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Abstract.
As we enter 2024, the post-quantum cryptographic algorithm Dilithium, which
emerged from the National Institute of Standards and Technology post-quantum
cryptography competition, has now reached the deployment stage. This paper focuses
on the practical security of Dilithium. We performed practical attacks on Dilithium2
on an STM32F4 platform. Our results indicate that an attack can be executed
with just two signatures within five minutes, with a single signature offering a 60%
probability of recovering the private key within one hour. Specifically, we analyze the
polynomial addition z = y + cs1. The attack is conducted in two phases: initially
applying side-channel analysis to recover the values of y or cs1, followed by solving
an equation system of cs1 with error. We introduce using Linear Regression-based
profiled attack to recover y, leveraging the mathematical properties of adding large
and small numbers, requiring only one trace to achieve a 40% success rate. In contrast,
a CNN-based template attack, trained with leakage from 200 signatures, enables
cs1 recovery from a single trace with a 74% success rate. Further, by exploiting
the constraint z = y + cs1, the combined leakages of y and cs1 increase the success
rate for cs1 recovery to 92%. Additionally, we propose a constrained optimization-
based residual analysis to solve the equation set cs1 = b with error. This method
can function independently or as a preprocessing step in combination with Belief
Propagation or Integer Linear Programming. Experimental results show that with a
95% correctness rate in the equation set, this method can directly recover the private
key s1 with an 83% success rate in just five seconds. Even with a correctness rate
as low as 5%, the method can still recover the private key s1 in 5 minutes using the
system of equations generated by about 200 signatures.
Keywords: Lattice-based Cryptography · CNN · Side-channel Attacks · Dilithium

1 Introduction
The rapid development of quantum computing poses a significant threat to public-key
cryptography based on the computational complexity of problems like large integer fac-
torization and discrete logarithm problems. Once a general-purpose quantum computer
is successfully developed, the use of Shor’s algorithm, proposed in 1994 [Sho94], will
enable these algorithms to be broken in polynomial time. Consequently, the National
Institute of Standards and Technology (NIST) initiated the global standardization com-
petition for Post-Quantum Cryptography (PQC) and designated CRYSTALS-Dilithium
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(abbr.Dilithium) as the digital signature standard, releasing a draft standard in 2023.
Dilithium [DKL+18] is a digital signature scheme founded on the hardness of lattice

problems, constructed using the Fiat-Shamir paradigm over the polynomial ring Zq[x]/(xn +
1). Due to its excellent performance in terms of operational efficiency and theoretical
security, Dilithium is recommended by NIST as the prime scheme for digital signature.

Although post-quantum cryptographic algorithms theoretically possess the capability
to resist attacks from both classical computers and general-purpose quantum computers, in
practice, their implementation and deployment inevitably face real-world physical attacks,
among which side-channel analysis is the most typical and widespread. This attack method
leverages leakages from cryptographic operations, such as power consumption [KJJ99],
electromagnetic emissions [QS01], and execution timing [Koc96], to extract sensitive
information. Over nearly three decades, side-channel analysis has achieved numerous
breakthroughs in the field of cryptanalysis, successfully conducting practical analyses
against cryptographic algorithms such as AES [BCO04], RSA [BJL+14], and ECC [Ols04].

Since NIST initiated the post-quantum cryptography selection process, several studies
have conducted practical analyses on Dilithium. One approach involves direct attacks
on operations involving the private key. For private keys in the normal domain, Han et
al. [HLK+21] implemented practical attacks on the Number Theoretic Transform (NTT)
operations of the Dilithium private key using machine learning-based template attacks.
Wang et al. [WNGD23] introduced an attack targeting the private key unpacking phase
of the signing process, achieving a 9% probability of recovering the private key with
a single signature, and a 100% success rate using 74 signatures when assuming t0 is
known. For private keys in the NTT domain, Chen et al. [CKA+21,FDK20] recovered the
private key using Correlation Power Analysis (CPA) and improved the speed of attacks by
integrating a divide-and-conquer strategy. Furthermore, Qiao et al. [QLZ+23b] designed
a fast attack method based on CPA, and used the LLL algorithm to solve for erroneous
NTT domain private keys, achieving full Dilithium private key recovery within one minute.
Additionally, Tosun et al. [TS24] proposed a zero-value filtering attack that quickly attacked
the polynomial multiplication in incomplete NTT implementations.

Another common analysis approach first involved obtaining non-key sensitive inter-
mediate values, followed by using mathematical analysis to recover the private key. The
polynomial addition operation z = y + cs1 used in the signing process was an important
target for analysis. Liu et al. [LZS+21,QLZ+23a] introduced a strategy for random leakage
attacks targeting y. They used a public template attack to recover the lower bits of y,
leveraging these bits to reduce the private key recovery problem to an integer Learning
With Errors (LWE) problem solvable in polynomial time. Marzougui et al. [MUTS22]
profiled all possible values of y, identifying special values such as 0 during the attack,
and then used integer linear programming (ILP) to solve the erroneous equations for cs1
and recover the private key s1. Additionally, Berzati et al. [BVC+23] attacking smaller
sensitive intermediate values like w0, using the Central Limit Theorem to design a filtering
algorithm that more accurately identified special values w0 = 0. Ultimately, they employed
the Majority Vote method to eliminate the impact of incorrect results.

The high-dimensional properties of lattice-based cryptography typically prevents side-
channel attacks from recovering the entire private key with 100% success. Therefore,
existing approaches are generally divided into two phases: initially, side-channel attacks
aim to recover as much information as possible about the private key and other sensitive
variables with the highest feasible success rate; subsequently, mathematical analysis
methods are employed to reconstruct the complete private key. In the case of Dilithium,
when directly attacking variables such as y or w0, their broad range of individual coefficient
values often leads to the adoption of a strategy that filters for special values to enhance
the success rate of side-channel attacks. However, this approach requires a substantial
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number of traces for profiling and the attack process. Moreover, these sensitive variables
are generated randomly during each signing process, necessitating the use of only one trace
for the side-channel attack, which complicates achieving a high success rate.

In the mathematical analysis phase, when the success rate of side-channel attacks is low,
employing methods like ILP and majority voting to solve the erroneous linear equations
involving cs1 can require significant time and may sometimes be impractical. Innovatively,
Bronchain et al. [BAE+23] proposed the use of the Belief Propagation (BP) algorithm to
solve these erroneous equations for cs1 and conducted simulated experiments on both fault
injection and side-channel attacks targeting y and cs1. Under the Hamming model with a
Signal-to-Noise Ratio (SNR) of 100, it was possible to recover the private key s1 using just
four signatures. However, when the success rates of side-channel or fault injection attacks
are low, this method necessitates a large number of equations. As a result, the graph
corresponding to the BP algorithm would be substantial, and the iterative process to reach
stability could increase the likelihood of computational overflow, presenting challenges in
terms of both time and spatial overhead.

In this paper, we explore side-channel attack methods for Dilithium that aim to recover
the system with the fewest possible signatures while achieving a higher success rate. We
also examine mathematical methods capable of solving linear equation systems with high
error rates. Our specific contributions are as follows:

• In side-channel attacks targeting y, we exploit the operation z = y + cs1, which
involves adding a large number to a smaller one, to recover the high bits of y.
We propose a linear regression-based attack that eliminates noise from the already
determined high bits, thereby not only increasing the attack’s success rate but also
enhancing its efficiency. Experimental results show that with just a single trace, we
achieve a 40% success rate in recovering any y.

