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Abstract. In recent years, there has been tremendous progress in im-
proving the communication complexity of dishonest majority MPC. In
the sub-optimal corruption threshold setting, where t < (1−ε) ·n for some
constant 0 < ε ≤ 1/2, the recent works Sharing Transformation (Goyal
et al., CRYPTO’22) and SuperPack (Escudero et al., EUROCRYPT’23)
presented protocols with information-theoretic online phases achieving
O(1) communication per multiplication gate, across all parties. However,
the former assumes that their offline phase is instantiated by a trusted
party, while the latter instantiates their offline phase with Ω(n) com-
munication per multiplication gate assuming oblivious linear evaluation
(OLE) correlations.

In this work, we present a dishonest majority MPC protocol for
t < (1 − ε) · n with Õ(1) total communication per multiplication gate
across both the offline and online phases, or Õ(|C|) total communication
for any arithmetic circuit C. To do so, we securely instantiate the offline
phase of Sharing Transformation, assuming some OLE correlations. The
major bottleneck in instantiating the offline phases of both Sharing
Transformation and SuperPack is generating random packed beaver triples
of the form [a], [b], [c], for random a, b ∈ Fk, and c = a ∗ b ∈ Fk, where
k = Ω(n) is the packing parameter. We overcome this barrier by presenting
a packed beaver triple protocol with Õ(n) total communication, or Õ(1)
communication per underlying triple.

Our packed beaver triple protocol consists of two levels of ran-
domness extraction. The first level uses a relaxation of super-invertible
matrices that we introduce, called weakly super-invertible matrices, in
which sub-matrices have sufficiently high (but not necessarily full) rank.
This weakening enables matrix constructions with only O(n) non-zero
entries, which is a primary reason for the efficiency of our protocol. Our
second level of extraction is based on the triple extraction protocol of
(Choudhury and Patra, Trans. Inform. Theory ’17).

1 Introduction

Secure Multi-Party Computation (MPC) is a widely studied area of cryptog-
raphy [GMW87, Yao82, CCD88, BGW88]. In MPC, there are n parties with
respective private inputs x1, . . . , xn, and some functionality F. The parties wish
to interact with each other to compute and output F(x1, . . . , xn) in such a way



that their inputs still remain hidden, beyond what can be inferred by the output.
In fact, this should still hold even if there is an adversary controlling t out of n of
the parties, who we call corrupted. The adversary sees all of the messages that the
other parties, who we call honest, send these corrupted parties. Adversaries can
either be static or adaptive. In the former case, the adversary must choose which
parties to corrupt before the protocol begins. In the latter case, the adversary
chooses which parties to corrupt during the protocol, possibly based on the
observed messages.

In this work, we focus on the so-called dishonest majority setting in which
the number of corrupted parties is t ≥ n/2. In this setting, it is known that
protocols require computational assumptions to be proved secure [RB89], unlike
in the case where t < n/2 [BGW88, CCD88, RB89]. However, many dishonest
majority protocols operate in the offline-online model, in which there is first an
offline phase that is typically proved computationally-secure and then an online
phase that can be proved information-theoretically secure [Bea92]. This model
has the benefit that expensive cryptographic operations can be performed in the
offline phase (at any point before the functionality and inputs are determined),
meaning that the online phase is usually quite efficient. Typically, the offline
phase provides the parties with some correlated randomness, which they consume
in the online phase. This is the model which we focus on in this work.

In this setting, the main goal has been to reduce the communication complex-
ity of protocols. The seminal works of BeDOZa [BDOZ11] and SPDZ [DPSZ12,
DKL+13] achieve linear communication complexity in the number of parties per
multiplication gate, in both the offline phase and online phase. Achieving this
efficiency in the offline phase required heavy cryptographic tools such as fully-
homomorphic encryption (FHE). However, FHE is prohibitively expensive and
many prior works explicitly dismiss it as such [DPSZ12, EGP+23]. Furthermore,
FHE usage presents significant barriers to adaptive security (see [KTZ13, CsW19]).
Without FHE, these offline phases were instantiated with quadratic communica-
tion complexity in the number of parties per gate, with the same online phase
that achieves linear communication per gate.

The offline phases of these protocols produce simple correlated randomness,
in the form of oblivious linear evaluation (OLE) [IPS09, AIK11], for every pair
of parties. An OLE correlation between parties PA and PB samples consists of
random x, u, v such that PA receives x and v, and PB receives u and w = u ·x−v.
More recent works have shown that the OLE correlations needed by these
protocols’ offline phases can be instantiated with communication complexity
sub-linear in the circuit size [RS22], using so-called pseudo-correlation genera-
tors [BCG+19b, BCG+20, BCGI18, WYKW21, BCG+19a].3 All of the above
works consider an optimal corruption threshold, t = n − 1, where all but one
parties could be corrupted.

The tremendous recent works Sharing Transformation [GPS22] and Super-
Pack [EGP+23] instead study a sub-optimal corruption threshold, in which
t < (1 − ε) · n, for some constant 0 < ε ≤ 1/2. Here, they are able to obtain

3 Note that, typically, the circuit size is the dominating term.
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online phases with communication complexity O(1) per gate.4 Both of these
protocols at their core take advantage of packed Shamir secret sharing [FY92],
which allows parties to secret share many (proportional to n) values at once.
However, the Sharing Transformation work does not instantiate their offline
phase, which provides the parties with highly non-trivial correlated random-
ness. Any currently-available generic protocol would unfortunately have linear
communication in the number of parties per gate to instantiate this correlated
randomness. This is much worse than the O(1) per gate during the online phase.
SuperPack does instantiate their offline phase, which still assumes some some
simple OLE correlations, and requires linear communication in the number of
parties per gate, even assuming this correlated randomness. Again, this is much
worse than the O(1) per gate during the online phase.

If one only desires static security, then there is a simple protocol with sub-
linear total communication in the number of parties in the t < (1 − ε) · n
setting [HIK07]. The parties first randomly select a sub-committee of parties
of size κ/ε, where κ is the computational security parameter. It can be seen
that with 1 − 2−Ω(κ) probability, at least one member of this sub-committee
will not be corrupted by the static adversary. Therefore, the parties can use this
sub-committee to carry out the rest of the MPC for them, using an efficient
protocol for t = κ/ε− 1 corruptions, such as SPDZ or BeDOZa. In this case, the
communication complexity per gate will only depend on κ/ε = Õ(1), the number
of parties in the committee. Indeed, it will be independent of the total number
of parties, n. However, this simple protocol is trivially broken by an adaptive
adversary who gets to see the members of the sub-committee, and then corrupt
all of them. If one were allowed to use FHE, then the the offline phases of the
Sharing Transformation and SuperPack works could also be instantiated with
O(1) communication per gate. However, again, FHE is a heavy cryptographic
tool that is very computationally expensive and faces significant barriers in being
proved adaptively-secure [KTZ13, CsW19].

This begs the following question, which we address in our work:

Can we achieve adaptive dishonest majority MPC with Õ(1) communication per
multiplication gate in both the offline and online phases?

To understand the challenges with this problem, we outline the major obstacles
from prior works and our solution to each of them.

Packed Beaver Multiplication Triples. A common tool used in dishonest
majority MPC is beaver multiplication [Bea92]. In the t < (1 − ε) · n setting,
both of the above works [GPS22, EGP+23] utilize this technique through packed
Shamir secret sharing [FY92]. For Θ(n)-dimensional vectors x and y, the parties
wish to compute a packed Shamir sharing of the vector of multiplications x ∗ y
on input packed Shamir sharings [x] and [y], where ∗ denotes component-wise
multiplication. They do so using packed Shamir sharings [a], [b], and [c], such that
a and b are fully random Θ(n) dimensional vectors, and c = a∗b. These so-called
4 The latter is more concretely efficient.
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packed beaver triples allow the parties to compute [x ∗ y] with communication
linear in n. Since this is for Θ(n) gates at once, the communication per gate is
therefore O(1). Indeed, the protocols of [GPS22, EGP+23] require that these
packed beaver triples [a], [b], [c] be generated during the offline phase. This turns
out to be the main reason that they can only achieve linear communication per
gate in the offline phase. In particular, generating these packed triples alone
requires Ω(n2) communication per packed triple, and thus Ω(n) per underlying
triple, using known techniques. In our work, we show how to resolve this issue by
presenting a protocol which achieves Õ(n) communication per packed triple.

(Weakly) Super-Invertible Matrices. Another common tool used in efficient
MPC protocols are super-invertible m × n matrices M , where m ≤ n. These
matrices satisfy that for all column subsets C ⊆ [n] with |C| = m, the sub-matrix
MC corresponding to the columns with indices in C is invertible. These matrices
are typically used to efficiently sample secret sharings of random values [DN07].
In the t < (1 − ε) · n setting, both [GPS22, EGP+23] utilize super-invertible
matrices to generate packed Shamir sharings [r] of random vectors with O(1)
communication per individual random value. The usual instantiation of super-
invertible matrices is the transpose of a Vandermonde matrix [DN07]. Such
matrices are dense, meaning that almost all entries are non-zero. In our work,
we introduce a relaxation of super-invertible matrices, which we call weakly
super-invertible matrices, that will actually allow us to generate packed beaver
triples with Õ(n) communication per packed triple. The main reason is that we
are able to construct weakly super-invertible matrices that are sparse; i.e., most
entries are zero. Weak super-invertibility requires that sub-matrices consisting
of sufficiently many columns have large (but not necessarily full) rank. We will
later show that this property is sufficient for efficiently generating packed beaver
triples.

1.1 Our Contributions

Packed Beaver Triples with Õ(1) Communication per Triple. The first
result of our paper is providing a protocol that generates Θ(n) random packed
beaver triples with Õ(n) communication per packed triple, or Õ(1) communication
per underlying triple. Our protocol assumes O(n) OLE correlations for each of
Õ(n) pairs of parties. Note, this is not all O(n2) pairs of parties.

Theorem 1 (Informal). Let λ be the statistical security parameter. There exists
an information-theoretically secure protocol in the OLE-model which securely
generates Θ(n) packed beaver triples in the presence of a malicious, adaptive
adversary controlling up to t < (1− ε) ·n parties. The cost of the protocol is O(n)
OLE correlations between each of O(n ·λ2) pairs of parties and O(n2 ·λ) elements
of communication, which is Õ(n) per packed triple and Õ(1) per underlying triple.

Remark 1. By using any generic 2PC protocol secure in the presence of a mali-
cious, adaptive adversary (e.g., [CLOS02]), we can instantiate each OLE correla-
tion with poly(κ, log |F|) = poly(κ) communication complexity. Therefore, even
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when counting the communication from the underlying OLE instantiations, the
communication of our protocol is still Õ(1) per underlying triple.

Õ(|C|) Communication MPC for t < (1− ε) · n. We use the above result for
the main contribution of our paper, which is a protocol that instantiates the
offline phase of [GPS22] with Õ(1) communication per multiplication gate. Using
their online phase, this implies an MPC protocol in the t < (1 − ε) · n setting
with Õ(1) total communication per multiplication gate.

Theorem 2 (Informal). Let λ be the statistical security parameter. For an
arithmetic circuit C over a finite field F, there exists an information-theoretically
secure MPC protocol in the OLE-model which securely computes the arithmetic
circuit C in the presence of a malicious, adaptive adversary controlling up to
t < (1−ε)·n parties. The cost of the protocol is O(|C|/n) OLE correlations between
each of O(n ·λ2) pairs of parties and O(|C| ·λ+n2 ·λ) elements of communication.
This is Õ(1) per gate when the circuit is sufficiently large, |C| = Ω̃(n2).

Remark 2. Following from Remark 1, even when counting the communication
from the underlying OLE instantiations, the communication of our protocol is
still Õ(1) per gate.

Remark 3. Our techniques are insufficient for realizing the offline phase of [EGP+23]
with Õ(1) communication per gate. Intuitively, this is because it requires indi-
vidual random values to be shared in multiple packed Shamir secret sharings
containing different values. Thus, the typical technique of using super-invertible
matrices to efficiently generate several independent random packed Shamir secret
sharings at once fails. See Section 2 for more details.

Weakly Super-Invertible Matrices. As mentioned above, the main technique
that we develop is generating packed beaver triples with Õ(n) communication
per triple. A crucial part of this technique is a weakening of super-invertible
matrices that we develop, called weakly super-invertible matrices requiring that
sub-matrices have sufficiently high (but not full) rank. We say a m× n matrix
is weakly super-invertible if every m×Θ(m) sub-matrix has rank at least γ ·m
for some constant γ > 1/2. This is a weaker property than standard super-
invertibility requiring full rank. Nevertheless, we later show that this property
is still sufficient for our MPC applications. We are able to construct weakly
super-invertible matrices that are sparse with only O(n) non-zero entries.

Theorem 3 (Informal). For any constants 1/2 < γ < η < 1, any n = Θ(m)
and any finite field F, there exists a matrix generation algorithm that outputs
random m× n matrices satisfying the following except with probability 2−λ:

1. Every sub-matrix of dimension m× (η ·m) will have rank at least γ ·m.
2. Every row will have at most O(λ+ logm) non-zero entries.

Additionally, the whole matrix always has at most O(n · log |F|) non-zero entries.
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1.2 Related Works

Dishonest Majority MPC in the offline-online model. There are many
dishonest majority MPC protocols that work in the offline-online mode. Most
notably, this includes BeDOZa [BDOZ11], SPDZ [DPSZ12, DKL+13], MAS-
COT [KOS16], Overdrive [KPR18], TopGear [BCS19], and many more.
Honest Majority MPC with Sub-Optimal Threshold. In the setting of
honest majority information-theoretic MPC with sub-optimal threshold, where
the number of corrupted parties is t < (1/2 − ε) · n, there has been a fruitful
line of works achieving sub-linear communication per multiplication gate such
as [FY92, DIK10, GPS21, GIP15, GIOZ17, BGJK21, GSY21]. Indeed, the work
of [GPS21] shows how to get O(1) communication per multiplication gate in this
setting.
Invertible Matrices. Invertible matrices have been an important tool in the con-
struction of MPC. Hirt and Nielsen [HN06] introduced super-invertible matrices
and Beerliová-Trubíniová and Hirt [BTH08] extended this to hyper-invertibility.
These matrices have been used in MPC in several ways including for randomness
extraction and error correction [DN07, BTH08]. To our knowledge, the main
instantiation for either matrix definition is Vandermonde matrices.

2 Technical Overview

The main goal of this paper is to instantiate the offline phase of the t < (1− ε) ·n
MPC protocol of [GPS22] with Õ(1) communication per gate, which itself has
an online phase with communication O(1) per multiplication gate. A crucial tool
that this online phase uses to achieve O(1) communication is packed Shamir
secret sharing [FY92], which allows to pack Θ(n) values in a single secret sharing,
for a total cost of O(n).

Indeed, the main object and primary efficiency bottleneck that the online
phase of [GPS22] requires is that of packed beaver triples. This technical overview
is dedicated to describing our protocol for generating packed beaver triples
with Õ(1) communication per underlying triple in the OLE-model, an Ω̃(n)
multiplicative factor improvement over the best previous [EGP+23].
Packed Shamir Secret Sharing. Packed Shamir secret sharing, introduced
by [FY92] is a generalization of standard Shamir secret sharing [Sha79]. With
packed Shamir secret sharing, we can pack a vector x ∈ Fk of k secrets into one
degree-d sharing, [x]d. Reconstructing a degree-d packed Shamir sharing requires
d+1 shares and can be done using Lagrange interpolation. Moreover, for a random
degree-d packed Shamir sharing of x, any d− k + 1 shares are independent of
the secret x. Packed Shamir sharings have the following properties:

– Linearity: For any n > d ≥ k − 1 and x,y ∈ Fk, [x+ y]d = [x]d + [y]d.
– Multiplicative: For any d1, d2 ≥ k − 1 such that d1 + d2 < n, and for any
x,y ∈ Fk, [x∗y]d1+d2 = [x]d1 ∗[y]d2 , where the ∗ operation is component-wise
multiplication.
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Note that the second property implies that for all k − 1 ≤ d ≤ n− k, a degree-d
packed Shamir secret sharing is multiplication-friendly. What we mean by this is
that for all x, c ∈ Fk, all parties can locally compute [c ∗ x]d+k−1 from [x]d and
public vector c. To do this, all parties just locally transform c to some canonical
degree-(k − 1) packed Shamir sharing [c]k−1 and then use the ∗ operation.

Recall that t is the number of corrupted parties and that a degree-d packed
Shamir secret sharing is private against an adversary that holds d− k + 1 shares.
To ensure that the Shamir secret sharing is both private and multiplication-
friendly, we choose k such that t ≤ d − k + 1 and d ≤ n − k. When d = n − k
and k = (n− t+ 1)/2, both requirements hold and k is maximal.

2.1 Packed Beaver Triples with Õ(1) Communication Per Triple

A packed beaver triple consists of the sharings [a]n−k, [b]n−k, and [c]n−k such
that a and b are fully random, while c = a ∗ b. We first show overview how to
generate such packed beaver triples with a semi-honest adversary. Generating
such packed beaver triples with malicious security will follow from standard
techniques, as we will show later.
Attempt 1: Packed Beaver Triples using Super-Invertible Matrices.
First, we will attempt to generate such packed beaver triples using super-invertible
matrices and OLE correlations. Although we will fail in this attempt, it will
provide intuition for our ultimate construction.

Recall that a m× n super-invertible matrix M satisfies that for all C ⊆ [n]
such that |C| = m, the sub-matrix MC , corresponding to the columns of M
with indices in C, is invertible. Super-invertible matrices are commonly used
to generate several random packed Shamir sharings [a1]n−k, . . . , [an−t]n−k with
O(n) amortized communication per sharing, and thus O(1) communication
per underlying value. To do so, each party Pi begins by sampling their own
random sharing [ui]n−k and distributing to the other parties their shares. Then,
using a (n − t) × n super-invertible matrix M , the parties simply compute
([a1]n−k, . . . , [an−t]n−k)ᵀ ← M · ([u1]n−k, . . . , [un]n−k)ᵀ. Intuitively, for any
set of honest parties of size n − t, H = {h1, . . . , hn−t} ⊆ Hon, letting C =
{c1, . . . , ct} = [n] \ Hon, we can write

([a1]n−k, . . . , [an−t]n−k)ᵀ = MH · ([uh1
]n−k, . . . , [uhn−t ]n−t)

ᵀ+

MC · ([uc1 ]n−k, . . . , [uct ]n−k)ᵀ.

Since M is super-invertible, MH must be invertible, and thus, given any
([uc1 ]n−k, . . . , [uct ]n−k), ([a1]n−k, . . . , [an−t]n−k) and ([uh1

]n−k, . . . , [uhn−t ]n−t)
are distributed equivalently. Since honest parties generated the latter randomly
and unknown to the adversary, the former must also be random and unknown to
the adversary. The cost of each party sharing their [ui]n−k is O(n) for a total
cost of O(n2). Since n− t = Ω(n), the amortized cost is O(n) per packed sharing.

The parties can repeat the same process as above, sharing random ([v1]n−k, . . . ,
[vn]n−t) and multiplying them by M to obtain random ([b1]n−k, . . . , [bn−t]n−k)
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with the same cost. Now, observe that for any l ∈ [n− t],

cl := al ∗ bl =

(
n∑
i=1

Ml[i] · ui

)
∗

 n∑
j=1

Ml[j] · vj

 (1)

=

n∑
i=1

Ml[i] ·

 n∑
j=1

Ml[j] · (ui ∗ vj)

 .

Thus, a good start to getting the sharing [cl]n−k, could be to securely compute
ui ∗ vj , for every pair of ordered parties (Pi, Pj). Thankfully, this is exactly what
the (programmable) OLE functionality Fprog

OLE gives us [RS22]. Fprog
OLE takes

as input ui from Pi and vj from Pj . It next samples random αji , computes
βij ← ui ∗ vj −αji , then gives αji to Pi and β

i
j to Pj .

However, now we are faced with a dilemma. We could have every Pi distribute
packed Shamir secret sharings of [αji ]n−k and [βji ]n−k, for each other party Pj .
Unfortunately, this would cost Ω(n3) communication in total, which is too much.
We could also have each party Pi compute

cil ← (Ml[i])
2 · ui ∗ vj +Ml[i] ·

n∑
j=1

Ml[j] · (αji + βji )

and then share [cil]n−k. However, for every l ∈ [n− t], this value cil is different.
Thus, Pi needs to distribute such a sharing for each l ∈ [n− t], which costs Ω(n3)
total that is again too much.

Indeed, although super-invertible matrices are good extractors for purely
random sharings, computing packed beaver triples in this way is too expensive.
Intuitively, this is because known constructions of super-invertible matrices, such
as Vandermonde matrices, are dense. For every row of M , every entry could be
non-zero. This means that every cl is computed from every party Pi’s ui and vi.
Moreover, each row Ml is different (which is necessary for super-invertibility)
meaning that each cl is computed in a different way from the ui and vi vectors.

Thus, if we want to compute packed beaver triples in the above manner, we
need sparse matrices M . This leads us to our first key technical contribution.
Weakly Super-Invertible Matrices. In the above, the super-invertible matrix
M enabled the property that MH has full rank. So, the distribution of each
element in ([a1]n−k, . . . , [an−t]n−k) is random and hidden from the adversary.
This strong property is quite useful in the MPC construction, but comes at the
cost of large communication for our proposed packed beaver triple construction
above. The core reason is due to the density (large number of non-zero-entries)
of super-invertible matrices.

