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Abstract

Threshold signatures have recently seen a renewed interest due to applications in cryptocurrency while
NIST has released a call for multi-party threshold schemes, with a deadline for submission expected
for the first half of 2025. So far, all lattice-based threshold signatures requiring two-rounds or less
are based on heavy tools such as (fully) homomorphic encryption (FHE) and homomorphic trapdoor
commitments (HTDC). This is not unexpected considering that most efficient two-round signatures from
classical assumptions either rely on idealized model such as algebraic group models or on one-more type
assumptions, none of which we have a nice analogue in the lattice world.

In this work, we construct the first efficient two-round lattice-based threshold signature without
relying on FHE or HTDC. It has an offline-online feature where the first round can be preprocessed
without knowing message or the signer sets, effectively making the signing phase non-interactive. The
signature size is small and shows great scalability. For example, even for a threshold as large as 1024
signers, we achieve a signature size roughly 11 KB. At the heart of our construction is a new lattice-based
assumption called the algebraic one-more learning with errors (AOM-MLWE) assumption. We believe
this to be a strong inclusion to our lattice toolkits with an independent interest. We establish the selective
security of AOM-MLWE based on the standard MLWE and MSIS assumptions, and provide an in depth
analysis of its adaptive security, which our threshold signature is based on.

*Most of this work was done while this author was a PhD student at The University of Electro-Communications, Japan.
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1 Introduction

A T-out-of-N threshold signature | , ] allows to distribute a secret signing key to N signers, where
any set of the T' < N signers can collaborate to sign a message. Security guarantees that a set of signers less
than T cannot produce a valid signature. While threshold signatures have always been a topic of interest, in
recent years, it has seen a renewed real-world interest largely due to applications in cryptocurrency, where
secure and reliable storage of cryptographic keys is vital. Such interest has led US agency NIST to release
a call for multi-party threshold schemes | ], with a deadline for submission expected for the first half of
2025.

Current State of Post-Quantum Threshold Signature. Classically secure threshold signature has

approached a high state of maturity with the recent rapid developments. We now have a plethora of efficient

solutions, covering many design choices, such as threshold BLS | , |, threshold ECDSA | ,
, , , , , ], and threshold Schnorr [ , , ,
’ ) ) ]

While development on post-quantum threshold signature has been elusive for many years, we have started
to see some interesting progress lately. The first round-optimal (i.e., one-round) lattice-based threshold
signature was by Boneh et al. [ ], later optimized by Agrawal, Stehlé, and Yadav | ]. This
remained mainly of theoretical interest as they required a threshold fully homomorphic encryption (FHE)
to compute a standard (non-thresholdized) signature. Very recently, Gur, Katz, and Silde [ ] building
on similar ideas, constructed a two-round threshold signature based on a threshold linear homomorphic
encryption and homomorphic trapdoor commitment (HTDC) [ , ]. They provide a rough
estimate claiming a signature size of around 47 KB with 3 MB communication per signer for the 3-out-of-5
setting. While this brings the original idea of [ ] closer to practice, it does not scale well due to
the heavy use of HTDC. In an independent and concurrent work, del Pino et al. | | constructed a
three-round threshold signature without relying on any heavy tools such as FHE or HTDC for the first time.
As such, | | has a small signature size of 13 KB with only 40 KB communication per user, achieving
great scalability supporting a threshold T as large as 1024, a parameter range considered by NIST | ].

A Closer Look at Round Complexity. While | ] brings lattice-based threshold signatures to the
practical regime, the main drawback is that it requires three rounds. In environments where signers are using
network-limited devices or unreliable networks for transmission, multiple rounds may become a performance
bottleneck. This is why there is a strong interest in a round-optimal or a so-called offline-online efficient two-
round protocol | , Section 5.3.5]. The latter type allows preprocessing the first-round without knowing
the set of T signers and the message to be signed, effectively making the online signing phase non-interactive.
In the classical setting, we have efficient solutions for both of these types: threshold BLS | , ]
offers a round-optimal protocol, whereas threshold Schnorr such as FROST and its variants | , ,
| offer an offline-online efficient two-round protocol. This is in sharp contrast to the post-quantum
setting where we currently need heavy tools like FHE or HTDC for threshold signatures offering two rounds
or less.

