
CRYPTOVAMPIRE: Automated Reasoning for the Complete Symbolic Attacker
Cryptographic Model

Simon Jeanteur∗, Laura Kovács∗, Matteo Maffei∗† and Michael Rawson∗
∗TU Wien, {firstname}.{lastname}@tuwien.ac.at

†Christian Doppler Laboratory Blockchain Technologies for the Internet of Things

Abstract—Cryptographic protocols are hard to design and
prove correct, as witnessed by the ever-growing list of attacks
even on protocol standards. Symbolic models of cryptography
enable automated formal security proofs of such protocols
against an idealized cryptographic model, which abstracts
away from the algebraic properties of cryptographic schemes
and thus misses attacks. Computational models of cryptography
yield rigorous guarantees but support at present only interac-
tive proofs and/or restricted classes of protocols (e.g., stateless
ones). A promising approach is given by the computationally
complete symbolic attacker (CCSA) model, formalized in the BC
Logic, which aims at bridging and getting the best of the two
worlds, obtaining cryptographic guarantees by symbolic proto-
col analysis. The BC Logic is supported by a recently developed
interactive theorem prover, namely SQUIRREL, which enables
machine-checked interactive security proofs, as opposed to
automated ones, thus requiring expert knowledge both in the
cryptographic space as well as on the reasoning side.

In this paper, we introduce the CRYPTOVAMPIRE cryp-
tographic protocol verifier, which for the first time fully
automates proofs of trace properties in the BC Logic. The
key technical contribution is a first-order formalization of
protocol properties with tailored handling of subterm relations.
As such, we overcome the burden of interactive proving in
higher-order logic and automatically establish soundness of
cryptographic protocols using only first-order reasoning. Our
first-order encoding of cryptographic protocols is challenging
for various reasons. On the theoretical side, we restrict full
first-order logic with cryptographic axioms to ensure that, by
losing the expressivity of the higher-order BC Logic, we do not
lose soundness of cryptographic protocols in our first-order
encoding. On the practical side, CRYPTOVAMPIRE integrates
dedicated proof techniques using first-order saturation algo-
rithms and heuristics, which all together enable leveraging
the state-of-the-art VAMPIRE first-order automated theorem
prover as the underlying proving engine of CRYPTOVAMPIRE.
Our experimental results showcase the effectiveness of CRYP-
TOVAMPIRE as a standalone verifier as well as in terms of
automation support for SQUIRREL.

Index Terms—Security Protocols, Formal Methods, Computa-
tional Security, Automated Theorem Proving

This is the technical report.

1. Introduction

Cryptographic protocols are the software interfaces used
by the components of our digital world to communicate
securely with one another. Unfortunately, designing such
protocols is notoriously difficult and error-prone. From the
classic attack on the Needham-Schroeder protocol [1], over
to the ubiquitous but repeatedly broken TLS protocol [2],
up to new and subtle blockchain protocols [3], the list of
attacks on popular standards is ever-growing.

Formal methods have proved to be a very successful tool
to guarantee properties of protocols and recently accom-
panied the design of protocol standards like TLS 1.3 [4],
WireGuard [5], or 5G-AKA [6].

1.1. Related Work

Security properties for cryptographic protocols are typ-
ically formalized in terms of trace properties [7] or ob-
servational equivalence relations [8]. The former express
guarantees on a single execution trace (possibly reflecting
multiple protocol sessions) and cover secrecy of random
data, authentication, and more general constraints on the
order of security-relevant events. The latter express the
inability of an attacker to tell the difference between two
protocol configurations, such as the inability to understand
which among two low-entropy secrets is used.

Formal verification of cryptographic protocols is further
split into techniques working in the symbolic or computa-
tional model. Symbolic techniques typically abstract away
from the algebraic properties of cryptography by reasoning
over the so-called “Dolev-Yao” attacker [9], which has infi-
nite computational resources at its disposal but is restricted
to building only symbolic terms based on those already in
their knowledge. This results in easier proof techniques,
which enabled the design of several successful automated
protocol verifiers like PROVERIF [10] and TAMARIN [11].
However, such a symbolic setting does not provide any
computational guarantees: for instance, symbolically-secure
protocols may, in fact, be attacked by leveraging weaknesses
in the underlying cryptographic realization [12].

The computational cryptographic model is instead based
on computational and probabilistic notions, which faithfully
describe real-world implementations. In a computational

setting, the attacker is a probabilistic polynomial-time Tur-
ing machine, and cryptographic proofs show that if the
attacker is able to break the security of a protocol, then
it can also with high probability break commonly accepted
mathematical assumptions. Such a proof technique over the
computational protocol model gives strong security guaran-
tees against real-world cryptographic implementations, but
it is much harder to formalize and automate.

Nonetheless, a few approaches automating computa-
tional proofs emerged over the years, such as EASY-
CRYPT [13], a cryptographic proof checker that simplifies
reasoning about probabilistic computations in an adversar-
ial setting and is typically used to prove the security of
cryptographic schemes, and CRYPTOVERIF [14], a proto-
col verifier that automates the type of game-based proofs
conducted by cryptographers and scales to cryptographic
protocols, although it is restricted to stateless ones.

Recently, various approaches tried to merge the symbolic
and computational protocol models to obtain the best of the
two worlds, i.e., the ease of proofs and expressiveness of the
former with the strong cryptographic guarantees of the latter.
In particular, Bana and Comon-Lundh designed the Compu-
tationally Complete Symbolic Attacker (CCSA) model and
its accompanying BC Logic [15], [16], [17], which later
evolved into a fragment of higher-order logic [18]. BC Logic
supports both trace properties and observational equivalence
and aims at opening the door to formal, computationally
sound verification, although proofs in BC Logic had long to
be done by hand.

Recently, a breakthrough in the mechanization of proofs
in the BC Logic has materialized in the interactive SQUIR-
REL proof assistant [19], which supports both trace prop-
erties and observational equivalence. SQUIRREL pushed
further developments of the CCSA, such as the support
for stateful protocols [20], post-quantum security [21], and
proof composition [22]. SQUIRREL is an interactive theorem
prover that is effective in yielding machine-checked proofs
but does not provide full automation and requires expertise
in both cryptography and logic.

The key technical challenge towards proof automation in
the BC Logic is the expressiveness of the underlying higher-
order logical fragment, which blends together a very relaxed
equality theory with strict symbolic reasoning in the form
of a complex subterm relation. Such a logical combination
extends the full first-order theory of term algebras (including
algebraic data types, such as lists) with the subterm pred-
icate, which is inherently undecidable [23]. While proving
security properties in first-order logic instead of BC Logic
would come with the benefits of semi-decidability and (po-
tential) full automation, the use of subterm relations (and
other higher-order constructs) from BC Logic imposes an
open challenge to automated theorem proving [24], [25],
[26] as such relations are not first-order axiomatizable.

1.2. Our contributions

We introduce CRYPTOVAMPIRE, the first automated
verification tool for the BC Logic (Section 4.2). Our work

so far focuses on trace properties, leaving observational
equivalence relations for future work. The design of CRYP-
TOVAMPIRE blends together four core contributions:

(A) We provide an encoding of the BC Logic into first-
order logic. Our first-order encoding of BC Logic resolves
the challenge of effective subterm reasoning (Section 4.1).
In particular, given that subterm relations are not finitely
axiomatizable in first-order logic, we provide a tailored han-
dling of subterm relations to ensure that subterm reasoning
within CRYPTOVAMPIRE can be directly supported within
saturation-based first-order theorem proving [25].

(B) When moving from the higher-order setting of BC
Logic to our first-order formalization, we ensure that our
loss in logical expressivity when compared to the BC Logic
does not impact the soundness of our proofs (Section 4.2).
Namely, we show that if a protocol is proven secure in
our first-order logic, then it is secure in BC Logic too
(Property 5).

(C) We enhance the performance of CRYPTOVAMPIRE
by introducing dedicated reasoning procedures within sat-
uration. In particular, we control proof search by special-
ized term orderings, preprocessing techniques, and heuristics
(Section 5).

(D) We conduct an experimental evaluation of CRYP-
TOVAMPIRE on all trace-based queries from the SQUIRREL
library (Section 6): CRYPTOVAMPIRE can verify all these
protocols in a few milliseconds. We further demonstrate how
CRYPTOVAMPIRE exhibits better performance than CRYP-
TOVERIF on these protocols. Finally, we demonstrate the
usefulness of CRYPTOVAMPIRE as automation support for
SQUIRREL by proving a set of lemmas used in SQUIRREL
proofs, some of which are used in the proofs of observational
equivalence properties. Overall, our experimental results
demonstrate that CRYPTOVAMPIRE is not only effective as
a standalone cryptographic protocol verifier but can also be
used to partially automate SQUIRREL proofs.

2. Overview

This section gives a high-level overview of CRYPTO-
VAMPIRE, while the following sections will go into the
more formal details. The tool takes as input (i) a protocol
specification composed of function declarations, capturing
the cryptographic messages used in the protocol, (ii) con-
straints on those functions, expressing their cryptographic
semantics, and (iii) a protocol description in the form of
partially preordered steps. The given protocol description
is translated into a first-order logic (FOL) formula over
term algebras with tailored term evaluations, and the final
proof is off-loaded to the VAMPIRE first-order theorem
prover [25]. In other words, CRYPTOVAMPIRE transforms
the problem of protocol verification into validity checking
of term algebra properties, integrating first-order axiomatic
reasoning completely within saturation theorem proving.
As such, CRYPTOVAMPIRE provides fully-automated rea-
soning to prove the security of CCSA models, leveraging
and extending subterm reasoning in term algebras within
VAMPIRE.

Example 1 (Basic Hash). Let us illustrate our approach
through the following simple protocol inspired by the RFID
protocols described in [27]:

Tj → R : ⟨n,H(n, kj)⟩ (1)

Here, a tag Tj outputs a fresh nonce n both in plain
text and hashed (H) with the key kj shared with a reader
R. For simplicity, we model a single reader R operating
over multiple tags T (parameterized by j).

Intuitively, this protocol guarantees a property called
non-injective agreement [7], i.e., when R authenticates tag
Tj , then Tj started an authentication session with R.

We will now illustrate the main steps of the analysis of
Example 1 in CRYPTOVAMPIRE.

2.1. First-Order Formalization of the Protocol

Following the CCSA model, cryptography is represented
symbolically, i.e., using a term algebra, which is built on a
set of honest functions F and a set of nonce names N .

2.1.1. Honest functions. The functions in F are uninter-
preted functions in CRYPTOVAMPIRE and they represent
deterministic polynomial time Turing machines.

Example 2 (Functions). To encode Example 1, we will use
the following functions in F: ⟨ , ⟩, π1(), π2() respec-
tively denoting a pair constructor ⟨ , ⟩ and projections πi;
ok, ko for success and failure of tag authentication; H(,),
verify(, ,) for hash computation and verification; and
IF THEN ELSE for conditionals.

2.1.2. Honest randomness. The only source of honest ran-
domness in CRYPTOVAMPIRE are nonces. They represent
pairwise independent random bitstrings of length η, the
security parameter. In the logic, nonces are constants, which
are used to express certain cryptographic properties (e.g., no
collision). Nonces are indexed in order to support freshness
across an unbounded number of sessions and participants.

Example 3 (Nonces). In Example 1, N = {n[,], k[]}.
Furthermore, n[i, j] is indexed by the session i and the
identifier j of the participating tag, and k[j] is only indexed
by the tag j. We use nonces to represent keys as they are a
source of honest randomness.

2.1.3. Cryptographic properties. The semantics of con-
stants and functions are expressed through FOL rules, which
are typically used to express cryptographic properties.

Example 4 (Cryptographic Properties). Intuitively, in the
first-order formalization of Example 1, we will encode the
semantics of projection operators as |πi(⟨x1, x2⟩)| = |xi|,
for i = 1, 2. We write |t| to denote the evaluation of t
(e.g., applying a projection operator). We also formalize
message authentication code through the verification con-
dition |verify(σ,m, k)| ⇔ (|σ| = |H(m, k)|). We capture
existential unforgeability via formula (EUF-CMA), which we
axiomatize in FOL as shown in Property 1.

Property 1 (EUF-CMA). If H(,) and verify(, ,) form
a MAC scheme that is existentially unforgeable under cho-
sen message attacks, then, for all nonce k, the protocol P
satisfies the following:

|verify(σ,m, k)| ⇒(
k ⊑verify(, ,•),H(,•) m,σ

∨ ∃u.(H(u, k) ⊑ m,σ ∧ |u| = |m|)

)
(2)

This means that, assuming H(,) and verify(, ,) are
EUF-CMA-secure, for any execution of P , any message m,
MAC σ, and key1 k, if (m,σ) form a valid MAC pair
with key k, then the key symbolically appears in a non-key
position (i.e., in one of the first two arguments of verify or
in the first argument of H) in m, σ, or P (left disjunction
operand ⊑), or we can find another message u that evaluates
to the same bitstring as m and whose MAC with key k
symbolically appears in either m or σ (right disjunction
operand ⊑verify(, ,•),H(,•)). In other words, if verification
succeeds, then either the key has been misused or the
message has indeed been signed before. The cryptographic
soundness of EUF-CMA is proven in Appendix F . Note
that, in the CCSA model, the attacker can take any action,
unless specific rules restrict its capabilities (e.g., EUF-CMA
and nonce guessing).

2.1.4. Protocol steps. Within CRYPTOVAMPIRE, a protocol
is a set of atomic steps, and each execution of this protocol
is a valid sequence of steps. A step takes an input and
computes an output (or message) and assignments to some
memory cells. A step may be guarded by a condition (also
computed from the input), which specifies under which
assumptions the step is executed.

Example 5 (Steps). We can express Example 1 in terms of
the following steps:

T[i, j]: (ith execution of the jth tag)
Condition: true
Message: ⟨n[i, j],H(n[i, j], k[j])⟩

Rs[i, j]: (Successful authentication of the jth tag on the
ith execution)

Condition: verify(π2(in), π1(in), k[j])
Message: ok

where in stands for input(Rs[i, j]).
Rf[i]: (No authentication on the ith execution)

Condition: ¬̄∃̄j. verify(π2(in), π1(in), k[j])
Message: ko

where in stands for input(Rf[i]).

Protocol steps are executed in an order captured by the
relation <. In addition, we introduce the mutually exclusive
relation ⋄ to relate steps, out of which at most one can be
executed in the same protocol run.

Example 6 (Mutual Execution). In Example 1, the reader
can only execute one branch. Thus, in each session i, the

1Remember that keys are represented as nonces

authentication either succeeds or fails, and at most one tag
can be authenticated, which is formalized as follows:

for all i, j ̸= k, (Rf[i] ⋄ Rs[i, j]) and (Rs[i, j] ⋄ Rs[i, k])
(3)

There are no other ordering constraints for this protocol.

2.1.5. Protocol query. Finally, we need to provide a query,
which can be any valid first-order formula. CRYPTOVAM-
PIRE tries to prove that this query holds for any possible
execution of the protocol in any model that verifies the
constraints defined in Section 2.1.3.

Example 7 (Query). For Example 1, we are concerned with
non-injective agreement [7], which is formalized as:

∀i, j. happens(Rs[i, j]) ∧ |cond(Rs[i, j])| ⇒

∃k.

T[k, j] < Rs[i, j]

∧ |π1(input(Rs[i, j]))| = |π1(msg(T[k, j]))|
∧ |π2(input(Rs[i, j]))| = |π2(msg(T[k, j]))|


(4)

Query (4) states that, if Rs[i, j] is selected for execution
and its condition holds (i.e., authentication succeeds), then
T[k, j] was executed before and had an output that matched
Rs[i, j]’s input (i.e., a matching authentication request was
issued before).

2.2. Automated Verification of Protocol Queries

While one might expect that a first-order protocol for-
malization directly yields an automated verification proce-
dure by encoding the model in a first-order theorem prover,
such an encoding presents a number of technical challenges
encompassing both definitions and resolution algorithms, as
we review in this section.

2.2.1. Subterm reasoning. Property 1 illustrates how rea-
soning works within the CCSA model. We take a compu-
tational property (here |verify(σ,m, k)|) and turn it into a
symbolic analysis. This symbolic analysis often relies on
variations over a subterm relation (⊑ and ⊑verify(, ,•),H(,•)
in Equation 2).