Instead, we take a different approach. Suppose that MH has high (but not
necessarily full) rank. For concreteness, say the rank was γ · (n− t) as opposed to
n− t for some constant 0 < γ < 1. Then, it will be guaranteed that a γ-fraction of
([a1]n−k, . . . , [an−t]n−k) will be random from the adversary’s view. However, the

8



bad γ-fraction is unknown since the corrupted parties are unknown (and could
change later with an adaptive adversary). While weaker, we will later show that
this still suffices for our MPC applications with an additional level of extraction
when γ > 1/2.

With this weaker requirement, we construct m× n sparse matrices with only
a small number of non-zero entries. We present a simple construction where for
each column, ζ = Θ(log |F|) rows are chosen uniformly at random. Then, these
ζ entries in the column are set to be a uniformly random non-zero entry. The
remaining m − ζ entries are set to 0. The total number of non-zero entries is
O(n log |F|). In our MPC application, we require larger fields |F| = O(n + 2λ).
Then, each row has O(λ+ log n) non-zero entries except with 2−λ probability.

To prove weakly super-invertibility, we analyze the probability that subsets
of columns have low rank. To do this, we compute the number of vectors in the
null space of the corresponding sub-matrix. We show that the null space will not
contain any vectors with more than O(λ+ logm) non-zero entries except with
negligible probability implying that the sub-matrix has large rank.
Two-level Extraction usingWeakly Super-Invertible Matrices and [CP17].
Equipped with weakly super-invertible matrices, we can revisit our attempt
to generate packed beaver triples from above. Indeed, we can still try to ex-
tract [a1]n−k, . . . , [an−t]m and [b1]n−k, . . . , [bm]n−k from [u1]n−k, . . . , [un]n−k
and [v1]n−k, . . . , [vn]n−k, respectively, using weakly super-invertible M , where
m = Θ(n) (this does not fully work, as mentioned above). Now, for each l ∈ [m],
Equation 1 becomes

cl := al ∗ bl =

 ∑
i∈[n]:Ml[i] 6=0

Ml[i] · ui

 ∗
 ∑
j∈[n]:Ml[j]6=0

Ml[j] · vj


=

∑
i∈[n]:Ml[i]6=0

Ml[i] ·

 ∑
j∈[n]\{i}:Ml[j]6=0

Ml[j] · (ui ∗ vj + uj ∗ vi)


+

∑
i∈[n]:Ml[i] 6=0

(Ml[i])
2 · ui ∗ vi.

Therefore, for each l ∈ [m] we only need to invoke Fprog
OLE between every

ordered pair of parties (Pi, Pj) such that Ml[i] 6= 0 and Mj [i] 6= 0 to receive αji
and βij , respectively, such that αji + βij = ui ∗ vj . Based on this, each Pi such
that Ml[i] 6= 0 can compute

cil ← (Ml[i])
2 · ui ∗ vi +Ml[i] ·

∑
j∈[n]\{i}:Ml[j]6=0

Ml[j] · (αji + βji )

and then share [cil]n−k. So, all parties compute [cl]n−k ←
∑
i∈[n]:Ml[i]6=0[cil]n−k.

Since the row norm of M is O(λ) with all-but-negligible probability, we get
the following two efficiency benefits. First, we only need O(λ2 ·m) invocations of
Fprog

OLE . Therefore, even if the Fprog
OLE instantiation costs poly(κ) communication
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per correlation, and thus Õ(k) communication per invocation, this would be a
total cost of Õ(m ·n). Second, for each row l ∈ [m], we only need O(λ) parties Pi
to share [cil]n−k. Thus, this only costs O(λ ·m ·n) total communication. Therefore,
in total this is Õ(m · n) for O(m) packed triples, or Õ(1) per underlying triple,
which was our goal!

However, as noted above, since M is only weakly super-invertible, the ex-
tracted values al, bl may not be fully random. Indeed, we are only guaranteed
that some γ · m of them are fully random, but we do not know which ones.
Furthermore, we, of course, do not know the identities of the honest parties.
Thus, the protocol up until this point is only our first level of extraction.

To obtain fully random packed beaver triples, we need a second level of
extraction. We base this on the “triple extraction” protocol of [CP17]. This will
allow us to extract µ := γ · m − (m + 1)/2 random triples via the m triples
obtained from the first level of extraction, some unknown γ ·m of which were
random. Since γ > 1/2, we have µ = Ω(m) = Ω(n).

Let N = (m− 1)/2. In the second level of extraction, for each l ∈ [N + 1], the
parties implicitly view the τ -th secrets aτl , b

τ
l , c

τ
l of al, bl, cl as the l-th evaluation

points of polynomials Aτ (·) of degree N , Bτ (·) of degree N , and Cτ (·) of degree
m − 1 (= 2N), respectively; i.e., Aτ (l) = aτl , Bτ (l) = bτl , and Cτ (l) = cτl . In
other words, letting A(·) ← (A1(·), . . . , Ak(·)), B(·) ← (B1(·), . . . , Bk(·)), and
C(·)← (C1(·), . . . , Ck(·)) be vectors of polynomials, the parties have sharings

([A(1)]n−k, . . . , [A(N + 1)]n−k) = ([a1]n−k, . . . , [aN+1]n−k);

([B(1)]n−k, . . . , [B(N + 1)]n−k) = ([b1]n−k, . . . , [bN+1]n−k);

([C(1)]n−k, . . . , [C(N + 1)]n−k) = ([c1]n−k, . . . , [cN+1]n−k).

The goal will be for the parties to compute sharings ([A(N + 2)]n−k, . . . ,
[A(m)]n−k), ([B(N+2)]n−k, . . . , [B(m)]n−k), and ([C(N+2)]n−1, . . . , [C(m)]n−1),
such that together with the above sharings, the underlying secret polynomial
vectors A(·), B(·), C(·) satisfy A(·) ∗B(·) = C(·). Indeed, the first N evaluation
points satisfy this relation, since they come from packed beaver triples.

Now, since A(·) corresponds to degree-N polynomials, the N + 1 points
[A(1)]n−k, . . . , [A(N + 1)]n−k define them. The same thing can be said about
B(·) and [B(1)]n−k, . . . , [B(N + 1)]n−k. Thus, we can locally compute ([A(N +
2)]n−k, . . . , [A(m)]n−k) and ([B(N + 2)]n−k, . . . , [B(m)]n−k) using Lagrange in-
terpolation on the shares. To compute ([C(l)]n−1 for l ∈ [N + 2,m]), we need to
compute [A(l) ∗B(l)]n−1. We do this using the typical packed beaver multiplica-
tion procedure on input our l-th packed beaver triple [al]n−k, [bl]n−k, [cl]n−k from
the first level of extraction.5 Since C(·) corresponds to a vector of degree-(m− 1)
polynomials, the m computed points [C(1)]n−1, . . . , [C(m)]n−1 define them.

Next, observe that each polynomial in the vectors A(·) and B(·) are of degree
N , and thus have N + 1 degrees of freedom, while the C(·) polynomials are of
degree m − 1 and, thus, they have m ≥ N + 1 degrees of freedom. Since only
5 This standard technique leads to [C(l)]n−1 having degree-(n− 1).
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(1− γ) ·m of the packed beaver triples from the first level of extraction are not
fully random to the adversary, only that many points of the polynomials are not
fully random to the adversary—for all other points, either nothing is directly
revealed about them (if they are one of the first N + 1 points) or they are masked
by the [a]n−k, [b]n−k parts of a fully random beaver triple (if they are one of the
last N points). This means that N +1− (1−γ) ·m = γ ·m− (m+1)/2 = µ of the
degrees of freedom of the polynomials in A(·) and B(·) are indeed fully random
to the adversary, and at least as many degrees of freedom of the polynomials in
C(·) are also fully random to the adversary. So, we can compute using Lagrange
interpolation packed Shamir sharings ([A(m+l)]n−k, [B(m+l)]n−k, [C(m+l)]n−1)
for l ∈ [m+ 1,m+ µ] whose secrets correspond to µ polynomial evaluations on
which the adversary has no information and thus are fully random. We output
these sharings as our packed beaver triples.

The only communication required by the second level of extraction is from
the N + 1 = (m+ 1)/2 invocations of the packed beaver multiplication procedure.
Since each of these costs O(n), the whole second level costs O(n2). Therefore,
our full packed beaver triple protocol costs Õ(n2) communication for µ = Ω(n)

packed beaver triples. This is Õ(1) communication per underlying triple, and
thus we have achieved our goal.

2.2 Offline phase of [GPS22] with Õ(1) communication per
multiplication

As mentioned earlier, the main bottleneck in instantiating the offline phase
of [GPS22] is generating packed beaver triples. Another challenge is efficiently
generating authenticated packed sharings required for malicious security in the
online phase. Once we have this, the rest of the offline phase can be instantiated
using standard techniques (presented in Section 6 for completeness). Next, we
will show that authenticating packed sharings can in fact be done using packed
beaver triples.
Authenticated Sharings with Õ(1) Communication per Value. In the
online phase of [GPS22], all circuit values will be shared using degree-(n − k)
authenticated packed Shamir sharings JvKn−k := ([v]n−k, [γ ∗ v]n−k), for some
γ = (γ, γ . . . , γ), where γ is uniformly random. This γ is referred to as the “MAC
key”, while the sharing [γ ∗ v]n−k is referred to as the (information-theoretic)
“MAC” on v. Intuitively, if v is opened then it will be checked by opening γ ∗ v—
since γ is random, with all-but-negligible probability, the adversary will be unable
to force an opening to some v′ 6= v.6

In the offline phase, we have to generate such authenticated packed Shamir
sharings. First, we show that generating authenticated packed Shamir sharings
of random vectors can be done using packed beaver triples. We again assume a
semi-honest adversary in the offline phase, for now.

Assume that we have the sharing [γ]n−k of some random γ (this can be gener-
ated using standard techniques) and some packed beaver triple ([r]n−k, [s]n−k, [r∗
6 This is done once for many such openings at a time using random linear combinations.
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s]n−k). First, the parties can computes [γ + s]n−k ← [γ]n−k + [s]n−k and open
their shares to P1. Since s is random, nothing about γ is revealed. P1 can then
reconstruct γ + s, compute the (unique) packed Shamir sharing [γ + s]k−1, and
distribute to the rest of the parties their shares. Finally, all parties can compute
[γ ∗ r]n−1 ← [r]n−k ∗ [γ + s]k−1 − [r ∗ s]n−k. Observe that the parties opening
their shares of [γ + s]n−k to P1, and then P1 distributing the shares of [γ + s]k−1
each cost O(n) communication. So, producing [γ ∗ r]n−1 costs additional O(1)
communication per underlying value. Using standard techniques, the parties can
obtain a sharing [γ ∗ r]n−k with reduced degree for the same cost (see Section 6).

Once we have authenticated packed Shamir sharings JrKn−k of random vectors
r, we can produce authenticated packed Shamir sharings JxKn−k of any vector
x (including components of packed beaver triples) efficiently using standard
techniques. We refer the reader to Section 6 for more details.

Malicious Security. For malicious security of the offline phase, we can use
several standard techniques that we will instantiate in Section 6. One primary op-
portunity for the corrupted parties to deviate from the protocol is in generating the
packed beaver triples. For example, a corrupt party Pj can input to Fprog

OLE different
vectors uj ,vj than those underlying their sharings [u]n−k, [v]n−k. The adversary
can use this and other methods so that the output authenticated packed beaver
triples will actually be of the form (JaKn−k, JbKn−k, Ja∗b+δKn−k), for some δ. To
handle this, the parties can use the standard triple sacrificing technique [DPSZ12]
which takes as input two packed beaver triples (Ja1Kn−k, Jb1Kn−k, Ja1∗b1+δ1Kn−k)
and (Ja2Kn−k, Jb2Kn−k, Ja2 ∗ b2 + δ2Kn−k), then outputs the first if δ1 = δ2 = 0.
This standard procedure uses only O(1) overhead per underlying triple.

Additional Preprocessing Required for [EGP+23]. Although a major bot-
tleneck in instantiating the offline phase of [EGP+23] is also packed beaver
triples, their offline phase has another major roadblock that is not present in
that of [GPS22]. The online phase of [EGP+23] associates some value λγ ∈ F
with every circuit wire γ. In particular, if γ is the output wire of a multiplication
gate, then the value λγ associated with it is chosen randomly. Additionally, for
every group of k multiplication gates in the circuit with input wires α and β, the
online phase requires packed secret sharings [λα]n−k and [λβ ]n−k which share the
values corresponding to those wires. Thus, if a given multiplication output wire
γ is contained in some later vector of multiplication input wires α, then [λα]n−k
should secret share λγ in the corresponding slot. However, if the multiplication
gate for which γ is the output wire has fan-out f > 1, then λγ may have to
be secret shared in several different [λα1

]n−k, [λα2
]n−k, . . . , [λαf ]n−k such that

λα1 6= λα2 6= · · · 6= λαf .
Unfortunately, using the aforementioned technique of sampling several random

independent packed Shamir sharings at a time with O(n) amortized communica-
tion per sharing is insufficient for this. It is unclear how to adapt this technique to
get several correlated packed Shamir sharings [λα1

]n−k, [λα2
]n−k, . . . , [λαf ]n−k

with amortization. Indeed, the offline protocol of [EGP+23] requires Ω(n2) com-
munication per sharing to achieve this.
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3 Preliminaries

We now present some important preliminaries. For additional preliminaries on
additive secret sharing and basic ideal functionalities Fcommit and Fcoin that we
will use in our MPC protocol, see Appendix A of the Supplementary Material.
Linear Algebra. We denote a k-dimensional vector as v = (v1, . . . , vk)ᵀ ∈ Fk.
Given two k-dimensional vectors u,v, we use u ∗ v to denote component-wise
multiplication of the vectors.

For any m×n matrixM , we denote its i-th row vector asMi for any i ∈ [m].
The entry in the i-th row and j-th column of M is denoted by Mi[j] for any
i ∈ [m] and j ∈ [n]. We will denote the j-th column vector of M as M j for any
j ∈ [n]. For convenience, we will overload these operators to consider subsets of
rows or columns of a matrix. For example, let C = {c1, . . . , c`} ⊆ [n] be any subset
of columns and we define the followingm×|S| sub-matrixMC = [M c1 , . . . ,M c` ]
consisting of all column vectors of M in the subset of columns C. Finally, we
can consider sub-matrices of M that are defined by arbitrary subsets of both
rows and columns. For any subset of rows R = {r1, . . . , rk} ⊆ [m] and subset of
columns C = {c1, . . . , c`} ⊆ [n], we define the following k × ` sub-matrix

MC
R =

Mr1 [c1] . . . Mr1 [c`]
. . . . . . . . .

Mrk [c1] . . .Mrm [c`]


consisting all entries that appear in one of the rows denoted by R and one of the
columns denoted by C. We will use Mᵀ to denote the transpose matrix of M .
MPC Preliminaries. In this paper, we focus on using MPC with n parties
P1, . . . , Pn to compute functionalities F that can be represented as arithmetic
circuits over a finite field F with input, addition, multiplication, and output
gates. We use κ to denote the computational security parameter, λ to denote the
statistical security parameter, C to denote the circuit, and |C| for the number
of multiplication gates in the circuit. In this work, we assume that the field size
is |F| ≥ 2λ. Note that this implies that |F | ≥ |C|+ n, since both the number of
parties and circuit size are bounded by poly(λ).

We consider an adversary A that can corrupt at most t parties adaptively
and maliciously. We study the t < (1 − ε) · n setting, where ε is any constant
0 < ε ≤ 1/2. Such an adversary receives all messages sent to currently corrupted
parties and based on these can adaptively corrupt more parties, as long as the
number of corrupted parties does not exceed t. In addition, the adversary can
maliciously arbitrarily deviate from the protocol.

Ultimately, we will study MPC protocols in the offline-online setting in which
there is an offline phase that is circuit-independent and is computationally-secure
with respect to κ, followed by an online setting that can be statistically-secure
with respect to λ. In this paper, we instantiate the offline phase of an MPC
protocol. However, we will assume the presence of an ideal functionality which can
prepare circuit-independent correlated randomness (OLE correlations). Therefore,
we can still prove our protocols statistically-secure.
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We use the Universal Composability (UC) framework of [Can01] to formally
prove security of our protocol. In this framework, we have the following two
worlds:

– Real World Execution. In the real world, the adversary A interacts with
honest parties and can adaptively corrupt up to t of them. At the end of
the protocol, the output of the real-world execution includes the inputs and
outputs of honest parties and the view of the adversary.

– Ideal World Execution. In the ideal world, a simulator S, simulates honest
parties and interacts with the adversary A. Furthermore, S has one-time
access to F, which includes providing inputs of corrupted parties to F,
receiving the outputs of corrupted parties, and sending instructions specified
in F (e.g., asking F to abort). The output of the ideal world execution includes
the inputs and outputs of honest parties and the view of the adversary.

In more detail, we say that a protocol Π UC-realizes F if there exists a simulator
S, such that for every adversary A, the distribution of the output of the real world
execution is (in our case, statistically) indistinguishable from the distribution of
the output of the ideal world execution.

Packed Shamir Secret Sharings. In our work, we will use packed Shamir secret
sharing, introduced by [FY92]. This is a generalization of standard Shamir secret
sharing [Sha79]. With packed Shamir secret sharing, we will pack k secrets into one
sharing. A degree-d (d ≥ k− 1) packed Shamir sharing of x = (x1, . . . , xk)ᵀ ∈ Fk
is a vector (w1, . . . , wn) for which there is some polynomial f(x) of degree at
most d such that f(−i+ 1) = xi for all i ∈ [k] and f(i) = wi for all i ∈ [n]. We
denote such a sharing [x]d. The i-th share wi is held by Pi. Reconstructing a
degree-d packed Shamir sharing requires d + 1 shares and can be done using
Lagrange interpolation. For a random degree-d packed Shamir sharing of x, any
d− k+ 1 shares are independent of the secret x. We therefore say that a degree-d
packed Shamir sharing is private against an adversary that holds d−k+ 1 shares.
For some C ⊆ [n], we say that some sharing [x]d is consistent with set {vi}i∈C if
wi = vi for all i ∈ C.

Packed Shamir sharings have the following properties, which follow directly
from the computation of the underlying polynomials:

– Linearity: For any n > d ≥ k − 1 and x,y ∈ Fk, [x+ y]d = [x]d + [y]d.
– Multiplicative: For any d1, d2 ≥ k−1 such that d1+d2 < n and any x,y ∈ Fk,

[x ∗ y]d1+d2 = [x]d1 ∗ [y]d2 , where ∗ is component-wise multiplication.

Note that the second property implies that for all k − 1 ≤ d ≤ n− k, a degree-d
packed Shamir secret sharing is multiplication-friendly. What we mean by this is
that for all x, c ∈ Fk, all parties can locally compute [c ∗ x]d+k−1 from [x]d and
public vector c. To do this, all parties just locally transform c to the (unique)
degree-(k − 1) packed Shamir sharing [c]k−1 and then use the ∗ operation.

Recall that t is the maximal number of corrupted parties and that a degree-d
packed Shamir secret sharing is private against an adversary that holds d− k+ 1
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shares. To ensure that the Shamir secret sharing is both private and multiplication-
friendly, we choose k such that t ≤ d − k + 1 and d ≤ n − k. When d = n − k
and k = (n− t+ 1)/2, both requirements hold and k is maximal.

4 Revisiting Invertible Matrices

Many prior MPC works have utilized matrices that emit certain strong invertibility
properties. These matrices have been found in applications as sub-routines of
MPC protocols such as critically being able to extract many random sharings
from some base random sharings (some of which are adversarially generated).

Super-Invertible Matrices. First defined by Hirt and Nielsen [HN06], super-
invertible matrices are any matrix M of dimension m× n where the number of
columns is at least as large as the number of rows (that is, n ≥ m). The matrix
M is super-invertible if every sub-matrix of dimension m×m is invertible. In
other words, for any subset of m columns, the sub-matrix consisting of the m
chosen columns should have full rank. We present the formal definition below:

Definition 1 (Super-Invertible Matrices [HN06]). Let M be a matrix of
m× n dimension with n ≥ m. M is a super-invertible matrix if, for any subset
C = {c1, . . . , cm} ⊆ [n] of size exactly m, the m×m sub-matrix MC , defined as
consisting of the m column vectors of M in the subset C, must be invertible.

Hyper-Invertibile Matrices. Hyper-invertible matrices were introduced by
Beerliová-Trubíniová and Hirt [BTH08]. In super-invertible matrices, it was only
required that every m × m sub-matrix was full rank m. For hyper-invertible
matrices, the invertibility requirement is extended to apply for every square
sub-matrix. In particular, for a m× n matrix M to be hyper-invertible, it must
be that every z × z sub-matrix of M must be invertible for every choice of
1 ≤ z ≤ m. In other words, for every 1 ≤ z ≤ m and every choice of subsets
R ⊆ [m] and C ⊆ [n] both of exactly size z, the sub-matrix MC

R consisting
of the rows in R and columns in C must be invertible (have full rank z). See
Appendix B.2 for the definition.

Existing Constructions. Both super-invertible and hyper-invertible matrices
have been used extensively in multiple MPC protocols. In general, both of these
matrices have been instantiated using Vandermonde matrices that can be shown
to satisfy the requirements of being hyper-invertible (and, thus, also being super-
invertible). We refer readers to prior works (such as [HN06, BTH08]) for more
details on Vandermonde matrices being super- and hyper-invertible. However,
we point out that Vandermonde matrices of dimension m × n will consist of
Ω(m·n) non-zero entries that has a direct impact on the communication efficiency
of MPC protocols. To our knowledge, we are unaware of any super-invertible
or hyper-invertible matrices with o(m · n) non-zero entries. In fact, we show
hyper-invertible matrices with o(m · n) non-zero entries cannot exist later (see
Appendix B.3).
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5 Weakly Super-Invertible Matrices

In this section, we present new, weaker notions of super-invertible matrices with
less restrictive requirements compared to super-invertible matrices. We later show
that the benefit of considering weaker invertibility notions is that we obtain
constructions with a significantly smaller number of non-zero entries that can
improve the efficiency when used in MPC applications.

