
vs the proposed schemes. It can be seen that when the number of blocks is less
than 20, pLLSIV is more than twice faster than SCT-2k, while LLSIV is more
than 40% faster.

71— LLsiv
pLLSIV

— SCT-2
] LLSIV
— pLLSIV

Number of Cycles
Latency ratio
-
®

1.6

80
1.44
60 1

0 20 40 60 80 100 0 20 40 60 80 100
Number of Plaintext Blocks Number of Plaintext Blocks

Fig. 7. (Left) The number of cycles needed to encrypt different amounts of plaintext
blocks, with at most 2 associated data blocks. (Right) The ratio between the number
of cycles needed by SCT-2k and our proposed schemes.

We note that these implementations are intended to show the performance
gain for short messages. The performance gain as a percentage of the number of
cycles of SCT-2k decreases for long messages on these implementations. For 64
KB plaintexts, SCT-2k needs 6262 cycles, while LLSIV and pLLSIV require 6223
and 6193 cycles, respectively. On the other hand, pLLSIV is 35% smaller in terms
of area, so this still represents a significant gain. On iterative platform, this gain
is translated to speed gain rather than area reduction.

7 Conclusion

In this paper, we present two new provably MRAE-secure modes based on TBCs
and hash stealing. The first mode is LLSIV and targets similar performance
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to the state of the art on single core platforms but lower latency on parallel
platforms. The second mode LLDFV uses similar ideas with rate-1 decryption and
is faster than comparable modes on all platforms. We also propose the pruning
of LLSIV into pLLSIV providing a high speed adhoc mode that is faster than
even online AEAD schemes on all platforms. We give performance comparison
using pipelined hardware implementations.
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A  Proof of Lemma 1

Consider 7 is implemented using lazy-sampling. Fix an index ¢ € Z. For a query
j € A{1,...,¢;} with input (i, N;, P;), it always returns a random block unless
that block has appeared in a previous query (i, Nj, P’). For each new call, there
are at most (u—1) previous calls on the form (i, N;, P’). Thus, the probability of
this collision is at most (1 —1)/2". Since the adversary makes at most g; queries
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with first input 7, the advantage is bounded by (u — 1)g;/2™. Using the standard
hybrid argument, we apply this sequentially to each input ¢ € Z, getting

Adv(A) < Z (p ;nl)%‘ _ (1 ;nl)o.
i€L

B Proof of Theorem 1

We will define a sequence of hybrid games and bound the transition probability
between these games. Let E; be the event that the adversary wins in game Gi.
GO: The oracle implements the real-world construction.

G1: We replace the TBC with a TURP.

| Pr[Eo] — PrE]| < AdvPP(A).

G2: We replace the TURP with a random function R : N x {0,1}! x {0,1}" —
{0,1}". In order to bound the transition probability, we need to bound how many
permutations are sampled from the TURP and the number of queries made to
each permutation. In order to do so, we will define a series of hybrid sub-games,
where G2 is the where the all the TURP calls with index i € N are replaced
with a random function R(%,-,-). Let ¢; be the number of queries of plaintext
length > ¢ (partial) blocks. Let l;ax be the maximum number of plaintext blocks
in one query. Then, applying Lemma 1 [22, Lemma (6)];

-1
(Pr{] - el < U e
. , ~Dg;
(el - Py < D
and G2'max =G2
l
(b—1)ge | = (1= 1gi
[Pa{Ey] — Pa{py) < WD SR D

=1

l
=g  p—12  (p—1)(q +0c)
on T on ;q’ - on :

max

where o, = 22:1 ¢; holds from counting the number of calls made in all queries.
G3: All the calls R are removed and replaced by a random function R’ : N x
{0,1}*x{0,1}™ — {0,1}*, which takes a nonce, a hash value, and a natural num-
ber [ € N and returns a random string of length [ + n. G2 and G3 are indistin-
guishable unless the second and third inputs repeat, i.e., if for any query ¢, there
exists a query j < ¢ such that N; = N; and UHFg, (4;, M;) = UHFg, (A;, M;).
In case of repetition, the oracle of G2 will return two ciphertexts encrypted
with a common prefix, while G3 will return two independent ciphertexts. Oth-
erwise, all the ciphertexts are indistinguishable. We further define G3 such that
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it terminates if such event happens. Since for any query, there are at most p — 1
queries with the same nonce, the probability of such collision is bounded by

| Pr[Es] — Pr(Es]| = (1 — 1)gee

Besides, G3 and the ideal world can only be distinguished if R’ is called with
the same input twice, which is impossible without G3 terminating. Thus,

PI‘[Eg] =0.

