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Abstract. This paper introduces a high-performance and scalable hardware architec-
ture designed for the Number-Theoretic Transform (NTT), a fundamental compo-
nent extensively utilized in lattice-based encryption and fully homomorphic encryp-
tion schemes.
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hypercube topology. This topology serves to significantly diminish the volume of
data exchanges required during each iteration of the NTT, reducing it to a complexity
of Ω(log N). Concurrently, it enables the parallelization of N processing elements.
This reduction in data exchange operations is of paramount importance. It not only
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but also lays the foundation for the development of a high-performance NTT design.
This is particularly valuable when dealing with large values of N .
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Introduction
The contributions of this paper include:

• Pioneering Hypercube Topology in NTT Designs: This research introduces the in-
novative concept of applying hypercube topology to NTT designs. It successfully
addresses the challenging issue of managing a substantial volume of data exchange
within high-performance NTT designs.

• Prototyping a Hypercube-Based NTT Hardware: The study provides a practical
implementation of NTT hardware based on the hypercube topology. Importantly, it
allows users the flexibility to configure the degree of parallelization as per their re-
quirements. The paper also offers theoretical estimations of the timing performance,
which are subsequently validated through concrete implementation results.

1 FHEW-like Fully Homomorphic Encryption Scheme
TFHE [CGGI20] and FHEW [DM15] are examples of the third generation of fully ho-
momorphic encryption (FHE) schemes. They offer advantages in terms of bootstrapping
performance, which is a crucial operation in FHE schemes. The state-of-the-art advance-
ments in TFHE/FHEW indicate that any discrete function f over a small domain Zt can
be bootstrapped. This unique capability is often referred to as functional or programmable
bootstrapping. It allows for performing computations on encrypted data without decrypt-
ing it. In this work, we stay focused on one particular function called NAND gate which is
proposed in the original FHEW paper as:

NAND(x, y) =

{
0 if x == y

1 otherwise

where x, y ∈ {0, 1}.

1.1 LWE and RLWE
TFHE ciphertext is essentially an LWE ciphertext. The LWE ciphertext is defined as
follows:

(a, b) = (a, ⟨a, s⟩+ q

t
m + e) ∈ Zn

q × Zq

, where s is a secret key, m ∈ Zt is the message, e is an error term extracted from a discrete
Gaussian distribution with small variance e ∼ N (0, σ2). The parameters n, q, s character-
ize an LWE ciphertext. We use the notation LWEn,q

s (m) (or LWEs(m), LWE(m), LWE( q
t m)

when the context is clear) to represent an LWE encryption of the message m.
In the TFHE bootstrapping algorithm, another format of ciphertext, called RLWE

ciphertext, is used. An RLWE ciphertext can be viewed as an LWE ciphertext defined
over polynomial ring RQ = ZQ[X]/(XN + 1):

(a(X), b(X)) = (a(X), a(X) · z(X) + Q

t
m(X) + e(X)) ∈ RQ ×RQ

where z is the secret key, m is the message, e =
∑

i eiX
i is the error polynomial where

each coefficient is extracted from a discrete Gaussian distribution with small variance ei ∼
N (0, σ2). Likewise, we use RLWEN,Q

z (m) (or RLWEs(m), RLWE(m), RLWE( Q
t m)

when the context is clear) to denote an RLWE encryption of the message m(X).
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1.2 Key Switch and Mod Switch
Key switching and modulus switching are two important homomorphic operations in
TFHE. We skip the algorithmic detail for these two primitives but outline the functionality
abstractly. KeySwitch takes as input an LWE encryption of message m under secret key z
and outputs another LWE ciphertext encrypting the same message m but under a different
secret key s:

LWEN,Q
z (m) KeySwitch−−−−−−→ LWEn,Q

s (m)
KeySwitch utilizes another publicly known key called key switching key KSK to perform
this operation and KeySwitch introduces extra noise to the input LWE ciphertext. In
practice, we may use another form of key switching, called LWE-to-RLWE keyswitch
which homomorphically converts an LWE encryption to an RLWE encryption without
changing the encrypted message:

LWEN,Q
z (m) LWE-to-RLWE KeySwitch−−−−−−−−−−−−−−→ RLWEn,Q

z (m)

ModSwitch takes input as an LWE encryption of message m defined over ZN
Q ×ZQ and

outputs another LWE encryption of the same message defined over ZN
q × Zq with Q > q:

LWEN,Q
s (m) ModSwitch−−−−−−→ LWEN,q

s (m)

A unique feature of ModSwitch is that it reduces the noise within the LWE ciphertext.
TFHE bootstrapping utilizes this feature to homomorphically evaluate a discrete function
f while reducing the noise in the ciphertext.

1.3 Sample Extraction
Sample extraction is another classical technique that homomorphically extracts a term in
an encrypted polynomial. More precisely, the input for sample extraction is an RLWE
ciphertext RLWE(m(X)) which encrypts a polynomial m(X) =

∑N−1
i=0 miX

i and sample
extraction extracts the i-th term of m(X) as an LWE encryption LWE(mi) denoted as:

LWEN,Q
z (mi)← SampleExt(RLWEN,Q

z (m(X), i)

Note that the secret key z =
∑N−1

i=0 ziX
i is changed accordingly to its vector form

z = (z0, · · · , zN−1). Sometimes, we abuse the notation above and use LWEN,Q
z (m0) ←

SampleExt(RLWEN,Q
z (m(X)) to denote the extraction of the constant term. The com-

putational overhead for SampleExt is trivial and the noise does not grow.

1.4 RGSW cryptosystem
In TFHE/FHEW schemes, a new encryption scheme called RGSW [GSW13] is used as the
basis for homomorphic multiplication. We use the notation RGSW N,Q

z (m(X)) to denote
an RGSW encryption of a polynomial m(X) ∈ RQ = ZQ[X]/(XN + 1) under the secret
key z.

Before detailing RGSW, an extended form of RLWE encryption with respect to some
basis Bg should be introduced, i.e.,

RLWE′(m) = (RLWE(m), · · · , RLWE(Bim), · · · , RLWE(Bdg−1m))

where dg = ⌈logBg
(Q)⌉.

The noise growth for the scalar multiplication d ·RLWE′(m) defined in RLWE′(·) is
well controlled since:

d ·RLWE′(m) =
dg−1∑
i=0

di ·RLWE(Bim) = RLWE(
∑

i

diB
im) = RLWE(d ·m)
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where d =
∑

i diB
i.

RSGW encryption is further constructed based on RLWE′(·) as:

RGSWz(m) = (RLWE′
z(−z ·m), RLWE′

z(m))

In other terms, RGSW not only encrypts the message m but also encrypts z ·m which
encloses the secret key z.

The RGSW homomorphic multiplication between a RLWE ciphertext RLWE(m0) def=
(a, b) and another RSGW ciphertext RGSW (m1) ⊙ : RLWE × RGSW → RLWE pro-
ceeds as follows:

RLWE(m0)⊙RGSW (m1) =(a, b)⊙ (RLWE′(−z ·m1), RLWE′(m1))
=a ·RLWE′(−z ·m1) + b ·RLWE′(m1)
=RLWE((b− as) ·m1)

=RLWE(Q

t
m0m1 + e0m1)

since e0m1 is a small component and can be treated as noise and thus we have RLWE( Q
t m0m1+

e0m1) = RLWE( Q
t m0m1). Also note that the inputs are asymmetric where one input is

an RLWE encryption while the other is an RGSW encryption. This type of homomorphic
multiplication is also known as external product. Each external product takes 4dgN log N
FQ multiplications where dg ≈ 6 is a small constant used to describe RSGW encryption
if number-theoretic transform (NTT) is applied.

1.5 Blind Rotation
Blind Rotation essentially homomorphically performs an inner product of a public known
vector a def= (a0, · · · , an−1) and the private key vector s def= (s0, · · · , sn−1) over the ex-
ponent of X by extensive use of RGSW external product. In order to control the noise
growth during the homomorphic computation, a redundant encryption of the private key
s, i.e., Zi,j,v = RGSW (XvBj

r ·si) for all i, j, v is used. Algorithm 1 formally describes the
primitive BlindRotate.

Input: bootstrapping key brK Zi,j,v = RGSW (XvBj
r ·si) for all i, j, v, RLWE

ciphertext ct = RLWE(Xb) and a public known vector a.
Output: an RLWE encryption of Xb−⟨a,s⟩.

1 for i← 0 to n− 1 do
2 Compute ai ← q − ai

3 for j ← 0 to logBr q − 1 do
4 Compute ai,j ← ⌊ai/Bj

r⌋
5 Compute ACC ← ACC ⊙ Zi,j,ai,j

6 return ACC

Algorithm 1: the primitive blind rotation BlindRotate(brK, ct, a)

Proposition 1. Given an RLWE encryption of a monomial Xb, and a public known
vector a an an pre-computed encryption of the secret keys, i.e., Zi,j,v = RGSW (XvBj

r ·si)
for all i, j, v. Algorithm 1 correctly computes an RLWE encryption of Xb−⟨a,s⟩.

Proof. The algorithm proceeds in a nested loop with loop-i as the outer loop and loop-j
as the inner loop. Each iteration of loop-i first flattens ai to {ai,j} for all j and then
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computes in the inner loop-j RLWE(Xb−
∑i

k=0
aksk ) from RLWE(Xb−

∑i−1
k=0

aksk ) since
−aisi =

∑
j ai,jBj

rsi. By induction, ACC returns RLWE(Xb−
∑n−1

k=0
aksk ) at the end of

the algorithm.

1.6 Bootstrapping a NAND gate
A full description of homomorphic NAND gate operation is presented in Alg. 2. accBR,f =
RLWEN,Q

z (rotP ·Xm̃) where m̃ = bN − ⟨aN , s⟩ = q
t m + e, ctQ = LWEN,Q

z (f(m)), and
ctq = LWEn,q

s (f(m)). HDB is relatively fast since it performs the most time-consuming
operation BlindRotate, whose computational complexity is O(dgN2 log N), only once.
Here, dg is a small constant used in the TFHE system parameter description. For 80-
bit security, one HDB function evaluation takes less than 1 second by a typical software
implementation on a desktop PC.

Input: bootstrapping key brK, LWE ciphertexts
cti = LWE

q/4
s (mi) = (a, b) for i ∈ {0, 1}, LWE-to-LWE key-switching key

ksK.
Output: an LWE encryption of NAND(m0, m1), i.e.,

ctq = LWE
q/4
s (NAND(m0, m1)).

1 Compute ct← ct0 + ct1

2 Set rotP = f(0)
(∑ N

4
j=0 Xj +

∑N−1
j=N− N

4 +1 Xj
)
− f(1)

(∑ 3N
4

j= N
4 +1 Xj

)
where

f(0) = f(1) = q
8

3 Set ctN ← ModSwitch(ct, q, 2N) = (aN , bN )
4 Compute accf ← rotP ·XbN

5 Run accBR,f ← BlindRotate(brK, accf , ctN )
6 Run ctQ ← SampleExt(accBR,f , 0)
7 Run ctQ,ksK ← KeySwitch(ctQ, ksK)
8 Run ctq ← ModSwitch(ctQ, Q, q)
9 return ctq + (0, q

8 )
Algorithm 2: Half domain bootstrapping Bootstrap(brK, ct, f(·), ksK)

Proposition 2. Given an LWE encryption of a binary message m0, and an LWE en-
cryption of another message m1, Algorithm 2 correctly computes an LWE encryption of
NAND(m0, m1).