To automate such rules, our first-order formalization
extends the first-order theory of finite term algebras [28]
with dedicated subterm reasoning. As it is not finitely ax-
iomatizable [23], we took inspiration from [19] for some
overapproximations of ⊑ that we then axiomatized in FOL.
Moreover, we modified existing subterm reasoning in VAM-
PIRE [28] to allow for the flexibility required by our over-
approximations, such as supporting not only ⊑ but also
⊑verify •,H • (cf. Section 5).

Yet, the subterm relation used for Property 1 interacts
poorly with the expected equational theory of | | = | |
(i.e., equality over evaluated terms, later denoted as =̄), as
highlighted in [29] and shown next.

Example 8. Assume ⟨ , ⟩, π1() are respectively the tuple
constructor and its first projection, and m1 and m2 are

two distinct constants such that m1 ̸⊑ m2. We have m1 ⊑
π1(⟨m2,m1⟩), but also m2=̄π1(⟨m2,m1⟩). Thus, reasoning
modulo =̄ (i.e., equality over evaluated terms), yields m1 ⊑
m2, a contradiction.

To overcome the reasoning difficulties arising from com-
bining subterm relations and the equality =̄, we split the
reasoning on terms between

• their symbolic forms (described in Section 3.2), on
which we can apply the subterm relation,

• and their evaluated form (described in Section 4.2),
denoted by | |, on which we reason modulo =̄ and do
not apply subterm reasoning.

As a result, the contradiction presented in Example 8 be-
comes impossible since the superposition step (substituting
a with b when a =̄ b) is no longer allowed.

2.2.2. Soundness challenges. It has long been known that
perfect notions of security are non-realistic for real-world
applications [30]. Therefore, cryptographic properties are
often probabilistic. The BC Logic is no exception, and its
semantics are grounded in probability. Consequently, the BC
Logic lies beyond classical FOL [15]. This is a critical blow,
as most automated provers address classical FOL [25], [24],
[26].

In Section 4.2 we propose a classical first-order encoding
that overapproximates the BC Logic, then in Section 4.3 we
introduce a method to regain the probabilistic cryptographic
semantics while retaining the ability to reason with FOL.

2.2.3. Further optimizations. We propose reasoning
heuristics (Section 5.3) within CRYPTOVAMPIRE, which al-
low us to eliminate most of the symbolic reasoning, leaving
only what can be encoded in standard FOL (i.e., modulo =̄)
while remaining consistent before off-loading to the theorem
prover. For that, we look for terms that might be relevant
concerning the cryptographic axioms and preprocess them.

Example 9 (Preprocessing). In Example 1 we note that the
term verify(π2(input(Rs[i, j])), π1(input(Rs[i, j])), k[j])
appears in the protocol specification (including the
assertions and the query). Since this term has the form of
the premise of axiom (2) of Property 1, we preprocess it in
CRYPTOVAMPIRE with built-in decision procedures before
passing it to the underlying first-order theorem prover.

The result of the preprocessing for Property 1 is

∀i, j.
∣∣∣∣verify(π2(input(Rs[i, j])),

π1(input(Rs[i, j]))
, k[j]

)∣∣∣∣⇒
∃i′, j′.

(
T[i′, j′] < Rs[i, j] ∧ j′ = j

∧ |n[i′, j′]| = |π1(input(Rs[i, j]))|

)
(5)

In (5), T[i′, j′] < Rs[i, j] and j′ = j appear as a con-
sequence of the symbolic analysis. The variable u from (2)
gets inlined.

Remark 1 (Eliminating subterm reasoning). Note that the
need for subterm reasoning is entirely eliminated from (5).
When the preprocessing is sufficiently comprehensive to

establish the proof of the query without the help of the
general axioms, we can factor out a significant portion of the
subterm reasoning to a point that we can again reason mod-
ulo =̄ while avoiding the unsoundness problems shown in
Example 8. This heuristic, further described in Section 5.3.2,
leads thus to a significant performance improvement, as
shown in Section 6, at the cost of completeness.

3. Preliminaries

This section delves into CRYPTOVAMPIRE’s reasoning
capabilities, which are grounded in an extension of the BC
Logic (BC) closely aligned with the one adopted in [19],
[20]. We call this extension the “Symbolic Logic” (S).

Section 4 later motivates and introduces our main con-
tribution in the form of the “Evaluated Logic” (E) that
CRYPTOVAMPIRE uses to interact with S. We show how
we can leverage classical FOL methods to produce results
in its specific semantics, and how these semantics closely
match the BC Logic’s and SQUIRREL’s (resp. Property 5
and Theorem 1).

Notations. We will use throughout this paper vector nota-
tions y⃗ as a shorthand for y1, . . . , yn when n is obvious
from the context. We use ∥ ∥ to denote the size of a (finite)
set or the length of a vector.

We write fv(ϕ) for the free variables of ϕ.

We also write the inference rule
A1 . . . An

B
, with n ≥ 0,

to mean A1 ∧ . . . ∧An ⇒ B is valid.

3.1. The BC Logic

CRYPTOVAMPIRE supports protocols and queries ex-
pressed in an extension of the BC Logic [15]. In this
subsection, we give a quick introduction to the latter’s syntax
and semantics. We assume the following sets:

1) Nbc, a finite set of nonce names
2) Fbc, a finite set of honest functions
3) Gbc, a finite set of attacker functions

Terms in a BC LogicBC(Nbc,Fbc,Gbc) are terms built
from the following grammar:

t := x
∣∣ n ∣∣ f(t⃗) ∣∣ g(t⃗) (6)

with n ∈ Nbc, f ∈ Fbc and g ∈ Gbc; x is a variable.

Remark 2 (Connectives). Note BC(Nbc,Fbc,Gbc) does
not include the usual boolean connectives. To emulate them,
we assume that Fbc contains at least =̄ , IF THEN
ELSE , true and false. We can then build the rest of the

boolean connectives on top of these functions. To distinguish
them from regular first-order boolean operators, we will
overline them (e.g., we write ∧̄ instead of ∧).

A computational model M is an assignment of the
elements of Nbc, Fbc, and Gbc to polynomial-time Turing
machines, which determine an interpretation JtKMbc of each
BC term t. Specifically, this is defined as a polynomial-time

Turing machine taking the security parameter η in unary
and a pair ρ = (ρh, ρA) of random tapes, one for honest
agents and one for the adversary, respectively, constructed
as follows:

1) JnKMbc(1
η, (ρh, ρA)), where n ∈ Nbc, is a slice of length

η of ρh, pairwise distinct for all elements of Nbc.
2) for f ∈ Fbc we have

Jf(t1, . . . , tn)K
M
bc(1

η, ρ) =

JfK
(
1η, Jt1K

M
bc(1

η, ρ), . . . , JtnKMbc(1
η, ρ)

)
where JfK is a polynomial-time Turing machine with
no direct access to ρ.

3) for g ∈ Gbc we have

Jg(t1, . . . , tn)K
M
bc(1

η, ρ) =

JgK
(
1η, ρA, Jt1K

M
bc(1

η, ρ), . . . , JtnKMbc(1
η, ρ)

)
where ρ = (ρh, ρA) and JgK is a polynomial-time
Turing machine with direct access to ρA but not ρh.
Thus terms of this form model attacker computations.

Property 2 (Subterm). For all models M and all η, t′

appears in t iff, for all ρ, the Turing machine JtKMbc applied
to (1η, ρ) calls Jt′KMbc on (1η, ρ).

The BC is generally used with a somewhat peculiar
notion of satisfiability: a formula holds when it evaluates
to 1 with overwhelming probabilities. Formally:

Definition 1 (Cryptographic Satisfiability). We say that M
satisfies a BC formula t and write M ⊨P t when

Probρ
(
JtKMbc(1

η, ρ) ̸= 1
)
= negl(η) (7)

Where negl(η) is a function h negligible in η, that is h(η) =
o(η−c) for all c ∈ N.

We say that a formula t is cryptographically valid for a
set Cbc of models and write Cbc ⊨P t when it holds for all
computational models M of Cbc.

The key idea of the CCSA is to reason within the
biggest class Cbc of models that respect some cryptographic
assumptions about Fbc and Gbc (e.g., EUF-CMA) that we
show are consistent with a computational attacker.

3.2. Modeling Protocols – The Symbolic Logic

Thus far, we have shown how to reason about symbolic
computation. This is enough to describe a single protocol
execution [15]: at any point, we can model the current
message being sent as a BC term where the input is the list
of all the messages sent before (we call it the frame) applied
to an attacker function. However, our goal is to reason about
all possible protocol executions. Hence, we illustrate now
how to model protocols and the resulting extension of the
base logic. We do so by closely following the formalism
adopted in SQUIRREL [19], which makes CRYPTOVAMPIRE
interoperable with it (Theorem 1).

We extend the syntax of (6) with the key ingredients to
model protocols, as formalized in Fig. 1.

I := i
∣∣ i

T := τ
∣∣ pred (T) ∣∣ a[⃗I]

A := happens (T)
∣∣T < T ′ ∣∣T = T ′ ∣∣ I = I ′

t := x
∣∣ n[⃗I] ∣∣ f [⃗I](t⃗) ∣∣ c[⃗I]!(T) ∣∣A ∣∣ input (T)∣∣ FIND ı⃗ SUCH THAT t THEN t′ ELSE t′′∣∣ FIND τ⃗ SUCH THAT t THEN t′ ELSE t′′

Figure 1: Grammar of S(N ,F , I, C,S)

Indices. We use indices to extend our reasoning
to unbounded numbers of objects. Formally, indices are
members i of a countable set I.

Steps. Timepoints (or steps) are ranged over by T
and represent atomic input/output operations in a protocol.
We assume a finite set S of step names, containing at least
the initialization step init ∈ S. Steps are referenced by their
name a ∈ S and some indices, or relatively according to
their order of execution, with pred(T) denoting the step
executed before T .

Predicates over protocol executions. The set of log-
ical predicates characterizing a specific protocol execution,
ranged over by A, includes happens(T), which expresses
whether or not the current execution includes T ; T < T ′,
which specifies if T is executed before T ′, and T = T ,
which captures equality between steps.

Input. We abstract away the attacker functions with
an input(T) constructor. This represents which input the
attacker gave to step T . It is an attacker function applied to
the knowledge the attacker has gained until T ’s execution.

Memory cells. c
[⃗
I
]
!(T) with c ∈ C represents what

T has stored into the memory c
[⃗
I
]
. C is assumed to be finite.

Lookups. The FIND SUCH THAT THEN
ELSE are lookups constructions. They incidentally also

let us build quantifier-like objects.

∃̄α. t :=
FIND α SUCH THAT t

THEN true ELSE false
(8)

∀̄α. t := ¬̄∃̄α. ¬̄t (9)

Finally, i, τ and x are variables. The resulting logic is
S(N ,F , I, C,S).

Definition 2 (Step). A step a[⃗ı] is an atomic input/output
honest operation in a protocol. It is a triple (c[⃗ı],m[⃗ı], ua[⃗ı])
composed of:

1) a term c[⃗ı] (referred to by cond(a[⃗ı])), describing the
condition under which the step may be executed.

2) a term m[⃗ı] (referred to by msg(a[⃗ı])), describing the
output of the step.

3) a function ua[⃗ı] from {c[⃗ȷ]|c ∈ C} to the terms such
that fv

(
ua[⃗ı](c[⃗ȷ])

)
⊆ ı⃗ ∪ ȷ⃗. This function is inde-

pendent from the indices, i.e., for all permutation σ,
ua[σ(⃗ı)](c[σ(ȷ⃗)]) = σ

(
ua[⃗ı](c[⃗ȷ])

)
.

None of these elements may use ground indices.

Given a set of step names S, we write SI for the set
of instantiated steps:

{
a[⃗ı]

∣∣a[] ∈ S, ı⃗ ∈ I ∥⃗ı∥
}

. We are now
ready to define protocols as follows.

Definition 3 (Protocol). A protocol P is a tuple (S,≺) re-
spectively composed of a set of steps names and a preorder
over SI such that:

1) init is the smallest element of SI according to ≺.
2) ≺ is independent from the indices. That is for all

indices ı⃗, ȷ⃗ and permutation σ of I, a[⃗ı] ≺ b[⃗ȷ] iff.
a[σ(⃗ı)] ≺ b[σ(⃗ȷ)].

3) Terms of the from T in a step a[⃗ı] may only be of the
form predn(b[⃗ȷ]) where b[⃗ȷ] ⪯ a[⃗ı] and n ≥ 0 (i.e.,
steps may only reference previous steps).

4) Memory cell assignments must terminate (i.e., no cyclic
call graphs are allowed).

Example (5). We recall here Example 5 which describes
the steps of Example 1:

T[i, j]: (ith execution of the jth tag)
Condition: true
Message: ⟨n[i, j],H(n[i, j], k[j])⟩

Rs[i, j]: (Successful authentication of the jth tag on the
ith execution)

Condition: verify(π2(in), π1(in), k[j])
Message: ok

where in stands for input(Rs[i, j]).
Rf[i]: (No authentication on the ith execution)
Condition: ¬̄∃̄j. verify(π2(in), π1(in), k[j])
Message: ko

where in stands for input(Rf[i]).

Example (6). We remind Example 6 describing the ordering
of Example 1 as mutual exclusion.

for all i, j ̸= k, (Rf[i] ⋄ Rs[i, j]) and (Rs[i, j] ⋄ Rs[i, k])
(3)

Remark 3. Mutual Exclusion We model the mutual exclu-
sion predicate a[⃗ı] ⋄ b[⃗ȷ] from Example 6 as a[⃗ı] ≺ b[⃗ȷ] and
b[⃗ȷ] ≺ a[⃗ı] (remember, ⪯ is just a preorder, antisymmetry is
not required).

Example 10. Example 5 and Example 6 (reminded above)
fully describe Example 1.

Each execution of a protocol yields a trace. Intuitively, a
trace is simply a chosen sequence of instantiated steps that
does not contradict the protocol. Formally, we also consider
a finite set of indices required to execute that trace:

Definition 4 (Trace). A trace T of a protocol is a tuple
(I,S, σI,≤S) such that

1) I ⊂ I is finite;
2) S ⊆ SI :=

{
a[⃗ı]

∣∣a ∈ S, ı⃗ ∈ I∥⃗ı∥
}

contains init;
3) ≤S is a total ordering over S compatible with ⪯, i.e.,

if a[⃗ı] ⪯ b[⃗ȷ] then a[⃗ı] ≤S b[⃗ȷ];
4) σI : I → I is the identity over I.

Remark 4. Note that Remark 3 encodes the expected be-
havior of mutual exclusion: the compatibility of ≤S ensures

that a[⃗ı] and b[⃗ȷ] cannot be both in S. Furthermore, S can
be selected independently of the conditions of the steps.
Instead, the failure of a step is modeled by returning fail
to all subsequently scheduled steps.

Example 11. Reusing Example 1, let us assume we have
two tags and two rounds. We can split the protocol into the
steps init, T[i, j], Rs[i, j] and Rf[i] like in Example 5. Taking
I = N, consider the following:

S1 = {init <1 T[1, 2] <1 Rs[1, 2]} (10)
S2 = {init <2 T[1, 1] <2 Rs[1, 2] <2 T[2, 2]} (11)
S3 = {init <3 Rf[1] <3 T[1, 1] <3 Rs[1, 1]} (12)

(10) describes a valid trace with I = {1, 2}, and so
is (11) despite step Rs[1, 2] failing. However, (12) is not a
valid trace as it contradicts ≺ despite the condition of all
the steps seemingly holding.

Definition 5 (Unfolding). Given a trace T, we can instan-
tiate and unfold any term t into a BC Logic term. We note
[t]

T the result of this transformation. [t]
T follows closely

[19]’s corresponding transformation and we formalize it in
our setting in Appendix A.

This unfolding turns any term into its BC equivalent for
a given trace following the intuition given at the beginning
of this section. For instance, input(T) becomes att applied
to everything sent over the network before T .