Combining all transitions,

Pr[E,] < Pr|Es] + Z | Pr[E;] — Pr[Ei]| <

AdvPP(A') + (1 — 1)gee + (o= Dige + o) 1)2(36 0e),

C Proof of Lemma 3

Given two pairs (A1, M;) # (A2, M), the proof uses the conditional probability
on whether A; = Ay

PI’[COT’ICQTIXH(Al7 Ml) = ConcatXH(Ag, Mg)‘(Al,Ml) 7& (AQ, MQ)] <
PI‘[XHl(Al) = XHl(A2)|A1 7é AQ] + PI‘[XHQ(Ml) = XHQ(M2)|A1 = AQ] S 26.

D Proof of Theorem 4

First, E is replaced with a TURP. Then, using the PRP-PRF switching lemma,
it is replaced with a uniformly random function R. Next, we observe that as
long as the nonce of the underlying pNAE scheme and the input to R are never
repeated, then T is uniformly sampled and all the queries to the pNAE scheme
are nonce respecting. Finally, the pNAE scheme is replaced with an ideal NAE
scheme that outputs random strings of length | M|+ n.

E Other Useful Constructions

PolyVal [17] Let GF(2'?8) be the binary field of size 2'?® defined by the irre-
ducible polynomial 2% + 2127 4 2126 4 3121 1 1. Let M be a message than is
divided into a sequence of m 128-bit blocks. Then, PolyVal is the keyed universal
hash function defined by

PolyValg, (M) = Sy,

where Sy = 0", and

Si — (Si—l P Mz) X Kh X (3}‘127 —|—J)124 +$121 +l‘114 T 1)
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Gueron et al. [17] show that PolyVal is e-AU, such that

lmax
€= S

where Il;,ax is the maximum number of blocks in any input message.

ICE2 Iwata et al. [22] proposed a TBC construction that transforms an ideal
cipher into a TBC using three calls to the ideal cipher. However, it is opti-
mized particularly for counter-in-tweak style of processing. Given a tweak space
{0,1}™ x Z, where Z C N, and an ideal cipher £ : {0,1}" x {0,1}" — {0,1}",
then ICE2 (K, (N,i), M) is given by

2'V @ E(2'L,2'V @ M), (3)

where L = F(K,N) and V = E(K ¢ 1, L). The multiplication and exponentia-
tion are done in GF(2"), and we will use n = 128 and the same field represen-
tation used in PolyVal. ICE2 is very efficient in applications where one part of
the tweak is not updated in every TBC call while another part is a sequential
counter. Consider a long message than consists of multiple blocks, then the two
calls used to generate L and V are only called once, while Equation 3 is evalu-
ated many times, leading to an asymptotic performance of one ideal cipher call
per message block. Iwata et al. [22] showed that for any unbounded adversary A
that makes ¢. queries to ICE2 and ¢, chosen-key queries to the underlying ideal
cipher,

stpr 9¢2 +4q.q,  2¢
AdvICE;[)E] (A) < 92n . Tf‘ (4)

F AES-based Instantiation: LLSIV-PolyVal-ICE2

In this section, we describe an instantiation of LLSIV based on the PolyVal hash
function and the ICE2 TBC with the ideal cipher replaced with AES.

The encryption function of LLSIV-PolyVal-ICE2 is depicted in Figure 8. The
instance uses two 128-bit uniformly random keys, one for PolyVal and one for
ICE2. During encryption, the PolyVal hash function is used to absorb A and
M, while in parallel the nonce-based portion of ICE2 (we can refer to it as
the KDF) is executed to calculate L and V. Next, the tag and ciphertext are
generated in parallel as the calls to AES all encrypt the same hash value and
differ only in the exponent 4 of 2/ L and 2°V. Thus, similar to the SKINNY based
instantiation, the encryption consists of two phases that are fully parallelizable.
During decryption, the KDF and tag decryption are executed in parallel to
part of PolyVal that absorbs A. Then, the message is encrypted followed by the
remainder of PolyVal. This is again similar to the execution profile of SKINNY
based instantiations. This is faster than AES-GCM-SIV on parallel platforms,
since the encryption of AES-GCM-SIV require four unparalleizable phases instead
of two. First, we have to run the KDF which consists of 4 parallelizable AES calls.
Then, PolyVal is evaluated followed by tag generation, followed by encryption.
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Besides, the KDF of AES-GCM-SIV requires 4 calls, while ours requires only
two. Thus, LLSIV-PolyVal-ICE2 is faster than AES-GCM-SIV even on single cores.
Note that while AES-GCM-SIV uses a single-key to generate both the hash and
encryption subkeys, while LLSIV needs two keys, this is a minor issue, since we
can use a separate single-use KDF to extend the master key to two keys. This
auxiliary KDF is called only once per key and not for each query, and similar
technique is used in AES-GCM. However, we leave the design of such KDF out
of scope.
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Fig. 8. The encryption function of LLSIV-PolyVal-ICE2 with 3 blocks of plaintext.

