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Abstract – The advancement of succinct non-interactive argument of knowledge (SNARK) with constant proof 

size has significantly enhanced the efficiency and privacy of verifiable computation. Verifiable computation 

finds applications in distributed computing networks, particularly in scenarios where nodes cannot be generally 

trusted, such as blockchains. However, fully harnessing the efficiency of SNARK becomes challenging when 

the computing targets in the network change frequently, as the SNARK verification can involve some untrusted 

preprocess of the target, which is expected to be reproduced by other nodes. This problem can be addressed with 

two approaches: One relieves the reproduction overhead by reducing the dimensionality of preprocessing data; 

The other utilizes verifiable machine computation, which eliminates the dependency on preprocess at the cost of 

increased overhead to SNARK proving and verification. In this paper, we propose a new SNARK with constant 

proof size applicable to both approaches. The proposed SNARK combines the efficiency of Groth16 protocol, 

albeit lacking universality for new problems, and the universality of PlonK protocol, albeit with significantly 

larger preprocessing data dimensions. Consequently, we demonstrate that our proposed SNARK maintains the 

efficiency and the universality while significantly reducing the dimensionality of preprocessing data. 

Furthermore, our SNARK can be seamlessly applied to the verifiable machine computation, requiring a proof 

size smaller about four to ten times than other related works. 

1 Introduction 

Succinct non-interactive arguments of knowledge (SNARK) are protocols for practical verifiable computation 

[1] of general programs, translated into statements in NP languages [2]. The protocols include at least two 

parties including a prover and a verifier. A verifier outsources the execution of a computationally intensive 

program to a prover and gets back the execution result along with a proof of its correctness. A SNARK verifier 

should be able to decide the validity of proof in a way more efficient than reproducing the execution result. A 

SNARK is said zero-knowledge (zk-) SNARK, if a prover cannot obtain any information from a valid proof 

other than the correctness of computation. For the recent decade, zk-SNARKs with constant-length proofs of 

which length is independent of the program size have been proposed [3–8]. 

SNARKs, for instance, can find application in blockchain. A blockchain operates as a chain of signatures for 

correct computation of user transactions, which transcribe programs with specific input and output. Trustless 

validators, referred to as full nodes, are randomly selected to sign the correctness of transactions accumulated to 

date. Blockchain security relies on the number of validations to each transaction, indicating the probability of 

involving at least one honest validator [9]. While traditional validation entails reproducing the same transaction 

results, verifiable computation with SNARKs may provide more efficient validation [10–12] of a large 

accumulation of signatures [13]. Furthermore, zk-SNARKs contributes to preserving privacy [14]. 

As instantiation of a SNARK with constant proof size, Parno and Gentry in [3] have proposed Pinocchio, which 

is the first practical SNARK for general programs. The efficiency of Pinocchio in terms of the succinctness of 

verifying a computation comes from the use of an offline compiler that translates a program along with specific 

input and output into an NP statement, expressed in a deterministic circuit. SNARKs after Pinocchio have also 
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inherited the use of such compilers. For example, in [4], Groth has proposed a nearly-optimal SNARK called 

Groth16, whose proof length and proving overhead are the smallest to date. 

Security of the constant-length proof SNARKs usually depends on a trusted setup. For example, trusted setups 

in Pinocchio and Groth16 encodes and compresses a circuit into a common reference string (CRS) in a 

cryptographic way. Provers and verifiers are enforced to use a CRS, which ensures they argue a common circuit. 

Although trust in the setup can be altered by a multi-party computation (MPC) manner [15–17], researchers 

have pointed out that in this model, for every new circuit, the problem of composing a multi-party and renewed 

opportunity of adversarial subversion remain unresolved [18]. For example, MPC takes a long time more than a 

month to organize a multi-party [19–21]. 

More recently, SNARKs in [5–8] have incorporated updatable and universal setups [18], which produce 

structured reference strings (SRS). These setups reduce dependence on trust or MPC, as SRS can be updated by 

variable participant group to thwart adversarial subversion and are applicable universally across all circuits. 

Notably, Groth et al. in [18] have shown that the setups for CRS, such as those used in Pinocchio and Groth16, 

are not updatable. Maller et al. proposed Sonic [5], which stands out as the first practical SNARK featuring 

updatable and universal setup. Marlin [6] and PlonK  [7], proposed by Chiesa et al. and Gabizon et al., 

respectively, have improved communication and computation efficiency. Lipmaa et. al. [8] have proposed 

Vampire, which further optimized Marlin by adopting a simplified system of constraints referred to as R1CSlite 

that only has linear constraints to variables. Despite of the reduced reliance on the setup, the security of these 

works relies on an assumption of preprocessed verifiers, where the online verifier is required to preprocess 

encoding of some or the entire circuit. 

Applying the above SNARKs to a blockchain would be crucially tackled, if the blockchain operates on a 

random-access machine (RAM), such as Ethereum [22]. In RAM, an initial sequence of instructions that defines 

a program can be modified into unrolled instructions by input during execution. Thus, with a CRS-based 

SNARK, for every transaction, which describes a program with input, issued, a new circuit must be generated, 

requiring a trusted setup or an MPC for a fresh CRS. Even with an SRS-based SNARK, a new transaction 

invokes new verifier preprocess, which must be verified or reproduced by other verifiers afterward, as 

blockchain verifiers are not generally trustworthy1,2. Based on this observation, we claim that the more SNARK 

security relies on verifier preprocess, the higher overhead to communication is imposed for the blockchain 

security. This problem is not limited to blockchain applications but potentially affects any verifiable 

computation of RAM through the distributed computing networks. 

Works in [24–31] have addressed this problem by utilizing a universal circuit, which encompasses a portion or 

the entirety of computation in a RAM, rather than program-specific circuits. Subsequently, a setup then 

processes a universal circuit into a CRS that is reusable for general programs, unless there is a change in the 

machine specification. There exists a trade-off between the portion of RAM computation covered by a universal 

circuit and the complexity of a SNARK [29]. For instance, to emulate the entire computation of a RAM using a 

universal circuit, the circuit size must be proportional to the register size of the RAM, affecting both the 

overhead to the SNARK prover and the communication complexity with the verifier. Conversely, allowing the 

SNARK verifier to take over a portion of RAM’s computation, specifically unrolling instructions, and 

preprocess the corresponding data, we can maintain the SNARK complexity closely proportional to that of the 

program-specific circuits. 

In this paper, we propose a SNARK that effectively manages the dependency on verifier preprocess. We utilize 

field-programmable circuit derivation: Starting from our universal circuit, defined as a set of subcircuits, a 

 

1 The examples can be found from zk-rollups [23]. In a rollup manner, each transaction in a second layer (as an execution 

layer) of a blockchain network can be verified in a succinct way based on the trust in each verifier’s preprocess, but to 

upload to the first layer (as a validation layer) a rollup of those for a specific period, the preprocesses must be validated. 

2 Fortunately, CRS or SRS generated by a trusted setup are not the case, as multi-party computation can replace the trust. 



program-specific circuit can be derived by placing copies of subcircuits and establishing wiring between them. 

While our setup does not support updatability, the field-programmable derivation reduces the data 

dimensionality to be preprocessed by the verifier, focusing primarily on the wiring of subcircuits. As discussed 

above, we expect that this reduced dependency on the verifier preprocess would address the high 

communication complexity encountered when implementing verifiable RAM computation in a distributed 

computing network of untrusted nodes. Additionally, the verifier preprocess can be eliminated without 

modifying the SNARK itself; rather, by enhancing the complexity of subcircuit designs to handle unrolling 

instructions. 

Our contributions are summarized as follows: 

- We demonstrate a method to transform a SNARK with a common reference string, like Groth16, into 

one with a universal setup by integrating a permutation argument [32, 33, 5, 7]. This integration divides 

the responsibility of configuring a circuit into two algorithms: the setup and verifier, unlike the 

previous SNARKs where one algorithm handled both tasks. This integration allows for adjusting the 

dependency of both parties on maintaining security. An overview of our methodology is provided in 

subsection 1.2. 

- The proposed SNARK is efficient. When used with verifier preprocessing, its communication and 

computation efficiency is asymptotically comparable to the state-of-the-art universal SNARKs. 

Moreover, when the verifier preprocessing is eliminated, the communication efficiency of our result 

surpasses that of other related works. A detailed comparison is provided in subsection 1.1. 

- We provide a rigorous security analysis of the proposed SNARK. 

The remainder of this paper is organized as follows. Section 2 defines preliminaries. In Section 3, we define a 

system of constraints, followed by construction of the proposed SNARK in Section 4. In Section 5, we provide 

security analysis of our SNARK, including adding zero-knowledge. Section 6 illustrates the elimination of 

verifier preprocess. Section 7 concludes the paper. 

1.1 Comparison with related works 

For the comparison, we informally use two models of circuits. One represents the size of a circuit in terms of the 

maximum numbers of addition and multiplication gates and wiring between them, denoted by N+ , N , and N= , 

respectively. In the other model, a circuit is placement and wiring of at most maxs  copies of Ds  subcircuits, 

where each subcircuit has at most n+  addition and n  multiplication gates and n=  wires connecting them. 

Assuming that the subcircuits in the latter model are optimized, we can write max( )n n n s N N N+ = + = + + = + + . 

As a SNARK with a universal setup. SNARKs with universal setups in common have an intermediate process 

of deriving a circuit specific to a program and input from URS. We refer to the intermediate outputs as feature 

polynomials, which involve data about the entirety or a part of circuit description. Given the feature polynomials, 

the SNARKs convince the verifier of the correctness of a circuit evaluation, whereas correctness of the feature 

polynomials is left to be preprocessed by the verifier. In Figure 1, we summarize a comparison of 

communication and computation efficiency, including the dimensionality of data that must be preprocessed by 

the verifier, denoted by dim(pre- input) . Technically, our work is differentiated by the other works in the choice 

of feature polynomials. 



In [18], Groth et al. proposed a SNARK with updatable and universal setups. The protocol works with a circuit 

representation referred to as rank 1 constraint system (R1CS), which is of three matrices of size ( )N NN  + +  

to represent the relationship how each wire contributes to each gate and the wiring. The authors encoded a 

kernel vector that is orthogonal to all columns of the R1CS matrices into a feature polynomial. This naturally 

leads that dim(pre- input) = ( )( )O N NN  ++ . In addition, computing the kernel costs 
3( )O N  field operations. 

Maller et al. in [5] proposed Sonic, which is known as the first practical SNARK with updatable and universal 

setups. Sonic is combination of a polynomial commitment scheme referred to as a KZG scheme [34] and a 

permutation argument [32, 33]. Sonic represents a circuit with three vectors of wires and three matrices of gate 

configuration. The wire vectors contain values to be assigned to the wires, and therefore an equation of 

Hadamard product between them specifies nonlinear (multiplication) gates in a circuit. The gate configuration 

matrices specify linear relationship between the wires, such as addition and wiring. The authors chose to encode 

the gate configuration matrices into a single feature polynomial, leading that dim(pre- input) =  

( ( ))O N N N + =+ . 

PlonK proposed by Gabizon et al. in [7] further optimized the circuit representation of Sonic. PlonK is known as 

one of the most efficient protocols in terms of communication and computation efficiency. Besides theory, the 

protocol has been implemented by Iden3 in practice [35] with applying computing acceleration techniques in 

[36]. Circuits of PlonK, referred to as Plonkish circuits, are restricted to have at most two input wires and an 

output wire3. Gates are configured by five selector vectors, which enable or disable the input and output wires 

and set the gate operation as either addition or multiplication. What comparable to the circuits of Sonic is that 

the multiplication between wires is not constrained by default. Also, wiring between gates is described by 

 

3 This restriction does not compromise generality, as Plonkish circuits can encompass any circuit by increasing the number 

of gates. 

Protocol 
Setup Prove Verify 

Universality Updatability || reference string  | proof |  dim(pre- input)  

Groth16 [3] no no ,( )O m +
 3  - 

Sonic [4] yes yes ( )O N
 20  + 16  ,( )O N N + =

 

PlonK [6] yes yes ,( )O N +
 9  + 6  ,( )O N +

 

Marlin [5] yes yes ,( )O N +
 13  + 8  ,( )O N +

 

This work yes no ma ,x( )DO s s n +  12  + 3  max( )DO s s  

 

Protocol Prove time Verify time 

Groth16 [3] ,( )O m + .Ex
 + ( log )O m m  .Arit

 l .Ex
 + 3 P  

Sonic [4] ( )O N .Ex
 + 

,( log )O N N N+ = .Arit
 ( )O l

.Arith
 + 13 P  

PlonK [6] ,( )O N + .Ex
 + 

, ,( log )O N N +  + .Arit
 ( )O l

.Arith
 + 2 P  

Marlin [5] ,( )O N + .Ex
 + 

, ,( log )O N N +  + .Arit
 

,( log )O l N ++ .Arith
 + 2 P  

This work ( )x, ma( )DO s n s ++
.Ex
 + ( )max max( ) logD DO s n s s s n + .Arit

 l .Ex
 + 16 P  

Figure 1.  Efficiency comparison of SNARKs with universal (and updatable) setups, including Groth16 as a reference state-of-the-

art SNARK with a circuit-specific setup. Tables depict the numbers of elements in  and , denoted as 
1

 or 
2

 and , 

respectively. 
.Ex
 and 

.Arith
 represent the numbers of exponentiations in 

1
 or 

2
 and arithmetic operations in , respectively. 

Parameters M
, M +

, and M =
 for { , , }M m N n  denote the numbers of multiplication constraints, linear constraints, and equal 

constraints, respectively. Additionally, 
,M M M +  += +  and 

,M M M+ = + == + . When M m= , constraints are counted from an 

optimized circuit; when M N= , it represents the maximum number of constraints a circuit can contain; when M n= , it indicates 

the maximum number of constraints in a subcircuit. In our work, a circuit is placement of at most 
maxs  copies of 

Ds  subcircuits. 



separated three vectors that form a permutation map. The authors encoded the eight vectors into eight feature 

polynomials, respectively, leading that dim(pre- input) = ( )O N N ++ . 