Example 12. Continuing Example 1, let us unfold
input(Rs[1, 2]) according to the trace T(10) described in
Equation 10 from Example 11:

[input(Rs[1, 2])]T(10) =

att


≪ [cond(T[1, 2])]T(10) ∧̄ [cond(init)]T(10) ;

≪ IF [cond(T[1, 2])]T(10) ∧̄ [cond(init)]T(10)

THEN [msg(T[1, 2])]T(10) ELSE fail;

[msg(init)]T(10) ≫≫

 (13)

This minimal example already shows that the attacker
has access to the messages of all the previous steps and their
condition. We also see that failing a condition blocks the
execution of all subsequent steps as they return fail. Finally,
Example 12 highlights the highly recursive nature of []

T.

4. CRYPTOVAMPIRE Formalization: A First-
Order Theory of Protocol Queries

We now describe how to encode the Symbolic Logic
from Section 3.2 in FOL in order to automate security
proofs, and how to recover BC-like semantics from such a
proof. This is particularly challenging, since several axioms
of the Symbolic Logic, as well as the original BC Logic,
rely on beyond what can be finitely axiomatized within
the logic itself (Section 4.1.1). Moreover, the semantics
of the BC Logic do not match that of classical FOLs,
as assumed by first-order theorem provers (Section 4.1.2).

In order to avoid higher-order and non-classical reasoning,
which would degrade performance, we introduce a tailored
encoding in FOL (Sections 4.2 and 5.1) as well as properties
(Section 4.3) to ensure the soundness of the result.

4.1. The Challenges of Protocol Queries

4.1.1. Encoding challenges. Many cryptographic properties
are defined in a way that is not finitely axiomatizable in the
BC Logic, nor in our current Symbolic Logic. This motivates
the need for an Evaluated Logic. In this subsection, we
will look at the challenges that this new logic is meant to
overcome. We illustrate them with the EUF-CMA property
(cf. Property 1) that we state in its pure BC Logic form in
Property 3.

Property 3 (EUF-CMA). Let CEUF-CMA be a class of models
where H(,) and verify(, ,) form a EUF-CMA-secure
MAC scheme. In the BC Logic (Section 3.1), we have for
every signature σ, message m and key k:

CEUF-CMA ⊨bc verify(σ,m, k) ⇒̄
∨̄

H(u,k)∈stBC(m,σ)
u =̄m

(14)
where k only appears in the position of the key in m and
σ. stBC(⃗t) is the set of subterms appearing in t⃗.

Property 3 highlights two challenges:
• Equation 14 is an axiom scheme. We cannot express

it within the Symbolic Logic with finitely many ax-
ioms. (A)

• Property 3 also makes heavy use of subterm reason-
ing. Not only is this not finitely axiomatizable [28],
even an incomplete finite axiomatization is beyond the
Symbolic Logic due to unfortunate interactions with
the equational theory. (B)

(A) Quantification over arbitrary terms. Equation 14
represents a set of axioms ranging over every term m,
σ, and nonces k. Unfortunately, there are infinitely many
terms. This can be solved with quantification: universal
quantification over m, σ, and k and existential quantification
over u to avoid having a disjunction that depends on m, σ,
and k.

Yet, quantification over arbitrary terms is beyond the
Symbolic Logic. Indeed, we can quantify over indices and
timepoints only because we can unfold quantifiers into
finitely nested IF THEN ELSE statements for any given
trace (see Appendix A). Using the same trick with arbitrary
terms would yield infinitely large terms. Even somehow
expanding the Symbolic Logic to include such terms would
contradict their interpretations into the BC Logic. Indeed,
the interpretation JtKMbc of a term t must be a polynomial
time Turing machine.

We devise the Evaluated Logic to release ourselves from
this last constraint. Thus, we include terms whose inter-
pretation is beyond the BC Logic. We then show that this
new interpretation not only matches BC’s on common terms
(Property 5) but expands it to any other terms (Theorem 3).

(B) Subterm Relation ⊑ and Equalities =̄. In the BC
Logic, honest and malicious computations are first described

symbolically. This symbolic description informs on whether
terms were directly computed or not. For instance, if a
BC term t′ does not appear in another BC term t (we write
t′ ̸⊑ t), then we know that the Turing machine JtKMbc does
not call Jt′KMbc, as stated in Property 2. This allows us to
closely capture the semantics of cryptographic games, and
is already exposed in Property 3.
Example 13 (EUF-CMA). Within the EUF-CMA axiom of
Property 3, the subterm property side condition on k guards
against key misuses: k can only be used to hash and verify.
Furthermore, the subterm property H(u, k) ∈ stBC(m,σ)
guards against illegal uses of the signing oracle in the EUF-
CMA cryptographic game: the attacker may ask to sign
anything with k except for any term that evaluates as m.

Let us look in more detail at the challenges associated
with this subterm relation. Remember that in Example 8
we saw that the interplay between equality and subterm
reasoning can easily lead to unsoundness. Example 14 shows
how a naive encoding is unsound:
Example 14. Consider now the subterm axiom

x ⊏ f(t1, . . . , tn)⇔
∨n

i=1
x ⊑ ti. (15)

Equation 15 is unsound modulo =̄ when tuples, projections,
and empty are defined. It is indeed enough to implement
Example 8 and thus show x ⊏ ∅. However, using the ⇒
implication of (8), instantiated with ∅, we also derive x ̸⊏
∅, yielding thus a source of unsoundness.

Unlike [29], we cannot circumvent the issue by relying
on the specifics of =̄ as it is a general equivalence relation,
nor can we exploit specific solver decision procedures as
we aim for a sound first-order encoding. Instead, we go
around the issue in our Evaluated Logic by sandboxing
the reasoning modulo =̄ with the evaluation predicate | |.
We keep = as the symbolic equality because we have
(x = y)⇒ |x =̄ y|. Since | =̄ | is an equivalence relation,
we can let theorem provers use their powerful equality
reasoning with =̄ by introducing the sugar:

|t| = |t′| := |t =̄ t′| (16)

We recover some of the overhead introduced by | | by
axiomatizing the commutativity of | | with boolean connec-
tives (Property 4). The concrete axioms are listed in Fig. 8
of Appendix B.

All in all, we address the above challenges by embedding
the Symbolic Logic of Section 3.2 into an Evaluated Logic
where we can safely quantify over arbitrary terms and reason
symbolically about subterms. Section 4.2 presents the syntax
and semantics of this new logic, while Section 5.1 dives
deeper into our modeling of subterm analysis.

4.1.2. Soundness challenges. As already noted in [15], the
BC Logic’s semantics does not match that of classical FOL.
Indeed, the notion of satisfiability introduced in Definition 1
quickly gives us the intuition that a term can be true, false,
or something in between.

t := . . .

S := t = t′
∣∣ t ⊑ t′

∣∣ . . .
φ := ⊤

∣∣⊥ ∣∣S ∣∣ |t| ∣∣φ ∨ φ′ ∣∣¬φ∣∣ ∃⃗ı, τ⃗ , x⃗.φ ∣∣ ∀⃗ı, τ⃗ , x⃗.φ
where t is a term fromS(N ,F , I, C,S) as defined in Fig. 1.
We extend with ∧,⇒ and⇔ as expected, and write |t| = |t′|
as sugar for |t =̄ t′|.

Figure 2: The Evaluated Logic E(N ,F , I, C,S)

Lη(|t|)(ρ) := min

(
1,

r
[t]

T
zM

bc
(1η, ρ)

)
(17)

Lη(t ⊑R t′)(ρ) :=M(⊑R)(t, t
′) (18)

Lη(t = t′)(ρ) :=M(=)(t, t′) (19)

Where M(=) behaves like an equivalence relation.
The boolean connectives and quantifiers behave assuming
Lη()(ρ) is a FOL model.

Figure 3: Cryptographic Model

Example 15 (Counterexample to classical semantics). Let
M be a computational model that interprets the function
1st bit(x) as the first bit of x. Let n be a nonce; we get
that M ⊨P (1st bit(n)) ∨̄ ¬̄(1st bit(n)) as it is always true.
However, we have neither M ⊨P (1st bit(n)) nor M ⊨P
¬̄(1st bit(n)) as they both alternate between 0 and 1 with
probability 1

2 .

The upcoming Evaluated Logic is designed to fix the
issues introduced in Examples 14 and 15.

4.2. Evaluated Logic

Let us call Ω the set of random tape pairs. Probρ() is
a probability measure over Ω.

4.2.1. Syntax. The Evaluated Logic, denoted as
E(N ,F , I, C,S), extends the Symbolic Logic
S(N ,F , I, C,S) from Section 3.2 with predicates
over terms. In a nutshell, the Evaluated Logic is a standard
FOL whose literals are predicates over terms from the
Symbolic Logic, or evaluation of those terms, denoted
by the predicate | |. The evaluation of a term forces its
computational interpretation.

The syntax is described in Fig. 2: t ⊑ t′ expresses that t
is a subterm of t′, |t| captures the concrete evaluation of the
symbolic term t (e.g., symbolic cryptographic functions are
evaluated into concrete bitstrings); φ ranges over first-order
formulas with existential and universal quantification over
terms.

4.2.2. Semantics.

Definition 6 (Cryptographic Model). A cryptographic model
L is a tuple (M,T,M) where M is a computational model,
T a trace, and M a symbolic model.
L associates terms of E(N ,F , I, C,S) to functions of

N × Ω → {0, 1} according to Fig. 3. We write L(φ) the
interpretation of φ by L and Lη(φ) to express the random
variable [ρ ∈ Ω 7→ Lη(φ)(ρ)].

Remark 5. As compared to the semantics adopted in Squir-
rel [20], we avoid the probabilistic interpretation of sym-
bolic terms. That is, the interpretation of |t| is the underlying
Turing machine applied to some η and ρ, and not ⊨P (t)

T

as seen in previous works [20].

Remark 5 solves Example 15 sufficiently for our trace
properties and allows us to move boolean connectives be-
tween logics, greatly improving the performance of theorem
provers (Property 4). Achieving such a functionality for
indistinguishability properties is more challenging [18] and
would require dedicated interpretations of the evaluation
predicate.

Property 4. | | commutes with boolean connectives and
quantifiers.

Proof: Via Property 9 from Appendix B.

4.2.3. Relation to the BC Logic and SQUIRREL. We now
intuitively explain how we relate this semantic interpretation
to the one of the BC Logic (Definition 1).

Definition 7 (Cryptographic Satisfiability). We adapt Defini-
tion 1 to the new setting. Thus L cryptographically satisfies
φ when

Probρ(Lη(φ) ̸= 1) = negl(η) (20)

and we reuse the notation L ⊨P φ and also extend it to class
C of cryptographic models like so: C ⊨P φ.

We connect this notion of validity to the one of the BC
Logic (Definition 1) as described in Property 5.

Property 5 (Extension of BC). Let t be a symbolic term.
Its evaluation inE(N ,F , I, C,S) is valid iff any unfolding
in the BC Logic is valid. Formally:

C ⊨ |t| iff for all trace T we have CM ⊨bc [t]
T (21)

where CM are the computational models of C.

We can in fact find a transformation T () from a
relevant subset of SQUIRREL’s term to CRYPTOVAMPIRE’s
such that their interpretation coincide.

Intuitively, T () commutes with every common sym-
bol (e.g., functions, nonces, quantifiers,. . .). SQUIRREL’s
macros are either unfolded (e.g., cond@T is unfolded into
the corresponding condition) or replaced by the correspond-
ing CRYPTOVAMPIRE term (e.g., input@T is replaced by
input(T (T))). The remaining SQUIRREL terms have a
direct counterpart in CRYPTOVAMPIRE. The only exception
is the frame@T macro due to its recursive nature: this is,
however, typically not used directly and is instead only
used to define input@T , which our transformation supports.

While our transformation does not aim at completeness, all
examples from Section 6 are supported.

Remark 6 (Quantifiers). The translation only preserves the
interpretation, not the unfolding. This especially matters
with quantifiers: they unfold differently, but they evaluate to
logically equivalent disjunctions/conjunctions in both tools
(see Lemma 2 of Appendix C and Property 4).

Theorem 1 (Interoperability). For all SQUIRREL protocol
Psq, we can find a CRYPTOVAMPIRE protocol P , such that
for all SQUIRREL trace Tsq over Psq, we can find a CRYP-
TOVAMPIRE trace over P , such that for all computational
models M, security parameter η, pairs of random tapes ρ,
and SQUIRREL t over which T () is defined, we have

Lη(|T (t)|)(ρ) =
r
[t]

Tsq

sq

zM

bc
(1η, ρ) (22)

where []
Tsq

sq is the SQUIRREL unfolding from [19], [20].

For more details, we refer to Appendix E.

4.3. Linking Cryptographic Semantics and Classi-
cal First-Order Logic

In this section, we first show that the Evaluated Logic
is not enough to faithfully encode the behavior of crypto-
graphic protocols (Section 4.3.1), and we propose a method
to sidestep the problem while retaining both the automation
potential offered by classical FOL and the cryptographic
semantics of Definition 7 (Section 4.3.2).

4.3.1. The Problem with cryptography-related axioms.
We first show that Definition 7 does not satisfy many
critical axioms while, at the same time, allowing for some
cryptographically unsound formulas. Consider Theorem 2
(adjusted from [15], [16], proven in Appendix F):

Theorem 2 (No Guessing). It is not possible to guess honest
nonces. Formally, for all nonce n[] ∈ N , ground indices
ı⃗ ∈ I, and message m, we have

|n[⃗ı]| = |m| ⇒ n[⃗ı] ⊑ m (23)

Equation 23 describes that any message m that evalu-
ates to a nonce n[⃗ı] must symbolically contain that nonce.
This theorem is valid for all cryptographic models and is
fundamental to many proofs as it encodes how randomness
behaves in the logic. However, (23) is still an axiom scheme.
Unfortunately, turning it into a formula breaks down as
shown in Example 16.

Example 16 (The Evaluated Logic rejects Theorem 2). Any
cryptographic model that can express the natural numbers
cannot satisfy (24). (notice the ∀)

∀⃗ı, x. |n[⃗ı]| = |x| ⇒ n[⃗ı] ⊑ x (24)

This is a consequence of the even worse Example 17.

Example 17 (The Evaluated Logic allows for unsound
formulas). Assuming F contains 0 and S(), any crypto-
graphic model that interprets 0 and S() as respectively 0
and the successor function satisfies (25).

∃x. |n[⃗ı]| = |x| ∧ n[⃗ı] ̸⊑ x (25)

Proof: Let L be such model. Lη(n[⃗ı])(ρ) is a natural
number N . We then define NS := SN (0), where Sk

represents k compositions of S. We get that Lη(n[⃗ı])(ρ) =
Lη(NS)(ρ) and yet n[⃗ı] ̸⊑ NS . As this holds for any η and
ρ, we get (25).

The NS that appears in the proof of Example 17 is a
side effect of Remark 5. We can observe this side effect even
more clearly when putting (25) in Skolem normal form [31]:

|n[⃗ı]| = |sk(25)| ∧ n[⃗ı] ̸⊑ sk(25) (26)

The resulting Skolem sk(25) is beyond our control. For any
η and ρ, sk(25) may take the value of any constant that just
so happens to evaluate like n[⃗ı] for this specific η and ρ.
This makes it a non-polynomial function that guesses n[⃗ı].

In the next section, we show how to reject formulas that
may produce such unwanted behavior while allowing for
well-behaved ones like Equation 24.

4.3.2. Linking First-order and Cryptography Together.
Example 17 is a result of sk(25) being able to take too many
values. Thus, we say that a formula has a bounded Skolem
normal form when we can find finite sets of terms such that
we can safely assume that the Skolems will only take values
in those sets. We formalize this notion in Definition 18 of
Appendix C. In practice, we do not need to go back to
the definition, and we use the following properties instead,
yielding an almost syntactic description of the formulas
verifying the property.

The base case is handled by Property 6, meaning that
any quantifier-free formula, or with simple enough quantifi-
cation, has a bounded Skolem normal form.

Property 6. A formula whose Skolem normal form is al-
ready in E(N ,F , I, C,S) (i.e., no new symbols are re-
quired) has a bounded Skolem normal form.

Then Property 7 and Property 8 let us build new for-
mulas with bounded Skolem normal forms from existing
ones. Definition 8 describes formulas that ensure terms
cannot take too many values; consequently, they can prevent
Skolem functions from displaying the behavior described in
Section 4.3.1. They, therefore, allow existential quantifica-
tion. Notably, subterm relations produce such formulas.

Property 7. The notion of bounded Skolem normal form is
stable by conjunction and disjunction.