• In attacks targeting cs1, the relatively narrow range of possible values allows attackers
to profile and launch attacks on each specific value. We propose a side-channel
approach using a CNN model that, compared to traditional template attack methods,
boosts the success rate from 57% to 74%.

• To further enhance the success rate of side-channel attacks, we propose a method
that utilizes attacks on both y and cs1 simultaneously. We leverage the constraint
z = y +cs1 to merge the results, thereby improving the success rate of recovering cs1.
Experimental results demonstrate that this method increases the recovery success
rate of cs1 from a maximum of 74% to 92%.

• We develop a constrained optimization-based residual analysis to rapidly resolve
erroneous integer linear equations for cs1. Experimental results show that with a 95%
side-channel success rate for cs1, using just one signature can recover s1 with an 80%
success rate in five seconds. Even with only 5% of the equations being correct, this
method can still recover s1 in less than five minutes using equations corresponding
to 220 signatures. Additionally, this method can serve as a preliminary step for other
techniques such as BP and ILP, especially effective when the system of equations
contains a large number of errors, as it helps eliminate a large number of incorrect
equations to improve analytical efficiency.

• We conduct practical attacks on Dilithium2’s reference implementation using an
STM32F4, targeting three scenarios: leaks from y, cs1 alone, and from both y
and cs1 simultaneously. Experimental results show that in all three scenarios, the
private key is successfully recovered within three minutes, requiring 6, 3, and 2
signatures respectively. By leveraging leaks from both y and cs1 and using just one
signature, the constrained optimization-based residual analysis method alone manages
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to recover the private key s1 with a 20% success rate. Furthermore, Furthermore, by
incorporating integer linear programming and limiting the attack duration to one
hour, the success rate for recovering s1 increases to 60%.

2 Preliminaries
2.1 Dilithium
Dilithium is a digital signature scheme based on the Module Learning with Errors (MLWE)
and Module Short Integer Solution (MSIS) problems. Dilithium offers different security
levels to meet the security and performance requirements of various devices, making it
suitable for a wide range of uses. Tab.1 shows the parameters for each security level.

Table 1: Dilithium parameters at different NIST security levels
NIST Security Level 2 3 5

d [dropped bits from t] 13
τ [# of non-zero coefficients in c] 39 49 60

γ1 [cofficient range of y] 131,072 524,288
γ2 [low-order rounding range] 95,232 261,888

(m × n) [dimensions of A] (4,4) (6,5) (8,7)
η [private key range] 2 4 2

β [τ · η] 78 196 120

Dilithium operates within the cyclotomic ring Rn
q , where each coefficient is defined in

the finite field Zq. The constants q = 8380417 and n = 256 are fixed across all security
levels, ensuring a uniform foundation for operations. The algorithm consists of three basic
processes: key generation, signing, and signature verification. Our work primarily focuses
on the signing process.

Algorithm 1 Dilithium Sign(sk,M )
Input: sk = (ρ, K, tr, s1, s2, t0), M
Output: signature

1: A ∈ Rm×n
q := ExpandA(ρ)

2: µ ∈ {0, 1}384 := CRH(tr||M)
3: κ := 0, (z, h) := ⊥
4: ρ′ ∈ {0, 1}384 := CRH(K||µ) (or ρ′ ← {0, 1}384)
5: Â = NTT(A), ŝ1 = NTT(s1)
6: y ∈ Sn

γ1−1 := ExpandMask(ρ′, κ)
7: w := NTT−1(Â ◦NTT(y))
8: w1 := HighBitsq(w, 2γ2)
9: c̃ ∈ {0, 1}256 := H(µ||w1)

10: ĉ := NTT(SampleInBall(c̃))
11: z := y + NTT−1(ĉ ◦ ŝ1)
12: r0 := LowBitsq(w− cs2, 2γ2)
13: if ||z||∞ ⩾ γ1 − β or ||r0||∞ ⩾ γ2 − β

then κ := κ + l, goto 6
14: else
15: h := MakeHintq(−ct0, w− cs2 + ct0, 2γ2)
16: if ||ct0||∞ ⩾ γ2 or the # of 1′s in h is greater than ω

then κ := κ + l, goto 6
17: return signature = (z, h, c̃)
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The signing process of Dilithium, as outlined in Alg.1, commences with the input of
private key sk and message M . Initially, the algorithm expands the private key ρ to
construct a structured matrix A within Rm×n

q using the ExpandA function, followed by
generating a 384-bit string µ from tr and message M through the Collision Resistant Hash
(CRH) function. It initializes κ and sets (z, h) to null, then creates a 384-bit string ρ
either by hashing κ concatenated with µ or by selecting randomly depend on whether the
algorithm is deterministic or probabilistic. Subsequently, NTT is applied to both A and
the private key s1, generating Â and ŝ1. A masking vector y is derived from ρ′ and κ,
within the set Sγ1−1. The algorithm computes w by multiplying Â with the NTT domain
ŷ and applying Inverse NTT (INTT), then extracts high-order bits from w to generate a
challenge vector c̃, which is a part of the signature. The algorithm employs a rejection
sampling mechanism to ensure the generated vectors z and r0 to meet specific security
criteria. Otherwise, the algorithm regenerate y and repeat the above process until a valid
signature comprising a hint vector h, c̃ and z is generated.

2.2 Linear Regression-based Profiled Attacks
Schindler et al. [SLP05] introduced Linear Regression-based (LR) profiled attacks. Com-
pared to the Hamming Weight (HW) leakage model in traditional template attacks [CRR02],
they take into account that different bits might have different leakage weights, and this
nuance can be accurately identify using linear regression, providing a more precise char-
acterization of practical leakage scenarios. This marks a significant shift in the leakage
model.

The power consumption model established using linear regression is formulated as:

m(y) =
ly∑

i=0
aiρ(yi) + aly+1 (1)

Here, y represents the targeted data, yi denotes the i-th bit from low to high, and ly
denotes the bit length of y. The coefficients ai indicate the leakage weight of each bit,
while ρ(yi) is a mapping function that ensures the model includes the influence of yi = 0,
which is expressed as follows:

ρ(yi) =
{

1 if yi = 1
−1 if yi = 0

(2)

In the phase of building templates, real power leakages L are used to calculate the
coefficients ai via linear least squares. The model m(y) subsequently serves as the mean in
traditional template attacks, requiring an additional step to compute the covariance matrix
Σ for template generation. During the attack phase, the probability density function for
any captured leakage L is outlined as:

f [L|Y = y] = 1√
(2π)k|Σ|

exp
(
−1

2(L−m(y))T Σ−1(L−m(y))
)

(3)

where k is the dimension of L. Utilizing Bayes’ theorem, this is reformulated into the
desired probability f [Y = y|L], illustrated as:

f [Y = y|L] = f(L|y)p(y)∑
y′ f(L|y′)p(y′) (4)

Assuming equal probabilities for each y, the expression can be simplified to:

f [Y = y|L] = f(L|y)∑
y′ f(L|y′) (5)
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2.3 CNN-based Template Attacks
In the rapidly evolving domain of side-channel attacks, the adoption of deep learning
approaches, particularly CNNs, has demonstrated excellent technical effectiveness [MPP16,
ZBHV20, WAGP20]. The deployment of CNN in side-channel attacks is predicated on
the assembly of a comprehensive training dataset, comprising leakage traces, plaintext-
ciphertext pairings, and corresponding cryptographic keys. Each trace is labeled with
sensitive intermediate values, thus categorizing the data for the training phase of the CNN.