Barriers to 2(>)-Round Lattice Schemes. When we look at how these classical protocols achieve low
round complexity, the fundamental barriers in replicating them in the lattice setting become clear. First,
the round-optimal threshold BLS is based on the BLS signature | ]; a signature scheme using the
rich algebraic properties of bilinear maps, something thought to be highly unlikely to be reproducible from
lattices. On the other hand, the two-round threshold Schnorr like FROST only requires standard group
operations for the construction. Unfortunately, the security proof relies on either the algebraic group model
(AGM) | ] or a variant of the one-more discrete logarithm (OM-DL) problem, both of which we do
not have a nice analogue in the lattice world.! Indeed, as exemplified with FHE computation, since lattice
operations can be non-algebraic, an idealized model like AGM does not seem to meaningfully capture lattice
adversaries. To make matters worse, this does not seem to be just an artifact of the proof technique as a

INote that while we have one-more-ISIS | |, an assumption having “one-more” in its name, it is qualitatively quite
different from those considered in the classical setting. See Section 1.2 for more discussion.



simple adaptation of the classical constructions is known to lead to insecure schemes.

In summary, to construct a lattice-based threshold signature with two rounds or less, we need to develop
new techniques not yet in our lattice toolkits. This brings us to the main question of this work:

Can we replicate the classically secure efficient 2(>)-round threshold signatures from lattices?

1.1 Our Contribution

In this work, we construct a new lattice-based offline-online efficient two-round threshold signature. Unlike

prior works on lattice-based one or two-round threshold signatures | , , ], we do not
rely on heavy tools such as FHE or HTDC. At a high level, our scheme is similar to the simple threshold
Schnorr protocol FROST | ], one of the most popular classically secure two-round threshold signatures.
In fact, it can be viewed as a thresholdized version of Raccoon | ], a lattice-based signature scheme
by del Pino et al., submitted to the additional NIST call for proposals | ]. This interchangeability is a
desirable property as it allows us to seamlessly use our threshold signature in an ecosystem with Raccoon.
At the heart of our construction is a new lattice (falsifiable | ) ]) assumption named the al-

gebraic one-more module Learning with Errors (AOM-MLWE) assumption. AOM-MLWE is defined, in spirit,
similarly to the algebraic one-more discrete logarithm (AOM-DL) assumption, originally introduced by Nick,
Ruffing, and Seurin | ] to establish the security of the multi-signature scheme called MuSig2. AOM-DL
is a strictly weaker assumption than the (non-falsifiable and non-algebraic) OM-DL. Informally, in OM-DL,
an adversary has access to a very strong oracle that solves the discrete logarithm of any group element of
its choice; in contrast, in AOM-DL, an adversary is limited to access this DL solving oracle on an algebraic
combination of the provided challenge instances.” While the distinction may seem insignificant at first sight,
it has a large impact in the lattice setting. This extra algebraic restriction on the adversary is the key al-
lowing us to provide a well-defined and non-trivial definition.” See Section 4.1 for more detailed discussions
on why a non-algebraic OM-MLWE would be difficult to define and use.

In more detail, half of our work is devoted to a theoretical and practical analysis of the newly introduced
AOM-MLWE assumption. As typical with any lattice-based assumptions, the hardness of AOM-MLWE prob-
lem is dictated by many parameters. The most unique restriction to AOM-MLWE is the “allowed” algebraic
combinations that an adversary can query to the MLWE solving oracle. Since MLWE secrets are small, there
are several trivial queries an adversary can make to break the AOM-MLWE problem with a naive parameter
selection. In our work, we pinpoint what these “weak” instances are and analyze the hardness of AOM-MLWE
for specific “hard” instances, one of which underlies our threshold signature. Concretely, we first show that
a selective variant of AOM-MLWE (sel-AOM-MLWE) of these hard instances is as secure as MLWE and MSIS
— a variant where the adversary must commit to all the queries at the outset of the security game. We then
provide an in-depth cryptanalysis analyzing the effect of an adaptive adversary and heuristically establish
that an adaptive adversary is no stronger than a selective adversary.

