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Abstract—Searchable symmetric encryption has been vulner-
able to inference attacks that rely on uniqueness in leakage
patterns. However, many keywords in datasets lack distinctive
leakage patterns, limiting the effectiveness of such attacks. The
file injection attacks, initially proposed by Cash et al. (CCS
2015), have shown impressive performance with 100% accuracy
and no prior knowledge requirement. Nevertheless, this attack
fails to recover queries with underlying keywords not present
in the injected files. To address these limitations, our research
introduces a novel attack strategy called LEAP-Hierarchical
Fusion Attack (LHFA) that combines the strengths of both file
injection attacks and inference attacks. Before initiating keyword
injection, we introduce a new approach for inert/active keyword
selection. In the phase of selecting injected keywords, we focus
on keywords without unique leakage patterns and recover them,
leveraging their presence for document recovery. Our goal is to
achieve an amplified effect in query recovery. We demonstrate a
minimum query recovery rate of 1.3 queries per injected keyword
with a 10% data leakage of a real-life dataset, and initiate further
research to overcome challenges associated with non-distinctive
keywords.

Index Terms—Searchable symmetric encryption, Inference at-
tack, File injection attack, Access pattern

I. INTRODUCTION

Searchable Symmetric Encryption (SSE), introduced by
Song et al. in 2000 [1], addresses the need for efficient
search operations on encrypted datasets while maintaining
data confidentiality. With the increasing adoption of cloud
technology, there is a growing demand for searchable
functionality without compromising data security [2]. SSE
enables users to encrypt their data locally and upload it to
a server that may be curious but honest. Later, users can
retrieve specific documents by providing encrypted search
tokens, ensuring that no plaintext information is leaked in the
process. Since its inception, SSE techniques have undergone
significant enhancements and refinements through extensive
research efforts.

SSE Attacks: Despite the security guarantees provided by
encryption, there are potential leakages within SSE schemes,
as discussed in Section II. To exploit these vulnerabilities, SSE
attacks have been developed and can be broadly categorized
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into two main types: passive (inference) attacks and active (file
injection) attacks.

Inference attacks [3], [4], [5], [6], [7], [8], [9] have further
diversified into two subtypes: leakage abuse attacks and similar
data attacks. These attacks primarily exploit leaked plaintext,
either from the same dataset or a similar dataset, as well as
the relationship between search tokens and server responses
to extract hidden knowledge. The IKK attack [3] serves as
a notable example, marking the initial exploration of SSE at-
tacks. Subsequent research on inference attacks has showcased
advancements in query recovery accuracy while minimizing
the amount of data leakage required.

File injection attacks [4], [6], [10] constitute another branch
of SSE attacks. These attacks involve tricking users into
uploading files containing specific keywords designed by the
attacker. The attacker learns the underlying encryption files of
those injected documents by observing their arriving time or
volume, and with this knowledge, the response file returned
for a query allows immediate determination of the underlying
keyword. File injection attacks are characterized by high
accuracy and do not require prior knowledge of leaked
documents. Recent investigations have aimed to minimize the
number of injected files needed for successful injection.

Motivation: During our revisitation of SSE attacks, we have
identified certain limitations and raised questions.

The experiments of existing inference attacks often employ
a relatively limited chosen keyword universe in their exper-
iments, such as the 5,000 most common keywords [6], [8],
[9]. This limitation is due to computational constraints and
the need for fair comparisons with previous attacks that used
the same keyword universe. However, the accuracy of these
attacks when applied to larger-scale keyword universes has not
been thoroughly evaluated. Our study conducted tests using
the VAL attack with a wider keyword universe, revealing a
significant decrease in accuracy from 99% to 42%, as shown
in Section III. This decrease can be attributed to the presence
of keywords inherently lacking a unique appearance pattern,
making their recovery challenging through inference.

In the domain of file injection attacks, the conventional
approach to minimizing the number of injected files focuses
on exploring new arrangements of keywords within the



injected files. However, drawing from our insights gained
through the study of inference attacks, we raise an important
question: Is it possible to infer queries based on the recovered
injected keywords? In other words, we aim to design an
attack that acts as an amplifier, recovering not only the
injected keywords but also additional ones.

Our Contribution: Our study makes significant contributions
in two main areas. Firstly, we conduct a thorough analysis of
the dataset and introduce a novel classification of keywords
based on their possession of a unique leakage pattern. This
classification sheds light on the inherent limitations of in-
ference attacks, providing a comprehensive understanding of
their effectiveness and challenges. Secondly, drawing insights
from LEAP and Hierarchical Search attacks, we merge their
strengths to propose a novel attack method known as the
LEAP-Hierarchical Fusion Attack (LHFA). This innovative
attack introduces an amplification effect in file injection attacks
while overcoming the inherent limitations of inference attacks.

We evaluate the performance of our proposed attack using
three real-life datasets and compare the results with LEAP [8]
and VAL [9] to demonstrate that our approach surpasses the
query accuracy limitations of inference attacks. Furthermore,
we compare the ratio between injected and recovered key-
words with Hierarchical Search [11] and Decoding [6] attacks
to validate the successful achievement of the amplification
effect.

Through these contributions, our study provides valuable
insights and advancements in the field of SSE attacks, of-
fering novel techniques and a deeper understanding of their
capabilities and limitations.

II. BACKGROUND KNOWLEDGE

Within the realm of Searchable Symmetric Encryption
(SSE), data takes the form of a collection of documents
denoted as D, where each document is composed of a set of
keywords represented as W . SSE facilitates the searchability
of encrypted data through a series of steps, encompassing
encryption, query generation, and search procedures.

The encryption process initiates with the client locally
encrypting the dataset D into an equivalent set of encrypted
documents using a private key. Each encrypted document
contains a set of encrypted keywords referred to as queries,
denoted as Q. Subsequently, the encrypted dataset, denoted
as ED, is transmitted to the server, which is assumed to be
honest but inquisitive.

The phase of query generation precedes the actual search
operation. When the client desires to locate a specific docu-
ment, a query is generated locally utilizing the private key.
This query is then dispatched to the server. In response,
the server provides the encrypted documents that contain the
query. The client then decrypts these documents to extract
the desired content. In dynamic SSE [12], [13], additional
functionalities for adding and deleting data are incorporated.
An update algorithm is used to inform the server about

changes when data is added or removed, ensuring effective
maintenance and dynamic updates of the outsourced dataset.