The effectiveness of CNNs is attributed to their hierarchical architecture that begins
with convolutional layers responsible for initial feature extraction. This is followed by
pooling layers that reduce the feature set’s dimensionality, and fully connected layers that
undertake the task of classification. Convolutional layers employ a set of filters—each with
unique weights and biases—to conduct convolution operations on the input data. This
process effectively captures and highlights essential patterns. Pooling layers simplify the
feature set by summarizing data within specific input regions, applying max and average
pooling techniques to preserve vital information efficiently. Fully connected layers integrate
these refined features to produce the final output classifications. The strategic placement
of batch normalization layers between select convolutional and pooling stages significantly
boosts the network’s efficiency and stability during training by standardizing the inputs to
each layer. Its mathematical formulation can be succinctly represented as [ZBHV20]:

g(x) = f ◦ [λ]n1 ◦ [δ ◦ [α ◦ γ]n2 ]n3 . (6)

Here γ, α, δ, λ, and f represent convolutional layers, activation functions, pooling layers,
fully connected layers, and the activation function of the output layer, respectively. The
variables n1, n2, and n3 indicate the respective counts of these computational components,
illustrating the CNN’s structural depth and complexity.

The training phase is crucial for the CNN , equipping the model with the ability to
accurately identify patterns within leakage traces. Once trained, the CNN can effectively
predict sensitive intermediate values from previously unseen traces and recover sensitive
information such as private keys.

3 Side-channel Attacks Against Dilithium
According to the polynomial addition operation z = y + cs1 in the signing algorithm, the
known signature z offers an indirect pathway to deduce cs1 by initially recovering y using
side-channel attacks. Alternatively, cs1 can be directly recovered via side-channel attacks.
By merging leakages of y and cs1, we expect a significant enhancement in the analysis
results. The methodologies for conducting side-channel attacks on both y and cs1 will be
detailed in this section.

3.1 Attacking y with LR-Based Side-channel Attack
For the mask polynomial y, each coefficient operating within the range of q = 8380417.
Considering that y is randomly generated in each signature, we have to recover y utilizing
only one trace. Conventional template attacks using the identity model are theoretically
feasible but challenging in practice, due to the high overhead of accurate templates building
and the low success rate of template matching.

For the polynomial addition z = y + cs1, where cs1 ranges within (−β, β) and follows
a Gaussian distribution, the value of β depends on the chosen security level, as outlined
in Tab.1. Notably, for Dilithium3, the maximum value of β remains below 198. This
fact makes it unnecessary to enumerate all possible y values when executing a template
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attack aimed at recovering y. Given the known signature z, it is clear that viable y values,
which are relevant to the trace targeted in the attack, are effectively limited to the interval
(z − ||cs1||∞, z + ||cs1||∞). This restriction significantly accelerates the attack.

Liu et al. [LZS+21,QLZ+23a] have highlighted the methodology for inferring the high-
bit information of y when z is available, especially when cs1 is significantly smaller than y.
In the Dilithium signature process, both the signature z and the random number y can
take on one of 218 possible values, whereas the intermediate value cs1 is typically much
smaller than both z and y. This disparity allows for the deduction of partial information
about the random number y by exploiting the arithmetic operation of adding a larger
number to a smaller one. Fig.1 illustrates this principle. Assuming ||cs1||∞ < 24, and
when z[i−1:τ ] = 10 . . . 002 or z[i−1:τ ] = 01 . . . 112, we identify three scenarios enabling the
attacker to derive a segment of y (specifically y[ly :i]) through its addition with cs1 to result
in z[i−1=6:τ=4] = 1002 or 0112. These scenarios include instances of addition that involve
carrying, borrowing, or neither. Crucially, none of these instances affect y7 or higher bits,
leading to the inference that y[ly :i] = z[ly :i]. This analysis demonstrates that in many
instances, the high-bit information leakage of y can largely be ignored during a template
attack, significantly enhancing the attack’s success rate.

(a) z[i−1=6:τ=4] = 1002 (b) z[i−1=6:τ=4] = 0112

Figure 1: Example of y[ly :i] = z[ly :i](i = 7, τ = 4)

LR-based profiled attacks offer a more simplified method for creating models, ne-
cessitating fewer training samples to approximate the practical leakage corresponding
to the complete target value. This method enhances template precision by delineating
leakage features for every bit of the target value. In the template matching phase, the
methodology involves iterating over all conceivable y′ values, comparing the theoretical
leakage predicted by the LR model against practical captured trace. Crucially, bits within
varying y′ values that stay unchanged don’t affect the matching process, rendering this
strategy particularly suited for instances involving polynomial addition z = y + cs1 in the
context of the Dilithium cryptographic algorithm.

The detailed steps for conducting an attack on y are as follows:
(1) Templates building: Utilize the captured traces along with their respective labels to

identify the leakage for each bit of y. Subsequently, a LR model is then build to represent
this leakage data accurately.

(2) Traces capturing: Capture traces associated to y from the target device.
(3) Template Matching: For each captured trace, iterate over all possible cs1 values. By

combining with the known signature z, deduce all possible y values. The exact y value is
determined by comparing the theoretical leakage, as predicted by the LR model, with the
practical captured leakage, thus identifying the precise match through template matching.

The Gaussian-like distribution of cs1 plays a crucial role in enhancing the success rate
of attacks by allowing for the exclusion of less probable cases. This approach is effective
across different security levels of Dilithium, where the range of cs1 is detailed in Tab.2.

Using Dilithium2 as an example, we find that about 95% of the data falls within
||cs1||∞ < 24, with the remainder 5%, as detailed in Tab.2, covering a broader value range
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Table 2: Probability of ||cs1||∞ < 2τ in Dilithium.
Security Level τ=3 τ=4 τ=5 τ=6 τ=7

Dilithium2 0.57 0.95 0.99 1 1
Dilithium3 0.36 0.64 0.93 0.99 1
Dilithium5 0.65 0.86 0.99 1 1

of (±16,±78). These candidates encompass a significantly larger value space but occur
with much less frequency. Including all these potential values in the template match might
decrease the success rate due to the dilution of focus on the most possible candidates. By
excluding these less likely candidates from the analysis, the success rate and efficiency of
the attack can be significantly enhanced.

3.2 Attacking cs1 with CNN-Based Side-channel Attack
In addition to focusing on the random number y, directly targeting the cs1 emerges as a
viable alternative. Due to its smaller value space, cs1 naturally presents more advantageous
conditions for side-channel attacks. The attack scenario is similar to y in that cs1 can
only be recovered from a single trace. This highlights the crucial importance of template
quality of the attack.

Lattice-based cryptographic schemes, such as Dilithium, are characterized by a high-
dimensional environment filled with numerous repetitive and independent operations
throughout the polynomial processing stages. Specifically, for Dilithium2, the creation of a
valid signature requires, on average, four instances of rejection sampling. This translates to
approximately 256× 4× 5 relevant operations for cs1. When accounting for cs2, a single
legitimate signature, in a deterministic implementation, can produce an average of 10,240
samples. Even in randomised implementations, it’s possible to gather a substantial 2048
samples. This wealth of data is particularly suitable for the demands of deep learning,
which requires a large dataset for pre-training in order to effectively develop a distinguisher.