Definition 8 (Bounding Formula). We say a formula φ with
fv(φ) = x ⊎ u⃗ is bounding on x if for all v⃗ we can find a
set Dv⃗

φ such that for all η, ρ, t, and cryptographic models
L, we have

Lη

φ

{
x 7→ t
u⃗ 7→ v⃗

}
⇒

∨
ϕ∈Dv⃗

φ

α⃗=fv(ϕ)

∃α⃗. ϕ = t

(ρ) = 1 (27)

Property 8. If φ is bounding on x and has a bounded
Skolem normal form, then ∃x. φ has a bounded Skolem
normal form.

Finally, formulas with bounded Skolem normal forms
enjoy a property close to the modus Polens:

Theorem 3 (Cryptographic Validity). Let φ be a formula s.t.
fv(φ) = u⃗, t a term, and C a set of cryptographic models
such that

1) φ has a bounded Skolem normal form;
2) for all v⃗, C ⊨P φ{u⃗ 7→ v⃗};
3) (∀u⃗. φ)⇒ |t| is valid in FOL;

then C ⊨P |t|.

Theorem 3 links the cryptographic semantics of ax-
ioms (2) with first-order reasoning (3) and extracts a
cryptographic property so long as these axioms are well-
behaved (1), i.e., they have bounded Skolem normal forms.

We notice now that property (24) of Example 16 verifies
items (1) and (2). It is therefore usable in first-order proofs
(and so is Theorem 2). Similarly, we can turn the axiom
schema (2) of Property 1 to a formula that verifies (1)
and (2). We prove the properties introduced in this section
in Appendix C.

5. CRYPTOVAMPIRE Reasoning for Proving
Protocol Queries

Based on the first-order formalization from Section 4,
we now describe how to extend saturation-based first-order
theorem proving [25] in order to achieve automation in a
first-order setting. The main problem to be solved is how to
efficiently encode subterm reasoning in FOL. Section 5.1
reviews the higher-order definition of subterm, which is
similar to the one adopted in Squirrel [19]. Section 5.2
presents an efficient solving procedure grounded in first-
order saturation that we embed in the VAMPIRE theorem
prover. Section 5.3 introduces preprocessing and heuristic
techniques that further improve performance and that we
integrate in CRYPTOVAMPIRE.

5.1. Subterm Relations in CRYPTOVAMPIRE

As explained in the sections above, the logics presented
in this paper ground their semantics in the BC Logic,
including subterm relations. In the BC Logic, the notion
is fairly straightforward: for instance, the strict subterms of
⟨x, y⟩ are x and y (assuming x and y are constant symbols).
However, this simplicity is lost after the unfolding []

T of
Definition 5. We explore now the problems that arise and
our solutions.

Example (12). Recall Definition 5 and Example 12: let us
unfold input(Rs[1, 2]) according to the trace T(10) described

in Equation 10 from Example 11:

[input(Rs[1, 2])]T(10) =

att


≪ [cond(T[1, 2])]T(10) ∧̄ [cond(init)]T(10) ;

≪ IF [cond(T[1, 2])]T(10) ∧̄ [cond(init)]T(10)

THEN [msg(T[1, 2])]T(10) ELSE fail;

[msg(init)]T(10) ≫≫

 (13)

A naive approach to implementing the BC subterm in
CRYPTOVAMPIRE would be to axiomatize the unfolding of
[]

T. However, Example 12 highlights multiple problems:
(i) the unfolding is dependent on the trace that we would
like to abstract away, and (ii) it is highly recursive. Point (ii),
in particular, would require some inductive reasoning, but
induction is not a first-order property and is extremely
challenging to algorithmically address [32].

Instead, reusing insights from [19], we encode this in-
ductive reasoning with subterms directly into our description
of a subterm relation. That is, we design a ⊑ relation
that overapproximates the BC notion of subterm. This is
achieved through a set stP(), which can be computed by
CRYPTOVAMPIRE with the help of a theorem prover to solve
problems (i)–(ii).

Concretely, stP(t) lists all the terms t′ for which we can
find a trace T such that t′ unfolds into a BC subterm of the
unfolding of t. To keep the number of plausible t′ in check,
we add a guard on the trace that unfolds to false in traces
where t′ is definitely not a subterm of t. Overall, we then
define ⊑ as the following

Definition 9 (CRYPTOVAMPIRE’s base subterm). We define
the base subterm relation ⊑ on any term t as such:

t ⊑ t′ iff
∨

(c,u)∈stP(t′)
with ı⃗=fv(u)∪fv(v)

∃⃗ı.|c| ∧ u = t (28)

where stP() is fully described in Appendix D.

We prove in Appendix D how ⊑ is an overapproximation
of the BC notion of subterm. We exemplify how stP() is
built in Example 18.

Example 18 (Subterm set). Let ST () be the syntactic
subterms, that is, for instance:

ST (verify(π2(in), π1(in), k[j])) :=

{verify(π2(in), π1(in), k[j]), π2(in), π1(in), k[j], in} (29)

where in stands for input(Rs[i, j]) as in Example 5.
Then, with P1 being the protocol of Example 1, keeping

in mind its steps description (Example 5), we have

stP1
(input(τ)) :=⋃
t∈ST (msg(T[i,j])∪ST (cond(T[i,j])

(T[i, j] < τ, t)

∪
⋃

t∈ST (msg(Rs[i,j])∪ST (cond(Rs[i,j])
(Rs[i, j] < τ, t)

∪
⋃

t∈ST (msg(Rf[i])∪ST (cond(Rf[i])
(Rf[i] < τ, t)

(30)

t ⊑ t′ := t ⊏ t′ ∨ t = t′ (31)
∀t, ı⃗. t ̸⊏ n[⃗ı] (32)

∀t, t1, . . . , tk, ȷ⃗. t ⊏ f [⃗ȷ](t′1, . . . , t
′
k)⇒

∨n

i=1
t ⊑ t′i (33)

∀t, t1, t2, t3.

t ⊏

(
FIND α⃗ SUCH THAT t1

THEN t2 ELSE t3

)
⇒ ∃α⃗.

∨n

k=3
t ⊑ tk

(34)

∀t, τ. t ⊏ input(τ)⇒
∨

(c,u)∈stP(input(τ))
with ı⃗=fv(u)∪fv(c)

∃⃗ı.|c| ∧ u = t

(35)

∀t, ı⃗, τ. t ⊏ c[⃗ı]!(τ)⇒
∨

(c,u)∈stP(c[⃗ı](τ))
with ı⃗=fv(u)∪fv(v)

∃ȷ⃗.|c| ∧ u = t

(36)

Figure 4: Axiomatization of the subterm relation

With stP() we can take the knowledge of the protocol
and the inductive reasoning out of the theorem prover and
internalize it into CRYPTOVAMPIRE itself. In practice, we
describe ⊑ in FOL not as Equation 28 but through the
axioms laid out in Fig. 4. With this axiomatization, we dis-
pense from (i) the trace dependence as well as (ii) inductive
reasoning. We describe how to extend ⊑ into other subterm
relations (e.g., ⊑verify(, ,•),H(,•)) inAppendix G.2.

5.2. Native Subterm Reasoning

As the subterm relation is transitive, the number of log-
ical consequences produced by saturation quickly becomes
a burden for any saturation-based prover. While the stP()
set can effectively be computed (cf. [19] and Appendix D),
automated reasoning with such sets is non-trivial due to their
complex interaction with the equational theory of =̄ and
the required knowledge of the protocol. To overcome such
limitations hindering the effectiveness of automation, we
devise our own native subterm reasoning within saturation,
extending existing approaches [28], [29].

We recall that saturation-based provers iteratively apply
a finite set of inference rules, deriving new clauses2 as
logical consequences of existing formulas. Whenever the
empty clause ⊥ is inferred, saturation stops and reports
unsatisfiability of the negated input formula (hence, the
input is valid). For efficiency reasons, saturation implements
two types of inferences: (i) generating rules that add new
clauses to the search space, and (ii) simplifying rules that
remove so-called redundant clauses from the search space.
Importantly, removing redundant clauses does not destroy
(refutational) completeness: if a formula is provable using
redundant clauses, it is also provable without redundant
clauses [25]. Clearly, simplifying rules are eagerly applied
within any efficient saturation-based proving process. In
what follows, within simplifying rules, we will denote the

2formulas are preprocessed and clausified

deleted (redundant) clause by drawing a line through it, for
example: XXXA ∨ C.

The crux of our approach for native subterm reasoning
within CRYPTOVAMPIRE comes with two new simplifying
inference rules. Given a list L of symbols and a subterm
relation ⊑, for all f ∈ L, we introduce the following
simplifying rules in addition to the superposition inference
rules for FOL with equality [25]:

hhhhhhhhhh
x ⊑ f(y1, . . . , yn) ∨ C

x = f(y1, . . . , yn) ∨
∨n

k=1
x ⊑ yk ∨ C

SBTM

hhhhhhhhhh
x ̸⊑ f(y1, . . . , yn) ∨ C

x ̸= f(y1, . . . , yn) ∨ C x ̸⊑ yk ∨ C for all k
-SBTM

The inference rules SBTM and -SBTM replace axiomatic
reasoning with the axioms (31) and (33) of Fig. 4. We
prevent these rules from contradicting the rest of the axioms
of Fig. 4 by selectively leaving out symbols from L; this is
notably the case for input and memory cells.

The simplifying nature of SBTM and -SBTM ensures that
m in x ⊑ m is fully destructed (up to special cases) before
the conclusions are added to the search space.

5.3. Preprocessing

5.3.1. Instance preprocessing. While the stP() sets,
defining subterm relations, are computable, it is not known
a priori over which terms stP() should be applied. Hence,
the axiomatization discussed in Section 5.1. Nevertheless,
we may compute estimates about terms that may be involved
in subterm reasoning, allowing us to predict/prioritize the
application of subterm analysis, as follows.

Most cryptographic axioms have the pattern |ϕ| ⇒
φ, where ϕ is an easy-to-identify symbolic term (e.g.,
verify(σ,m, k) for EUF-CMA in Property 1) and φ depends
on some subterm analysis based on instances of variables
in ϕ (e.g., H(u, k) ⊑ m, among others, in Property 1 too).
If we know ϕ, then we can often pre-compute φ to such
an extent that it no longer contains any subterm search by
inlining the subterm relation (Definition 9).

We therefore consider the following CRYPTOVAMPIRE
heuristic: when we encounter a term that can unify with
ϕ, we assume that it is likely to be used within proof
search, through the respective cryptographic axiom. We
then preprocess all occurrences of ϕ found throughout the
protocol specification, including the step definitions, queries,
and other user-defined assertions.

Example (9). Equation 5 from Example 9 is the result of
such heuristic applied to Property 1 in Example 1.

∀i, j.
∣∣∣∣verify(π2(input(Rs[i, j])),

π1(input(Rs[i, j]))
, k[j]

)∣∣∣∣⇒
∃i′, j′.

(
T[i′, j′] < Rs[i, j] ∧ j′ = j

∧ |n[i′, j′]| = |π1(input(Rs[i, j]))|

)
(5)

5.3.2. Removing subterm reasoning. Finally, we propose
an incomplete heuristic to completely factor out symbolic
reasoning when applicable.

Generating terms that are not part of the input problem
can, in general, lead to state explosion, but it is never-
theless necessary during proof search; for example, such
terms might be needed to instantiate another cryptographic
axiom. On the other hand, if an axiom instance does not
get preprocessed in Section 5.3.1, then its instantiation will
likely get significantly delayed during saturation3. For that
reason, we propose to continue the preprocessing under the
assumption that Section 5.3.1 effectively preprocessed all
the relevant instances. Under such assumption, it is possible
to factor out all symbolic reasoning (as it was inlined during
preprocessing, as in Example 9). That is, when trying to
prove ⊨ (∀u⃗.Γ) ⇒ |t| for Theorem 3’s (3), we can find
a new axiom ∆ (the result of the preprocessing) such that
⊨ (∀u⃗.Γ)⇒ ∆ and all symbols used in ∆ are compatibles
with =̄. Then showing ∆ ⇒ |t| can be done modulo =̄,
which dramatically improves the performance of the solvers.

Interestingly, this idea can be applied not only to pro-
tocol specifications but also some cryptographic theorems
such as the no-guessing theorem. It can, in particular, be
rephrased in a way to eliminate subterm reasoning.

Theorem 4 (No guessing). For all nonces n ∈ N , (37) can
be added to the set of axioms.

∀⃗ı,m. |n[⃗ı]| = |m| ⇒ n[⃗ı] ⊑◦ m (37)

where ⊑◦ is defined by (38) and is compatible with =̄.

m ⊑◦ |t| := ∀t′.(|t| = |t′| ⇒ m ⊑ t′). (38)

Proof: Appendix F.1
While this heuristic is not complete, our experiments

demonstrate that it is widely applicable and leads to signif-
icant performance gains (cf. Section 6).

6. Experiments

We implemented CRYPTOVAMPIRE in extension of the
VAMPIRE theorem prover [25], by adjusting saturation, term
ordering, subterm reasoning and preprocessing in VAMPIRE
as described in Section 5.

Experimental Setup. We evaluated CRYPTOVAMPIRE
against examples and trace-based queries from [19] that did
not rely on the composition framework [22]. For compet-
itive evaluations, we varied the proving backend using a
selection of state-of-the-art solvers for FOL with theories,
Z3 [24], CVC5 [26] and VAMPIRE [25] (with and without
our modifications), and used various levels of preprocessing.

Benchmarks. We test CRYPTOVAMPIRE on all trace-based
properties from the SQUIRREL’s benchmarks [19],
which consist of authentication properties in the
basic-hash [27], hash-lock [33], lak-tag [34],

3The machine is likely to run out of resources before that.

protocol
no preprocessing instance preprocessing Section 5.3.2’s heuristic

Z3 CVC5 VAMPIRE
Z3 CVC5 VAMPIRE

Z3 CVC5 VAMPIRE◦ • ◦ •
basic-hash □/△ ✗ ✓ ✗ ✓ ✓∗ ✓ ✓ ✓ ✓ ✓ ✓

hash-lock
□ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✓ ✓
■ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✓ ✓
△ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓∗ ✓∗ ✓ ✓

mw
□ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓‡∗ ✓ ✓ ✓
△ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✓∗ ✓∗∗ ✓ ✓

lak-tag □ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓∗ ✓ ✓ ✓

feldhofer □ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✓∗ ✓ ✓ ✓

euf-key-secrecy ✗ ✓‡ ✗ ✓‡ ✗ ✓‡ ✓‡ ✓‡ ✓‡ ✓‡ ✓‡

ddh
□ ✗ ✗ ✗ ✗ ✗ ✓‡ ✗ ✗ ✓‡ ✓‡ ✓‡

△ ✗ ✗ ✗ ✗ ✗ ✓‡ ✗ ✗ ✓‡ ✓‡ ✓‡

◦ vanilla VAMPIRE (without Section 5 adjustments)
• using the added decision procedures
□ authentication
■ injective authentication

△ used as a lemma for unlinkability in SQUIRREL
‡ made use of lemmas (proven in CRYPTOVAMPIRE)
∗ split into two queries, one for each direction of the double implication

∗∗ the solver succeded on one side of the equivalence

Figure 5: CRYPTOVAMPIRE experiments

feldhofer [35], mw [36] and ddh [37] protocols (the
□ in Fig. 5). We follow very closely [19]’s modelling of
these protocols.

We note that [19] uses the examples we considered
to further verify observational equivalence hyperproperties
(e.g., unlikability or strong-secrecy in the case of these
protocols) whose proofs rely on the initial trace properties.
CRYPTOVAMPIRE does not yet support such hyperproper-
ties. However, we show that CRYPTOVAMPIRE can verify
some of the lemmas that are used to prove those properties
in SQUIRREL [19] (marked with a △ in Fig. 5). Indeed,
a proof of observational equivalence in the CCSA may
require trace properties to prune out (nearly) impossible
traces, or rewriting equal terms according to =̄. Both kinds
of properties are supported in CRYPTOVAMPIRE, which can
therefore be used to facilitate proofs with SQUIRREL. In-
deed, since both tools use the same underlying theory, results
in CRYPTOVAMPIRE are immediately valid in SQUIRREL
(and vice versa) (seeAppendix E).

Experimental Analysis. Our experimental results are sum-
marized in Fig. 5.