Both basic and dynamic SSE schemes do not expose any
plaintext information to parties other than the client, thereby
maintaining a level of security.

A. Leakage in SSE

Despite the relative security of encryption in SSE, two
types of leakage can be exploited by SSE attacks.

Leakage Pattern: Leakage patterns can be discerned from
the communication between the client and the server without
exposing the actual content of the communication. These
patterns encompass the informational links between queries
and encrypted documents, thereby characterizing the identity
of a query, potentially allowing it to be distinguished from
other queries. To illustrate, access patterns and volume
patterns stand out as two common instances of leakage
patterns frequently employed in various SSE attack scenarios.
Access patterns unveil the relationships between queries
and server responses by defining a query through a set of
identifiers for encrypted documents that contain it. Volume
patterns scrutinize the volume of encrypted documents to
identify queries. By scrutinizing these patterns, attackers
can gain insights into establishing ownership connections
between encrypted documents and queries and consequently
extract more sensitive information through various attack
mechanisms, as elaborated in the following section.

Data Leakage: Data leakage represents an inescapable and
formidable challenge, not limited to SSE systems alone but
also prevalent in most encryption systems. Achieving absolute
control and prevention of data leakage proves to be a difficult
task since human factors are involved. It forms the basis for
inference attacks. The extent of data leakage is influenced by
encryption strength as well as user awareness and behavior.
Even if SSE scheme promises absolute security in encryption,
vulnerabilities such as attacker access to local devices or user
carelessness can lead to a data leakage.

B. Related Work

Table I provides a succinct overview of several existing SSE
attacks that we have studied.

Our investigation into inference attacks has unveiled a
crucial factor significantly impacting the final query recovery
rate: the attacker’s precision in keyword identification.

In the initial stages of inference attacks, like IKK, emphasis
was placed on utilizing co-occurrence probability matrices to
establish associations between keywords and queries. How-
ever, as research progressed, the most cutting-edge technique
emerged, focusing on the occurrence positions among matched
documents to define keywords. This shift in approach led to
improved precision and efficiency in inference attacks with
partial data leakage, as it involved first matching documents
and subsequently using those matches as references for query
recovery, rather than directly matching queries.



File injection attacks have a significant advantage in achiev-
ing 100% query recovery with no data leakage since their
inception. However, this advantage also implies that the scope
for further improvement in subsequent file injection attacks
is relatively limited compared to inference attacks. This is
because inference attacks are still working towards reaching
the same level of success in terms of high recovery accuracy
with minimal data leakage.

The introduction of the Binary Search attack marked a
significant breakthrough in reducing the required number of
injected documents for the attack. Subsequent attacks like
Decoding and Binary Variable-Parameter Attack (BVA) have
explored volume patterns, further enhancing the practicality
and efficiency of file injection attacks. Nevertheless, the study
of BVA revealed a trade-off between the number of injected
documents and the final query recovery rate.

In our comprehensive review of each attack, it became
evident that each one marks a noteworthy milestone, in-
troducing fresh ideas and approaches to the realm of SSE
attacks. Researchers continually endeavor to strike the optimal
equilibrium between the attack’s assumption and the query
recovery rate while tailoring these attacks to a wide range of
leakage scenarios.

We will provide a more comprehensive description of four
attacks that have significantly influenced our study.

Binary Search Attack [11]: This attack leverages the binary
search concept. Each injected file contains exactly half of the
keywords from the injected keyword universe K, resulting in
a maximum injected file size of ⌈log |K|⌉. The file i consists
of keywords from K whose ith bit is 1, ensuring that each
keyword has a unique access pattern among the injected files.
Through analysis of the presence or absence of keywords in
the returned files, the attacker can deduce the queried keyword
with a 100% accuracy rate.

As an example, consider a keyword universe with four
keywords represented as k0, k1, k2, and k3. These keywords
are assigned to two files File 1 and File 2, as illustrated in
Figure 1, where 1 denotes the presence of the corresponding
keyword and 0 indicates its absence. If, for instance, only
encrypted File 1 is present in the returned response, the
attacker can immediately deduce that the underlying keyword
for the corresponding query is k2, as it is the only keyword
exclusively contained in File 1.

Fig. 1. Example of Binary Search Attack

Hierarchical Search Attack [11]: The Hierarchical Search
attack addresses the drawback of the Binary Search attack,
where the conspicuous size of injected files can be detected.

This method involves partitioning the keyword universe
into subsets. Subsequently, the Binary Search attack is
applied to pairs of subsets individually. This approach
balances the injected file size and accuracy in query recovery
and results a set of injected files with maximum size of
⌈ |K|
2T ⌉ · (⌈log 2T ⌉ + 1) − 1, where T indicates the length of

limitation of each injected keyword subset.

LEAP Attack [8]: LEAP introduces a comprehensive
approach by considering the uniqueness of both keywords
and documents in the dataset. It compares the unique number
of keywords in each document and matches encrypted
documents with leaked ones. This process establishes a
reference standard for allocating uniqueness to keywords
found in the matched documents. By leveraging the identified
keywords, LEAP enables the discovery of additional
document matches, creating a positive feedback loop. This
loop continues until all target keywords and leaked documents
with uniqueness in access pattern are successfully matched.

VAL Attack [9]: VAL builds upon the foundation estab-
lished by LEAP and incorporates the use of volume patterns.
This approach enhances the distinctiveness of documents and
keywords, resulting in higher accuracy in both document
and query recovery, and resistance against countermeasures
targeting single leakage patterns.

Note that there are some other interesting attacks proposed
in recent literature, such as [14], [15], [16], [17], and we leave
them to interested readers.

III. REVISIT AND DISCOVERY

This section aims to provide the rationale and necessity
for combining inference attacks and file injection attacks
in our proposed attack. We discuss the limitations of file
injection attacks and the potential for leveraging leaked data.
Furthermore, we probe into the inherent limitation contributing
to unexpected outcomes observed in the replication of the
VAL attack, and this limitation is also shared by all existing
inference attacks. We also contemplate potential remedies to
surmount this limitation.