Proof. In line 1, the homomorphic addition returns ct = LWE
q/4
s (m0 + m1). In line

2, the rotation polynomial rotP (x) is configured according to the anti-cyclic function
f(x) for x ∈ {0, 1, 2, 3} s.t. f(0) = f(1) = q

8 and f(2) = f(3) = − q
8 . In line 3, the

primitive ModSwitch is invoked to scale the ciphertext modulus q down to 2N making
ctN = LWE

2N/4
s (m0 + m1). Line 4 essentially creates a noiseless and trivial RLWE

encryption of rotP (X) ·XbN . In line 5, the primitive BlindRotate uses the bootstrapping
key to compute accBR,f = RLWEN,Q

z (rotP ·Xm̃) where m̃ = bN−⟨aN , s⟩ = 2N
t (m0+m1)+

e mod 2N . In line 6, the constant term in rotP ·Xm̃ is extracted as a new LWE encryption
over a relatively larger ciphertext modulus, i.e., LWEN,Q

z (f(m0 + m1)). Line 7 switches
the secret key z back to the original secret key s such that ctQ,ksk = LWEn,Q

s (f(m0+m1)).
Line 8 performs again the primitive ModSwitch to switch back to the original ciphertext
modulus q such that ctq = LWEn,q

s (f(m0+m1)). In line 9, the final result LWEn,q
s (f(m0+

m1)+q/8) is returned. It is easy to verify that LWEn,q
s (f(m0 +m1)+q/8) = (a, ⟨a, s⟩+e)

which encrypts ‘0’ if m0 = m1 = 1, and LWEn,q
s (f(m0 + m1) + q/8) = (a, ⟨a, s⟩+ q

4 + e)
which encrypts ‘1’ otherwise.
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2 Number-theoretic Transform Architecture
This section describes NTT hardware at the bottom level. Firstly, The distinguishing
feature is that a series of new twiddle factor LUTs is constructed and used: an independent
twiddle factor LUT, denoted as {wi[·]}i=0,...,log2N−1, is prepared for the i-th round of
butterfly computation (logN rounds in total) as described in Alg. 4. Note that differing
from the standard FFT which uses twiddle factor ωi

N for i ∈ [N ], the NTT used in the
ring Rq uses the modified twiddle factor ωi

N · ω
j
2N for i ∈ [N ], j = 20, 21, · · · , 2logN−1.

2.1 Higher level description for NTT with merged twiddle factors
In this subsection, we discuss the NTT algorithm with merged twiddle factors. No pre-
processing or post-processing is required in this variant of NTT algorithm. At an abstract
level, the structure of this NTT algorithm is identical to that of the classic FFT algorithm.

The formal description of this NTT variant is shown in Alg. 3 which is also refered to
as Cooley-Tukey (CT) butterfly or decimation in time (DIT) in the open literature. It
is essentially identical to the classic FFT algorithm except the twiddle factor array wi[·].
It has logN iterations (loop-i) at outermost, where each iteration computes one layer of
butterfly computations. The i(i = 0, · · · , logN − 1)-th layer of butterfly computation
always has N

2 butterflies. These butterflies are bundled into 2i groups (recorded by the
variable NumberofGroups) and each groups has N

2i pairs of butterflies (recorded by the
variable PairsInGroup). The key feature is that at a particular iteration (say the i-th
iteration), the butterflies in a particular group (say the k-th group) share the same twiddle
factor wi[k]. The variable Distance is used to locate precisely two inputs of a particular
pair of butterfly in loop-j, i.e., a[j] and a[j + Distance]. The variables JFirst and JLast
indicate the starting and the ending position of the array a[·], respectively, used in the
k-th group of the i-th iteration.

A visualization of Alg. 3 is depicted in Fig. 1a when N = 8. The inputs are a[0], · · · , a[7]
where a[i] represents the i-th coefficient ai in the polynomial a(X) =

∑N−1
i=0 aiX

i. The
NTT computation has 3 layers of butterflies: In the first layer (i = 0 for loop-i in Alg. 3),
only one butterfly group (associated with twiddle factor ω4

16) exists; in the second layer,
two butterfly groups (associated with twiddle factor ω2

16 and ω6
16) exist; in the third layer,

four butterfly groups (associated with twiddle factors ω1
16, ω5

16, ω3
16, and ω7

16, respectively)
exist. It is worth noting that the ouputs from the NTT network is in bit-reversed order
as A[0], A[4], A[2], A[6], A[1], A[5], A[3], A[7].

Next, we detail how to construct the twiddle factor LUT. Recall the NTT with pre-
processing can be written together as a summation of N terms:

Ai =
N−1∑
j=0

ajωj
2N ωij

N mod q, i ∈ [0, N − 1] (1)

Next, by splitting the summation above (Equation 1) into even and odd groups ac-
cording to the index i of Ai, we obtain

Ai =
N
2 −1∑
j=0

a2jω2ij
N ω2j

2N +
N
2 −1∑
j=0

a2j+1ω
i(2j+1)
N ω2j+1

2N mod q

=
N
2 −1∑
j=0

a2jωij
N
2

ωj
N + ωi

N ω2N

N
2 −1∑
j=0

a2j+1ωij
N
2

ωj
N mod q (2)

Now express Ais in Equation 2 into the first half Ai and the second half Ai+ N
2

as
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Input: polynomial a(x) ∈ Rq represented in an array a[·], Twiddle factors
{wi[·]}i=0,...,log2N−1

Output: NTT(a(x)) represented in a[·] (in-place)
1 PairsInGroup← N/2
2 NumOfGroups← 1
3 Distance← N/2
4 for i← 0 to log2N − 1 do
5 for k ← 0 to NumOfGroups− 1 do
6 JFirst← 2 · k · PairsInGroup
7 JLast← JFirst + PairsInGroup− 1
8 for j ← JFirst to JLast do
9 Temp← wi[k] ∗ a[j + Distance]

10 a[j + Distance]← a[j]− Temp
11 a[j]← a[j] + Temp

12 PairsInGroup← PairsInGroup/2
13 NumOfGroups← NumOfGroups · 2
14 Distance← Distance/2
15 return a[·]

Algorithm 3: Higher level description of NTT, a.k.a DITNN→RN

Input: a polynomial ring Rq, and NTT points N
Output: Twiddle factors {wi[·]}i=0,...,log2N−1 used in Algorithm 3

1 FirstPart← 0 where [0 · · · 0]2 == BinRepr(0)
2 SecondPart← 2N−1 where [1 · · · 0]2 == BinRepr(2N−1)
3 for i← 0 to log2N − 1 do
4 for j ← 0 to N − 1 do
5 [jlog2N−1,··· ,j0 ]2 ← BinRepr(j)
6 Firstpart←

∑i
k=0 jlog2N−i−1+k · 2log2N−1−k

7 wi[j]← ϕF irstpart · ϕSecondP art

8 SecondPart← SecondPart/2
9 return {wi[·]}i=0,...,log2N−1

Algorithm 4: Construction of Twiddle Factor LUTs

follows:

Ai =
N
2 −1∑
j=0

a2jωij
N
2

ωj
N + ωi

N ω2N

N
2 −1∑
j=0

a2j+1ωij
N
2

ωj
N mod q for i ∈ [0,

N

2
− 1]

Ai+ N
2

=
N
2 −1∑
j=0

a2jωij
N
2

ωj
N − ωi

N ω2N

N
2 −1∑
j=0

a2j+1ωij
N
2

ωj
N mod q (3)

Assume N = 2n, let Y
(n−1)

i and Z
(n−1)
i be solutions to the two half-sized subproblems

(NTT of size of N
2 = 2n−1 for the even terms {a2j}j∈[ N

2 ] and the odd terms {a2j+1}j∈[ N
2 ])
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Table 1: Merged Twiddle Factor used in N -point NTT. The exponent is expressed in
binary form.

NTT iteration i
twiddle factor associated with a[j] and

a[j + distance] where j = [jn−1jn−2 · · · j1j0]2

i = 0 ω

n−1 bits︷ ︸︸ ︷
00 · · · 00
N · ω

n bits︷ ︸︸ ︷
10 · · · 00
2N

i = 0 ω
jn−10···00
N · ω01···00

2N
...

...
i = n− 2 ωj2j3···00

N · ω00···10
2N

i = n− 1 ω
j1j2···jn−2jn−1
N · ω00···01

2N

defined by

Y
(n−1)

i =
N
2 −1∑
j=0

a2jωij
N
2

ωj
N mod q for i ∈ [0,

N

2
− 1]

Z
(n−1)
i =

N
2 −1∑
j=0

a2j+1ωij
N
2

ωj
N mod q

To unify the notation systems, we define Y
(n)

i and Z
(n)
i as the first half part and the

second half part, respectively, of Ai, i.e., Y
(n)

i

def= Ai for i ∈ [0, N
2 − 1] and Y

(n)
i

def=
Ai for i ∈ [ N

2 , N − 1]. Therefore, the Equation 3 is rewritten in a more compact form:

Y
(n)

i = Y
(n−1)

i + ωi
N ω2N · Z(n−1)

i = Ai mod q for i ∈ [0,
N

2
− 1]

Z
(n)
i = Y

(n−1)
i − ωi

N ω2N · Z(n−1)
i = Ai+ N

2
mod q

The key observation for the equation above is that Y
(n)

i and Z
(n)
i has a recursive

structure: for example, Y
(n)

i and Z
(n)
i are computed from a butterfly computation of

Y
(n−1)

i and Z
(n−1)
i , Y

(n−1)
i and Z

(n−1)
i are computed from a butterfly computation of

Y
(n−2)

i and Z
(n−2)
i , and so on so forth. Note that in the k-th iteration of such recursion

(i.e., Y
(k)

i and Z
(k)
i , and let K = 2k), the twiddle factor always has the form ωi

Kω2K . As
we have known from the standard FFT, the index i in ωi

K appears in bit-reversed order,
therefore, we generalize the modified twiddle factor in our case as shown in Table 1.

As shown in Table 1, the updated twidldle factor is composed of two multiplicative
factors which is called the first part and the second part in this paper. The first part
of the merged twiddle factor is identical to the standard NTT. We keep the same nota-

tions here and do not repeat the proof. It has the form ω

n−1 bits︷ ︸︸ ︷
00 · · · 00
N , ω

n−1 bits︷ ︸︸ ︷
jn−10 · · · 00
N , · · · ,

ω

n−1 bits︷ ︸︸ ︷
j1j2 · · · jn−2jn−1
N , for i = 0, 1, · · · , n − 1, respectively. The second part of the merged

twiddle factor is ω1
2N ′ . However, the value of N ′ depends on the recursive structure of

butterfly, for the i-th layer, noted as N ′ = N/2n−1−i where N = 2n. In other words,
the second part equals to ω1

2·2, ω1
2·4, · · · , ω1

2N for i = 0, 1, · · · , n − 1. Further to unify

the second part is rewritten in binary form as ω

n bits︷ ︸︸ ︷
10 · · · 00
2N , ω

n bits︷ ︸︸ ︷
01 · · · 00
2N , · · · , ω

n bits︷ ︸︸ ︷
00 · · · 01
2N for

i = 0, 1, · · · , n− 1.
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(a) Generic architecture for NTT with merged twiddle factors (N = 8)
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(b) Twiddle factor LUT context (N = 8)

Figure 1: DIT instance with N = 8

Alg. 4 formally describes how to construct the twiddle factors for each round of but-
terfly computation based on our first-part-second-part concept mentioned above. The key
variable Firstpart is updated in line 6 within the inner j-loop to maintain the desired
binary form Firstpart = [jlog2 N−1−i, · · · , jlog2 N−1, 0, · · · , 0]2. The other key variable
Secondpart is updated in line 8 at the end of the outer i-loop. The first impression on
Alg. 4 might be that the size of twiddle factor LUTs is about O(NlogN): It has logN
rounds and each round cosumes N/2 twiddle factor for the N/2 pairs of input points.
However, we deploy a simplified twiddle factor LUT with only N − 1 elements for our
actual hardware design. The key observation for reducing the size of twiddle factor LUT
{wi[·]}i is that many entries in wi[·] are duplicates and thus redundant. In particular, w0[·]
has only one distinct element w0[0], w1[·] has two distinct elements w1[0] and w1[N/2],
w2[· · · ] has four distinct elements w2[0], w2[N/4], w2[2N/4], and w2[3N/4] and so on so
forth. Therefore, the total valid entries used in {wi[·]} after eliminating duplicates equal
to

log2N−1∑
i=0

2i = N − 1 = O(N)
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000 001 010 011 100 101 110 111

00 01 10 11

(a) d = 4, ID ∈ {P0, P1, P2, P3}

000 001 010 011 100 101 110 111

00 01 10 11

(b) d = 8, ID ∈ {P0, P1, P2, P3, P4, P5, P6, P7}

Figure 2: Hypercubes of Dimension log2d = 2 and log2d = 3

Input: d node processors
Output: d node processors with connections

1 Denote the processor IDs as {P0, P1, · · · , Pd−1} where d is a power-of-2
2 for i← 0 to d− 1 do
3 [ilog2d−1,··· ,i0 ]2 ← BinRepr(i)
4 for j ← 0 to log2d− 1 do
5 flip the bit ij in [ilog2d−1, · · · , ij , · · · , i0]2 to make [ilog2d−1, · · · , īj , · · · , i0]2
6 if [ilog2d−1, · · · , īj , · · · , i0]2 > [ilog2d−1, · · · , ij , · · · , i0]2 then
7 connect P[ilog2d−1,··· ,ij ,··· ,i0]2 and P[ilog2d−1,··· ,īj ,··· ,i0]2

8 return (P0, · · · , Pd−1)
Algorithm 5: Construction of the log2d-dimensional hypercube

Input: log2d-dimensional hypercubes
Output: communication pattern

1 Denote the processor IDs as {P0, P1, · · · , Pd−1}
2 for k ← 0 to log2d− 1 do
3 /*d/2 pairs of processors exchange data in step-k*/
4 exchange data between processors P[ilog2d−1,··· ,ilog2d−1−k,··· ,0]2 and

P[ilog2d−1,··· ,ilog2d−1−k,··· ,0]2
which differ at ilog2d−1−k

5 return c(x)
Algorithm 6: Subcube-doubling communication in log2d-dimensional hypercube

2.2 log2d-Dimensional Hypercube Multiprocessors
In this subsection, we introduce the hypercube topology which fits the parallelized version
of NTT algorithm. The hypercube is also the basis for hardware architecture proposed in
this work.