Chiesa et al. in [6] proposed Marlin by combining holographic proof system [37] with an optimized KZG 

scheme. Marlin works with the R1CS circuit representation. The authors utilized a fact that R1CS matrices are 

sparse, if there are small number of addition gates in a circuit. The sparsity can be preserved even for 

additionally dense circuits by further splitting constraints. As a result, the sparsity equals the number of wires 

involved in multiplication and addition gates. The verifier of Marlin encodes the sparse representation of R1CS 

matrices into nine feature polynomials, leading that dim(pre- input) = ( )O N N ++ . 

Our SNARK combines the R1CS and the Plonkish circuit representation. Circuits of our interest are placement 

of at most 
maxs  copies of predefined 

Ds  subcircuits. Each subcircuit is represented by three R1CS matrices. 

Wiring between subcircuits is not established by R1CS but by a permutation map. As the subcircuits are 

predefined and committed by the setup, the permutation is the only feature that uniquely specifies a derived 

circuit on-the-fly. Letting the number of input and output wires in each subcircuit be less than a constant c , the 

data dimensionality to define a permutation map is dim(pre- input) = max( )DO s s . For applications where 

Dn n s ++ , our SNARK has the reduced dim(pre- input)  compared to that of PlonK or Marlin. This 

advantage costs that our setup is not updatable, as it outputs a CRS for the R1CS [18]. Though, the subversion 

of CRS still can be prevented by MPC in weaker sense [15, 16]. 

As a machine computation eliminating verifier preprocess. In [24–28], various universal circuits for RAM 

computation have been introduced to eliminate the need for the verifier preprocess. These circuits can be 

structured into maxs  layers, each comprising 
Ds  subcircuits corresponding to instructions of a RAM. Each layer 

disputes instruction execution at each machine step, including unrolling the next step instruction. Data transfer is 

restricted to occur only between adjacent layers, ensuring the circuit’s layered structure remains independent of 

RAM programs and input. We refer to such applications of SNARKs as machine computation. While the 

deterministic nature of universal circuits frees the verifier from reproducing feature polynomials, the size of 

subcircuits remains proportional to the number of slots in the register and memory of a RAM, which is 

necessary for tracking the machine’s internal state changes. This requisite poses implementation challenges, 

especially for large-scale machines like the Ethereum virtual machine [22]. 

In the earlier design of the universal circuit in [24], multiplexer (MUX) components were used within each layer 

to choose a single output from all subcircuit outputs, depending on the input instruction provided to the layer. 

This design inherently resulted in an asymptotic prover overhead of max(( ) )DO n n s s ++ . Subsequent works [25, 

26] addressed the redundant structure within the universal circuit, which involved replicating identical layers. 

Instead, the data transfer between adjacent machine steps was argued externally to the circuit, employing 

arguments such as recursive proof composition [38] or folding schemes [39]. 

Another simplifications were made in [27, 28] where the universal circuit was presented as a set of Ds  

subcircuits. The authors proposed a protocol where the prover initially derives a program-specific circuit based 

on unrolled instructions using a lookup argument [40], followed by disputing the program execution. 

Specifically, MUX-Marlin proposed by Di et al. in [27] combined Marlin for program execution verification, a 

permutation argument for verifying the layered structure in a derived circuit, and a variant of the lookup 

argument for ensuring the correct copying of subcircuits from the predefined universal circuit. This design can 

be seen as replacing the role of MUX components with Marlin and the lookup argument compared to the design 

in [24]. Independently, SublonK, proposed by Choudhuri et al. in [28], adopted a similar approach but with 

PlonK instead of Marlin. These works resulted in reducing the size of universal circuits and the asymptotic 

prover overhead. Figure 2 provides further details. 



Our SNARK also supports the universal circuits of MUX-Marlin [27] and SublonK [28]. In terms of argument 

composition, we also utilize a permutation argument to verify the layered structure in a derived circuit, similar 

to these works. However, we use Groth16 instead of Marlin or PlonK for program execution verification and 

introduce an inner-product argument for connecting the other two arguments. As shown in Figure 2, our 

SNARK achieves remarkable efficiency in proof size. 

As a RAM-to-circuit reduction. To alleviate the high prover complexity arising from machine computation of 

large-scaled RAMs, the works in [29–31] have explored RAM-to-circuit reduction [30]. This approach allows 

the verifier to preprocess feature polynomials containing essential features for unrolling instructions. 

Consequently, the prover can focus on their program-specific computation rather than the entire machine. Their 

universal circuits no longer need to represent all RAM states but capture minimal structure of a machine that can 

be efficiently derived into an unrolled program-specific circuit. However, this reduction necessitates the 

verifier’s knowledge of non-deterministic behavior of a RAM during unrolling program instructions, which 

includes the entire [29] or the multiplicity [30] of unrolled program instructions, or input and output values at 

intermediate machine steps [31]. 

Our SNARK can be seen as a form of RAM-to-circuit reduction, since the feature polynomial requires the 

knowledge of how instructions are unrolled. Mirage, proposed by Kosba et al. in [31], shares a similar approach 

with ours, where a derived circuit is represented by the placement of predefined subcircuits and wiring between 

them. Thus, the circuit derivation can be uniquely specified by data of the dimensionality max( )DO s s . The key 

technical distinction lies in the verification of the wiring between subcircuits: In Mirage, it is verified by a 

predefined permutation subcircuit, whereas in our approach, it is done by the permutation and inner-product 

arguments, externally to the circuit. As a result, Mirage’s verifier requires preprocessed data containing the input 

and output values to each subcircuit, while our approach does not. This feature gives our SNARK the option to 

eliminate the verifier preprocess through machine computation, depending on the application. 

1.2 Technical overview 

A universal circuit we consider is defined as a library  of Ds  subcircuits. A circuit can be derived from the 

universal circuit as placement of at most maxs  copies of the subcircuits and specified by a wire map that 

describes wiring between the copies. Figure 3 and Figure 4 illustrate the derivation. Analogously, a system of 

constraints for a circuit derivation can be split into two subsystems, one argues arithmetic constraints inside each 

subcircuit copy, and the other argues copy constraints that the wires connecting two or more subcircuit copies 

must share the same values. We represent variables of our constraint system as a triple of vectors ( , , )a b c , 

where a  is public instance to a derived circuit, b  is private and of the values shared by the connecting wires, 

and c  is of the values assigned to the internal wires inside each subcircuit copy. The arithmetic constraints 

check whether all the variables ( , , )a b c  satisfy the constraints of all subcircuit copies placed in the circuit. The 

copy constraints checks whether b  satisfies a permutation, which is defined by the wire map. 

Protocol 
RAM-specific setup Prove Verify 

|| reference string  | proof |  Time Time 

MUX-Marlin [27] ( )max( )DO s s n+  
125  

+ 116  

max max( )D DO s n s s s n+ + .Ex
 

+ ( )2

max max( log log )D DO s s n s s n n+
.Arith
 

max( log )O l s+ .Arith
 

+ 2 P  

SublonK [28] ( )max( log )D DO s s s n+  
42  

+ 12  

( )max( log )D DO s s s n+ .Ex
 

+ ( )max max( log log )DDO s s n s s n n+ .Arith
 

max( log )O l s+ .Arith
 

+ 23 P  

This work max( )DO s s n  
12  
+ 3  

max(( ) )DO s n s+ .Ex
 

+
max max max( ( log log ))D DO s s s s n s n+ .Arith

 

l
.Ex
 

+ (log )DO s .Arith
 

+ 16 P  

Figure 2.  Efficiency comparison of machine computation protocols. Tables depict the numbers of elements in  and , denoted as 

1
 or 

2
 and , respectively. 

.Ex
 and 

.Arith
 represent the numbers of exponentiations in 

1
 or 

2
 and arithmetic operations 

in , respectively. Setup builds 
Ds  library subcircuits, each can have at most n  constraints. A RAM circuit can consist of at most 

maxs  copies of the library subcircuits. 



Our SNARK shown in Figure 5 consists of three arguments: an arithmetic argument based on Groth16 [4] for 

the arithmetic constraints, a permutation argument based on [32, 33, 5, 7] for the copy constraints, and an inner-

product argument that connects the two arguments. More specifically, the inner-product argument convinces a 

verifier that proofs of the other two arguments are generated from the same witness b . 

The arithmetic argument is a modification of Groth16. Originally, Groth16 worked with a univariate polynomial 

( )Ap X  and a finite range  such that ( ) 0A ip x =  for 
ix  , if and only if the i -th constraint in a circuit is 

satisfied. On the contrary, as we consider 
maxs  copies of subcircuits, we extend the protocol to work with a 

bivariate polynomial ( , )Ap X Y  and two finite ranges  and , where  indicates the constraint indices, and 

 indicates the copy indices. In other words, ( , ) 0A h ip x y =  for ( , )h ix y   , if and only if the h -th 

constraint of the i -th subcircuit copy in a derived circuit is satisfied. 

The permutation argument is a modification of that used in PlonK [7]. The original argument worked with a 

univariate permutation polynomial ( )Cp X  and a finite range  such that ( )C i kp x x=  for ,i kx x   holds if 

and only if the two values to be assigned respectively to the i -th wire and the k -th wire in a circuit are the 

same. On the contrary, we introduce a bivariate permutation polynomial ( , )Cp Y Z  over finite ranges  and , 

where  indicates the copy indices, and  indicates the wire indices. For example, ( , )C h i j kp y z y z= +  for 

( , ), ( , )h i j ky z y z    holds true for any  , if and only if the two values to be assigned respectively to the i -

th wire of the h -th subcircuit copy and the k -th wire of the j -th subcircuit copy must be the same.  

As the last argument, the inner-product argument encloses the two other arguments. Let ( )ib Y  and ( )ib Y  denote 

polynomial encodings of the witness b  and b  to the arithmetic and permutation arguments over . The 

arithmetic argument produces a proof polynomial involving ( ) ( )i i ib Y o X , which is a part of ( , )Ap X Y , where 

basis polynomials ( )io X  represent the feature of wires (they are not orthonormal to each other on  in 

general). The permutation argument produces a proof polynomial involving ( ) ( )i i ib Y K Z , which will be 

combined with ( , )Cp Y Z , where ( )iK Z  are Lagrange bases over  and therefore orthonormal to each other on 

. The goal of inner-product argument is to identify ( ) ( )i ib Y b Y= , and to achieve this we make use of the 

orthonormality of ( )iK Z . Taking an honestly computed polynomial ( ) ( )i i io X K Z  as a precomputable input, 

the verifier of inner-product argument accepts the proof polynomials of the other arguments only if  

( ) ( )( ) ( ) ( )( ) ( ) ( ) ( )0 mod i i i i i i i i ib Y K Z o ZX K Z b Y o X t  − , 

where ( )t Z  is a polynomial that vanishes on . 

The remaining aspect involves configuring the setup to efficiently compress the precomputable polynomials 

forming the constraint system, while maintaining universality. Specifically, the setup output, a CRS, must 

remain reusable for new circuits and instances a . To achieve this, the setup publishes commitments to 

randomized monomials and polynomials, which consistently include the wire polynomials of each subcircuit in 

the library to form ( , )Ap X Y . However, including a permutation polynomial ( , )Cp Y Z  into the CRS could be 

done cautiously. Since wire maps are typically circuit-specific, including it in the CRS might compromise the 

universality of the setup. Nevertheless, for specific applications such as machine computation, which have fixed 

wiring structures, the permutation can also be committed by the setup (will be further discussed in Section 6). 

2 Preliminaries 

2.1 Notations 

All sets throughout this paper are regarded as multisets unless otherwise specified. We write 
1 2

1 2 1 1 2 2

, ,

, , , ,

,

, ,{ } n

n n n

l l

i i i m i

l

i i mmx = = =  as a set-builder notation for indexed elements 
1 2 ,, , ni iix for all 



2 11 }( , ) { , ,, , n

n k k ki i i m l= . Similarly, given an algebraic structure , we write 1 2

1 2 1 1 2 2

, ,

, , , ,

,

, ,( ) n

n n n

l l

i i i m m

l

i ii mx = = ==x  

to denote a vector or a tuple of the indexed elements 
1 2, , , ni i ix   in arbitrary order. Given a field , we write 

1 2, , , 1 2[ , , , ]
nd d d nX X X  as a set of polynomials with degree less than 

id  respectively in 
iX  for all 

{1, , }i n  and with total degree less than 1

n

i id= . We write ( , )=z x y  as a concatenation of two vectors x  

and y . 

2.2 Cryptographic definitions 

Let 
1 2( , , , , , , )Tpp e G H =  be a bilinear group generated from a security parameter   . 

1 2,  are 

additive groups and 
T

 is a multiplicative group defined over a field . Letting 
i iG   for {1, 2}i  denote 

the generators, we write group encodings 
0 1[ ] : ( , ),i ini xx G G−=x  for 

nx . We define 
1 2: Te  →  as a 

non-degenerative bilinear map that holds 1 2 1 2([ ] ,[ ] ) ([1] ,[1] )xye x y e=  for ,x y . It is deduced that 
1 2([1] ,[1] )e  

is the generator of 
T

. We say a function [0,1]: →  is negligible in  , shortly ( )negl  , if there exists a 

constant c  such that for all  , )( c − .   

We consider generic group model (GGM) with affine prover strategy, where generic polynomial-time 

adversaries  have no direct access to the group operations in pp . General group model has been defined in 

[41] by a random injective encoding [ ]i  from a field  to a group 
i
 for {1, 2}i . As  has no access to the 

randomness of [ ]i , group operations can be handled only through an oracle. This implies that every 
k

iy  

produced by  there is an affine strategy 
k lP  such that =y Px  for given random encoding 

l

ix . 

2.3 Useful lemmas about polynomials 

Lemma 1 (Schwartz-Zippel (SZ) Lemma). Let 1[ , , ]np X X  be a non-zero n -variate polynomial with 

total degree not greater than d . Let   and 1 )( , , nx x  be picked at random independently and uniformly 

from 
n

. Then, 
1

1P , ) 0]r[ | |( , nf xx d −=  . 

Lemma 2 (Ben-Sasson and Sudan [42]). Let   with | | n= . A polynomial [ ]Np X  with degree 

1N n−   vanishes on  if and only if the vanishing polynomial ( ) : ( )xt X X x=  −  divides p , i.e., if and 

only if there exists a quotient polynomial [ ]h X  (i.e., ( )h X  does not involve negative powers of X ) such 

that ( ) ( ) ( )p X t X h X= . 

