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Abstract. This paper introduces a high-performance and scalable hardware architec-
ture designed for the Number-Theoretic Transform (NTT), a fundamental compo-
nent extensively utilized in lattice-based encryption and fully homomorphic encryp-
tion schemes.

The underlying rationale behind this research is to harness the advantages of the
hypercube topology. This topology serves to significantly diminish the volume of
data exchanges required during each iteration of the NTT, reducing it to a complexity
of Q(log N). Concurrently, it enables the parallelization of N processing elements.
This reduction in data exchange operations is of paramount importance. It not only
facilitates the establishment of interconnections among the N processing elements
but also lays the foundation for the development of a high-performance NTT design.
This is particularly valuable when dealing with large values of N.
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Introduction
The contributions of this paper include:

e Pioneering Hypercube Topology in NTT Designs: This research introduces the in-
novative concept of applying hypercube topology to NTT designs. It successfully
addresses the challenging issue of managing a substantial volume of data exchange
within high-performance NTT designs.

o Prototyping a Hypercube-Based NTT Hardware: The study provides a practical
implementation of NTT hardware based on the hypercube topology. Importantly, it
allows users the flexibility to configure the degree of parallelization as per their re-
quirements. The paper also offers theoretical estimations of the timing performance,
which are subsequently validated through concrete implementation results.

1 FHEW-like Fully Homomorphic Encryption Scheme

TFHE [CGGI20] and FHEW [DM15] are examples of the third generation of fully ho-
momorphic encryption (FHE) schemes. They offer advantages in terms of bootstrapping
performance, which is a crucial operation in FHE schemes. The state-of-the-art advance-
ments in TFHE/FHEW indicate that any discrete function f over a small domain Z, can
be bootstrapped. This unique capability is often referred to as functional or programmable
bootstrapping. It allows for performing computations on encrypted data without decrypt-
ing it. In this work, we stay focused on one particular function called NAND gate which is
proposed in the original FHEW paper as:

NAND(z,y) = {0 n Y

1 otherwise

where z,y € {0, 1}.

1.1 LWE and RLWE

TFHE ciphertext is essentially an LWE ciphertext. The LWE ciphertext is defined as
follows:

q n
(aab) = (aa <a,s>—|—;m+e) EZq XZ(]

, where s is a secret key, m € Z; is the message, e is an error term extracted from a discrete
Gaussian distribution with small variance e ~ N(0,0?2). The parameters n, ¢, s character-
ize an LWE ciphertext. We use the notation LW ES"?(m) (or LW Eg(m), LW E(m), LW E(4m)
when the context is clear) to represent an LWE encryption of the message m.

In the TFHE bootstrapping algorithm, another format of ciphertext, called RLWE
ciphertext, is used. An RLWE ciphertext can be viewed as an LWE ciphertext defined
over polynomial ring Rg = Zg[X]/(XN + 1):

(a(X),b(X)) = (a(X),a(X) - 2(X) + %m(X) +e(X)) € Rg x Rg

where z is the secret key, m is the message, e = >, e; X ¢ is the error polynomial where
each coefficient is extracted from a discrete Gaussian distribution with small variance e; ~
N(0,0%). Likewise, we use RLWEN:Q(m) (or RLWES(m),RLWE(m),RLWE(%m)
when the context is clear) to denote an RLWE encryption of the message m(X).



1.2 Key Switch and Mod Switch

Key switching and modulus switching are two important homomorphic operations in
TFHE. We skip the algorithmic detail for these two primitives but outline the functionality
abstractly. KeySwitch takes as input an LWE encryption of message m under secret key z
and outputs another LWE ciphertext encrypting the same message m but under a different

secret key s:
KeySwitch
—

LWEN-Q(m) LW E™M9(m)
KeySwitch utilizes another publicly known key called key switching key KSK to perform
this operation and KeySwitch introduces extra noise to the input LWE ciphertext. In
practice, we may use another form of key switching, called LWE-to-RLWE keyswitch
which homomorphically converts an LWE encryption to an RLWE encryption without
changing the encrypted message:

LWE-to-RLWE KeySwitch

LWEN-Q(m) RLW E™%(m)

ModSwitch takes input as an LWE encryption of message m defined over Zg x Z¢g and
outputs another LWE encryption of the same message defined over Zf]V X Zq with Q > ¢:

ModSwitch
—_—

LWEYQ(m) LWEN%(m)

A unique feature of ModSwitch is that it reduces the noise within the LWE ciphertext.
TFHE bootstrapping utilizes this feature to homomorphically evaluate a discrete function
f while reducing the noise in the ciphertext.

1.3 Sample Extraction

Sample extraction is another classical technique that homomorphically extracts a term in
an encrypted polynomial. More precisely, the input for sample extraction is an RLWE
ciphertext RLW E(m(X)) which encrypts a polynomial m(X) = Zj‘;l m; X" and sample

extraction extracts the i-th term of m(X) as an LWE encryption LW E(m;) denoted as:
LWEN-Q(m;) « SampleExt(RLW EN-Q(m(X),1)

Note that the secret key z = Zili_ol 2 X" is changed accordingly to its vector form

z = (20, ,2n_1). Sometimes, we abuse the notation above and use LW EL"? (mg) <
SampleExt(RLW EN:Q(m(X)) to denote the extraction of the constant term. The com-
putational overhead for SampleExt is trivial and the noise does not grow.

1.4 RGSW cryptosystem

In TFHE/FHEW schemes, a new encryption scheme called RGSW [GSW13] is used as the
basis for homomorphic multiplication. We use the notation RGSWN-@(m(X)) to denote
an RGSW encryption of a polynomial m(X) € Rg = Zg[X]/(X" + 1) under the secret
key z.

Before detailing RGSW, an extended form of RLWE encryption with respect to some
basis B, should be introduced, i.e.,

RLWE'(m) = (RLWE(m),--- ,RLWE(B'm),--- , RLWE(B%~1m))

where dy = [logp,(Q)].
The noise growth for the scalar multiplication d - RLW E’(m) defined in RLW E'(-) is
well controlled since:

dg—1
d-RLWE'(m)= > d;i- RLWE(B'm) = RLWE(Y_ d;B'm) = RLWE(d - m)
1=0 7



Jingwei Hu, Yuhong Fang and Wangchen Dai )

where d = Y. d; B".
RSGW encryption is further constructed based on RLWE'(-) as:

RGSW,(m) = (RLWE.(—z-m), RLWE.(m))

In other terms, RGSW not only encrypts the message m but also encrypts z - m which

encloses the secret key z.

The RGSW homomorphic multiplication between a RLWE ciphertext RLW E(my) =

(a,b) and another RSGW ciphertext RGSW(m1) ©® : RLWE x RGSW — RLWE pro-
ceeds as follows:

RLWE(mo) ® RGSW (m1) =(a,b) ® (RLWE'(—z - my), RLWE'(my))
=a-RLWE'(—z-my)+b- RLWE'(my)
=RLWE((b— as)-m)

:RLWE(%mOml + eomq)

since epm; is a small component and can be treated as noise and thus we have RLW E (%moml—i—
eom1) = RLWE (%moml). Also note that the inputs are asymmetric where one input is

an RLWE encryption while the other is an RGSW encryption. This type of homomorphic
multiplication is also known as external product. Each external product takes 4d, N log N

F¢ multiplications where d, ~ 6 is a small constant used to describe RSGW encryption

if number-theoretic transform (NTT) is applied.

1.5 Blind Rotation

Blind Rotation essentially homomorphically performs an inner product of a public known

vector a def (ap, -+ ,an—1) and the private key vector s def (S0, ySn—1) over the ex-
ponent of X by extensive use of RGSW external product. In order to control the noise
growth during the homomorphic computation, a redundant encryption of the private key
S, t.e., Lj o = RGSW (XVBrsi) for all 4, j,v is used. Algorithm 1 formally describes the
primitive BlindRotate.