A. File Injection Attack

File injection attacks [6], [10], [11] have demonstrated two
notable strengths: 100% query recovery accuracy on injected
queries and the absence of a requirement for prior knowledge.
These attacks strategically organize target keywords within
injected files, establishing them as the most powerful type of
attack in the field of SSE. However, these strengths impose an
invisible limitation on file injection attacks.

The emphasis on achieving 100% accuracy restricts further
exploration in improving the accuracy of file injection attacks.
Specifically, the maximum size of the recoverable query is
constrained by the size of the injected keyword universe. The
strong assumption of not relying on data leakage overlooks
the potential utilization of leaked information that unavoidably
occurs in real-life scenarios.



TABLE I
OVERVIEW OF SSE ATTACKS

IN Attack1 Leakage Pattern2 Data Leakage Approach Target

IKK [3] AP All Keyword Co-occurrence Query
Count [4] AP,RLP Partial Keyword Co-occurrence, Response length Query
Shadow Nemesis [5] AP Similar Keyword Co-occurrence Query
Subgraph [6] ALP Partial Subset Query
LEAP [8] AP Partial Document Co-occurrence, Length Document, Query
VAL [9] AP,VP Partial Document Co-occurrence, Length, Volume Document, Query

FI Attack1 Leakage Pattern Injection Size3 Target

Binary Search [11] AP ⌈log |K|⌉ Query
Hierarchical Search [11] AP ⌈ |K|

2T
⌉ · (⌈log 2T ⌉+ 1)− 1 Query

Decoding [6] VP |K| Query
BVA [10] VP ⌈log |K|⌉ Query

Our Attack Leakage Pattern Data Leakage Injection Size4 Target

IN and FI AP Partial ⌈
|K|
β

2T
⌉ · (⌈log 2T ⌉+ 1)− 1 Document, Query

1 ‘IN’ represents inference attacks, while ‘FI’ stands for file injection attacks. Inference attacks are evaluated based on the size of data leakage and the approach
used for inference, and file injection attacks are compared based on the amount or number of injected files.
2 ‘AP’, ‘VP’, ‘RLP’, and ‘ALP’ correspond to Access Pattern, Volume Pattern, Response Length Pattern, and Atomic Leakage Pattern, respectively. Specifically,
RLP refers to the number of returned files, while ALP encompasses any pattern that exposes a characteristic of each matching document, including both AP
and VP.
3 |K| denotes the number of injected keywords and T means the length limitation of each document.
4 β represents the number of queries that can be recovered per injected keyword, and its value varies depending on the specific configuration or setting.

This leads us to ponder whether it is viable to formulate
an attack strategy that unveils the outcomes of attackers
employing file injection techniques to enhance their retrieval of
encrypted data while allowing assumptions based on partially
leaked information in plaintext.

B. Inference Attack

Prior to showcasing the limitations encountered by
inference attacks, we aim to present the results of our
replication of the VAL attack.

Reproduction. The aim of this replication is to validate the
results of the proposed inference attacks across a more diverse
range of keyword universes. The selection of the VAL attack
was motivated by its superior performance compared to its
foundational predecessor, LEAP, which had previously held
the most notable query recovery outcome among various infer-
ence attacks prior to the introduction of VAL. The reproduction
was executed using the Enron dataset [18] as the testing
dataset.

In Figure 2, the red lines illustrate the outcomes obtained
when employing the top 5000 most frequent keywords as the
keyword universe, mirroring the settings used in the VAL
attack. The results reaffirmed similar conclusions as those
proposed by VAL: document recovery consistently achieved
an accuracy rate of 98%, and query recovery accuracy consis-
tently exceeded 90%, even in scenarios featuring a 5% data
leakage. Furthermore, as the data leakage increased to 10%,
the accuracy of query recovery approached 100%.

However, when we expanded the keyword universe from the
most common 5000 keywords to include all known keywords
in the leaked documents, a significant increase in running time

was first observed. This heightened runtime can be attributed
to the recursive implementation of document recovery and
query recovery steps within the VAL attack logic, with its
duration notably impacted by the scale of the input query set.

Additionally, notable deviations in the results of query
recovery were identified, as depicted by the green line in
Figure 2b. The accuracy of query recovery with 5% leakage
dropped from above 90% to around 42%, with no significant
increase observed when the leaked data increased to 10%.
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Fig. 2. Results of VAL reproduction

To unravel the enigma surrounding this deviation attributed
to the enlargement of the keyword universe, we embarked on
an extensive investigation. This encompassed a meticulous
examination of the code used, a re-execution of the
experiment, and also a detailed scrutiny of the inherent
characteristics of the keywords themselves. This exploration
prompted us to put forward a new classification of keywords,
a topic that had not been elaborated upon in previous research.



Keyword classification. While previous research has primar-
ily focused on keyword frequency, alternative classifications of
keywords have received limited attention. To address this gap,
we propose a classification into two categories: inert keywords
and active keywords, named after the chemical terms “inert
gas” and “active gas,” respectively. Active keywords exhibit
a distinctive appearance pattern that enables their effective
differentiation from all other keywords. In contrast, inert
keywords lack a discernible appearance pattern; they often
share the same set of documents with one or more other
keywords.

43.5%

41.5% 15%

Active keyword
Inert keyword 1
Inert keyword other

Fig. 3. Keyword distribution structure of Enron. The pink area ‘Active
keyword’ in the pie charts represents the proportion of active keywords in
each dataset, while ‘Inert keyword 1’ represents inert keywords that appeared
in only one document. ‘Inert keyword other’ indicates inert keywords that
appeared in more than one document.

Upon analyzing the dataset using this new classification, we
discovered that the proportion of inert keywords is greater than
initially anticipated. Figure 3 illustrates this distribution. Out
of the total 63,029 keywords in the dataset, only 27,444 were
identified as active keywords. This accounts for approximately
43.5% of the total keywords. This finding aligns with the query
accuracy obtained during the replication of the VAL attack, as
depicted by the green line in Figure 2b, which approximates
the 43% mark.

The selection of the 5000 most common keywords used in
VAL exhibits a high proportion of active keywords. Using the
same classification approach, we found that 4996 out of the
5000 keywords were identified as active keywords, resulting
in an almost 100% classification rate. Consequently, the exper-
imental results reported in VAL achieved high accuracy due
to the dominance of active keywords within this subset.