Proof. See Appendix A. 

Corollary 1 (An extension of Lemma 2 to bivariate polynomials). Let ,   with | | n=  and | | s= . A 

polynomial , [ , ]N Sp X Y  with degree N n  in X  and S s  in Y  vanishes on   if and only if, given 

two vanishing polynomials ( ) : ( )xt X X x=  −  and ( ) : ( )yt Y Y y=  − , there exist quotient polynomials 

, [ , ]h h X Y   such that ( , ) ( ) ( , ) ( ) ( , )p X Y t X h X Y t Y h X Y= + . 

Proof. See Appendix B. 

2.4 Circuit, rank-1 constraint system, and quadratic arithmetic program 

An arithmetic circuit comprises multiplication gates, addition gates, and wires. Each gate has two input wires 

and one output wire, with some gates possibly have wiring connections. For a given list of values assigned to 



the wires, the circuit is considered satisfied if these values satisfy to the input-output relationships of all gates. 

A rank-1 constraint system (R1CS) is a matrix representation of a circuit. R1CS is a set of matrices 

, , n mU V W , where the triple of column vectors 1 1 1

, 0 , 0 , 0( ( ) , ( ) , ( ) )n n n

k i k i k i k i k i k iu v w− − −

= = == = =u v w  for each 

{0, , 1}k m −  represents a wire. Given assignments to the wires, denoted by a vector 
10( , ), md d −=d , a 

circuit is satisfied if and only if the following n  equations for , ,0i n=  holds simultaneously, 

 
1 1 1

, , ,

0 0 0

0.
m m m

k i k k i k k i k

k k k

d u d v d w
− − −

= = =

     
 − =     

     
    (1) 

Each equation is referred to as a constraint, which represents the relationship between a left input, a right input, 

and an output within a multiplication gate. In R1CS, addition gates are typically not considered independent 

constraints but instead merged into the n  multiplication gates as summations of the inputs or outputs, except for 

special uses such as Marlin [6], where n  is expanded as increase of the addition gates to preserve sparsity of the 

R1CS matrices. It is also notable that R1CS does not count equalities between the wires as constraints, unlike 

constraint systems of PlonK [7] or Sonic [5]. 

Quadratic arithmetic program (QAP) is a polynomial representation of rank-1 constraint systems (R1CS) [43]. 

We first define a vanishing set   of | | n= . It is preferred to pick  as a group of order n  generated by 

an n -th root of unity 
X  (i.e., 1n

X = ) for computation efficiency. A vanishing polynomial is then defined as 

( ) :t X = ( )x X x − = 1n

X − . A QAP is defined as a set of polynomials, [ ]n X  such that 

 ( ) 
1

0
: ( ), ( ), ( ) ,

m

k k k k
u X v X w X

−

=
=   

where ( )ku X , ( )kv X , and ( )kw X  encodes the column vectors ku , kv , kw  over , respectively. In other 

words, ,( )k k i

i

Xu u = , ,( )k k i

i

Xv v = , ,( )k k i

i

Xw w =  for 0, , 1i n= −  and 0, , 1k m= − . The left-hand side of 

equation (1) can be equivalently represented a circuit polynomial ( )p X  as defined by 

 
1 1 1

0 0 0

( ) : ( ) ( ) ( ) .
m m m

k k k k k k

k k k

p X d u X d v X d w X
− − −

= = =

     
=  −     
     
     

By Lemma 2, a circuit is satisfied if and only if there exists 
1[ ]nq X−  such that 

 ( ) ( ) ( ).p X q X t X=  (2) 

QAP is useful to define NP language statements. A statement can be a tuple ( , )a c  of instance and witness, 

where the instance 10 , )( , ld d −=a  would incorporate public input and output of a circuit, and the witness 

1( , ),l md d −=c  would involve the intermediate outputs of the gates. We specify a relation generator  for a 

security parameter   that outputs a polynomial-time decidable binary relation R , which is a set of the instance 

and witness tuples that satisfy a given QAP. For notational simplicity, we elide   from R  and denote it by R . 

Formally, we can define 

( )
( ) ( )0 1 1

1

, , , , , ,
: ,

[ ] : ( ) ( ) ( )

l m l

l l m

n

d d d d
R

q X p X q X t X

−

− −

−

 =  =  
=  

  =  

a c
a c . 



2.5 Groth16: Non-interactive linear proof system for QAP-based R  

Groth16, proposed by J. Groth [4], is a non-interactive system to argue a statement in R , known as the most 

succinct protocol under generic group model. The system is a quadruple of polynomial-time algorithms 

( , , , )Setup Prove Verify Sim . In detail, given a relation R  based on a QAP  with parameters , ,l m n , 

each algorithm is defined as follows: 

 : ( , ) ( , )Setup pp τ σ  is a probabilistic polynomial-time (PPT) algorithm that takes as input 

the bilinear group pp  and a QAP  and outputs a simulation trapdoor 
5τ  and a common 

reference string (CRS) 
2 3 5

1 2

m n n+ + + σ , 

 : ( , , , )Prove σ a c π  is a deterministic polynomial-time (DPT) algorithm that takes as input 

statement la  and witness m l−c  and outputs a proof 
2

1 2 π , 

 : ( , , ) 0 /1Verify σ a π  is a DPT algorithm that takes as input a proof π  and returns 0 (reject) or 1 

(accept), 

 : ( , , )Sim τ a π  is a PPT algorithm that outputs a simulated proof π . 

Definition 1 (Perfect completeness). A proof system ( , , )Setup Prove Verify  for R  is perfect complete, if, 

for all ( , ) Ra c ,  

( ) ( ) ( ) ( )Pr , , ; , , , : , , 1 1.Setup Prove Verifypp = =  σ τ π σ a c σ a π  

Definition 2 (Statistical knowledge soundness). A proof system ( , , )Setup Prove Verify  for R  is statistical 

knowledge sound, if for all polynomial-time generic adversaries , there exists a polynomial-time extractor 

 such that 

( ) ( )

( ) ( ) ( )

( )

( )
( )

, , ; , , 1
Pr : .

, , ; , , , ,

Setup Verifypp
negl

R R




  = 
= 

   

σ τ σ a π

a π σ c σ a π a c
 

We introduce the Groth16 algorithms that satisfy the above definitions. 

( , )Setup pp  picks ( , , , , )x    =τ  uniformly from 
5( )  at random, defines 

( ) ( ) () : ),( i ii io u X v X w XX   += +  

computes 

       ( )
 ( )

1 1 1 2

1 0 0

1

0

1

2

1 1

0

( ) ( ), , , , , , ( ) ,

, , , ,

n l m n
h h

h i ii l h

n
h

i

h

o x o txx x x

x

    

 





−
− − − −

= = = =

−

=

− −=

=

σ

σ

 

and returns ( , )τ σ , where 1 1 2 2([ ] ,[ ] )=σ σ σ . 

( , , , )Prove σ a c  parses 
0 1( , , )ld d −=a  and 

1( , , )l md d −=c , computes 1[ ]nq X−  defined in (2), computes 



  

1

1

1 1 0
1

1

0

1

1 1

1

1

[ ] [ ] ( ) ,

[ ] [ ] ( )  for ,

[ ] ( ) ( ) ,

0,1

( )

m

i ii

m

k k i ii
k

m

ii il
o

A d u x

B d v x k

C d q x t xx 





−

=

=

− −

−

=

−

 = +
 

 = +





   = +   







 (3) 

 and returns 
1 2 1([ ] ,[ ] ,[ ] )A B C=π . 

( , , )Verify σ a π  parses 
0 1( , , )ld d −=a , 

1 2 1([ ] ,[ ] ,[ ] )A B C=π  and returns accept if and only if the following 

equation holds, 

( ) ( ) ( )
1

1 2 1 2 2 1 21

1

0

[ ] ,[ ] [ ] ,[ ] ,[ ] [ ] .( ) ,[ ]i

l

i

i

e B o xA e e d e C   
−

=

− 
 =   

 
  

Theorem 1 (Groth [4]). The Groth16 system ( , , )Setup Prove Verify  for R  constructed in Section 2.5 is 

perfect complete and statistical knowledge soundness in generic group model. 

We omit the proof of Theorem 1, as further discussion on completeness and knowledge soundness will be 

provided in Section 5. 

The above construction of Prove  as a DPT algorithm can be converted into a PPT algorithm Prove  to have 

one additional security property, zero-knowledge as defined below. 

Definition 3 (Perfect zero-knowledge). A proof system ( , , , )Setup Prove Verify Sim  for R  has perfect 

zero-knowledge if for all ( , ) Ra c  and all adversaries  

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

Pr , , ; , , , :

Pr , , ; , , : .

, , , , 1

, , , , 1

Setup Prove

Setup Simp

R

R

pp

p





 =  



=

=  

σ τ π σ a c

σ

σ

τ π a

τ a π

τ σ τ a π
 

The perfect zero-knowledge means that the proof generated from a valid statement ( , ) Ra c  is probabilistically 

indistinguishable from a simulated proof π . For the Groth16 system to have the perfect zero-knowledge, a 

simulation algorithm has been constructed as follow. 

( , , )Sim τ a  parses 
0 1( , , )ld d −=a , picks ( , )A B  uniformly from 2( )  at random, computes 

( )11

1 0
1

1[ ,(] )
l

ii iC A xB d o − − −

=

 = − −
    

and returns 1 2 1([ ] ,[ ] ,[ ] )A B C=π . 

It is straightforward to see that the simulated proof π  is always accepted by Verify . All that remains is to 

construct a PPT algorithm Prove  that outputs a proof π  with the identical probability distribution as the 

simulated proof π : 

( , , , )Prove σ a c  is a modification of Prove , where it additionally picks ( , )r s  uniformly from * 2( )  at 

random and modifies the computation (3) as 11 1[ ] [ ] [ ]rAA = + , 22 2[ ] [ ] [ ]sBB = + , 
1 1[ ] [ ]C C= 1[ ]s A+ 1[ ]r B+



1[ ]rs + . The output is 
1 2 1([ ] ,[ ] ,[ ] )A B C=π . 

Theorem 2 (Groth [4]). The Groth16 system ( , , , )Setup Prove Verify Sim  for R  constructed in Section 

2.5 has perfect zero-knowledge. 

Circuit-specific setup of the Groth16 system. The setup algorithm allows the prover to compress a statement 

into three group elements. However, the security relies on the assumption that any intermediate output, such as 

the trapdoor τ  or the randomized monomials 1 1

1 1{[ [] , ] }h h

hx x − − , other than the final output σ , is kept secret. 

Some real-world applications can realize this assumption based on trust. In this case, since the setup algorithm 

requires a QAP as input, each new circuit requires new trust. 

2.6 KZG polynomial commitment scheme and witness-extended emulation 

To reduce dependence on the trusted setup of succinct proof systems like Groth16, interactive public-coin 

protocols for R  such as Sonic [5], PlonK [7], and Marlin [6] have introduced universal setups that are 

independent of specific circuits. Instead, these protocols have incorporated polynomial commitment schemes as 

sub-protocols to ensure that the parties—the prover and verifier—agree on the same circuit or polynomials 

before commencing larger protocols. Specifically, in a larger protocol, the verifier is convinced of the prover's 

knowledge given circuit polynomials that were previously committed to. 

KZG polynomial commitment scheme, proposed by Kate et al. in [34], is an efficient polynomial scheme that 

utilizes the following algebraic behavior: Let [ ]np X  be a polynomial to be committed. By Lemma 2, for 

every   , there exists a pair of a quotient polynomial [ ]q X  and the evaluation )(p   such that 

)( ) (p X p − = ( )( )q X X − . Suppose there is a structured reference string (SRS) 
1

0 1 2 2([( ) ] ,[1] ,[ ] )i n

ix x−

==σ  with 

a random trapdoor x  . We let 1[ ( )]f x  denote a commitment to a polynomial [ ]nf X . The protocol 

proceeds as follows: 1) prover commits to ( )p X ; 2) verifier picks   at random from ; 3) prover evaluates 

)(p   and commits to ( )q X  that satisfies )( ) (p X p − = ( )( )q X X − ; 4) verifier accepts the transcript =t

1 1), (( )) , ([ ( ] )], [p x p q x  , if and only if  

( ) ( )1 2 11 22[1] [1] .[ ( )] ( ) ,[1] [ ( )] ,[ ]e p x p e q x x − = −  

As a sub-protocol, an advantage of the KZG commitment scheme is that a larger protocol can manipulate the 

evaluation )(p   in place of the commitment 
1[ ( )]p x , which is referred to as evaluation binding. Manipulating 

the additive group elements is costly and inefficient, and is only allowed with limited operations, such as linear 

operations or bilinear pairings. Technically, the verifier can be convinced of the prover’s knowledge of the 

coefficients of ( )p x , once an acceptable evaluation )(p   is provided, through witness-extended emulation [44] 

(refer to Definition 5 for a formal definition) with high probability in  . Below, we outline how the extraction 

works. 

Consider a PPT adversary . Suppose that a transcript 1 1]([ ] , , ), [a b c=t , generated between  and the 

verifier, is acceptable. In generic group model, the verification equation can be rewritten into )(a b c x − = − , 

where the transcript components can be rewritten into 
1

0

n i

i ia a x−

==   and 
1

0

n i

i ic c x−

==  . The SZ lemma allows to 

rewrite the verification equation into a polynomial equation )( ) ( )(a X b c X X − = − , with high probability 

greater than 
11 | |n −− . Suppose this case has happened. Then, by Lemma 2, we can imply that )( ia  =

1

0

n i

i ia −

= = b . Suppose there exists a DPT emulator that accesses all the internal states of , including coin-

tossing, used to generate t . This emulator thus can interact with the verifier by mimicking the behavior of . 

By emulating the protocol to collect n  acceptable transcripts with fresh (distinct) randomness 1 , n  , the 

verifier can obtain n  simultaneous linear equations )( ia b = , where the linear map is a Vandermonde matrix, 



so it is invertible. As a result, the coefficients 
0 1, )( , naa −

 can be extractable from the emulated transcripts, 

with probability greater than 
21 | |n− . Lindel in [44] has shown that the emulation can be done expectedly in 

n  runs. 