We show the effectiveness of our preprocessing by grad-
ually increasing its impact in Fig. 5. We start with only
preprocessing the definition of the subterm relations (see
Section 5.1). We continue with the instance preprocessing
(see Section 5.3.1), which, combined with our saturation
modifications (see Section 5.2), enables us to verify all con-
sidered protocols. However, in this mode, CRYPTOVAMPIRE
often needs guidance to split double implications into two
queries (indicated via ✓∗ in Fig. 5), or use further lemmas
to prove (✓‡ in Fig. 5).

We also tested CRYPTOVAMPIRE using the incomplete
simplification of the logic introduced in Section 5.3.2. In

this mode, we observe that CRYPTOVAMPIRE overall gains
in capabilities despite its incomplete strategy/heuristics.
Fig. 5 also highlights the limits of this heuristic. Indeed,
euf-key-secrecy and ddh required very simple aux-
iliary lemmas (hinting which axioms are to be instantiated
with which messages) to trigger the right preprocessing. In
the case of ddh, this lemma is not even passed on to the
theorem prover as it is only used for the preprocessing but
not for the proof.

We conducted a performance evaluation based on the
previous benchmarks, using a machine with 64 cores and
128GB of RAM and running VAMPIRE, Z3, and CVC5 as
a verification backend for CRYPTOVAMPIRE, measuring the
time required by the fastest among them. CRYPTOVAMPIRE
is capable of verifying the considered examples in a few
dozen milliseconds.

In addition, CRYPTOVAMPIRE shows very competitive
performance even against CRYPTOVERIF [14], the state-of-
the-art automated cryptographic protocol verifier supporting
computational security proofs. The results of our compara-
tive performance evaluation are summarized in Fig. 6.

7. Conclusion and Further Work

We introduced CRYPTOVAMPIRE, the first fully auto-
mated cryptographic protocol verifier supporting the CCSA.
A core contribution is the first-order encoding of CCSA
along with dedicated proof techniques. We further designed
tailored reasoning procedures and heuristics to enable lever-
aging state-of-the-art first-order theorem proving in CRYP-
TOVAMPIRE, as demonstrated by our experimental results.

As future work, we are interested in extending CRYPTO-
VAMPIRE to support compositional proof techniques [22].
Furthermore, we plan to integrate axioms to reason about

basic-hash 52.8ms 21.4ms
hash-lock 62.6ms 24.4ms

lak-tag 61.9ms 30.4ms
feldhofer 60.9ms 31.6ms

mw 71.9ms 38.3ms

CRYPTOVERIF

CRYPTOVAMPIRE

Figure 6: Runtimes of CRYPTOVAMPIRE and CRYP-
TOVERIF for authentication queries

post-quantum security [21]. We also plan to integrate rela-
tional reasoning into CRYPTOVAMPIRE to support indistin-
guishability proofs [16].

Acknowledgments. This work was partially supported
by the European Research Council (ERC) through the
Consolidator Grants ARTIST 101002685 and Browsec
771527; the TU Wien Doctoral College SecInt; the Aus-
trian Science Fund (FWF) through the SpyCoDe SFB
projects F8504 and F8510-N; the Vienna Science and
Technology Fund (WWTF) through [ForSmart Grant ID:
10.47379/ICT22007]; the Austrian Research Promotion
Agency (FFG) through the the COMET K1 SBA and ABC;
and the the Christian Doppler Research Association through
the Christian Doppler Laboratory Blockchain Technologies
for the Internet of Things (CDL-BOT).

References

[1] G. Lowe, “An attack on the Needham-Schroeder public-key
authentication protocol,” Information Processing Letters, vol. 56,
no. 3, pp. 131–133, Nov. 1995. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/0020019095001442

[2] N. J. Al Fardan and K. G. Paterson, “Lucky Thirteen: Breaking the
TLS and DTLS Record Protocols,” in 2013 IEEE Symposium on
Security and Privacy, May 2013, pp. 526–540.

[3] G. Malavolta, P. Moreno-Sanchez, C. Schneidewind, A. Kate,
and M. Maffei, “Anonymous Multi-Hop Locks for Blockchain
Scalability and Interoperability,” in Proceedings 2019 Network and
Distributed System Security Symposium. San Diego, CA: Internet
Society, 2019. [Online]. Available: https://www.ndss-symposium.org/
wp-content/uploads/2019/02/ndss2019 09-4 Malavolta paper.pdf

[4] K. Bhargavan, C. Fournet, M. Kohlweiss, A. Pironti, P.-Y.
Strub, and S. Zanella-Béguelin, “Proving the TLS Handshake
Secure (As It Is),” in Advances in Cryptology – CRYPTO 2014.
Springer, Berlin, Heidelberg, 2014, pp. 235–255. [Online]. Available:
https://link.springer.com/chapter/10.1007/978-3-662-44381-1 14

[5] B. Lipp, B. Blanchet, and K. Bhargavan, “A Mechanised Crypto-
graphic Proof of the WireGuard Virtual Private Network Protocol,”
in 2019 IEEE European Symposium on Security and Privacy (Eu-
roS&P), Jun. 2019, pp. 231–246.

[6] A. Koutsos, “The 5G-AKA Authentication Protocol Privacy,” in 2019
IEEE European Symposium on Security and Privacy (EuroS&P), Jun.
2019, pp. 464–479.

[7] G. Lowe, “A hierarchy of authentication specifications,” in Proceed-
ings 10th Computer Security Foundations Workshop, Jun. 1997, pp.
31–43.

[8] M. R. Clarkson and F. B. Schneider, “Hyperproperties,” in
Proceedings of the 21st IEEE Computer Security Foundations
Symposium, CSF 2008, Pittsburgh, Pennsylvania, USA, 23-25
June 2008. IEEE Computer Society, 2008, pp. 51–65. [Online].
Available: https://doi.org/10.1109/CSF.2008.7

[9] D. Dolev and A. Yao, “On the security of public key protocols,” IEEE
Transactions on Information Theory, vol. 29, no. 2, pp. 198–208, Mar.
1983.

[10] B. Blanchet, “An Efficient Cryptographic Protocol Verifier Based on
Prolog Rules,” in Proceedings of the 14th IEEE Workshop on Com-
puter Security Foundations, ser. CSFW ’01. USA: IEEE Computer
Society, Jun. 2001, p. 82.

[11] S. Meier, B. Schmidt, C. Cremers, and D. Basin, “The TAMARIN
Prover for the Symbolic Analysis of Security Protocols,” in Com-
puter Aided Verification, ser. Lecture Notes in Computer Science,
N. Sharygina and H. Veith, Eds. Berlin, Heidelberg: Springer, 2013,
pp. 696–701.

[12] K. Bhargavan and G. Leurent, “Transcript Collision Attacks:
Breaking Authentication in TLS, IKE, and SSH,” in Proceedings
2016 Network and Distributed System Security Symposium.
San Diego, CA: Internet Society, 2016. [Online]. Avail-
able: https://www.ndss-symposium.org/wp-content/uploads/2017/09/
transcript-collision-attacks-breaking-authentication-tls-ike-ssh.pdf

[13] G. Barthe, B. Grégoire, S. Heraud, and S. Z. Béguelin, “Computer-
Aided Security Proofs for the Working Cryptographer,” in Advances
in Cryptology – CRYPTO 2011, ser. Lecture Notes in Computer
Science, P. Rogaway, Ed. Berlin, Heidelberg: Springer, 2011, pp.
71–90.

[14] B. Blanchet, “A computationally sound mechanized prover for secu-
rity protocols,” in 2006 IEEE Symposium on Security and Privacy
(S&P’06), May 2006, pp. 15 pp.–154.

[15] G. Bana and H. Comon-Lundh, “Towards Unconditional Soundness:
Computationally Complete Symbolic Attacker,” in Principles of
Security and Trust, D. Hutchison, T. Kanade, J. Kittler, J. M.
Kleinberg, F. Mattern, J. C. Mitchell, M. Naor, O. Nierstrasz,
C. Pandu Rangan, B. Steffen, M. Sudan, D. Terzopoulos, D. Tygar,
M. Y. Vardi, G. Weikum, P. Degano, and J. D. Guttman, Eds.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, vol. 7215,
pp. 189–208. [Online]. Available: http://link.springer.com/10.1007/
978-3-642-28641-4 11

[16] ——, “A computationally complete symbolic attacker for equivalence
properties,” in Proceedings of the 2014 ACM SIGSAC Conference on
Computer and Communications Security, 2014, pp. 609–620.

[17] G. Bana, K. Hasebe, and M. Okada, “Computationally complete
symbolic attacker and key exchange,” in Proceedings of the 2013
ACM SIGSAC Conference on Computer & Communications Security,
2013, pp. 1231–1246.

[18] D. Baelde, A. Koutsos, and J. Lallemand, “A Higher-Order Indis-
tinguishability Logic for Cryptographic Reasoning,” in 2023 38th
Annual ACM/IEEE Symposium on Logic in Computer Science (LICS),
Jun. 2023, pp. 1–13.

[19] D. Baelde, S. Delaune, C. Jacomme, A. Koutsos, and S. Moreau,
“An Interactive Prover for Protocol Verification in the Computational
Model,” in SP 2021 - 42nd IEEE Symposium on Security and
Privacy, San Fransisco / Virtual, United States, May 2021. [Online].
Available: https://hal.archives-ouvertes.fr/hal-03172119

[20] D. Baelde, S. Delaune, A. Koutsos, and S. Moreau,
“Cracking the Stateful Nut,” in CSF 2022 - 35th IEEE
Computer Security Foundations Symposium. Haifa, Israel:
IRISA, Aug. 2022, Research Report. [Online]. Available:
https://hal.archives-ouvertes.fr/hal-03500056

[21] C. Cremers, C. Fontaine, and C. Jacomme, “A Logic and an In-
teractive Prover for the Computational Post-Quantum Security of
Protocols,” in 2022 IEEE Symposium on Security and Privacy (SP),
May 2022, pp. 125–141.

https://www.sciencedirect.com/science/article/pii/0020019095001442
https://www.sciencedirect.com/science/article/pii/0020019095001442
https://www.ndss-symposium.org/wp-content/uploads/2019/02/ndss2019_09-4_Malavolta_paper.pdf
https://www.ndss-symposium.org/wp-content/uploads/2019/02/ndss2019_09-4_Malavolta_paper.pdf
https://link.springer.com/chapter/10.1007/978-3-662-44381-1_14
https://doi.org/10.1109/CSF.2008.7
https://www.ndss-symposium.org/wp-content/uploads/2017/09/transcript-collision-attacks-breaking-authentication-tls-ike-ssh.pdf
https://www.ndss-symposium.org/wp-content/uploads/2017/09/transcript-collision-attacks-breaking-authentication-tls-ike-ssh.pdf
http://link.springer.com/10.1007/978-3-642-28641-4_11
http://link.springer.com/10.1007/978-3-642-28641-4_11
https://hal.archives-ouvertes.fr/hal-03172119
https://hal.archives-ouvertes.fr/hal-03500056

[22] H. Comon, C. Jacomme, and G. Scerri, “Oracle Simulation:
A Technique for Protocol Composition with Long Term Shared
Secrets,” in Proceedings of the 2020 ACM SIGSAC Conference
on Computer and Communications Security. Virtual Event
USA: ACM, Oct. 2020, pp. 1427–1444. [Online]. Available:
https://dl.acm.org/doi/10.1145/3372297.3417229

[23] K. N. Venkataraman, “Decidability of the purely existential
fragment of the theory of term algebras,” Journal of the ACM,
vol. 34, no. 2, pp. 492–510, Apr. 1987. [Online]. Available:
https://dl.acm.org/doi/10.1145/23005.24037

[24] L. de Moura and N. Bjørner, “Z3: An Efficient SMT Solver,” in
Tools and Algorithms for the Construction and Analysis of Systems,
ser. Lecture Notes in Computer Science, C. R. Ramakrishnan and
J. Rehof, Eds. Berlin, Heidelberg: Springer, 2008, pp. 337–340.

[25] L. Kovács and A. Voronkov, “First-Order Theorem Proving and Vam-
pire,” in Computer Aided Verification, ser. Lecture Notes in Computer
Science, N. Sharygina and H. Veith, Eds. Berlin, Heidelberg:
Springer, 2013, pp. 1–35.

[26] H. Barbosa, C. W. Barrett, M. Brain, G. Kremer, H. Lachnitt,
M. Mann, A. Mohamed, M. Mohamed, A. Niemetz, A. Nötzli,
A. Ozdemir, M. Preiner, A. Reynolds, Y. Sheng, C. Tinelli, and
Y. Zohar, “Cvc5: A Versatile and Industrial-Strength SMT Solver,” in
Tools and Algorithms for the Construction and Analysis of Systems
- 28th International Conference, TACAS 2022, Held as Part of the
European Joint Conferences on Theory and Practice of Software,
ETAPS 2022, Munich, Germany, April 2-7, 2022, Proceedings, Part
I, ser. Lecture Notes in Computer Science, D. Fisman and G. Rosu,
Eds., vol. 13243. Springer, 2022, pp. 415–442. [Online]. Available:
https://doi.org/10.1007/978-3-030-99524-9 24

[27] M. Brusó, K. Chatzikokolakis, and J. den Hartog, “Formal Verifica-
tion of Privacy for RFID Systems,” in 2010 23rd IEEE Computer
Security Foundations Symposium, Jul. 2010, pp. 75–88.

[28] L. Kovács, S. Robillard, and A. Voronkov, “Coming to terms
with quantified reasoning,” in Proceedings of the 44th ACM
SIGPLAN Symposium on Principles of Programming Languages,
ser. POPL ’17. New York, NY, USA: Association for Computing
Machinery, Jan. 2017, pp. 260–270. [Online]. Available: https:
//dl.acm.org/doi/10.1145/3009837.3009887

[29] C. Cremers, C. Jacomme, and P. Lukert, “Subterm-based proof
techniques for improving the automation and scope of security
protocol analysis,” in CSF 2022 - 36th IEEE Computer Security
Foundations Symposium, Dubrovnik, Croatia, Aug. 2022, pp. 1–14.
[Online]. Available: https://eprint.iacr.org/2022/1130

[30] C. E. Shannon, “Communication theory of secrecy systems,” The Bell
System Technical Journal, vol. 28, no. 4, pp. 656–715, Oct. 1949.
[Online]. Available: https://ieeexplore.ieee.org/document/6769090

[31] T. Skolem, “Logisch-kombinatorische untersuchungen über die
erfüllbarkeit oder bewiesbarkeit mathematischer sätze nebst einem
theorem über dichte mengen,” in Selected Works in Logic, 1920.

[32] A. Bundy, “Chapter 13 - The Automation of Proof by
Mathematical Induction,” in Handbook of Automated Reasoning,
ser. Handbook of Automated Reasoning, A. Robinson and
A. Voronkov, Eds. Amsterdam: North-Holland, Jan. 2001, pp.
845–911. [Online]. Available: https://www.sciencedirect.com/science/
article/pii/B9780444508133500151

[33] A. Juels and S. A. Weis, “Defining strong privacy for RFID,”
ACM Transactions on Information and System Security, vol. 13,
no. 1, pp. 7:1–7:23, Nov. 2009. [Online]. Available: https:
//dl.acm.org/doi/10.1145/1609956.1609963

[34] L. Hirschi, D. Baelde, and S. Delaune, “A method for unbounded
verification of privacy-type properties,” Journal of Computer
Security, vol. 27, no. 3, pp. 277–342, Jan. 2019. [Online]. Available:
https://doi.org/10.3233/JCS-171070

[35] M. Feldhofer, S. Dominikus, and J. Wolkerstorfer, “Strong Authen-
tication for RFID Systems Using the AES Algorithm,” in Crypto-
graphic Hardware and Embedded Systems - CHES 2004, ser. Lecture
Notes in Computer Science, M. Joye and J.-J. Quisquater, Eds.
Berlin, Heidelberg: Springer, 2004, pp. 357–370.

[36] D. Molnar and D. Wagner, “Privacy and security in library
RFID: Issues, practices, and architectures,” in Proceedings of
the 11th ACM Conference on Computer and Communications
Security, ser. CCS ’04. New York, NY, USA: Association for
Computing Machinery, Oct. 2004, pp. 210–219. [Online]. Available:
https://dl.acm.org/doi/10.1145/1030083.1030112

[37] “IT Security techniques – Entity authentication – Part 3: Mechanisms
using digital signature techniques,” International Organization for
Standardization, Geneva, CH, Standard, Jan. 2019.