The properties of inert keywords, in conjunction with
the comparison results, highlight the significant challenge
of achieving a relatively high query recovery accuracy for
inference attacks operating within the context of the entire
keyword universe, even without any countermeasures in place.

To surmount this challenge, inference attacks must either
unearth alternative leakage patterns capable of discerning
between two queries that appear identical in documents or
enlist the support of other SSE attacks that enable the creation
of artificial distinctive patterns for keywords. For instance, file
injection attacks have the capability to generate unique patterns
for specific target keywords.

IV. THE PROPOSED ATTACK: LHFA

In this section, we explain how our new attack works. The
attack is designed with the objective of assisting inference

attacks in addressing the limitation posed by inert keywords.
Additionally, it serves as an experimental solution to assess
the feasibility of generating an amplification effect for file
injection attacks. This attack is named the LEAP-Hierarchical
Fusion Attack (LHFA) as it is constructed upon the foundation
of the Hierarchical Search attack [11] while integrating the
concept put forth by the LEAP attack [8].

A. Notation

In our proposed attack, we consider a scenario with n server
documents (edi) and n′ leaked files (di). The query universe
extracted from the server documents consists of m queries
(qi), while m′ keywords (ki) can be extracted from the leaked
files. It is important to note that the index i does not imply a
direct correspondence between di and edi, or between ki and
qi. Table II provides a list of the notations used in our attack,
and their explanations will be provided subsequently.

TABLE II
SUMMARY OF NOTATIONS USED IN OUR ATTACK.

Notations Definition

D Plaintext document set, D = {d1, ..., dn}
ED Server document set, ED = {ed1, ..., edn}
D′ Leaked document set, D = {d1, ..., dn′}

W Keyword universe, W = {k1, ..., km}
Q Query set, Q = {q1, ..., qm}
W ′ Known Keyword set, W ′ = {k1, ..., km′} where W ′ ⊆ W
W ′

ac Active keyword set in known keywords, W ′
ac =

{k1, ..., km′
ac

} where W ′
ac ⊆ W ′

W ′
i Chosen keyword set, W ′ = {k1, ..., km′

i
} where W ′

i ⊆
W ′

IF Inject file set, IF = {id1, ..., idk}
EIF Encrypted injected file set, EIF = {eid1, ..., eidk}
T Limitation of the number of keywords in each document

|di| Number of keywords/queries in di
α Number of keywords selected from each document

C Set of matched documents
Ci Set of matched injected documents
R Set of matched queries
Ri Set of matched documents by file injection

B. Intuition

The research conducted in LEAP has shed light on a
valuable insight: the strategic inclusion of a document recovery
step as an intermediate objective holds the potential to enhance
query recovery substantially.

Our intuition is applying this insight to file injection attacks
with permit partial data leakage, enabling the creation of an
amplification effect. This can be achieved by strategically se-
lecting a subset of injected keywords. These injected keywords
should be capable of forming unique combinations to identify
the leaked documents effectively. Furthermore, these keywords
have the potential to be recovered through the file injection
and recovery process. After that, this subset is used to recover
the leaked documents, subsequently facilitating the recovery
of additional queries.



The crux of the matter lies in the selection of keywords for
injection. To maximize the amplification effect, the instinct is
to keep this set of injected keywords as concise as possible
while ensuring their presence in a significant number of leaked
documents, thereby enhancing the identification of more doc-
uments. Simultaneously, we aim to recover inert keywords.
Consequently, we choose to pick several inert keywords from
each leaked document to facilitate document identification.

The output of this attack is supposed to include both the
injected inert keywords and the active keywords that are not
part of the injected keyword universe.

The attack model is shown in Figure 4.

R
ec

ov
er

y

Recover W'i (HS)

Document Recovery: unique W'i   pattern

Query Recovery: Unique document pattern

Fi
le

 In
je

ct
io

n

IF generation (HS)

EIF

Encrypt
and Upload

Le
ak

ag
e q

Search and
Respond

{ed}

Observe Access Pattern

Obtain D' ED

User ServerAttacker

Keyword Classification

Recovered Query

W'i  Selection
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recovery in the figure.

Leaked Knowledge. In our attack scenario, we assume that
the attacker has gained knowledge of the leaked data and
the access patterns. So the attacker knows a set of leaked
documents D′ = {d1, ..., dn′}, the set of known keywords
W ′ = {k1, ..., km′}, the set of encrypted documents ED =
{ed1, ..., edn}, and the corresponding set of queries Q =
{q1, ..., qm}, where n′ ≤ n and m′ ≤ m. The attacker is also
aware of the number of keywords in the leaked documents |di|
and the number of queries in the encrypted documents |edj |.

C. Attack Procedure

The attack comprises three key procedure: keyword selec-
tion, file injection, and recovery. The objective is to recover
inert keywords through file injection and subsequently utilize
these recovered inert keywords for document recovery to
uncover additional active keywords.

The overall procedure of the attack is outlined in Algorithm
1. We will now provide a step-by-step explanation for each
procedure of the attack, together with corresponding detailed
algorithms.

Algorithm 1 LEAP-Hierarchical Fusion Attack (LHFA)

Input: A set of known document D′ and corresponding set
of known keyword W ′

Output: A set of mapped query R
1: procedure INITIALIZATION(D′, W ′)
2: W ′

ac ← KEYWORD CLASSIFICATION(D′,W ′) ▷
Alg. 2

3: return W ′
ac

4: end procedure

5: procedure KEYWORD SELECTION(D′, W ′
ac, α)

6: Initialize an empty list W ′
i

7: W ′
i ← KEYWORD SELECTION(D′,W ′

ac, α) ▷ Alg. 3
8: return W ′

i

9: end procedure

10: procedure INJECTION(W ′
i , T )

11: IF ← INJECT FILES HIERARCHICAL(W ′
i , T ) ▷ file

injection algorithm of HSA
12: return IF
13: end procedure

14: Inject IF and observe Q, ED and Ci

15: procedure RECOVERY(Q, ED, W ′, Ci, W ′
i )