Input: bootstrapping key brK Z; ; , = RGSW (XvBrsi) for all i, j,v, RLWE
ciphertext ct = RLW E(X") and a public known vector a.

Output: an RLWE encryption of X~ (2s),
1 fori+ 0ton—1do
Compute a; <+ ¢ — a;
for j +— 0 to logp,q — 1 do

Compute a; j + |a;/B?]
L Compute ACC <~ ACC © Z; ja, ,

U ok WN

6 return ACC
Algorithm 1: the primitive blind rotation BlindRotate(brK, ct, a)

Proposition 1. Given an RLWE encryption of a monomial X°, and a public known
vector a an an pre-computed encryption of the secret keys, i.e., Zj j, = RGSW(X”Bi'Si)
for alli,j,v. Algorithm 1 correctly computes an RLWE encryption of X~ (as),

Proof. The algorithm proceeds in a nested loop with loop-i as the outer loop and loop-j
as the inner loop. Each iteration of loop-i first flattens a; to {a;;} for all j and then



computes in the inner loop-j RLW E(X"™ k=0 ") from RLW E(X"™ 2 k=0 ***) since

. n—1
—a;8; = _; a;,;Bls;. By induction, ACC' returns RLWE(Xb_Zk=0 k%) at the end of
the algorithm. O

1.6 Bootstrapping a NAND gate

A full description of homomorphic NAND gate operation is presented in Alg. 2. accpr, s =
RLWEN-Q(rotP - X™) where m = by — (an,s) = Im +e, clg = LWEY-Q(f(m)), and
cty = LWES(f(m)). HDB is relatively fast since it performs the most time-consuming
operation BlindRotate, whose computational complexity is O(d,N?log N), only once.
Here, dg4 is a small constant used in the TFHE system parameter description. For 80-
bit security, one HDB function evaluation takes less than 1 second by a typical software
implementation on a desktop PC.

Input: bootstrapping key brK, LWE ciphertexts
ct; = LWE§/4(mi) = (a,b) for i € {0,1}, LWE-to-LWE key-switching key
ksK.
Output: an LWE encryption of NAND(mg, m1), i.e.,
cty = LW EZ*(NAND(mqg, my)).

1 Compute ct < ctg + cty
3N

2 Set rotP = £(0) ( EIS CH DA x7) - 1) (2,
f0)=f(1) =%

Set ¢ty < ModSwitch(ct,q,2N) = (an,bn)

Compute accy < rotP - Xbn

Run accpr, ; < BlindRotate(brK, accy,cty)

Run ctg < SampleExt(accgr,s,0)

Run ctg ksk < KeySwitch(ctg, ksK)

Run ct, < ModSwitch(ctg, @, q)

return ct, + (0, )

Algorithm 2: Half domain bootstrapping Bootstrap(brK, ct, f(), ksK)

X7 ) where

N
ER

© N0 AW

Proposition 2. Given an LWE encryption of a binary message mg, and an LWE en-
cryption of another message my, Algorithm 2 correctly computes an LWE encryption of
NAND(mg, myq).

Proof. In line 1, the homomorphic addition returns ct = LWEg/4(m0 + my). In line
2, the rotation polynomial rotP(z) is configured according to the anti-cyclic function
f(x) forx € {0,1,2,3} s.t. f(0) = f(1) = & and f(2) = f(3) = —¢. In line 3, the
primitive ModSwitch is invoked to scale the ciphertext modulus ¢ down to 2N making
cty = LWESQN/ 4(m0 + mq). Line 4 essentially creates a noiseless and trivial RLWE
encryption of rot P(X)- X®¥_ In line 5, the primitive BlindRotate uses the bootstrapping
key to compute accgr,y = RLWEY-Q(rotP-X™) where m = by —(an, s) = 2 (mg+m;)+
e mod 2N. In line 6, the constant term in rot P- X™ is extracted as a new LWE encryption
over a relatively larger ciphertext modulus, i.e., LW EY @ (f(mo +m1)). Line 7 switches
the secret key z back to the original secret key s such that ctg psi = LWE;L’Q(f(mO +my)).
Line 8 performs again the primitive ModSwitch to switch back to the original ciphertext
modulus ¢ such that ct, = LW Eg"?(f(mo+m;)). Inline 9, the final result LW ES"?( f(mo+
my)+q/8) is returned. It is easy to verify that LW ES"(f(mo+m1)+¢q/8) = (a,(a,s)+e)
which encrypts ‘0" if mg = my = 1, and LWEZ(f(mo +m1) +q/8) = (a,(a,s) + § +e)
which encrypts ‘1’ otherwise. O
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2 Number-theoretic Transform Architecture

This section describes NTT hardware at the bottom level. Firstly, The distinguishing
feature is that a series of new twiddle factor LUTs is constructed and used: an independent
twiddle factor LUT, denoted as {w;[]}i=o,....1ogsN—1, i prepared for the i-th round of
butterfly computation (logN rounds in total) as described in Alg. 4. Note that differing
from the standard FFT which uses twiddle factor w%; for i € [N], the NTT used in the
ring R, uses the modified twiddle factor wf; ~w%N for i € [N],j = 20,21, ... 2logN—-1

2.1 Higher level description for NTT with merged twiddle factors

In this subsection, we discuss the NTT algorithm with merged twiddle factors. No pre-
processing or post-processing is required in this variant of NTT algorithm. At an abstract
level, the structure of this NTT algorithm is identical to that of the classic FFT algorithm.

The formal description of this NT'T variant is shown in Alg. 3 which is also refered to
as Cooley-Tukey (CT) butterfly or decimation in time (DIT) in the open literature. It
is essentially identical to the classic FFT algorithm except the twiddle factor array w;[-].
It has logN iterations (loop-i) at outermost, where each iteration computes one layer of
butterfly computations. The i(i = 0,--- ,logN — 1)-th layer of butterfly computation
always has % butterflies. These butterflies are bundled into 2 groups (recorded by the
variable NumberofGroups) and each groups has Q—I\f pairs of butterflies (recorded by the
variable PairsInGroup). The key feature is that at a particular iteration (say the i-th
iteration), the butterflies in a particular group (say the k-th group) share the same twiddle
factor w;[k]. The variable Distance is used to locate precisely two inputs of a particular
pair of butterfly in loop-j, i.e., a[j] and a[j + Distance]. The variables JFirst and JLast
indicate the starting and the ending position of the array a[], respectively, used in the
k-th group of the i-th iteration.

A visualization of Alg. 3 is depicted in Fig. 1a when N = 8. The inputs are a[0], - - , a[7]
where afi] represents the i-th coefficient a; in the polynomial a(X) = Zfigl a; X" The
NTT computation has 3 layers of butterflies: In the first layer (i = 0 for loop-i in Alg. 3),
only one butterfly group (associated with twiddle factor wiy) exists; in the second layer,
two butterfly groups (associated with twiddle factor w?; and wSy) exist; in the third layer,
four butterfly groups (associated with twiddle factors wig, wls, wis, and wig, respectively)
exist. It is worth noting that the ouputs from the NTT network is in bit-reversed order
as A[0], A[4], A[2], A[6], A[1], A[5], A[3], A[7].