[38] D. E. Knuth and P. B. Bendix, “Simple Word Problems in
Universal Algebras,” in Computational Problems in Abstract
Algebra, JOHN. Leech, Ed. Pergamon, Jan. 1970, pp. 263–297.
[Online]. Available: https://www.sciencedirect.com/science/article/
pii/B978008012975450028X

[39] J. Herbrand, Recherches sur la théorie de la démonstration, 1930.
[Online]. Available: http://eudml.org/doc/192791

[40] C. Barrett, P. Fontaine, and C. Tinelli, “The SMT-LIB Standard:
Version 2.6,” Department of Computer Science, The University of
Iowa, Tech. Rep., 2017.

[41] L. Bachmair, H. Ganzinger, D. McAllester, and C. Lynch, “Chapter
2 - Resolution Theorem Proving,” in Handbook of Automated
Reasoning, ser. Handbook of Automated Reasoning, A. Robinson
and A. Voronkov, Eds. Amsterdam: North-Holland, Jan. 2001, pp.
19–99. [Online]. Available: https://www.sciencedirect.com/science/
article/pii/B9780444508133500047

Appendix A.
Complete semantics

We assume that the following functions are part of F :
IF THEN ELSE , ≪; ≫, ∅, true, false and fail.

We use a pseudo-Dirac function in Fig. 7 for concise-
ness:

δ(P) :=

{
true if P
false otherwise

Definition 10 (Previous Step). Given T and a step a ∈
S∪ {undef}, we define the previous step predT(a) as such:

predT(a) :=


init if a is init

undef if a is undef

max≤S{b|b ∈ S, b <S a} otherwise
(39)

Definition 11 (Unfolding). Given a trace T, we unfold terms
of S(N ,F , I, C,S) into BC(Nbc,Fbc,Gbc) according to
Fig. 7, with

Nbc :=
{
n⃗ı

∣∣∣n[⃗] ∈ N , ı⃗ ∈ I∥⃗ ∥
}

(40)

Fbc :=
{
f⃗ı

∣∣∣f [⃗] ∈ F , ı⃗ ∈ I∥⃗ ∥
}

(41)

Gbc := {att} (42)

Appendix B.
Base Axioms

Notations. In this section, we use α and β to refer to indices
and/or timepoints when the distinction between the two is
irrelevant.

https://dl.acm.org/doi/10.1145/3372297.3417229
https://dl.acm.org/doi/10.1145/23005.24037
https://doi.org/10.1007/978-3-030-99524-9_24
https://dl.acm.org/doi/10.1145/3009837.3009887
https://dl.acm.org/doi/10.1145/3009837.3009887
https://eprint.iacr.org/2022/1130
https://ieeexplore.ieee.org/document/6769090
https://www.sciencedirect.com/science/article/pii/B9780444508133500151
https://www.sciencedirect.com/science/article/pii/B9780444508133500151
https://dl.acm.org/doi/10.1145/1609956.1609963
https://dl.acm.org/doi/10.1145/1609956.1609963
https://doi.org/10.3233/JCS-171070
https://dl.acm.org/doi/10.1145/1030083.1030112
https://www.sciencedirect.com/science/article/pii/B978008012975450028X
https://www.sciencedirect.com/science/article/pii/B978008012975450028X
http://eudml.org/doc/192791
https://www.sciencedirect.com/science/article/pii/B9780444508133500047
https://www.sciencedirect.com/science/article/pii/B9780444508133500047

iT := σI(i)

(pred(T))
T := predT

(
(T)

T
)

(
a
[⃗
I
])T

:=

{
a
[[⃗
I
]T]

if it is in S
undef otherwise

[T < T ′]
T
:= δ

(
(T)

T
<S (T ′)

T
)

[T = T ′]
T
:= δ

(
(T)

T
= (T ′)

T
)

[I = I ′]
T
:= δ(IT = I ′T)

[happens(T)]
T := δ

(
(T)

T ̸= undef
)

[
n
[⃗
I
]]T

:= n
I⃗T[

f
[⃗
I
](
t⃗
)]T

:= f
I⃗T

([⃗
t
]T)

[input(T)]
T := inputT

(T)T[
c
[⃗
I
]
!(T)

]T
:=

∅ if (T)T is undef[
u(T)T

(
c
[⃗
IT

])]T
otherwise

inputTinit, input
T
undef , frameTundef := ∅ execTundef := false

execTinit := true frameTinit := msg(init)

inputTa := att
(
frameT

predT(a)

)
execTa := cond(a) ∧̄ execT

predT(a)

frameTa :=≪ execTa ;≪ IF execTa THEN msg(a)

ELSE fail; frameT
predT(a)

≫≫

FIND ı⃗ SUCH THAT t1 [⃗ı] THEN t2 [⃗ı] ELSE t3 :=

IF t1 [⃗ı1] THEN t2 [⃗ı1] ELSE . . .

IF t1 [⃗ın] THEN t2 [⃗ın] ELSE t3

FIND τ⃗ SUCH THAT t1[τ⃗] THEN t2[τ⃗] ELSE t3 :=

IF t1[τ⃗ 1] THEN t2[τ⃗ 1] ELSE . . .

IF t1[τ⃗ k] THEN t2[τ⃗ k] ELSE t3

Where {⃗ı1, . . . , ı⃗n} = I∥⃗ı∥ and {τ⃗ 1, . . . , τ⃗ k} = SI∥τ⃗∥.

Figure 7: Unfolding of S(N ,F , I, C,S)

|A ∧̄B| ≈ |A| ∧ |B| (43)
|A ∨̄B| ≈ |A| ∨ |B| (44)
|¬̄A| ≈ ¬|A| (45)

|true| ≈ ⊤ (46)
|false| ≈ ⊥ (47)∣∣∃̄α⃗. t∣∣ ≈ ∃α⃗. |t| (48)∣∣∀̄α⃗. t∣∣ ≈ ∀α⃗. |t| (49)

|A ⇒̄B| ≈ |A| ⇒ |B| (50)

Where A ≈ B stands for Lη(A)(ρ) = Lη(B)(ρ) for all η
and ρ.

Figure 8: Collection of valid boolean axioms

Property 9. In any model IF THEN ELSE , true and
false have the function evaluation that we would usually
expect, the equations of Fig. 8 hold.

Proof: Let L be any model in which IF THEN
ELSE , true and false have the function evaluation that

we would usually expect. Then equations 43-47 and 50 hold

using a truth table on
r
[A]

T
zM

bc
and

r
[B]

T
zM

bc
.

(48) If Lη(∃α. |t|)(ρ) = 1 with α = fv(t), let α0 be an
element such that Lη(|t{α 7→ α0}|)(ρ) = 1 and β an
element from T (i.e., an element of I or SI) that unfolds
like α0 (there has to be one, as unfolding does not
change member of T). Then Lη(|t{α 7→ β}|)(ρ) = 1.
We conclude by the construction of the symbolic exis-
tential quantifier (see (8)) and the unfolding of lookups.
Else Lη(∃α. |t|)(ρ) = 0 and the result is trivial.

(49) Consequence of (48).

This serves as a proof of Property 4.

Appendix C.
Soundness Theorems

In this section, we formally define the notion of formulas
with bounded Skolem normal form and proceed to prove
Theorem 3.

Notations. In this section, we use α and β to refer to indices
and/or timepoints when the distinction between the two is
irrelevant.

We write ⊨ ϕ to say that ϕ is valid in FOL, i.e., ϕ is
satisfied by any model.

C.1. Some definitions

Let us begin by introducing some definitions. For con-
ciseness, let E0 :=E(N ,F , I, C,S). We define Sk as a set
of Skolem symbols, andEsk(E0,Sk) as the logic extending
E0 with those Skolem symbols.

Definition 12 (Sequences of Sets of Random Tapes). We
write ΩN as the set of sequences of Ω. We also define the
ring (Ω,∆,∩) as follows:

1) (Aη)η∈N ∆ (Bη)η∈N := (Aη ∆Bη)η∈N;
2) (Aη)η∈N ∩ (Bη)η∈N := (Aη ∩Bη)η∈N;

where ∆ is the symmetric difference. We also include the
union ∪ as A ∪B := A∆B ∆ (A ∩B).

Definition 13 (Negligible Family). A family (or sequence)
(Sη)η∈N of subsets of Ω is negligible if Probρ(Sη) =
negl(η). We write Ωnegl the set of such sequences.

Definition 14 (Skolem Model). A Skolem model Msk maps
terms of Esk(E0,Sk) to E0 such that it is the identity on
every symbol except those of Sk.

Definition 15 (Finite Term). A domain functionD over Sk
is a function from Esk(E0,Sk) to the finite sets of E0 such
that for all u = f(v⃗) that is not of the form sk() (with
sk ∈ Sk), we have D(f(v⃗)) =

{
f(u⃗)

∣∣u⃗ ∈D(v⃗)
}

where f
stands for any application-like construction (i.e., anything
but constant symbols).

Definition 16 (Extended Cryptographic Model). An ex-
tended cryptographic model K is composed of

• a cryptographic model L;
• a family of Skolem models

(
Mη,ρ

sk

)
η,ρ

;
• a domain functionD over Sk.

such that
1) Kη(|t|)(ρ) = Lη

(∣∣Mη,ρ
sk (t)

∣∣)(ρ)
2) Kη(S)(ρ) = Lη

(
Mη,ρ

sk (S)
)

3) for all term u, we have

Kη

(∨
v∈D(u), β⃗=fv(v)

∃β⃗. v = u

)
(ρ) = 1 (51)

where β⃗ is a list of variables over timepoints and/or
indices.

Definition 17 (Model Extension). Let L be a model over a
logic E . A model K over E ′ extends L when E ⊆ E ′ and
for all η, ρ, and φ ∈ E , we have Lη(φ)(ρ) = Kη(φ)(ρ).
We write it L ⊴ K. We also say that K covers L.

Definition 18 (Formula with Bounded Skolem Normal
Form). A formula φ ∈ E0 with u⃗ = fv(φ) has a bounded
Skolem normal form if we can find a finite Sk and a domain
functionD over Sk such that:

1) the Skolem normal form ∀u⃗, v⃗. φsk of ∀u⃗. φ uses only
symbols of Esk(E0,Sk);

2) for all cryptographic model L, we can find an extended
cryptographic model KL usingD such that:

a) L ⊴ KL;
b) for all u⃗ ∈ E0,

if Lη(φ{u⃗ 7→ u⃗})(ρ) = 1

then Kη(∀v⃗. φsk{u⃗ 7→ u⃗})(ρ) = 1 (52)

C.2. Some properties

Property 10 (Model Extension as Order). ⊴ is a partial
order over models and a preorder over sets of models.

Property 11. Ωnegl is an ideal of
(
ΩN,∆,∩

)
.

Proof:

C ⊨P A C ⊨P B

C ⊨P A ∧B
∧-INT

C ⊨P A ∧B

C ⊨P A
∧-EX-1

C ⊨P A ∧B

C ⊨P B
∧-EX-2

C ⊨P A

C ⊨P A ∨B
∨-INT-1

C ⊨P B

C ⊨P A ∨B
∨-INT-2

C ⊨P A ⊨ A⇒ B

C ⊨P B
MP

C ′ ⊨P A C ⊴ C ′

C ⊨P A
RSTR

⊨ A

C ⊨P A
FOL

Note that in MP, A⇒ B needs to be valid in FOL.
Figure 9: Some Sequent Rules

1) Let (Aη)η∈N, (Bη)η∈N ∈ Ωnegl:

Probρ(Aη ∆Bη)

= Probρ(Aη) + Probρ(Bη)− 2Probρ(Aη ∩Bη)

≤ Probρ(Aη) + Probρ(Bη) = negl(η)

2) Let (Aη)η∈N ∈ ΩN and (Bη)η∈N ∈ Ωnegl:

Probρ(Aη ∩Bη) ≤ Probρ(Bη) = negl(η)

Property 12. The rules in Fig. 9 are sound.

Proof: Consequences of Property 11.

Lemma 1. If ∆ and Γ have a bounded Skolem normal form,
then we can find a Sk and D such that both formulas’
Skolem normal forms are in Esk(E0,Sk) withD, and we
can make use of the same K.

Proof: ∆ has a bounded Skolem normal form with
Sk∆ and D∆, and Γ with SkΓ and DΓ. W.l.o.g. we can
assume Sk∆∩SkΓ = ∅. Let Sk = Sk∆∪SkΓ, u⃗ = fv(∆),
and v⃗ = fv(Γ).

We define:

D(u) =



⋃
v⃗∈D(u⃗)

D∆(sk∆(v⃗))

if u = sk∆(u⃗) with sk ∈ Sk∆⋃
v⃗∈D(u⃗)

DΓ(skΓ(v⃗))

if u = skΓ(u⃗) with sk ∈ SkΓ{
f(u⃗)

∣∣u⃗ ∈D(v⃗)
}

if u = f(v⃗)
(53)

Let us show that ∆ has a bounded Skolem normal form
with Sk∆ ∪ SkΓ andD:

1) because Esk(E0,Sk∆) ⊆Esk(E0,Sk∆ ∪ SkΓ)
2) Let L be a cryptographic model and K∆ and KΓ its

extension according to Definition 18’s (2). Let us build
K such that K∆ ⊴ K and KΓ ⊴ K. We choose
MK

sk

∣∣
Sk∆

= MK∆

sk

∣∣∣
Sk∆

and MK
sk

∣∣
SkΓ

= MKΓ

sk

∣∣∣
SkΓ

. K

is fully defined.

Moreover, by induction, we show that K follows Defi-
nition 16’s (3) and Definition 17. Thus,

K∆ ⊴ K and KΓ ⊴ K (54)

By Property 10 we get Definition 18’s (2)a, and (54)
gives us Definition 18’s (2)b.

By symmetry, we also get the result for Γ.

Property (7). The notion of bounded Skolem normal form
is stable by conjunction and disjunction.

Proof: Let ∆ and Γ be two formulas with a bounded
Skolem normal form using Sk and D (as per Lemma 1)
and u⃗ and v⃗ be their respective free variables. Let ⋆ stand
for ∨ or ∧.

Let ∀u⃗, u⃗′. ∆sk and ∀v⃗, v⃗′. Γsk be the Skolem nor-
mal form of ∆ and Γ respectively as defined in Defini-
tion 18’s (1).

1) ∀u⃗, u⃗′, v⃗, v⃗′.∆sk ⋆ Γsk is a Skolem normal form of
∀u⃗, v⃗.∆ ⋆ Γ and is in Esk(E0,Sk).

2) Let L be a cryptographic model and K its extension as
defined in Definition 18.

a) L ⊴ K by definition.
b) For all u⃗ and v⃗, (55) is valid in FOL.(

(∆{u⃗ 7→ u⃗} ⇒ ∀u⃗′. ∆sk{u⃗ 7→ u⃗})
∧ (Γ{v⃗ 7→ v⃗} ⇒ ∀v⃗′. Γsk{v⃗ 7→ v⃗})

)
⇒

(
(∆ ⋆ Γ){u⃗, v⃗ 7→ u⃗, v⃗}
⇒ ∀u⃗′, v⃗′. (∆sk ⋆ Γsk){u⃗, v⃗ 7→ u⃗, v⃗}

)
(55)

We conclude using MP and the definition of ⊴.

Before proving Property 8, we first prove this convenient
property:

Property 13 (Model Extension). If L and K agree on all
quantifier-free terms of E0, then L ⊴ K.

Proof: By induction over φ.
1) The base cases are trivial (they are quantifier-free

formulas).
2) φ ∨ φ′ and ¬φ are also trivial due to the semantics

of L and K.
3) If φ is of the form ∃u. φ′, we then suppose that the

property holds for φ′{u 7→ u} when u ∈ E0 (u is quantifier
free).

If Lη(φ)(ρ) = 1 then Kη(φ)(ρ) = 1 as a term of E0 is
also a term of Esk(E0,Sk). If Lη(φ)(ρ) = 0 then let us
assume that Kη(φ)(ρ) = 1. It means that there is a term u
of Esk(E0,Sk) such that Kη(φ′[u])(ρ) = 1.