It is worth noting that we have recently seen a boom in new lattice-based assumptions, used to construct
exciting primitives: one-more-ISIS | ], K-R-ISIS | ], BASIS | ], evasive LWE | ,

], only to name a few. While some (variants of the) assumptions can be based on standard lattice-
assumptions, many of them are still new and have not undergone scrutiny, both from theory and practical
cryptanalysis. Within this landscape, our assumption is in spirit closest to the adaptive LWE problem
by Quach, Wee, and Wichs | ], used to construct adaptively secure laconic function evaluation
schemes and attribute-based encryption schemes [ ]. Similarly to AOM-MLWE, while adaptive LWE
is heuristically thought to be as hard as LWE, the selective variant is implied by the standard definition of
LWE. We view this as one characteristic that differentiates AOM-MLWE from recent assumptions.

2In more detail, in OM-DL, the adversary is given g2 := (9%")ic[q) as the challenge; can query any h € G to the oracle; and

receives dlog, (h). In contrast, in AOM-DL, the adversary can only query d € Zg and receives (a, d), making the oracle efficient.
3Note that this is fundamentally different from the AGM where the adversary is restricted to be algebraic. In AOM-MLWE,
while the adversary can only make algebraic queries to the MLWE solving oracle, it has otherwise no algebraic restrictions.



The second half of our work is devoted to the construction of our two-round threshold signature. The
starting point of our construction is the recent efficient three-round threshold signature by del Pino et
al. [ ], which is in a bird’s eye view, an analog of the folklore construction of a three-round Schnorr
signature using Shamir’s secret sharing protocol | ]. Our high-level strategy to make it two-round
is similar to FROST | ], however, there arise many lattice-related complications. As we explained
above, the hardness of AOM-MLWE is dictated by the choice of the parameters, and consequently, our
threshold signature must be constructed meticulously to comply with these restrictions. Along the way, as
an independent interest, we resolve one of the open problems stated in [ ]. In their construction,
they required each signer to maintain a long-term state and to authenticate their views with a standard
(non-thresholdized) signature for unforgeability. Our two-round construction resolves both issues without
any overhead.

Lastly, our two-round threshold signatures are practical with an aggregated signature size of roughly
11 KB. Our scheme naturally supports threshold up to 1024 participants, an upper limit of the “large”
requirements of NIST preliminary call for threshold | ]. The main overhead is the offline phase where
signers must exchange the preprocessing tokens with a size of a couple of hundred kilobytes. See Section 8.3
for more details.

1.2 Related Works

Other Post-Quantum Threshold Signatures. Bendlin, Krehbiel, and Peikert | | constructed
a threshold signature based on the GPV signature | ]. The protocol relies on generic multi-party
computation (MPC) to perform Gaussian sampling. Khaburzaniya et al | | recently proposed a

threshold signatures from hash-based signatures using STARK. They report a signature of size 170 KB for a
threshold of size 1024 signers, with an aggregation time of 4 to 20 seconds. While there are some isogeny-based
threshold signatures | , ], they only support sequential aggregation and thus requires numerous
rounds to aggregate the signature.

Post-Quantum Multi-Signatures. Most closest to threshold signatures are multi-signatures. It can be
viewed as an N-out-of-N threshold signature where each signers posses an individual signing key, rather than
a secret share of one signing key. Unlike threshold signatures, constructing lattice-based multi-signatures has
been more fruitful | ) ) , , ]. The recent work by Boschini et al. | ]
and Chen | ] achieve a two-round protocol with signatures size roughly 100 KB and 30 KB, respectively.
While Chen’s protocol has smaller signature size, it does not offer offline-online efficiency as Boschnini et
al’s protocol.