Before detailing the parallel NTT algorithm and hardware, the computing model used
in this paper must be clarified. There are d identical node processors organized in a
hypercube of dimension log2d. Each node processor includes one butterfly unit and some
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Table 2: Subcube-doubling communication in 3-dimensional hypercube
steps connections

Step-(0)
000 001 010 011 100 101 110 111

000 001 010 011 100 101 110 111

000 001 010 011 100 101 110 111

Step(-0)

Step(-1)

Step(-2)

Step-(1)

000 001 010 011 100 101 110 111

000 001 010 011 100 101 110 111

000 001 010 011 100 101 110 111

Step(-0)

Step(-1)

Step(-2)

Step-(2)

000 001 010 011 100 101 110 111

000 001 010 011 100 101 110 111

000 001 010 011 100 101 110 111

Step(-0)

Step(-1)

Step(-2)

storage (N/d NTT points). Roughly speaking, this log2d-dimensional hypercube structure
should increase the speed of sequential NTT algorithm by d times. Fig. 2a illustrates
the hypercube architecture of dimension 2 where 4 node processors (i.e., P0, P1, P2, P3
labeled as it binary form ’00’, ’01’, ’10’, and ’11’) are implemented. The node processors
are sparsely connected with each other where any one of them are connected to the other
2 processors. For example, P0 is only connected to P1 and P2, P1 is only connected to
P0 and P3. Fig. 2b illustrates the hypercube architecture of dimension 3 where 8 node
processors (i.e., P0, P1, · · · , P7 labeled as it binary form ’000’, ’001’, ..., and ’111’) are
implemented. The node processors are sparsely connected with each other where any one
of them are connected to the other 3 processors. For example, P0 is only connected to P1,
P2 and P4, P1 is only connected to P0, P3 and P5.

Alg. 5 formally describes how to construct the log2d-dimensional hypercube by sparsely
connecting d node processors. The key idea here is that for each processor Pi, rewrite the
index i in binary form as [ilog2d−1, · · · , i0]2, and connects those processors Pj whose index
j = [jlog2d−1, · · · , j0]2 differs only 1 bit compared with i. In particular, each node processor
connects only to log2d other node processors in this log2d-dimensional hypercube topology.
The if condition in the for-loop in Alg. 5 helps rule out the possibility of connecting the
same pair of nodes repeatedly. When the computation continues in the hypercube, the
intermediate data generated in each round of computations typically requires exchange
between node processors. This type of data exchange is referred to as ‘subcube-doubling’
communication in the literature. There are in total log2d rounds of exchange during the
communication as described in Alg. 6: In step-(k), each node processor Pi with index
i = [ilog2d−1, · · · , i0]2 exchanges data with Pj whose index j differs at the log2d− 1−k-th
bit.

An illustration instance with d = 8 for subcube-doubling algorithm (Alg. 6) is given
in Table 2. log2d = 3 communication steps are required in this example: In step-(0),
processor P[i2,i1,i0]2 connects processor P[i2,i1,i0]2

which differs at i2, and there are d/2 = 4
such pairs of connections, i.e., P0 − P4, P1 − P5, P2 − P6, P3 − P7; In step-(1), processor
P[i2,i1,i0]2 connects processor P[i2,i1,i0]2

which differs at i1; Finally, in step-(2), processor
P[i2,i1,i0]2 connects processor P[i2,i1,i0]2

which differs at i0.

2.3 A Useful Equivalent Notation: |PID|Local M

Assume that N points are stored in the global array a[·] = {aN−1, · · · , 0} or simplified
as a[·] = {ai}i=N−1,··· ,0, and the elements in the array are assigned evenly to d node
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processors for storage and processing. Then the array address based notation uses a
logN -bit integer i = ilogN−1 · · · i02:

ilogN−1 · · · ik+1|ik · · · ik−logd+1|ik−logd · · · i0

to indicate that cosecutive logd bits ik · · · ik−logd+1 are chosen to specify the data-to-
processor allocation.

In general, since any logd bits can be used to form the processor ID number, it is easier
to concatenate the bits representing the processor ID into one group denoted by ‘PID’,
and refers to the remaining logN − logd bits, which are concatenated to form the local
array address, as ‘Local M ’. This paper uses the following equivalent notation, where the
leading d bits are always used to identify the processor ID number.

|PID|Local M = | ik · · · ik−logd+1︸ ︷︷ ︸
logd

|
N−k−1︷ ︸︸ ︷

iN−1 · · · ik+2ik+1

k−logd+1︷ ︸︸ ︷
ik−d · · · i1i0

Table 3 shows the details about the data allocation for hypercube processor array after
a naturally ordered input series of N = 32 elements are divided among d = 4 processors
using one particular cyclic block mapping i4i3|i2i1i0. For instance, to locate am = a26,
one writes down m = 26 = 110102 = i4i3i2i1i0, from which one knows that a26 is stored in
a[r], r = i4i3|i2i1i0 = 11|0102 = 26, meaning that a[26] = a26 (the element a26 is located
in a[26]) is allocated by processor Pi4i3 = P01.

Table 3: Local data in processor Pi4i3 expressed in terms of global array element a[m], m =
i4i3i2i1i0 for the notation i4i3|i2i1i0

|PID|Local M
i4i3|i2i1i0

Pi4i3 = P00
a[m]

|PID|Local M
i4i3|i2i1i0

Pi4i3 = P01
a[m]

|PID|Local M
i4i3|i2i1i0

Pi4i3 = P10
a[m]

|PID|Local M
i4i3|i2i1i0

Pi4i3 = P11
a[m]

00|000 a[0] 01|000 a[8] 10|000 a[16] 11|000 a[24]
00|001 a[1] 01|000 a[9] 10|000 a[17] 11|000 a[25]
00|010 a[2] 01|000 a[10] 10|000 a[18] 11|000 a[26]
00|011 a[3] 01|000 a[11] 10|000 a[19] 11|000 a[27]
00|100 a[4] 01|000 a[12] 10|000 a[20] 11|000 a[28]
00|101 a[5] 01|000 a[13] 10|000 a[21] 11|000 a[29]
00|110 a[6] 01|000 a[14] 10|000 a[22] 11|000 a[30]
00|111 a[7] 01|000 a[15] 10|000 a[23] 11|000 a[31]

On the other hand, when the input elements are stored in a in bit-reversed order, i.e.,
a[r] = am where m = in−1in−2 · · · i0, and r = i0 · · · in−2in−1, then the equivalent notation
is as follows:

|PID|Local M = | ik−logd+1 · · · ik︸ ︷︷ ︸
logd

|
k−logd+1︷ ︸︸ ︷

i0 · · · ik−logd

N−k−1︷ ︸︸ ︷
ik+1 · · · in−1

Table 4 shows the details about the data allocation for hypercube processor array after
an inverse ordered input series of N = 32 elements are divided among d = 4 processors
using one particular cyclic block mapping i0i1|i2i3i4. For instance, to locate am = a26,
one writes down m = 26 = 110102 = i4i3i2i1i0, from which one knows that a26 is stored in
a[r], r = i0i1|i2i3i4 = 01|0112 = 11, meaning that a[11] = a26 (the element a26 is located
in a[11]) is allocated by processor Pi0i1 = P01.

2.4 First attempt: parallel in-place FFTs without inter-processor per-
mutations

Consider the DITNN→RN algorithm (Alg. 3) and use the cyclic block mapping introduced
in the last subsection. For N = 32, d = 4, the computation is depicted below:
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Table 4: Local data in processor Pi0i1 (bit reversed) expressed in terms of global array
element a[r] = am, r = i0i1i2i3i4, m = i4i3i2i1i0 for the notation i0i1|i2i3i4

|PID|Local M
i0i1|i2i3i4

Pi0i1 = P00
a[r]

|PID|Local M
i0i1|i2i3i4

Pi0i1 = P01
a[r]

|PID|Local M
i0i1|i2i3i4

Pi0i1 = P10
a[r]

|PID|Local M
i0i1|i2i3i4

Pi0i1 = P11
a[r]

00|000 a[0] 01|000 a[8] 10|000 a[16] 11|000 a[24]
00|001 a[1] 01|000 a[9] 10|000 a[17] 11|000 a[25]
00|010 a[2] 01|000 a[10] 10|000 a[18] 11|000 a[26]
00|011 a[3] 01|000 a[11] 10|000 a[19] 11|000 a[27]
00|100 a[4] 01|000 a[12] 10|000 a[20] 11|000 a[28]
00|101 a[5] 01|000 a[13] 10|000 a[21] 11|000 a[29]
00|110 a[6] 01|000 a[14] 10|000 a[22] 11|000 a[30]
00|111 a[7] 01|000 a[15] 10|000 a[23] 11|000 a[31]

|i4i3|i2i1i0 |
▼
i4
△

i3|i2i1i0 |τ4
▼
i3
△
|i2i1i0 |τ4τ3|

▼
i2i1i0 |τ4τ3|τ2

▼
i1i0 |τ4τ3|τ2τ1

▼
i0

Initial Map ⇐==⇒ ⇐==⇒

The initial map indicates that the processor Pk initially holds the elements a[8k], · · · , a[8k+
7] for k = 0, 1, 2, 3. The shorthand notation previously used for sequential NTT is aug-
mented by two additional symbols. The double-headed arrow ⇐==⇒ indicates that N

d
data elements must be exchanged between processors in advance of butterfly computation.
In our example, the NTT takes 5 rounds where the first two rounds require data exchange
among proessors and the last three rounds do not require data exchange. The symbol ik

identifies two things:

• First, it indicates the input source of external data: the incoming data from another
processor are the elements whose addresses differ from a processor’s own data in bit
ik.

• Second, it indicates that all pairs of processors whose binary ID number differ in bit
ik send each other a copy of their own data.

The required data communications before the first stage of butterfly computation (step-
0) are explicitly depicted in Fig. 3a and Fig. 3b: P0 swaps data with P2 such that a[i] pairs
with a[i + 16] to perform the required butterfly computation in the same processor for
i = 0, · · · , 7, and P1 swaps data with P3 such that a[i] pairs with a[i + 16] to perform the
required butterfly computation in the same processor for i = 8, · · · , 15; the required data
communications before the second stage of butterfly computation (step-1) are depicted in
Fig. 3c and Fig. 3d: P0 swaps data with P1 such that a[i] pairs with a[i+8] to perform the
required butterfly computation in the same processor for i = 0, · · · , 7, and P2 swaps data
with P3 such that a[i] pairs with a[i + 8] to perform the required butterfly computation
in the same processor for i = 16, · · · , 23. The last three steps (step-2,3,4) do not require
data swaps since all elements needed for butterfly computataion are already within the
precessor: for example, in step-2, a[0] pairs a[4], a[1] pairs a[5], a[2] pairs a[6], a[3] pairs
a[7], which are all located within processor P0.