5.1 Definition

Our new definitions of m× n weakly super-invertible matrices will weaken defi-
nitions in two ways. First, we will no longer require m×m sub-matrices to be
invertible (that is, equivalent to being full rank). Instead, we will only require
that sub-matrices of interest will have sufficiently high rank (but not necessarily
full rank). We will desire that m× h sub-matrices should have rank sufficiently
close to m for sufficiently large h = Ω(m). In particular, we will require that the
rank of each m× h sub-matrix should have rank γ ·m for some constant γ > 1/2.
The requirement of γ > 1/2 will be important for our MPC applications later.

Secondly, we will consider probabilistic guarantees for matrices that are
randomly generated. To do this, we will consider random matrix families M
equipped with an algorithm to randomly generate some matrix from the family.
At a high level, weakly super-invertible matrix families will require that, for
any randomly generated matrix m × n, M , from the family M, every m × h
sub-matrix ofM for sufficiently large h = Ω(m) should have rank at least γ ·m for
some constant γ > 1/2 except with negligible probability where the randomness
is over the choice of the original generated matrix from the familyM.
Matrix Families. To define weakly super-invertible matrix families, we start
by defining the notion of a matrix familyM that is equipped with a randomized
algorithm to generate random matrices from the familyM. All matrices in the
familyM will have the same dimension of m× n and every familyM will be
defined with respect to some fixed field F. We define a matrix family as follows:

Definition 2 (Matrix Family). Let F be some field. A matrix family of m×n
matrices is the tupleM = (S,Gen) satisfying the following:

– S ⊆ Fm×n is a subset of all m× n matrices.
– M ← Gen(R) takes a random string R as input and outputs a matrixM ∈ S.

Weakly Super-Invertible Matrix Families. Using matrix families, we can
now define our new notion of weakly super-invertible matrix families that extends
the super-invertibility notion by Hirt and Nielsen [HN06].

In our definition, we consider the random process where a random matrix
M ← Gen(R) is generated from a matrix family M for a uniformly random
chosen R. Afterwards, pick any subset of m columns C ⊆ [n] and consider the
sub-matrix MC consisting of the m column vectors of M denoted by C. We say
that a matrix familyM is weakly super-invertible if every choice of h = Ω(m)
columns C results in a sub-matrix MC that has rank at least Ω(m) except with
negligible probability over the random choice of the matrix M .
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Definition 3 (Weakly Super-Invertible Matrix Family). Fix constants
0 < δ, γ, η < 1 such that η ≥ γ. LetM = (S,Gen) be a matrix family over m× n
matrices where n ≥ m.M is (δ, γ, η)-weakly super-invertible if

Pr
R

[∃C ⊆ [n] | rank(MC) < γ ·m,M ← Gen(R), |C| = η ·m] ≤ δ.

In other words, a weakly super-invertible matrix guarantees that no m×(η ·m)
sub-matrix will have rank strictly less than γ ·m except with probablity δ. We
note that the restriction of η ≥ γ is necessary as we want the sub-matrix to have
rank at least γ ·m. Therefore, the number of columns in the sub-matrix must
satisfy η ·m ≥ γ ·m implying η ≥ γ.

Finally, we define the main notions of efficiency for matrix families that will
be important in our MPC applications. In particular, we will desire that all the
matrices in some matrix familyM have a small number of non-zero entries. In
particular, we want the guarantee that each row ofM has a small number of
non-zero entries (typically, much less than n). For the i-th row vector of M , we
define its L0 norm as L0(Mi) = |{j | j ∈ [n],Mi[j] 6= 0}|. We formally define
this efficiency measure for weakly super-invertible matrix families as follows:

Definition 4 ((δ, γ, η, `)-Weakly Super-Invertible Matrix Family). Let
M = (S,Gen) be a matrix family over m × n matrices. The matrix family
M is (δ, γ, η, `)-weakly super-invertible if the following holds:

1. M is (δ, γ, η)-weakly super-invertible.
2. The probability that there exists any row vector with L0 norm larger than `

is at most δ. In other words, Pr[∃i ∈ [m] | L0(Mi) > `] ≤ δ.

5.2 Sparse Weakly Super-Invertible Matrices

We present sparse weakly super-invertible m× n matrices over any finite field F
with O(n log |F|) non-zero entries. For constant-sized fields |F| = O(1),Mζcol has
O(n) non-zero entries that we will later show is asymptotically optimal. For our
MPC applications, we will consider larger fields such that the L0 norm ofMζcol

is optimal except for the O(log |F|) factor. To our knowledge, all previously known
super-invertible matrices have Θ(m ·n) non-zero entries such as the Vandermonde
matrix (see Section 4).
Construction. First, we will fix any finite field F. We start by presenting
our construction of the matrix family Mζcol = (Sζcol,Genζcol) whose matrix
generation algorithm is defined as follows:
Genζcol(R):

1. Initialize m× n matrix M to be all zeroes.
2. For each i = 1, . . . , n:

(a) Use R to generate ζ integers xi1, xi2, . . . , xiζ uniformly at random from
[m] and ζ non-zero integers yi1, . . . , yiζ uniformly at random from F \ {0}.
Set Mxij

[i] = yij for every j ∈ {1, 2, . . . , ζ}.
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3. Return M .

In other words, Mζcol generates matrices by picking a uniformly random
subset of ζ entries for each column vector and setting them to be uniformly
random non-zero element in F. The subset Sζcol consists of all matrices with
at most ζ non-zero entries in each of the columns and zero entries in all the
remaining entries of each column. Note, it is possible that a column picks the
same row twice. Therefore, there are at most ζ non-zero entries in each column.
Next, we show that our construction,Mζcol, is weakly super-invertible:

Theorem 4. Pick any choice of constants c ≥ 1, 0 < γ < 1 and γ < η ≤ c as
well as finite field F where |F| ≥ 3. Let the number of columns be n = c ·m and
the number of non-zero entries in each column be ζ = Θ(log |F|). The m × n
matrix familyMζcol is (2−λ, γ, η,O(λ+ logm))-weakly super-invertible over F
for sufficiently large m = Ω(λ logm).

In this section, we will focus on fields where |F| ≥ 3. Note, the requirements
of the field size |F| is less restrictive than standard MPC protocol requirements.
For example, it is commonly required that |F| ≥ n if n is the number of parties
to enable (packed) Shamir secret sharing. Indeed, the number of columns n will
correspond exactly to the number of parties in our MPC construction. Similarly,
MPC security commonly requires that each element of F is λ bits meaning that
|F| ≥ 2λ. While we use such large fields for our MPC protocol, we show that
constant field sizes |F| = O(1) are sufficient for weakly super-invertibility.

In Appendix B, we show our constructions in fact hold for all finite fields by
showing thatMζcol remains weakly super-invertible when |F| = 2. In this case,
the proof differs and we rely on prior work for the XORSAT problem [PS16].

We start with efficiency proving the expected and worst case number of
non-zero entries (L0 norm) of each row:

Theorem 5. Let M be a random m × n matrix generated by Mζcol with ζ
non-zero entries in each column. For all rows i ∈ [m], E[L0(Mi)] = O(ζ). Also,
for some ` = O(max(ζ, λ+ logm)), Pr[∃i ∈ [m] | L0(Mi) > `] ≤ 2−λ.

Proof. Each of the n column vectors has exactly ζ non-zero entries. So, the
expected L0 norm for any row is ζ · (n/m) = O(ζ) as n = O(m).

For the worst case bound, fix any row i ∈ [m]. For any j ∈ [n], let Xj be the
random binary variable indicating whether the j-th column has a non-zero entry
in the i-th row. Then, we see that Pr[Xj ] = ζ/m. So, µ = E[X1 + . . .+Xn] =
nζ/m = cζ for the chosen constant c ≥ 1 that is the sum of n independent
binary variables. By Chernoff’s bound, we get that the probability that the i-th
row vector has more than ` = O(max(ζ, λ+ logm)) non-zero entries is at most
2−λ−logm for sufficiently large `. Finally, we apply a Union bound over all m
rows to obtain the probability upper bound of 2−λ.

Note, if one plugs in ζ = Θ(log |F|), then we see that each row has ex-
pected O(log |F|) non-zero entries. In the worst case, each row has at most
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` = O(max(log |F|, λ+ logm)) non-zero entries. As discussed earlier, it is typi-
cally assumed that |F | ≥ n = Ω(m) and |F | ≥ 2λ. Therefore, this means that
` = O(λ+ logm) as both arguments in the max are the same.

The remaining of this section will be dedicated to proving that for h = η ·m,
all m× h sub-matrices have rank at least γ ·m except with probability δ ≤ 2−λ.

Proof Overview of High Rank Sub-Matrices. We first present a high-level
overview of our proof that will show that a randomly generated matrix from
Mζcol will satisfy the necessary requirements of being weakly super-invertible
except with probability 2−λ. Our proof will use the following steps. In the
following, we will use “size” of a vector to refer to its number of non-zero entries
(that is, the L0 norm of the vector).

1. First, we consider vectors in the null space and show that the size of the null
space can be used to lower bound the rank of sub-matrices.

2. We consider the case where m×h sub-matrices may contain null space vectors
of small sizes. To analyze this case, we consider a combinatorial argument
showing that null space vectors of size x satisfying x = Ω(λ + logm) and
x = O(m/ζ) do not exist except with negligibly small probability.

3. To show that larger null space vectors do not exist with all-but-negligible
probability, we show that larger null space vectors will likely consider larger
sets of rows that are unlikely to emit linear combinations summing to the
zero vector.

4. We put everything together to prove thatMζcol is weakly super-invertible.

Step 1: Null Space Vectors and Rank. To analyze our matrix construction,
we will consider null space vectors. Consider any random m × n matrix M
generated byMζcol. We say that a vector (a1, . . . , an) ∈ Fn is in the null space
of M if

a1M
1 + a2M

2 + . . .+ anM
n = 0.

For convenience, we will focus on the null space vectors’ non-zero entries and
their corresponding non-zero coefficients. Consider any subset of columns C =
{i1, . . . , ix} such that there exists some linear combination consisting of non-zero
coefficients a1, . . . , ax ∈ F\{0} such that their component-wise sum is the all-zero
vector in the field F; i.e.,

a1M
i1 + a2M

i2 + . . .+ axM
ix = 0.

In this phrasing, the corresponding null space vector consists of the subset of
x columns C and the corresponding coefficients a1, . . . , ax. Therefore, the size
(L0 norm) of a null space vector is equal to the size of the column subset. The
number of null space vectors can be used to directly bound the rank of the matrix
A as follows:

Lemma 1. Consider any matrix A ∈ Fm×n with h ≤ m and the number of null
space vectors is Y . Then, the rank of A over finite field F is exactly h− log|F|(Y ).
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Proof. Note that the null space is a subspace of Fh. Therefore, the dimension of
the null space is exactly log|F|(Y ). By the rank-nullity theorem, we know that
rank of A and dimension of the null space of A must sum to the number of
columns of A. Therefore, the rank of A over F is exactly r = h− log|F|(Y ).

We use Y x to denote the number of null space vectors of size x with exactly
x non-zero entries. We will break down the analysis into considering the number
of null space vectors of size x, Y x, for different sizes: x ≤ β ·m/ζ = O(m/ζ) and
any x = Ω(m/ζ). Each of the next two steps will handle each of these cases.
Step 2: Small Null Space Vectors. We will consider null space vectors of size
at most x ≤ β ·m/ζ for some constant β > 0 we will pick later. Consider any
matrix M generated by the matrix familyMζcol. We start by showing that M
will not contain many null space vectors of size at most x ≤ β ·m/ζ. To do this,
consider any fixed subset of x columns, C ⊆ [n]. Each column picks at most ζ
rows to place non-zero entries. Consider all t rows that are chosen at least once
across the x columns. If C is part of a null space vector, we show that each of
the t rows must be chosen at least twice. Therefore, we immediately see that
t ≤ ζx/2 as a total of ζx rows are chosen across the x columns. We bound the
probability that each row is chosen at least twice in the following lemma:

Lemma 2. Pick any constant c ≥ 1. Let n = c ·m. Let M be a m× n matrix
generated byMζcol. Then, there exists constant 0 < β < 1 and cx = Ω(λ+logm)
such that the probability there exists at least one null space vector of any size
cx ≤ x ≤ β ·m/ζ in M is at most 2−2λ for sufficiently large m = Ω(λ).

Proof. We first fix any cx ≤ x ≤ β ·m/ζ number of columns and will show that
the probability that any subset of x columns forms a null space vector is at most
2−Ω(ζx). From this, we can conclude that for every number β ·m/ζ ≥ x ≥ cx of
rows, for sufficiently large cx = Ω(λ + logm) such that 2−Ω(ζx) ≤ 2−Ω(ζcx) ≤
2−2λ−logm, the probability that there exists a null space vector of any size x is
at most

β·m/ζ∑
x=cx

2−Ω(ζx) ≤ (β ·m/ζ) · 2−2λ−logm ≤ 2−2λ.

Note, we can choose such cx = Ω(λ+ logm) since m = Ω(λ) is sufficiently large.
To show this bound on the above probability, fix any subset of x columns. Let

t be the number of rows chosen by at least one of the x columns. For this subset
of columns to be part of a null space vector, it must be that each row is chosen
at least twice. If a row is chosen exactly once, then we can immediately see that
it is impossible to obtain the zero vector as the product of two non-zero elements
in F will always be non-zero since F is a field. Therefore, we know that t ≤ ζx/2.
Fix any subset of t rows chosen by the x columns and we will calculate an upper
bound on the probability that these x columns form a null space vector over
these t rows. This is upper bounded by the probability that each column only
chooses from these t variables. Therefore, we get that this probability is at most
(t/m)ζ for each of the x columns independently and the probability is (t/m)ζx
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for all x columns. Next, we perform a Union bound over all possible choices of
the x columns and the t rows to get(

n

x

)(
m

t

)(
t

m

)ζx
≤
(en
x

)x
·
(em
t

)t
·
(
t

m

)ζx
by applying the upper bound that

(
a
b

)
≤ (ea/b)b. The above probability is strictly

increasing in t and since t ≤ ζx/2, the probability is at most

(en
x

)x(2em

ζx

)ζx/2(
ζx

2m

)ζx
≤
(
eζ/2+1nxζ/2−1ζζ/2

2ζ/2mζ/2

)x
= O

(
xζζ/(ζ−2)

m

)(ζ/2−1)·x

.

Note that we used the fact that n ≤ cm in the second equality. Also, in the
last step, we use that ζ/(ζ − 2) · (ζ/2− 1) = ζ/(ζ − 2) · (ζ − 2)/2 = ζ/2. Recall
that our goal is to show that the above probability is bounded by 2−Ω(ζx).
Therefore, it is sufficient to pick x ≤ m/(2 · ζζ/(ζ−2)) = m/(2 · ζ1+O(1/ζ)). Note
that ζ1/ζ = 2log ζ/ζ = O(1). So, we can pick some constant 0 < β < 1 so that
x ≤ β ·m/ζ such that the above probability is at most 2−Ω(ζx) as required.

To summarize, ifM is generated byMζcol, we show thatM will not contain
any null space vectors of size cx ≤ x ≤ β ·m/ζ for some choice of cx = Ω(λ+logm)
and constant 0 < β < 1. Recall that our goal was to prove that any sub-matrix,
MC , consisting of h = η ·m columns C ⊆ [n] of M has high rank. The above
shows that, for any choice of h columns, the sub-matrix MC also has no null
space vectors of size cx ≤ x ≤ β ·m/ζ. In particular, if MC has a null space
vector of size x, it is easy to see that it would also be a null space vector of the
transpose of the originally generated matrix M .
Step 3: Large Null Space Vectors. Next, we will consider the case of large
null space vectors of size x > β ·m/ζ. Note, the prior argument cannot scale to
such large null space vectors with many columns. For example, if we consider
O(m) columns, it is likely that all m rows will be picked by at least two columns.
So, the prior argument is not sufficient for large null space vectors.

Instead, we will use the following observation. Suppose thatMζcol generates a
randomm×nmatrixM . Consider any subset of x columns C = {i1, . . . , ix} ⊆ [n]
and pick any arbitrary non-zero coefficients a1, . . . , ax ∈ F \ {0}. Let MC be the
sub-matrix corresponding to the columns C and suppose there are t non-zero
rows in MC . Furthermore, suppose that each of the t rows contains at least two
non-zero entries. We can consider the probability that C and a1, . . . , ax will be
a null space vector over the random choices of the generation of M . Suppose
the j-th row is a non-zero row vector, then we can consider the j-th entry of the
linear combination:

a1M
i1 + a2M

i2 + . . .+ axM
ix .

It is not hard to see that, since a1, . . . , ax are non-zero and there are at least two
non-zero entries in the j-th row, the probability that the j-th entry of the linear
combination is 0 should be small. At first, one would guess that this probability
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would be exactly 1/(|F| − 1). Surprisingly, we note that this probability changes
and depends on the value of x (that is, the number of summands). As an example,
consider |F| = 3. For x = 2, the probability can easily be seen as 1/(|F|−1) = 1/2.
When x = 3, we note the probability becomes 1/4.7 For x = 4, the probability
becomes 3/8. In other words, the probability changes with x and can either
increase or decrease. Nevertheless, we prove the following lemma formalizing the
above and showing the probability is never larger than 1/(|F| − 1):

Lemma 3. Consider any finite field |F| ≥ 3. For any y ≥ 1, consider y random
variables X1, . . . , Xy where each Xi are drawn uniformly at random from F \ {0}.
Then, Pr[X1 + . . .+Xy = 0] ≤ 1/(|F| − 1).

Proof. The probability is clearly zero for y = 1. Pick any y ≥ 2 and consider the
probability distribution of the sum of y − 1 random variables. We can see that

Pr[X1 + . . .+Xy = 0] =
∑

i∈F\{0}

Pr[Xy = |F| − i] · Pr[X1 + . . . Xy−1 = i]

=
1

|F| − 1

∑
i∈F\{0}

Pr[X1 + . . . Xy−1 = i]

=
Pr[X1 + . . . Xy−1 6= 0]

|F| − 1

≤ 1

|F| − 1

completing the proof.

Indeed, the above is not true for |F| = 2 as the sum of any even number of
non-zero entries in such fields always sums to zero. In Appendix B, we show our
results do extend to fields of size |F| = 2. Now, we use the above to prove a result
about null space vectors of large size:

Lemma 4. Pick any constant 0 < η < 1. Suppose that F is a finite field. Let
M be a m × n matrix generated by Mζcol. Consider any subset of columns
C = {i1, . . . , ix} ⊆ [n] such that βm/ζ < x ≤ η · m and any set of non-zero
coefficients a1, . . . , ax ∈ F \ {0}. Then, the probability that C and a1, . . . , ax is a
null space vector is at most (|F| − 1)−νx + 2−Ω(ζx) for some constant ν > 1.

Proof. First, pick any constant ν > 1 satisfying νx < m. Note, this is possible
since x ≤ η ·m and η is a constant strictly smaller than 1. Therefore, some choice
of ν > 1 always exists. We split the analysis into two parts. First, we will consider
the probability conditioned onMC containing t ≥ νx non-zero rows. Afterwards,
we show that the probability there are less than νx non-zero rows is also small.

Suppose that MC has t ≥ νx non-zero row vectors. Note, if any of the t
non-zero row vectors contains exactly one non-zero entry, then it is impossible for
7 Indeed, the only possibilities for terms a1M i1 , a2M

i2 , a3M
i3 to sum to 0 in F3 are

(1, 1, 1) and (2, 2, 2), out of 8 total (equally likely) possibilities.
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C and a1, . . . , ax to be a null space vector. Suppose that each of the t non-zero
row vectors contains at least two non-zero entries. Suppose the j-th row of MC

is a non-zero row vector with y ≥ 2 non-zero entries that are chosen uniformly at
random from F \ {0}. Consider the j-th entry of the linear combination:

a1M
i1 + a2M

i2 + . . .+ axM
ix .

By Lemma 3, the probability that y ≥ 2 uniformly random non-zero elements
in F sum to zero is at most 1/(|F| − 1). Note, the elements in each row are
chosen independently at random. So, the probability that all t ≥ νx entries of
the linear combination (corresponding to the t non-zero row vectors) will be zero
is (|F| − 1)−t ≤ (|F| − 1)−νx as t ≥ νx.

Next, we consider the probability that the conditioned event of at least νx
non-zero row vectors is false. Fix any subset of t < νx rows and we will calculate
the probability that any subset of x columns will only pick one of the t rows in
the fixed subset. A single column will pick these t rows with probability (t/m)ζ .
So, the probability that all x columns will do this is (t/m)ζx. Finally, we perform
a Union bound over all

(
m
t

)
possible subsets to get(

m

t

)(
t

m

)ζx
≤
(em
t

)t( t

m

)ζx
≤
(em
νx

)νx (νx
m

)ζx
where we applied the upper bound (a/b)b ≤

(
a
b

)
and the fact that the probability

is maximized by setting t = νx. By our choice of ν, we know that νx/m < 1.
Therefore, we know that (νx/m)ζx = 2−Ω(ζx). On the other hand, we know that
x = Ω(m/ζ), so we know that

(
em
νx

)νx
= O(ζ)νx = 2O(x log ζ). Therefore, we see

that this probability is at most 2O(x log ζ) · 2−Ω(ζx) = 2−Ω(x(ζ−log ζ)) = 2−Ω(ζx).
Finally, the probability that C and a1, . . . , ax is a null space vector is at most
(|F| − 1)−νx + 2−Ω(ζx) for some constant ν > 1.