Next, we detail how to construct the twiddle factor LUT. Recall the NTT with pre-
processing can be written together as a summation of NV terms:

N-1
A= Z a;jwlywid mod g,i € [0, N — 1] (1)
=0

Next, by splitting the summation above (Equation 1) into even and odd groups ac-
cording to the index ¢ of A;, we obtain

4-1 1
2ij 25 i(25+1) 2541
A= g a2jwy" Way + E 25 +1Wy wyy - mod ¢
Jj=0 Jj=

w|Z

i=0
N N
21 o 21
_ ij g i iy,
= QW x Wy + Wywan g a2j+1w x wy mod ¢q (2)
2 2
=0 =0

Now express A;s in Equation 2 into the first half A; and the second half A, 4 as
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Input: polynomial a(x) € R, represented in an array a[-], Twiddle factors
{wil]}i=0,...1oga N1
Output: NTT(a(z)) represented in a[-] (in-place)
PairsInGroup <— N/2
NumO fGroups < 1
Distance < N/2
for i < 0 to logaN — 1 do
for k + 0 to NumO fGroups — 1 do
JFirst < 2 - k- PairsInGroup
JLast < JFirst + PairsInGroup — 1
for j « JFirst to JLast do
Temp <+ w;[k] * a[j + Distance]
alj + Distance] < alj] — Temp
alj] < alj] + Temp

PairsInGroup + PairsInGroup/2
NumO fGroups < NumO fGroups - 2
| Distance < Distance/2

return al|

Algorithm 3: Higher level description of NTT, a.k.a DITNN—RN

N o A W N R

o]

Input: a polynomial ring R,, and NTT points N
Output: Twiddle factors {w;[-]}io,..., 109, N—1 used in Algorithm 3
FirstPart < 0 where [0---0]2 == BinRepr(0)
SecondPart < 2N~1 where [1---0]y == BinRepr(2¥-1)
for i < 0 to logaN — 1 do
for j < 0to N—-1do
[jlogngl,w ,j0]2 «— BmRepr(j)
Firstpart < Y1 _ jlogaN—i—14k - 21092V 717F
w; [,]] — ¢Firstpart . ¢SecondPart

SecondPart < SecondPart/2

return {w;[-]}i—o,... logsN—1

Algorithm 4: Construction of Twiddle Factor LUTs

follows:
i o 1 o N
A; = Z agjwzéwﬁv + wiwan Z a2j+1wléw3\, mod ¢ for i € [0, 5 1]
=0 =0
4-1 41
Ai+% = agngwgv — whwan Z a2j+1wgw§v mod ¢ (3)
j=0 j=0

Assume N = 2", let Y;(nfl) and Zi(nfl) be solutions to the two half-sized subproblems

(NTT of size of & = 2"~ for the even terms {az;};e(x) and the odd terms {agj41};e(x))
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Table 1: Merged Twiddle Factor used in N-point NTT. The exponent is expressed in
binary form.

twiddle factor associated with a[j] and
alj + distance] where j = [jn—1Jn—2 " j1jo)2

n—1 bits n bits

——
00---00,,10---00

NTT iteration 7

1 =0 w
. Jn—10---00 01---00
1=0 wN . sz
), = j2J3--00  00---10
i=n—2 W W
) — J1J2In—2Jn—1 00---01
1=n—1 Wi Wi
defined by
$-1 N
(n—1) _ ij g .
Y, = E a0y Wy modqforze[O,E—l]
Jj=0
N
(nm1) _ %
n—1) ij j
Z; = E G2j+1wWx wy mod ¢
2
=0

To unify the notation systems, we define ;™ and Z{™ as the first half part and the
second half part, respectively, of A;, i.e., Yi(”) def A; for i € [0, % — 1] and Yi(") def
A; fori € [%, N —1]. Therefore, the Equation 3 is rewritten in a more compact form:

_ : _ N
Yi(n) = Y;(" 2 + wiywan - Zi(” Y = 4; mod q for i € [0, 5~ 1]

27 YD i 2770 = Ay mod g

The key observation for the equation above is that Yi(") and Zi(") has a recursive
structure: for example, Yi(") and Zi(n) are computed from a butterfly computation of
v and 2"V, v and 2"V are computed from a butterfly computation of
Yi("ﬁ) and ZZ-(TFQ), and so on so forth. Note that in the k-th iteration of such recursion
(i.e., v ® and Zi(k), and let K = 2%), the twiddle factor always has the form wi wox. As

1
we have known from the standard FFT, the index i in w) appears in bit-reversed order,
therefore, we generalize the modified twiddle factor in our case as shown in Table 1.
As shown in Table 1, the updated twidldle factor is composed of two multiplicative
factors which is called the first part and the second part in this paper. The first part

of the merged twiddle factor is identical to the standard NTT. We keep the same nota-

n—1 bits n—1 bits

7 Y 5 0---00
tions here and do not repeat the proof. It has the form w?vo"'oo, wg\,”_l

n—1 bits

N

wgvlh N .‘7"_2‘7"_1, for ¢ = 0,1,--- ,n — 1, respectively. The second part of the merged
twiddle factor is w3,,. However, the value of N’ depends on the recursive structure of
butterfly, for the i-th layer, noted as N’ = N/2"71~% where N = 2". In other words,

the second part equals to wi 5, wi 4, -, w%N for i = 0,1,--- ,n — 1. Further to unify
n bits n bits n bits
the second part is rewritten in binary form as w211(\), 00, ng%, 00 .. W(z)z(\)/ 0L gop

i=0,1,-,n—1.
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/:)E w>< wg;’%nA[O]
o o Gher ok
T wZw, 2]

~ofor —ofoipl®

) wk w}l N wlop, M

\x/w?l a),% ~ W w3y =

—ogar ool ]

~peh ol

(a) Generic architecture for NTT with merged twiddle factors (N = 8)

i = |igiviols W -wyR Wi’ WiV wi' Wiy
000 wg}\? wg?\}
001

010 Wy
011 -

100 2N Wik Wil
101

110 wiN
111

(b) Twiddle factor LUT context (N = 8)

Figure 1: DIT instance with N =8

Alg. 4 formally describes how to construct the twiddle factors for each round of but-
terfly computation based on our first-part-second-part concept mentioned above. The key
variable Firstpart is updated in line 6 within the inner j-loop to maintain the desired
binary form Firstpart = [jlog, N~1-i)" " »Jlog, N—1,0,- -+ ,0]2. The other key variable
Secondpart is updated in line 8 at the end of the outer i-loop. The first impression on
Alg. 4 might be that the size of twiddle factor LUTs is about O(NlogN): It has logN
rounds and each round cosumes N/2 twiddle factor for the N/2 pairs of input points.
However, we deploy a simplified twiddle factor LUT with only N — 1 elements for our
actual hardware design. The key observation for reducing the size of twiddle factor LUT
{w;[-]} is that many entries in w;[-] are duplicates and thus redundant. In particular, wq[']
has only one distinct element wg[0], wi[-] has two distinct elements wy[0] and w1[N/2],
wa- - -] has four distinct elements ws[0], wo[N/4], w2[2N/4], and w3[3N/4] and so on so
forth. Therefore, the total valid entries used in {w;[-]} after eliminating duplicates equal
to

logaN—1

Y 2=N-1=0(N)
=0
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00 01 10 11

]

(a) d=4,ID € {Py, P1, P2, P5}

000 001 010 o011 100 101 1101 111

(b) d:8, IDG{P07P17P27P37P47P57P67P7}

Figure 2: Hypercubes of Dimension logod = 2 and logad = 3

Input: d node processors
Output: d node processors with connections

1 Denote the processor IDs as { Py, Py, -+, P;—_1} where d is a power-of-2

2 fori+ 0tod—1do

3 [ilog2d71,"' ,io]2 «— BlnRepT(l)

4 for j < 0 to logad — 1 do -

5 ﬂlp the bit ij in [il()ggd—17 s ,ij, s ,io]g to make [il()ggd—17 v 7Z'j, s 77;0 2
6 if [ilogzdfl, T 7ija T 7i0]2 > [ilogzdfla T 7ij7 T viO]Q then

7 ‘ connect P

and P[z‘,og2d_17--- iy

Tloggd—1,"" »ij, ,i0]2 Jyri0]2

o]

return (P, -+, Py_1)

Algorithm 5: Construction of the logsd-dimensional hypercube

Input: logsd-dimensional hypercubes
Output: communication pattern
Denote the processor IDs as {Py, P1,- -+, Py_1}
for k < 0 to logad — 1 do
/*d /2 pairs of processors exchange data in step-k*/
exchange data between processors P, ., . .