By Definition 16’s (3) and superposition we can find
a v ∈ D(u) such that Kη(∃α⃗. φ′{u 7→ v})(ρ) = 1
and α⃗ = fv(v). Thus, we can find a α⃗ such that
Kη(φ′{u 7→ vα⃗})(ρ) = 1 where vα⃗ := v{α⃗ 7→ α⃗}.

Then let β⃗ = Msk(α⃗), we still have
Kη

(
φ′
{
u 7→ vβ⃗

})
(ρ) = 1 with φ′

{
u 7→ vβ⃗

}
∈ E0

and vβ⃗
:= v

{
α⃗ 7→ β⃗

}
. This contradicts the induction

hypothesis.
4) φ is a universal quantifier. The result is a conse-

quence of 2 and 3.

Property (8). If φ is bounding and has a bounded Skolem
normal form, then ∃x. φ has a bounded Skolem normal
form.

Proof: Let x⊎ u⃗ = fv(φ) andD0 and Sk0 be what
∀x, u⃗. φ has a bounded Skolem normal form with. Let L be
a cryptographic model and K0 =

(
Msk

(0), . . .
)

its extension
as defined in Definition 18 for φ.

1) We define Sk := Sk0 ∪ {sk(1, . . . , n)} such that
sk ̸∈ Sk and ∥u⃗∥ = n. Then ∀u⃗. ∃x. φ can be skolemed in
Esk(E0,Sk). Indeed, let ∀v⃗. φsk be a Skolem normal form
of ∀x, u⃗. φ, then ∀u⃗.φ{x 7→ sk(u⃗)} is a Skolem normal
form of ∀u⃗. ∃x. φ.

2) Let us build K, an extension of L as in Defini-
tion 18’s (2). We define:

D
(
sk′(u⃗)

)
=

{
Du⃗

φ ∪ {fail} if sk′ = sk⋃
v⃗∈D(u⃗)D

(
sk′(v⃗)

)
otherwise

(56)

the rest ofD is defined recursively by Definition 15. Notice
thatD isD0 over Esk(E0,Sk0).

Since Lη()(ρ) is a first-order model we can construct
the set:

SKη,ρ
u⃗

:=


{t′|Lη(φ{x, u⃗ 7→ t′, u⃗})(ρ) = 1}

if Lη(∃x. φ{u⃗ 7→ u⃗})(ρ) = 1

{fail} otherwise
(57)

By noticing that we can find an ordering ≺E over the terms
such that it has a smallest element (e.g., a KBO [38]), we
build

Mη,ρ
sk (ϕ) :=

{
min≺E

(
SKη,ρ

Mη,ρ
sk (u⃗)

)
if ϕ = sk(u⃗)

Mη,ρ
sk

(0)
(ϕ) otherwise

notice that Msk is well defined as the number of sk strictly
decreases at each recursive call. Msk is a Skolem model that
matches Msk

(0) over Esk(E0,Sk0).
Let K :=

(
D,Msk , . . .K0

)
. We note that K is indeed

an extended model: it verifies Definition 16’s (3) because
φ is bounding. Indeed, reusing Definition 8’s notations, we
have:

SKη,ρ
u⃗ ⊆ Du⃗

φ ∪ {fail} (up to α-renaming) (58)

Then
a) It agrees with K0 all ground terms on Esk(E0,Sk0)

(all its components are the same on over that set), thus
it agrees with L on all ground terms of E0. Then by
Property 13 we have L ⊴ K;

b) let u⃗ ∈ E0, let us assume we have
Lη(∃x. φ{u⃗ 7→ u⃗})(ρ) = 1. By construction, we can find
t ∈ SKη,ρ

u⃗ such that Lη(φ{x, u⃗ 7→ t, u⃗})(ρ) = 1. Also,

by construction, we can suppose Mη,ρ
sk (sk(u⃗)) = Mη,ρ

sk (t).
Which lets us conclude.

C.3. The Theorems

This section provides a proof of Theorem 3.

Theorem (3). Let φ be a formula s.t. fv(φ) = u⃗, t a term,
and C a set of cryptographic models such that

1) φ has a bounded Skolem normal form;
2) for all v⃗, C ⊨P φ{u⃗ 7→ v⃗};
3) (∀u⃗. φ)⇒ |t| is valid in FOL;

then C ⊨P |t|.
Example (16). Recall Example 16. E0 rejects (24).

∀⃗ı, x. |n[⃗ı]| = |x| ⇒ n[⃗ı] ⊑ x (24)

At first glance, it seems we can recover Example 16
using Herbrand’s Theorem [39]. We indeed can show the
following lemma:

Theorem 5. Let φ be a formula of E0 with u⃗ := fv(φ), t
be a term of E0 and C a class of cryptographic models, if
we can find C′ and Sk such that

1) ∀u⃗, v⃗. φsk is a Skolem normal form of ∀u⃗. φ and is
part of Esk(E0,Sk);

2) C ⊴ C′;
3) for all u⃗ ∈Esk(E0,Sk), C′ ⊨P ∀v⃗. φsk{u⃗ 7→ u⃗};
4) ⊨ (∀u⃗. φ)⇒ |t| (in FOL);

then C ⊨P |t|.
Proof: (1) and (4) give us that (∀u⃗, v⃗. φsk)∧¬|t| is

unsatisfiable.
Then Herbrand’s theorem [39] gives us u⃗1, . . . , u⃗n,

v⃗1, . . . , v⃗n such that
(∧n

k=1 φsk{u⃗, v⃗ 7→ u⃗k, v⃗k}
)
∧ ¬|t| is

unsatisfiable. Thus

⊨
(∧n

k=1
∀v⃗. φsk{u⃗ 7→ u⃗k}

)
⇒ |t|

We conclude using (2), (3), and Property 12.
Unfortunately, item (3) is tricky to show as we have very

little control over the interpretation of the u if it contains
Skolems. We use the class of models from Definition 16 and
formula with bounded Skolem normal to regain control:

Theorem 6. Reusing the notation of Definition 18. Let φ ∈
E0 be a formula with a bound Skolem normal form and L
a cryptographic models with u⃗ := fv(φ) such that for all
ground u⃗ ∈ E0 we have L ⊨P φ{u⃗ 7→ u⃗}. Then for all
u⃗′ ∈Esk(E0,Sk) we have KL ⊨P ∀v⃗. φsk

{
u⃗ 7→ u⃗′}.

Lemma 2. Let K be as in Definition 16,

Kη
(∧

α∈T
φ
)
(ρ) = Kη(∀α. φ)(ρ) (59)

Kη
(∨

α∈T
φ
)
(ρ) = Kη(∃α. φ)(ρ) (60)

where α is an index or a timepoint. This naturally extends
to quantification over multiple variables.

Proof: Let φ be a formula and α its free variable.
(59) If Kη(∀α. φ[α])(ρ) = 0, then we can find α such that

Kη(φ{α 7→ α})(ρ) = 0. However, the unfolding β of
Mη,ρ

sk (α) is in T. Thus, by construction of the unfolding
and K, we get Kη(φ{α 7→ β})(ρ) = 0. Hence, the
equality.
Else Kη(∀α. φ)(ρ) = 1 and the result is trivial.

(60) Using (59).

Proof of Theorem 6: Let u⃗′ ∈Esk(E0,Sk) and u⃗ ∈
D

(
u⃗′) with α⃗ := fv(u⃗). We also use notations

u⃗β⃗
:= u⃗

{
α⃗ 7→ β⃗

}
(61)

Πu⃗ :=
∧

α⃗∈T
∀v⃗. φsk{u⃗ 7→ u⃗α⃗} (62)

Γ :=
∧

u⃗∈D(u⃗′)
α⃗=fv(u⃗)

∀α⃗, v⃗. φsk{u⃗ 7→ u⃗} (63)

∆ :=
∨

v⃗∈D(u⃗′)
α⃗=fv(v⃗)

∃α⃗. v⃗ = u⃗′ (64)

By assumption, for all α⃗ ∈ E0 we have L ⊨P
φ{u⃗ 7→ u⃗α⃗}. Thus, by Definition 18’s (2)b, KL ⊨P ∀v⃗.
φsk{u⃗ 7→ u⃗α⃗}.

Then, rule ∧-INT, gives us KL ⊨P Πu⃗. Finally, using
Lemma 2, we get KL ⊨P ∀α⃗, v⃗. φsk{u⃗ 7→ u⃗α⃗}.

Then, rule ∧-INT, gives us KL ⊨P Γ. And we also have
by construction of KL (Definition 16’s (3)) that KL ⊨P ∆.

Moreover ⊨ Γ ∧ ∆ ⇒ ∀v⃗. φsk

{
u⃗ 7→ u⃗′}. Thus we can

conclude using MP and ∧-INT.
Then Theorem 3 is the result of chaining Theorem 6 and

Theorem 5.

Appendix D.
Subterm definition

We define the overapproximated sets of subterms stP(t)
for a protocol P used in Definition 9 in Fig. 10.

Let F be a set of functions “ignored” by stP(t) and H
the set of terms using function as their head.

F := {IF THEN ELSE ≪ ; ≫, ∅} (69)

H :=
{
f
(
t⃗
)∣∣f ∈ F

}
(70)

Notations 1. Let S be a set of E20 , we write

S
η,ρ

L :=

[t{⃗ı 7→ σ(⃗ı)}]T
∣∣∣∣∣∣

(ϕ, t) ∈ S,

ı⃗ = fv(ϕ) ∪ fv(t),

Lη(ϕ{⃗ı 7→ σ(⃗ı)})(ρ) = 1


(71)

Where the σ are assignments of the variables.

For a BC term t, let stBC(t) be the set of its subterms.
In this section, we will focus on proving our claim that

⊑ really produces an overapproximation of stBC(). We
achieve this by showing Theorem 7.

Theorem 7. Let t ∈ E0, and L a cryptographic model

stBC

(
[t]

T
)
\H ⊆ stP(t)

η,ρ

L
(72)

Using monadic notations

sti cP (input(T)) := {(true, input(T))}

∪


1: a[⃗]← S
2: ϕ← true if 1 ∈ {i, c} else a[⃗ȷ] < T
3: m← {msg(a[⃗ȷ]), cond(a[⃗ȷ])}
4: (, t)← st1 c

P (m)
5: return {(ϕ, t)}


(65)

sti cP (c[⃗ı]!(T)) := {(true, c[⃗ı]!(T))}

∪


1: a[⃗]← S
2: ϕ← true if 1 ∈ c, i else a[⃗ȷ] ≤ T

3: (, t)← sti 1P
(
ua[⃗ȷ]

(
c
[
k⃗
]))

4: return {(ϕ, t)}


(66)

sti cP
(
Qα⃗.⃗t

)
:=

{(
true,Qα⃗.⃗t

)}
∪ sti cP

(
t⃗
)

(67)

sti cP
(
f [⃗ı]

(
t⃗
))

:=
{(
true, f [⃗ı]

(
t⃗
))}
∪ sti cP

(
t⃗
)

(68)

Where Qα⃗.t1, t2, t3 stands for FIND α⃗ SUCH THAT t1
THEN t2 ELSE t3. The ı⃗, ȷ⃗ and k⃗, when unbound, are fresh

variables.
Then stP(u) := st0 0

P (u).

Figure 10: Subterm sets

Using monadic notations

st□P(input(T)) := {(true, input(T))}

∪


1: a[⃗]← S
2: m← {msg(a[⃗ȷ]), cond(a[⃗ȷ])}
3: (, t)← st□P(m)
4: return {(a[⃗ȷ] < T, t)}

 (73)

st□P(c[⃗ı]!(T)) := {(true, c[⃗ı]!(T))}

∪


1: a[⃗]← S
2: (, t)← st□P

(
ua[⃗ȷ]

(
c
[
k⃗
]))

3: return {(a[⃗ȷ] ≤ T, t)}

 (74)

st□P
(
Qα⃗.⃗t

)
:=

{(
true,Qα⃗.⃗t

)}
∪ st□P

(
t⃗
)

(75)

st□P
(
f [⃗ı]

(
t⃗
))

:=
{(
true, f [⃗ı]

(
t⃗
))}
∪ st□P

(
t⃗
)

(76)

Where Qα⃗.t1, t2, t3 stands for FIND α⃗ SUCH THAT t1
THEN t2 ELSE t3. The ı⃗, ȷ⃗ and k⃗, when unbound, are fresh

variables.
Figure 11: Temporary Subterm Set

Consider the sets st□P() defined in Fig. 11.

Lemma 3. Let t ∈ E0, and L a cryptographic model

stBC

(
[t]

T
)
\H ⊆ st□P(t)

η,ρ

L
(77)

Proof: By induction over the size of [t]
T and then

by case analysis over t. Consider for instance the case t =

input(T). Let ∆ := stBC

(
[input(T)]

T
)
\H

(T)
T
= init, undef: Then ∆ = ∅ and we conclude.

(T)
T
= a[⃗ı]: A quick induction shows us that (remember

that ∧̄ is simply sugar over an IF):

∆ =
{
stBC{t′}\H

∣∣b <S a[⃗ı], t′ ∈ {msg(b), cond(b)}
}
(78)

Then let u ∈ ∆ with u ̸= input(T). We know that
u ∈ stBC

(
[msg(b[⃗ȷ])]T

)
(or cond(b[⃗ȷ])) with b[⃗ȷ] ∈ S

such that b[⃗ȷ] <S a[⃗ı]. That is we can find a assignment
σ such that u ∈ stBC

(
[msg(b[σ(ȷ⃗)])]T

)
(or cond(b[σ(ȷ⃗)])).

By induction u ∈ msg(b[⃗ȷ])
η,ρ

L
and since Lη(b[⃗ȷ] < a[⃗ı]),

we get u ∈ stBC(input(T))
η,ρ

L
.

Thus we conclude that

∆ ∈ stBC(input(T))
η,ρ

L
(79)

Lemma 4.
st□P(t)

η,ρ

L
⊆ stP(t)

η,ρ

L
(80)

Proof: By induction. The second set is less constrain-
ing on the side condition.

Proof of Theorem 7: By Lemma 3 then 4.
Finally to make stP() fully usable we must ensure it

is effectively computable:

Property 14. For all t, stP(t) is finite.

Proof: This comes from the fact that st1 1
P () do not

have conditions and are subsets of all the terms appearing
in the description of the protocol (which is finite). They are
the only recursively defined sets that do not decrease with
the structural ordering.

In practice, we compute stP() by memoizing the calls
to the inputs and the memory cells. This in turn is equivalent
to looking for connected parts of the graph of calls to inputs
and memory cells.

Appendix E.
Compatibility with squirrel

We remind in Fig. 12 the grammar used in the tool
SQUIRREL as defined in [20].

We write T S for the set of SQUIRREL terms that can be
built out of the non-grayed out grammar from Fig. 12, and
T C = S(N ,F , I, C,S) for CRYPTOVAMPIRE’s symbolic
terms (from Fig. 1). We define T : T S 7→ T C to map
between the two. Intuitively, T commutes with all non-
macro operators (including memory cells). Then

T
(
input@T

)
:= input(T (T)) (81)

Any other term is not supported. This corresponds to at least
all non-grayed out terms in Fig. 12. Most of the remaining
is recovered using Property 15. Effectively, the only non-
supported term is frame@T , which is rarely directly used.

The full description is in Fig. 13.

Lemma 5 (Steps). Let

a[⃗ı].
(
ϕa[⃗ı], oa[⃗ı],

{
s[⃗ȷ]← ua[⃗ı],s[⃗ȷ]

∣∣s ∈ C})

T := τ
∣∣ a[⃗ı] ∣∣ pred(T)

t := x
∣∣ c[⃗ı]@T

∣∣ n[⃗ı] ∣∣ f [⃗ı](t⃗)∣∣ input@T
∣∣output@T

∣∣ frame@T∣∣ if ϕ then t else t′∣∣ find ı⃗ such that ϕ then t else t′

A := t = t′
∣∣ i = i′

∣∣T = T ′ ∣∣T < T ′ ∣∣T ≤ T ′∣∣happens(T)
∣∣ cond@T

∣∣exec@T

ϕ := A
∣∣⊤ ∣∣⊥ ∣∣ϕ ∧ ϕ′ ∣∣ϕ ∨ ϕ′ ∣∣ϕ⇒ ϕ

∣∣¬ϕ∣∣ ∀i.ϕ ∣∣∃i.ϕ ∣∣ ∃τ.ϕ ∣∣ ∀τ.ϕ
Figure 12: SQUIRREL [20]’s syntax

be a SQUIRREL action, then, when applicable,

a[⃗ı] :=
(
T

(
ϕa[⃗ı]

)
,T

(
oa[⃗ı]

)
, λc

[⃗
j
]
.T

(
ua[⃗ı],c[⃗ȷ]

))
is a CRYPTOVAMPIRE step.