The above lemma considers the probability that a single choice of subset of
columns C and non-zero coefficients will be a null space vector. We show that
this is sufficient to show that any matrix generated by our matrix familyMζcol

will also not contain null space vectors of size x for any x = Ω(m/ζ).

Lemma 5. Pick any constant c ≥ 1 as well as any finite field F such that |F| ≥ 3
and parameter ζ = Θ(log |F|). Let n = c ·m and suppose M is a m× n matrix
generated by Mζcol. Then, for every constant 0 < η < 1 and 0 < β < 1, the
probability there exists at least one null space vector of any size β ·m/ζ < x ≤ η ·m
in M is at most 2−2λ for sufficiently large m = Ω(λ).

Proof. Consider any fixed size β ·m/ζ ≤ x ≤ η ·m for null space vectors. Let Y x
be the random variable denoting the number of null space vectors of size x in M .
Now, fix any subset of x columns denoted by C = {i1, . . . , ix} ⊆ [n] as well as
x non-zero coefficients a1, . . . , ax. By Lemma 4, we know that C and a1, . . . , ax
is a null space vector with probability at most (|F| − 1)−νx + 2−Ω(ζx) for some
constant ν > 1. Next, we can apply a Union bound over all choices of columns
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and non-zero coefficients to obtain a bound on the number of null space vectors
of size x in M denoted by Y x. The number of choices of columns is

(
n
x

)
=
(
cm
x

)
and the number of choices of non-zero coefficients is (|F| − 1)x. So, we get

Pr[Y x ≥ 1] ≤
(
cm

x

)
· (|F| − 1)x · ((|F| − 1)−νx + 2−Ω(ζ·x))

≤ 2O(x·log ζ) · ((|F| − 1)−(ν−1)x + 2−Ω(x(ζ−log |F|)))

≤ 2O(x·log ζ) · (2−Ω(log(|F|−1)x) + 2−Ω(ζx))

≤ 2O(x·log ζ) · 2−Ω(ζx)

= 2−Ω(ζx).

In the second inequality, we used that x = Ω(m/ζ) to see that
(
cm
x

)
= 2O(x log ζ).

In the third inequality, we use the fact that ν is a constant such that ν > 1 and
assume that ζ = Θ(log |F|). In the fourth inequality, we use that ζ = Θ(log |F|).
We get that the above probability is at most Pr[Y x ≥ 1] ≤ 2−Ω(ζx) ≤ 2−2λ−logm

as x ≥ β ·m/ζ and we assume m = Ω(λ). Finally, we apply a Union bound over
all O(m) choices of null space vector sizes x to get that

α·m∑
x=β·m/ζ

Pr[Y x ≥ 1] ≤ m · 2−2λ−logm = 2−2λ

to complete the proof.

Step 4: Putting it All Together. Finally, we utilize all the results from the
prior three steps to prove thatMζcol is a weakly super-invertible matrix family
of dimension m × n where the number of non-zero entries in each columns is
ζ = Θ(log |F|). One can choose any constant c ≥ 1 such that the number of
columns is n = c ·m and any constants 0 < γ < 1 and γ < η ≤ c such that every
sub-matrix of η ·m columns will always have rank at least γ ·m except with
probability exponentially small in λ. We will now prove that this is true:

Proof of Theorem 4. Let M be a m× n matrix generated randomly byMζcol.
Now, consider any subset of η ·m columns of M denoted by C ⊆ [n]. Recall that
our goal is to show that the corresponding sub-matrix MC has rank at least
γ ·m for some chosen constant γ < 1. We show that the sub-matrix MC has
rank at least |C| − O(λ logm + log2m) = η ·m − O(λ logm + log2m) ≥ γ ·m
that follows as η > γ and the fact that m = Ω(λ logm) is sufficiently large.

It remains to show thatMC has large rank. First, by combining Lemma 2 and
Lemma 5, we know thatM has no null space vectors of size x where cx ≤ x ≤ η·m
for any constant 0 < η < 1 and some cx = Ω(λ+ logm) except with probability
2 · 2−2λ ≤ 2−λ. Thus, MC has no null space vectors of size more than cx as
MC is a sub-matrix of M with η · m columns. Therefore, the total number
of null space vectors in MC is at most

∑cx−1
x=0 Y x ≤

∑cx−1
x=0

(
n
x

)
· (|F| − 1)x ≤

cx · |F|cx ·
(
n
cx

)
≤ cx · (n · |F|)cx as we know that there are no null space vectors of
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size cx or larger. Next, we apply Lemma 1 to see that the rank of the sub-matrix
MC is at least

η ·m− log|F|(cx · (n · |F|)cx) ≥ η ·m− cx(log|F| n+ 1)− log|F| cx

as the number of columns was |C| = η ·m. Suppose m is chosen to satisfy

m ≥ (cx(log|F| n+ 1) + log|F| cx)/(η − γ) = Ω((λ+ logm) logm).

Note, it suffices to choose m = Ω(λ logm) as m = Ω(log2m) is already true for
sufficiently large constant m. Then, we can see that the rank of the sub-matrix
MC is at least η ·m− cx(log|F| n+ 1)− log|F| cx ≥ γ ·m, except with probability
2−λ for any subset of η ·m columns C ⊆ [n], completing the proof.

Optimality ofMζcol. Our constructionMζcol is asymptotically optimal in terms
of L0 norm as it is easy to see that each row vector of any weakly super-invertible
matrix must have at least Ω(1) L0 norm in expectation. This can be easily be
seen by picking any m × h sub-matrix where h = Ω(m) and noting that this
sub-matrix must have rank at least γ ·m = Ω(m). So, Ω(m) rows must have
at least one non-zero entry. Our constructionMζcol with |F| = 3 and ζ = O(1)
has O(m) non-zero entries matching this lower bound. Although, we note that
our MPC applications utilizeMζcol with larger fields |F| = O(n+ 2λ) that have
O(m · (λ+ log n)) non-zero entries that is optimal up to λ and log n factors.
Weakly Hyper-Invertible Matrices. One could also try to weaken the requirements
for hyper-invertibility to obtain sparse matrices. In Appendix B.3, we show that
a similar weakening for hyper-invertible matrices still requires Ω(n) L0 norm for
each row. In other words, there must be Ω(n ·m) non-zero entries in the entire
matrix. So, Vandermonde matrices have optimal sparsity. Therefore, it does not
make sense to study the weakening for hyper-invertibility.

6 Instantiating the Preprocessing of [GPS22]

As stated earlier, the ultimate goal of our paper is to instantiate the preprocessing
of [GPS22, Functionality 15] with Õ(|C|) communication and adaptive security,
in the t < (1− ε)n setting. Assuming this preprocessing, [GPS22] obtain an MPC
protocol with O(|C|) online communication in this setting. In this section, we
present the preprocessing functionality Fprep-mal and our protocol with Õ(|C|)
communication.

6.1 The Preprocessing Functionality

We now present the preprocessing Functionality verbatim from [GPS22]. The
functionality begins by generating a random γ ←$ F and sets γ ← (γ, γ, . . . , γ)ᵀ ∈
Fk. This γ serves as the MAC key in the online phase, and ensures that shared
values are opened correctly. Indeed, in the online phase, all circuit values will
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be shared using degree-(n− k) authenticated packed Shamir sharings JvKn−k :=
([v]n−k, [γ ∗ v]n−k), where the latter sharing is referred to as the ‘MAC’ on the
former sharing. Intuitively, if v is opened then it will be checked by opening
γ ∗ v—since γ is random, with all-but-negligible probability, the adversary will
be unable to force an opening to some v′ 6= v.8 Fprep-mal then has two procedures:

1. rand-sharing(r, d): Samples a random degree-d packed Shamir sharing [r]d
that is consistent with shares input by the adversary for corrupt parties, then
sends the honest parties their shares.

2. auth-sharing(r): Samples degree-(n−k) authenticated packed Shamir sharings
JrKn−k consistent with input corrupt parties’ shares as above, then sends the
honest parties their shares.

Fprep-mal uses the procedures as follows. First, it uses rand-sharing to prepare
[γ]n−k. Then, for ever group of k input and output gates, it uses auth-sharing
to prepare JrKn−k for random r ∈ Fk, then rand-sharing to prepare [∆]n−k and
[∆∗r]n−k for random ∆ ∈ Fk, and finally rand-sharing to prepare random [o]n−1,
where o = 0. The random sharings are used to securely share and reconstruct
inputs and outputs, respectively, in the presence of a malicious adversary.

For each group of k multiplication gates, Fprep-mal prepares packed beaver
triples as follows. It samples two random a, b ∈ Fk, computes c← a∗b, and finally
inputs them to auth-sharing to prepare (JaKn−k, JbKn−k, JcKn−k). It also prepares
random sharings [o(1)]n−1, [o

(2)]n−1, where o(1) = o(2) = 0, using rand-sharing.
Finally, for a verification phase at the end of the online phase which is used

to catch a cheating adversary, Fprep-mal prepares additional random sharings
[o(1)]n−1, [o

(2)]n−1, where o(1) = o(2) = 0, using rand-sharing. It also samples
random r ∈ F, computes γ·r, and generates a pair of additive sharings (〈r〉 , 〈γ · r〉),
where the shares for corrupted parties are input by the adversary, then distributes
to the honest parties their shares of these sharings.

Functionality 1: Fprep-mal

Fprep-mal receives the set of corrupted parties, denoted by Corr Fprep-mal samples a
random field element γ ∈ F and sets γ ← (γ, γ, . . . , γ) ∈ Fk. Let d ∈ {n−k, n−1}.
We define the following two procedures.

– rand-sharing(r, d): Fprep-mal receives from the adversary a set of shares
{rj}j∈Corr. Then Fprep-mal samples a random degree-d packed Shamir sharing
[r]d such that for all Pj ∈ Corr, the j-th share of [r]d is rj . Finally, Fprep-mal

distributes the shares of [r]d to honest parties.
– auth-sharing(r): Fprep-mal receives from the adversary a set of shares
{(rj , uj)}j∈Corr. Then Fprep-mal computes two degree-(n− k) packed Shamir
sharings ([r]n−k, [γ ∗ r]n−k) such that for all Pj ∈ Corr, the j-th shares of
([r]n−k, [γ ∗ r]n−k) are rj , uj , respectively. Finally Fprep-mal distributes the
shares of (JrKn−k = ([r]n−k, [γ ∗ r]n−k) to honest parties.

The ideal functionality Fprep-mal runs the following steps.

8 This is done once for many such openings at a time using random linear combinations.
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1. Fprep-mal invokes rand-sharing(γ, n− k) to prepare [γ]n−k.
2. For every group of k input gates and output gates:

(a) Fprep-mal samples a random vector r ∈ Fk and invokes auth-sharing(r)
to prepare JrKn−k.

(b) Fprep-mal samples a random vector ∆ ∈ Fk and invokes
rand-sharing(∆, n − k) and rand-sharing(∆ ∗ r, n − k) to prepare
([∆]n−k, [∆ ∗ r]n−k).

(c) For every group of k output gates, Fprep-mal invokes rand-sharing(0, n−1)
to prepare [o]n−1, where o← 0.

3. For every group of k multiplication gates:
(a) Fprep-mal samples two random vectors a, b ∈ Fk and computes c =

a ∗ b. Then, Fprep-mal invokes auth-sharing(a), auth-sharing(b), and
auth-sharing(c) to prepare (JaKn−k, JbKn−k, JcKn−k).

(b) Fprep-mal invokes two times of rand-sharing(0, n − 1) to prepare
[o(1)]n−1, [o

(2)]n−1, where o(1),o(2) ← 0.
4. All parties prepare the following random sharings for the verification of the

computation:
(a) All parties invoke two times of rand-sharing(0, n − 1) to prepare

[o(1)]n−1, [o
(2)]n−1, where o(1),o(2) ← 0.

(b) Fprep-mal receives from the adversary a set of shares {(rj , r′j)}j∈Corr. Then
Fprep-mal samples a random field element r and computes γ · r. Fprep-mal

randomly generates a pair of additive sharings (〈r〉 , 〈γ · r〉) such that
for all Pj ∈ Corr, the j-th shares of (〈r〉 , 〈γ · r〉) are rj , r′j , respectively.
Finally, Fprep-mal distributes the shares of (〈r〉 , 〈γ · r〉) to honest parties.

6.2 Useful Sub-Functionalities and Sub-Procedures

We now describe important Sub-Functionalities and Sub-Procedures for Πprep-mal.
Oblivious Linear Evaluation. The first functionality, Fprog

OLE , is a two party
functionality that generates several random correlations between the two parties,
known as oblivious linear evaluation (OLE). More specifically, the two parties PA
and PB input u ∈ Ft and x ∈ Ft, respectively, to Fprog

OLE , which samples random
v ←$ Ft, and outputs w ← u∗x−v to PA and v to PB . Observe that x remains
random to PA and u remains random to PB . We will assume that t ≥ k.

Functionality 2: Fprog
OLE

Parameters: The functionality runs between parties PA and PB .
On receiving u ∈ Ft from PA and x ∈ Ft from PB , sample v ←$ Ftp then output
w ← u ∗ x− v to PA and v to PB .
Corrupted Party: If PB is corrupted, v may be chosen byA. If PA is corrupted,
w can be chosen by A (and v is computed by u ∗ x−w).

We assume the existence of a protocol that instantiates Fprog
OLE . A number

of such protocols exist [BCG+19b, BCG+20, BCGI18, WYKW21, BCG+19a,
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BDOZ11, DPSZ12, DKL+13]. Although none of the above protocols specifically
built for Fprog

OLE prove adaptive security, we note that the generic adaptively-
and maliciously-secure 2PC protocol from [CLOS02] can be used to realize each
underlying OLE correlation with poly(κ) communication complexity, which will
suffice for our purposes. We refer to the efficiency of creating t OLE correlations
from Fprog

OLE as |Fprog
OLE |. All other functionalities in this paper, we will directly

instantiate (perhaps using Fprog
OLE ).

Omitted Functionalities and Procedures. We present and instantiate the
following standard functionalities and procedures in Appendix C:

– Fverify-deg: This functionality takes in several packed Shamir sharings which
are supposed to be of degree-(k − 1). If any are not, it sends abort to the
honest parties. This is accomplished in the usual way, by taking a random
linear combination of the sharings, and then opening the resulting sharing to
all parties, who check its degree.

– Frand: This functionality generates random sharings (under some secret shar-
ing scheme, which will be clear from context) of uniformly random values. This
is accomplished using the standard technique of applying a super-invertible
matrix for randomness extraction [DN07].

– Fdeg-reduce: This functionality takes as input sharings [ui]n−1 and outputs
[ui]n−k. This is accomplished by using the standard technique of masking it
with a random value [ri]n−1, opening, and unmasking with [ri]n−k. These
random pairs are generated using Frand.

– πsacrifice: This procedure takes as input two authenticated packed beaver
triples and outputs the first if it has no error. This is done using the standard
triple sacrificing procedure of [DPSZ12], which uses a random challenge to
ensure that there is no error.

– πcheck-zero: In this procedure, the parties take as input several random sharings
[θi]n−1 that are supposed to satisfy θi = 0, and abort if any do not. This
procedure uses the standard technique of taking a random linear combination
of the sharings, having parties commit to their shares, and then having parties
open their shares to each other and check that the underlying secret is 0.

6.3 Packed Beaver Triples from Weakly Super-Invertible Matrices

We present our main contribution to instantiate Fprep-mal for generating random
packed beaver triples. First, we present the ideal functionality Ftriple. Let m ∈
N, 1/2 < γ < 1, µ ← γ · m − (m + 1)/2, and t ≥ k. Ftriple generates random
packed triple sharings with error, ([al,w]n−k, [bl,w]n−k, [al,w ∗b1,w+δ1,w]n−1), for
l ∈ [µ], w ∈ [bt/kc], where the errors δ1,w, . . . , δµ,w are input by the adversary. We
explain the need to allow the adversary to input such errors below. These sharings
will be consistent with shares for corrupted parties input by the adversary.
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Functionality 3: Ftriple

Parameters: Let m ∈ N, 1/2 < γ < 1, and µ← γ ·m− (m+ 1)/2.

1. Ftriple receives from the adversary the corrupted parties’ shares,
{(aj1,w, b

j
1,w, c

j
1,w), . . . , (a

j
µ,w, b

j
µ,w, c

j
µ,w)}j∈Corr,w∈[bt/kc], and errors

(δ1,w, . . . , δµ,w)w∈[bt/kc].
2. Ftriple samples random ((a1,w, b1,w), . . . , (aµ,w, bµ,w))w∈[bt/kc].
3. Ftriple samples random sharings (([a1,w]n−k, [b1,w]n−k, [a1,w ∗ b1,w +
δ1,w]n−1), . . . , ([aµ,w]n−k, [bµ,w]n−k, [aµ,w ∗ bµ,w + δµ,w]n−1))w∈[bt/kc] such
that for all j ∈ Corr, w ∈ [bt/kc], the j-th shares are
(aj1,w, b

j
1,w, c

j
1,w), . . . , (a

j
µ,w, b

j
µ,w, c

j
µ,w).

4. Ftriple then distributes to the honest parties their shares.

We now present our protocol Πtriple. To generate the random packed triple
sharings, we will need to perform beaver multiplication (using packed triples that
may not be uniformly random). We do this in the standard procedure πbeaver

below. Since P1 distributes degree-(k − 1) packed Shamir sharings, we will need
to use Πverify-deg to check their degrees whenever we use πbeaver, such as in Πtriple.

Procedure 1: πbeaver

1. All parties hold shares of a packed beaver triple ([a]n−k, [b]n−k, [c]n−k) and
shares of packed inputs ([x]n−k, [y]n−k).

2. The parties first locally compute [x−a]n−k and [y− b]n−k and open them
to P1.

3. P1 then reconstructs d← x− a, e← y − b and computes then distributes
sharings [d]k−1, [e]k−1.

4. Finally, the parties locally compute [x ∗ y]n−1 ← [d]k−1 ∗ [e]k−1 + [d]k−1 ∗
[b]n−k + [e]k−1 ∗ [a]n−k + [c]n−k.

Now we can present Πtriple that is parameterized by a family of (δ, γ, η, `)-
weakly super-invertible m × n matrices, F = (S,Gen), where δ = negl(λ),
1/2 < γ < 1, 2εn > m = Ω(n), 1/(2ε) > η = n− t > ε · n, and ` = O(λ). This
means that with-all-but-negligible probability, any matrix M sampled by Gen
will be such that every m× εn sub-matrix of M will have rank more than m/2.

As discussed in Section 2, Πtriple proceeds via two ‘levels’ of extraction. We
overview these two levels and point to Section 2 for a more detailed description.

First level of extraction. In the first level, each party Pi samples random ui,vi ∈
Ft, and then splits them into bt/kc length-k vectors ui,w and vi,w. Next, the
parties jointly sample a weakly super-invertible matrix M using Gen on input
randomness from Fcoin. Then, for w ∈ [bt/kc], each party Pi distributes random
packed Shamir sharings [ui,w]n−k and [vi,w]n−k, and uses M to extract from
these two sets of n packed sharings, new sharings [a1,w]n−k, . . . , [am,w]n−k and
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[b1,w]n−k, . . . , [bm,w]n−k, respectively. We have that for l ∈ [m],

cl,w := al,w ∗ bl,w

=
∑

i∈[n]:Ml[i] 6=0

Ml[i] ·

 ∑
j∈[n]\{i}:Ml[j] 6=0

Ml[j] · (ui,w ∗ vj,w + uj,w ∗ vi,w)


+

∑
i∈[n]:Ml[i]6=0

(Ml[i])
2 · ui,w ∗ vi,w.

Thus, in order to get the sharing [cl,w]n−k, first, for every ordered pair (Pi, Pj) of
parties such that Ml[i],Ml[j] 6= 0, the parties invoke Fprog

OLE on their respective
seeds to obtain αji,w,β

i
j,w, respectively, such that αji,w +βij,w = ui,w ∗vj,w. Then,

for each Pi in which Ml[i] 6= 0, it computes

cil,w ← (Ml[i])
2 · ui,w ∗ vi,w +Ml[i] ·

∑
j∈[n]\{i}:Ml[j]6=0

Ml[j] · (αji,w + βji,w)

then computes and distributes degree-(n− k) packed Shamir sharing [cil,w]n−k.
Finally, all of the parties set [cl,w]n−k ←

∑
i:Ml[i]6=0[cil,w]n−k.

Second level of extraction. SinceM is only weakly super-invertible, the extracted
values al,w, bl,w may not be fully random. Indeed, for each w ∈ [bt/kc], we are
only guaranteed that some γ ·m of them are fully random, but we do not know
which ones. This leads us to our second level of extraction, which is based on
the “triple extraction” protocol of [CP17]. In this level of extraction, for every
w ∈ [bt/kc], we are able to extract µ = γ ·m− (m+ 1)/2 random packed beaver
triples from the m packed triples output by the first level of extraction.

Errors. Note that there are two places where corrupted parties Pi could inject
errors δ such that c = a ∗ b+ δ for our output triples in this protocol:

– Pi could input to Fprog
OLE different seeds than those corresponding to the

[ui,w]n−k, [vi,w]n−k that they share.
– A corrupt party P1 could distribute incorrect sharings [d]k−1, [e]k−1 in πbeaver.