16: Ri ← RECOVER HIERARCHICAL(Ci,W
′
i ) ▷

Recovery algorithm of HSA
17: C ← DOCUMENT RECOVERY(ED,D′, Ri) ▷ Alg. 4
18: R← REMAINING KEYWORD RECOVERY(C,Q,W ′)

▷ Alg. 5
19: return R
20: end procedure

Initialization. After obtaining the leaked documents D′, we
proceed to extract the corresponding keyword set W ′. The
attacker then categorizes the extracted keywords into two
distinct groups: active keywords, denoted as W ′

ac, and local
inert keywords, and local inert keywords that ki ∈ W ′ and
ki /∈W ′

ac. Algorithm 2 outlines the procedure for distinguish-
ing active keywords from W ′, and the local inert keywords
are identified as the keywords in W ′ but not present in W ′

ac.
Active keywords are those that exhibit unique patterns

in D′ and implies to also be active keywords in the entire
dataset. On the other hand, keywords that do not display
uniqueness within D′ may still exhibit unique patterns in
documents that were not leaked. Hence, these keywords are
referred to as local inert keywords.

Algorithm 2 Keyword Classification



Input: A set of known document D′ and corresponding set
of known keyword W ′

Output: A set of active keyword W ′
ac

1: procedure KEYWORD CLASSIFICATION(D′, W ′)
2: Initialize an empty dictionary Combination and an

empty list Count
3: for i = 1→ #W ′ do
4: com← [wi in dj where dj ∈ D′]
5: if com not in Combination then
6: Count.append(1)
7: Combination[len(Count)−1][′com′]← com
8: Combination[len(Count)−1][′keyword′]←

wi

9: else
10: index← key of com in Combination
11: Count[index]← Count[index] + 1
12: end if
13: end for
14: Initialize an empty list W ′

ac

15: for i = 1→ #Count do
16: if Count[i] == 1 then
17: W ′

ac.append(Combination[i][′keyword′])
18: end if
19: end for
20: return W ′

ac

21: end procedure

Keyword Selection. Upon acquiring the set of active keywords
W ′

ac, Algorithm 3 is employed with W ′
ac as input to determine

the keywords selected for injection.
For each document, α keywords, specifically those not

belonging to W ′
ac—referred to as local inert keywords—are

chosen to represent the document. This decision is motivated
by the idea that the chosen keywords are meant to undergo
the file injection black box process, thereby developing their
unique access pattern through this procedure. Active keywords
that already exhibit a unique pattern would undergo redundant
computation, making it more effective to employ the file
injection process exclusively for recovering keywords lacking
distinct patterns—namely, the local inert keywords in this
context.

If number of local inert keywords in a document is less
than α, the remaining keywords are chosen from W ′

ac based
on their lowest frequency in the document. The algorithm
returns a set of selected keywords W ′

i , where the maximum
size of W ′

i is α · n′.

Algorithm 3 Keyword Selection

Input: A set of known document D′, a set of active keyword
W ′

ac and a variable α
Output: A set of chosen keyword for injection W ′

i

1: procedure KEYWORD SELECTION(D′, W ′
ac, α)

2: Initialize an empty list W ′
i

3: for i = 1→ #D′ do
4: k ← α keywords in di, that keywords /∈W ′

ac

5: if |k| < α then
6: add α− |k| least frequent keywords in di, and

keywords ∈W ′
ac to k

7: end if
8: W ′

i ←W ′
i ∪ k

9: end for
10: return W ′

i

11: end procedure

File Injection Black Box. We utilize the injection and re-
covery algorithm derived from the Hierarchical Search Attack
(HSA) [11] as a black box for executing the injection step.

Given that HSA offers an advantage over Binary Search
Attack (BSA) by addressing threshold countermeasures while
maintaining a consistent 100% query recovery accuracy un-
affected by other countermeasures, it stands as a preferable
option.

With input the selected keywords W ′
i that contains m′

i

keywords and a maxi length of each injected file T , the
injection algorithm return a set of files for injection IF , and
the maximum size of IF is ⌈m

′
i

2T ⌉ · (⌈log 2T ⌉+1)−1 by [11].
We encrypt the IF as EIF and inject it into the server. By

observing the arrival time, we obtain the document matching
Ci, which represents the match between the injected fils EIF
and the server files IF . We then input Ci, W ′

i , and the
collected access patterns of ED and Q into the recovery black
box.

The anticipated outcome of the entire black box is
a recovered query set denoted as Ri, encompassing the
mapping between injected keywords and their corresponding
queries. The size of Ri is expected to be |Ri| = |W ′

i |,
aligning with the 100% accuracy asserted by HSA [11].

Document Recovery. In Algorithm 4, the recovered keyword
set Ri is used to bootstrap the document recovery process.
With input Ri we define each document di in D′ as a set of
queries {q1, ..., qa}, and then find the candidates for matching,
for q ∈ Ri and a ≥ α. The candidates are server documents
edi that have the same set of queries as di. In this attack, we
focus on a single match scenario, which means that if there
is only one candidate in the set, we consider edi to be the
underlying encrypted document of di, and obtain the mapped
document set C.

Algorithm 4 Document Recovery

Input: A set of known document D′, a set of server document
ED, a set of mapped queries by file injection Ri

Output: A set of mapped document C
1: procedure DOCUMENT RECOVERY
2: Initialize an empty dictionary C
3: for edi ∈ ED do
4: edi ← {q1, ...qa}, for q ∈ Ri

5: end for
6: for di ∈ D′ do
7: di ← {q1, ...qb}, for q ∈ Ri



8: end for
9: for di ∈ D′ do

10: candidates← edj for j ∈ [n] where {q1, ...qb} ==
{q1, ...qa}

11: if |candidates| == 1 then
12: C[candidates[0]]← di
13: end if
14: end for
15: return C
16: end procedure

Remaining Keyword Recovery. In Algorithm 5, the utiliza-
tion of the mapped document set C is directed towards the
objective of matching additional keywords that are not part
of the selected injected set W ′

i . More precisely, the goal is
to map all active keywords within the mapped documents by
discerning their unique access patterns.

For each keyword in W ′ that is not in W ′
i , we define it

based on a set of documents {d1, ..., db} where d ∈ C, and it is
matched uniquely with a query that can be defined by the same
set of documents. We merge the newly matched keywords with
Ri to obtain the final set of mapped queries in the attack,
denoted as R.