Remarks The parallel in-place NTT without inter-processor permutations approach
employs data exchange between a pair of processors. That is, one processor’s initial com-
plement of data may swap with that of another processor. With use of this type of data
exchange, N/d butterfly computations are performed in parallel at the cost of a number
of N/d data swaps per processor.

2.5 Second attempt: Parallel NTTs with Inter-processor permutations
In this subsection, we discuss the class of parallel NTTs which employ inter-processor
data permutations. Similar to the one presented in the previous subsection which evenly
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|00|000 

|00|001 

|00|010 

|00|011 

|00|100 

|00|101 

|00|110 

|00|111 

|10|000 

|10|001 

|10|010 

|10|011 

|10|100 

|10|101 

|10|110 

|10|111 

|𝑖4𝑖3|𝑖2𝑖1𝑖0 |𝑖4𝑖3|𝑖2𝑖1𝑖0 𝑃00 = 𝑃𝑖4𝑖3  𝑃10 = 𝑃𝑖4𝑖3  

P0 and P2 send each 
other a copy of their 

own data

𝑚 = 𝑖4𝑖3𝑖2𝑖1𝑖0 

Global Address of 𝑎[𝑚] 
Butterfly Stage

a[0]

a[1]

a[2]

a[3]

a[4]

a[5]

a[6]

a[7]

a[16]

a[17]

a[18]

a[19]

a[20]

a[21]

a[22]

a[23]

|01|000 

|01|001 

|01|010 

|01|011 

|01|100 

|01|101 

|01|110 

|01|111 

|11|000 

|11|001 

|11|010 

|11|011 

|11|100 

|11|101 

|11|110 

|11|111 

|𝑖4𝑖3|𝑖2𝑖1𝑖0 |𝑖4𝑖3|𝑖2𝑖1𝑖0 𝑃01 = 𝑃𝑖4𝑖3  𝑃11 = 𝑃𝑖4𝑖3  

P1 and P3 send each 
other a copy of their 

own data

𝑚 = 𝑖4𝑖3𝑖2𝑖1𝑖0 

Global Address of 𝑎[𝑚] 
Butterfly Stage

a[8]

a[9]

a[10]

a[11]

a[12]

a[13]

a[14]

a[15]

a[24]

a[25]

a[26]

a[27]

a[28]

a[29]

a[30]

a[31]

|00|000 

|00|001 

|00|010 

|00|011 

|00|100 

|00|101 

|00|110 

|00|111 

|01|000 

|01|001 

|01|010 

|01|011 

|01|100 

|01|101 

|01|110 

|01|111 

|𝑖4𝑖3|𝑖2𝑖1𝑖0 |𝑖4𝑖3|𝑖2𝑖1𝑖0 𝑃00 = 𝑃𝑖4𝑖3  𝑃01 = 𝑃𝑖4𝑖3  

P0 and P1 send each 
other a copy of their 

own data

𝑚 = 𝑖4𝑖3𝑖2𝑖1𝑖0 

Global Address of 𝑎[𝑚] 
Butterfly Stage

a[0]

a[1]

a[2]

a[3]

a[4]

a[5]

a[6]

a[7]

|10|000 

|10|001 

|10|010 

|10|011 

|10|100 

|10|101 

|10|110 

|10|111 

|11|000 

|11|001 

|11|010 

|11|011 

|11|100 

|11|101 

|11|110 

|11|111 

|𝑖4𝑖3|𝑖2𝑖1𝑖0 |𝑖4𝑖3|𝑖2𝑖1𝑖0 𝑃10 = 𝑃𝑖4𝑖3  𝑃11 = 𝑃𝑖4𝑖3  

P2 and P3 send each 
other a copy of their 

own data

𝑚 = 𝑖4𝑖3𝑖2𝑖1𝑖0 

Global Address of 𝑎[𝑚] 
Butterfly Stage

a[24]

a[25]

a[26]

a[27]

a[28]

a[29]

a[30]

a[31]

a[16]

a[17]

a[18]

a[19]

a[20]

a[21]

a[22]

a[23]

a[8]

a[9]

a[10]

a[11]

a[12]

a[13]

a[14]

a[15]

(a) In round-0, Data sent and received by
processors P0 and P2

|00|000 

|00|001 

|00|010 

|00|011 

|00|100 

|00|101 

|00|110 

|00|111 

|10|000 

|10|001 

|10|010 

|10|011 

|10|100 

|10|101 

|10|110 

|10|111 

|𝑖4𝑖3|𝑖2𝑖1𝑖0 |𝑖4𝑖3|𝑖2𝑖1𝑖0 𝑃00 = 𝑃𝑖4𝑖3  𝑃10 = 𝑃𝑖4𝑖3  

P0 and P2 send each 
other a copy of their 

own data

𝑚 = 𝑖4𝑖3𝑖2𝑖1𝑖0 

Global Address of 𝑎[𝑚] 
Butterfly Stage

a[0]

a[1]

a[2]

a[3]

a[4]

a[5]

a[6]

a[7]

a[16]

a[17]

a[18]

a[19]

a[20]

a[21]

a[22]

a[23]

|01|000 

|01|001 

|01|010 

|01|011 

|01|100 

|01|101 

|01|110 

|01|111 

|11|000 

|11|001 

|11|010 

|11|011 

|11|100 

|11|101 

|11|110 

|11|111 

|𝑖4𝑖3|𝑖2𝑖1𝑖0 |𝑖4𝑖3|𝑖2𝑖1𝑖0 𝑃01 = 𝑃𝑖4𝑖3  𝑃11 = 𝑃𝑖4𝑖3  

P1 and P3 send each 
other a copy of their 

own data

𝑚 = 𝑖4𝑖3𝑖2𝑖1𝑖0 

Global Address of 𝑎[𝑚] 
Butterfly Stage

a[8]

a[9]

a[10]

a[11]

a[12]

a[13]

a[14]

a[15]

a[24]

a[25]

a[26]

a[27]

a[28]

a[29]

a[30]

a[31]

|00|000 

|00|001 

|00|010 

|00|011 

|00|100 

|00|101 

|00|110 

|00|111 

|01|000 

|01|001 

|01|010 

|01|011 

|01|100 

|01|101 

|01|110 

|01|111 

|𝑖4𝑖3|𝑖2𝑖1𝑖0 |𝑖4𝑖3|𝑖2𝑖1𝑖0 𝑃00 = 𝑃𝑖4𝑖3  𝑃01 = 𝑃𝑖4𝑖3  

P0 and P1 send each 
other a copy of their 

own data

𝑚 = 𝑖4𝑖3𝑖2𝑖1𝑖0 

Global Address of 𝑎[𝑚] 
Butterfly Stage

a[0]

a[1]

a[2]

a[3]

a[4]

a[5]

a[6]

a[7]

|10|000 

|10|001 

|10|010 

|10|011 

|10|100 

|10|101 

|10|110 

|10|111 

|11|000 

|11|001 

|11|010 

|11|011 

|11|100 

|11|101 

|11|110 

|11|111 

|𝑖4𝑖3|𝑖2𝑖1𝑖0 |𝑖4𝑖3|𝑖2𝑖1𝑖0 𝑃10 = 𝑃𝑖4𝑖3  𝑃11 = 𝑃𝑖4𝑖3  

P2 and P3 send each 
other a copy of their 

own data

𝑚 = 𝑖4𝑖3𝑖2𝑖1𝑖0 

Global Address of 𝑎[𝑚] 
Butterfly Stage

a[24]

a[25]

a[26]

a[27]

a[28]

a[29]

a[30]

a[31]

a[16]

a[17]

a[18]

a[19]

a[20]

a[21]

a[22]

a[23]

a[8]

a[9]

a[10]

a[11]

a[12]

a[13]

a[14]

a[15]

(b) In round-0, Data sent and received by
processors P1 and P3

|00|000 

|00|001 

|00|010 

|00|011 

|00|100 

|00|101 

|00|110 

|00|111 

|10|000 

|10|001 

|10|010 

|10|011 

|10|100 

|10|101 

|10|110 

|10|111 

|𝑖4𝑖3|𝑖2𝑖1𝑖0 |𝑖4𝑖3|𝑖2𝑖1𝑖0 𝑃00 = 𝑃𝑖4𝑖3  𝑃10 = 𝑃𝑖4𝑖3  

P0 and P2 send each 
other a copy of their 

own data

𝑚 = 𝑖4𝑖3𝑖2𝑖1𝑖0 

Global Address of 𝑎[𝑚] 
Butterfly Stage

a[0]

a[1]

a[2]

a[3]

a[4]

a[5]

a[6]

a[7]

a[16]

a[17]

a[18]

a[19]

a[20]

a[21]

a[22]

a[23]

|01|000 

|01|001 

|01|010 

|01|011 

|01|100 

|01|101 

|01|110 

|01|111 

|11|000 

|11|001 

|11|010 

|11|011 

|11|100 

|11|101 

|11|110 

|11|111 

|𝑖4𝑖3|𝑖2𝑖1𝑖0 |𝑖4𝑖3|𝑖2𝑖1𝑖0 𝑃01 = 𝑃𝑖4𝑖3  𝑃11 = 𝑃𝑖4𝑖3  

P1 and P3 send each 
other a copy of their 

own data

𝑚 = 𝑖4𝑖3𝑖2𝑖1𝑖0 

Global Address of 𝑎[𝑚] 
Butterfly Stage

a[8]

a[9]

a[10]

a[11]

a[12]

a[13]

a[14]

a[15]

a[24]

a[25]

a[26]

a[27]

a[28]

a[29]

a[30]

a[31]

|00|000 

|00|001 

|00|010 

|00|011 

|00|100 

|00|101 

|00|110 

|00|111 

|01|000 

|01|001 

|01|010 

|01|011 

|01|100 

|01|101 

|01|110 

|01|111 

|𝑖4𝑖3|𝑖2𝑖1𝑖0 |𝑖4𝑖3|𝑖2𝑖1𝑖0 𝑃00 = 𝑃𝑖4𝑖3  𝑃01 = 𝑃𝑖4𝑖3  

P0 and P1 send each 
other a copy of their 

own data

𝑚 = 𝑖4𝑖3𝑖2𝑖1𝑖0 

Global Address of 𝑎[𝑚] 
Butterfly Stage

a[0]

a[1]

a[2]

a[3]

a[4]

a[5]

a[6]

a[7]

|10|000 

|10|001 

|10|010 

|10|011 

|10|100 

|10|101 

|10|110 

|10|111 

|11|000 

|11|001 

|11|010 

|11|011 

|11|100 

|11|101 

|11|110 

|11|111 

|𝑖4𝑖3|𝑖2𝑖1𝑖0 |𝑖4𝑖3|𝑖2𝑖1𝑖0 𝑃10 = 𝑃𝑖4𝑖3  𝑃11 = 𝑃𝑖4𝑖3  

P2 and P3 send each 
other a copy of their 

own data

𝑚 = 𝑖4𝑖3𝑖2𝑖1𝑖0 

Global Address of 𝑎[𝑚] 
Butterfly Stage

a[24]

a[25]

a[26]

a[27]

a[28]

a[29]

a[30]

a[31]

a[16]

a[17]

a[18]

a[19]

a[20]

a[21]

a[22]

a[23]

a[8]

a[9]

a[10]

a[11]

a[12]

a[13]

a[14]

a[15]