[N I

“ilogad—1—ks 02 and

[tlog2d—1,""" yiloggd—1—k,* ;0]2 which differ at togad—1—k

5 return c(z)

Algorithm 6: Subcube-doubling communication in logsd-dimensional hypercube

2.2 log,d-Dimensional Hypercube Multiprocessors

In this subsection, we introduce the hypercube topology which fits the parallelized version
of NTT algorithm. The hypercube is also the basis for hardware architecture proposed in
this work.

Before detailing the parallel NTT algorithm and hardware, the computing model used
in this paper must be clarified. There are d identical node processors organized in a
hypercube of dimension logod. Each node processor includes one butterfly unit and some
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Table 2: Subcube-doubling communication in 3-dimensional hypercube
steps connections

Step-(0)

OOOl 001 010| 011 100l 1011 110 111
® ® ®
000 001 010 011 100 101 110 111

som 11 T 1Y

: 000 001 010 011 100 101 110 111
Step-(2) ° ° ° ° ° ° ° °

storage (IN/d NTT points). Roughly speaking, this logsd-dimensional hypercube structure
should increase the speed of sequential NTT algorithm by d times. Fig. 2a illustrates
the hypercube architecture of dimension 2 where 4 node processors (i.e., Py, Py, Po, Ps
labeled as it binary form ’00’, ’01’, ’10’, and ’11’) are implemented. The node processors
are sparsely connected with each other where any one of them are connected to the other
2 processors. For example, Py is only connected to P; and P,, P; is only connected to
Py and P3;. Fig. 2b illustrates the hypercube architecture of dimension 3 where 8 node
processors (i.e., Py, P1,---, P; labeled as it binary form ’000’, '001’, ..., and '111’) are
implemented. The node processors are sparsely connected with each other where any one
of them are connected to the other 3 processors. For example, Py is only connected to Py,
P2 and P4, P; is only connected to Py, P3 and Ps.

Alg. 5 formally describes how to construct the logad-dimensional hypercube by sparsely
connecting d node processors. The key idea here is that for each processor P;, rewrite the
index 4 in binary form as [ilogzd,h -++ ,ip]a2, and connects those processors P; whose index
J = [Jiogsd—1,- "+, Jjo|2 differs only 1 bit compared with ¢. In particular, each node processor
connects only to logad other node processors in this logsd-dimensional hypercube topology.
The if condition in the for-loop in Alg. 5 helps rule out the possibility of connecting the
same pair of nodes repeatedly. When the computation continues in the hypercube, the
intermediate data generated in each round of computations typically requires exchange
between node processors. This type of data exchange is referred to as ‘subcube-doubling’
communication in the literature. There are in total logad rounds of exchange during the
communication as described in Alg. 6: In step-(k), each node processor P; with index
© = [ljogyd—1, "+ ,0]2 exchanges data with P; whose index j differs at the logod — 1 — k-th
bit.

An illustration instance with d = 8 for subcube-doubling algorithm (Alg. 6) is given
in Table 2. logod = 3 communication steps are required in this example: In step-(0),
processor Py, i, iy}, connects processor P[E.,il.,io]z which differs at io, and there are d/2 = 4
such pairs of connections, i.e., Py — Py, Py — P5, P, — Ps, Ps — Py; In step-(1), processor
P, i1 i0], cOnnects processor P[izﬂ,io]z which differs at i1; Finally, in step-(2), processor
Phis v o), conmects processor P, o which differs at ig.

2.3 A Useful Equivalent Notation: |PID|Local M

Assume that N points are stored in the global array a[] = {an_1,---,0} or simplified
as al] = {ai}i=n_1,.. 0, and the elements in the array are assigned evenly to d node



Jingwei Hu, Yuhong Fang and Wangchen Dai 13

processors for storage and processing. Then the array address based notation uses a
logN-bit integer i = ijogn—1 " i0y:

HogN—1 """ Th+1]Tk -+ Tk—logd+1|Tk—logd - - * T0

to indicate that cosecutive logd bits iy ---ir_i0ga+1 are chosen to specify the data-to-
processor allocation.

In general, since any logd bits can be used to form the processor ID number, it is easier
to concatenate the bits representing the processor ID into one group denoted by ‘PID’,
and refers to the remaining logIN — logd bits, which are concatenated to form the local
array address, as ‘Local M’ This paper uses the following equivalent notation, where the
leading d bits are always used to identify the processor ID number.

N—-k—1 k—logd+1

‘PID|LOC&1 M = | ik s ik—logd—i—l | iN—l s ik+2ik+1 ik—d s ilio
—_— —
logd

Table 3 shows the details about the data allocation for hypercube processor array after
a naturally ordered input series of N = 32 elements are divided among d = 4 processors
using one particular cyclic block mapping i4i3|iziiig. For instance, to locate a,, = asg,
a[r], r = iqislizi1io = 11|0102 = 26, meaning that a[26] = ags (the element agq is located
in a[26]) is allocated by processor P;,;, = Po;.

413

Table 3: Local data in processor P;,;, expressed in terms of global array element a[m|, m =

413

\PID|Loca1 M PiAiB = P(][) ‘PID‘LOC&] M P’idis = P()1 |PID|LOCH,1 M Pi4i3 = Pl() ‘PID‘LOC&] M Pidifi = Pll
i4i3|i2i1i(, a[m] 7,’42’3‘7;22'17;0 a[m} i4i3|i2i1i0 a[m] i4i3|i2i1’i(, a[m]
00000 a[0] 01]000 a[g] 10]000 a[16] 11]000 a[24]
00]001 afl] 01]000 al9] 10/000 a[17] 11]000 a[25]
00010 al2] 01]000 al10] 10[000 a[18] 11]000 a[26]
00]011 al3] 01]000 a[11] 10/000 a[19] 11]000 a[27]
00]100 al4] 01]000 a[12] 10/000 a[20] 11]000 a[28]
00]101 a[5] 01]000 a[13] 10/000 al21] 11]000 a[29]
00]110 a[6] 01]000 a[14] 10/000 a[22] 11]000 a[30]
00|111 a[7] 01000 al15] 10[000 a[23] 11]000 a[31]

On the other hand, when the input elements are stored in a in bit-reversed order, i.e.,
alr] = am, where m =i, _19p_o - -ig, and r = ig -+ - ip_2i,_1, then the equivalent notation
is as follows:

k—logd+1 N—k—1

|PID|Local M = |ik—iogd+1 -tk | %0 ik—logd th+1 " in—1
—_———
logd
Table 4 shows the details about the data allocation for hypercube processor array after

an inverse ordered input series of N = 32 elements are divided among d = 4 processors
using one particular cyclic block mapping 4gi1|izigis. For instance, to locate a,, = asg,

a[r], r = igi1|i2izis = 01|0113 = 11, meaning that a[11] = ag¢ (the element agg is located

in a[11]) is allocated by processor P; ;, = Po;.