During the model selection phase, it is crucial to consider that numerous samples from
each signature are produced at different times. This necessitates alignment operations to
pinpoint leakage features, which inevitably generate offsets. Deep learning approaches,
particularly CNN, have demonstrated impressive capabilities in handling data marked by
such offsets. This efficiency largely stems from the CNN architecture, which integrates
convolutional layers and pooling layers. These layers are tailored to extract and refine
features from data, even in cases of alignment variability. As a result, CNN-based methods
for side-channel analysis are distinguished by their ability to conduct effective feature
extraction from datasets with inherent offsets, showcasing their robustness in extracting
relevant information for analysis.

In our research, we adopt a CNN model inspired by the methodology of Zaid et
al. [ZBHV20] as described in their study, which utilizes a three-layer convolutional setup.
This model is particularly effective in processing complex side-channel datasets like ASCAD,
which includes countermeasures such as random delay and first-order masking. It achieves
a Guessing Entropy (GE) of 1 with a relatively small number of traces—244 for offset
N = 50 and 270 for offset N = 100.

Our implementation utilizes a comparable three-layer CNN architecture. This structure
is composed of convolutional layers interspersed with pooling and batch normalization
operations. The design facilitates the gradual recognition of features, ranging from simple
to intricate, and culminates in a dense layer equipped with a softmax activation function
for precise classification of the processed inputs. Details of our CNN architecture are
delineated in Tab.3 below.

By adopting convolutional approach, our model benefits from the ability to capture and
learn complex patterns in the side-channel traces effectively. The architecture’s progressive
feature extraction and condensation stages allow for efficient representation of the relevant
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Table 3: CNN Hyperparameters
Hyperparameter Configuration

Optimizer Adam
Convolution Layers 3
Convolution Filters [12, 24, 48]
Convolution Kernel [64, 128, 256]
Convolution Stride [1, 6, 1]

Pooling Type avgPooling
Pooling Size [2, 4, 4]

Pooling Stride [2, 4, 4]
Batch Normalization After each pooling

Dense Layers 1
Neurons Number of classes (variable)

Activation Function ReLU
Learning Rate 0.0004

Batch-Size 1600
Epochs 150

Loss Function categorical_crossentropy

information, enabling robust classification performance while maintaining computational
efficiency. Certainly, the optimal model hyperparameters will be varied for different data
and can be adjusted by random or grid search.

3.3 Enhancing Success Rates through Integrated Results of y and cs1

In side-channel analysis, directly recovering the complete value of a target on the ARM
platform from a single trace presents notable difficulties. Nevertheless, it’s more practical
to determine the HW of variables such as y and cs1. Crucially, having exclusive access
to the HW information of y and cs1, alongside the signature z = y + cs1, enables the
deduction of cs1 under certain conditions. Merging the outcomes from attacks that target
these essential intermediate values can significantly improve the success rate of the analyses.
Bronchain et al. [BAE+23] applied this concept in simulation experiments within the
HW model for cs1, though this approach may lead to scenarios with multiple potential
candidate values.

P (Y = yi|L(y)) yi ∈ (z − β, z + β)
P (X = xi|L(x)) xi ∈ (−β, β)
P (X = xi|L) = P (X = z − yi|L(y))× P (X = xi|L(x)) (7)

Our side-channel attacks aim to directly recover the full value of the target, rather than
its HW. Typically, even if the attack does not recover the correct result, the probability
of other candidate values in the probability distribution vector that have the same HW
as the correct value will be comparably higher. Assuming cs1 = x, Eq.7 detailing our
computational procedure. In practical analysis, particularly when examining targets y
and cs1 , we preprocess by normalizing the set of probability vectors derived from the
side-channel analysis before computing the final probability. This strategy leads to a
uniquely deterministic solution, theoretically surpassing the effectiveness of focusing on a
single target in isolation.

In contrast to traditional cryptographic algorithms like ECC and RSA, Dilithium
features a more complex computational framework. This complexity introduces a variety
of sensitive values during the computation, which can be leveraged through side-channel
analysis, thus amplifying the security risks. By consolidating attack outcomes across
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different sensitive values, it becomes possible to break the algorithm’s security with
minimal expenditure, possibly even leading to the recovery of the private key.

4 Solving Equations with Errors in cs1 for Dilithium
After extracting cs1 via side-channel or fault attacks, next we need to solve error-containing
integer linear equations of s1 using the known challenge ciphertext c. Achieving 100%
success rate in determining cs1 is inherently challenging, regardless of the attack method.
Traditionally, the Big-M method has been used to convert these challenges into ILP problem.
However, this method’s efficiency drops as errors increase. To counter this, we propose a
constrained optimization-based residual analysis to efficiently solve error-containing integer
linear equations in Dilithium.

4.1 Constrained Optimization-Based Residual Analysis
This section delineates the computational methodology for deriving cs1 from the given
challenge vector c, which is a 256-dimensional vector consisting mainly of zeros, and
includes -1, 0, and 1 as its elements. The computation of c = (c0, c1, . . . , c255) into the
coefficient matrix C is achieved through cyclotomic transformations, executed within the
confines of a finite field. The detailed calculations are as follows:

c0 −cn−1 −cn−2 · · · −c2 −c1
c1 c0 −cn−1 · · · −c3 −c2
c2 c1 c0 · · · −c4 −c3
...

...
... . . . ...

...
cn−2 cn−3 cn−4 · · · c0 −cn−1
cn−1 cn−2 cn−3 · · · c1 c0




s0
s1
...

sn−2
sn−1

 = Cs

The special values of c and s allow the entire computation to be performed without modular
operations. This characteristic permits the use of methods within the normal domain to
address the problem effectively.

Consider the linear system As = b, with A as an m × n matrix derived from the c
generated by multiple signatures, s as an n-vector representing the unknown integer-valued
private keys (s1 or s2), and b as an m-dimensional vector obtained from practical attack.
Assuming an attacker achieves a 30% success rate in acquiring b, the collection of 10
signatures yields 2,560 equations with 768 being correct. The goal is to identify an integer
solution for s ∈ {−η, . . . , η}n that maximizes the count of accurately fulfilled equations.
Direct optimization of this count is complex. Nevertheless, if 256 correct equations can
be identified from the system of equations, the private key can be recovered next by
solving the simplified equation set. This scenario translates into a continuous optimization
problem, focusing on minimizing the residuals between predicted and observed values.

The process of eliminating erroneous equations is divided into two phases. The initial
phase involves transforming the problem into a continuous optimization framework. The
attacker aims to minimize the sum of squared residuals across all equations. This objective
is mathematically expressed as:

min
s

1
2 ∥As− b∥2

2 s.t.− η ≤ si ≤ η (8)

The initial phase of filtering erroneous equations can be reformulated as a large-
scale bound-constrained minimization challenge. In tackling such problems, Branch et
al. [BCL99] have introduced a technique by adapting the Coleman-Li trust region and
interior method. For computational efficiency, this technique may employ sparse Cholesky
factorization or the conjugate gradient method.
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Following the derivation of an approximate solution, denoted as s∗, from Eq.8, the
subsequent phase involves evaluating the residuals for each equation in the system. This
evaluation aims to measure how well each equation aligns with the obtained solution. The
residual for the i-th equation is calculated as ri = |Ais∗ − bi|, where Ai represents the
i-th row of A, and bi is the i-th element of b. Equations with the highest residuals are
presumed to be inaccurate and are identified as candidates for removal in further iterations.
The principle behind this exclusion process is that are most likely to be wrong from the
current solution can lead to a more accurate approximation of the true solution by reducing
the influence of potential errors.