2.7 PlonK’s permutation argument 

We revisit a permutation argument based on the KZG commitment scheme, refined by Gabizon et al. in [7]. 

Recall a circuit represented by a constraint system R . Suppose there are wiring constraints in the circuit that 

necessitate repetitions in some of the wire assignments within a statement 
10 , )( , md d −=d . The wiring 

constraints, referred to as copy constraints throughout the rest of this paper, indicate that two wires attached to 

different gates share the same assignment. As an interactive public-coin protocol, the objective of a permutation 

argument is to convince the verifier of the prover’s knowledge of d  that satisfies the copy constraints. 

Define a vanishing set 
1

0: { }i m

Z i −

==  of the m -th root of unity and the corresponding vanishing polynomial 

( )t Z . Formally, copy constraints in a statement 
10( , ), md d −=d  can be defined using a permutation 

polynomial :s →  such that 
i kd d= , if )( i k

Z Zs  = . Encoding the wire assignments into a polynomial 

:b →  such that )( i

Z idb  = , the following claim can be used to equivalently check the copy constraints 

( )s Z  with respect to ( )b Z . 

Claim. Denoting indeterminates 
0 1( , ) =θ , let 

0 1( , ) : ( ) ( )f sb ZZ Z  = + +θ  and 0 1) : ( )( ,g Z b Z Z = + +θ . 

The wire assignments ( )b Z  satisfies copy constraints of ( )s Z , if and only if the equation ( , )z f z =θ

( , )z g z θ  holds. 

We omit the proof of this claim. Instead, we will provide an extended version of this claim for bivariate 

polynomials in the next section with a formal proof (See Lemma 3). 

The sufficient and necessary condition of the above claim can be equivalently satisfied by showing a recursion 

polynomial ,2,2[ , ]mr Z θ , constructed as 

 

0

1

( , ) 1,

( , ) ( , ) ( , ) ( , ), for 0 1.

Z

i i i i

Z Z Z Z

r

r g r f i m



   +

 =


=  − 

θ

θ θ θ θ
 (4) 

In a permutation argument, the prover is requested to show the knowledge of ( , )r Z θ . Suppose the verifier can 

access ( , )f Z θ  and ( , )g Z θ . The verifier accepts a claim polynomial ( , )r Z θ  if and only if two polynomial 

01 ) : ( ) 1) ( )( , ( ,p Zr K ZZ = −θ θ  and 2 ) : ) ( , ) ) ( , )( , ( , ( ,Z g Z f Zp Z r Z r Z= −θ θ θ θ θ  vanishes on , where 0 ( )K Z  

vanishes on 
0{ }Z−  and 

0

0 1( )ZK  = . It is easy to see that the two polynomials 1p  and 2p  are to check the 

first and second conditions of the above claim, respectively. 

By Lemma 2, the constraints on ( , )r Z θ  are satisfied if and only if there exists quotient polynomials 

1 2 ], [ ,q q Z θ  of degree less than 1m −  in Z  such that, for each {0,1}i , 

 ( ) ( )) .( ,,i iqp Z ZZ t=θ θ  (5) 

To argue the copy constraints in (5) efficiently, Gabizon et al. in [7] have introduced a highly optimized protocol. 

Suppose there is an SRS 
1

0 1 2 2([( ) ] ,[1] ,[ ] )i m

iz z−

==σ  with a random trapdoor z  . The protocol proceeds as 

follows: 1) prover commits to ( )b Z ; 2) verifier picks 2( )θ  at random; 3) prover commits to ( , )r Z θ ; 4) 



verifier picks 
0

  at random; 5) prover commits to a quotient polynomial :( , )q Z =θ 1 ,( )q Z +θ 0 2 )( ,q Z θ ; 

6) verifier picks    at random; 7) prover computes the evaluations ,( )r  θ  and )( ,Zr   θ ; 8) verifier picks 

1
  at random; 9) prover commits to two quotient polynomials 

0 1 ], [h Zh   that satisfies, respectively, 

( ) ( )

( )

0 0

0

1

1

( , ) 1 ( )

( ,

;

) ) ( , )

( ,

( , ) ( , ) ( , ) ( , )
( )( ),

( ) (

( )() ( , ) )

Z

Z Z

r r g Z r f Z
h Z Z

q Z t Z

Z hr Z Z

K Z

r r

r

    


  

   

−
= −

+

− + 
 


−

− 

−

−

=

θ θ θ θ θ

θ θ

θ θ

 

10) verifier finally accepts the transcript =t
1([ ( )] ,b z ,θ 1[ ( )] ,r z 0 , 1[ ( )] ,q z , ( ),r  ( ),Zr   1, 0 1[ ( )] ,h z

1 1[ ( )] )h z , if and only if the following two equations hold: 

 

( ) ( )

( )
( )

( ) ( )

0 1

2 0 1 2

1 1

1 1 2

0

1 1

1 1

2

1 1

2 2

( ) 1 [ ( )]
, [1] [ ( )] ,[ ] ,

[ ( , )] ( , )[1]

[ ( , )] ( , )[1] , [1] [ ( )] ,[ ] ,

, ( , )[ ( , )] ( , )[ ( , )]
[1]

( )[ ( )]

[1]

Z

Z Z

r K z
e e h z z

r r

e r

z

r e h z

r g r f z

t h z z

z z

    


  

   

− + 
= − 



−

−

− 

− =

− +

θ θ θ θ θ

θ θ

θ θ

 (6) 

where 
0 1 1 11 1[ [( , )] ( )] [1)] ][ ( s zf z b z  = ++θ  and 

1 1 0 1 1 1)] [ ( )] [[ [1]( ], b zg z z  = + +θ . It was assumed that the 

verifier can access 
1[ ( )]s z , which is an honest commitment to ( )s Z . 

It is straightforward to see the completeness that if the prover knows the recursion polynomial r  that satisfies 

(4), the verifier accepts the transcript (with assuming θ  is of indeterminates). Conversely, by recalling the 

evaluation binding of KZG commitment scheme, we can see this protocol is knowledge sound (with assuming 

that 
0  and 

1  are indeterminates): By the evaluation binding, satisfying (6) implies satisfying (5). We will 

provide rigorous proofs for completeness, knowledge soundness, and zero-knowledge of an extended protocol in 

Section 5. 

3 Front-end preprocess: System of constraints and setup algorithm 

We define a system of constraints based on a subcircuit library . Our system is parameterized by the number 

of subcircuits in , denoted by Ds , the maximum number of constraints that a subcircuit can contain, denoted 

by n , and the maximum number of subcircuit copies that can be placed in a circuit, denoted by maxs . 

Subcircuit library. A subcircuit library is defined as 
1

0: cDs

k k

−

== , where 0c  is an input buffer circuit, 1c
Ds −  is 

an output buffer circuit, and 1 2, ,c c
Ds −  are custom circuits. All the circuits in  are referred to as subcircuits 

and defined in the QAP representation. We let ( )km  denote the total number of wires that compose the subcircuit 

ck , and out of those we let ( )kl  denote the number of input and output wires. The input buffer 
0c  can be placed 

in a circuit to take as input instance of length inl , and the output buffer 1c
Ds −  returns output instance of length 

outl . In other words, 
(0) 2 inl l=  and 

( 1)
2Ds

outl l
−

= . We let : in outl l l= +  denote the length of the input and output of 

a circuit. Figure 3 depicts an example of the subcircuit library . 



Circuit derivation. A system of constraints constraint we consider are a class of field-programmable circuits. In 

this class, a circuit  is programed by a placement of at most 
maxs  copies of the subcircuits in , denoted by 

max( 1)(0)( , , )d d
s −

=Q , where 1(

0

) { }d c Di s

k k

−

=  denotes an active subcircuit, and wiring between the copies. The 

wiring is encoded into a permutation  , called a wire map, which entails data transfer only between subcircuits 

but does not involve data transfer between internal gates within each subcircuit. In other words, given a fixed , 

: ( , )= Q . The activation of subcircuits is determined by  . Figure 4 exemplifies how a wire map programs a 

circuit. 

  

 

 

 

(a)  Input or output buffers 

 

  
(b)  3-bit bitify subcircuit (c)  1-bit XOR subcircuit 

  (d)  An example of subcircuit library 

Figure 3. An example of subcircuit library , which consists of I/O buffers, 3-bit bitify subcircuit, 1-bit XOR subcircuit. (a) I/O 

buffers check consistency between the input and output. (b) Bitify subcircuit verifies first whether each input is binary and then the 

binary representation of the output. (c) XOR subcircuit verifiers first whether each input is binary and then XOR of the input. (d) 

In , I/O wires and connecting wires are separately listed. 



3.1 Compilers 

QAP compiler. QAP compiler outputs the QAP of . According to the QAP representation, we define ck   

for each 0, , 1Dk s= −  as 
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( ) ( )
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( )   0 0 01 1 1
: , , , , , , , , .c k j k

k k k k k k

k nm m m
u u v v w w X

− − −
=   

A library  is defined as 
1

0: cDs

k k

−

== . Denoting 
1 ( )

0: Ds k

D kl l
−

==   and 
1 ( )

0: Ds k

D km m
−

==  ,  contains 3 Dm  

polynomials in total, and out of those 3 Dl  polynomials are related to the input and output wires of each 

subcircuit. We sort the elements of  as  

 1

1 1

1 1

0 1 1
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,
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, , , ,, , , ,
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Each polynomial { , , }j jj jo vu w   is picked from 
( ) ( )( ) ( ){ , , } c
k k k

j j j k

k

j u v wz    by the following rules: 

 (0) (1) ( 2) ( 2)

( 1) ( 1)(0) (0)

0 1 0 1 2 1

( 1) ( 1) ( 2) ( 2)(0) (0) (1) (1) (2) (2)

1 0 1 0 0 01 1 1 1

( , , ) ( , , , , ),

( , , ) ( , , , , , , , , , , , , , , , ),

( ,

,

,

D D

in out out

D D D D
sDD in out

D D

s s

l l l l

s s s s

l l l ll l l l

l m

o o z z z o

o o z z z z z z z z z z

o o

−

− −

− − −

− − − −

− −− − − −

=

=

(0) (0) (1) (1) ( 1) ( 1)

( 1) ( 1)(0) (0) (1) (1)

1) ( , , , , , , , , , ).D D
s sD D

s s

l m l m l m
z z z z z z− −

− −

− =

 (7) 

The polynomials are arranged by the role of the corresponding wires. The first polynomials jo  for 

{ 1}0, ,j l −  represent I/O wires, which are used only for taking and returning the circuit input and output. 

We put a restriction on  that the first and last slots in a placement must be occupied by the input and output 

buffers 0c  and 1c
Ds − , respectively. The next polynomials jo  for { , 1}, Dj l l −  represent connecting wires, 

which are used only for transferring data from one subcircuit to other subcircuits. The last polynomials jo  for 

 

Figure 4. An example circuit , where the program takes two inputs of 3-bits and returns the XOR of them. Subcircuits that make 

up this circuit are copied from  in Figure 3. Each wire is represented as 
( )i

jd , which denotes the i -th copy of ’s j -th wire. In 

the wire map, a b→  denotes that an input b  is driven by an output a . 



1}{ , , DDj ml −  represent internal wires inside subcircuits. 

Synthesizer. Given  as input, synthesizer outputs Q  and  , those together form a circuit ( , )= Q . By 

setting the wire assignments in all inactive subcircuits to zero, we can rewrite max( 1)(0) , , )(
s −

=Q , where ( )i  

is the i -th copy of . Synthesis draws a wire map that describes how the connecting wires in each copy are 

connected to those in another copy. Wires that are connected to each other must share the same value assignment. 

Formally, motivated by [5, 7], we define a wire map as a permutation  . Let ( )i

jd   denote a value 

assignment to the wire ( ), , i

j j ju v w   for max{0, , 1}si − . We collect and write ( ) ( )i i

j l jb d− =  for 

{ , 1}, Dj l l − , which are the value assignments to the connecting wires of ( )i . As an index set for ( )i

jb , we 

define max: {0, , 1} {0, , 1}Ds l l= −  − − . Then, a wire map is defined as a permutation : → . To 

construct the mapping rule of  , we divide  into M  disjoint subsets k  for , 10,k M= −  so that all ( )i

jb  

indexed by ( , ) ki j   share the same value. We define cycles :k k k →  for , 10,k M= − . The 

permutation   is finally constructed as an integration of the cycles 

 
0 1( ) ( ).M   −=  (8) 

In the example circuit in Figure 4, a permutation   can be defined over 12M =  disjoint subsets, each with 

| | 2k = . 

3.2 System of constraints 

Given a circuit ( , )= Q , a system of constraints contains two subsystems: arithmetic constraints and copy 

constraints. Arithmetic constraints checks whether all wire assignments 
( )i

jd  for max{0, , 1}sh −  and 

, }{0, Dj m  satisfy the QAP of Q . Copy constraints checks the correctness of the connection between 

subcircuits in the placement by checking whether the wire assignments to the connecting wires, i.e., 
( )i

jb  for 

( , )i j   satisfy a permutation  . 

For the construction of a constraint system, we need Lagrange bases 
max

[ ]siL Y  and [ ]
Dj l lK Z− . Given 

vanishing sets max 1

0{ }
si

Y i −

==  and 
0{ } Dl lj

Z j −

== , the Lagrange bases iL  for max{0, , 1}si −  satisfy ( ) 1i

YiL  =  

and ( ) 0k

YiL  =  for every k i . The other Lagrange bases ( )iK Z  for , 10, Dli l= − −  are defined in the same 

way with . We also define vanishing polynomials 
max 1[ ]st Y+  and 1[ ]

Dl lt Z− +  corresponding to  and 

, respectively. 