We implemented an iterative implementation of PolyVal on Kintex-7 FPGA,
and our implementation runs at 75 MHz, taking 4 clock cycles per block. Thus,
to hash a blocks of A and m blocks or M we need around 4(a + m) cycles. In
parallel, we need to execute two unparallelizable calls to AES, assuming AES is
implemented in a pipelined fashion with one round per stage, and 10 rounds
in total. Thus, the first phase of encryption requires max(4(a + m), 20) cycles.
The next phase is a simple pipeline implementation of AES that requires m + 9
cycles. Thus, in total, one query requires max(4(a + m),20) +m + 9 cycles.

On the other hand, AES-GCM-SIV encryption consists of 4 phases, as de-
scribed earlier. The first phase is the KDF which is 4 parallelizable calls to AES,
taking 14 cycles. Next, PolyVal takes 4(a + m) cycles, followed by once unparal-
lelizable call to AES (11 cycles) and finally the parallelizable encryption (m+10).
In total, it needs 4(a + m) + m + 35 cycles for long messages. If 4(a + m) > 20,
then LLSIV-PolyVal-ICE2 takes 25 cycles less than AES-GCM-SIV. 25 cycles are
enough to encrypt 5 extra blocks of plaintext (5 x 4 +5 cycles). While the gain is
not as large as the case of SKINNY-based instantiations, it is still significant for
latency-critical applications. Besides, the fact that LLSIV-PolyVal-ICE2 is faster
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than AES-GCM-SIV even on single cores is a big plus: on single cores that process
one round of AES per cycle, LLSIV-PolyVal-ICE2 takes 22 cycles less.

The security of LLSIV-PolyVal-ICE2 follows for the straigtforward application
of Theorems 3 and 4. It is secure as long as the number of queries is less than
29 /11 when the maximum message length is limited to 23% — 1 bytes. Iwata and
Seurin [24] show that AES-GCM-SIV is only secure up to total complexity of 264
in this case. Thus, we consider LLSIV-PolyVal-ICE2 to have similar, but better,
numerical security bounds compared to AES-GCM-SIV.

When it comes to the underlying security assumptions of both constructions,
we note that LLSIV-PolyVal-ICE2 relies on the single-key security of PolyVal and
the ideal cipher model. The latter requires related key security of AES to be
sound. AES-GCM-SIV on the other hand relies on the multi-key security of both
AES and PolyVal. Thus, AES-GCM-SIV relies on a weaker assumption when it
comes to AES, but both schemes cannot rely on the single-key security assump-
tion. However, the ideal cipher model has been established and we believe the
trade-off for the improved performance and better bounds is worth it. Due to
the ideal cipher assumption, we find it inappropriate to instantiate pLLSIV from
LLSIV-PolyVal-ICE2, as reduced-round related key attacks on AES maybe prob-
lematic.

FPGA Comparison The synthesis results of AES-GCM-SIV and LLSIV-PolyVal-
ICE2 are given in Table 5. AES-GCM-SIV is 25 cycles slower than LLSIV-PolyVal-
ICE2 but also about 1200 LUTs smaller. This mainly due to the iterative AES
decryption round function used in decryption and the masks used in ICE2.

Table 5. Synthesis results of the pipelined implementations of AES-GCM-SIV and
LLSIV-PolyVal-ICE2 on the Xilinx Kintex-7 FPGA. a and m are the number of 128-bit
blocks of associated data and plaintext, respectively. The number of cycles is for the
encryption algorithm.

Scheme LUTs Flip Flops # of Cycles

AES-GCM-SIV 12780 3017  4(a+m)+35+m
LLSIV-PolyVal-ICE2 13965 3401  4(a+m)+10+m
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