(c) In round-1, Data sent and received by
processors P0 and P1

|00|000 

|00|001 

|00|010 

|00|011 

|00|100 

|00|101 

|00|110 

|00|111 

|10|000 

|10|001 

|10|010 

|10|011 

|10|100 

|10|101 

|10|110 

|10|111 

|𝑖4𝑖3|𝑖2𝑖1𝑖0 |𝑖4𝑖3|𝑖2𝑖1𝑖0 𝑃00 = 𝑃𝑖4𝑖3  𝑃10 = 𝑃𝑖4𝑖3  

P0 and P2 send each 
other a copy of their 

own data

𝑚 = 𝑖4𝑖3𝑖2𝑖1𝑖0 

Global Address of 𝑎[𝑚] 
Butterfly Stage

a[0]

a[1]

a[2]

a[3]

a[4]

a[5]

a[6]

a[7]

a[16]

a[17]

a[18]

a[19]

a[20]

a[21]

a[22]

a[23]

|01|000 

|01|001 

|01|010 

|01|011 

|01|100 

|01|101 

|01|110 

|01|111 

|11|000 

|11|001 

|11|010 

|11|011 

|11|100 

|11|101 

|11|110 

|11|111 

|𝑖4𝑖3|𝑖2𝑖1𝑖0 |𝑖4𝑖3|𝑖2𝑖1𝑖0 𝑃01 = 𝑃𝑖4𝑖3  𝑃11 = 𝑃𝑖4𝑖3  

P1 and P3 send each 
other a copy of their 

own data

𝑚 = 𝑖4𝑖3𝑖2𝑖1𝑖0 

Global Address of 𝑎[𝑚] 
Butterfly Stage

a[8]

a[9]

a[10]

a[11]

a[12]

a[13]

a[14]

a[15]

a[24]

a[25]

a[26]

a[27]

a[28]

a[29]

a[30]

a[31]

|00|000 

|00|001 

|00|010 

|00|011 

|00|100 

|00|101 

|00|110 

|00|111 

|01|000 

|01|001 

|01|010 

|01|011 

|01|100 

|01|101 

|01|110 

|01|111 

|𝑖4𝑖3|𝑖2𝑖1𝑖0 |𝑖4𝑖3|𝑖2𝑖1𝑖0 𝑃00 = 𝑃𝑖4𝑖3  𝑃01 = 𝑃𝑖4𝑖3  

P0 and P1 send each 
other a copy of their 

own data

𝑚 = 𝑖4𝑖3𝑖2𝑖1𝑖0 

Global Address of 𝑎[𝑚] 
Butterfly Stage

a[0]

a[1]

a[2]

a[3]

a[4]

a[5]

a[6]

a[7]

|10|000 

|10|001 

|10|010 

|10|011 

|10|100 

|10|101 

|10|110 

|10|111 

|11|000 

|11|001 

|11|010 

|11|011 

|11|100 

|11|101 

|11|110 

|11|111 

|𝑖4𝑖3|𝑖2𝑖1𝑖0 |𝑖4𝑖3|𝑖2𝑖1𝑖0 𝑃10 = 𝑃𝑖4𝑖3  𝑃11 = 𝑃𝑖4𝑖3  

P2 and P3 send each 
other a copy of their 

own data

𝑚 = 𝑖4𝑖3𝑖2𝑖1𝑖0 

Global Address of 𝑎[𝑚] 
Butterfly Stage

a[24]

a[25]

a[26]

a[27]

a[28]

a[29]

a[30]

a[31]

a[16]

a[17]

a[18]

a[19]

a[20]

a[21]

a[22]

a[23]

a[8]

a[9]

a[10]

a[11]

a[12]

a[13]

a[14]

a[15]

(d) In round-1, Data sent and received by
processors P2 and P3

Figure 3: An illustrative example for parallelizing in-place NTT(N = 32, d = 4) without
inter-processor permutations

distributes all butterfly computations among the processors, the new method also reduces
the message length from N

d elements to 1
2

N
d in each of the log2d + 1 concurrent message

exchanges.
The complete algorithm We use the shorthand notation we have developed with

symbols △ and ▼, the complete parallel algorithm corresponding to DITNR NTT is
represented below for the N = 32 example.

|i4i3|i2i1i0 |i2
△

i3|
▼
i4
△

i1i0 |i2τ4
△
|
▼
i3
△

i1i0 |τ3
△

τ4|
▼
i2
△

i1i0 |τ3τ4|τ2
▼
i1i0 |τ3τ4|τ2τ1

▼
i0

Initial Map ←−−→ ←−−→ ←−−→

To provide complete information for this example, in the initial map (before perform-
ing the first stage butterfly computation), the input data are distributed as the element
ai4i3i2i1i0 can be found in A[i2i1i0] in processor Pi4i3 . For example, a[19] = a19 is shown
to be initially in A[3] in P2 and A[14] = a14 in A[6] in P1 in Fig. 4a since 19 = 10|0112
and 14 = 01|1102.

To prepare data for each processor in the first round of butterfly computation where
P0 connects P2 and P1 connects P3 due to the hypercube structure, P0 swaps the second
half of his local array with the first half of P2’s local array, and P1 swaps the second half
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ButterflyButterfly
Butterfly

|00|000 

|00|001 

|00|010 

|00|011 

|00|100 

|00|101 

|00|110 

|00|111 

|10|000 

|10|001 

|10|010 

|10|011 

|10|100 

|10|101 

|10|110 

|10|111 

|𝑖4𝑖3|𝑖2𝑖1𝑖0 |𝑖4𝑖3|𝑖2𝑖1𝑖0 𝑃00 = 𝑃𝑖4𝑖3
 𝑃10 = 𝑃𝑖4𝑖3

 

Inter-processor 
data exchange

𝑚 = 𝑖4𝑖3𝑖2𝑖1𝑖0 

Global Address of 𝑎[𝑚] Butterfly Stage

a[0]

a[1]

a[2]

a[3]

a[4]

a[5]

a[6]

a[7]

a[16]

a[17]

a[18]

a[19]

a[20]

a[21]

a[22]

a[23]

|00|000 

|00|001 

|00|010 

|00|011 

|𝑖4𝑖3|𝑖2𝑖1𝑖0 

𝑃00 = 𝑃𝑖4𝑖3
 

a[0]

a[1]

a[2]

a[3]

a[16]

a[17]

a[18]

a[19]

|𝑖4𝑖3|𝑖2𝑖1𝑖0 

𝑃10 = 𝑃𝑖2𝑖3
 

a[4]

a[5]

a[6]

a[7]

a[20]

a[21]

a[22]

a[23]

|10|100 

|10|101 

|10|110 

|10|111 

|00|100 

|00|101 

|00|110 

|00|111 

|10|000 

|10|001 

|10|010 

|10|011 

initial    PID local M initial    PID local M 

|00|000 

|00|001 

|00|010 

|00|011 

|00|100 

|00|101 

|00|110 

|00|111 

|10|000 

|10|001 

|10|010 

|10|011 

|10|100 

|10|101 

|10|110 

|10|111 

Butterfly Butterfly

Global m Global m

ϕ10000  ϕ10000  

 PID local M  PID local M 

|𝑖4𝑖3|𝑖2𝑖1𝑖0 |𝑖4𝑖3|𝑖2𝑖1𝑖0 𝑃01 = 𝑃𝑖4𝑖3
 𝑃11 = 𝑃𝑖4𝑖3

 

Inter-processor 
data exchange

𝑚 = 𝑖4𝑖3𝑖2𝑖1𝑖0 

Global Address of 𝑎[𝑚] Butterfly Stage

a[8]

a[9]

a[10]

a[11]

a[12]

a[13]

a[14]

a[15]

a[24]

a[25]

a[26]

a[27]

a[28]

a[29]

a[30]

a[31]

|01|000 

|01|001 

|01|010 

|01|011 

|𝑖4𝑖3|𝑖2𝑖1𝑖0 

𝑃01 = 𝑃𝑖4𝑖3
 

a[8]

a[9]

a[10]

a[11]

a[24]

a[25]

a[26]

a[27]

|𝑖4𝑖3|𝑖2𝑖1𝑖0 

𝑃11 = 𝑃𝑖2𝑖3
 

a[12]

a[13]

a[14]

a[15]

a[28]

a[29]

a[30]

a[31]

|11|100 

|11|101 

|11|110 

|11|111 

|01|100 

|01|101 

|01|110 

|01|111 

|11|000 

|11|001 

|11|010 

|11|011 

initial    PID local M initial    PID local M 

Butterfly Butterfly

Global m Global m

ϕ10000  ϕ10000  

 PID local M  PID local M 

|11|000 

|11|001 

|11|010 

|11|011 

|11|100 

|11|101 

|11|110 

|11|111 

|11|000 

|11|001 

|11|010 

|11|011 

|11|100 

|11|101 

|11|110 

|11|111 

|01|000 

|01|001 

|01|010 

|01|011 

|01|100 

|01|101 

|01|110 

|01|111 

|01|000 

|01|001 

|01|010 

|01|011 

|01|100 

|01|101 

|01|110 

|01|111 

|𝑖2𝑖3|𝜏4𝑖1𝑖0 𝑃00 = 𝑃𝑖2𝑖3
 𝑃01 = 𝑃𝑖2𝑖3

 

Inter-processor 
data exchange

𝑚 = 𝑖4𝑖3𝑖2𝑖1𝑖0 

Global Address of 𝑎[𝑚] Butterfly Stage

a[0]

a[1]

a[2]

a[3]

a[16]

a[17]

a[18]

a[19]

a[8]

a[9]

a[10]

a[11]

a[24]

a[25]

a[26]

a[27]

|00|000 

|00|001 

|00|010 

|00|011 

|𝜏4𝑖3|𝑖2𝑖1𝑖0 

𝑃00 = 𝑃𝑖2𝜏4
 

a[0]

a[1]

a[2]

a[3]

a[8]

a[9]

a[10]

a[11]

𝑃01 = 𝑃𝑖2𝜏4
 

a[16]

a[17]

a[18]

a[19]

a[24]

a[25]

a[26]

a[27]

|11|000 

|11|001 

|11|010 

|11|011 

|10|000 

|10|001 

|10|010 

|10|011 

|01|000 

|01|001 

|01|010 

|01|011 

𝑐𝑢𝑟𝑟𝑒𝑛𝑡  PID local M initial    PID local M 

|00|000 

|00|001 

|00|010 

|00|011 

|00|100 

|00|101 

|00|110 

|00|111 

|01|000 

|01|001 

|01|010 

|01|011 

|01|100 

|01|101 

|01|110 

|01|111 

Butterfly Butterfly

Global m Global m

ϕ𝜏41000  

 PID local M  PID local M 

|𝑖4𝑖3|𝑖2𝑖1𝑖0 𝑃10 = 𝑃𝑖4𝑖3
 𝑃11 = 𝑃𝑖4𝑖3

 

Inter-processor 
data exchange

𝑚 = 𝑖4𝑖3𝑖2𝑖1𝑖0 

Global Address of 𝑎[𝑚] Butterfly Stage

a[4]

a[5]

a[6]

a[7]

a[20]

a[21]

a[22]

a[23]

a[12]

a[13]

a[14]

a[15]

a[28]

a[29]

a[30]

a[31]

|00|100 

|00|101 

|00|110 

|00|111 

𝑃10 = 𝑃𝑖2𝜏4
 

a[4]

a[5]

a[6]

a[7]

a[12]

a[13]

a[14]

a[15]

𝑃11 = 𝑃𝑖2𝜏4
 

a[20]

a[21]

a[22]

a[23]

a[28]

a[29]

a[30]

a[31]

|11|100 

|11|101 

|11|110 

|11|111 

|10|100 

|10|101 

|10|110 

|10|111 

|01|100 

|01|101 

|01|110 

|01|111 

current  PID local M initial    PID local M 

Butterfly Butterfly

Global m Global m
 PID local M  PID local M 

|11|000 

|11|001 

|11|010 

|11|011 

|11|100 

|11|101 

|11|110 

|11|111 

|11|000 

|11|001 

|11|010 

|11|011 

|11|100 

|11|101 

|11|110 

|11|111 

|10|000 

|10|001 

|10|010 

|10|011 

|10|100 

|10|101 

|10|110 

|10|111 

|00|000 

|00|001 

|00|010 

|00|011 

|10|000 

|10|001 

|10|010 

|10|011 

|01|000 

|01|001 

|01|010 

|01|011 

|01|100 

|01|101 

|01|110 

|01|111 

|10|100 

|10|101 

|10|110 

|10|111 

|00|100 

|00|101 

|00|110 

|00|111 

|𝑖2𝑖3|𝜏4𝑖1𝑖0 |𝑖2𝑖3|𝜏4𝑖1𝑖0 

|𝜏4𝑖3|𝑖2𝑖1𝑖0 

ϕ𝜏41000  

|𝜏4𝑖3|𝑖2𝑖1𝑖0 |𝜏4𝑖3|𝑖2𝑖1𝑖0 
|𝑖2𝜏4|𝑖3𝑖1𝑖0 |𝑖2𝜏4|𝑖3𝑖1𝑖0 |𝑖2𝜏4|𝑖3𝑖1𝑖0 |𝑖2𝜏4|𝑖3𝑖1𝑖0 

ϕ𝜏41000  ϕ𝜏41000  

|00|000 

|00|001 

|00|010 

|00|011 

|00|100 

|00|101 

|00|110 

|00|111 

|10|000 

|10|001 

|10|010 

|10|011 

|10|100 

|10|101 

|10|110 

|10|111 

𝑃00 = 𝑃𝑖2𝜏4
 𝑃10 = 𝑃𝑖2𝜏4

 