Algorithm 5 Remaining Keyword Recovery

Input: A set of mapped document C, a set of query Q, a set
of known keywords W ′, a set of mapped queries Ri

Output: A set of mapped queries R
1: procedure REMAINING KEYWORD RECOVERY
2: for wi ∈W ′ do
3: if wi ∈ Ri then
4: remove wi from W ′

5: else
6: wi ← {d1, ...dα}, for d ∈ C
7: end if
8: end for
9: for qi ∈ Q and qi /∈ Ri do

10: if qi ∈ Ri then
11: remove qi from Q
12: else
13: qi ← {d1, ...dα}, for d ∈ C
14: end if
15: end for
16: for wi ∈W ′ do
17: candidates ← qj for j ∈ [|Q|] where
{d1, ...dα} == {d1, ...dα}

18: if |candidates| == 1 then
19: R[candidates[0]]← wi

20: end if
21: end for
22: return R
23: end procedure

V. EXPERIMENT

In this section, we will provide an overview of the ex-
perimental setup, including the dataset used and the data

processing steps. Following that, we will introduce the bench-
mark used to evaluate the performance of the proposed attack.
Finally, we will present and analyze the results obtained from
the experiments.

A. Setup

During our experiments, we evaluated the performance
of the proposed attack by conducting tests on three real-
life datasets: Enron [18], Lucene [19], and Wikipedia. These
datasets were also used in the VAL attack [9]. Table III
provides a summary of the datasets used, offering a brief
overview of each.

TABLE III
SCALES OF DATASETS

Dataset Enron Lucene Wikipedia

No. of documents 30,109 51,317 20,000
No. of keywords 63,029 92,976 148,367

• Enron: A publicly available collection of email com-
munications generated by 150 senior managers of Enron
Corporation. We specifically selected the emails from the
sent_mail folder, which consists of 30,109 emails.

• Lucene: An email listing dataset capturing communica-
tion between users and PyLucene Developers. We focused
on the “java-user” category, dedicated to addressing user
issues. The chosen dataset covers a period from 2001 to
2011, with data available from September to December
in 2001. It includes a total of 51,317 emails.

• Wikipedia: A widely recognized online encyclopedia
created and maintained by a community of volunteers. We
obtained a subset of 20,000 articles from a simple wiki
dump provided by David Shapiro [20]. The dataset has a
size of approximately 1.19 GB after decompression1.

To preprocess the datasets, we removed common English
stopwords using the NLTK package [21] in Python, and
obtained the number of keywords that listed in Table III. This
step helps filter out frequently occurring words that do not
contribute significantly to the analysis.

Active keyword Inert keyword 1 Inert keyword other

(a) Lucene (b) Wiki(20000 files)

Fig. 5. Keyword Distribution of Dataset

We then analyzed the distribution of keywords in Lucene
and Wikipedia as shown in Figure 5. Both datasets had a

1https://dumps.wikimedia.org/simplewiki/latest/simplewiki-latest-pages-
articles-multistream.xml.bz2



similar distribution, with approximately 33.7% active key-
words and 66.3% inert keywords for Lucene, and approxi-
mately 33.8% active keywords and 66.2% inert keywords for
Wikipedia. However, Lucene had a higher proportion (7.8%)
of inert keywords that appeared in more than one document
compared to Wikipedia (2.5%). The keyword distribution of
Enron is depicted in Figure 3.

To assess the effectiveness of the attack, we conducted eval-
uations with varying percentages of leaked dataset, including
0.1%, 0.5%, 1%, 5%, and 10%. Additionally, we explored
different values of α (2, 3, 5, and 10), and each experiment
was repeated 10 times.

B. Evaluation Criterion

We will assess the performance of LHFA attack based on
their results in both document and query recovery.

The accuracy of document recovery gauges the proportion
of leaked documents D′ that have been correctly recovered.
It is computed as the ratio of correctly matched documents in
the set C to the total number of leaked documents, excluding
the injected document set:

ACCd =
|correct match in C|

|D′|
× 100%

Query recovery accuracy is evaluated from two perspectives.
The first aspect assesses how many queries have been correctly
matched to their underlying keywords across the entire key-
word universe. Given that our approach involves employing
partial keywords to identify document identities via injection,
which are subsequently recovered and utilized to initiate the
recovery of remaining keywords within the recovered docu-
ments, this metric encompasses both queries recovered during
the injection stage and those retrieved during the subsequent
keyword recovery stage. The formula is outlined as follows:

ACCq =
|correct match in R|

|W ′|
× 100%

The second aspect evaluates how many active keywords are
correctly recovered among all active keywords in the keyword
universe. This measure is represented as the ratio of correctly
matched active keywords Ra = {ka} where ka ∈ R and ka ∈
W ′

ac to all active keywords W ′
ac:

ACCq =
|correct match in Ra|

|W ′
ac|

× 100%

In addition to document and query recovery accuracy, we in-
troduce a criterion to analyze the amplification effect achieved
by the attack: the rate of return. This indicator evaluates, on
average, how many keywords can be recovered by a single
injected keyword. It is calculated as follows:

rate of return =
|correct match in R|

|W ′
i |

A higher rate of return signifies a more effective strategy in
terms of query recovery capabilities.

C. Result and Comparison
The document and query recovery results for different

datasets are presented in Figures 6, 7 and 8, respectively.
Lines in a different color represent the results obtained with
different α values, as indicated in the figures.

Document Recovery. Figure 6 shows that α values of 3, 5,
and 10 achieve similar accuracy levels after a 1% data leakage
for the Enron and Lucene datasets. In contrast, α 2 reaches
a comparable accuracy after a 5% leakage. This suggests that
for data leakages larger than 5% in Enron and Lucene, using α
2 is sufficient to obtain satisfactory document recovery results.
It is worth noting that Lucene exhibits higher overall accuracy
in document recovery, likely due to a larger proportion of inert
keywords in its dataset.

In the case of the Wikipedia dataset, higher α values
consistently yield better performance in document recovery.
This indicates that inert keywords that only appear in a single
document have less power in identifying and recovering
documents since they can only indicate the presence of a
specific document.