Using the λ notation to define functions.

We will then assume CRYPTOVAMPIRE and SQUIRREL
share their set of step/action names S.

Lemma 6 (Protocol). Let P = (Pact,U0, <) be a SQUIR-
REL protocol, then P = ({a[]|a[⃗ı] ∈ Pact}, <) is a CRYP-
TOVAMPIRE abstract protocol.

Proof: < is a partial order over {a[⃗ı]|a[] ∈ S}, thus
it is a preorder. Moreover, < is insensitive to the indices.
Finally, all steps may only refer to previous steps, and
memory cells do not have cyclic calls (as they only refer
to previous steps).

Lemma 7 (Trace). Let Tsq = (I,Dsq
T , <T , σI, σT) be a

SQUIRREL trace. Then T = (I,Dsq
T , σI, <T) is a CRYP-

TOVAMPIRE trace.

We write []
T
sq for the SQUIRREL expansion.

Theorem (Interoperability (1)). For any computational
model4, SQUIRREL protocol (and its CRYPTOVAMPIRE
variant), trace T over it, security parameter η and random
tapes ρ, we have

Lη(|T (t)|)(ρ) =
r
[t]

T
sq

zM

bc
(1η, ρ) (22)

Proof: By induction on the size of [t]Tsq where Prop-
erty 9 along with Lemma 2 and Property 4 tells us that
the unfolding of the quantifiers in CRYPTOVAMPIRE and
SQUIRREL can be assumed to be the same.

Property 15 (Translation of marcos). In SQUIRREL

⊢ cond@τ ⇔
∨

a[⃗ı]∈Pact

∃⃗ı.τ = a[⃗ı] ∧ cond@a[⃗ı] (82)

⊢ exec@T ⇔ (∀τ.τ ≤ T ⇒ cond@T) (83)

4The notion is the same for CRYPTOVAMPIRE and SQUIRREL as it
comes from the BC Logic and they share their function symbols

This lets us effectively use exec@T in CRYPTOVAMPIRE.

Proof: (82) by exhaustiveness of the steps and (83)
by induction on T .

Appendix F.
Cryptographic Axioms

In this section, we present the other cryptographic no-
tions we support, along with a proof sketch of their axiom.

F.1. No Guessing Theorem

In this section, we produce a proof for Theorem 2.

Theorem (2 No Guessing). It is not possible to guess honest
nonces. Formally, for all nonce n[] ∈ N , ground indices
ı⃗ ∈ I, and message m, we have

|n[⃗ı]| = |m| ⇒ n[⃗ı] ⊑ m (23)

Proof: Let n ∈ N and nonce name ı⃗ some indices
and m a message.

Suppose Lη(n[⃗ı] ⊑ m)(ρ) = 0 (notice that this then
holds for all ρ). By Theorem 7 we get that the random
variables Lη(n[⃗ı]) and Lη(m) are independants as m never
gets access to the relevant part of ρh.

Thus

Probρ(Lη(n[⃗ı] = m)) =
1

2η
= negl(η) (84)

We continue with a proof of Section 5.3.2’s version of
Theorem 2.

Theorem (4). For all nonces n ∈ N , (37) can be added to
the set of axioms

∀⃗ı,m. |n[⃗ı]| = |m| ⇒ n[⃗ı] ⊑◦ m (37)

where ⊑◦ is defined by (38) and is compatible with =̄.

m ⊑◦ |t| := ∀t′.(|t| = |t′| ⇒ m ⊑ t′). (38)

Proof: Let ∀u⃗.Γ be an axiom containing Theorem 2,
that is such that

⊨ (∀u⃗.Γ)⇒ ∀⃗ı,m. |n[⃗ı]| = |m| ⇒ n[⃗ı] ⊑ m (85)

Then by transitivity of =, we have

⊨ (∀u⃗.Γ)⇒ (37) (86)

Thus, for all t, a proof of ⊨ (∀u⃗.Γ) ⇒ |t| implies a proof
of ⊨ (∀u⃗.Γ)∧ (37)⇒ |t|. Therefore, Theorem 3 lets us add
(37) to the axiom pool while retaining the cryptographic
semantics of the proof (as long as Γ is a described in
Theorem 3).

Then the claimed compatibility with =̄ comes from (87).

⊨ ∀t, t′. m ⊑◦ t ∧ |t| = |t′| ⇒ m ⊑◦ t′ (87)

The nonce itself can be extracted from the reason-
ing modulo =̄ using a type system as described in Ap-
pendix G.1.

T (τ) := τ T (i) := i T
(
a[⃗ı]

)
:= a[⃗ı] T

(
pred(T)

)
:= pred(T (T))

T
(
happens(T)

)
:= happens(T (T)) T

(
c[⃗ı]@T

)
:= c[⃗ı](T (T)) T

(
n[⃗ı]

)
:= n[⃗ı]

T
(
f [⃗ı](t1, . . . , tn)

)
:= f [⃗ı]

(
T

(
t1
)
, . . . ,T

(
tn
))

T
(
input@T

)
:= input(T (T)) T

(
output@a[⃗ı]

)
:= msg(a[⃗ı])

T
(

cond@a[⃗ı]
)
:= cond(a[⃗ı]) T (t = t′) := T (t) ≡ T (t′) T (i = i′) := T (i) = T (i′)

T (T = T ′) := T (T) = T (T ′) T (T < T ′) := T (T) < T (T ′) T (⊤) := true T (⊥) := false

T
(
ϕ□ϕ

)
:= T

(
ϕ
)
□̄ T

(
ϕ
)

T
(
¬ϕ

)
:= ¬̄T

(
ϕ
)

T
(
Q⃗ı, τ⃗ .ϕ

)
:= Q̄⃗ı, τ⃗ .T

(
ϕ
)

T
(
if ϕ then t else t′

)
:= IF T

(
ϕ
)

THEN T (t) ELSE T (t′)

T
(
find ı⃗ such that ϕ then t else t′

)
:= FIND ı⃗ SUCH THAT T

(
ϕ
)

THEN T (t) ELSE T (t′)

where □ ∈ {∧,∨,⇒} and Q ∈ {∀,∃}.
Figure 13: Mapping between SQUIRREL’s terms and CRYPTOVAMPIRE’s

F.2. Euf-Cma

We already presented the axiom of MACs in Property 1.
We start from the BC rule from Property 3.

Proof of Property 3: We refer to previous work [19]
for a more in-depth proof.

The intuition is that assuming (14) does not hold, then
(m,σ) is a winning attacker to the EUF-CMA security game,
which contradicts the assumptions.

We can then lift to Property 1.
Proof of Property 1: We start from the BC formula:

CEUF-CMA ⊨bc verify(σ,m, k) ⇒̄
∨̄

H(u,k)∈stBC(m,σ)
u =̄m

(14)
By Theorem 7 and Property 5 we get that

CEUF-CMA ⊨bc verify(σ,m, k) ⇒̄
∨̄

H(u,k)∈stP(m,σ)
u =̄m

(88)
Turing (88) into a formula of E(N ,F , I, C,S) and

using Property 4, we get

CEUF-CMA ⊨P |verify(σ,m, k)| ⇒
∨

H(u,k)∈stP(m,σ)
|u| = |m|

(89)
Which in turn (including the side condition in the formula)
gives us (2) for Property 1.

Very much the same way we show the public key version
of EUF-CMA:

Property 16 (Euf-Cma). When sign, verify and vk form
a signature scheme that is existentially unforgeable under

chosen message attacks (EUF-CMA), then the protocol P
satisfies the following:∣∣verify(σ,m, vk

(
k̄
))∣∣⇒(

k ⊑sign(,•),vk(•) m,σ,P
∨ ∃u.

(
sign

(
u, k̄

)
⊑ m,σ ∧ |u| = |m|

)) (90)

where k is a Nonce.

Since the subterm relation is a bounding formula (Def-
inition 8), Properties 6 and 7 tell us that we can expand
Property 1 and Property 16 from axioms schemas into
formula with bounded Skolem normal form.

F.3. Int-Ctxt

Property 17 (Int-Ctxt). When senc and dec form a sym-
metric encryption scheme that conserves the integrity of the
ciphertext (INTCTXT), any protocol P verifies:∣∣verify(c, k̄)∣∣⇒

∃m, r.
(∣∣senc(m, r, k̄

)∣∣ = |c| ∧ senc
(
m, r, k̄

)
⊑ c

)
∨ k ⊑′

senc(, ,•),sdec(,•),verify(,•) c,P
∨ ¬senc-randP

k (u) (91)

where k is a Nonce and verify(c, k) := dec ̸≡ fail.
senc-randP

k (u) holds when in all instances of cr =
senc

(
m, r, k̄

)
appearing in the extension of u in any trace,

r is of the form r̄ and only appear in u in cr.

Proof: This is a similar lifting of a rule from [19].

Appendix G.
Engineering Details

G.1. Effective First-Order Representation

As presented in Section 4.1, the main first-order formal-
ization challenges revolve around the interactions (or lack
thereof) between =̄ and ⊑.

Therefore, efficient first-order reasoning within CRYP-
TOVAMPIRE crucially depends on built-in, native support for
(i) efficiently distinguishing when to use = and =̄ in order
to quickly evaluate the subterm relation (e.g., inferring that
x is a subterm of x ∧̄ y). Additionally, (ii) base formulas
should also be handled efficiently (e.g., ∧̄ should be treated
as a logical conjunction).

We resolve these issues in CRYPTOVAMPIRE, by (i)
considering multi-sorted first-order representations of Sec-
tion 4, for which we propose extensions to the SMT-LIB type
system [40]. To this end, we declare symbolic terms (t in
Fig. 1) as datatypes, allowing us to distinguish between three
main types: Message (symbolic bitstring computations that
can be sent over the network), Condition (symbolic boolean
computations), and Nonce. We introduce the function n̄ to
map Nonce to Message, enabling us to “distinguish” honest
nonces in cryptographic axioms and speed up reasoning with
= using types. Similarly, we enumerate possible CRYPTO-
VAMPIRE steps via datatypes, introducing the type Time.

Further, symbolic quantifiers and lookups (e.g., ∃̄i.ϕ) are
named in the following sense: for each term t denoting
a symbolic quantifier Qx⃗.y⃗, where Q is ∀̄, ∃̄, or FIND
SUCH THAT THEN ELSE , we introduce a new honest

function fQ. Here, the function fQ takes the free variables
of t as its arguments. We additionally consider the respec-
tive axioms for |fQ(. . .)| and subterm relations, such as
instances of axiom (34).

For efficient reasoning modulo =̄, (ii) we introduce the
new sort Bitstring and, for each f [⃗] ∈ F , we consider a
free function |f | such that

|f [⃗ı](t1, . . . , tn)| = |f |(⃗ı, |t1|, . . . , |tn|) (92)

As such, Bitstring is used to denote the sort of evaluated
Message, whereas the built-in Bool represents the sort of
evaluated Condition. CRYPTOVAMPIRE’s Evaluated Logic
(Section 4.2) is represented as is using standard Boolean
connectives.

The above considerations (i)–(ii) provide first-order en-
codings for CRYPTOVAMPIRE formalization. To turn rea-
soning over such encodings efficient, we introduce various
modifications to the saturation-based theorem proving over
CRYPTOVAMPIRE encodings, complemented with prepro-
cessing heuristics.

G.2. Customized Subterm Relations

Unfortunately, this general subterm relation ⊑ is often
not expressive enough for our class of problems. Already
in the EUF-CMA axiom (Property 1 of Section 2), we use

⊑verify(, ,•),H(,•). This means we ignore the positions of
the key when looking for subterms through H(,) and
verify(, ,).

In the general case, we write ⊑f [⃗](1,...,•j ,..., n) for some
f [⃗] ∈ F to express that one should ignore the jth argument
when looking through f . Such a relation cannot be expressed
solely through the base ⊑. Therefore, we introduce it as a
brand-new binary relation that closely resembles ⊑. CRYP-
TOVAMPIRE computes new sets st

f [⃗](1,...,•j ,..., n)
P () and

we describe the relation to the theorem prover by adapting
the axioms of Fig. 4 to st

f [⃗](1,...,•j ,..., n)
P (). In particular,

the instance of axiom (33) for f is replaced by:

∀t, t1, . . . , tn, ı⃗.
t ⊏f [⃗](1,...,•j ,..., n) f [⃗ı](t1, . . . , tn) ∧ t = tj ⇒∨n

k=1
k ̸=j

t ⊑f [⃗](1,...,•j ,..., n) tk

(93)

∀t, t1, . . . , tn, ı⃗.
t ⊏f [⃗](1,...,•j ,..., n) f [⃗ı](t1, . . . , tn) ∧ t ̸= tj ⇒∨n

k=1
t ⊑f [⃗](1,...,•j ,..., n) tk

(94)

Example 19 gives an example of such a customized
subterm relation.

Example 19. With the simpler case of ⊑H(,•), we replace
the instance of Equation 33 where f is H with

∀t,m. t ⊏H(,•) H(m, t)⇒ t ⊑H(,•) m (95)
∀t,m1,m2.(

t ⊏H(,•) H(m1,m2) ∧ t ̸= m2

)
⇒

2∨
k=1

t ⊑H(,•) mk

(96)

Such customization naturally extends to more than one
function and more than one argument position.

G.3. Forcing Rewritings

Saturation-based provers rely on term orderings to keep
their proof search small [41], by ensuring that smaller terms
(w.r.t. the ordering) are not rewritten by equal larger terms.
To further reduce the application of equality (and thus
rewritings of equal terms), we use equality reasoning based
on =̄ by using the Bitstring sort from Section G.1. Doing
so, we orient the axiom (92) as∣∣f [⃗I](t1, . . . , tn)∣∣ →= |f |(I⃗ , |t1|, . . . , |tn|) (92)

where →= denotes that
∣∣f [⃗I](t1, . . . , tn)∣∣ is bigger than (and

thus should be rewritten by) |f |
(
I⃗ , |t1|, . . . , |tn|

)
. Such an

orientation goes, however, against standard orderings, as, for
example, constants/unary functions are usually smaller than
function symbols of those of higher arity.

To enforce (92), we introduce additional orderings over
CRYPTOVAMPIRE terms; while these extensions may not
preserve refutational completeness, our experiments show
overall good performance (see Section 6).

	Introduction
	Related Work
	Our contributions

	Overview
	First-Order Formalization of the Protocol
	Honest functions
	Honest randomness
	Cryptographic properties
	Protocol steps
	Protocol query

	Automated Verification of Protocol Queries
	Subterm reasoning
	Soundness challenges
	Further optimizations

	Preliminaries
	The BC Logic
	Modeling Protocols – The Symbolic Logic

	CryptoVampire Formalization: A First-Order Theory of Protocol Queries
	The Challenges of Protocol Queries
	Encoding challenges
	Soundness challenges

	Evaluated Logic
	Syntax
	Semantics
	Relation to the BC Logic and Squirrel

	Linking Cryptographic Semantics and Classical First-Order Logic
	The Problem with cryptography-related axioms
	Linking First-order and Cryptography Together

	CryptoVampire Reasoning for Proving Protocol Queries
	Subterm Relations in CryptoVampire
	Native Subterm Reasoning
	Preprocessing
	Instance preprocessing
	Removing subterm reasoning

	Experiments
	Conclusion and Further Work
	References
	Appendix A: Complete semantics
	Appendix B: Base Axioms
	Appendix C: Soundness Theorems
	Some definitions
	Some properties
	The Theorems

	Appendix D: Subterm definition
	Appendix E: Compatibility with squirrel
	Appendix F: Cryptographic Axioms
	No Guessing Theorem
	Euf-Cma
	Int-Ctxt

	Appendix G: Engineering Details
	Effective First-Order Representation
	Customized Subterm Relations
	Forcing Rewritings