The iteration process continues next, recomputing the solution s(k) using the updated
equation set A(k) and b(k) that omit previously identified incorrect equations at each k-th
iteration. The mathematical formulation is as follows:

s(k) = min
s

1
2

∥∥∥A(k)s− b(k)
∥∥∥2

2
s.t.− η ≤ si ≤ η (9)

Iteration proceeds until the solution reaches a satisfactory level of accuracy, marked by
minimal residual differences between the estimated solution and the actual data represented
by b(k) in the updated equation set.

In order to get the final result, the continuous solution s∗ evaluated for its closeness to
the nearest integers within the bounds {−η, . . . , η}n. The conversion to an integer solution,
sint,involves rounding each element of s∗ to its closest integer value:

sint,i = round(s∗
i ), ∀i = 0, . . . , n− 1 (10)

This step assumes the proximity of the continuous solution to the actual, integer-valued
solution allows for effective rounding, achieving a solution that fulfills most, if not all,
equations form the filter set. Subsequent verification of the integer solution is advised to
confirm its adequacy in satisfying the linear system to an acceptable degree.

Algorithm 2 Constrained Optimization-Based Residual Analysis
Input: A, scar, bounds, eth, dnum, rnum, snum

Output: s
1: available_ind← InitializeIndices(A)
2: err_weights← zeros(|A|)
3: while |available_ind| > rnum do
4: s_ind← RandomSample(available_ind, snum)
5: s← SolveLSQ(A[s_ind], scar[s_ind], bounds)
6: residuals← CalculateResiduals(A[s_ind], scar[s_ind], s)
7: err_weights← UpdateWeights(residuals, err_weights, dnum)
8: available_ind← UpdateIndices(err_weights, eth)
9: end while

10: if C[available_ind]s == scar[available_ind] then
11: return s
12: end if

Based on this principle, we introduce the Constrained Optimization-Based Residual
Analysis (COBRA) method. This approach efficiently separates correct equations from a
error-laden dataset to accomplish the derivation of the private key. The process, outlined
in the pseudo-code of Alg.2, operates with inputs such as the coefficient matrix A derived
from the challenge c, results from the side-channel attack denoted as scar, solution range
bounds, error threshold eth, a delta for incrementing error weights each iteration dnum,
a retention threshold for the remaining equations rnum, and a selection parameter for
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equations each iteration snum. The algorithm begins by assigning an error weight of zero
to all equations and initializing the index for the set of equations.

The core of the algorithm is an iterative process. At each iteration, it randomly selects
a subset of equations and uses their coefficients along with the outcomes of the practical
attack to compute an approximate solution through constrained optimization. After finding
this solution, the algorithm calculates residuals and updates the error weights for each
equation. Higher weights suggest a greater probability of errors in the equations, making
them candidates for removal in subsequent iterations. This process continues until the
number of equations that remain falls below a certain threshold. A solution is considered
accurate when the remaining set of equations aligns perfectly with the solution, evidenced
by zero residuals, thus indicating successful recovery of the correct solution.

Critical to the algorithm’s success are parameters like the error threshold eth and error
weights dnum, which play pivotal roles in optimizing the balance between the efficiency
and stability of the attack. The randomness introduced in each iteration through the
selection count of equations snum is essential for handling cases where only part of the
private key coefficients can be recovered. In general, when the equation set contains a
sufficient number of correct equations, the COBRA algorithm is capable of rapidly and
accurately recovering the complete private key.

Typically, solving a system of equations with 256 unknowns necessitates an equivalent
number of equations to uniquely determine the solution. However, the distinct distribution
of the coefficient matrix combined with constraints on s1 coefficients uniquely positions us
to recover the complete private key using fewer numbers of equations. We found that even
if only 200 correct equations are obtained, the complete private key can be recovered in a
few seconds using ILP or optimal solving. This means that the information is redundant,
and it is still possible to recover the full private key quickly despite some errors in the set
of 256 equations provided by a single signature.

4.2 Big-M with Constrained Optimization-Based Residual Analysis
The current challenge is to find a solution, s∗, that maximizes the number of correct
equations within a system of cs1. Marzougui et al. [MUTS22] propose addressing this by
transforming it into an ILP problem through the Big-M method.

In practice, when the equation system contains a relatively small number of correct
equations, the constrained optimization-based residual analysis algorithm might not recover
the complete private key. However, many of the recovered error coefficients are usually
very close to the correct value, with a deviation of only ±1. If attackers can determine
which coefficients are correct—perhaps through methods like majority voting—they can
significantly reduce the key space. Applying the Big-M method could then enable full
private key recovery.

If a single run of Alg.2 fails to recover the complete private key, repeat execution of its
core computational module may yield alternative solutions due to the random selection
of indexes in each iteration to introduce randomness and thus produce different results.
For Dilithium2, by statistically analyzing each coefficient’s occurrences for ±2, ±1, and
0—resulting in five possible outcomes—and setting threshold criteria, the solution space
CRFj (Coefficient Recovery Field) for each coefficient sj is defined. When a larger set
of original equations is available, typically only 2-3 values stand out within each CRFj .
Notably, with a single signature, which equals merely 256 equations, a more cautious
strategy preserves the outcomes of each analysis as potential candidate values.

Fig.2 depicts the optimized Big-M method used in this paper. In comparison to
previous studies [MUTS22,BVC+23], we refine constraint (4), previously allowing s∗

j to
range within{−η, . . . , η}, necessitating the assessment of each coefficient against 5 potential
outcomes for Dilithium2 and 9 for Dilithium3. Our methodology effectively reduces the
range of possible values, thus increasing the algorithm’s efficiency.
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maximize
|I|−1∑
i=0

xi

subject to xi −Cis∗ ≤ K · (1− xi), ∀i ∈ {0, . . . , |I| − 1} (1)
xi −Cis∗ ≥ −K · (1− xi), ∀i ∈ {0, . . . , |I| − 1} (2)
xi ∈ {0, 1}, ∀i ∈ {0, . . . , |I| − 1} (3)
s∗

j ∈ CRFj , ∀j ∈ {0, . . . , n− 1} (4)

Figure 2: Optimized ILP formulation used for recovering noisy equation system of cs.
4.3 Alternative Attack Strategies
Solving Equations using BP. Soft Analytical Side-Channel Attacks (SASCA) is designed
to decrease guessing entropy by leveraging side-channel leakages at various points during
the execution of an algorithm. It has been successfully applied in attacks on conventional
cryptographic systems [VGS14, GGSB20, LWL+22]. A key strategy of this approach
involves the use of the BP algorithm, which simplifies global marginalization to local
marginalization and employs message passing until convergence, revealing the marginal
probability of the targeted value. The BP algorithm is notably effective in post-quantum
cryptography attacks, such as those on Kyber [PPM17,PP19,HHP+21].

Bronchain et al. [BAE+23] suggested the BP algorithm’s application in solving error-
containing integer linear equations related to cs1. The algorithm benefits from the trait
that c comprises only τ nonzero coefficients (either 1 or -1), which simplifies the factor
graph and boosts efficiency.