We encode some of the wire assignments max 1( )

0{ }
s

i

i

jd
−

=  for each {0, , 1}Dj m −  into polynomials according to 

the roles of wires as discussed in (7): 

 max 1 ( )

0
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=
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−

−
  (9)  

1) Arithmetic constraints 

The arithmetic constraints can be represented by a set of equations: for all ( , )x y   , 



 ( )0 , 0,p x y =  (10) 

where 

0 ( , ) : ( , ) ( , ) ( , ),p X Y U X Y V X Y W X Y= −  

and for { , , }U VO W , 

 
( ) ( )

1 1 11
0 1

0 1

0

( , ) : ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ),
in D D

D

D

in D

l l ml
s

j j j j j l j j l j

j j l j l j l

O X Y d L Y o X d L Y o X b Y o X c Y o X
− − −−

−

− − −

= = = =

= + + +     (11) 

where 
i io u= , if O U= ; 

i io v= , if O V= ; and 
i io w= , if O W= . 

Applying Corollary 1 to the 
maxns  equations of (10), the arithmetic constraints are satisfied if and only if  

 
0 0 10 1 ( , ) ( , ) ( ) ( , ) ( ),, [ , ] : p X YX Xq q Y q X Y t X q Y t Y  = +  (12) 

where  is a vanishing set of size n  and t  is the corresponding vanishing polynomial. 

2) Copy constraints 

The copy constraints check whether ( , )B Y Z  satisfies a permutation  , where 

 
1

0

( , ) : ( ) ( ).
Dl l

j j

j

B Y Z b Y K Y
− −

=

=   (13) 

For ( , ) ( , )i j h k , we write 1( , )i j h =  and 2( , )i j k = . We say the copy constraints are satisfied if and 

only if 1 2( , ) ( , )
( , ) ( , )

i j i ji j

Y Z Y ZB B
    = , i.e., 1

2

( ( , ) )

(

( )

, )

i j

i j

i

jb b


=  for every connecting wire index ( , )i j  . 

Motivated by [5, 7, 33], we construct a permutation check algorithm for the copy constraints. We first encode 

  into permutation polynomials 
(0) (1) (2), ,s s s [ , ]Y Z  such that for ( , )i j  , 
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 (14) 

With introducing indeterminates 
0 1 2( , , )  =θ , we also define 
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θ

θ
 (15) 

Lemma 3 below is useful for checking the copy constraints. 

Lemma 3. Given polynomials ,f g  defined in (15), ( , )B Y Z  satisfies copy constraints with  , if and only if 

the following equation holds 



 
, ,

( , , ) ( , , ).
y z y z

f y z g y z
   

= θ θ  (16) 

 Proof. For the simplicity of expression, we denote 
, ( , )i j

i j Y Zb b  =  for ( , )i j  . If 
, ( , )i j i jb b=  then the 

factors on both sides are the same, just in a different order, so the equation holds. Conversely, suppose the 

equation (16) holds. Consider the roots of 0  on both sides given by 

2

1

( , )

, 1 2 , 1 2

( , )
: ( , ) , : ( , )

i j k

i j Z h k Z
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b b
i j h k
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. 

The equation implies that two sets of roots must be the same, i.e., for every ( , )i j  , there must exist 

( , )h k   such that 

( ) ( )2 1( , ) ( , )

, 2 3 , 2 3 .
i j i jh k

Y i j Z Y h k Zb b
        + + = + +  

Since there is the unique pair (( , ), ( , ))h i j k   such that 1( , )h ij

Y Y

 =  and 2( , )ik h

Z Z

 =  by the definition of  , 

we conclude that on those indices it holds 
, ,h i j kb b= . In other words, , ( , )i j i jb b= .  

For an efficient utilization of Lemma 3, we define a recursion polynomial [ , , ]r Y Z θ  such that 
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It is straightforward to see that there exists ( , , )r Y Z θ  that holds (17), if and only if the equation (16) holds.  

By Corollary 1, the polynomial ( , , )r Y Z θ  satisfies (17), if and only if there exist [ , , ]iq Y Z θ  for {2, ,7}i  

such that 
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 where 
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3) Integrating all the constraints 

With introducing an indeterminate  , we integrate all the constraint polynomials 0 3, ,p p  into a single 

polynomial p [ , , , , ]X Y Z  θ  as follow: 



 ( ) ( ) ( )
3

0

1

, , , , : , , , .i

i

i

p X Y Z p X Y p Y Z 
=

= +θ θ  (20) 

We finally define the constraint system as a relation generator . The relation generator takes as input a 

security parameter  , a subcircuit library [ ]X , and permutation polynomials (0) (1) (2) [ ], ,,s s Y Zs    and 

generates a polynomial-time decidable binary relation R , which is a set of pairs of instance and witness 
( ) ( ), ), ( ( ), ( ))(( in out Y Ya a b c , where 

( ) (0) (0)

0 1( , ),
in

in

ld d −=a , 
( 1) ( 1)( )
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l ld d
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−=a , 0 1, ( ))( ) ( ( ),
Dl lY b b YY − −=b , 

10 , ( ))( ) ( ( ),
D Dm lY c c YY − −=c , such that the polynomial ( , , , , )p X Y Z θ  vanishes on   . Formally, R  is 

constructed as 
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3.3 Setup of subcircuit library 

Our back-end protocol that will be defined in the next section relies on a probabilistic algorithm Setup  for R  

that produces an encoded reference string σ  of the library subcircuit polynomials in . Parties of the back-end 

protocol will be enforced to use σ , by which a prover can compress a claim statement ( ) ( ), ), ( ( ), ( ))(( in out Y Ya a b c  

for R  into proof of a small size. A verifier can be convinced by σ  that the counterparty is disputing a circuit 

derived from the same library . Also, randomness in σ  keeps ( ) ( ), ), ( ( ), ( ))(( in out Y Ya a b c  extractable from the 

compression. 

However, Setup  may not include permutation polynomials (0) (1) (2){ , , }s s s , when leaving the parties to commit 

to them by themselves grants universality to the back-end protocol. In special cases where universality is 

guaranteed even if the permutation polynomials are fixed, we can consider appending them to the reference 

string. Section 6 will illustrate one of these cases, verifiable machine computation. 

( , )Setup pp  takes as input the bilinear pairing group pp  and the subcircuit library =

1

0{ ( ), ( ), ( )} Dm

j j j ju X v X w X
−

=
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computes )( ) (i joy xL  for every {0, , 1}Dj m −  and max{0, , 1}si − , where   

( ) : ( ) ( ) ( ),j j j jo X u X v X w X = + +  

and , )(jM x z  for { , 1}, Dj l l −  as defined 
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and returns 
, 1 1 1 2([ ] ,[ ] ,[ ] ,[ ] )A I C zk V=σ σ σ σ σ , where 
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In the next section, the three vectors ,A Iσ , 
Cσ , and 

zkσ  will be used for different purposes: ,A Iσ  is for arithmetic 

constraint and inner-product arguments, Cσ  is for copy constraint argument, and zkσ  is for adding zero-

knowledge. 

4 Back-end Protocol: A SNARK for R  

We construct an interactive protocol 
,IP  for the relation R , as shown in Figure 5. The protocol consists of a 

tuple of prover algorithms =
0 1 2 3 4( , , , , )Prove Commit Prove Eval Prove  and a tuple of verifier algorithms 

=
0 1 2 3( , , , ,Open Open Open Open Verifiy). We sometimes write 

, ,IP = . The algorithms of  

and  will be defined in subsection 4.4.  

The protocol ,IP  consists of three arguments: the arithmetic constraint argument, the copy constraint 

argument, and the inner product argument. The arithmetic constraint argument argues the arithmetic constraints, 

while the copy constraint argument argues the copy constraints. The inner product argument connects these two 

by ensuring that the witness provided as proofs of both arguments are identical. We explain each argument, 

followed by presenting the integrated protocol ,IP . 

The construction of ,IP  in this section excludes the zero-knowledge. Instead, in the next section, we will 

illustrate how ,IP  can restore the zero-knowledge. 



We assume  is given preprocessed commitments 
( )

1[ ]iS  for {0,1}i  to the permutation polynomials 

( ) ( , )is Y Z  in (14), where, given τ , 
1( ) ( ) ( , )i iS s y z −= . Also, according to (14), 

(2) ( , )s Y Z Z= . We write 

( ) 2

0( , ) ( ( , ))i

iY Z s Y Z ==s . 

4.1 Arithmetic constraint argument 

The arithmetic constraint argument is based on Groth16 [4], with modifications for bivariate polynomials. In 

this argument, the prover claims instance and witness that satisfies the arithmetic constraints (12). Let 
( ) ( )(( , ), ( ( ), ( )))in out Y Ya a b c  denote the claimed pair of instance and witness. We write a concatenation 

( ) ( )( ) ( ) | ( ) | ( ) | ( )in outY Y Y Y Y=d a a b c , where 
( ) ( )

0( ) ( )in in

i ia Y a L Y=  and 
( ) ( )

1( ) ( )out out

i ia Y a L Y= . 

Given a reference string σ , the argument is 0 ,Prove Verify  and produces a transcript 

2 1 11([ ] ,[ ] , )[[ ] , ]V W CU . Each transcript component is produced by 
0Prove  as follows, 
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 (24) 

where 0 ( , )q X Y  and 1( , )q X Y  are computed as defined in (12). The verifier algorithm Verify  accepts the 

Protocol ,IP  for R  

   

1: ( )
( )

( ) ( )

0

1 2 1 1 1 1

, , , ( ), ( )

[ ] ,[ ] ,

,

,[ ] [ ] ,[ ] ,[ ]

Prove
in out Y Y

U V W A B C

σ a a b c
  

2:  ( )1 2 1 1 1 10 [ ] ,[ ] ,[ ] ,[ ] ,[ ] ,[ ]Open U V W A B C θ  

3: ( ) ( )11 ( , ), , , ( ) [ ]Commit Y Y RZ θ bs σ   

4:  ( ) 011 [ ]Open R   

5: ( ) 102 ( , ), , , [ ], ( )Prove Y Z Y Q bσs θ   

6:  ( ) ( )2 1 ,[ ]Open Q    

7: ( ) ( )3 , , ,( , ), , , , , ( ) , ,Eval y z y z y zY Z Y R R B   σs θ b   

8:  ( )3 , , , 1, ,Open y z y z y zR R B    

9: ( )

( )0

4

1 1 31 1

0 1

1 2
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, , ,

,
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)
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s σ θ b
  

10: 
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1 1, [ ] ,[ ] , ( 1,, ), , , , 0Verify
in outpp S S s Y Z a a tσ  

Figure 5. An interactive protocol ,IP  for R . In the protocol, every output produced by  or  is sent to the other 

party, immediately. 



transcript, given public input ( )Ya , only if 1AE = , where 

 

( ) ( ) ( ) ( )
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1
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 

=

 
 (25) 

It is straightforward to see that if 
( ) ( )(( , ), ( ( ), ( )))in out Y Ya a b c  satisfies the copy constraint (12) and if the 

computations (24) and (25) are strictly followed, 1AE = . 

Efficiency of arithmetic constraint argument. Computing 1[ ]U  and 2[ ]V  is done in max( )O ns  exponentiations 

in 1  and 2 , respectively. According to (9), 1[ ]W  and the most left them of 1[ ]C  can be computed by 

max

1

11 ( ) 1

10 [ )]( ) (D sl i

j l i j i jo xd L y−− −

= =   and max

0

1

1

11 ( ) ]( ) ([ )D

D

sm i

j l i j i j xd L y o−−

= =

−  , respectively. Since there are at most maxs  

subcircuits placed in a circuit and each subcircuit has ( )O n  wires, computing 1[ ]W  and the most left term of 

1[ ]C  is therefore done by max( )O ns  exponentiations in 1 . The rest two terms of 1[ ]C  are also computed by 

max( )O ns  exponentiations in 1  by the degree bounds of 0 ( , )q X Y  and 1( , )q X Y . The complexity of finding the 

quotients 0 ( , )q X Y  and 1( , )q X Y  is given by max max( log )O ns ns  operations in . Finally, the verifier needs to 

compute l  exponentiations in 1 . 

4.2 Copy constraint argument 

The copy constraint argument is based on a permutation argument in [33] that was also used in Sonic [5] and 

PlonK [7]. We modify the permutation argument to work with bivariate polynomials and reduced interactions. 

In the argument, the prover claims a polynomial 
1

0( , ) : ( ) ( )Dl l

j j jB Y Z b Y K Z
− −

==   that satisfies the copy constraints 

in Lemma 3. 

Given a reference string σ , the argument is ,  and produces a transcript  

( )1 1 11 0 , , , 1 0 1 1 12 31[ ., ,[ ] , ] , , ,] ,[ , ,[ ], ,[ ] ,[ ], ,[ ]y z y z y zR R R BB Q        θ  

We explain how each transcript component is computed in sequence. 

Given ( , )B Y Z  as input, the first component 
1[ ]B  is produced by 0Prove  as 

 1

1

1
,[ ] ( , )B B y z −=     (26) 

which provokes the verifier algorithm 0Open  to pick a challenge θ  uniformly from 
3( )  at random. 

Given θ  as input, 1[ ]R  is produced by 1Commit  as 

 1 1

1[ ] ( , , ) ,R r y z − =  θ  (27) 

where ( , , )r Y Z θ  is the recursion polynomial defined in (17). Then, a challenge 0  is picked uniformly from 
*

 

at random by 1Open . 



Given all the previous challenges as input, 1[ ]Q  is computed by 2Prove  as 
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 
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+ + +
 

θ θ θ

θ θ θ
 (28) 

where 2 7( , , ), ( , , ),q Y Z q Y Zθ θ  are defined (18). Then, the verifier algorithm 2Open  picks two challenges 

,   uniformly from   at random. 

Given , , θ , 3Eval  produces 
, , ,, ,y z y z y zR R B   as follows, 

 
,

1

,

1 1

,, ), , , ), , , ),( ( (  Zy z y z Yy z ZB B R r R r        − − − = = =θ θ  (29) 

which provokes 3Open  to pick a challenge 1  uniformly from   at random . 

Taking all the previous challenges as input, 4Prove  computes the last transcript components 0 1 3 1[ ] , ,[ ]   as 

the following procedure: 

1. Define ( ),,P Y Z θ  as 
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 (30) 

where ( ),,f Y Z θ  and ( ),,g Y Z θ  are given in (15) and 1 3( , , ( , ,), , )p Y Z p Y Zθ θ  are given in (19). 