Protocol 2: Πtriple

Parameters: This protocol is parameterized by a (δ, γ, η, `)-weakly super-
invertible m× n matrix, F = (S,Gen), where δ = negl(λ), 1/2 < γ < 1, 2εn >
m = Ω(n), 1/(2ε) > η = n− t > ε ·n, and ` = O(λ). Let µ← γ ·m− (m+1)/2.
We assume w.l.o.g. that m is odd.
Extraction Level 1:

1. Each party Pi first samples random ui ←$ Ft and vi ←$ Ft.
2. Then all parties invoke Fcoin to obtain random value r ∈ F, interpret it as

bit string R, and locally compute m× n matrix, M ← Gen(R).
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3. Then, for each l ∈ [m]: for every ordered pair (Pi, Pj) such that
Ml[i],Ml[j] 6= 0, parties Pi and Pj invoke Fprog

OLE on input seeds ui
and vj , respectively, and receive back αji and βij , respectively, such that
αji + β

i
j = ui ∗ vj .

4. Next, each party splits ui, vi and each αji ,β
j
i into length-k vectors

{ui,w}w∈[t/k], {vi,w}w∈[t/k], {αji,w}w∈[t/k], {β
j
i,w}w∈[t/k], respectively.

5. Then, for w ∈ [bt/kc]:
(a) Each party Pi computes and distributes random packed Shamir sharings

[ui,w]n−k and [vi,w]n−k.
(b) Next, the parties locally compute ([a1,w]n−k, . . . , [am,w]n−k)

ᵀ ←
M · ([u1,w]n−k, . . . , [un,w]n−k)

ᵀ and ([b1,w]n−k, . . . , [bm,w]n−k)
ᵀ ←

M · ([v1,w]n−k, . . . , [vn,w]n−k)ᵀ
(c) Then for each l ∈ [m]:

i. Each Pi such that Ml[i] 6= 0 computes:

cil,w ← (Ml[i])
2·ui,w∗vi,w+Ml[i]·

∑
j∈[n]\{i}:Ml[j] 6=0

Ml[j]·(αji,w+β
j
i,w),

then computes and distributes degree-(n−k) packed Shamir sharing
[cil,w]n−k.

ii. Then, all of the parties set [cl,w]n−k ←
∑
i:Ml[i] 6=0[c

i
l,w]n−k.

Extraction Level 2: Let N = (m− 1)/2. The parties do the following for each
w ∈ [bt/kc]:

1. For l ∈ [N + 1], τ ∈ [k], the parties implicitly view aτl,w, b
τ
l,w, c

τ
l,w as the

l-th evaluation points of polynomials Aτ,w(·) of degree N , Bτ,w(·) of degree
N , Cτ,w(·) of degree m − 1 (= 2N), respectively; i.e., Aτ,w(l) = aτl,w,
Bτ,w(l) = bτl,w, and Cτ,w(l) = cτl,w.
Note that the N + 1 values aτl,w, b

τ
l,w define degree N polynomials Aτ,w(·),

Bτ,w(·), respectively.
2. Letting Aw(·) ← (A1,w(·), . . . , Ak,w(·)), Bw(·) ← (B1,w(·), . . . , Bk,w(·)),

and Cw(·)← (C1,w(·), . . . , Ck,w(·)), the parties have

([Aw(1)]n−k, . . . , [Aw(N + 1)]n−k) = ([a1,w]n−k, . . . , [aN+1,w]n−k);

([Bw(1)]n−k, . . . , [Bw(N + 1)]n−k) = ([b1,w]n−k, . . . , [bN+1,w]n−k);

([Cw(1)]n−k, . . . , [Cw(N + 1)]n−k) = ([c1,w]n−k, . . . , [cN+1,w]n−k).

They use the former two, respectively, to locally compute [Aw(l)]n−k and
[Bw(l)]n−k for l ∈ [N + 2,m] (using Lagrange interpolation).

3. Then, for l ∈ [N + 2,m], the parties execute πbeaver on input [Aw(l)]n−k
and [Bw(l)]n−k, using packed beaver triples [al,w]n−k, [bl,w]n−k, [cl,w]n−k,
to receive [Cw(l)]n−1.

4. Note that the sharings ([Cw(1)]n−1, . . . , [Cw(m)]n−1) implicitly define the
polynomials Cw(·) = Aw(·)∗Bw(·). Thus, for l ∈ [m+1,m+µ], the parties
locally compute and output ([al,w]n−k, [b

l,w]n−k, [c
l,w]n−1) ← ([Aw(m +

l)]n−k, [Bw(m+ l)]n−k, [Cw(m+ l)]n−1) (using Lagrange interpolation).

Checking the degree of P1’s sharings: The parties invoke Fverify-deg on all
sharings sent by P1 in πbeaver.
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Communication complexity of Πtriple. In extraction level 1:

1. For each l ∈ [m], step 3 costs `2 · |Fprog
OLE | with all-but-negligible probability,

since the L0 row norm of M is ` with all-but-negligible probability..
2. For each w ∈ [bt/kc], Step 5a costs 2n2 total.
3. For each w ∈ [bt/kc], l ∈ [m], step 5(c)i costs ` · n total.

In extraction level 2, step 3 runs πbeaver ≤ m/2 times. Each run of πbeaver costs
2n elements for Step 2 and 2n elements for Step 3, for 4n total Thus, in total,
the runs of πbeaver cost ≤ m/2 · 4n elements.

The above totals at most m · `2 · |Fprog
OLE | + (t/k) · (2n2 + m · ` · n) + 2nm

elements. Using our weakly super-invertible matrix familyMζcol from Section 5.2,
we have that m = O(n) and ` = O(λ). Also, k = Ω(n), so the above cost is
O(n ·λ2 · |Fprog

OLE |+ t ·n ·λ). Furthermore, if |Fprog
OLE | = Õ(t) (e.g., using [CLOS02]),

then this is Õ(n · t). This cost is for µ · bt/kc = Ω(t) packed beaver triples, which
is Õ(n) per packed triple, or Õ(1) per individual triple.

Lemma 6. Πtriple UC-realizes Ftriple in the (Fprog
OLE ,Fcoin,Fverify-deg)-hybrid model,

for 2εn > m = Ω(n) and any 1/2 < γ < 1.

See proof of the Lemma in Appendix D.

6.4 Authenticated Packed Shamir Sharings

Now we present and instantiate the functionality and procedure that are used to
generate authenticated packed Shamir sharings.

Generating Random Authenticated Packed Shamir Sharings. First, we
introduce Fauth-rand which is used to generate authenticated packed Shamir shar-
ings of random values. Let m ∈ N, 1/2 < γ < 1, µ ← γ ·m − (m + 1)/2, and
t ≥ k. Fauth-rand takes in the parties’ shares of the MAC key [γ]n−k, recon-
structs γ, and finally samples µ · bt/kc random authenticated packed sharings
Jrl,wKn−k := ([rl,w]n−k, [γ ∗ rl,w]n−k) consistent with shares input by the adver-
sary.

Functionality 4: Fauth-rand

Parameters: Let m ∈ N, 1/2 < γ < 1, µ← γ ·m− (m+ 1)/2, and t ≥ k.

1. Fauth-rand first receives from all parties their shares of [γ]n−k and reconstructs
γ.

2. Fauth-rand then receives from the adversary either abort or the corrupted
parties’ shares (rjl,w, s

j
l,w)l∈[µ],w∈[bt/kc],j∈Corr.

3. Finally, Fauth-rand samples random sharings ([rl,w]n−k, [γ ∗
rl,w]n−k)l∈[µ],w∈[bt/kc] based on the corrupted parties’ shares and
distributes to the honest parties their shares.

We now present our protocol Πauth-rand which instantiates Fauth-rand. Πauth-rand

first invokes Ftriple to get µ · bt/kc random triples ([r]n−k, [s]n−k, [r ∗ s+ δ]n−1).
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For each such triple, the parties first compute [γ + s]n−k and open it to P1. P1

then reconstructs γ + sl,w and computes then distributes packed Shamir sharing
[γ + sl,w]k−1. Finally, the parties compute [γ ∗ rl,w − δl,w]n−1 ← [rl,w]n−k ∗
[γ + sl,w]k−1 − [rl,w ∗ sl,w + δl,w]n−1 and invoke Fdeg-reduce on these obtained
values to receive back [γ ∗ rl,w − δl,w]n−k. The parties then output each such
JrKn−k ← ([r]n−k, [γ ∗ r − δ]n−k).

Note that since n− k > n− t, the honest parties’ shares do not define any
given sharing, and thus the adversary can always locally change the corrupted
parties’ shares to change the underlying secret. We may equivalently think that
the shares of corrupted parties are changed so that the secret of the MAC sharing
is [γ ∗r]n−k (and they can then change their shares to any arbitrary values). Thus,
the output authenticated sharings satisfy those demanded by the functionality.

Protocol 3: Πauth-rand

1. The parties take as input [γ]n−k.
2. The parties invoke Ftriple and receive ran-

dom sharings (([r1,w]n−k, [s1,w]n−k, [r1,w ∗ s1,w +
δ1,w]n−1), . . . , ([rµ,w]n−k, [sµ,w]n−k, [rµ,w ∗ sµ,w + δµ,w]n−1))w∈[bt/kc].

3. For w ∈ [bt/kc], l ∈ [µ]:
(a) The parties first compute [γ + sl,w]n−k and open it to P1.
(b) P1 next reconstructs γ + sl,w and computes then distributes packed

Shamir sharing [γ + sl,w]k−1.
(c) Then, the parties compute [γ ∗ rl,w − δl,w]n−1 ← [rl,w]n−k ∗ [γ +

sl,w]k−1 − [rl,w ∗ sl,w + δl,w]n−1 and invoke Fdeg-reduce on it and receive
back [γ ∗ rl,w − δl,w]n−k. a

4. Next, the parties invoke Fverify-deg on the [γ + sl,w]k−1 sharings.
5. Finally, the parties output Jrl,wKn−k ← ([rl,w]n−k, [γ ∗ rl,w − δl,w]n−k), for

l ∈ [µ], w ∈ [bt/kc].
a Really, the parties input n− t sharings in parallel to Fdeg-reduce at a time.

Communication complexity of Πauth-rand. Step 2 costs Õ(n) communication and
OLE correlations per triple, Step 3a costs n elements per sharing, Step 3b
costs n elements per sharing, and Step 3c costs O(n) elements per sharing. The
above totals Õ(n) communication and OLE correlations per sharing, or Õ(1) per
individual slot.

Lemma 7. Πauth-rand UC-realizes Fauth-rand in the (Ftriple,Fdeg-reduce)-hybrid model.

See proof of the Lemma in Appendix D.

Authenticating Packed Shamir Sharings. Now we present procedure πauth

which authenticates input packed sharings. It does so by generating random
authenticated packed sharings using Fauth-rand, and then using the common mask-
and-open technique to authenticate the input sharings using the authentication
of those from Fauth-rand.
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Procedure 4: πauth

1. The parties take as input ([u1]n−k, . . . , [un−t]n−k), and [γ]n−k.
2. First, the parties invoke Fauth-rand on input [γ]n−k to prepare random au-

thenticated sharings (Jr1Kn−k, . . . , Jrn−tKn−k).
3. Then for l ∈ [n− t]:

(a) They first compute [ul + rl]n−k and open it to P1.
(b) P1 next reconstructs ul + rl and computes then distributes packed

Shamir sharing [ul + rl]k−1.
(c) Then, the parties compute [γ∗ul]n−1 ← [γ]n−k∗[ul+rl]k−1−[γ∗rl]n−k.

4. Then they invoke Fdeg-reduce on input ([γ ∗ u1]n−1, . . . , [γ ∗ un−t]n−1) and
receive back ([γ ∗ u1]n−k, . . . , [γ ∗ un−t]n−k).

5. Next, they invoke Fverify-deg on all of the [ul + rl]k−1 sharings.
6. Finally, the parties output JulKn−k ← ([ul]n−k, [γ ∗ ul]n−k), for l ∈ [n− t].

Communication complexity of πauth.

1. Step 2 costs Õ(n) communication and OLE correlations per sharing.
2. Step 3a costs n elements per sharing.
3. Step 3b costs n elements per sharing.
4. Step 4 costs O(n) elements per sharing.

The above totals Õ(n) communication and OLE correlations per sharing, or Õ(1)
per individual slot.

6.5 The Preprocessing Protocol

Finally, we describe the rest of Πprep-mal. Notably, for packed, authenticated
beaver triples, Πprep-mal first in invokes Ftriple to receive (unauthenticated) packed
beaver triples. Then, after degree-reducing the ‘c components’, Πprep-mal uses
πauth to authenticate each component of the triples, followed by running πsacrifice

on them, along with the associated checks of πcheck-zero and Fverify-deg, to ensure
that none of them have any error.

The parties use a similar process to generate the random authenticated
sharings for the input and output gates. Also, the parties use Frand to sample
some random sharings needed throughout, including for sampling a sharing of
the MAC key, [γ]n−k.

Note that since n− k > n− t, the honest parties’ shares do not define any
given sharing, and thus the adversary can always locally change the corrupted
parties’ shares to change the underlying secret. We may equivalently think that
the shares of corrupted parties are changed so that the secret of the sharings
[∆l ∗ rl + δl]n−k for input gates is actually ∆l ∗ rl (and they can then change
their shares to any arbitrary values). Thus, the output sharings satisfy those
demanded by the functionality (see the proof of Theorem 6 below for more).
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Protocol 5: Πprep-mal

1. Sampling random MAC key: All parties invoke Frand to prepare a
random sharing of the form [γ]n−k, where γ = (γ, . . . , γ) (and they ignore
all other output sharings from Frand).

2. Preparing Random, Packed, Authenticated Sharings for Input
and Output Gates: Let N1 denote the number of input and output gates.
(a) The parties first invoke Ftriple to prepare N1/k packed Beaver triples

[∆l]n−k, [rl]n−k, [∆l ∗ rl + δl]n−1, for l ∈ [N1/k].
(b) Then the parties input the [rl]n−k (n− t at a time) to πauth to obtain

authenticated random packed sharings JrlKn−k.
(c) Next, they invoke Fdeg-reduce on input [∆l ∗ rl + δl]n−1 (n− t at a time)

to obtain [∆l ∗ rl + δl]n−k.
(d) Additionally, letting No be the number of output gates, the parties

invoke Frand to prepare No/k random sharings of the form [0]n−1.
3. Preparing Packed, Authenticated Beaver Triples: Let N2 denote the

number of multiplication gates. Repeat the following, until ≥ N2/k packed
triples are generated:
(a) All parties invoke Ftriple twice times to generate 2µ packed Beaver triples

[al]n−k, [bl]n−k, [cl + δl]n−1 for l ∈ [2µ].
(b) Next, they invoke Fdeg-reduce on input [cl + δl]n−1 (n− t at a time, in

parallel) to obtain [cl + δl]n−k.
(c) The parties input each component of [al]n−k, [bl]n−k, [cl + δl]n−k, for

l ∈ [2µ], (n−t at a time) to πauth to obtain JalKn−k, JblKn−k, Jcl+δlKn−k.
(d) Then, all parties run πsacrifice on JalKn−k, JblKn−k, Jcl + δlKn−k and

Jaµ+lKn−k, Jbµ+lKn−k, Jcµ+l + δµ+lKn−k to compute Jγ ∗ θlKn−1, for
l ∈ [µ], then input these to πcheck-zero to verify the correctness of the
triples, and finally invoke Fverify-deg on input all of the degree-(k − 1)
sharings from πsacrifice.

(e) If the parties do not abort, this must mean that each δl = 0, and the
parties output JalKn−k, JblKn−k, JclKn−k for l ∈ [µ].

(f) Additionally, the parties invoke Frand to prepare sharings [01]n−1 and
[02]n−1, for each group of k = Ω(n) multiplication gates.

4. Preparing Random, Packed Sharings for the Computation Veri-
fication:
(a) The parties first invoke Frand to prepare two random sharings [01]n−1

and [02]n−1.
(b) Next, they invoke Fauth-rand on input [γ]n−k to obtain a random authen-

ticated packed sharing JrKn−k (and they ignore the rest).
(c) Finally, they locally convert [r]n−k and [γ∗r]n−k into additive sharings

(〈r〉 , 〈γ · r〉) of the respective first packed secrets, and use Frand to refresh
them.a

a We show how to do this in Appendix C.

Communication complexity of Πprep-mal. We will focus on the communication
complexity needed to generate the preprocessing required for multiplication gates:
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1. Step 3a consumes invokes Ftriple, which costs Õ(n) communication and OLE
correlations per packed triple.

2. Step 3b invokes Fdeg-reduce, which costs O(n) communication and OLE corre-
lations per sharing.

3. Step 3c runs πauth, which costs Õ(n) communication and OLE correlations
per sharing.

4. Step 3d runs πsacrifice, which costs O(n) per pair of triples. We ignore the
costs of Fdeg-reduce and πcheck-zero, since they are independent of γ ·m.

5. Step 3f invokes Frand for Σ such that |Σ| = 1, which costs O(n) per sharing.

This totals Õ(n) communication and OLE correlations for every group of
k multiplication gates, which, since the overhead per OLE correlation is Õ(1)

(e.g., by using [CLOS02]), is Õ(1) communication per multiplication gate, since
k = Ω(n).

Theorem 6. Πprep-mal UC-realizes Fprep-mal in the (Frand, Ftriple, Fauth-rand, Fdeg-reduce,
Fverify-deg, Fcoin, Fcommit)-hybrid model against a malicious, adaptive adversary
who controls t < (1− ε)n parties.

See proof of the Theorem in Appendix D.
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Supplementary Material

A Additional Preliminaries

Additive Secret Sharings. An additive sharing of some value x is a vector
(w1, . . . , wn) such that

∑n
i=1 wi = x. We denote such a sharing 〈x〉. The i-th share

wi is held by Pi. Reconstruction is done by summing the shares as above. For a
random additive sharing 〈x〉, any n − 1 shares are independent of x. Additive
sharings 〈x1〉 and 〈x2〉 can be added together to get 〈x1 + x2〉 by having parties
simply add their shares of the two sharings together.

Basic Functionalities. For our protocol, we will use two basic functionalities
that are common in the literature. One is Fcommit, which enables a party to
commit to some values of their choice towards a set of receivers, without revealing
the value. Later, the party can open their committed value with the guarantee
that this value is exactly the same one that was committed to earlier. One way to
instantiate this is to use a random oracle H (as in [DKL+13]): a party commits
to m by sampling random r ←$ {0, 1}κ and sending c ← H(m, r) ∈ {0, 1}λ;
then the party opens m by sending the pair (m, r) to the receivers, who check
that H(m, r) = c. The communication complexity is λ bits for committing and
|m| + λ bits for opening, both per receiver. The second functionality is Fcoin,
which provides parties with a uniformly random value r ∈ F when invoked. The
standard way to instantiate this is by having the parties (i) compute some random
sharing unknown to the adversary, 〈r〉, for example by independently sharing
random values 〈r1〉 , . . . , 〈rn〉, then computing 〈r〉 ←

∑n
i=1 〈ri〉; (ii) commit to

their individual shares; and (iii) finally open 〈r〉. If more coins are needed at the
same time, 〈r〉 can be expanded using a PRG.

Chernoff’s Bound. Throughout our paper, we will use Chernoff’s bound that
provides tail bounds for the sum of multiple independent binary variables. We
provide the statement of the theorem below (see [Goe] for example).

Theorem 7. Let X = X1 + . . .+Xn where Xi = 1 with probability p and Xi = 0
with probability 1− p and all Xi are independent. Let µ = E[X] = pn. Then,

1. Pr[X > (1 + δ)µ] ≤ e−
δ2

2+δ ·µ for any δ > 0.
2. Pr[X < (1− δ)µ] ≤ e− δ

2

2 ·µ for any 0 < δ < 1.

In other words, Pr[|X − µ| > δ · µ] ≤ e−Θ(µ) for any constant 0 < δ < 1.

B Supplementary Material for Invertible Matrices

B.1 ExtendingMζcol to Fields of Size Two

So far, we have shown thatMζcol emits a weakly super-invertible matrix over
finite fields satisfying |F| ≥ 3. Next, we show thatMζcol is also a weakly super-
invertible matrix in the binary field. Although, we note that we require larger
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choice of ζ = Ω(λ + logm). When |F| = O(1) and |F | ≥ 3, we only require
that ζ = Θ(log |F|) = Θ(1) for our constructionMζcol. We leave it as an open
problem to obtain the same overhead for |F| = 2. For convenience, we will use F2

for the binary field going forward.

Theorem 8. Pick any choice of constants c ≥ 1, 0 < γ < 1 and γ < η ≤ c. Let
the number of columns be n = c ·m and the number of non-zero entries in each
column be ζ = Θ(λ+ logm). The m× n matrix familyMζcol is (2−λ, γ, η,O(λ+
logm))-weakly super-invertible over F2 for sufficiently large m = Ω(λ logm).

As a reminder,Mζcol places uniformly random non-zero entries into ζ random
locations per column. For the binary field F2, this means thatMζcol will place 1
entries into ζ random locations per column.

To do this, we see that the first two steps of the proof may still be used
identically without modification. In particular, the relation between null space
vectors and rank remains true for every field. Furthermore, the argument in the
second step simply calculates the probability that each row is chosen at least
twice. This remains a requirement for every field. The main challenge occurs in
the third step of the proof. Our proofs of Lemma 4 and Lemma 5 utilize the fact
that the underlying field is sufficiently large. For the binary field F2, we cannot
make this assumption anymore.