2.4 First attempt: parallel in-place FFTs without inter-processor per-
mutations

Consider the DITy N rn algorithm (Alg. 3) and use the cyclic block mapping introduced
in the last subsection. For N = 32,d = 4, the computation is depicted below:
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Table 4: Local data in processor P;;, (bit reversed) expressed in terms of global array

‘PIDILOC@] M Pj[)il = POO ‘PID‘LOCdl M Piuh = Po] |PID|LOCdl M B(lil = P]o ‘PID‘LOC&] M B[ﬂjl = P]]
2071|221314 a[r] ioil‘i2i31‘4 (l[T] i0i1|i2i3i4 a[r] i0i1|i2i3i4 a[r]
00[000 a[0] 01000 afs] 10000 a[16] 11]000 a[24]
00]001 all] 01]000 al9] 10/000 a[17] 11]000 a[25]
00010 af2] 01]000 a[10] 10/000 al18] 11]000 a[26]
00]011 af3] 01]000 al11] 10/000 a[19] 11]000 af27]
00100 af4] 01]000 af12] 10]000 a[20] 11]000 a[28]
00[101 al5] 01]000 a[13] 10]000 af21) 11]000 a[29]
00110 al6] 01]000 af14] 10]000 af22] 11]000 a[30]
00]111 al7] 01]000 a[15] 10/000 a[23] 11]000 a[31]
v v v v v
liai3lizi1io "ZliS‘iZiliO \T4iA3\i2i1io |TaTslioirio  |TaT3|T2irio  |TaT3|T2Tiio
Initial Map == ==
The initial map indicates that the processor Py initially holds the elements a[8k], - - - , a[8k+

7] for k = 0,1,2,3. The shorthand notation previously used for sequential NTT is aug-
mented by two additional symbols. The double-headed arrow <—=—- indicates that %
data elements must be exchanged between processors in advance of butterfly computation.
In our example, the NTT takes 5 rounds where the first two rounds require data exchange
among proessors and the last three rounds do not require data exchange. The symbol i
identifies two things:

o First, it indicates the input source of external data: the incoming data from another
processor are the elements whose addresses differ from a processor’s own data in bit
ik

e Second, it indicates that all pairs of processors whose binary ID number differ in bit
i send each other a copy of their own data.

The required data communications before the first stage of butterfly computation (step-
0) are explicitly depicted in Fig. 3a and Fig. 3b: P, swaps data with P, such that a[i] pairs
with a[i + 16] to perform the required butterfly computation in the same processor for
i=0,---,7,and P; swaps data with P; such that a[i] pairs with a[i 4+ 16] to perform the
required butterfly computation in the same processor for ¢ = 8, --- | 15; the required data
communications before the second stage of butterfly computation (step-1) are depicted in
Fig. 3c and Fig. 3d: P, swaps data with P; such that a[i] pairs with a[i+ 8] to perform the
required butterfly computation in the same processor for i = 0,--- ,7, and P, swaps data
with P3 such that a[é] pairs with a[i + 8] to perform the required butterfly computation
in the same processor for ¢ = 16,---,23. The last three steps (step-2,3,4) do not require
data swaps since all elements needed for butterfly computataion are already within the
precessor: for example, in step-2, a[0] pairs a[4], a[1] pairs a[5], a[2] pairs a[6], a[3] pairs
a[7], which are all located within processor Py.

Remarks The parallel in-place NTT without inter-processor permutations approach
employs data exchange between a pair of processors. That is, one processor’s initial com-
plement of data may swap with that of another processor. With use of this type of data
exchange, N/d butterfly computations are performed in parallel at the cost of a number
of N/d data swaps per processor.

2.5 Second attempt: Parallel NTTs with Inter-processor permutations

In this subsection, we discuss the class of parallel NTTs which employ inter-processor
data permutations. Similar to the one presented in the previous subsection which evenly
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Bu:urﬂvstage Global Address of a[m] B“:"'"Vs“ge Global Address of a[m]

iaiglizirig m = iylziplyio iats|izirio m = liylzipliio

PR [ l == [ l
liaislizirio Py = Py, Py =Py, liadalizislo liaislizirio Py, =P, Py =Py, atalizialo
100000 fato] plae] 10]000 [01j000  fatg] pize] 111]000
100[001 el pir7] 110]001 101]001 2t°] pi2s 111]001
joojo10 2] b 110j010 jo1jot0 ol bis] |11]010
100[011 [ai3]] fiss] 110[011 l01j011 i) bizr| |11]011
100100 |ata] PO and P2 send each pizo} 110]100 jo1j100  pis2] P1and P3 send each bizs] 111]100
joojto1  [is] other 3 copy of thelr et} j10/101 jorjt01  pisl othera copy of their pis) 111/101
j00j110 faie] pizz| 110]110 jotjit0  puaf pizo} 111]110
jooj111 i) piz] j10]111 jo1j111 115 1] J11]111

(a) In round-0, Data sent and received by  (b) In round-0, Data sent and received by
processors Py and P» processors P; and Ps

Butterfly Stage Butterfly Sta
Global Address of a[m] utterfly Stage Global Address of a[m]

v
\Tué«\r_»mn m = iylziplyiy |Tai3lizivig m = l4islplyiy

liaislizizio Poo = Py Piu =Py, lisilizisio liuislizinio p = P, Py = Py, lialslizhlo
100000 o] [ats] 101/000 j10j000 ] fe] 11]000
100j001 Pl 2] 101]001 110/001 17] fa2s] |11]001
joojoz0 i pio] 01/010 |10/010 19 bzs |11]010
foojo11 ] pit] j01/011 110/011 ) b7 j11j011
100100 ] POand P snd each piz] 101]100 |10j100 b0 P2 and P3 send each fizs] 111]100
other a copy of their = =
joojto1  pis] 2 copyof | j01/101 j10/101 il other a copy of ther bis] |11]101
j00j110 fle] pla] j01]110 j10j110 b2} fio] J11]110
jooj111 il piss j01/111 j10]111 23 = j11111

(¢) In round-1, Data sent and received by  (d) In round-1, Data sent and received by
processors Py and Py processors P> and Ps

Figure 3: An illustrative example for parallelizing in-place NTT(N = 32,d = 4) without
inter-processor permutations

distributes all butterfly computations among the processors, the new method also reduces
the message length from % elements to %% in each of the logad + 1 concurrent message
exchanges.

The complete algorithm We use the shorthand notation we have developed with
symbols A and V¥, the complete parallel algorithm corresponding to DITnygr NTT is

represented below for the N = 32 example.

v v v v v
ligigligizio  |iois|iatinio |iaTalizinio |TaTalinirio  |T3TalTeirio  |TsTa|T2Tii0
AT A AA A A

Initial Map —— —— ——

To provide complete information for this example, in the initial map (before perform-
ing the first stage butterfly computation), the input data are distributed as the element
Qiyizinisio caN be found in Aligiyig] in processor P;,;,. For example, a[19] = a19 is shown
to be initially in A[3] in P; and A[14] = a14 in A[6] in P; in Fig. 4a since 19 = 10|0115
and 14 = 01]110,.

To prepare data for each processor in the first round of butterfly computation where
P, connects P, and P; connects Ps due to the hypercube structure, Py swaps the second
half of his local array with the first half of P»’s local array, and P, swaps the second half
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Butterfly Stage Global Address of a[m] suttertly stage ol Address of afm]
nisliyizio m = byisizirly v m = iyiaiiriy
lizislisiria
intal [PIDllocal M intal [PIDlloca T i ol inital [PIDlocal M
liislizivio  py, = P =Py, lstalizizio lisislizisio p,, = p,, —p,, laislizisio
[00j000 [aio] jojoo T 1011000 1000 T
oojoo1 i Inter-processor fojoor e 3(5) 1011001 1111001 exchange §(%)
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J00jo11 [oojo11 [} jooji11  [<L 110j011 lo1j011 lotjo1r il jo1[111 111j011
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(a) In round-0, DITnr butterfly computation with data
Py and P>, and P; and Ps, respectively
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(b) In round-1, DITn g butterfly computation with data migration between processors
Py and P1, and P> and Ps, respectively
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(¢) In round-2/3/4, DITnr butterfly computation with data migration between proces-
sors Py and P>, and P, and Ps, respectively
Figure 4: An illustrative example for parallelizing in-place NTT(N 4) with
inter-processor permutations

of his local array with the first half of P5’s local array as dipicted in Fig. 4a. The symbols
A are used to locate the exact position of the element a; after such data swap: the bit
ix, which has just been permuted from PID to Local M, and the bit iy, which has just
A A