2. Compute quotient polynomials 0 5, ,   that satisfies 
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3. Return 0 1 3 1[ ] , ,[ ]  , where 
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Finally, Verify  with the public input (0) (1) (2)

1 1[ ] [ ] , ( , ),S S s Y Z  computes 
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and accepts the transcript only if C OE E E= , where 
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 (33) 

We can see that if ( , )B Y Z  satisfies the copy constraint (12) and if the computations (26)-(33) are strictly 

followed, it holds true that C OE E E=  with high probability: Suppose ( , )B Y Z  satisfies the copy constraint, 

then by Lemma 3, )( , ,f Y Z θ  and )( , ,g Y Z θ  satisfy (16) for an indeterminant θ . However, as we sample θ  to 

replace the indeterminants, the equation (16) breaks if at least one factor happens to be zero, in which cases 

( , , )r Y Z θ  cannot be defined as well. This probability is by the SZ lemma not greater than 3 | || | / | | . 

With supposing that ( , , )r Y Z θ  is well defined, Corollary 1 leads to C OE E E= . 

Efficiency of copy constraint argument. Computing each group component of the transcript is done in 

max( ( ))DO s l l−  exponentiations in 1  and 2 , where ( )D Dl O s= . Each polynomial evaluation of the transcript 

is found in max(log )DO s s  operations in . The prover also computes multiplication of some polynomials at the 

cost of max max( log )D DO s s s s  operations in . The verifier evaluates (2) ( , )s Y Z  at ( , )  , of which the cost is 

negligible, when (2) ( , )s Y Z Z=  as defined in Section 3. In Section 6, we will also consider ( )(2) ( , ) DO s
s Y Z Z= , 

where the evaluation costs (log )DO s  operations in . 

4.3 Inner product argument 

We construct the inner product argument that connects the arithmetic and copy constraint arguments: It argues 

the relationship between the two transcript components 1[ ]W  and 1[ ]B , which are respectively produced by the 

two arguments, that both components are made of the same witness ( )Yb . 

Given a reference string σ , the argument is 0 ,Prove Verify  and produces a transcript 
1 1 1)[ ]( [] ][ , ,W A B , 

where 1[ ]A  is computed by 0Prove  as 

 ( )21 1
01 0 8

1 1

1
[ ,1 ( ,] ( ) ( , ) )) (( )

Dl

j l j j lj l
x qA b y o x y zK z z t − −

−
−

−=

 = −


− 
    (34) 

with a quotient polynomial 8q  that satisfies 



 
1 1

,

8( ) .( ) ( ( , ,( ) ) ) ( )
D Dl l

j l j l

j l k l

k

jk

k lb Z o X K Z q X Y Z ZK tY −



− −

− −

= =

=   (35) 

The verifier algorithm Verify  accepts the transcript only if 1IE = , where 

 ( ) ( )2

12
1

1
0 1

1
1

2
1 2[ ] , ( ( ) ,[ ] ,[ ] .) [ ] [ ]

D

I j j l

l

j l
E x A We B o K z e e  

− −
−=

− 
 

 
=  

    (36) 

It is straightforward to see that if both 11[ ] [ ],W B  are made of ( )Yb  and if the computations (34)-(36) are strictly 

followed, it holds true that 1IE = . The only thing to be careful is the calculation of 8q . Proposition 1 below 

shows that 18[ , , ) ( )](x y z t zq  can be efficiently computed from σ . 

Proposition 1. A polynomial 8 , , )(X Y Zq  that satisfies (35) can be expressed as a linear combination 

 
1

8 ( , , ) ( ) ( ) ,( ( ), )
D

j l

l

j l

jq X Y Z t Z b Y M Z t ZX−

−

=

=  (37) 

where jM  are defined in (23). 

Proof. See Appendix C 

The polynomials ( , )jM X Z  in Proposition 1 can be seen as cached quotients [45]. They can be preprocessed by 

Setup  as they remain independent of any specific statement. 

Efficiency of inner-product argument. We can rewrite DDl cs  for a constant c , i.e., each subcircuit can have 

at most c  input and output wires. Since there are at most maxs  subcircuits placed in a circuit, the computation of 

1[ ]A  in (34), which involves max 1 ( )

0( ) ( )
s i

j l i j ib Y d L Y
−

− ==   (see (9)), is done in max( )O s  exponentiations in 1 .  

Also, by Proposition 1, the prover does not need to run polynomial multiplication or division when computing 

8 , , )(X Y Zq . 

4.4 The final protocol as the integration of three arguments 

We integrate the three arguments constructed above. There is no change in the algorithms of  and  other 

than Verify  after the integration. We therefore just summarize input and output of each algorithm. 

We first list the prover algorithms 0 1 2 3 4( , , , , )Prove Commit Prove Eval Prove= . 

( ) ( )

0 ,,( , , ( ), ( ))Prove
in out Y Ya a b cσ  takes as input a subcircuit library , a reference string σ , and a claimed 

pair ( ) ( )(( , ), ( ( ), ( )))in out Y Ya a b c  of instance and witness and returns 1 2 1 1 1 1([ ] ,[ ] ,[ ] ,[ ] ,[ ] ,[ ] )U V W A B C  as given in 

(24),(26),(34). 

1( ( , ,, , () ))Commit Y Z Yθ bs σ  takes as input public permutation polynomials ( , )Y Zs  and challenges 3( )θ  

and returns 1[ ]R  as given in (27). 

2 0( ( , ), ), , , ( )Prove Y Z Ys θ bσ  takes as input a challenge 0
  and returns 1[ ]Q  as given in (28). 



, , , , ), (( ( , ))
3

Eval Y Z Y s θ bσ  takes as input challenges ,    and returns 
, , ,( , , )y z y z y zR R B   as given in (29). 

0 1, , , ,( ( , ) ), ,, ( )
4

Prove Y Z Y    bs σ θ  takes as input a challenge 
1

  and returns 1 10 3( )[ ] , ,[ ]   as 

given in (32). 

The verifier algorithm Openi  for each ,30,i =  in  is a probabilistic algorithm, which takes as input the 

specific number of group or field elements as specified in Figure 5 and returns challenges picked uniformly 

from   at random. We finally define Verify  as follow: 

(0) (1) (2) ( ) ( )

1 1( , [ ] ,[ ] , ( , ), , , , ),Verify
in outpp S S s Y Z a aσ t  takes as input a bilinear group pp , commitments to 

the permutation polynomials ( ) ( , )is Y Z  for 0,1i = , and a transcript t  and returns true if and only if  

 ,A C O IE E E E E=  (38) 

where each factor in (38) is computed by (25), (33), (36). 

Overall efficiency of the protocol. The protocol 
,IP  consists of 10 rounds of interaction. The prover sends 

11, 1, and 3 elements respectively in 1 , 2 , and . The verifier picks 7 challenges from  . The prover, in 

total, performs max( )O ns  and max( )DO s s  exponentiations in 1 , max( )O ns  exponentiations in 2 , and 

max max(( ) log )D DO n s s ns s+  operations in . The verifier computes l  exponentiations in 1  and 16 pairings. 

When ( )(2) ( , ) DO s
s Y Z Z=  as defined in Section 6, the verifier additionally costs (log )DO s  operations in . 

5 Protocol Security 

5.1 Completeness and knowledge-soundness 

We define security properties: completeness and knowledge-soundness. For the completeness, we follow the 

perfect completeness in Definition 1, with modifications for interactive protocols and allowing the statistical 

imperfection. 

Definition 4 (Statistical completeness). Given Setup  for R , an interactive protocol 
, ,IP =  with 

preprocessed input z  is statistically complete, if given a valid pair of instance and witness as input to , a 

transcript produced by the protocol is acceptable by , with high probability in  . In other words, for every 
( ) ( )(( , ), ( ( ), ( )))in out RY Y a a b c , it holds that 
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( ) ( ) ( )( ) ( ) ( ) ( )P ,,

;

, , ( ), ( ), , , :

    

r , 1

Setup

in out in out

R

Y Y

is accepted by



 




 

− 




 
 

σ

t σ b c z σa z

t

a a a  

for a failure probability  negligible in  . 

Proposition 2. Given Setup  for R , the interactive protocol , ,IP =   constructed in Section 4 is 

statistical complete with a failure probability of 



( ) max3 ( )Ds l l




−
 . 

We omit the proof of Proposition 2, as it has been already explained in Section 4. The protocol 
, ,IP =  

is imperfect in completeness due to the copy constraint argument. Noticeably, it has been discussed in [7] that 

the copy constraint argument can achieve perfect completeness at the cost of adding ( )  to knowledge 

soundness error discussed below, by forcing  to accept an incomplete transcript immediately whenever a bad 

challenge θ  has been chosen. 

For the knowledge soundness, instead of direct extraction of witness in Definition 2, we utilize witness-extended 

emulation. Informally, a protocol for a relation is said to have knowledge sound if a valid pair of instance and 

witness that resides in the relation can be extractable from an acceptable transcript with high probability. 

However, the relation R  we consider is a collection of polynomials with the large degree maxs . Thus, instead of 

knowledge of the valid polynomials,  in the copy constraint argument queries  an evaluation of every 

relevant polynomial at a challenged point that cannot be predicted by  in advance. Since there is no efficient 

algorithm to extract a polynomial from a single evaluation, we need a special soundness that extracts a valid 

witness from two or more distinct acceptable transcripts [2]. In the same context, we follow the definition of 

witness-extended emulation [5, 44, 46], which is a general framework to define a special soundness for any 

public coin interactive protocols. 

Definition 5 (Witness-extended emulation against affine prover strategy). Consider a public coin interactive 

protocol , ,IP =   with preprocessed input z , given Setup  for R . The protocol satisfies witness-

extended emulation, if, for all deterministic polynomial time  , there exists an expected polynomial-time 

emulator  such that for all generic adversaries  we have 
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where  has access to repeatedly rewind ,   to a particular round for fresh randomness of  and 

produce the corresponding transcript. 

Proposition 3 (Witness-extended emulation). Given Setup  for R , the interactive protocol , ,IP =   

constructed in Section 4 satisfies witness-extended emulation with an emulator that extracts 
( ) ( )(( , ), ( ( ), ( )))in out RY Y a a b c  from an acceptable transcript ,IPt  expectedly in max( 2)( )Ds l l+ −  runs 

with probability bounded below by 



( ) ( )( ) ( ) ( )( )max maxdeg 3 5 2deg 8 2
.

D Ds l l s l l



− + + + − + +
σ σ
τ τ

 

Proof. See Appendix D. 

We consider GGM, which is a stronger assumption than algebraic group model (AGM). Unlike generic 

adversaries, an algebraic adversary has direct access to the group operations. We do not provide AGM analysis 

for the simplicity of proof, but interested readers are referred to [47, 48]. In [47], it has been shown that Groth16, 

which is the original version of our arithmetic constraint argument, satisfies the knowledge soundness against 

computationally bounded algebraic adversaries. Also, under AGM, a general framework for online witness-

extended emulation, where the emulator does not rewind the protocol, for public-coin interactive protocols has 

been introduced in [48]. 

5.2 Adding Zero-knowledge 

The protocol 
,IP  in Section 4 does not provide zero-knowledge (e.g., Definition 3), as all algorithms of  

are deterministic. In this section, we modify each argument of 
,IP  to add zero-knowledge. 

Perfect zero-knowledge for the arithmetic constraint and inner product arguments. Consider a non-

interactive argument ( , , ,Setup Prove Verify Sim) and the perfect zero-knowledge in Definition 3. We 

collect and modify the algorithms of the arithmetic constraint and inner product arguments to form the argument 

that satisfies the perfect zero-knowledge. 

We first construct Sim  as follow, 

( )( ) ( ),, , ,Sim
in outpp a aτ : It picks , , ,U V C B  uniformly from  at random, computes 
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and returns a simulated proof 
1 2 1 1 1 1([ ] ,[ ] ,[ ] ,[ ] ,[ ] ,[ ] )U V W A B C = . 

We construct Prove  as a modification of 0Prove . Unlike 0Prove ,  Prove  is a PPT algorithm: 

- Pick random mixers 
0 1 2 3, , ,r r r r  from . 

- Let 3( ) ( ) ( )i iY b Y r Yb t+=  for , 10, Dli l= − − , and 1
( , ) ( ) ( )D

i

l

i l i llB Y bZ Y K Z−

−

= −=  . 

- Replace ( )i lb Y−
 in (37) with ( )i lb Y−

 to compute the corresponding quotient polynomial 8 ( , , )X Yq Z . 

- Modify (24), (26), and (34) as 
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Finally, Verify  accepts the proof 
1 2 1 1 1 1([ ] ,[ ] ,[ ] ,[ ] ,[ ] ,[ ] )U V W A B C =  if and only if 1A IE E = , where 

AE  and 

IE  are computed by (25) and (36), respectively. 

By the modification Prove , the distribution of   becomes identical with that of the simulated proof  . Also, 

the argument satisfies the perfect completeness in Definition 1: For the arithmetic constraint argument, 1[ ]C  

compensates all aliasing terms in the verification equation incurred by the random mixers; and for the inner 

product argument, the verifier accepts the proof as long as 1[ ]W , 1[ ]A , and 1[ ]B  are made of the same ( )Yb . 

Honest-verifier zero-knowledge for the copy constraint argument. It would be challenging for an interactive 

protocol to have the perfect zero-knowledge in Definition 3. Instead, we can consider honest-verifier zero-

knowledge [49]. Informally, an interactive protocol that produces a transcript t  is said to have honest-verifier 

(statistical) zero-knowledge, if there exists a simulator that produces a simulated transcript t  such that the 

distributions of t  and t  are identical (or statistically indistinguishable) given that the randomized verifier 

strictly follows the protocol. In [5, 7], the authors have exemplified adding honest-verifier zero-knowledge to an 

interactive protocol. We can apply a similar approach with them to our copy constraint argument. 

We start by constructing a simulator that accesses the coin-tossing of  as follow, 

( ), , ( , )Sim pp Y Z τ s t : It picks 
, 5, , 1 3, , , , , , ,,y z y z y zB R Q R R B      uniformly from  at random, takes 

random challenges 0 1, , , ,    θ  from , computes 
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We now construct  by modifying  of  
,IP  as follows: 



- Pick random mixers 3 4 5, ,r r r  from . 