Instead, we will relate the setting of F2 to the random XORSAT problem.
The XORSAT problem consists of m variables and h equations over the binary
field F2. Each of the h equations are generated by picking ζ different variables
at random and requiring that the sum of the ζ variables is equal to a uniformly
random b ∈ {0, 1}. We say a specific XORSAT instance is satisfiable if there
exists some assignment to the m variables such that all n equations are satisfied.

Next, we present a connection between Mζcol and the XORSAT problem.
Recall thatMζcol generates m× n matrices M where each column consists of ζ
non-zero entries (in F2, these will have values 1 and the remaining entries are
0). Consider any sub-matrix MC for any subset of h columns C ⊆ [n]. We can
interpret each of the m rows as variables and each of the h = η ·m columns as
equations. Finally, we will pick a uniformly random bit vector b ∈ {0, 1}h. Then,
we can see that MC and b is an instance of the XORSAT problem by trying
to find whether a solution x exists such that (MC)ᵀx = b where (MC)ᵀ is the
transpose of MC .

We will extend our notion of null space vectors to the XORSAT problem.
Consider an instance of the XORSAT problem with m variables and h equations
denoted by the h×m matrix A ∈ {0, 1}h×m and the solution vector b ∈ {0, 1}h.
A null space vector is a subset of rows of A whose component-wise sum is even.
In the field F2, this means that the component-wise sum will be an entirely zero
vector. Finally, we note that we can simply ignore the non-zero coefficients for
each null space vector. In the binary field F2, the only non-zero entry is 1 meaning
that all the coefficients must be 1.

Going back to the proof, we will use this connection to re-do step 3 of the
proof where we will consider the case of large null space vectors of size x > β ·m/ζ.
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We rely on known results in a variant of the XORSAT problem known as the
constrained model introduced in [DM02] where each variable must appear in at
least two equations. The unconstrained model of XORSAT omits this restriction.
The unconstrained model can be reduced to the constrained model by simply
removing variables that appear in at most one equation, which is the typical
approach for analyzing the unconstrained XORSAT problem (see [PS16] as an
example).

For our choice of ζ = O(λ+ logm), we show that the probability that there
even exists a single variable that appears in at most one equation is exponentially
small in λ. In other words,Mζcol will produce an instance of XORSAT in the
constrained model except with negligible probability.

Lemma 8. Let M be randomly generated byMζcol with ζ = Θ(λ+ logm) over
the binary field F2. Every row of M has at least two non-zero entries except with
probability 2−4λ.

Proof. Consider any of the m rows and we will apply Chernoff’s bound. Each of
the n columns will choose to place a 1-entry in the fixed row with independent
probability ζ/m. So, the expected number of 1-entries in any row is n·ζ/m = Θ(ζ)
that is sum of n independent binary variables. By Chernoff’s bounds, we know
that the probability that any row has at most a single 1-entry is at most 2−2λ−logm

for sufficiently large ζ = O(λ+ logm). Applying a Union bound over the m rows
obtains the desired probability of m · 2−4λ−logm ≤ 2−4λ.

As a remark, the reason for the larger choice of ζ is the ability to guarantee
that the matrix corresponds to a XORSAT instance in the constrained model.
Next, we are ready to apply known results about XORSAT from prior works.
In particular, we will use a result of Pittel and Sorkin [PS16] that proves an
upper bound on the expected value of the number of null space vectors of size
x = Ω(m/ζ):

Lemma 9 (Lemma 9, [PS16]). Suppose ζ ≥ 3 and pick any 2/ζ < α < 1
chosen independently of m such that h = α ·m. Let A be an h×m matrix denoting
a random XORSAT instance in the constrained model where each variable appears
in at least two equations. For any x = Ω(m/ζ), let Y x denote the number of null
space vectors in A of size x. Then, E[Y x] ≤ 2−Ω(ζ·x).

The above lemma considers a single random XORSAT instance A of h = α ·m
equations andm variables such that the number of equations is a constant fraction
smaller than the number of variables. Then, the expected number of null space
vectors of size x in A is exponentially small in ζ ·x. We show that this is sufficient
to show that any matrix generated by our matrix family Mζcol will also not
contain null space vectors of size x for any x = Ω(m/ζ).

Lemma 10. Pick any constant c ≥ 1. Let n = c ·m and ζ = Θ(λ+ logm). Let
M be a m× n matrix generated byMζcol in the binary field F2. Then, for every
constant 0 < η < 1 and 0 < β < 1, the probability there exists at least one null
space vector of any size β ·m/ζ ≤ x ≤ η ·m in M is at most 2−2λ.
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Proof. Consider any fixed size β ·m/ζ ≤ x ≤ η ·m for null space vectors. Let E
be the event that the randomly generated matrix Mᵀ satisfies the constrained
XORSAT model meaning that each column of Mᵀ has at least two non-zero
entries. For now, we will condition on the event E holding. Now, fix any subset
of h = max{x, 2m/ζ} rows denoted by C ⊆ [n] and consider the sub-matrix
A = (MC)ᵀ. Denote Y xA as the number of null space vectors of size x in this
sub-matrix A. By Lemma 9, we know that E[Y xA | E] ≤ 2−Ω(ζ·x). By Markov’s
inequality, we get that Pr[Y xA ≥ 1 | E] ≤ 2−Ω(ζ·x) since Y xA is always non-negative.
Next, we can apply a Union bound over all

(
n
h

)
=
(
cm
h

)
choices of rows to obtain

a bound on the number of null space vectors in M denoted by Y x:

Pr[Y x ≥ 1 | E] ≤
(
cm

h

)
· 2−Ω(ζ·x) ≤

(
cm

O(x)

)
· 2−Ω(ζ·x) ≤ 2O(x·log ζ) · 2−Ω(ζ·x)

where we note that h = O(x · ζ1/ζ) = O(x · 2log ζ/ζ) = O(x) and use that
x ≥ β · m/ζ = Ω(m/ζ). We also use Stirling’s approximation of binomial
coefficients such that

(
a
b

)
≤ (ea/b)b. For sufficiently large ζ = O(λ+ logm), we

see that Pr[Y x ≥ 1 | E] ≤ 2−4λ−logm. Finally, we apply a Union bound over all
possible choices of x and remove the conditioning on the event E to get that

η·m∑
x=β·m/ζ

Pr[Y x ≥ 1 | E] + Pr[¬E] ≤ m · 2−4λ−logm + 2−4λ = 2−2λ

where we used Lemma 8 to get that Pr[¬E] ≤ 2−4λ.

The above (combined with the second step of the proof) shows that, even in
the binary field F2, a random matrix generated byMζcol will not contain null
space vectors larger than some constant cx. With this fact, the final step of the
proof proceeds identically.

Proof of Theorem 8. Follows identically to the proof of Theorem 4 where we
replace the usage of Lemma 5 with the above Lemma 10 to rule out the existence
of large null space vectors.

B.2 Hyper-Invertible Matrices

We present the definition of hyper-invertible matrices here that strengthens
super-invertible matrices.

Definition 5 (Hyper-Invertible Matrices [BTH08]). Let M be a matrix
of dimension m × n with n ≥ m. M is a hyper-invertible matrix if, for every
choice of 1 ≤ z ≤ m and for any two subsets R = {r1, . . . , rz} ⊆ [m] and
C = {c1, . . . , cz} ⊆ [n] both of size exactly z, the z × z sub-matrix defined as

MC
R =


Mr1 [c1] Mr1 [c2] . . . Mr1 [cz]
Mr2 [c1] Mr2 [c2] . . . Mr2 [cz]
. . . . . . . . . . . .

Mrz [c1] Mrm [c2] . . .Mrm [cz]


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consisting of all entries in M that appears in a row specified by R and a column
defined by the subset C must be invertible.

In our definition, we choose to only focus on the setting with at least as many
columns as rows, n ≥ m. One could also consider a less restrictive definition of
hyper-invertible matrices where there are no requirements on the dimensions of
the matrix. In that case, one could define hyper-invertibility as any m×n matrix
M such that any z × z sub-matrix is invertible where 1 ≤ z ≤ min(m,n). We do
not consider such matrices as the level of generality is unnecessary for MPC.

B.3 Impossibility for Weakly Hyper-Invertible Matrices

Previously, we defined the notion of weakly super-invertible matrices that ex-
tended the notion of super-invertibility. A natural question may be to also consider
the same weakening for hyper-invertible matrices. We will show that there is
no advantage for considering this weakening by proving a lower bound on the
L0 norm required for weakly hyper-invertible matrices that are also required by
hyper-invertible matrices.

We can consider a matrix familyM that generates a random m×n matrixM .
Then, for every sufficiently large z ≥ 1/γ, every z × z sub-matrix of M should
have rank γ ·z for some constant γ > 0 except with negligible probability over the
random choice of M . This is same generalization for weakening hyper-invertible
matrices.

Definition 6 (Weakly Hyper-Invertible Matrix Family). Fix constants
0 < δ, γ < 1. Let M = (S,Gen) be a matrix family over m× n matrices where
n ≥ m.M is (δ, γ)-weakly hyper-invertible if, for every 1/γ ≤ z ≤ m and every
choice of z rows R ⊆ [m] and z columns C ⊆ [n], the following holds:

Pr
R

[MC
R has rank at least γ · z |M ← Gen(R)] ≥ 1− δ

where R is a uniformly random bit string.

Note that we consider z ≥ 1/γ to ensure that the requirement forces the z× z
sub-matrix to have rank at least γ · z ≥ 1. One could also consider more stringent
requirements where z × z sub-matrices for z < 1/γ still require rank at least one.
As we are proving lower bounds, weaker restrictions imply stronger results.

We present the following lower bound on the number of Ω(n) non-zero entries
per row required in a (δ, γ)-weakly hyper-invertible matrix. In particular, we
prove that, if δ and γ are constants, then the expected L0 norm of any row in a
weakly hyper-invertible matrix family must be Ω(n).

Theorem 9. Suppose that matrix family M = (S,Gen) is (δ, γ)-weakly hyper-
invertible for δ ≤ 2/3 and γ = Θ(1). Then, the expected L0 norm for every row
i ∈ [m] satisfies ER[L0(Mi) |M ← Gen(R)] = Ω(n).
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Proof. Consider any matrix M ∈ S that satisfies the requirements for weak
hyper-invertibility. That is, every z × z sub-matrix of M has rank at least γ · z.
Pick the smallest integer t ≥ 1/γ. We can partition any m×n matrix into disjoint
t × t matrices. Thus, we can obtain bm/tc · bn/tc = Ω(γ2 ·m · n) = Ω(m · n)
disjoint t × t sub-matrices using γ = Θ(1). By the weakly hyper-invertibility
requirement, each t× t matrix must have rank at least γ · t ≥ 1. Therefore, each
disjoint t× t sub-matrix must contain at least one non-zero entry. Altogether,M
must have L0 norm at least Ω(m · n). Finally, consider the familyM that must
produce matrices satisfying the hyper-invertibility requirement with probability
at least 1− δ. Therefore, the expected L0 norm of randomly generated matrices
byM must be at least Ω((1− δ) ·m · n) = Ω(m · n) since δ ≤ 2/3. Note each of
the m rows can have at most n non-zero entries. Therefore, each row must have
expectation of at least Ω(n) non-zero entries.

From the above, we can immediately observe that Vandermonde matrices are
optimal weakly hyper-invertible matrices with respect to L0 norm. In other words,
there is no real advantage for considering weaker notions of hyper-invertibility.

Our above lower bound immediately implies the same norm lower bound for
hyper-invertible matrices. In other words, every hyper-invertible matrix must
have Ω(m · n) non-zero entries and the Vandermonde matrix is an optimal
hyper-invertible matrix with respect to the number of non-zero entries.

C Supplementary Material for Πprep-mal

Here we present the components of Πprep-mal which we were unable to fit in the
main body.

C.1 Useful Sub-Functionalities and Sub-Procedures

We first describe some important Sub-Functionalities and Sub-Procedures which
we make use of in Πprep-mal.

Verifying Degrees of Sharings. The first such functionality that we instantiate
is Fverify-deg. This functionality takes in the honest parties’ shares of M packed
Shamir sharings of unknown degrees, [x1]d1 , . . . , [xM ]dM . It checks that all of
their degrees are ≤ k − 1 and if not, sends abort to the honest parties.

Functionality 5: Fverify-deg

1. Fverify-deg receives from the honest parties their shares of [x1]d1 , . . . , [xM ]dM .
2. Fverify-deg then reconstructs the sharings and sends the whole sharings

[x1]d1 , . . . , [xM ]dM to the adversary.
3. If ∃l ∈ [M ] such that dl > k − 1 or Fverify-deg receives from the adversary

abort, Fverify-deg sends abort to the honest parties.

We provide the following standard protocol Πverify-deg to instantiate Fverify-deg.
In Πverify-deg, the parties simply use Fcoin to sample several random values, then
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take a random linear combination of the [xl]dl defined by the sampled values, and
open the resulting sharing, [x]d, to each other. Since k < n− t, the number of
honest parties and thus honest shares, the honest parties can verify that [x]d is of
degree-k−1, even if the corrupted parties sends incorrect shares. Indeed, since the
random values are sampled after the sharings are formed, with all-but-negligible
probability, if any of the original sharings are not degree-(k − 1), then nor will
[x]d.

Protocol 6: Πverify-deg

1. All parties take as input M packed Shamir sharings distributed by P1,
denoted by [x1]d1 , . . . , [xM ]dm .

2. All parties invoke Fcoin and receive random values χ1, . . . , χM .
3. All parties locally compute [x]d ←

∑M
l=1 χl · [xl]dl , where d = maxl{dl}.

4. All parties open their shares of [x]d to one another and check that the
shares of [x]d lie on a degree-(k − 1) polynomial (i.e., d = k − 1). If not, all
parties abort.

The communication complexity of Πverify-deg is O(n2). If M = Ω(n), then the
communication complexity per underlying shared value is O(1).

Lemma 11. Πverify-deg UC-realizes Fverify-deg in the Fcoin-hybrid model.

Proof. We begin by defining the simulator S.

1. S first receives from Fverify-deg the whole sharings [x1]d1 , . . . , [xM ]dM .
2. S then emulates Fcoin by sampling random χ1, . . . , χM and sending them to

the adversary.
3. Then, S computes the honest parties’ shares of [x]dmax

←
∑
l=1M χl[x]dl ,

where dmax ← maxl dl.
4. Finally, S sends to the adversary the honest parties’ shares of [x]dmax

. Then
S receives from the adversary its shares, and if all of the shares (including
the honest parties’ shares) do not lie on a polynomial of degree at most k− 1,
then S sends Fverify-deg, abort.

Now we argue that the real and ideal worlds are indistinguishable. It is clear
that from the honest parties’ shares, Fverify-deg will always be able to reconstruct
[x1]d1 , . . . , [xM ]dM and send them to S, which uses the honest parties’ shares.
Therefore, it is clear that the real and ideal worlds are identical, up until the
point of aborting or not.

Now, we will prove that with all-but-negligible probability, an honest party
aborts in the ideal world if and only if they do in the real world. Fverify-deg

aborts if ∃l∗ ∈ [M ] such that dl∗ > k − 1. In this case, we will show that the
honest parties will also abort in the real world in Πverify-deg. First, note that
n − t > k − 1 and assume w.l.o.g., that the (k + 1)-st honest party’s share
of [xl∗ ]k−1 is nonzero (if all of the honest parties shares are zero, then they
define the zero polynomial of degree 0 ≤ k − 1). Consider the first k honest
parties’ shares of [x]k−1 computed in Πverify-deg, xi1 , . . . , xik . In order for the
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shares of [x]k−1 to lie on a polynomial of degree k − 1, it must be that the
(k + 1)-st honest party’s share, xik+1 =

∑k
j=1 λj · xij (where the λj are Lagrange

coefficients). Letting xik+1

1 , . . . , x
ik+1

M be the (k + 1)-st honest party’s shares of
[x1]k−1, . . . , [xM ]k−1, respectively, we have that xik+1 =

∑M
l=1 χl · x

ik+1

l . Thus,
it must be that

∑M
l=1 χl · x

ik+1

l =
∑k
j=1 λj · xij , which in turn means that

χl∗ = (
∑k
j=1 λj · xij −

∑
l∈[M ]\{l∗} χl · x

ik+1

l )/x
ik+1

l∗ . However, since χl∗ is chosen
independently of the honest parties’ shares, this only happens with negligible
probability, and so with all-but-negligible probability, the honest parties abort in
the real world. S might also send abort to Fverify-deg if in Πverify-deg, the adversary
does not send to S shares that lie on the same degree-(k − 1) polynomial as the
honest parties’ shares. However, since the honest parties’ shares are identical to
what they would be in the real world, the honest parties would also abort in this
case in the real world. It is also clear that if honest parties do not abort in the
ideal world, they also do not abort in the real world.

Generating Random Sharings. The next functionality is Frand. For any linear
secret sharing scheme in F, Σ, Frand samples n− t random Σ-sharings, each of
which are consistent with shares for the corrupted parties that are input by the
adversary.

Functionality 6: Frand(Σ)

1. Frand receives from the adversary the corrupted parties’ shares,
{(r(1)j , . . . , r

(n−t)
j )}j∈Corr.

2. Frand samples random r(1), . . . , r(n−t).
3. Frand samples random sharings (R(1), . . . ,R(n−t)) with secrets

r(1), . . . , r(n−t) such that for all j ∈ Corr, the j-th shares are
(r

(1)
j , . . . , r

(n−t)
j ).

4. Frand then distributes to the honest parties their shares.

We provide the following standard protocol Πrand to instantiate Frand. In Πrand,
each party Pi first samples their own random Σ-sharing S(i) and distributed
their shares to other parties. Then, using some agreed upon (n− t)× n super-
invertible matrix M (for example, the transpose of a Vandermonde matrix), the
parties multiply the sharings by M to obtain n − t sharings R(1), . . . ,R(n−t),
which they output. Intuitively, there are at least n− t honest parties, and M is
super-invertible, so the randomness of the n− t output sharings has a one-to-one
relationship with the randomness of any n− t honest parties’ original sharings.

Protocol 7: Πrand(Σ)

1. All parties agree on (n− t)× n super-invertible matrix M .
2. Each party Pi samples a random Σ-sharing S(i) and distributes the shares

to other parties.
3. All parties locally compute (R(1), . . . ,R(n−t))ᵀ ← M · (S(1), . . . ,S(n))ᵀ

and output (R(1), . . . ,R(n−t)).
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Communication complexity of Πrand. We let |Σ| be the size of the individual
shares of Σ. Then, Πrand costs n2 · |Σ|, or O(n · |Σ|) per output sharing, since
n− t > ε · n = Θ(n). This is O(|Σ|) per individual shared random value in the
sharings.

Lemma 12. Πrand UC-realizes Frand.

Proof. First recall that we only use sharings which satisfy that there exists some
d ≥ t such that any t shares are independent of any other set of d − t shares.
Now we define the simulator S:

1. First, for each honest party Pi, S samples random sharing S(i), then sends
the corrupted parties their shares of the sharings.

2. S then receives from the adversary the honest parties’ shares of the corrupted
parties’ sharings S(j). S then for j ∈ Corr samples a random Σ-sharing based
on the honest parties shares and views it as the sharing generated by Pj .

3. S then computes (R(1), . . . ,R(n−t))ᵀ ← M · (S(1), . . . ,S(n))ᵀ for the cor-
rupted parties, and sends their shares to Frand.

Next we argue that the real and ideal worlds are distributed identically. It
is clear that the honest parties distributing their random Σ-sharings S(i) is
identical in both worlds. All that remains is to argue that the shares that the
honest parties output in the ideal world are identically distributed to that of the
real world. For this we will use the power of super-invertible matrices.

Let t′ be the number of corrupted parties after the sharing step, {i1, . . . , in−t} =
H ⊆ Hon be any subset of Hon of size |H| = n− t and {j1, . . . , jt} = H = [n]\H.
Let MH be the (n− t)× (n− t) sub-matrix of M whose columns correspond to
honest parties’ indices in H. We know thatMH is invertible. Thus, we can write

(S(i1), . . . ,S(in−t))ᵀ = (MH)−1 ·((R(1), . . . ,R(n−t))ᵀ−MH ·(S(j1), . . . ,S(jt))ᵀ).

This means that the distribution of (R(1), . . . ,R(n−t)) is equivalent to that of
(S(i1), . . . ,S(in−t)), given any fixed S(j1), . . . ,S(jt). So, for any fixed sharings
S(j1), . . . ,S(jt), the distribution of (R(1), . . . ,R(n−t)) is random given the shares
of corrupted parties. This means that in the real world, the shares that honest
parties output are random given those of the corrupted parties. In the ideal
world, S generates the shares of each R(i) of the corrupted parties by randomly
sampling their shares of the S(j1), . . . ,S(jt) based on the shares of honest parties.
Then, the shares of each R(i) of the honest parties are randomly sampled based
on the shares of the corrupted parties. Thus, the distribution of the shares of the
honest parties in both worlds is identical.

Transforming Packed Shamir Sharings to Additive Sharings. Note that
if the parties hold some packed Shamir secret sharing [r]n−k = (w1, . . . , wn),
then they can locally convert it to an additive sharing 〈ri〉 = (v1, . . . , vn) of the
i-th element of r. Indeed, letting Lj(−i + 1) be the j-th Lagrange coefficient,
party Pj sets their share of 〈ri〉 to be vj ← Lj(−i + 1) · wj . This works since
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∑n
j=1 Lj(−i+1)·wj = ri, by definition. However, the sharing 〈ri〉 is not uniformly

random.
To get a uniformly random sharing, the parties can invoke Frand to prepare a

random sharing of the form 〈0〉, then reset 〈ri〉 ← 〈ri〉+ 〈0〉.