Related Lattice Assumptions. We review two lattice-based assumptions that seem most similar to our
AOM-MLWE assumption. The one-more-ISIS assumption was introduced by Agrawal et al. | ] to
construct a blind signature. While the assumption includes the term “one-more” and is formalized as a
one-more style assumption, it is qualitatively quite different from those considered in the classical setting
like OM-DL. In essence, the assumption claims that given a lattice trapdoor T € Z™*" for a random matrix
A € Zy*™, ie., T is short and AT = 0 mod g, it is difficult to create a lattice trapdoor T’ with a better
quality than T. Such notion of “quality” is lattice specific. The hint MLWE (Hint-MLWE) assumption was
recently introduced by Kim et al. | ]. This assumption claims that the MLWE problem (A, As + e)
remains hard even given hints (c; -s+ 2, ¢; - €+ 2z;);e[q], Where ¢; is some random small element and (z;, z})
are sampled from a discrete Gaussian distribution. When the samples (z;, z}) are super-polynomially larger
than (¢; - s, ¢; - €) it is clear that Hint-MLWE is as hard as MLWE. Kim et al. showed that even under milder
conditions, Hint-MLWE are as hard as MLWE. While it shares similarity to AOM-MLWE since the adversary
receives some information on the MLWE secret, the main difference is that in AOM-MLWE, the adversary
obtains the exact value of the adversarially chosen inner product of the MLWE secrets.

Further Properties of Threshold Signatures. We consider only the key generation that should be
executed by a trusted dealer in this paper. To avoid relying on the trusted dealer, we could use the distributed
key generation (DKG), e.g., a lattice-based DKG with respect to a LWE-type verification key | ,



]. We remain the DKG, that can be used for our scheme, and the security analysis of our schemes
with a concrete DKG as interesting future works.

Our proposed scheme does not provide a way to detect misbehavior when a resulting signature is invalid.
The identifiable abort (TA) is one of the well-known solutions to enable the detection of it. Specifically,
participants execute the IA protocol and eventually identify the misbehavior when the signing protocol
aborts or the resulting signature is invalid. The robustness is a property that ensures honest users can
generate a valid signature, even in the presence of malicious users. Espitau et al. | ] proposed a
lattice-based robust threshold signature scheme by constructing verifiable short secret sharing. We also
leave an TA protocol for our scheme and a robust signing protocol as important future works.

Concurrent Work. Chairattana-Apirom et al. | ] proposed an offline-online efficient two-round
lattice-based threshold signature scheme without relying on heavy tools, independent of our result. Their
scheme is constructed based on the variant of FROST | ] proposed by Tessaro and Zhu | ], which is

based on linear hash functions, and a linear secret sharing schemes with small coefficients. While the security
is based on the standard lattice assumption MSIS, their signature size is around 220 KB (resp. 380 KB) for 5
(resp. 32) participants. This suggests a trade-off between the efficiency and the strength of the assumption,
and an interesting open problem is to achieve the best of the two schemes.

Differences from the Conference Version. The previous version of this paper will appear in the 44th
Annual International Cryptology Conference | ]. The main differences between this version and the
previous one are as follows:

e In Section 1.2, we added an overview of a concurrent work [ | that also proposes a lattice-based
two-round threshold signature scheme.

e In Section 3, we included formal definitions of all the primitives used in the paper and added discussions
on the definition of threshold signatures.

e In Section 4.1, we added more explanation on the AOM-MLWE assumption, e.g., why we need to
consider the algebraic one-more MLWE assumption, not the non-algebraic one.

e In the previous version, we required the AOM-MLWE problem to be defined with respect to a matrix
A having an invertible submatrix over R,. This was required to establish the hardness of (selective)
AOM-MLWE based on the standard MSIS assumption. This negatively affected our resulting threshold
signature as the public matrix was restricted to such A. In this version, we remove this restriction by
observing the specific reduction from the AOM-UMLWE problem to the AOM-MLWE problem, where
the former is the AOM-MLWE problem with uniform secret.