- Let 3 )( , ) ( , () YY Z B Y Z rB t+=  and ( )4 5 )) ( , , ()( , , r r YY Zr Y Z t Yr= + +θ θ . 

- Modify (27) and (29) as 
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- Replace ( )B Y  with ( )B Y  in (15) and (19) to compute ( ( , ), ( , )), ,Yf Z Y Zgθ θ  and 

1 3 )( )( (), , ,,, ,p pY Z Y Zθ θ , respectively. 

- To compute 
1[ ]Q , modify (28) as 
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- Compute ( , , )P Y Z θ  and the corresponding quotient polynomials 0 5, ,  , according to (30) and (31) 

with ( , , )r Y Z θ , ( , , )f Y Z θ , and ( , , )g Y Z θ . 

- Replace 0 5, ,   with 0 5, ,   in (32) to compute 
0 1 3 1[ ][] , ,  . 

Finally, our verification algorithm accepts the transcript, 

( )11 0 , , , 1 0 1 2 31 1 1 1 1, ,[ ] , , ,, , ,[ ] ,[ ] , ,[ ] ,[ ] , [, [ ] , ]y z y z y zR R RB Q B       = t θ  

if and only if C OE E E= , where CE , OE , and E  are computed according to (33). 

The statistical completeness of ,  is still satisfied: If ( , )B Y Z  satisfies the copy constraints of Lemma 3, 

so does ( , )B Y Z  (evaluations of the two polynomials on  are consistent); And if )( , ,r Y Z θ  is a well-defined 

recursion polynomial, ( , , )P Y Z θ  vanishes on  , as the additional mixing terms in both ( , )B Y Z  and 

( , , )r Y Z θ  always vanish on . 

The simulated transcript t  is drawn from 9 independent coin tosses, whereas the real transcript t  involved 

only 3 independent coin tosses ( 3 4 5, ,r r r ). Fortunately, if the verifier’s challenges are picked from public coin 

tosses, their combination with the prover’s coin tosses brings the effect of additional independent (not 

necessarily identical) coin tosses. We thus conjecture that given honest verifier, a simulated transcript t  and a 

real transcript t  would be statistically indistinguishable. 



6 Elimination of the verifier preprocess with machine computation 

The protocol ,IP  for R  in Section 4 still requires the verifier  to preprocess wiring of a circuit, represented 

by 
max

(0) (1)

,

(2) [ , ], ,
Ds l ls s Zs Y− . In this section, motivated by verifiable machine computations in [26–28], we 

eliminate the dependency on the verifier preprocess. 

Machine model. We define a subcircuit library  that is specific to a random-access machine (RAM). Given 

the number of instructions, Ds , the subcircuit library is defined as 2

0: cDs

k k

+

== . Each subcircuit ck  has Kl  

input wires and Kl  outputs wires, where K  denotes a length of variables long enough to represent the RAM 

states.  

Out of the 3Ds +  subcircuits, subcircuits 0 1 2, ,c c c
D Ds s+ +  are buffers, which are specialized to pass data to or 

retrieve data from other circuit components. Specifically, 0c  is an input buffer to transfer the initial machine 

state x  to other subcircuits, 2c
Ds +  is an output buffer to return the resulting machine state y , and 1c

Ds +  is an 

internal buffer to transfer an intermediate machine  state from one subcircuit to another subcircuit. 

The rest subcircuits, ci  for , ,1 Di s= , take as input a machine state and execute the i -th instruction of . In 

addition to simply executing each instruction, the subcircuit ci  for each , ,1 Di s=  checks 1) whether an input 

instruction to a subcircuit matches with the subcircuit index, 2) whether the next program counter is correctly 

computed, and 3) whether the next instruction is correctly retrieved from P  according to the next program 

counter. 

As a result, a program P  with an initial state x , which returns the resulting state y  in Ps  machine steps, can be 

validated by a circuit  of 2Ps +  layers, each comprising 3Ds +  subcircuit branches (the additional two layers 

are for the input and output buffers). However, instead of Ps , we use a constant maxs  such that max2Ps s+   to 

 

Figure 6.  RAM circuit illustration: This circuit comprises maxs  layers. The initial and final layers are dedicated to the input and 

output buffers, respectively. Among the max 2s −  intermediate layers, Ps  layers handle RAM execution, with each activation 

subcircuit is dynamically determined by the input. The remaining layers are activated by internal buffers.  



keep the setup algorithm for 
,IP  independent of P . Also, we have structured the setup to ensure that the I/O 

buffers are consistently placed in the first and last layers, respectively (see σ  in Section 3.3, where in out Kl l l= =  

in this model). Except for the I/O buffers, in Q , there are Ps  layers for the program execution, and the 

remaining max 2Ps s− −  layers are filled with the internal buffers 
1c

Ds +
 (see Figure 6). 

By the constraints in , only one subcircuit in each layer can be activated (see Figure 7). However, in the view 

of verifier, the activation of intermediate layers remains nondeterministic. A straightforward effort to resolve this 

is to make up a large deterministic circuit by injecting multiplexer (MUX) components in each layer that selects 

one of the outputs from the 3Ds +  branches [31], which results in the prover time complexity max( )DO s s n . 

Instead, it has been shown that a back-end protocol can play the role of MUX [27, 28]. We will show that our 

protocol 
,IP   also replaces the MUX, which results in the prover complexity max(( ) )DO s s n+ . 

QAP compiler. We rewrite the subcircuit library  in the QAP representation. Recall ( ) ( ) ( ) ( ){ , , }k k k k

j j j jz u v w  for 

( ) ( ), ,, ,0 }{ k kj l m  represents the j -th wire polynomials of a subcircuit ck  . Since all subcircuits ck  

have Kl  input wires and Kl  output wires, we can fix the number of connecting wires in the subcircuit ck ,  

( ) 2k

Kl l=  for all k . As  is a union of ck  for all k . Thus, the number of wires in  is parameterized by 

2 Kl l= , 2 ( 3)D K Dl l s= + , and 2 ( )

0
Ds k

D km m
+

==  . In addition to the definitions in Section 3.1, we use an index set 

of connecting position, : {0, , 2 1}Kl= − , and disjoint subsets of it, : {0, , 1}in Kl= −  and 

: { , , 2 1}out K Kl l= − . 

We write the elements of  as 

1

0{ } ,Dm

j jo
−

==  

where { , , } [ ]jj j jo u v w X  . Each element jo  is picked from ck  according to the position indices as follows: 
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Figure 7.  Layer composition example: Each layer comprises 3Ds +  subcircuits, with only one activated based on the layer’s input. 

The layer input is distributed to the active subcircuit, and the subcircuit output is collected and returned as the layer output. The 

input distribution and output collection blocks are driven the back-end protocol rather than implemented subcircuits. 



For the connecting wires, represented by 
jo  for { , , 1}Dj l l − , we say two wires 

1j
o  and 

2j
o  are in the same 

position, if 21  (mod )Kjj l . We put a restriction on the wiring of a circuit such that only two connecting wires 

at the same position can be connected to each other, as shown in Figure 6. 

Recall ( , )= Q  with max( 1)(0) (1)( , , , )d d d
s −

=Q , where 0

(

2

) { , , }d c c
D

i

s +  indicates the active subcircuit of 

the i -th layer. By the virtue of the enhanced constraints in the subcircuits, unlike the constraint system in 

Section 3, the activation is determined by the input to each layer. We again set the wire assignments in all 

inactive subcircuits to zero. 

Synthesizer. When defining wiring of , the data transfer occurs only between two wires on the same position  

as shown in Figure 6. We let “ ( ) ( )
d d

g h→ ” for g h  denote the data transfer from the g -th layer to the h -th 

layer. Let ( ) {1, , 2}D

ik s +  be the index of active subcircuit in the i -th layer so that ( )

( )

2 i
K

i

k l i
d

+
 for i  

indicate the assignments to the connecting wires of an active subcircuit. Then, ( ) ( )
d d

g h→  is formally defined 

as copy constraints between ( ) ( )

( ) ( )

2 2g h
K out K in

g h

k l i k l i
d d

+ +
=  for all index pairs ( , )out in out ini i    such that 

 (mod )out in Ki i l . We also allow multiple compositions of “→ ”, e.g., the wiring of  in Figure 6 is defined as 

max

max max

( 1)(0) (1)

( 2) ( 1)(0) (1) (1) (2)( .( () ) )

d d d

d d d d d d

s

s s
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
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Copy constraints. To make the copy constraints ( ) ( )
d d

g h→  deterministic, the following Corollary 2 modifies 

Lemma 3.  

Corollary 2. Assume the zero wire assignments for inactive subcircuits. Given the generators Y  and Z  of the 

vanishing sets  and , define 
2

: Ds

Z  +
=  so that 2

1Kl = . The copy constraints ( ) ( )
d d

g h→  holds if and only 

if the following equation holds: 

 ( ) 1,g hP → =θ  (39) 

where hgP →  is a Laurent polynomial of indeterminates 0 1 2( , , )  =θ  in  defined as 
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Proof. Due to the zero wire assignments for inactive subcircuits, equation (39) can be reduced to 
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By the definition, it is straightforward to see that if ( ) ( )
d d

g h→ , equation (41) holds. To see the converse, 

suppose (41) holds. The sets of roots of 0  on both sides are given by, respectively, 
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Since { , }K in outj l j+   = , equating the two sets of roots implies ( ) ( )
d d

g h→ .  

By extending Corollary 2, we can define a sufficient and necessary condition for max( 1)(0) (1)
d d d

s −
→ → →  as 
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Permutation polynomials. Our protocol ,IP  is useful to argue (42) without further modification. All we need 

to do is replacing the permutation polynomials 
max

(0) (1)

,

(2) [ , ], ,
Ds l ls s Zs Y−  for the construction of a recursion 

polynomial [ , , ]Yr Z θ  in (17) with the following new definitions: 
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where 
2

: Ds

Z  +
= . Then, given ( , )B Y Z  as an encoding of ( )i

jd  (see (13)), the copy constraints in (42) holds if 

and only if 

( )
( ) ( ) ( )

( ) ( )

max
,

( )

0 1 2

1

0 (1

2

00 1 2

,

)

2

( )

, , ,

1.
, ,

s

h

y

y

z

h

h

z

B y z s y z s y z

P
B y z y s y z

  

  

−

=

 

→ +

 

+ +

+ + +

+

= =





θ  

It is clear to see that the equality of this equation can be argued by the copy constraint argument of ,IP  along 

with the newly constructed recursion polynomial r . 

Efficiency of machine computation. The permutation polynomials 
(0) ( , )s Y Z  and 

(1) ( , )s Y Z  in this verifiable 

machine computation model are independent of programs and the input instance but only parameterized by the 

maximum number of machine steps, maxs . Thus, in the protocol ,IP , appending commitments to the 

permutation polynomials into the reference string σ  resolves the reliance of the verifier preprocessing. This 

approach only adds the verifier time complexity (log )DO s  for the evaluation of 
(2) )( ,Y Zs . The rest factors 

such as the prover time complexity and the proof size directly inherit those of ,IP . 



7 Conclusion 

In this paper, we have proposed a SNARK with universal setups. We showed that our SNARK satisfies 

completeness and knowledge soundness, and it can be further enhanced with zero-knowledge. In our SNARK, 

the prover the complexity is 
max max(( ) log )D DO s s n s s n+ , with proof size of 12  group elements and 5  field 

elements, and the verifier time complexity is (1)O . Here, 
Ds  and 

maxs  can be considered complementary to 

each other [26], and in extreme cases where (1)Ds O=  with maximized 
maxs , the efficiency of our SNARK 

asymptotically comparable to other state-of-the-art SNARKs with updatable and universal setups in [6, 7]. 

Additionally, compared to the other SNARKs, we have reduced the dimensionality of verifier preprocessing 

data from 
max( )O ns  to 

max( )O s , albeit at the cost of sacrificing updatability of the setup. 

Furthermore, we have demonstrated the applicability of our SNARK in verifiable machine computation. Unlike 

recent machine computation protocols such as MUX-Marlin [27] and SublonK [28], our approach achieves 

machine computation by merely changing the verifier preprocessed inputs to deterministic ones, without 

requiring additional auxiliary protocols. This results in proof sizes four to ten times smaller. However, while the 

CRS sizes of the other two protocols are max(( log ) )D DO s s s n+ , offering an advantage over our CRS size of 

max( )DO s s n . 

Our SNARK can effectively support efficient verifiable computation in distributed computing networks, 

particularly in environments like blockchains where nodes are generally untrusted. In such networks, the 

preprocessing generated by one verifier node must be verified by others, consuming network resources over 

time as more preprocesses accumulate. Future research could investigate how the reduced data dimensionality in 

verifier preprocessing could alleviate this burden, thus improving network efficiency. 
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Appendix A – Proof of Lemma 2 

It is straightforward to see that the existence of ( )h X  such that ( ) ( ) ( )p X h X t X=  implies ( ) 0p x =  for every 

x . We show the converse, if ( ) 0p x =  for every x  then there exists such a ( )h X , by contradiction. 

Pick any kx  , and suppose that ( ) 0kp x   but there exists such a ( )h X . Let 
( ) ( )kh X =

,( ) ( )
kx xxh X X x  −  so that ( )p X = ( ) ( )( )k

kh X X x− . Since p  and ( )kh  are polynomials, we can express 

them as 0
d i
i ip X=  and 

(1 )
0

kd i
i ih X−
= , respectively. Then, we have ( )

0 1
kd i d

i i dp X h X= − = +

( ) ( )
1 1
1( )

kd k i
i k iih x h X−
= − − −

( )
0

k
kx h . This implies a recurrence 

( ) ( )
1

k k
i k iip h x h−= −  for , 11,i d= −  with initial 

conditions ( )
1

k
ddh p− =  and 

( )
00

k
kx h p− = . Solving the recurrence gives us 0 0d i

i i kp x= = , i.e., ( ) 0kp x = , which 

contradicts the supposition ( ) 0kp x  .  

Appendix B – Proof of Corollary 1 

It is straightforward to see that if there are such h  and h , ( , )p X Y  vanishes on  . To see the converse, 

we suppose ( , )p X Y  vanishes on   and then show there is a unique representation 0 1 2 [ , ], ,h h h X Y  

such that ( , )p X Y = 0 ( , ) ( )h X Y t X +
1( , ) ( )h X Y t X + 2 ( , ) ( ) ( )h X Y t X t X . 