The BP algorithm needs to rely on more equations when the success rate of the
practical attack is low. As the dimension increases, the size of the factor graph expands,
and the propagation process is more prone to computational overflow problems. We have
temporarily failed to complete the solution when the number of equations is excessive.
The algorithm also depends on integrating probability distributions of potential values at
leakage points into the factor graph, which may poses limitations for attack techniques
that don’t provide such distributions, like fault and cache attacks. The BP algorithm,
being probabilistic in nature, cannot guarantee a solution in every instance. For the system
of equations under consideration, determining the conditions under which the algorithm
can stabilize and converge to the correct result requires further in-depth study.

Reduction to a LWE Problem. A natural strategy for recovering the entire private
key, when partial coefficients are known, involves reducing it to a specialized LWE problem.
This situation, where the positions of the recovered coefficients are known, can be considered
a type of leaky LWE problem. It is addressed using the leaky LWE estimator proposed by
Dachman-Soled et al. [DDGR20]. In this case, the known coefficients are integrated into
the lattice basis as perfect hints, following which the remaining coefficients are retrieved
using lattice reduction techniques such as BKZ. According to the results in [MN23], merely
45% of coefficients are sufficient to break Dilithium2 within 7 days. However, since we
cannot determine which coefficients are recovered after solving the erroneous equations
cs1 = b, this method fails in this context.

When the positions are unknown, the problem of recovering the entire private key
with known partial coefficients can be reduced to a ternary LWE problem. Let s∗

1 be the
estimator solved by the erroneous equations cs1 = b and substituting it into the public
key t = As1 + s2, we can obtain a new LWE problem t′ = As′

1 + s2 where t′ = t−As∗
1,

Here we assume that the public is not compressed or it is reconstructed from a small number of
signatures. If it is compressed as done in Dilithium, the new ternary LWE problem is t′ = As′

1 + e where
e = s2 − t0, t0 denotes the low order bits of t.
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s′
1 = s1 − s∗

1. If most equations in cs1 = b are correct, the new problem is likely to be a
sparse, ternary LWE problem sharing the same dimension as the original one. According
to results in [May21,GM23], the heuristic time/memory complexities is O(20.345N ). For
Dilithium2, where N = 1024, this method appears impractical. We will explore the
possibility of combining this method with ILP techniques in the future work.

5 Experiments and Results
5.1 Set Up
Our experiments are conducted on the ChipWhisperer UFO target platform, chosen for its
flexibility in supporting various microprocessor modules. We select the STM32F405RGTx
microprocessor for its implementation, as per the NIST reference [ACD+22]. To capture
leakages, our setup includes a BLP-1.9+ 50M low-pass filter, a PA303 preamplifier, and a
WR610Zi oscilloscope, all synchronized to a sampling rate of 100 MSa/s. Although filters
like the 1.9+ 5M model, which may offer a higher SNR, are available, we prefer the 1.9+
50M model to demonstrate the effectiveness of our approach in noisy environments.

We execute the attacks on a desktop computer equipped with an Intel i5-13600KF
processor and 32GB of DDR5 RAM. For the machine learning experiments, we utilize 4
TITAN Xp GPUs. This setup ensures sufficient computational power for our analyses.
The experimental results we report are the averages from 10 iterations of each experiment,
demonstrating the robustness and consistency of our findings across multiple runs.

5.2 LR-SCA for Recovering y

Qiao et al. [QLZ+23a] conducted a comparative analysis of power leakages during the
operation of generating random numbers y in the Dilithium. Their research pinpointed
the "polyz_unpack(a, buf)" function as exhibiting the most significant leakage related to
y, thereby designating this function as the focus of our attack. As illustrated in Fig.3, this
function is tasked with extracting an 18-bit value from a predefined random array, denoted
as r, and converting it into y through the operation GAMMA1-r, where GAMMA1 = 217.
This conversion process takes place over 64 cycles, producing four instances of y per cycle.

The analysis indicates a strong correlation between r and y, demonstrating that
knowledge of either variable is sufficient for completing the analysis. Fig.4 presents the
correlation analysis of the lower 8 bits of r and y using 1,000 traces under the HW leakage
model. The results reveal that the leakage from r is more pronounced, possibly due to r
undergoing more operations. Consequently, targeting the operations associated with r is
likely to yield significantly better results than directly attacking y.

In the Dilithium2 scheme, we utilize 50,000 traces and apply a low-pass filter using
Fast Fourier Transform (FFT) to enhance the signal quality. Subsequently, we identify
continuous Points of Interest (POIs) using Pearson Correlation Coefficients (PCCs). It is
important to note that we are profiling r separately for each coefficient position to prevent
potential misalignments from affecting the trace alignment.

In our experiments, we methodically examine the impact of varying the number of PoIs
on our attack’s effectiveness, focusing on two scenarios based on the distribution of cs1:
either ||cs1||∞ < 24 or ||cs1||∞ < 25. The results, detailed in Tab.4for 256 coefficients
profiled and attacked, illustrate the relationship among the number of POIs, the profiling
time, and the attack’s success rate (SR). Notably, with 20 POIs, the profiling time is 134.2
seconds, achieving a 14.2% under the 4-bit assumption within 7.2 seconds, and an 8.8% SR
under the 5-bit assumption in 15.89 seconds. When the POIs increase to 300, the profiling
time extends to 952.3 seconds, which significantly boosts the SR to 39.6% for the 4-bit
assumption in 240.6 seconds, and to 33.4% ffor the 5-bit assumption in 461.3 seconds.
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1 void polyz_unpack (poly *r, const uint8_t *a) {
2 for(int i = 0; i < N/4; ++i) {
3 r-> coeffs [4*i+0] = a[9*i+0];
4 r-> coeffs [4*i+0] = ( uint32_t )a[9*i+1] << 8;
5 r-> coeffs [4*i+0] |= ( uint32_t )a[9*i+2] << 16;
6 r-> coeffs [4*i+0] &= 0 x3FFFF ;
7

8 r-> coeffs [4*i+1] = a[9*i+2] >> 2;
9 r-> coeffs [4*i+1] |= ( uint32_t )a[9*i+3] << 6;

10 r-> coeffs [4*i+1] |= ( uint32_t )a[9*i+4] << 14;
11 r-> coeffs [4*i+1] &= 0 x3FFFF ;
12

13 r-> coeffs [4*i+2] = a[9*i+4] >> 4;
14 r-> coeffs [4*i+2] |= ( uint32_t )a[9*i+5] << 4;
15 r-> coeffs [4*i+2] |= ( uint32_t )a[9*i+6] << 12;
16 r-> coeffs [4*i+2] &= 0 x3FFFF ;
17

18 r-> coeffs [4*i+3] = a[9*i+6] >> 6;
19 r-> coeffs [4*i+3] |= ( uint32_t )a[9*i+7] << 2;
20 r-> coeffs [4*i+3] |= ( uint32_t )a[9*i+8] << 10;
21 r-> coeffs [4*i+3] &= 0 x3FFFF ;
22

23 r-> coeffs [4*i+0] = GAMMA1 - r-> coeffs [4*i+0];
24 r-> coeffs [4*i+1] = GAMMA1 - r-> coeffs [4*i+1];
25 r-> coeffs [4*i+2] = GAMMA1 - r-> coeffs [4*i+2];
26 r-> coeffs [4*i+3] = GAMMA1 - r-> coeffs [4*i +3];}}

Figure 3: Polyz_unpack(a, buf) reference implementation.