e We added omitted proofs of Theorems 4.5 and 6.1 and Lemma 4.9 regarding the hardness of AOM-UMLWE.

e In Section 5, we first remove the aforementioned restriction on our public matrix A. Second, we mod-
ified our threshold signature scheme by applying the optimization of masking introduced in | ].
While the row mask was explicitly output as a part of the partial signature in the previous version, we
no longer require this. In our modified scheme, each signer simply subtracts the row mask from the
response z. We revised our figures and explanations in Section 2. Moreover, we updated the security
proof of our threshold signature scheme and added an omitted theorem for the correctness.

e In Section 7, we made a minor revision of the presentation of the attacks and gave more details on the
way to avoid the divisibility condition in Section 7.3. Also, we included an overview of the core-SVP
methodology in Section 7.5.

e In Section 8, we added more detailed explanations of parameter selection.
e In Appendix A, we provided a visual aid for masking technique of | ].

e In Appendix B, we showed an alternative reduction from MLWE and MSIS to sell-AOM-UMLWE, which
we believe is beneficial for understanding the hardness of AOM-MLWE.



2 Technical Overview

We provide an overview of our offline-online efficient two-round threshold signature and establish its security
based on the AOM-MLWE assumption. We then discuss the hardness of the assumption.

2.1 Two-Round Threshold Signature from AOM-MLWE

We first explain how we arrive at our threshold signature assuming AOM-MLWE is hard.

Base Signature Scheme. We use Lyubashevsky’s lattice-based signature scheme | , | as our
starting point. Let us briefly recall the protocol. Let A € R’;” andt=A -s+ec ’R’; for “short” vectors
(s,e). The verification and signing keys are set as (vk,sk) = ((A,t), (s, e)). To sign a message M, the signer
first constructs a commitment w = A -r + €', where (r,€’) are “short” vectors sampled from some specific
distribution. A challenge ¢ < H(vk, M, w), followed by a “short” response (z,z') == (¢c-s+r,c-e+¢€)
is then computed. Finally, (c,z,2’) is the signature. To verify, we check if (z,z’) are short and that
c=H\k,M,A-z+2 —c-t).

While it is standard to perform rejection sampling | , | to make the distribution of the re-
sponses independent of the signing key, we rely on noise “flooding” | ]. This allows the signers to
never abort and works very well in the interactive setting. This is the approach also taken in recent lattice-
based threshold signatures [ , , ], using the Rényi divergence to granularly control the
amount of noise flood required.

(vk = (A,A-s+e),sk=s) with A € RE*¢

Signer i: sk; := (s;, (seed; j,seed; ;) jess, sks ;) s.t. 8 =3, 1s5) Lss,i - S
(r;,e}) & D! x DF

w; = A r; + e’i

cmt; := Heom(sid, SS, M, w;)

m; := ), ss PRF(seed; ;, sid) contriby ; := (cmt;, m;)

(contriby ; )jGSS\{i}

0s.i & S.Sign(sks ;, sid||(contrib; ;) jess) contribs ; 1= (Wj,05;)

(contribz,j )jeSS\{i}

Check hash commitments and signatures

W=D iess Wi
¢ = H(vk,M, w)

m; =3, <5 PRF(seed; ;, sid)

z; = c- Lss; - 8; + r; +mj

Si/Ei =1z
Figure 1: Simplified three-round threshold signature of | ]. sid € {0,1}" is a session identifier and SS C [N]
is the set of active users. The second round is only initiated once signer ¢ obtains T' = |SS| first-round contributions.
The final aggregated signature is (c,z,h) where z := >, _<(z; — m;) and h := —Az + c-t + w. Notice that

h=c-e+ ), €. The verification algorithm checks that (z,h) are short and ¢ = H(vk, M, Az — c¢-t + h). By
ignoring the highlights in blue, we arrive at an insecure adaptation of a naive threshold Schnorr.