Query Recovery. In terms of query recovery, Figure 7 com-
pares the recovered queries to the entire known keyword
universe. It is observed that higher values of α lead to better
results across all datasets. This is attributed to the fact that
a larger set of injected keywords is obtained with higher α
values, and a majority of these keywords are inert keywords
that can only be recovered through the file injection step.

Figure 8 specifically focuses on the accuracy of recovering
active keywords. It is notable that the Wikipedia dataset con-
sistently outperforms the other datasets in this regard. When
α is set to 10, Wikipedia achieves a perfect 100% accuracy in
recovering active keywords, regardless of the leakage level.

Table IV utilizes the rate of return as a metric to evaluate
the amplification effect of the attack. For the specific numbers
of injected and recovered keywords, please refer to Figure V
in the Appendix.

On average, an α value of 2 tends to yield a relatively high
rate of return, as shown in Table IV. However, an α value
of 10 leads to the highest number of recovered queries, as
indicated in Table V.

Once a 10% data leakage level is reached, the rate of return
tends to stabilize. Both the Enron and Lucene datasets exhibit
similar rate of return values, with the lowest being 1.311 in
the Enron dataset. Among the three datasets, the proposed
attack is more suitable for Wikipedia, benefiting from its
higher proportion of inert keywords in the dataset distribution.

Comparison. As our attack combines the ideas from both
inference attacks and file injection attacks, we compare our
results with both types of SSE attacks.

In Figure 6a and 7a, we show the comparison with two in-
ference attacks: LEAP [8] and VAL [9]. This limitation arises
from the substantial increase in computation time observed
with LEAP and VAL when utilizing the entire known keyword
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Fig. 7. Query Recovery Performance Over the Entire Keyword Universe
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Fig. 8. Query Recovery Performance Over Active Keywords

universe as input. The primary reason for this exponential
growth in computation time is the recursive nature of compu-
tations performed by these methods for document and query
recoveries. When only a few keywords are considered, the
computational process remains manageable due to the limited
number of combinations and iterations required. However, as
the size of the input keyword universe expands, the number
of possible combinations for document and query recovery
increases exponentially. This is because each additional key-
word introduces multiple new pathways for recursive compu-
tations, significantly escalating the overall computation time.
Actually, within the timeframe of our project, Enron dataset,
characterized by a smaller number of documents and keywords

as outlined in Table III, was the least time-intensive among
those considered. It highlights the practical challenges of using
inference attacks like LEAP and VAL on large datasets with
extensive keyword universes, where computation time can
become a significant bottleneck.

In Figure 6a, all α values demonstrate similar document
recovery accuracy to LEAP, which is lower than the accuracy
of VAL that leverages an extra volume pattern. This indicates
that our attack, which leverages only the access pattern, can
achieve satisfactory document recovery comparable to that
proposed by LEAP with a single round match.

In Figure 7a, our attack outperforms VAL and LEAP with
α values of 5 and 10 for all leakage levels. Even with α



TABLE IV
RATE OF RETURN

Dataset Knowledge Rate of Return (Avg.)

Leaked Doc. (%) Alpha Enron Lucene Wiki

0.1

2 1.384 1.088 1.318
3 1.606 1.214 1.882
5 1.613 1.386 1.839

10 1.362 1.544 1.443

0.5

2 2.249 1.650 3.623
3 2.163 1.810 3.553
5 1.870 1.814 2.676

10 1.518 1.555 1.847

1

2 2.549 1.943 4.639
3 2.307 1.969 3.829
5 1.872 1.749 2.765

10 1.480 1.474 1.884

5

2 2.324 2.257 4.167
3 1.937 1.919 3.175
5 1.604 1.615 2.325

10 1.336 1.363 1.671

10

2 2.187 2.231 3.815
3 1.838 1.884 2.910
5 1.548 1.597 2.167

10 1.311 1.354 1.606

set to 3, our attack surpasses both attacks after a leakage of
approximately 1%, and even α 2 surpasses LEAP starting from
a 5% leakage level, and exhibits a trend of surpassing VAL
before reaching a 10% leakage level.

The comparison to file injection attacks, Hierarchical Search
attack [11], and Decoding [6] is focus on the rate of return. For
Hierarchical Search attack and Decoding, the highest rate of
return is 1, indicating that all injected keywords lead to correct
query recovery. Our attack, as shown in Table IV, achieves
a rate of return greater than 1, even in the worst case. For
example, in the Lucene dataset with an α value of 2, the rate
of return is 1.088.

At the stable level, where the leakage level exceeds 10%,
we have observed that a single keyword injection can recover
at least 1.3 queries. This finding suggests that in order to
correctly recover the same number of queries |R|, we only
need to inject with a maximum injected keyword size of
W ′

i =
|R|
1.3 .

The number of injected files can be calculated as |IF | =
⌈

|R|
1.3

2T ⌉ · (⌈log 2T ⌉ + 1) − 1. Comparing this to the number
of injected files in the Hierarchical Search attack, which is
⌈ |R|
2T ⌉ · (⌈log 2T ⌉ + 1) − 1, and the number of injected files

in the Decoding attack, which is |R|, we can see that our
approach requires fewer injected files. This indicates that our
attack achieves efficient query recovery with a reduced number
of injected files compared to the Hierarchical Search and
Decoding attacks.

VI. DISCUSSION

A. Correctness and Complexity Analysis

The proposed LHFA attack in Algorithm 1 consists of
two main steps: 1) recovering inert keywords through file

injection (lines 1-14), and 2) uncovering additional active
keywords through document recovery (lines 15-20).

Complexity. The file injection results in a complexity of ⌈m
′
i

2T ⌉·
(⌈log 2T ⌉ + 1) − 1, i.e., the number of files for injection, as
discussed above. The term m′

i represents the number of inert
keywords, with a maximum size of α · n′, since we select
α inert keywords from each of the known document set D′,
as shown in Algorithm 3. Therefore, the complexity for file
injection is O(α · n′) for a constant parameter T .

Subsequently, the recovered inert keyword enables
document recovery in Algorithm 4. The major computation
comes from comparing |ED| × |D′| vectors of length at most
m′, which therefore has a complexity of O(n′nm′). The
same applies to the following active keyword recovery in
Algorithm 5, which compares at most |W | × |Q| vectors of
length |C| and has complexity O(m′mn′). Therefore, the total
complexity for recovering active keywords is O(m′n′(m+n)).