Table 4: Results for Recovering 256 Coefficients of y
#PoI Profiling Time (s) Time1 (s) SR1 (%) Time2 (s) SR2 (%)

20 134.2 7.2 14.2 15.89 8.8
50 170.0 21.4 16.4 36.7 10.8
100 321.4 56.4 24.1 121.6 17.3
300 952.3 240.6 39.6 461.3 33.4

1 assumption for ||cs1||∞ < 24.
2 assumption for ||cs1||∞ < 25.

The observed variations in the success rates of our attacks are significantly influenced
by the value range and distribution characteristics of cs1. The distribution of cs1 closely
approximates a Gaussian curve, with approximately 95% of the data falling within a
4-bit range. The attack already covers the vast majority of possibilities, thereby reducing
the enumeration space and consequently enhancing the attack’s success rate. Conversely,
extending the assumption to a 5-bit range increases the value space, capturing only an
additional 5% of possible values but at the cost of doubling the value space. Although this
extension might seem to allow for the recovery of a broader range of values, it actually
diminishes the attack’s effectiveness.

Our method demonstrates the capability to fully recover the value of y with success
rates nearing 40% using a single trace, representing a significant advancement in efficiency
compared to previous approaches. This improvement is primarily attributed to the
reduction in the number of traces needed to build templates and a smaller enumeration
space during template matching. Crucially, our attack does not require the selection of a
special y values, thereby further enhancing its efficiency.

5.3 DL-SCA for Recovering cs1

Chen et al. [CKA+21] identified significant leakage in the Montgomery reduction operation,
a critical component of the Dilithium algorithm’s reference implementation submitted to
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(a) PCC of r (b) PCC of y

Figure 4: PCC of r and y with 1,000 traces
NIST. This operation is essential to the entire INTT process, facilitating the conversion
of results from the NTT domain back to the normal domain for subsequent calculations.
The specific implementation of the Montgomery reduction is illustrated in Fig.5. Notably,
the reduction process, especially the shifting and storage operations in its final stages,
is recognized as a likely primary source of significant cs1 leakage. We targeted these
operations, achieving a maximum SNR of 16 in this experiment.

1 int32_t montgomery_reduce ( int64_t a) {
2 int32_t t;
3

4 t = ( int32_t )a*QINV;
5 t = (a - ( int64_t )t*Q) >> 32;
6

7 return t;}

Figure 5: Montgomery_reduce reference implementation.

Dilithium offers both deterministic and randomized schemes. The deterministic scheme
allows for the recovery of all discarded challenge c values when the private key is known,
a feat not possible with the randomized scheme. In our analysis, we specifically focus
on leakages from the final round of legitimate signatures.For Dilithium2, we capture
the complete round of cs1 leakage. While theoretically, collecting a broader dataset by
including cs2 leakages could provide more data for training, our current discussion remains
exclusively focused on cs1, excluding cs2 from our scope.

For Dilithium2, each signature provides 1,024 training samples. We statically align and
segment these samples into blocks of 400 for training the CNN model, as detailed in Sec.3.2.
Our training strategy addresses the range of cs1, focusing on data within ||cs1||∞ < 24,
||cs1||∞ < 25 and ||cs1||∞ < β. Using about 200,000 samples provided by 200 signatures,
it takes about 40 minutes to complete the training.

Fig.6 illustrates the guess entropy and success rates for side-channel attacks under
various strategies. Using consistent model hyperparameters, expanding the training set
enables the creation of more accurate classifiers. Generally, assuming ||cs1||∞ < 25 slightly
surpassese ||cs1||∞ < 24 assumption, with success rates improving from 70% to 74%.
For guess entropy, the assumption of ||cs1||∞ < 25 approaches 1. The reason for similar
success rates but significant differences in guess entropy is that under the ||cs1||∞ < 24

assumption, some actual values fall outside our hypothesized space and are ranked last in
our analysis. These findings highlight the potential of CNN-based techniques, suggesting
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that further optimization of network hyperparameters might enhance success rates.
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Figure 6: Guess entropy and success rates of cs1

Furthermore, we compared our method with traditional TAs for a comprehensive
analysis. In the TAs, POIs were identified based on the top 20, 50, and 100 PCCs, as well
as attempts to use all available points. The success rates, as detailed in Tab.5, demonstrate
a trend where an increased number of POIs generally enhances the attack’s effectiveness.
When employing all feature points, TAs achieved success rates of 54.6% and 57.7% under
the assumptions of ||cs1||∞ < 24 and ||cs1||∞ < 25, respectively. Although TAs also
yield better results with more PoIs they remain inferior to CNN-based attacks, likely due
to misalignments in the static alignment process. Consequently, CNN-based methods
have become the preferred approach for analyzing and exploiting cs1 leakage during the
Montgomery reduction process.

Table 5: Success Rates of CNN and TA
Approach SR of ||cs1||∞ < 24 SR of ||cs1||∞ < 25 SR of ||cs1||∞ < β
CNN 70.5 74.3 70.6
TA (#PoI=20) 25.9 23.1 22.9
TA (#PoI=50) 28.7 22.6 22.6
TA (#PoI=100) 40.5 40.4 31.2
TA (#PoI=400) 54.6 57.7 57.5

It should also be noted that for the private key s2, the computation cs2, which is
involved, undergoes the same operation as cs1. Therefore, it is entirely feasible to apply
the same method to conduct an actual attack on cs2 if required.

Moreover, we employ the method described in Sec.3.3 to integrate the results of cs1
with y. Tab.6 presents the success rates achieved, showcasing the impact of varying the
PoIs for y. Assuming ||cs1||∞ < 24, we achieve an optimal success rate of 86%. This rate
further increases to an average of 92.8% when the model assumes ||cs1||∞ < 25. These
results compellingly demonstrate the significantly improved effectiveness of the combined
attack strategy.
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Table 6: Success Rates for Combined y and cs1 Results
Range of cs1 cs1 SR (%) #PoI of y y SR (%) Merged SR (%)
||cs1||∞ < 24 70.5 20 14.2 80.9

50 16.4 82.3
100 24.1 83.1
300 39.6 86.7

||cs1||∞ < 25 74.3 20 8.8 84.9
50 10.8 86.5
100 17.3 88.7
300 33.4 92.8

5.4 Constrained Optimization-Based Residual Analysis Result
In our practical experiments, we observed that when a set of 256 equations contains more
than 8 errors, it is not possible to recover the private key within one hour using the ILP
on our computing device, with the time cost growing exponentially as the number of errors
increases. We evaluated the number of equations required to fully recover the private key
using residual analysis based on constrained optimization across various proportions of
correct equations, thus providing guidance for actual attacks.

Table 7: Performance of COBRA
Correct Eq. Ratio Eq. Count (×256) dnum eth SR (%) Time (s)

10% 65 50 0 100 189.5
30% 9 50 10 100 53.2
50% 4 50 5 100 10.0
70% 3 40 0 100 1.63
90% 2 30 0 100 0.8
95% 1 2 2 83 4.1

Tab.7 details the necessary equations and specific parameter adjustments required
for successful private key recovery, given varying percentages of correct equations. It
demonstrates that private key recovery is feasible across different success rates, provided a
certain threshold number of equations is met. Generally, the number of required equations
decreases as the success rate increases. This parameterization is heuristic, designed for
flexibility to allow real-time adjustments that enhance practical implementation efficiency.
As the proportion of incorrect equations increases, dnum can be adjusted upward to
accelerate the elimination of these inaccurate equations. Although 230 correct equations,
denoted as rnum, are sufficient for private key recovery, adjusting the parameters to fit the
actual situation can further increase the speed of the attack.