We first construct 0h . By Lemma 2, ( , )p X y  for every y  has a quotient polynomial 
)

0

( yh  such that 

( )

0( , ) ( ) ( )yp X y h X t X= . Let 0 ( , )h X Y  be an interpolating polynomial of data points 
( )

0( , ( ))yy h X  for all y  

so that 
( )

0 0( , ) ( )yh X y h X= . We next construct 1h . Let ( , ) :q X Y = 0( , ) ( , ) ( )p X Y h X Y t X− . By Lemma 2, 

( , )q x Y  for every x  has a quotient polynomial 
( )

1

xh  such that 
( )

1( , ) ( ) ( )xq x Y h Y t Y= . We can obtain an 

interpolating polynomial 1( , )h X Y  of data points 
( )

1( , ( ))xx h Y  for all x . 

Given 0h  and 1h , we find 2h . Let 0 1( , ) : ( , ) ( , ) ( ) ( , ) ( )r X Y p X Y h X Y t X h X Y t Y= − − . We can see that 

( , ) 0r X y =  for every y , since 
( )

0( , ) ( ) ( )yp X y h X t X=  and 
( )

0 0( , ) ( )yh X y h X= . Applying Lemma 2 to 

( , ) 0r X y =  implies there exists 3h  such that 3( , ) ( , ) ( )r X Y h X Y t Y= . Similarly, as it holds true that 

( , ) 0r x Y =  for every x , there also exists 4h  such that 3 4( , ) ( , ) ( )h X Y h X Y t X= . Combining them we 

finally obtain ( , )r X Y =
2 ( , ) ( ) ( )h X Y t X t Y , where 2 ( , )h X Y = 3 4( , ) ( , )h X Y h X Y . 

Letting 0( , ) ( , )h X Y h X Y=  and 1 2( , ) ( , ) ( , ) ( )h X Y h X Y h X Y t X= +  concludes the proof.  

Appendix C – Proof of Proposition 1 

The left-hand side of (35) can be rewritten as 
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Our goal is to rewrite ( ) ( ) ( ( ) ( )) ( )j k k j j kK Z K Z c K Z c K Z t Z= −  for some coefficients jc  and kc . Let Dh l l= − . 

Then, a Lagrange basis ( )jK Z  can be expressed as ( ) ( 1) / ( )h i

j j ZK Z c Z Z = − − , where 
( )1 1:

j h

j Zc h
− − −= . This 

allows us to write 
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Meanwhile, we define a polynomial , ( )i kD Z  as 
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We can observe that both 
,i kD  and ,i kD  are of degree 2h −  and that they return the same evaluation on k

ZZ =  

for every , 10,k h= − . Thus, , , ( )( )k i kiD D ZZ = . By letting 

,

,

( ) ( ) ( ),,
Dl l
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we can conclude that the expressions (35) and (37) are identical.  

Appendix D– Proof of Proposition 3 

We start the proof by rewriting components in a transcript t  into the affine prover strategy of generic 

adversaries as defined below, where 
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Definition 6 (Affine prover strategy). Let  be a polynomial-time adversary. In generic group model, any 

group elements 1[ ]G  or 2[ ]V  returned by  are expressed as linear combinations of 
,( , , )A I C zkσ σ σ  or Vσ , 

respectively. Formally, let 

 ( )0 1 0 1 2 3, , , , , , ,: , , , , , , , ,X Y Z         =    T  (44) 

be a vector of 16 indeterminates. There are degree-bounded Laurent polynomials ( )G T  and ( )V T  such that 

( )G G= τ  and ( )V V= τ , where 
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We write a tensor product of the two vectors 
,( , , )A I C zkσ σ σ  and Vσ  as 

,( , , )A I C zk V= σ σ σ σ σ . We let 

deg ( )σ τ  denote an upper bound on the sum of the highest exponent subtracted by the lowest negative exponent 

of each component of τ  over all components of σ  (i.e., the total degree of ( ) ( )G VT T  with the negative degree 

compensated). There is a constant c  such that maxdeg ( ) ( )Dc n s l l + + −
σ
τ . 

By Definition 6 and the bilinearity of pairing, we can rewrite the verification equation (38) as )( 0P =τ , where 

( )P T  is a degree-bounded Laurent polynomial of T  (the indeterminates are listed in (44)), evaluated as 

( )

max

3

2

1 1
( ) ( )

1 0 1

0

1

1 0 1

1 , ,

0 1

0

2 3

( ),

( ) ( ) ( ) ( ),

( ) :

( ) : ( ) ( )

( ) : ( ) ( ) ( ) ( )

( ) ( ) (

)

) ( ),

( ) : ( ) ( (

(

)

)

in

in

D

l l
in out

i i i s i

i i l

l

i i

i l

y z y

P

U

P

C a L y o x a L y o x

P o x K A W

P P

P V W

B z

P P B B R R

 

  

  

   

− −

−

= =

−

=

= +



+

= +− +

= +

+ + +

= − −

− −+

 



τ τ τ τ

τ τ τ τ τ

τ τ τ τ

τ τ τ τ( ) ( ) 4

2

,( ) ( ) ( ),z y zR QR P  + − −−τ τ τ

 

( )

( )
( )

( )

( )

( )

3

(2)

, 0 1 2

(0) (1)

, 0 1 2

(2)

, 0 1 2

(0) (1)

1 1

0

2

0 0

, 0 1 2

( ) : ( )

( ) (

( ) ( , ) ( , )

( ) (
,

1 ( ) ( )

, )
1

(

, )
(

( ) , ) ( , )
)

y z

y z

y z

y z

P

B s

R B s Y Z s Y Z

B s

R B s y z s y

R

z

L K

R

R
K

  

  
 





   

  

   

  

 
 



− −=

 + + +
 
 − + + +

+

−

+

 

 + +
 +
 − + + +

−

 

τ τ

τ

τ

τ

τ

 

( ) ( )

( ) ( )
0 0

3

4

3

1 1

1 1

2 2

( ) : ( ) ( )

( ) ( ).Y Z

P Y Z

Y Z

   

     − −

= − + −

− +



+  − 

τ τ τ

τ τ
 

For simplicity, we denote 
max max

( ) ( ) ( ) ( )

0 1 0 0 1 0 1 1 1( ( ), ( )) ( ( ), ( ) ( ) ), , (, ), ,
in in

in in out out

l l l s l sa y a y a L y a L y a L y a L y− − − − −= . 

1) Witness-extended emulation 

For the copy constraints, we run a witness-extended emulation on * ,
IP , which runs a deterministic *  on the 

fixed input of ’s affine strategy 
( ) ( )( , , ( ), ( ))in out Y Ya a b c , with fresh randomness of ,   picked by . In 

specific, given a leading part 

( )1 1 11 2 1 1 1 0[ ][ ] ,[ ] ,[ ] ,[ ] , ,[ ] ] ,[, ],[ ,U V W A B C R Qθ  



of the transcript t  submitted by * , the emulator runs * ,
IP  with fresh randomness of 

0, ,    to complete the 

rest part of the transcript 

( ), , , 1 0 1 2 131 1 1, ,[ ] ,[ ] ,[ ] ,[ ] ., , , ,y z y z y zR R B         

We run the emulation until collecting 
max ( )Ds l l−  pairs 

1 )(( , , ),   t  of emulated challenges and the 

corresponding acceptable transcripts. Let  denote the collection of emulation results. Per every challenge 

1( , , ), )(   t , the construction of function P  can vary, and therefore given all emulated transcripts in  

are acceptable, the emulator can collect | |  instances of )( 0P =τ . Throughout the rest part of proof, we will 

show that | (| | 2) | || = +  (where the constant 2 is needed for adding zero-knowledge) is sufficient to 

succeed the extraction of a valid witness in R . 

Before the extraction, we first count the number of expected runs for the successful witness extraction. Suppose 
*  returns an acceptable transcript with an unknown probability . The emulator repeats the protocol until 

collecting | |  acceptable transcripts. When *  fails to produce an acceptable transcript, which contradicts the 

assumption )( 0P =τ , the emulator stops the extraction procedure, immediately. Given every transcript is 

acceptable, the emulator is thus expected to run in a polynomial time = . 

2) Polynomial reconstruction from randomness in τ  

Suppose )( 0P =τ  for all emulated transcripts in . We apply the SZ lemma to )( 0P =τ  with respect to τ . 

Let 13( )
τ

 be the set of roots of ( )P T , where the coefficients of P  vary by the emulation. By the SZ 

lemma, we have 
*| |Pr[ ] deg ( ) / 

τ σ
τ τ . 

Suppose ( )C
τ

τ . Under this case, for all transcripts in | | , )( 0P =τ  implies ( ) 0P =T , which further 

implies ( ) ( ) ( )0 1 2 0P P P= = =T T T , and vice versa. Thus, throughout the rest of proof, notations 0 )( 0P =τ , 

1 )( 0P =τ , and 2 )( 0P =τ  are equivalently used as 0 ( ) 0P =T , 1( ) 0P =T , and 2 ( ) 0P =T , respectively. 

3) Extraction of arithmetic constraints 

We extract the arithmetic constraints from 0 )( 0P =τ . To this end, we first show that to refine the expression of 

( )U τ  can be reduced into 

0 1( ) ( )( )( )
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we obtain the above reduced expression of ( )U τ . 

We move on to the terms of ,{ }i j

i jyx  in 
0 )( 0P =τ . Then, we obtain 
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Similarly, looking into the terms of 
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From 
0 ( ) 0P =τ , we extract some of the terms of ,{ }i j
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where the equation is resulted from (45)-(47). 

Finally, by collecting all of the terms of ,{ }i j

i jx y  from 0 )( 0P =τ , we obtain   
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4) Extraction of inner product constraints 

We extract the inner product constraints from 1 ) 0(P =τ . To this end, we collect the terms of , ,{ }h i j

h i jx y z  

including those scaled by   or  . Consider a polynomial 
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where 
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= + , and 1,1
( )( )( ) : ( ) ( )zk

i iW W Y W t Y

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Note that the right-hand side of this equation is independent of 
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5) Extraction of copy constraints 

What left to see is that 
( ) ( , )yzB Y Z  also satisfies the copy constraints. The copy constraints can be extracted from 

2

3 0( )P =τ , where 2 )(P τ  involves 3 )(P τ  and 4 )(P τ . Let 
( )( ) ( )( , ) : ( , ) ( ) ( )zkyzR Y Z R Y Z R Y t Y
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= + . We collect 

the terms of 
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h i j

h y z  from 3 )(P τ  and 4 )(P τ  and define 
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Since 
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4 ( , ),yzP Y Z   are polynomials of Y  and Z , we obtain 
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6) Equation separation from randomness of 1  

We must consider the possibility that each emulated transcript for (51) held true only for the specific samples of 

1  (The other interim implications in (52) are independent of 
1 ). By the SZ lemma, the probability that at least 

one transcripts of (51) did not identically hold true with respect to 1  but did only for the specific 1  is upper 

bounded to | | |/ | 
. We define the set 

1
 of such samples 1 . 

Suppose 
11 ( )C

  . Under this case, we can split (51) into two equations, 
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7) Polynomial reconstruction from emulated samples in  

The extraction of copy constraints requires to reconstruct a polynomial that emulates the equations in (54). To 

this end, we first interpolate three polynomials 
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interpolated polynomials hold the follows, 
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We then reconstruct a polynomial ( )

3 ( , )P Y Z  that emulates 
( )

3 ( , )YP Z , by replacing ,y zB , ,y zR , and ,y zR  with 

( )yzB , ( )yzR , and ( )yzR  into the definition (50), respectively. By the results in (55), it holds that 
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We apply the SZ lemma to (56) with respect to ,  . Let ( , ) :D Y Z = ( )

3 ( , )yzP Y Z − ( ) ( ) ( ),Q Z tY Y −

( )
, ( )( )zq

Q Y Z t Z . By the SZ lemma, the probability that 0( , )D Y Z   and that equation (56) held only for the 

specific ,   is upper bounded to |(2 | | 3 | | 2)/ | + +  (where the numerator comes from the total degree of 

( )

3 ( , )P Y Z , which is max2 2s +  in Y  and 3( 1)Dl l− −  in Z ). We define the set ,   of the roots of ( , )D Y Z . 

Suppose 
,( , ) ( )C

    . Under this case, equation (56) implies that for all ( , )y z    ,  

 ( )

3 ( ) 0.,yzP y z  =  (57) 

8) Equation separation from randomness of 0   



As equations (57) for all ( , )y z     involve 
0 , we must check if they held true only for the specific 

choice of 
0 . By the SZ lemma, the probability that at least one of the equations did not identically hold true but 

did only for the specific 
0  is upper bounded to 2 | || | ||/ 

 (where the scaling factor 2  comes from the 

degree of 
0 ). We define the set 

0
 of such samples 

0 . 

Suppose 
00 ( )C

  . Under this case, the equations (57) can be converted into the following recurrence relation, 
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where 
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j k Y Zg G  = , ( )

, ( , )yz j k

j k Y Zr R  = . By solving this recursion, we obtain, 
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9) Polynomial reconstruction from randomness of θ  

As equation (59) involves θ , we must check if it held true only for the specific choice of θ . By the SZ lemma, 

the probability that this equation did not identically hold true with respect to θ  but did only for a specific θ  is 

upper bounded to 3(| | | |)/ || +  (where the numerator comes from the total degree of θ ). We define the 

set 
θ

 of such samples θ . 

Suppose ( )C
θ

θ . Under this case, by Lemma 3, ( )Yb  satisfies the copy constraint. 

10) Concluding the extraction 

So far, we have extracted 1( )
( ) ( )i i lb Y W Y



−=  and 
)(( ) ( )
Di i lc Y C Y

−=  such that 
( ) ( )(( , ), ( ( ), ( )))in out RY Y a a b c  with 

assuming that ( )C
τ

τ , 
11 ( )C

  , 
,( , ) ( )C

    , 
00 ( )C

  , and ( )C
θ

θ . The extraction fails when the 

challenges are picked from the complement sets, of which the probability is bounded above by 
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