Correctness. According to [6], [10], [11], the file injection
attack in the first step achieves a 100% accuracy in recov-
ering inert keywords. For the active keywords, the recovery
accuracy relies heavily on the distribution of keywords, and
only experimental results are demonstrated in previous works
LEAP and VAL, on which our attack is built. As shown in
Figures 6a and 7a, our attack exhibits higher query recovery
accuracy than previous works.

B. Countermeasures

While it is indeed gratifying to acknowledge that the LEAP-
Hierarchical Fusion Attack (LHFA) attack has successfully
achieved our initial objective of creating an amplification effect
for file injection attacks and has made strides in addressing the
inherent limitations of inference attacks, it remains paramount,
from a cybersecurity perspective, to engage in an ongoing
discourse concerning countermeasures that can effectively
thwart our newly proposed attack.

Given the innovative nature of our LHFA, which seamlessly
amalgamates the strengths of both inference attacks (passive)
and file injection attacks (active), we will delve into the
implications of various access pattern hiding countermeasures
on the LHFA attack.

Obfuscation and padding, as detailed in [22], [23], [24],
[25], serve as initial deterrents by returning bogus encrypted
documents to queries. However, the operational intricacy lies
in effectively implementing these countermeasures. Simple
static padding and obfuscation [24], [23] might seem a viable
route, but in practice, they only offer limited resistance against
our attack. While they can distort some relations at the setup
stage, our method’s adaptive nature still facilitates document
recovery since the observed access pattern of injected files
remains unaffected. The challenge heightens when consider-
ing document matching based on unique query combinations
(qi, ...qa), as the use of padding and obfuscation can also
inadvertently decrease the effectiveness of genuine query
processes.



TABLE V
NUMBER OF RECOVERED QUERY

Dataset Knowledge Injected Keyword / Recovered Keyword (On Average)

Leaked Doc. (%) Alpha Enron Lucene Wiki

0.1

2 58.1 / 80.4 99.4 / 108.1 39.3 / 51.8
3 86.1 / 138.3 148.7 / 180.5 58.5 / 110.1
5 139.0 / 224.2 247.1 / 342.6 96.8 / 178.0

10 257.3 / 350.4 474.7/ 732.9 181.2 / 261.4
No. of KW 1137.1 1646.8 1425.2

0.5

2 286.6/ 644.5 493.6 / 814.5 195.1 / 706.9
3 422.2 / 913.4 729.3 / 1319.7 290.8 / 1033.3
5 671.0 / 1255.1 1163.4 / 2110.0 471.0 / 1260.3

10 1168.9/ 1773.9 1978.0 / 3076.4 864.6 / 1596.9
No. of KW 3581.8 4295.5 3973.3

1

2 548.8 / 1398.8 949.1 / 1843.7 380.3 / 1764.4
3 804.8 / 1856.8 1389.9 / 2736.8 570.5 / 2184.7
5 1248.3 / 2337.0 2141.6 / 3746.0 925.2 / 2558.5

10 2067.6 / 3059.5 3423.5 / 5046.0 1683.0 / 3170.0
No. of KW 5027.7 6686.5 6387.7

5

2 2209.0 / 5133.5 3746.9 / 8455.2 1739.5 / 7248.6
3 3092.2 / 5990.6 5180.7 / 9942.6 2566.6 / 8150.2
5 4443.5 / 7128.0 7274.1 / 11748.2 4038.4 / 9388.9

10 6527.8 / 8720.5 10115.2 / 13786.0 6726.0 / 11241.8
No. of KW 12740.3 19877.6 19255.2

10

2 3705.5 / 8105.7 6108.8 / 13630.8 3250.7 / 12403.0
3 5079.6 / 9335.6 8229.0/ 15502.6 4739.0 / 13790.7
5 7102.1 / 10993.0 11192.5 / 17873.1 7268.3 / 15751.1

10 10063.2 / 13188.1 15148.2 / 20506.0 11592.7 / 18616.5
No. of KW 18478.4 27733.4 31995.1

Dynamic padding, as introduced in [25], might appear
to be a more rigorous countermeasure, given its continuous
update of the bogus access pattern. However, its real-time
effectiveness against LHFA remains an area of intricate ex-
ploration. The continuous alterations might obstruct query
recovery during the file injection phase, but it also introduces
computational overhead and complexity.

The countermeasures such as Vaccine technique [26], while
being specifically crafted for resisting file injection attacks,
have their own set of challenges. It necessitates the creation
of a self-injected file that mirrors the actual injected file
in terms of keywords and document size. Maintaining such
intricate correlations while ensuring server efficiency is non-
trivial. Even if successfully applied, the precision decrease in
injected query recovery remains a concern. Thus, while the
Vaccine technique does pose a challenge, the robustness and
adaptability of LHFA ensure its significance in the field.

VII. CONCLUSION

Our study confirms the effectiveness of file injection attacks
in achieving an amplification effect when leaked documents
are available, aligning with the “first document recovery, then
query recovery” concept proposed in the LEAP attack [8].
Furthermore, comparing our query recovery results to the
LEAP and VAL approaches highlights the effectiveness of file
injection in mitigating the confusion caused by inert keywords
in inference attacks. The experimental results have yielded a
significant insight: datasets characterized by a higher propor-

tion of inert keywords prove to be more conducive targets
for our attack. This observation underscores the importance
of factoring in dataset types or distributions when planning
future attacks based on the LHFA approach.

In future research, we plan to incorporate additional leakage
patterns into our current attack to explore the potential for
achieving higher accuracy in document recovery, while further
amplifying the number of recovered queries. Although our
attack does not directly counter existing countermeasures, our
suggested keyword classification can serve a dual purpose:
aiding in circumventing countermeasures and facilitating the
development of more effective countermeasures. Regarding
the design of future SSE attacks, our research highlights that
existing inference attacks are already quite capable of recov-
ering active keywords. Consequently, the focus should shift
towards distinguishing inert keywords more effectively. From
the perspective of bolstering SSE security, acknowledging inert
keywords as inherent thresholds for access pattern inference
attacks, countermeasures can prioritize safeguarding active
keywords. This optimization can lead to more efficient cache
utilization and a reduced countermeasure workload.
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