Degree Reduction. Functionality Fdeg-reduce takes in n−t degree-(n−1) packed
Shamir sharings [ul]n−1 from the parties and samples n − t degree-(n − k)
random packed Shamir sharings of the same underlying secrets, each of which
are consistent with corrupted parties’ shares that are input by the adversary.

Functionality 7: Fdeg-reduce

1. Fdeg-reduce first receives from all parties their shares of the sharings
{[u1]n−1, . . . , [un−t]n−1} and reconstructs u1, . . . ,un−t.

2. Fdeg-reduce then receives from the adversary the corrupted parties’ shares
{uj1, . . . , u

j
n−t}j∈Corr of the new sharings.

3. Finally, Fdeg-reduce samples random sharings [u1]n−k, . . . , [un−t]n−k based
on the corrupted parties’ shares and distributes to the honest parties their
shares.

To instantiate Fdeg-reduce, we use the following standard technique. First, the
parties invoke Frand to prepare n−t random sharings of the form ([rl]n−k, [rl]n−1),
for l ∈ [n− t]. Then, the parties for each l compute [ul + rl]n−1 and open the
sharings to P1. Since the sharing [rl]n−1 is random, so too is [ul + rl]n−1, thus
nothing is revealed about ul. Then P1 reconstructs each ul + rl and distributes
sharings [ul+rl]k−1 to the other parties, from which they can compute [ul]n−k by
subtracting [r]n−k. We use Fverify-deg to ensure that P1 did not cheat by sending
a sharing of a higher degree. We present the protocol Πdeg-reduce below.

Protocol 8: Πdeg-reduce

1. All parties hold degree-(n − 1) packed Shamir sharings [u1]n−1, . . . ,
[un−t]n−1.

2. They first invoke Frand to prepare random sharings
([r1]n−k, [r1]n−1), . . . , ([rn−t]n−k, [rn−t]n−1).

3. For all l ∈ [n−t], all parties locally compute [ul+rl]n−1 ← [ul]n−1+[rl]n−1

and open it to P1.
4. P1 locally reconstructs each ul+rl and then distributes sharings [ul+rl]k−1.
5. Next, the parties invoke Fverify-deg on the [ul + rl]k−1 sharings.
6. Finally, all parties locally compute for each l ∈ [n − t], [ul]n−k ← [ul +
rl]2k−2 − [rl]n−k.

Communication complexity of Πdeg-reduce. We have that |Σ| = 2, for the random
double sharings prepared by Frand. Thus, using the communication complexity of
our Πrand, we have that

1. Step 2 costs 2n2 elements.
2. Step 3 costs n · (n− t) elements.
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3. Step 4 costs n · (n− t) elements.

The above totals 2n2 + 2n(n− t), or O(n) per sharing, since n− t = Θ(n). This
is O(1) per underlying slot.

Lemma 13. Πdeg-reduce UC-realizes Fdeg-reduce in the Frand-hybrid model.

Proof. First we define the simulator S:

1. S first emulates Frand by receiving from the adversary {(s1j , r1j ), . . . , (sn−tj , rn−tj )}
and sampling random sharings ([r1]n−k, [r1]n−1), . . . , ([rn−t]n−k, [rn−t]n−1)
consistent with the above as the corrupt parties’ shares. Note that if the
adversary corrupts additional parties after the invocation of Frand, S can just
send them their shares.

2. Next:
(a) If P1 is corrupt, for l ∈ [n− t], S sends the adversary random shares til

on behalf of each honest party.
(b) If P1 is honest, S receives from the adversary the corrupted parties’ shares

of [ul + rl]n−1. Using the corrupt parties’ shares of [rl]n−1 received from
the adversary above, S computes their shares of each [ul]n−1, then sends
them to Fdeg-reduce.

3. Then:
(a) If P1 is corrupt, then S receives from the adversary the honest parties’

shares of each [ul + rl]k−1. S can then reconstruct ul + rl using the first
k honest parties’ shares and since it sampled rl above, compute ul. Then,
S can compute for each honest party uil ← til− ril and based on these and
ul, samples the corrupt parties’ shares of each [ul]n−1 and sends them
to Fdeg-reduce.

(b) If P1 is honest, S samples random sharings [tl]k−1 and sends the corrupted
parties their shares.

4. Then S emulates Fverify-deg by first sending the adversary the corrupted
parties’ shares of the sharings [ul + rl]k−1 then aborting if P1 is corrupted
and sent sharings of degree greater than k − 1.

5. Lastly, using [ul + rl]k−1 in the former case and [tl]k−1 in the latter case,
as well as the shares of the corrupted parties of [rl]n−k received from the
adversary above, S can compute the corrupted parties’ shares of each [ul]n−k
and send them to Fdeg-reduce.

Now we argue that the real and ideal worlds are distributed identically. Let
us begin with the case in which P1 is corrupt. Since each [rl]n−1 is random of
degree-(n− 1), so too is [ul + rl]n−1, and therefore, the honest parties’ shares in
the real world are random, as the til in the ideal world are. Since honest parties
always send til = uil + ril in Step 3, it must be that uil = til − ril . Therefore,
the u1, . . . ,un−t that Fdeg-reduce reconstructs is the same as that defined by the
corrupt P1 in the real world. Finally, since Fdeg-reduce samples the sharings [ul]n−k
based on the corrupted parties’ shares, the output honest parties’ shares are
distributed identically in the two worlds.
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Now, if P1 is honest, it is clear that S computes the correct corrupted parties’
shares of each [ul]n−1 and thus the u1, . . . ,un−t that Fdeg-reduce reconstructs is
the same as that defined by the corrupt parties’ shares in the real world. Now, it
is clear that the underlying rl are unknown and random to the adversary. Thus,
so too is the underlying ul + rl and so [tl]k−1 in the ideal world is distributed
identically to that of [ul + rl]k−1 in the real world. Finally, as above, since
Fdeg-reduce samples the sharings [ul]n−k based on the corrupted parties’ shares,
the output honest parties’ shares are distributed identically in the two worlds.

Triple sacrificing. The triples produced by Ftriple may have some error. Thus,
we present the following standard procedure πsacrifice, which takes two packed
triples output from Ftriple that have been authenticated and sacrifices one of them
to ensure that both have no error (including the other which is output). Note
that although corrupted parties can change their shares of authenticated packed
triples to change the underlying secrets (and thus add back error), they cannot
do so without getting caught in the online phase, since the MAC key γ is random
and unknown to them.

Procedure 9: πsacrifice

1. All parties take as input packed triple sharings (Ja1Kn−k, Jb1Kn−k, Jc1Kn−k)
and (Ja2Kn−k, Jb2Kn−k, Jc2Kn−k).

2. All parties invoke Fcoin and receive a random element ρ ∈ F.
3. Then they compute [a2 − ρ · a1]n−k and [b2 − b1]n−k and open them to P1.
4. P1 next reconstructs a2−ρ ·a1 and b2−b1, then distributes packed Shamir

sharings [a2 − ρ · a1]k−1, [b2 − b1]k−1, and [(a2 − ρ · a1) ∗ (b2 − b1)]k−1.
5. Then, the parties compute [γ ∗ θ]n−1 ← [γ]n−k ∗ [(a2 − ρ · a1) ∗ (b2 −
b1)]k−1 + [γ ∗ b1]n−k ∗ [a2 − ρ · a1]k−1 + ρ · [γ ∗ a1]n−k ∗ [b2 − b1]k−1 + ρ ·
[γ ∗ c1]n−k − [γ ∗ c2]n−k.

Communication complexity of πsacrifice. We ignore calls to Fcoin.

1. Step 3 costs 2n elements.
2. Step 4 costs 2n elements.

The above totals 4n elements, or O(1) per individual slot.

Checking that Many Sharings Share 0. Lastly, we present a procedure
πcheck-zero, which takes as input M degree-(n − 1) packed Shamir sharings,
[θ1]n−1, . . . , [θM ]n−1 and ensures that each of them share underlying value 0. To
do so, the parties use Fcoin to generate several random values, then take a random
linear combination of the [θl]n−1 defined by these values to obtain [θ]n−1. The
parties then use Fcommit to commit to their shares, then open the shares to each
other and check whether the underlying secret is 0 or not. A minor subtlety is that
the input sharings [θl]n−1 may not be randomly distributed degree-(n−1) packed
Shamir sharings (if for example they are the multiplication of degree-(n − k)
and-(k− 1) packed Shamir sharings). Thus, the parties re-randomize [θ]n−1 with
a random degree-(n− 1) packed Shamir sharing [0]n−1, obtained from Frand.
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Procedure 10: πcheck-zero

1. All parties take as input M degree-(n− 1) packed Shamir sharings, denoted
by [θ1]n−1, . . . , [θM ]n−1.

2. All parties invoke Fcoin and receive random values χ1, . . . , χM .
3. All parties invoke Frand to prepare a random degree-(n− 1) packed Shamir

sharing of 0, denoted by [0]n−1.
4. All parties locally compute [θ]n−1 ← [0]n−1 +

∑M
l=1 χl · [θl]n−1.

5. All parties invoke Fcommit to commit their shares of [θ]n−1 to one another.
6. All parties open the commitments of the shares of [θ]n−1 to one another

and check whether it is a degree-(n− 1) packed Shamir sharing of 0. If not,
all parties abort. If not, all parties abort.

The communication complexity of πcheck-zero is O(n2). If M = Ω(n), this is O(1)
per underlying shared value.

Assume that for at least one of the input sharings [θl]n−1 such that the
underlying vector θl 6= 0, this underlying vector is random and unknown to the
adversary. We now provide the following lemma which shows that if the above
holds, then the adversary cannot force [θ]n−1 to open to 0.

Lemma 14. If ∃l∗ ∈ [M ] such that θl∗ 6= 0 and is random and unknown to the
adversary, then the honest parties will abort with all-but-negligible probability at
the end of πcheck-zero.

Proof. First note that since the adversary uses Fcommit to commit to its shares,
the shares are independent of the underlying value θ =

∑M
l=1 χl ·θl. If the parties

do not abort, then by definition θ = 0, so we have that 0 =
∑M
l=1 χl ·θl. Thus, we

have that θl∗ = −(
∑
l∈[M ]\{l∗} χl ·θl)/χl∗ , which can only happen with negligible

probability, since θl∗ is random and unknown to the adversary.

D Missing Proofs

D.1 Proof of Lemma 6

Proof. First we define the simulator S, which initializes bad-shr← 0:

1. Extraction Level 1:
(a) S first samples random ui,vi ∈ Ft on behalf of each honest party Pi.

Note if Pi is late corrupted, S can send the adversary these random
vectors.

(b) Then S emulates Fcoin by sampling random r ∈ F and and sending it to
the adversary. It then interprets r as bit string R, and locally computes
the matrix M ← Gen(R).

(c) Then, for every corrupted party Pj , let uj be the first vector it inputs
to Fprog

OLE as party PA and vj be the first vector it inputs to Fprog
OLE as

party PB. For each l ∈ [m], for every ordered pair (Pi, Pj) such that
Ml[i],Ml[j] 6= 0, S emulates Fprog

OLE as follows:
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– If Pi and Pj are both corrupted, then S receives from the adversary
αji ,β

i
j and returns them to the adversary.

– If Pi is corrupted and Pj is honest, S first receives ui and α
j
i from

the adversary, then computes βij ← ui ∗ vj −αji , and returns αji to
the adversary.

– If Pi is honest and Pj is corrupted, S first receives vj and βij from
the adversary, then computes αji ← ui ∗ vj − βij and returns βij to
the adversary.

– If both Pi and Pj are honest, S samples random βij and sets αji ←
ui ∗ vj − βij .

– In each case, S computes ε(i,j) ← αji + βij − ui ∗ vj .
(d) Then, for each honest party Pi, S splits ui, vi and each αji ,β

j
i into

length-k vectors {ui,w}w∈[t/k], {vi,w}w∈[t/k], {αji,w}w∈[t/k], {β
j
i,w}w∈[t/k],

respectively. S also splits each ε(i,j) into {ε(i,j)w }w∈[t/k].
(e) Then, for w ∈ [bt/kc]:

i. For each honest party, S computes random packed sharings [ui,w]n−k,
[vi,w]n−k and sends the adversary the corrupted parties’ shares (Note
if the adversary later corrupts more parties, S just sends the adversary
their shares). S also receives from each corrupted party Pj , the
honest parties’ shares of [uj,w]n−k, [vj,w]n−k, and samples the rest
of the sharings based on the honest parties’ shares and uj,w,vj,w,
respectively.

ii. S computes ([a1,w]n−k, . . . , [am,w]n−k) and ([b1,w]n−k, . . . , [bm,w]n−k)
using the above and M .

iii. Then, for each l ∈ [m]:
A. For each honest party Pi such that Ml[i] 6= 0, S computes

cil,w ←
∑
j:Ml[j] 6=0α

j
i,w + βji,w then computes degree-(n − k)

packed Shamir sharing [cil,w]n−k and sends the adversary the
corrupted parties’ shares (Note if the adversary later corrupts
more parties, S just sends the adversary their shares). S also
receives from each corrupted party Pj such that Ml[j] 6= 0, the
honest parties’ shares of [cjl,w]n−k and samples the rest of the
sharing based on the honest parties’ shares and cjl,w.

B. Finally, using the above, S can compute [cl,w]n−k. S also com-
putes εl,w ←

∑
(i,j):Ml[i] 6=06=Ml[j]

ε
(i,j)
w .

2. Extraction Level 2: For each w ∈ [bt/kc]:
(a) For l ∈ [(m − 1)/2 + 1], τ ∈ [k], S implicitly views aτl,w, b

τ
l,w, c

τ
l,w as

the l-th evaluation points of polynomials Aτ,w(·) of degree (m − 1)/2,
Bτ,w(·) of degree (m − 1)/2, Cτ,w(·) of degree m − 1, respectively; i.e.,
Aτ,w(l) = aτl,w, Bτ,w(l) = bτl,w, and Cτ,w(l) = cτl,w.

(b) LettingAw(·)← (A1,w(·), . . . , Ak,w(·)) andBw(·)← (B1,w(·), . . . , Bk,w(·)),
S uses ([Aw(1)]n−k, . . . , [Aw((m−1)/2+1)]n−k) and ([Bw(1)]n−k, . . . , [Bw((m−
1)/2 + 1)]n−k), which implicitly define the polynomials Aw(·) and Bw(·),
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respectively, to locally compute the corrupted parties’ shares of [Aw(l)]n−k
and [Bw(l)]n−k for l ∈ [(m− 1)/2 + 2,m].

(c) Then, for l ∈ [(m− 1)/2 + 2,m], to simulate πbeaver, S first sets ηl,w ← 0
and computes d← Aw(l)− al,w and e← Bw(l)− bl,w, then:
– If P1 is corrupt:

i. S first locally computes the honest parties’ shares of [Aw(l)]n−k−
[al,w]n−k and [Bw(l)]n−k − [bl,w]n−k then sends them to the
adversary.

ii. S then receives from the adversary (di1 , ei1), . . . , (din−t , ein−t)
on behalf of the honest parties. If these shares do not lie on a
polynomial of degree k − 1, S sets bad-shr ← 1. Otherwise, it
reconstructs [d]k−1, [e]k−1.

iii. In the latter case, S for each corrupted party then computes its
share of [Cw(l)]n−1 as [d]k−1∗ [e]k−1+[d]k−1∗ [bl,w]n−k+[e]k−1∗
[al,w]n−k + [cl,w]n−k.

– If P1 is honest:
i. S receives from the adversary the corrupt parties’ shares of

[Aw(l)]n−k − [al,w]n−k and [Bw(l)]n−k − [bl,w]n−k.
ii. Then, together with the honest parties’ shares, S reconstructs
d ← Aw(l) − al,w and e ← Bw(l) − bl,w, computes [d]k−1 and
[e]k−1, and then sends the corrupt parties’ their shares.

iii. Finally, S computes the corrupted parties’ shares of [Cw(l)]n−1
as above.

In both cases, S computes ηl,w ← (dl,w ∗ el,w + dl,w ∗ bl,w + el,w ∗
al,w + cl,w)− (dl,w ∗ el,w + dl,w ∗ bl,w + el,w ∗ al,w + cl,w)

(d) Note: sharings ([Aw(1)]n−k, . . . , [Aw(m)]n−k), ([Bw(1)]n−k, . . . , [Bw(m)]n−k),
and ([Cw(1)]n−1, . . . , [Cw(m)]n−1) implicitly define the polynomialsAw(·),
Bw(·), and Cw(·), respectively. Thus, for l ∈ [m+1, ,m+γ ·m−(m+1)/2],
S locally computes the corrupted parties’ shares of

([al,w]n−k, [b
l,w]n−k,[c

l,w]n−1)←
([Aw(m+ l)]n−k, [Bw(m+ l)]n−k, [Cw(m+ l)]n−1).

The errors ε1,w, . . . , ε(m−1)/2+1, ε(m−1)/2+2 + η(m−1)/2+2, . . . , εm + ηm
also define degree-m − 1 polynomials δw(·). S computes δw(l) for l ∈
[m+ 1,m+ γ ·m− (m+ 1)/2] based on these.

3. Checking the degree of P1’s sharings: S then emulates Fverify-deg by first
sending the adversary the corrupted parties’ shares of the sharings [d]d1 , [e]d2
from πbeaver, then sending abort to Ftriple if bad-shr = 1 or the adversary sends
abort to S.

4. Output: If S has not yet aborted it sends to Ftriple the corrupted parties’
shares of ([al,w]n−k, [b

l,w]n−k, [c
l,w]n−1) and δw(l) for all w ∈ [t/k], l ∈

[m+ 1,m+ γ ·m− (m+ 1)/2].

Now we must show that the real and ideal worlds are indistinguishable. It is
clear that S emulates Fcoin and Fprog

OLE in the first extraction level as in the real
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world, and that δ(i,j) correctly computes the difference between ui ∗ vj based
on the first seeds that the corrupted parties input to Fprog

OLE and those that it
inputs to the Fprog

OLE invocation for the ordered pair (i, j). It is also clear that the
distribution of corrupted parties’ shares of honest sharings [ui,w]n−k, [vi,w]n−k
are identical in the two worlds, and same with that of [cil,w]n−k.

For the simulation of πbeaver in the second extraction level, let us first handle the
case in which P1 is corrupt. Since S just uses the already computed honest parties’
shares when sending to P1, [Aw(l)]n−k − [al,w]n−k and [Bw(l)]n−k − [bl,w]n−k, it
is clear that this is an identical distribution to that of the real world. It is also clear
that S correctly sets bad-shr ← 1 if the honest parties’ shares of [d]k−1, [e]k−1
do not lie on a degree-(k − 1) polynomial. Now, if P1 is honest, again since S
just uses the already computed honest parties’ shares, the reconstruction of d
and e occur as in the real world, as does the computation of [d]k−1, [e]k−1. It is
also clear that S’s emulation of Fverify-deg is identical to the real world.

Now we show that if the honest parties do not abort, then their shares are
distributed identically in the ideal and real worlds. Let H ⊆ Hon be some subset
of Hon of size |H| = n − t and MH be the sub-matrix of M that contains
the columns corresponding to the indices of the honest parties in H. From
Theorem 4, we have that with all-but-negligible probability, MH has rank at
least γ ·m, for γ > 1/2. This means that there must be some (γ ·m)× (γ ·m)
dimensional sub-matrix M ′ of MH that is invertible. Let R = {r1, . . . rγ·m} be
the rows of M of which M ′ consists, C = {c1, . . . , cγ·m} be those columns, and
C = {c1, . . . , cn−γ·m} be those columns of M that are not in M ′. Then we can
write

([ar1,w]n−k, . . . [arγ·m,w]n−k)ᵀ =M ′ · ([uc1,w]n−k, . . . [ucγ·m,w]n−k)ᵀ+

MC
R · ([uc1,w]n−k, . . . [ucγ·m,w]n−k)ᵀ.

SinceM ′ is invertible, for any fixed sharings ([uc1,w]n−k, . . . [ucγ·m,w]n−k), the dis-
tribution of ([ar1,w]n−k, . . . [arγ·m,w]n−k) is the same as ([uc1,w]n−k, . . . [ucγ·m,w]n−k),
which is random given the shares of corrupted parties. Note also that what
the adversary receives from S’s emulation of Fprog

OLE is independent of the
uc1,w, . . . ,ucγ·m,w . Furthermore, the distribution of the sharings [cil,w] for each
honest party Pi is random given the corrupted parties’ shares. So, the above still
holds that the distribution of ([ar1,w]n−k, . . . [arγ·m,w]n−k) is random given the
shares of corrupted parties.

In the second level of extraction, consider the vector of polynomials Aw(·).
We have two cases. First, we have the case that [(m − 1)/2 + 1] ⊆ R. In this
case, we have from above that for each r ∈ R∩ [(m− 1)/2 + 1] = [(m− 1)/2 + 1],
the sharing [Aw(r)]n−k = [ar,w]n−k is distributed randomly given the shares of
corrupted parties. Also, for each r ∈ R∩ [(m− 1)/2 + 2,m], the sharing [ar,w]n−k
is distributed randomly given the shares of corrupted parties, and thus so is
[Aw(r)]n−k + [ar,w]n−k. Therefore, all but m− γ ·m points of each polynomial
Aw(·) are random to the adversary. Indeed, since each polynomial in Aw is of
degree (m − 1)/2, the m − γ · m < (m − 1)/2 + 1 points of each polynomial
which may not be random to the adversary are independent of the remaining
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(m− 1)/2 + 1− (m− γ ·m) = γ ·m− (m+ 1)/2 points, all of which are random.
This means that the sharings [Aw(r)]n−k corresponding to these points are still
distributed randomly given the shares of the corrupted parties.