A Naive Extension to a Threshold Signature. One naive way to thresholdize Lyubashevsky’s signature
is to use Shamir’s secret sharing protocol to share the signing key. This is depicted in Fig. | (ignoring the blue
highlights). The partial signing key (s;);e[n satisfy s = ), cs Lss,; - s; for any set SS C [N] with |SS| =T,



where Lss; is the Lagrange coefficient. Correctness follows from observing that z = ZiGSS Z; = Cc-S+r,
where r = EiESS r;. It is worth mentioning that the signers need to perform a hash-and-open with the
commitment w; to force a malicious signer ¢* to prepare its commitment w;» independently from the honest
users’ commitments. This is a procedure required for classical three-round schemes as well [ , ]

Unfortunately, it turns out this naive construction is insecure due to lattice-specific reasons. Since
Lagrange coeflicients can be arbitrarily large over modulo ¢, this forces the partial response z; = ¢* - s; + r;
to be large, where ¢* = ¢ - Lss;. Similarly to why Lyubashevsky’s signature becomes easily forgeable for
large challenge spaces, the partial signing key s; can be recovered from such a partial response using a large
challenge ¢*. While there are several workarounds to overcome large Lagrange coefficients, e.g. [ ,
, , , , , , ], they are notorious for being highly
impractical and/or non-scalable. For instance, one of the most simple and common approaches | ,

] require the modulus ¢ to grow with at least O(N!?) — even for a small N = 15, we would require
q> 2897
Three-Round Threshold Signature by del Pino et al. Very recently, del Pino et al. | ] came
up with a simple and elegant solution to sidestep this issue. Their idea is to additively mask the individual
responses by a random vector and devise a way to publicly remove only the sum of the masks. This is
depicted in Fig. 1. Each signer additionally shares a pair-wise seed for a pseudorandom function (PRF). In
the first round, signer ¢ now computes a so-called row mask m; := ZjeSS PRF(seed; ;, sid) and shares it along
with the hash commitment cmt;, where sid is some unique string defined per session. In the third round, it
computes a column mask mj := Ejess PRF(seed; ;,sid) and adds this to the response z;. Importantly, while
the row masks (m;);ecss are public, the column masks (m7);css are kept private. Moreover, by construction,
we have >, cssm; = ssmj. To offset the column masks, we subtract . s m; from >, q52; to arrive
at the desired aggregated response z =c-s+r.

The key observation to understand the security is that while the individual row masks (m;),ecss are
known to the adversary, the only knowledge the adversary gains on the column masks (m;‘) jens of honest
signers HS C SS are their sum ) jens Mj; put differently, (m;f)jeHs are distributed randomly, conditioned
on their sum being > jens m;. This observation is leveraged to move around the terms c- Lss ; - s; included
in the partial responses z; of the honest signers, effectively allowing the reduction to reconstruct the signing
key s under the hood of the adversary’s view. (See Appendix A for a pictorial example.)

We note that the security proof is easier said than done. The main source of difficulty is that an adversary
can adaptively alter the views of the honest signers without being detected. In the context of the above
intuition, this means moving the terms c - Lss; - s; around consistently with the adversary’s view becomes
very difficult. To this end, | | requires a standard signature scheme to authenticate the view of each
honest signer. Moreover, so as not to sign on the same sid, the signers must remain stateful.

b

Making it Two-Round. To turn the protocol into a two-round protocol, we collapse the seemingly super-
fluous second round, consisting of only opening the hash commitment. Recall we required this hash-and-open
to prevent a malicious signer i* from creating a commitment w;+ affecting the aggregated commitment w.
We follow a similar high-level approach taken by FROST | ] to prevent this while removing the sec-
ond round. Our two-round threshold signature is depicted in Fig. 2. In the first round, each signer now
generates a list of commitments in the clear. In the second round, they use a hash function G modeled as
a random oracle to compute a random weight (By)sejrep) and (locally) set the partial commitment w; as
wj = Zbe[rep] Bp - W;p. Moreover, the row and column masks (m;, m}) are now created in the second round
at the same time from the PRF evaluated on input ctnt = SS||M||(W ;) ess. Importantly, we no longer require
a session-specific identifier sid as in | ]. Also, by applying the optimization of masking introduced in
[ ], the row mask m; can be implicitly included in the response z; as opposed to explicitly including
it in the partial signature. Otherwise, it proceeds as before. Notice the first round pre-processing token pp;
can be generated without the knowledge of the message or set of signers, making the protocol offline-online
efficient.