Jingwei Hu, Yuhong Fang and Wangchen Dai 17

v
been permuted from Local M to the PID. In our case, the notation |igig|isiiig is used
AA

which means bit ¢4 in the PID and bit i5 in the local M switch their positions in the
shorthand notation (denoted by the symbols A) making the memory mapping changed
P,is. For example, a[19] = a19 is relocated to A[7] in Py (A[7] means the 7-th element
for Py’s local array) after the inter-processor permutation shown in Fig. 4a since 10/0115
is changed to 00|111y; a[14] = ay4 is relocated to A[2] in P after the inter-processor
permutation shown in Fig. 4a since 01]|1105 is changed to 11|0102. After the memory
swap, all data are located correctly in the corresponding processors to perfom the first
round of butter fly computation. The symbol ¥ is used to indicate the pairs of elements

v
for the butterfly computation in each processor, i.e., |iziz|isi1i9 means Alizi30i1i0] should
AT A

pair with Alizigliyig] to complete elementary butterfly unit computation for P;,;,. Also,
the index ij that the symbol ¥ points to is changed to 7 for showing that this particular
round of butterfly computation is completed. A quick observation is that there are i — 1
indices changed to 7 in the notation for the i-th round of computation: for example,

v v
ligig|isi1ip represents the first round where no 7 indices exist; |ia74|igi1ip represents the
AT A A A

second round where one 7 index (i4 changed to 74) exists and etc.

For the second round of butterfly computation where Py connects P, and P, connects
P53, Py swaps the second half of his array with the first half of P;’s local array, and P»
swaps the second half of his local array with the first half of Ps’s local array as dipicted

v
in Fig. 4b. a similar notation |iaT4|izi170 is used to denote the memory swap: bit 74
A A

in the PID and bit i3 in the local M switch their positions in the shorthand notation
making the memory mapping changed from previous i9i3|i4i14g t0 i2i4|izi199. For example,
a9 which is previously stored in A[7] from Py, is now changed to A[3] from P; since
19 = 10]0115 is rearranged to 01|0115. Moreover, A[igis0i1ig] pairs with Alizigliiig] to
complete elementary butterfly unit computation for P;,,, for all is,i4,%1,%.

For the third round of butterfly computation where Py connects P, and P; connects
P53, Py swaps the second half of his local array with the first half of P’s local array, and
P; swaps the second half of his local array with the first half of P5’s local array as dipicted

v
in Fig. 4c. This swapping pattern is captured in the notation |7374izi14 indicating the
A A

previous igi4|igi1ig is changed to i3isliziiig due to the A annotations. For example, aqg
which is previously stored in A[3] from P; is still preserved in A[3], P since 19 = 10[0115 is
rearranged to 01/0115. The ¥ annotation indicates that A[izis0iqig] pairs with Alizig1i1io]
to complete elementary butterfly unit computation for P;,;, for all is,4,%1, %0.

There are no inter-processor data swapping for the last two rounds, i.e., the fourth
and the fifth round of butterfly computation. However, the ¥ annotation helps distinguish
which two data elements should pair to complete the elementary butterfly unit computa-
tion inside the processor: in the fourth round, Alizisia0ig] pairs with A[izisislio] for Py,
and in the fifth round, A[igigiziq0] pairs with A[igigigiq1] for P; The computations in
the fourth and fifth round are merged to Fig. 4c.

After all five rounds of butterfly computation are completed, the NTT results are

304"

(5) _ _ 10t14293%4 1 \j
Q; inininio — Aioilizisu where Aioi1i2i3i4 = Z j aj (wN ’ sz)
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located in a[igiqip] in processor Py,;, (rather than the initially assigned processor
Pi4i3)

For example, Py has stored a[0] — a[7] where a[0] computes A[0], a[1] computes A[16],
and etc.; Py has stored a[16] — a[23] where a[16] computes A[1], a[17] computes A[17], and
etc.; Py has stored a[8] — a[15] where a[8] computes A[2], a[9] computes A[18], and etc.;
P5 has stored a[24] — a[31] where a[24] computes A[3], a[25] computes A[19], and etc.

Remarks on the correctness of the notation Because i;, was in PID session before
the switch, i = 1 in one processor, and i; = 0 in the other processor. On the other hand,
because iy was in Local M session before the switch, i, = 0 for half of the data, and i, = 1
for another half of the data. Consequently, the value of iy, the PID bit, is equal to iy,
the local M bit, for half of the data elements in each processor, and the notation which
represents the switch of these two bits identifies both the PID of the other processor as
well as the data to be sent out or received. To depict exactly what happens, the data

v
exchange between two processors and the butterfly computation represented by |iais|isi1io
AT A

is shown in its entirety in Fig. 4a and 4b.

Input: a polynomial ring R,, and NTT points N, input a = (a[0],--- ,a[N —1])
Output: NTT(a)) = A = (A[0],--- , A[N — 1))
1 Initialize the hypercube connections between d processors as described in Alg. 5
2 Initialize the merged twiddle factor look-up table {w;} as described in Alg. 4
3 /*arrange the data array a[] in natural order*/
4 Initialize the data a[ilogzN—lOggd—l cee ilio] in Pilog2N—1"'ilog2N—log2d with
alijog,N—1 - - i1%0] for all Gjog,n—1,- -+ , 10
/*perform the first logad + 1 round of computations where inter-processor data
swapping is required*/

o

6 for j < 0 to logod do
7 if j # logad then
exchange the first half of data in P, 1 ijppy -1 itogyn—10gga W-I-b-
tlog,N—1—;j = 0 with the second half of data in
Pilogszl"'iLOQQNflfj"'ilogszlode w.I.t. ilogszlfj =1
9 else
10 exchange the first half of data in P, 1 ijopon 1 itogyn—togga W-I-b-
tlog,N—1 = 0 with the second half of data in
| Pilogszl"'ilugszlfj"‘iloyszlode w.r.t. ilogzN—l =1
11 perform within each processor P, . iingn—1-;itogyn —1ogya T1€ x
butterfly computations (round-j butterfly)

12 /*perform the first loga N — logad — 1 round of computations where
inter-processor data swapping is not required*/
13 for j + logod+ 1 to logoN — 1 do

14 L perform within each processor P; the &

logngl"'ilognglfj"'ilog21\77log2d

butterfly computations (round-j butterfly)

15 return the data in all d processors as A
Algorithm 7: Parallel Hypercube NTT

Twiddle Factor LUT Distribution Let us discuss in details on the distribution of
the twiddle factor LUT within each butterfly processor here. In the first logd 4+ 1 rounds
of butterfly computations, memory swapping occurs and each butterfly processor utilizes
only 1 twiddle factor; in the next logN —logd — 1 rounds, no memory swapping occurs and
the number of twiddle factors utilized in eah butterfly processor increases exponentially
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(starting with 2). Therefore, the total number of twiddle factors (the depth of twiddle
factor LUT) in each processor is:

logd+1 logN —logd—1 N
1+ 2" = — +logd — 1

A concrete example for the twiddle factor LUT distribution can also be found in Fig 4.
In the first 3 rounds, each processor uses only 1 twiddle factor, i.e., ®19990 where ®
denotes the 2N-th primitive root of unity woy. In the 4-th round, each processor uses
2 twiddle factors, i.e., @190 for 7, € {0,1}. In the 5-th round, each processor uses 4
twiddle factors, i.e., ®7274100 for 7, € {0,1}, 73 € {0,1}. Therefore, each processor stores
14+ 244 =7 twiddle factors for the proposed hypercube NTT architecture.