In the second case, we have that [(m − 1)/2 + 1] * R, which means that
[(m − 1)/2 + 2,m] ⊆ R, since |R| = γ ·m > m/2. In this case, we have from
above that for each r ∈ R ∩ [(m− 1)/2 + 1], the sharing [Aw(r)]n−k = [ar,w]n−k
is distributed randomly given the shares of corrupted parties. Moreover, since
each polynomial in Aw is of degree (m − 1)/2, the points of each polynomial
corresponding to [(m − 1)/2 + 1] \ R are independent of those that are in
R ∩ [(m − 1)/2 + 1]. Furthermore, for each r ∈ R ∩ [(m − 1)/2 + 2,m] =
[(m − 1)/2 + 2,m], the sharing [ar,w]n−k is distributed randomly given the
shares of corrupted parties, and thus so is [Aw(r)]n−k + [ar,w]n−k. Therefore, the
adversary learns nothing else about those [Aw(r)]n−k for r ∈ R∩ [(m− 1)/2 + 1],
of which there must be (m− 1)/2 + 1− (m− γ ·m) = γ ·m− (m+ 1)/2.

In either case, [Aw(1)]n−k, . . . , [Aw((m− 1)/2 + 1)]n−k, of which γ ·m− (m+
1)/2 are random given the corrupted parties’ shares, are used to compute the
output [Aw(m+ l)]n−k for l ∈ [m+ 1,m+ γ ·m− (m+ 1)/2], in a one-to-one
fashion (since the computation is represented by a super-invertible matrix whose
number of rows is equal to γ ·m− (m+ 1)/2), which are therefore random given
the corrupted parties’ shares.

In the ideal world, S generates the corrupted parties’ shares of those [uj,w]n−k
for j ∈ Corr by randomly sampling their shares based on those of the honest
parties and the underlying u, which S received from its emulation of Fprog

OLE .
Using these, and the corrupted parties’ shares of honest parties’ sharings, S
computes the corrupted parties’ shares of the output sharings by following the
protocol description. Then the shares of the honest parties are randomly sampled
based on the shares of corrupted parties. Thus the distribution of the output
shares of honest parties are identical in the two worlds.

Note that the same exact argument as above can be used for the output
[Bw(m+ l)]n−k for l ∈ [m+ 1,m+ γ ·m− (m+ 1)/2].

For the honest parties’ shares of the output [cl,w]n−k, recall that the distri-
bution of the sharings [cil,w] for each honest party Pi is random given the corrupted
parties’ shares. Since the [cl,w]n−k are linear combinations of (([a1,w]n−k, [b1,w]n−k,
[c1,w]n−k), . . . , ([am,w]n−k, [bm,w]n−k, [cm,w]n−k)), then it must be that the shares
of honest parties are random given the corrupted parties’ shares and such that
they are consistent with al,w ∗ bl,w and any errors which the adversary injected
for Fprog

OLE and in πbeaver. Since S tracks these errors and inputs them to Ftriple,
the ideal world is distributed identically to the real world.

D.2 Proof of Lemma 7

Proof. First we define the simulator S, which begins by setting bad-shr← 0:

1. S first emulates Ftriple by receiving from the adversary the corrupted parties’
shares and (δl,w)l∈µ,w∈[bt/kc]. It then samples random ([al,w]n−k, [bl,w]n−k, [al,w∗
bl,w+δl,w]n−k)l∈µ,w∈[bt/kc] consistent with the corrupted parties’ shares. Note,
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if the adversary corrupts more parties after the invocation of Ftriple, it can
just send the corresponding shares to the adversary.

2. Then for w ∈ [bt/kc], l ∈ [µ]:
(a) If P1 is corrupted, S sends the adversary random ρil,w for i ∈ Hon. Else

it receives from the adversary its shares of [γ + sl,w]n−k and using the
corrupted parties’ shares of [sl,w]n−k received from the adversary above,
S computes their shares of [γ]n−k and sends them to Fauth-rand.

(b) Then, if P1 is corrupted, S receives from the adversary the honest parties’
shares of [γ+sl,w]k−1. If these shares do not lie on a polynomial of degree
k − 1, S sets bad-shr← 1. Otherwise, it reconstructs γ + sl,w and since
sl,w is sampled above, computes γ. Then, S can compute for each honest
party γi ← ρil,w−sil,w and based on these and γ, sample a sharing [γ]n−k
and send the corrupted parties’ shares to Fauth-rand. If P1 is honest, S
samples random sharing [ρl,w]k−1 and sends the corrupted parties their
shares.

(c) Then S emulates Fdeg-reduce by receiving from the adversary the corrupted
parties’ shares of [γ ∗rl,w−δl,w]n−1 and their shares of [γ ∗rl,w−δl,w]n−k.
S can also compute the honest parties’ shares of the former and use them
together with the corrupted parties’ shares to reconstruct γ ∗ rl,w − δl,w,
then compute and sample random sharing [γ ∗ rl,w − δl,w]n−k consistent
with the corrupted parties’ shares. Note that at this point, (if it hasn’t
already) S can also compute γ and use it along with the corrupted parties’
shares of [γ]n−k to sample the rest of the sharing.

3. Next, S emulates Fverify-deg by by first sending the adversary the corrupted
parties’ shares of the sharings [γ + sl,w]k−1 then aborting if bad-shr = 1.

4. Finally, S sends to Fauth-rand the corrupted parties’ shares of [rl,w]n−k. As for
[γ ∗ rl,w − δl,w]n−k, first note that the corrupted parties can locally change
their shares to change the secret to [γ ∗ rl,w]n−k. We may equivalently think
that the shares of corrupted parties are changed so that the secret is γ ∗ rl,w
(and they can then change their shares to any arbitrary values). Thus, S
adjusts the shares of corrupted parties as follows: S generates a degree-(n−k)
packed Shamir sharing [δl,w]n−k such that the shares of honest parties are 0’s.
Then S computes the shares of [γ ∗rl,w]n−k ← [γ ∗rl,w−δl,w]n−k+[δl,w]n−k
of the corrupted parties and sends to Fprep-mal these shares.

Now, we show that the real and ideal worlds are distributed identically,
except with all-but-negligible probability. It is clear that S’s emulation of Ftriple

is identical to the real world. If P1 is corrupted, then S sending the adversary
random values for the opening of [γ + sl,w]n−k is distributed identically to the
real world since [sl,w]n−k is distributed randomly, given the corrupted parties
shares. If P1 is honest, it is clear that it can extract the correct corrupted parties’
shares of [γ]n−k. If P1 is corrupted, then S can clearly reconstruct γ + sl,w
and from this extract γ then, along with the computed honest parties’ shares,
sample a sharing [γ]n−k that is consistent with the corrupted parties’ shares. If
P1 is honest, it is clear that simulated [ρ]k−1 is identical to the real world, since
[sl,w]n−k is distributed randomly, given the corrupted parties shares, and so then
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sl,w is random to the adversary. Then, it is clear that S’s emulation of Fdeg-reduce

is identical to the real world and also, that S can compute γ and, along with the
corrupted parties’ shares, sample [γ]n−k.

Lastly, we need to show that the honest parties shares of Jrl,wK are distributed
identically in both worlds. We again have that the corrupted parties’ shares of
[rl,w]n−k are independent of the rest of the sharings. Since S also has the corrupted
parties’ shares, this means that the sharings [rl,w] that Fauth-rand samples are
distributed identically to those in the real world. S also gets the corrupted parties’
shares of [γ ∗ rl,w] from its emulation of Fdeg-reduce, which are also independent
of the rest of the sharings by the definition of Fdeg-reduce. Thus, Fauth-rand samples
[γ ∗rl,w] distributed identically to those in the real world, where in the real world,
the corrupted parties are also changed so that the secret is γ ∗ rl,w.

D.3 Proof of Theorem 6

Proof. We will construct a simulator S. First, we describe how S simulates πauth,
with knowledge of the whole sharing [γ]n−k and each ([u1]n−k, . . . , [un−t]n−k),
which starts by setting bad-shr← 0:

1. S first emulates Fauth-rand by receiving from the adversary the corrupted
parties’ shares of [γ]n−k and then either abort or the corrupted parties’ shares
of each JrlKn−k. In the former case, S sends abort to Fprep-mal; otherwise, it
samples random sharings JrlKn−k = ([rl]n−k, [(γ + ε) ∗ rl]n−k) consistent
with the corrupted parties’ shares, where ε is the difference between γ and
that which is defined by the honest parties’ shares of [γ]n−k and those input
by the adversary above. Note, if the adversary corrupts more parties later, it
can just send their shares to the adversary.

2. Then for l ∈ [n− t]:
(a) If P1 is corrupted, S sends to the adversary the honest parties’ shares

of [ul + rl]n−k. Otherwise, it receives from the adversary the corrupted
parties’ shares of [ul+rl+ηl]n−k, where ηl is error added by the adversary.

(b) Then, if P1 is corrupted, S receives from the adversary [ul + rl + ηl]k−1,
where ηl is error added by the adversary. If these shares do not lie on
a polynomial of degree k − 1, S sets bad-shr ← 1. If P1 is honest, S
computes sharing [ul + rl + ηl]k−1 and sends the corrupted parties their
shares.

(c) In either case, S can compute the sharing [γ ∗ (ul + ηl)− ε ∗ rl]n−1 ←
[γ]n−k ∗ [ul + rl + ηl]k−1 − [(γ + ε) ∗ rl]n−k

3. Then S emulates Fdeg-reduce by receiving from the adversary the corrupted
parties’ shares of each [γ ∗ (ul + ηl)− ε ∗ rl]n−1 and then of each [γ ∗ (ul +
ηl)− ε ∗ rl]n−k, and then randomly sampling the rest of the latter sharings,
consistent with the corrupted parties’ shares and the values γ∗(ul+ηl)−ε∗rl.

4. Then S emulates Fverify-deg by sending the adversary the corrupted parties’
shares of each [ul +rl +ηl]k−1 and then sending Fprep-mal abort if bad-shr = 1
or the adversary sends S abort.

5. If S does not abort, it outputs the sharings ([ul]n−k, [γ ∗(ul+ηl)−ε∗rl]n−k).
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If in fact it is the case that the sharings [γ]n−k and each ([u1]n−k, . . . , [un−t]n−k)
are distributed identically to the real world, then we show that S’s simulation of
πauth is identical to the real world. It is clear that S emulates Fauth-rand exactly as
in the real world. It is also clear that S simulates the opening and redistribution
of [ul + rl + ηl]k−1 as in the real world. Finally, it is clear that S emulates
Fdeg-reduce and Fverify-deg as in the real world.

Now, we also note that the corrupted parties can locally change their shares
to change the secret from γ ∗(ul+ηl)−ε∗rl to γ ∗ul. We may equivalently think
that the shares of corrupted parties are changed so that the secret is γ ∗ ul (and
they can then change their shares to any arbitrary values). Thus, S adjusts the
shares of corrupted parties as follows: S generates a degree-(n−k) packed Shamir
sharing [γ ∗ ηl − ε ∗ rl]n−k such that the shares of honest parties are 0’s. Then S
computes the sharing [γ ∗ul]n−k ← [γ ∗ (ul+ηl)−ε∗rl]n−k− [γ ∗ηl−ε∗rl]n−k
and uses this sharing in the rest of the simulation.

Now, we describe the rest of S:

1. For sampling the MAC key, S first emulates Frand by receiving from the
adversary the corrupted parties’ shares of [γ]n−k and then sampling the rest
of the sharing randomly, consistent with the corrupted parties’ shares. S then
sends to Fprep-mal the corrupted parties’ shares. Note that if the adversary
later corrupts more parties, S can just send their shares to the adversary.

2. Preparing Random, Authenticated Sharings for Input and Output
Gates:
(a) S first emulates Ftriple by receiving from the adversary the corrupted

parties’ shares of each [∆l]n−k, [rl]n−k, and [∆l ∗ rl + δl]n−k, and each
δl, and then sampling the rest of the sharings randomly, consistent with
the corrupted parties’ shares and each δl. Note that if the adversary later
corrupts more parties, S can just send their shares to the adversary.

(b) Then, S simulates πauth as above, using the whole sharings [γ]n−k and
[rl]n−k.

(c) Next, S emulates Fdeg-reduce by receiving from the adversary the corrupted
parties’ shares of each [∆l ∗ rl + δl]n−1 and the new sharings [∆l ∗
rl + δl]n−k, and then randomly sampling the latter consistent with the
corrupted parties’ share and the underlying values.

(d) Finally, S emulates Frand by receiving from the adversary the corrupted
parties’ shares of [0]n−1 and randomly sampling the rest of the sharing
based on the corrupted parties’ shares and 0.

S then sends to Fprep-mal the corrupted parties’ shares of each JrlKn−k, [∆l]n−k,
and [0]n−1. As for [∆l ∗ rl + δl]n−k, first note that the corrupted parties can
locally change their shares to change the secret to ∆l∗rl. We may equivalently
think that the shares of corrupted parties are changed so that the secret is
∆l∗rl (and they can then change their shares to any arbitrary values). Thus, S
adjusts the shares of corrupted parties as follows: S generates a degree-(n−k)
packed Shamir sharing [δl]n−k such that the shares of honest parties are 0’s.
Then S computes the shares of [∆l ∗ rl]n−k ← [∆l ∗ rl + δl]n−k − [δl]n−k of
the corrupted parties and sends to Fprep-mal these shares.
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3. Preparing Packed, Authenticated Beaver Triples:
(a) S first emulates Ftriple by receiving from the adversary the corrupted

parties’ shares of each [al]n−k, [bl]n−k, and [cl + δl]n−k, and each δl,
and then sampling the rest of the sharings randomly, consistent with the
corrupted parties’ shares and each δl. Note that if the adversary later
corrupts more parties, S can just send their shares to the adversary.

(b) Then, S emulates Fdeg-reduce by receiving from the adversary the corrupted
parties’ shares of each [cl ∗ +δl]n−1 and the new sharings [cl + δl]n−k,
and then randomly sampling the latter consistent with the corrupted
parties’ share and the underlying values.

(c) Then, S simulates πauth as above, using the whole sharings [γ]n−k and
[al]n−k, [bl]n−k, [cl + δl]n−k

(d) To simulate πsacrifice:
i. S first emulates Fcoin by sampling random ρ and sending it to the

adversary.
ii. If P1 is corrupted, S sends to the adversary the honest parties’ shares

of [a2 − ρ · a1]n−k and [b2 − b1]n−k. Otherwise, it receives from
the adversary the corrupted parties’ shares of [a2 − ρ · a1]n−k and
[b2 − b1]n−k.

iii. Then, if P1 is corrupted, S receives from the adversary [a2 − ρ · a1]k−1,
[b2 − b1]k−1, and [(a2 − ρ · a1) ∗ (b2 − b1)]k−1. If the shares do not
lie on a polynomial of degree k − 1 for any of the sharings, S sets
bad-shr ← 1. If P1 is honest, S computes the sharings themselves,
and sends the corrupted parties their shares.

iv. In either case, S computes the sharing

[γ ∗ θ]n−1 ← [γ]n−k ∗ [(a2 − ρ · a1) ∗ (b2 − b1)]k−1

+ [γ ∗ b1]n−k ∗ [a2 − ρ · a1]k−1 + ρ · [γ ∗ a1]n−k ∗ [b2 − b1]k−1+

ρ · [γ ∗ c1]n−k − [γ ∗ c2]n−k.

(e) To simulate πcheck-zero:
i. S first emulates Fcoin by sampling random χ1, . . . , χM and sending

them to the adversary.
ii. Then S emulates Frand by receiving from the adversary the corrupted

parties’ shares of [0]n−1, and then sampling the rest of the sharing
randomly, based on the corrupted parties’ shares and 0.

iii. Then S computes [θ]n−1 ← [0]n−1 +
∑M
l=1 χl · [θl]n−1.

iv. Next S emulates Fcommit by receiving from the adversary the corrupted
parties’ shares of [θ]n−1.

v. Finally, S sends the adversary the honest parties’ shares of [θ]n−1
and receives the corrupted parties’ shares from the adversary. If the
corrupted parties’ shares are different from the committed values or
the computed shared value θ 6= 0, then S sends to Fprep-mal, abort.

(f) Finally, S emulates Fverify-deg by sending to the adversary the corrupted
parties’ shares of each [a2 − ρ · a1]k−1, [b2 − b1]k−1, and [(a2 − ρ · a1) ∗
(b2 − b1)]k−1, from πsacrifice, then sending abort to Fprep-mal if bad-shr = 1
or the adversary sends S abort.
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(g) Additionally, S emulates Frand by receiving from the adversary the cor-
rupted parties’ shares of [01]n−1 and [02]n−1, and then sampling the rest
of the sharings randomly, based on the corrupted parties’ shares and 0.

S then sends to Fprep-mal the corrupted parties’ shares of each JalKn−k, JblKn−k,
JclKn−k, as well as [01]n−1 and [02]n−1.

4. Preparing Random Sharings for the Computation Verification:
(a) S first emulates Frand by receiving from the adversary the corrupted

parties’ shares of [01]n−1 and [02]n−1, and then sampling the rest of the
sharings randomly, based on the corrupted parties’ shares and 0. Note
that if the adversary later corrupts more parties, S can just send their
shares to the adversary.

(b) Then, S emulates Fauth-rand by receiving from the adversary the corrupted
parties’ shares of [γ]n−k and then either abort or the corrupted parties’
shares of JrKn−k. In the former case, S sends abort to Fprep-mal; otherwise,
it samples random sharing JrKn−k consistent with the corrupted parties’
shares. Note that if the adversary later corrupts more parties, S can just
send their shares to the adversary.

(c) S then emulates Frand by receiving from the adversary the corrupted
parties’ shares of 〈01〉 and 〈02〉, and then sampling the rest of the sharings
randomly, based on the corrupted parties’ shares and 0.

S then sends to Fprep-mal the corrupted parties’ shares of [01]n−1 and [02]n−1,
as well as (〈r〉 , 〈γ · r〉).

Now we argue that the real and ideal worlds are indistinguishable. For sampling
of the MAC key, it is clear that S emulates Frand as in the real world. Also, the
shares of [γ]n−k that the honest parties output in the real world are distributed
randomly given the corrupted parties’ shares, by definition of Frand. This is
exactly the same as how Fprep-mal samples the honest parties’ shares.

For the sharings of input and output gates: It is clear that S emulates Ftriple

as in the real world. From above, we can also argue that S’s simulation of πauth is
as in the real world. It is also clear that S’s emulation of Fdeg-reduce and Frand are
identical to the real world. Now we just need to argue that the shares that the
honest parties output in the real world are identical to that of the ideal world.
By definition of Ftriple and Frand, the shares of [rl]n−k, [∆l]n−k, and [0]n−1 that
the honest parties output in the real world are distributed randomly given the
corrupted parties’ shares (and 0 for [0]n−1). This holds even for [rl]n−k, which
is masked by random [r′l]n−k in πauth. This is exactly the same as how Fprep-mal

samples the honest parties’ shares. In both the real and ideal worlds, [γ ∗ rl]n−k
is distributed randomly given the corrupt parties’ shares together with γ ∗ rl.
The same can be said about [∆l ∗ rl]n−k, where in the real world, the corrupted
parties shares are also changed so that the secret is ∆l ∗ rl.

For the packed, authenticated beaver triples: It is clear that S emulates Ftriple

and Fdeg-reduce as in the real world. From above, we can also argue that S’s
simulation of πauth is as in the real world. In the simulation of πsacrifice, it is clear
that S emulates Fcoin as in the real world. It is also clear that the opening and
redistribution of [a2 − ρ · a1]k−1, [b2 − b1]k−1, and [(a2 − ρ · a1) ∗ (b2 − b1)]k−1
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is as in the real world. In the simulation of πcheck-zero it is clear that S emulates
Fcoin, Frand, and Fcommit as in the real world. It is also clear that it computes
[θ]n−1 as in the real world. So, the honest parties abort in the ideal world if and
only if they do in the real world. Finally, it is clear that S emulates Fverify-deg

and Frand as in the real world. Now, from Lemma 14, we know that if any γ ∗ θl∗
is nonzero, and random and unknown to the adversary, then the honest parties
will abort with all-but-negligible probability. In particular, this means that each
[c1]n−k cannot have any error, for otherwise, the corresponding γ ∗ θl∗ would
contain ρ · γ ∗ δ1 and thus be random and unknown to the adversary. Observe
also that in both worlds, if the adversary does not introduce any errors, then
γ ∗ θ = 0. Now we just need to argue that the shares that the honest parties
output in the real world are identical to that of the ideal world. In both worlds, it
is clear that [a1]n−k, [b1]n−k, [01]n−1, [02]n−1 are randomly distributed given the
corrupted parties’ shares (and also 0 for the last two). Each [cl]n−k is distributed
randomly given the corrupted parties’ shares and al ∗ bl. The same can be said of
[γ ∗al]n−k, [γ ∗ bl]n−k, [γ ∗ cl]n−k, given the corrupted parties’ shares and γ ∗al,
γ ∗ bl, and γ ∗ cl, respectively.

For the random sharings for computation verification: it is clear that S
emulates Frand and Fauth-rand as in the real world. It is also clear that in both
worlds, [01]n−1, [02]n−1 are distributed randomly given the corrupted parties’
shares and 0. Also, the honest parties’ shares of 〈r〉 , 〈γ · r〉 are distributed
randomly.

Thus, we have argued that the real and ideal worlds are indistinguishable
with all-but-negligible probability.
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