Inter-processor 
data exchange

𝑚 = 𝜏4𝜏3𝑖2𝑖1𝑖0 

Global Address of 𝑎[𝑚] 

Butterfly Stage

a[0]

a[1]

a[2]

a[3]

a[8]

a[9]

a[10]

a[11]

a[4]

a[5]

a[6]

a[7]

a[12]

a[13]

a[14]

a[15]

|00|000 

|00|001 

|00|010 

|00|011 

a[0]

a[1]

a[2]

a[3]

a[4]

a[5]

a[6]

a[7]

a[8]

a[9]

a[10]

a[11]

a[12]

a[13]

a[14]

a[15]

|10|100 

|10|101 

|10|110 

|10|111 

|00|100 

|00|101 

|00|110 

|00|111 

|10|000 

|10|001 

|10|010 

|10|011 

Current    PID local M Current    PID local M 

|00|000 

|00|001 

|00|010 

|00|011 

|00|100 

|00|101 

|00|110 

|00|111 

|10|000 

|10|001 

|10|010 

|10|011 

|10|100 

|10|101 

|10|110 

|10|111 

Butterfly

Global m Global m

ϕ𝜏3𝜏4100  

 PID local M  PID local M 

𝑃01 = 𝑃𝑖2𝜏4
 𝑃11 = 𝑃𝑖2𝜏4

 

Inter-processor 
data exchange

𝑚 = 𝜏4𝜏3𝑖2𝑖1𝑖0 

Global Address of 𝑎[𝑚] 

Butterfly Stage

a[16]

a[17]

a[18]

a[19]

a[24]

a[25]

a[26]

a[27]

a[20]

a[21]

a[22]

a[23]

a[28]

a[29]

a[30]

a[31]

|10|000 

|10|001 

|10|010 

|10|011 

a[16]

a[17]

a[18]

a[19]

a[20]

a[21]

a[22]

a[23]

a[24]

a[25]

a[26]

a[27]

a[28]

a[29]

a[30]

a[31]

|11|100 

|11|101 

|11|110 

|11|111 

|11|000 

|11|001 

|11|010 

|11|011 

|10|100 

|10|101 

|10|110 

|10|111 

Current    PID local M Current    PID local M 

Global m Global m PID local M  PID local M 

|11|000 

|11|001 

|11|010 

|11|011 

|11|100 

|11|101 

|11|110 

|11|111 

|11|000 

|11|001 

|11|010 

|11|011 

|11|100 

|11|101 

|11|110 

|11|111 

|01|000 

|01|001 

|01|010 

|01|011 

|01|100 

|01|101 

|01|110 

|01|111 

|01|000 

|01|001 

|01|010 

|01|011 

|01|100 

|01|101 

|01|110 

|01|111 

𝑃00 = 𝑃𝑖2𝜏4
 𝑃10 = 𝑃𝑖2𝜏4

 𝑃01 = 𝑃𝑖2𝜏4
 𝑃11 = 𝑃𝑖2𝜏4

 

ϕ𝑖2𝜏3𝜏410 ϕ𝑖1𝑖2𝜏3𝜏41 ϕ𝜏3𝜏4100  ϕ𝑖2𝜏3𝜏410 ϕ𝑖1𝑖2𝜏3𝜏41 ϕ𝜏3𝜏4100  ϕ𝑖2𝜏3𝜏410 ϕ𝑖1𝑖2𝜏3𝜏41 ϕ𝜏3𝜏4100  ϕ𝑖2𝜏3𝜏410 ϕ𝑖1𝑖2𝜏3𝜏41 

After exchange:
|PID|Local M

After exchange:
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(a) In round-0, DITNR butterfly computation with data migration between processors
P0 and P2, and P1 and P3, respectively
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(b) In round-1, DITNR butterfly computation with data migration between processors
P0 and P1, and P2 and P3, respectively
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|00|000 

|00|001 

|00|010 

|00|011 

|00|100 

|00|101 

|00|110 

|00|111 

|01|000 

|01|001 

|01|010 

|01|011 

|01|100 

|01|101 

|01|110 

|01|111 

Butterfly Butterfly

Global m Global m

ϕ𝜏41000  

 PID local M  PID local M 

|𝑖4𝑖3|𝑖2𝑖1𝑖0 𝑃10 = 𝑃𝑖4𝑖3
 𝑃11 = 𝑃𝑖4𝑖3

 

Inter-processor 
data exchange

𝑚 = 𝑖4𝑖3𝑖2𝑖1𝑖0 

Global Address of 𝑎[𝑚] Butterfly Stage

a[4]

a[5]

a[6]

a[7]

a[20]

a[21]

a[22]

a[23]

a[12]

a[13]

a[14]

a[15]

a[28]

a[29]

a[30]

a[31]

|00|100 

|00|101 

|00|110 

|00|111 

𝑃10 = 𝑃𝑖2𝜏4
 

a[4]

a[5]

a[6]

a[7]

a[12]

a[13]

a[14]

a[15]

𝑃11 = 𝑃𝑖2𝜏4
 

a[20]

a[21]

a[22]

a[23]

a[28]

a[29]

a[30]

a[31]

|11|100 

|11|101 

|11|110 

|11|111 

|10|100 

|10|101 

|10|110 

|10|111 

|01|100 

|01|101 

|01|110 

|01|111 

current  PID local M initial    PID local M 

Butterfly Butterfly

Global m Global m
 PID local M  PID local M 

|11|000 

|11|001 

|11|010 

|11|011 

|11|100 

|11|101 

|11|110 

|11|111 

|11|000 

|11|001 

|11|010 

|11|011 

|11|100 

|11|101 

|11|110 

|11|111 

|10|000 

|10|001 

|10|010 

|10|011 

|10|100 

|10|101 

|10|110 

|10|111 

|00|000 

|00|001 

|00|010 

|00|011 

|10|000 

|10|001 

|10|010 

|10|011 

|01|000 

|01|001 

|01|010 

|01|011 

|01|100 

|01|101 

|01|110 

|01|111 

|10|100 

|10|101 

|10|110 

|10|111 

|00|100 

|00|101 

|00|110 

|00|111 

|𝑖2𝑖3|𝜏4𝑖1𝑖0 |𝑖2𝑖3|𝜏4𝑖1𝑖0 

|𝜏4𝑖3|𝑖2𝑖1𝑖0 

ϕ𝜏41000  

|𝜏4𝑖3|𝑖2𝑖1𝑖0 |𝜏4𝑖3|𝑖2𝑖1𝑖0 
|𝑖2𝜏4|𝑖3𝑖1𝑖0 |𝑖2𝜏4|𝑖3𝑖1𝑖0 |𝑖2𝜏4|𝑖3𝑖1𝑖0 |𝑖2𝜏4|𝑖3𝑖1𝑖0 

ϕ𝜏41000  ϕ𝜏41000  

|00|000 

|00|001 

|00|010 

|00|011 

|00|100 

|00|101 

|00|110 

|00|111 

|10|000 

|10|001 

|10|010 

|10|011 

|10|100 

|10|101 

|10|110 

|10|111 

𝑃00 = 𝑃𝑖2𝜏4
 𝑃10 = 𝑃𝑖2𝜏4

 

Inter-processor 
data exchange

𝑚 = 𝜏4𝜏3𝑖2𝑖1𝑖0 

Global Address of 𝑎[𝑚] 

Butterfly Stage

a[0]

a[1]

a[2]

a[3]

a[8]

a[9]

a[10]

a[11]

a[4]

a[5]

a[6]

a[7]

a[12]

a[13]

a[14]

a[15]

|00|000 

|00|001 

|00|010 

|00|011 

a[0]

a[1]

a[2]

a[3]

a[4]

a[5]

a[6]

a[7]

a[8]

a[9]

a[10]

a[11]

a[12]

a[13]

a[14]

a[15]

|10|100 

|10|101 

|10|110 

|10|111 

|00|100 

|00|101 

|00|110 

|00|111 

|10|000 

|10|001 

|10|010 

|10|011 

Current    PID local M Current    PID local M 

|00|000 

|00|001 

|00|010 

|00|011 

|00|100 

|00|101 

|00|110 

|00|111 

|10|000 

|10|001 

|10|010 

|10|011 

|10|100 

|10|101 

|10|110 

|10|111 

Butterfly

Global m Global m

ϕ𝜏3𝜏4100  

 PID local M  PID local M 

𝑃01 = 𝑃𝑖2𝜏4
 𝑃11 = 𝑃𝑖2𝜏4

 

Inter-processor 
data exchange

𝑚 = 𝜏4𝜏3𝑖2𝑖1𝑖0 

Global Address of 𝑎[𝑚] 

Butterfly Stage

a[16]

a[17]

a[18]

a[19]

a[24]

a[25]

a[26]

a[27]

a[20]

a[21]

a[22]

a[23]

a[28]

a[29]

a[30]

a[31]

|10|000 

|10|001 

|10|010 

|10|011 

a[16]

a[17]

a[18]

a[19]

a[20]

a[21]

a[22]

a[23]

a[24]

a[25]

a[26]

a[27]

a[28]

a[29]

a[30]

a[31]

|11|100 

|11|101 

|11|110 

|11|111 

|11|000 

|11|001 

|11|010 

|11|011 

|10|100 

|10|101 

|10|110 

|10|111 

Current    PID local M Current    PID local M 

Global m Global m PID local M  PID local M 

|11|000 

|11|001 

|11|010 

|11|011 

|11|100 

|11|101 

|11|110 

|11|111 

|11|000 

|11|001 

|11|010 

|11|011 

|11|100 

|11|101 

|11|110 

|11|111 

|01|000 

|01|001 

|01|010 

|01|011 

|01|100 

|01|101 

|01|110 

|01|111 

|01|000 

|01|001 

|01|010 

|01|011 

|01|100 

|01|101 

|01|110 

|01|111 

𝑃00 = 𝑃𝑖2𝜏4
 𝑃10 = 𝑃𝑖2𝜏4

 𝑃01 = 𝑃𝑖2𝜏4
 𝑃11 = 𝑃𝑖2𝜏4

 

ϕ𝑖2𝜏3𝜏410 ϕ𝑖1𝑖2𝜏3𝜏41 ϕ𝜏3𝜏4100  ϕ𝑖2𝜏3𝜏410 ϕ𝑖1𝑖2𝜏3𝜏41 ϕ𝜏3𝜏4100  ϕ𝑖2𝜏3𝜏410 ϕ𝑖1𝑖2𝜏3𝜏41 ϕ𝜏3𝜏4100  ϕ𝑖2𝜏3𝜏410 ϕ𝑖1𝑖2𝜏3𝜏41 

After exchange:
|PID|Local M

After exchange:
|PID|Local M

After exchange:
|PID|Local M

After exchange:
|PID|Local M

After exchange:
|PID|Local M

After exchange:
|PID|Local M
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(c) In round-2/3/4, DITNR butterfly computation with data migration between proces-
sors P0 and P2, and P1 and P3, respectively

Figure 4: An illustrative example for parallelizing in-place NTT(N = 32, d = 4) with
inter-processor permutations

of his local array with the first half of P3’s local array as dipicted in Fig. 4a. The symbols
△ are used to locate the exact position of the element ai after such data swap: the bit
ik
△