2.6 Butterfly Processor
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Figure 5: Internal structure of butterfly processor

Design Overview To perform the butterfly computations and related memory access
in each processor efficiently as illustrated in Fig. 4, a butterfly processor architecture is
proposed. Fig. 5 depicts the internal structure of the butterfly processor. Two memory
blocks are instantiated: one dual-port RAM for the % points, namely a NTON N for

i € [d], and one single-port ROM for the % +logd—1 precomputed twiddle factors. At first,
two points which forms the pair for the elementary butterfly computation unit, e.g., a; and
a; are simultaneously extracted on memory_douta and memory_doutb from the dual-port
RAM. Then a; and a; are fed to the input ports butterfly_dinl and butterfly_din2 of
the butterfly structure. This butterfly structure consists of one Barret modular multiplier
(apply Alg. 8), one modular adder (apply Alg. 9), and one modular subtractor (apply
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Alg. 10). After the butterfly computation is completed, the results a; +a;-w and a; —a; - w
appear at the output ports butterfly_doutl and butterfly_dout2. Finally, the two
results are simultaneously written back to the RAM through the ports memory_dina and
memory_dinb. It is worth mentioning that the butterfly processor is fully pipelined such
that a pair of valid data butterfly_doutl and butterfly_dout2 is written back to
the RAM every clock cycle, which maintains a relatively high throughput of butterfly
computation. This characteristic is crucial for high speed implementation of FHE scheme
since the parameter N (the number of NTT points) is typically set to be large (typical
value is around 1k) for maintaining the hardness of the (Ring-) LWE problem.

Input: two integers a and b over Z,
Output: a-beZ,
Precompute an integer k = [logaq]

-

. k
2 Precompute an integer r = L%J
3 Calculate x =a-b
4 Calculate t =2 — | {¢] - ¢
5 if t < ¢ then
6 ‘ return ¢
7 else
8 L returnt —q

Algorithm 8: Barret-Reduction based Modular Multiplication

Input: two integers a and b over Z,
Output: a+be€Z,

1 Calculate t =a+b
2 if t < ¢ then

3 ‘ return t

4 else

5 | returnt—gq

Algorithm 9: Modular Addition

Input: two integers a and b over Z,
Output: a—be€Z,
Calculate t =a — b
if ¢t > 0 then
‘ return ¢
else
L return t 4 ¢q

[ U VN

Algorithm 10: Modular Subtraction

Timing analysis Let one unit denote the delay of one clock cycle, T;,,; denote the
delay of standard integer multiplication, T;,0qmw; denote the delay of Barret reduction
based modular multiplication algorithm, and T},odadd(Tmodsus) denote the delay of modu-
lar addition(subtraction) algorithm. The delay of one butterfly computation is calculated
as

Tbutterfly = Ts’wap + Tmul + Tmodmul + Tmodadd
Note that the proposed butterfly processor is fully pipelined and therefore it takes Typutter fiy+
é\'—d — 1 to process % butterfly computations.
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Fully pipelined computation The key point for fully pipelined butterfly com-
putation is to streamline the generation of memory address, i.e., memory_addra and
memory_addrb in Fig. 5. Note that the NTT butterfly address generation pattern is
rather complicated: it varies distinctly in different butterfly computation round. It is de-
sirable to implement some other simpler patterns and later combine these simple patterns
to create the address generation. In our design, we use five registers, cntb, roundi, dist,
cnt, and base to assist the generation of memory_addra and memory_addrb in every clock
cycle:

e cntb: base counter register, used to generate the basic logic pattern, i.e., a square
wave signal with period of % cycles

e roundi: butterfly round register, used to indicate the current round of butterfly
computation

o dist: distance register, used to record the distance between memory_addra and
memory_addrb s.t. memory_addrb—memory_addra+dist

e cnt: counter register, used to indicate the incremental offset value for generating
memory_addra

o base: the (basis) starting address for memory_addra in each round of butterfly
calculation

Moreover, we use two pre-computed arrays blk and dist to help generate the correct
values in the five registers mentioned above. blk is related to the variable NumOfGroups
in Alg. 3, and indicates the number of butterfly blocks in every round of butterfly calcu-
lation and has logs [N elements; dist is related to the variable Distance in Alg. 3, and
indicates the distance between memory_addra and memory_addrb in every round of but-
terfly calculation and has logo N elements. The construction blk goes like this: The first
logd elements are always 1; starting from the (logd + 1)-th element down to the last one,
i.e. the last logN — logd elements formulate a geometric sequence with initial value 1 and
common ratio 2. The construction dist goes like this: The first logd elements are always
%; Then the last logN — logd elements formulate a geometric sequence with initial value
% and common ratio % For example, if N = 32,d = 4, then blk = {1,1,1,2,4} and
dist = {4,4,4,2,1}.

The generation of memory_addra and memory_addrb in Fig. 5 is formally described in
Alg. 11. The generated addresses basically map to the memory location of two butterfly
inputs (butterfly_dinl and butterfly_din2 shown in Fig. 5). A more concrete example
for when N = 32,d = 4 is depicted in Fig. 6. Every register including cntb, roundi, dist,
cnt, and base has 5 phases each of which corresponds to one of the logIN = 5 rounds of
butterfly computation. Each phase costs 4 clock cycles. For example, cntb updates as
0,1,2,3 in every phase; whereas roundi updates as ¢ in phase-i(i = 0,1,2,3,4). We also
assume the calculation of memory address (step6-step7 in Alg. 11) takes one clock cycle
delay and thus the result appearing in memory_addra and memory_addrb is delayed by
one clock cycle as shown in Fig. 6. The sequence of memory_addra and memory_addrb can
be interpreted as follows: In the first clock cycle of phase-0, memory_addra outputs 0 and
memory_addrb output 4 (extracting a[0] and a[4] from the local memory a[-] within the
node processor); in the second clock cycle, memory_addra outputs 1 and memory_addrb
outputs 5, and so on so forth. Finally, in the first clock cycle of phase-4, memory_addra
outputs 0 and memory_addrb outputs 1; in the second clock cycle, memory_addra outputs
2 and memory_addrb outputs 3, and so on so forth.

Based on the memory address generation pattern described in Fig. 6, we can finally
introduce the complete memory address control logic (See Fig. 7) used in the proposed
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butterfly processor. Again, all registers are represented in 5 phases where each phase costs
3 clock cycles. The register current_state indicates one of the three current status in
each phase as follows:

e ADDR_RD: In this state, butterfly processor reads the corresponding butterfly inputs
(butterfly_dinil and butterfly_din2 in Fig. 5) from memory in a pipelined fash-
ion

e IDLE: This state is optional, and is used only if N is relatively small. For more
details, refer to the next section.

o ADDR_WR: In this state, butterfly processor writes back the computed results (butterfly_doutl
and butterfly_dout2 in Fig. 5) to memory in a pipelined fashion.

Note that the entire butterfly computation takes logIN = 5 iterations. If N is relatively
small and d is relatively large, the state register transits by ADDR_RD — IDLE — ADDR_WR
in each iteration; otherwise, the state register transits by ADDR_RD — ADDR_WR. A more
detailed analysis on the delay of the state IDLE for prescribed parameters N, d is given in
the next subsection.

In state IDLE, the address is invalid since the purpose of IDLE is to wait for the correct
results from the butterfly computing module and thus does not need the address signal
to interact with memory. The address pattern used in state ADDR_RD is identical to that
used in ADDR_WR: our butterfly processor is fully pipelined and, therefore, whenever it
reads some data from some specific address in state ADDR_RD, it must write back to the
same location later in state ADDR_WR.