4While Albrecht and Lai | , Section 3.1] define the Lagrange interpolating polynomial on specific elements in Rq to
handle the blowup more granularly, the concrete gain is unclear for a general T-out-of-N threshold.



(vk =(A,A-s+e),sk=s) with A € R’;Xﬁ
Signer 4: sk; := (s;, (seed; ;,seed; ;)jess) s.t. s = Zie[SS] Lss,i - si
for b € [rep] do

(ri7b,e’i’b) & Dl x Dk

Wip i =A T+ e;b

Wi = [Wi1 || Wirep| PP; ‘= W;

(ppj)jGSS\{i}

cint += 5[ [(,),css
(6b)b€[rep] = G(Vk7 ctnt)
for j € SS do

Wi =D befrep] Pb - Wb
W=D icss Wj
¢ = H(vk, M, w)
m; := s PRF(seed; ;, ctnt)
m; = ZjeSS PRF(Seedjﬂ-, Ctnt)

z; = ¢ Lss;i Si+ D pepep Bo - Tip +mj —my

sig; := 12,

Figure 2: Our simplified offline-online efficient two-round threshold signature. The major differences between the
three-round threshold signature in Fig. 1 are highlighted in blue. Concrete values of rep € N and the output of the
hash function G is scheme specific, implicitly dictated by the parameters of the underlying AOM-MLWE assumption.

Before explaining the intuition of the security proof using AOM-MLWE, we note the effect of our modified
mask evaluation. While it is a simple modification, including the commitments (W ;) jess in the PRF effectively
“kills two birds with one stone”. First of all, the signer no longer needs to maintain a state since a commitment
w; has high min-entropy. That is, as long as the signers are correctly following the protocol, no adversary
can trick them into using the same input to the PRF. This removes the need of using a session-specific
identifier sid. Moreover, we are also able to remove the usage of standard signatures since PRF(seed; ;, ctnt)
and PRF(seed; ;,ctnt) can be viewed as random MACSs from signer i to j of the fact that i’s view is ctnt,
which effectively includes all the communication transcript. Noticing the role of signers ¢ and j is symmetric,
the random MAC embedded in the partial responses z; and z; cannot be removed unless both signers agree
on the same ctnt. If ctnt agrees, then the reduction can move around the terms c- Lss; - s; as explained
prior. Otherwise, the responses remain random from the view of the adversary.

Security Proof with AOM-MLWE. It remains to explain how AOM-MLWE is used to prove security.

The reduction is given A, t, and (Wgﬁ,))(k,i,b)e[Qs]x[N]x[rep] as the challenge, where t = As + e and WE,I? =

ArE’kb) —&—eg’kb). The reduction sets (A, t) as the verification key and when the adversary invokes signer ¢ on the

k-th signing query, the reduction sets the pre-processing token as ppgk) =wk) = (wgﬁ), . -wgﬁlp). Thanks

to the above random MAC technique, we can guarantee the reduction to only be required to simulate
partial responses of the form z; = c-s + Zbe[rep] By - rz(.ﬁ)) + (public vector) or z; = Zbe[rep] By - rz(.fcb) +
(public vector). Thus the reduction only needs to query the linear combination (¢, 0, -+, 81, , Brep, -+ , 0)
r (0,0,---,B1, -, Brep,- -+ ,0) to the MLWE solving oracle to simulate these partial responses.
The technically interesting part is what the reduction does once the