, which has just been permuted from PID to Local M , and the bit iℓ
△

, which has just
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been permuted from Local M to the PID. In our case, the notation |i2
△

i3|
▼
i4
△

i1i0 is used

which means bit i4 in the PID and bit i2 in the local M switch their positions in the
shorthand notation (denoted by the symbols △) making the memory mapping changed
to i2i3|i4i1i0, which means that the data in a[i4i3i2i1i0] can now be found in A[i4i1i0] in
Pi2i3 . For example, a[19] = a19 is relocated to A[7] in P0 (A[7] means the 7-th element
for P0’s local array) after the inter-processor permutation shown in Fig. 4a since 10|0112
is changed to 00|1112; a[14] = a14 is relocated to A[2] in P3 after the inter-processor
permutation shown in Fig. 4a since 01|1102 is changed to 11|0102. After the memory
swap, all data are located correctly in the corresponding processors to perfom the first
round of butter fly computation. The symbol ▼ is used to indicate the pairs of elements
for the butterfly computation in each processor, i.e., |i2

△
i3|

▼
i4
△

i1i0 means A[i2i30i1i0] should

pair with A[i2i31i1i0] to complete elementary butterfly unit computation for Pi2i3 . Also,
the index ik that the symbol ▼ points to is changed to τk for showing that this particular
round of butterfly computation is completed. A quick observation is that there are i− 1
indices changed to τ in the notation for the i-th round of computation: for example,
|i2
△

i3|
▼
i4
△

i1i0 represents the first round where no τ indices exist; |i2τ4
△
|
▼
i3
△

i1i0 represents the

second round where one τ index (i4 changed to τ4) exists and etc.
For the second round of butterfly computation where P0 connects P1 and P2 connects

P3, P0 swaps the second half of his array with the first half of P1’s local array, and P2
swaps the second half of his local array with the first half of P3’s local array as dipicted
in Fig. 4b. a similar notation |i2τ4

△
|
▼
i3
△

i1i0 is used to denote the memory swap: bit τ4

in the PID and bit i3 in the local M switch their positions in the shorthand notation
making the memory mapping changed from previous i2i3|i4i1i0 to i2i4|i3i1i0. For example,
a19 which is previously stored in A[7] from P0 is now changed to A[3] from P1 since
19 = 10|0112 is rearranged to 01|0112. Moreover, A[i2i40i1i0] pairs with A[i2i41i1i0] to
complete elementary butterfly unit computation for Pi2i4 for all i2, i4, i1, i0.

For the third round of butterfly computation where P0 connects P2 and P1 connects
P3, P0 swaps the second half of his local array with the first half of P2’s local array, and
P1 swaps the second half of his local array with the first half of P3’s local array as dipicted
in Fig. 4c. This swapping pattern is captured in the notation |τ3

△
τ4|

▼
i2
△

i1i0 indicating the

previous i2i4|i3i1i0 is changed to i3i4|i2i1i0 due to the △ annotations. For example, a19
which is previously stored in A[3] from P1 is still preserved in A[3], P1 since 19 = 10|0112 is
rearranged to 01|0112. The ▼ annotation indicates that A[i3i40i1i0] pairs with A[i3i41i1i0]
to complete elementary butterfly unit computation for Pi3i4 for all i3, i4, i1, i0.

There are no inter-processor data swapping for the last two rounds, i.e., the fourth
and the fifth round of butterfly computation. However, the ▼ annotation helps distinguish
which two data elements should pair to complete the elementary butterfly unit computa-
tion inside the processor: in the fourth round, A[i3i4i20i0] pairs with A[i3i4i21i0] for Pi3i4 ,
and in the fifth round, A[i3i4i2i10] pairs with A[i3i4i2i11] for Pi3i4 . The computations in
the fourth and fifth round are merged to Fig. 4c.

After all five rounds of butterfly computation are completed, the NTT results are
stored in the array a[·] but the position is rearranged: the output data element Ai0i1i2i3i4 ,
which overwrites the data in a[i4i3i2i1i0], is finally contained in A[i2i1i0] in Pi3i4 . Such
arrangement for the data mapping for the output elements is observed as following:

• The in-place butterfly computation in the DITNR algorithm ensures a[i4i3i2i1i0] =
a

(5)
i4i3i2i1i0

= Ai0i1i2i3i4 where Ai0i1i2i3i4 =
∑

j aj(ωi0i1i2i3i4
N · ω1

2N )j

• The final mapping |τ3τ4|τ2τ1τ0 indicates that the final content in a[i4i3i2i1i0] is now
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located in a[i2i1i0] in processor Pi3i4 (rather than the initially assigned processor
Pi4i3)

For example, P0 has stored a[0]− a[7] where a[0] computes A[0], a[1] computes A[16],
and etc.; P1 has stored a[16]−a[23] where a[16] computes A[1], a[17] computes A[17], and
etc.; P2 has stored a[8] − a[15] where a[8] computes A[2], a[9] computes A[18], and etc.;
P3 has stored a[24]− a[31] where a[24] computes A[3], a[25] computes A[19], and etc.

Remarks on the correctness of the notation Because ik was in PID session before
the switch, ik = 1 in one processor, and ik = 0 in the other processor. On the other hand,
because iℓ was in Local M session before the switch, iℓ = 0 for half of the data, and iℓ = 1
for another half of the data. Consequently, the value of ik, the PID bit, is equal to iℓ,
the local M bit, for half of the data elements in each processor, and the notation which
represents the switch of these two bits identifies both the PID of the other processor as
well as the data to be sent out or received. To depict exactly what happens, the data
exchange between two processors and the butterfly computation represented by |i2

△
i3|

▼
i4
△

i1i0

is shown in its entirety in Fig. 4a and 4b.

Input: a polynomial ring Rq, and NTT points N , input a = (a[0], · · · , a[N − 1])
Output: NTT (a)) = A = (A[0], · · · , A[N − 1])

1 Initialize the hypercube connections between d processors as described in Alg. 5
2 Initialize the merged twiddle factor look-up table {wi} as described in Alg. 4
3 /*arrange the data array a[·] in natural order*/
4 Initialize the data a[ilog2N−log2d−1 · · · i1i0] in Pilog2N−1···ilog2N−log2d

with
a[ilog2N−1 · · · i1i0] for all ilog2N−1, · · · , i0

5 /*perform the first log2d + 1 round of computations where inter-processor data
swapping is required*/

6 for j ← 0 to log2d do
7 if j ̸= log2d then
8 exchange the first half of data in Pilog2N−1···ilog2N−1−j ···ilog2N−log2d

w.r.t.
ilog2N−1−j = 0 with the second half of data in
Pilog2N−1···ilog2N−1−j ···ilog2N−log2d

w.r.t. ilog2N−1−j = 1
9 else

10 exchange the first half of data in Pilog2N−1···ilog2N−1−j ···ilog2N−log2d
w.r.t.

ilog2N−1 = 0 with the second half of data in
Pilog2N−1···ilog2N−1−j ···ilog2N−log2d

w.r.t. ilog2N−1 = 1
11 perform within each processor Pilog2N−1···ilog2N−1−j ···ilog2N−log2d

the N
2d

butterfly computations (round-j butterfly)
12 /*perform the first log2N − log2d− 1 round of computations where

inter-processor data swapping is not required*/
13 for j ← log2d + 1 to log2N − 1 do
14 perform within each processor Pilog2N−1···ilog2N−1−j ···ilog2N−log2d

the N
2d

butterfly computations (round-j butterfly)
15 return the data in all d processors as A

Algorithm 7: Parallel Hypercube NTT

Twiddle Factor LUT Distribution Let us discuss in details on the distribution of
the twiddle factor LUT within each butterfly processor here. In the first logd + 1 rounds
of butterfly computations, memory swapping occurs and each butterfly processor utilizes
only 1 twiddle factor; in the next logN− logd−1 rounds, no memory swapping occurs and
the number of twiddle factors utilized in eah butterfly processor increases exponentially
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(starting with 2). Therefore, the total number of twiddle factors (the depth of twiddle
factor LUT) in each processor is:

logd+1∑
i=1

1 +
logN−logd−1∑

i=1
2i = N

d
+ logd− 1

A concrete example for the twiddle factor LUT distribution can also be found in Fig 4.
In the first 3 rounds, each processor uses only 1 twiddle factor, i.e., Φ10000 where Φ
denotes the 2N -th primitive root of unity ω2N . In the 4-th round, each processor uses
2 twiddle factors, i.e., Φτ41000 for τ4 ∈ {0, 1}. In the 5-th round, each processor uses 4
twiddle factors, i.e., Φτ3τ4100 for τ4 ∈ {0, 1}, τ3 ∈ {0, 1}. Therefore, each processor stores
1 + 2 + 4 = 7 twiddle factors for the proposed hypercube NTT architecture.

2.6 Butterfly Processor
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Figure 5: Internal structure of butterfly processor

Design Overview To perform the butterfly computations and related memory access
in each processor efficiently as illustrated in Fig. 4, a butterfly processor architecture is
proposed. Fig. 5 depicts the internal structure of the butterfly processor. Two memory
blocks are instantiated: one dual-port RAM for the N

d points, namely a N
d ·i−a N

d ·i+ N
d −1 for

i ∈ [d], and one single-port ROM for the N
d +logd−1 precomputed twiddle factors. At first,

two points which forms the pair for the elementary butterfly computation unit, e.g., ai and
aj are simultaneously extracted on memory_douta and memory_doutb from the dual-port
RAM. Then ai and aj are fed to the input ports butterfly_din1 and butterfly_din2 of
the butterfly structure. This butterfly structure consists of one Barret modular multiplier
(apply Alg. 8), one modular adder (apply Alg. 9), and one modular subtractor (apply
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Alg. 10). After the butterfly computation is completed, the results ai +aj ·w and ai−aj ·w
appear at the output ports butterfly_dout1 and butterfly_dout2. Finally, the two
results are simultaneously written back to the RAM through the ports memory_dina and
memory_dinb. It is worth mentioning that the butterfly processor is fully pipelined such
that a pair of valid data butterfly_dout1 and butterfly_dout2 is written back to
the RAM every clock cycle, which maintains a relatively high throughput of butterfly
computation. This characteristic is crucial for high speed implementation of FHE scheme
since the parameter N (the number of NTT points) is typically set to be large (typical
value is around 1k) for maintaining the hardness of the (Ring-) LWE problem.

Input: two integers a and b over Zq

Output: a · b ∈ Zq

1 Precompute an integer k = ⌈log2q⌉
2 Precompute an integer r = ⌊ 4k

q ⌋
3 Calculate x = a · b
4 Calculate t = x− ⌊xr

4k ⌋ · q
5 if t < q then
6 return t
7 else
8 return t− q

Algorithm 8: Barret-Reduction based Modular Multiplication

Input: two integers a and b over Zq

Output: a + b ∈ Zq

1 Calculate t = a + b
2 if t < q then
3 return t
4 else
5 return t− q

Algorithm 9: Modular Addition

Input: two integers a and b over Zq

Output: a− b ∈ Zq

1 Calculate t = a− b
2 if t ≥ 0 then
3 return t
4 else
5 return t + q

Algorithm 10: Modular Subtraction

Timing analysis Let one unit denote the delay of one clock cycle, Tmul denote the
delay of standard integer multiplication, Tmodmul denote the delay of Barret reduction
based modular multiplication algorithm, and Tmodadd(Tmodsub) denote the delay of modu-
lar addition(subtraction) algorithm. The delay of one butterfly computation is calculated
as

Tbutterfly = Tswap + Tmul + Tmodmul + Tmodadd

Note that the proposed butterfly processor is fully pipelined and therefore it takes Tbutterfly+
N
2d − 1 to process N

2d butterfly computations.
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Fully pipelined computation The key point for fully pipelined butterfly com-
putation is to streamline the generation of memory address, i.e., memory_addra and
memory_addrb in Fig. 5. Note that the NTT butterfly address generation pattern is
rather complicated: it varies distinctly in different butterfly computation round. It is de-
sirable to implement some other simpler patterns and later combine these simple patterns
to create the address generation. In our design, we use five registers, cntb, roundi, dist,
cnt, and base to assist the generation of memory_addra and memory_addrb in every clock
cycle:

• cntb: base counter register, used to generate the basic logic pattern, i.e., a square
wave signal with period of N

d cycles

• roundi: butterfly round register, used to indicate the current round of butterfly
computation

• dist: distance register, used to record the distance between memory_addra and
memory_addrb s.t. memory_addrb=memory_addra+dist

• cnt: counter register, used to indicate the incremental offset value for generating
memory_addra

• base: the (basis) starting address for memory_addra in each round of butterfly
calculation

Moreover, we use two pre-computed arrays blk and dist to help generate the correct
values in the five registers mentioned above. blk is related to the variable NumOfGroups
in Alg. 3, and indicates the number of butterfly blocks in every round of butterfly calcu-
lation and has log2N elements; dist is related to the variable Distance in Alg. 3, and
indicates the distance between memory_addra and memory_addrb in every round of but-
terfly calculation and has log2N elements. The construction blk goes like this: The first
logd elements are always 1; starting from the (logd + 1)-th element down to the last one,
i.e. the last logN − logd elements formulate a geometric sequence with initial value 1 and
common ratio 2. The construction dist goes like this: The first logd elements are always
N
2d ; Then the last logN − logd elements formulate a geometric sequence with initial value
N
2d and common ratio 1

2 . For example, if N = 32, d = 4, then blk = {1, 1, 1, 2, 4} and
dist = {4, 4, 4, 2, 1}.