Input: the number of NTT points N and the number of butterfly processors d
Output: memory address memory_addra and memory_addrb for butterfly
computation

1 Precompute blk and dist

2 for roundi < 0 to logN — 1 do

3 dist <« dist[roundi]

4 for blk < 0 to blk[i] — 1 do

5 base  —~— - blk

d-bIK[i]

6 for cnt&OtoWA{km—ldo
7 memory_addra < base + cnt
8 memory_addrb < base + cnt + dist

Algorithm 11: Memory address generation for butterfly computation

2.7 Microbench Implementations

Timing analysis The main states we used are ADDR_RD and ADDR_WR which are used for
memory read and memory write, respectively. If the delay of butterfly computation is
longer than that of ADDR_RD, then an auxillary state called IDLE is inserted in between
because the node processor cannot write valid data back to memory until the butterfly
unit outputs the NTT results. Precisely speaking, if 2—]\; — Tappr_ap + 1 < Tuttersiy, then
IDLE with delay Tipie = Thuttersiy — % + Thopr_rp — 1 is required. The delay for the state
ADDR_RD and the state ADDR_WR are % respectively, i.e., Typpr ;0 = Tappr_WR = é\'—d. In
summary, the total delay for the hypercube NTT with d processors is:

N
logN - <d + max(TIDLE,O))
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Time
cntb 0123 X0123 X0123 X 0123 0123
roundi o X 1 2 3 X 4
dist 4 4 X 4 X 2 1
cnt 0123 X 0123 0123 0101 X 0000
base 0000 X 0000 X0000 X0044 0246
1 cycle delay
memory addra * 0123 X 0123 0123 0145 X 0246
_ *y
[
memory addrb | 14567 X 4567 4567 2367 X 1357

Figure 6: Illustrative timing diagram for memory address generation in line with
Alg. 11(N =32,d=4)

0-th round 1-st round 2-nd round 3-rd round 4-th round

——— = o it e —~
current_state ADDR_RDx IDLE ADDR_WRXADDR_RDx \VIEI:E,XQDDR,WMDDR,RI;X\!IELE, ‘QDDR7W%DDR7R9X\![)7LE/XQDDR7W%DDR_R;)X:IE)LE/X%\\DDR_WR
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Figure 7: Top-level timing diagram for hypercube NTT in 5 rounds(N = 32,d = 4)

Table 5: Performance of the configurable hypercube NTT hardware for FHEW-like FHE
schemes on Xilinx Artix-7 FPGA

Instance # of processors freq cycle CLB/LUT/Reg memory DSPs
2 100 5120 451/2309/1756 3 30
4 100 2560 760/3581/2940 6 60

N =1024,q ~ 232 8 100 1280  1402/4238/5480 12 120
16 100 640  2174/10669/10591 24 240
32 100 430  3937/19250/18738 48 480
64 80 350  7835/39009/37060 96 960

In our concrete experiment, Tappr_sp set to 1 and Tiyetersry Set to 27. Therefore the
total delay for the hypercube NTT is further simplified to logN - (% + mazx(27 — 2—]\2, 0)).

Experimental data The proposed design is implemented on Xilinx Zynq UltraScale+
ZCU106 evaluation board using Vivado 2018.1. The number of NTT points is set to 1024,
a typical value used in FHE schemes. The number of NTT processors is configured to
2,4,8,16,32, and 64 to fully demonstrate the scalability of our hypercube NTT design. It is
worth mentioning that our implementation follows the parameterized design approach, i.e.,
our NTT hardware can be customized and auto-generated on the fly from a script file by
inputting core parameters of hypercube NTT, for example, N and d. The experimental
results are collected in Table. 5. As the parameter d increases, the clock frequency is
rather stable around 100 MHz, which indicates the hypercube memory swapping strategy
is successful to maintain a good critical path delay. If the number of processors is smaller
than 32, the cycle delay equals to logN - % and thus the increase of d reduces significantly
the cycle delay: for example, doubling d suggests cycle delay reduced by half. As the
number of processors gets even bigger (> 32), the IDLE state is inserted and the cycle
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delay equals to logN - (% + 27) for which the performance boost by increasing d is rather
marginal. For this case, we can optimize the performance of butterfly computation (more
concretely, modular reduction) to further improve it. However, we do not push the limit
on this direction which is not the focus in this paper.

2.8 System Integration on Xilinx MPSOC platform

HW , SW
AX| Master :
i 1
i |
i ‘ !
A Masor ‘ Ny
t
i X C2H channel .
: EE) Smart
[l Conversion 1 XDMA
1 connect

i t Driver

N ; AXI-lite config RX 1
H ! XDMA 1 (Kernel space) (User space)
i I
; |
AXI Master i |
L) ey !
‘ !
! 1
Computation ; Communication PCle

Figure 8: A software-hardware co-design for FHEW where the NTT module is imple-
mented in PL logic and the software runs in PS logic

We also conduct an FPGA implementation experiment for the entire FHE bootstrap-
ping where the NTT module is implemented in PL logic and the FHEW software (written
in C++) runs on ARM PS logic. The target hardware platform is Xilinx Versal VMK180
development board. Figure 8 illustrates how a software-hardware co-design for a NTT-
accelerated FHEW is built. The integration between FHEW software and NTT hardware
is achieved via Xilinx’s XDMA core. As a DMA, the core can be used for high perfor-
mance block data movement between the PCle address space and the AXI address space
using the provided character driver [Inc23]. In this architecture, the NTT hardware is
divided into computational and communication segments. The NTT computation module
is composed of several NTT computation nodes that execute distinct NTT calculations.
The NTT communication module is responsible for data exchange with the software.

In the specific process of software-hardware collaboration, in order to execute a single
NTT hardware computation, the host needs to transmit 1,024 data segments for calcula-
tion to the FPGA, exemplified by an NTT configuration of N = 1024 points and ¢ < 232.
The host sets up buffer space in system memory and creates descriptors that the DMA
engine use to move the data. When the hardware DMA core receives the data, it stores
the data into the DDR memory and informs the NTT computing module that the data is
ready. The data conversion module subsequently reads the DDR data, converts it to the
format required by the NTT computing module, and forwards it for processing. At this
time, the NTT computation module starts to calculate. The calculation speed varies with
different numbers of processors. After the computation is completed, the output data will
be written back to DDR, and the processing is completed through the interrupt reporting
host. Consequently, the DMA engine relocates the data from the DDR back to the host,
completing an NTT calculation process.

Performance The performance of the NTT-accelerated FHEW solution is presented
in Table 6. We configured the FHEW hardware with two different NTT setups: one
featuring two NTT processor cores and the other with four NTT processor cores. As
discussed earlier, the hardware NTT is divided into computation time which is consumed
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Table 6: Performance of FHEW-like FHE schemes with and without NTT hardware
module on Xilinx Artix-7 FPGA

Instance Computing Time Freq LUT/Reg Memory DSPs
Overall 1.3s n.a. n.a. n.a.
Pure Software Excluding NTT 0.24s 2.5 GHz n.a. n.a. n.a.
NTT (9484 times) 1.06s n.a. n.a. n.a.
Overall 1.3s n.a. n.a. 3 30
NTT-accelerated FHEW FHEW Software 0.25s 2.5 GHz n.a. n.a. n.a.
(NTT of 2 processors) NTT commputation 0.24 250 MHz 2377/1879 3 30
NTT communication 0.82 2.5 GHz  123090/135107 142 6
Overall 1.2s n.a. n.a. 3 30
NTT-accelerated FHEW FHEW Software 0.25s 2.5 GHz n.a. n.a. n.a.
(NTT of 4 processors) NTT commputation 0.14s 250 MHz 3702/3191 6 60
NTT communication 0.81s 2.5 GHz  123090/135107 142 6

for performing the proposed parallel hybercube NTT algorithm and communication time
which is consumed for data exchanging between the NTT hardware module and the FHEW
software. While there is a noticeable speed improvement regarding the NTT computation
run time compared to the pure software solution, the advantage is merely incremental: For
example, the overall run time of 2 NTT processor accelerated FHEW is almost identical to
that of the pure FHEW software, and the overall run time of 2 NTT processor accelerated
is about 7.7% faster. It is apparent that the majority amount of time is spent in NTT
communication, involving the transfer of encrypted data between the NTT hardware
and the FHEW software. In summary, the primary performance bottleneck for FHEW
software-hardware integration design stems from the extensive data movement between
the NTT hardware and the FHEW software. Therefore, optimizing NTT communication
to minimize data transfer is essential for significantly enhancing FHEW performance.
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