In practice, if the speed of the attack is not a priority, the number of required equations
can be further reduced by adjusting the parameters. For instance, in scenarios where only
10% of the equations are correct, we successfully executed the attack by setting eth to 5,
using fewer than 60× 256 equations (corresponding to 60 signatures). If attackers have
access to a large set of equations, it is advisable to increase the number of equations to
expedite the resolution process. However, setting dnum too high should be avoided, as it
may inadvertently eliminate a significant number of correct equations early in the process.

Our approach has shown the ability to quickly find solutions even when the set of 256
equations contains inaccuracies. In our experiments, we randomly generated 100 sets of
equations with a 95% accuracy rate. After applying our algorithm 10 times on each set,
approximately 83% of these equation sets successfully led to the recovery of the complete
private key s1. This approach has been more efficient than conventional ILP solutions.

Referring to the simulation experiments under the HW model as described by [BVC+23],
we explore the number of signatures required for COBRA to recover the private key under
various SNR ranges and cs1 assumptions. For this simulation, we selected 20 PoIs, profiled
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Table 8: Experimental results of COBRA simulation with different SNRs
SNR Range of cs1 cs1 SR (%) Eq. Count (×256)
0.01 ||cs1||∞ < 24 5.1 220

||cs1||∞ < 25 3.1 500
||cs1||∞ < β 2.3 650

0.1 ||cs1||∞ < 24 7.8 95
||cs1||∞ < 25 5.5 200
||cs1||∞ < β 3.9 440

1 ||cs1||∞ < 24 13.7 36
||cs1||∞ < 25 10.9 52
||cs1||∞ < β 9.0 77

10 ||cs1||∞ < 24 33.6 8
||cs1||∞ < 25 30.9 9
||cs1||∞ < β 29.9 9

100 ||cs1||∞ < 24 64.5 3
||cs1||∞ < 25 67.2 3
||cs1||∞ < β 66.4 3

using 50,000 traces, and attacked y and cs1 separately to obtain HW values. These values
were then merged according to the method outlined by [BVC+23]. The combined part
of the result produces multiple candidates. We multiplied the probability value of each
candidate according to the data distribution of cs1and selected the maximum value as
the final cs1 result. This experiment was repeated 50 times, with eth set to zero. Tab.8
presents the success rate of cs1 and the number of signatures required to recover s1. With
an SNR of 100, all three cs1 assumptions could complete the attack with just 3 signatures.
The assumption ||cs1||∞ < 24 provides the best results at an SNR of 0.01, with only 5%
correctness, but the attack can be conducted with 220 signatures.

In real-world analysis, when the success rate is low, this method efficiently eliminates
a large number of erroneous equations in the initial phase. Although it may not yield
the correct result immediately, it serves as an effective precursor operation to BP or ILP,
significantly improving the efficiency of the attack.

5.5 Practical SCAs of Dilithium
Next, we present the practical attack results for Dilithium2. Considering real-world
scenarios where attackers may only be able to obtain leakage for y and cs1 separately, this
section will detail the complete attack outcomes in three scenarios: attacking y alone, cs1
alone, and simultaneously obtaining leakage information for both y and cs1.

Table 9: Signatures Required for Private Key Recovery
Range of cs1 Side-Channel Strategy #Signatures
||cs1||∞ < 24 Attack on y (#POI=300) 8(6)

Attack on cs1 3(3)
Hybrid 2(2)

||cs1||∞ < 25 Attack on y (#POI=300) 9(7)
Attack on cs1 3(2)

Hybrid 2(1)
() corresponds to the best case that occurs in the attack.

Table 9 documents the number of signatures needed for private key recovery under
different scenarios, showcasing both the highest and lowest numbers of signatures required
in successful attempts across a series of 10 experiments. The efficiency of the attack
demonstrates minimal fluctuation across different assumptions about the bit range of
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cs1. Targeting the leakage of y requires approximately 10 signatures to recover s1. In
contrast, focusing solely on the leakage from cs1 allows for completing the attack with
just 3 signatures, thanks to the high success rates achieved by the CNN model. In cases
assuming ||cs1||∞ < 25, only 2 signatures are needed. Exploiting leakage from both y and
cs1 requires at most 2 signatures to recover s1. Notably, our empirical analysis revealed
that about 20% of cases could succeed with leakage from a single signature, typically
requiring the recovery of 240 out of 256 coefficients through the side-channel attack.

The results above provide strong evidence of the effectiveness of our scheme, demon-
strating that the number of signatures required to complete the attack can be kept under
10 even when targeting only a random number y with a low success rate. This represents
a significant improvement over previous work by Marzougui et al. [MUTS22] and Berzati
et al. [BVC+23]. Furthermore, our practical attack confirms that recovering Dilithium’s
private key with just one signature is indeed feasible.

For a single signature, we utilized the optimized ILP method described in in Sec.4.2,
to perform the attack. Initially, we conducted 1,000 repetitions under a constrained
optimization algorithm based on residual analysis to calculate possible values for cs1,
typically completing this process within 20 minutes. Following this preparatory phase, we
applied the optimized Big-M method for the final solution. Observations show that when the
side-channel attack successfully recovers more than 236 equations, the ILP phase generally
concludes within 30 minutes. If the number of correctly recovered equations is below
this threshold, the solution time often extends to over an hour. This result significantly
exceeds the capabilities of using ILP alone, which tolerates at most 8 errors within a similar
timeframe, thereby greatly improving solution efficiency. In this experimental framework,
about 60% of the attacks recover the private key within one hour for single-signature
scenarios.

6 Conclusion and future work
In this study, we conducted a comprehensive side-channel analysis of Dilithium2, focusing
on the polynomial addition operation z = y + cs1. Utilizing LR-based profiled attacks,
we achieved a 40% success rate in recovering the complete value of y, and with the aid
of a CNN model, we succeeded in recovering the value of cs1 with a 75% success rate.
By integrating these findings, we enhanced the success rate for recovering cs1 through
side-channel analysis to 92%. Furthermore, we introduced a constrained optimization-based
residual analysis, enabling the swift recovery of the private key s1 from extensive sets of
cs1 equations, even those containing errors. The results from actual attacks on Dilithium2
indicate that our approach can efficiently recover the private key cs1 with minimal leakage
from generated signatures—in the optimal scenario, requiring only a single signature, with
comparatively low time overhead.

Given that cs2 also undergoes the Montgomery reduction operation, our method
theoretically extends to the recovery of s2, albeit necessitating approximately 2-3 signatures
due to the lack of y to bolster the attack’s efficacy.

Despite the substantial success in recovering most of cs1, a challenge persists: even
after recovering 230 coefficients and applying our constrained optimization-based residual
analysis to reduce constraints, the computational burden of solving through ILP remains
substantial. We suggest that integrating our side-channel findings with the BP algorithm
could enable a more consistent realization of the 1-signature attack. In future efforts, we aim
to explore more efficient mathematical methods to achieve Dilithium attacks under single
signatures with improved stability and efficiency. Additionally, we plan to investigate the
effectiveness of our approach against protected implementations of Dilithium. Given that
constrained optimization-based residual analysis is still applicable with a 5% success rate of
side-channel attacks, we believe it will be highly beneficial for protected implementations.
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