The generation of memory_addra and memory_addrb in Fig. 5 is formally described in
Alg. 11. The generated addresses basically map to the memory location of two butterfly
inputs (butterfly_din1 and butterfly_din2 shown in Fig. 5). A more concrete example
for when N = 32, d = 4 is depicted in Fig. 6. Every register including cntb, roundi, dist,
cnt, and base has 5 phases each of which corresponds to one of the logN = 5 rounds of
butterfly computation. Each phase costs 4 clock cycles. For example, cntb updates as
0, 1, 2, 3 in every phase; whereas roundi updates as i in phase-i(i = 0, 1, 2, 3, 4). We also
assume the calculation of memory address (step6-step7 in Alg. 11) takes one clock cycle
delay and thus the result appearing in memory_addra and memory_addrb is delayed by
one clock cycle as shown in Fig. 6. The sequence of memory_addra and memory_addrb can
be interpreted as follows: In the first clock cycle of phase-0, memory_addra outputs 0 and
memory_addrb output 4 (extracting a[0] and a[4] from the local memory a[·] within the
node processor); in the second clock cycle, memory_addra outputs 1 and memory_addrb
outputs 5, and so on so forth. Finally, in the first clock cycle of phase-4, memory_addra
outputs 0 and memory_addrb outputs 1; in the second clock cycle, memory_addra outputs
2 and memory_addrb outputs 3, and so on so forth.

Based on the memory address generation pattern described in Fig. 6, we can finally
introduce the complete memory address control logic (See Fig. 7) used in the proposed
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butterfly processor. Again, all registers are represented in 5 phases where each phase costs
3 clock cycles. The register current_state indicates one of the three current status in
each phase as follows:

• ADDR_RD: In this state, butterfly processor reads the corresponding butterfly inputs
(butterfly_din1 and butterfly_din2 in Fig. 5) from memory in a pipelined fash-
ion

• IDLE: This state is optional, and is used only if N is relatively small. For more
details, refer to the next section.

• ADDR_WR: In this state, butterfly processor writes back the computed results (butterfly_dout1
and butterfly_dout2 in Fig. 5) to memory in a pipelined fashion.

Note that the entire butterfly computation takes logN = 5 iterations. If N is relatively
small and d is relatively large, the state register transits by ADDR_RD→ IDLE→ ADDR_WR
in each iteration; otherwise, the state register transits by ADDR_RD → ADDR_WR. A more
detailed analysis on the delay of the state IDLE for prescribed parameters N, d is given in
the next subsection.

In state IDLE, the address is invalid since the purpose of IDLE is to wait for the correct
results from the butterfly computing module and thus does not need the address signal
to interact with memory. The address pattern used in state ADDR_RD is identical to that
used in ADDR_WR: our butterfly processor is fully pipelined and, therefore, whenever it
reads some data from some specific address in state ADDR_RD, it must write back to the
same location later in state ADDR_WR.

Input: the number of NTT points N and the number of butterfly processors d
Output: memory address memory_addra and memory_addrb for butterfly

computation
1 Precompute blk and dist
2 for roundi ← 0 to logN − 1 do
3 dist← dist[roundi]
4 for blk ← 0 to blk[i]− 1 do
5 base ← N

d·blk[i] · blk

6 for cnt← 0 to N
2d·blk[i] − 1 do

7 memory_addra ← base + cnt
8 memory_addrb ← base + cnt + dist

Algorithm 11: Memory address generation for butterfly computation

2.7 Microbench Implementations
Timing analysis The main states we used are ADDR_RD and ADDR_WR which are used for
memory read and memory write, respectively. If the delay of butterfly computation is
longer than that of ADDR_RD, then an auxillary state called IDLE is inserted in between
because the node processor cannot write valid data back to memory until the butterfly
unit outputs the NTT results. Precisely speaking, if N

2d − TADDR_RD + 1 < Tbutterfly, then
IDLE with delay TIDLE = Tbutterfly − N

2d + TADDR_RD − 1 is required. The delay for the state
ADDR_RD and the state ADDR_WR are N

2d respectively, i.e., TADDR_RD = TADDR_WR = N
2d . In

summary, the total delay for the hypercube NTT with d processors is:

logN ·
(

N

d
+ max(TIDLE, 0)

)
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Figure 6: Illustrative timing diagram for memory address generation in line with
Alg. 11(N = 32, d = 4)
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Figure 7: Top-level timing diagram for hypercube NTT in 5 rounds(N = 32, d = 4)

Table 5: Performance of the configurable hypercube NTT hardware for FHEW-like FHE
schemes on Xilinx Artix-7 FPGA

Instance # of processors freq cycle CLB/LUT/Reg memory DSPs

N = 1024, q ≈ 232

2 100 5120 451/2309/1756 3 30
4 100 2560 760/3581/2940 6 60
8 100 1280 1402/4238/5480 12 120
16 100 640 2174/10669/10591 24 240
32 100 430 3937/19250/18738 48 480
64 80 350 7835/39009/37060 96 960

In our concrete experiment, TADDR_RD set to 1 and Tbutterfly set to 27. Therefore the
total delay for the hypercube NTT is further simplified to logN · ( N

d + max(27− N
2d , 0)).

Experimental data The proposed design is implemented on Xilinx Zynq UltraScale+
ZCU106 evaluation board using Vivado 2018.1. The number of NTT points is set to 1024,
a typical value used in FHE schemes. The number of NTT processors is configured to
2,4,8,16,32, and 64 to fully demonstrate the scalability of our hypercube NTT design. It is
worth mentioning that our implementation follows the parameterized design approach, i.e.,
our NTT hardware can be customized and auto-generated on the fly from a script file by
inputting core parameters of hypercube NTT, for example, N and d. The experimental
results are collected in Table. 5. As the parameter d increases, the clock frequency is
rather stable around 100 MHz, which indicates the hypercube memory swapping strategy
is successful to maintain a good critical path delay. If the number of processors is smaller
than 32, the cycle delay equals to logN · N

d and thus the increase of d reduces significantly
the cycle delay: for example, doubling d suggests cycle delay reduced by half. As the
number of processors gets even bigger (≥ 32), the IDLE state is inserted and the cycle
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delay equals to logN · ( N
2d + 27) for which the performance boost by increasing d is rather

marginal. For this case, we can optimize the performance of butterfly computation (more
concretely, modular reduction) to further improve it. However, we do not push the limit
on this direction which is not the focus in this paper.

2.8 System Integration on Xilinx MPSOC platform

FHEW
Application

NTTSRAM

AXI Master

MUX

NTTSRAM

AXI Master

NTTSRAM

AXI Master

Data 
Conversion

DDR DRAM

AXI
Smart 

connect

H2C channel

C2H channel

IRQ

AXI-lite config

XDMA

… …

Interrupt 
Gen

REG config

XDMA
Driver

HW SW

TX

RX

PCIeCommunicationComputation

（Kernel space） （User space）

Figure 8: A software-hardware co-design for FHEW where the NTT module is imple-
mented in PL logic and the software runs in PS logic

We also conduct an FPGA implementation experiment for the entire FHE bootstrap-
ping where the NTT module is implemented in PL logic and the FHEW software (written
in C++) runs on ARM PS logic. The target hardware platform is Xilinx Versal VMK180
development board. Figure 8 illustrates how a software-hardware co-design for a NTT-
accelerated FHEW is built. The integration between FHEW software and NTT hardware
is achieved via Xilinx’s XDMA core. As a DMA, the core can be used for high perfor-
mance block data movement between the PCIe address space and the AXI address space
using the provided character driver [Inc23]. In this architecture, the NTT hardware is
divided into computational and communication segments. The NTT computation module
is composed of several NTT computation nodes that execute distinct NTT calculations.
The NTT communication module is responsible for data exchange with the software.

In the specific process of software-hardware collaboration, in order to execute a single
NTT hardware computation, the host needs to transmit 1, 024 data segments for calcula-
tion to the FPGA, exemplified by an NTT configuration of N = 1024 points and q < 232.
The host sets up buffer space in system memory and creates descriptors that the DMA
engine use to move the data. When the hardware DMA core receives the data, it stores
the data into the DDR memory and informs the NTT computing module that the data is
ready. The data conversion module subsequently reads the DDR data, converts it to the
format required by the NTT computing module, and forwards it for processing. At this
time, the NTT computation module starts to calculate. The calculation speed varies with
different numbers of processors. After the computation is completed, the output data will
be written back to DDR, and the processing is completed through the interrupt reporting
host. Consequently, the DMA engine relocates the data from the DDR back to the host,
completing an NTT calculation process.

Performance The performance of the NTT-accelerated FHEW solution is presented
in Table 6. We configured the FHEW hardware with two different NTT setups: one
featuring two NTT processor cores and the other with four NTT processor cores. As
discussed earlier, the hardware NTT is divided into computation time which is consumed
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Table 6: Performance of FHEW-like FHE schemes with and without NTT hardware
module on Xilinx Artix-7 FPGA

Instance Computing Time Freq LUT/Reg Memory DSPs

Pure Software
Overall 1.3s

2.5 GHz
n.a. n.a. n.a.

Excluding NTT 0.24s n.a. n.a. n.a.
NTT (9484 times) 1.06s n.a. n.a. n.a.

NTT-accelerated FHEW
(NTT of 2 processors)

Overall 1.3s n.a. n.a. 3 30
FHEW Software 0.25s 2.5 GHz n.a. n.a. n.a.

NTT commputation 0.24 250 MHz 2377/1879 3 30
NTT communication 0.82 2.5 GHz 123090/135107 142 6

NTT-accelerated FHEW
(NTT of 4 processors)

Overall 1.2s n.a. n.a. 3 30
FHEW Software 0.25s 2.5 GHz n.a. n.a. n.a.

NTT commputation 0.14s 250 MHz 3702/3191 6 60
NTT communication 0.81s 2.5 GHz 123090/135107 142 6

for performing the proposed parallel hybercube NTT algorithm and communication time
which is consumed for data exchanging between the NTT hardware module and the FHEW
software. While there is a noticeable speed improvement regarding the NTT computation
run time compared to the pure software solution, the advantage is merely incremental: For
example, the overall run time of 2 NTT processor accelerated FHEW is almost identical to
that of the pure FHEW software, and the overall run time of 2 NTT processor accelerated
is about 7.7% faster. It is apparent that the majority amount of time is spent in NTT
communication, involving the transfer of encrypted data between the NTT hardware
and the FHEW software. In summary, the primary performance bottleneck for FHEW
software-hardware integration design stems from the extensive data movement between
the NTT hardware and the FHEW software. Therefore, optimizing NTT communication
to minimize data transfer is essential for significantly enhancing FHEW performance.
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