
A Variation on Knellwolf and Meier’s Attack on the Knapsack
Generator

Florette Martinez
florette.martinez@ens.fr

Abstract

Pseudo-random generators are deterministic algorithms that take in input a random secret
seed and output a flow of random-looking numbers. The Knapsack generator, presented by
Rueppel and Massey in 1985 is one of the many attempt at designing a pseudo-random generator
that is cryptographically secure. It is based on the subset-sum problem, a variant of the
Knapsack optimization problem, which is considered computationally hard.

In 2011 Simon Knellwolf et Willi Meier found a way to go around this hard problem and
exhibited a weakness of this generator. In addition to be able to distinguish the outputs from
the uniform distribution, they designed an algorithm that retrieves a large portion of the secret.
We present here an alternate version of the attack, with similar costs, that works on the same
range of parameters but retrieves a larger portion of the secret.

1 Introduction
Pseudo-random generators are deterministic algorithms that take in input a random secret seed and
output a flow of random-looking numbers. They allow applications to have access to large amount
of randomness for a very low computational cost. Cryptosystems are the kind of applications
that require a lot of randomness, if only to generate the secrets needed. But to remain secure
theses applications need good randomness, computationally indistinguishable from the uniform
distribution. The Knapsack Generator, presented by Rueppel and Massey in 1985 [3], is one of the
many attempt at designing a pseudo-random generator that is cryptographically secure. It is based
on the subset-sum problem, a variant of the Knapsack optimization problem, which is considered
computationally hard. One should note that the security of the Knapsack Generator does not
reduce to the subset sum problem.

In 2011 Simon Knellwolf et Willi Meier [2] found a way to go around this hard problem and
exhibited a weakness that is not related to the subset sum problem. In addition to be able to
distinguish the outputs from the uniform distribution, they designed an algorithm that retrieves a
large portion of the secret. To obtain the secret seed of the generator, they need a matrix having
a small norm. To compute this matrix, they use lattice techniques.

We present here an alternate version of the attack, with similar costs, that works on the same
range of parameters but retrieves a larger portion of the secret. We apply the same kind of lattice
techniques but to attack more directly the problem. Instead of using lattices to solve a side problem,
we highlight how much the lattices are the heart of the attack.

1

2 Preliminaries
2.1 Norms
In this paper we will talk about vectors “close” to each other and “small” matrices. We need to
define theses notions. We will use two norms on the vectors: the 2-norm ∥.∥2 and the infinite norm
∥∥∞ defined on x = (x1, . . . , xn) by:

∥x∥2 =

√√√√ n∑
i=1

|xi|2 and ∥x∥∞ = max
i∈{1,...,n}

|xi|

As ∥x∥∞ ≤ ∥x∥2 ≤ n∥x∥∞, a “small” vector for the 2-norm is small for the infinite norm and
vice versa.

We will also use matrix norms induced by ∥.∥2 and ∥∥∞ defined on a matrix M ∈ Mn×m(R)
by:

∥M∥2 = max
x∈Rm\0

|Mx|2
|x|2

and ∥M∥∞ = max
x∈Rm\0

|Mx|∞
|x|∞

or
∥M∥2 = max

x∈Rn\0

|xM |2
|x|2

and ∥M∥∞ = max
x∈Rn\0

|xM |∞
|x|∞

given the context.

2.2 Lattices, Closest Vector Problem and approximate solutions
A lattice L is a discrete subgroup of Rm of finite rank n. It can be expressed using a base B =
(b1, . . . ,bn) where the bi are independent vectors of Rm as

L = {
n∑

i=1

αibi|(α1, . . . , αn) ∈ Zn}.

The basis is not unique.
To compute “small” basis, we will use as a black box the LLL-algorithm by , a polynomial

algorithm that takes in input a basis B for L and outputs a smaller base B′ of the same lattice.
We will first present a classical problem in lattices.

Definition 1 (The Closest Vector Problem). Given a lattice L ⊂ Rn and a target t ∈ Rn usually
not in the lattice, the Closest Vector Problem (CVP) is finding v the closest vector to t in L. In
other words, v ∈ L must satisfies :

∥v − t∥2 = min
x∈L
∥x− t∥2.

In the following, we will not need to solve the CVP, only approximations. To do it we will use
the Babai rounding method.

2

The Babai Rounding method: We consider the lattice L of full rank and B = (b1, . . . ,bn) a
basis of the lattice. We define M as

M =

b1

...
bn

 and L = {αM |α ∈ Zn}.

We also consider t ∈ Rn the target. As M is invertible, there exist β ∈ Rn such that βM = t. If
we choose B small (for example the output of the LLL-algorithm), then v = ⌈β⌋M is in the lattice
and close to t where ⌈β⌋ = (⌈β1⌋, . . . , ⌈βn⌋),

∥v − t∥∞ ≤
1

2
∥M∥∞.

2.3 Fundamental domain and counting points
Let L be a lattice and B be one of its basis. We define D the fundamental domain as the set of
points encompassed by the vectors of the basis.

D

Figure 1: The fundamental domain defined by the basis (1,1),(1,-1)

The fundamental domain, as the basis, is not unique for a given lattice. But its volume is and
we define det(L) = vol(D)

We can then center the fundamental domain on a point of the lattice and pave the whole space.
Each fundamental domain contains on and only one lattice point in its center. To approximate the
number of lattice points in a convex shape C, we compute vol(C)

det(L) .

3 The Knapsack Generator and the original attack
3.1 Definition and weakness of the Knapsack Generator
The Knapsack Generator was presented in 1985 by Rueppel and Massey in [3]. We consider
three public parameters, n, ℓ ∈ N and P a retroactive polynomial in F2[X0, . . . , Xn−1]. Let

3

Figure 2: The space paved with fundamental domains

u = (u0, . . . , un−1) ∈ {0, 1}n be a secret seed and ω = (ω0, . . . ωn−1) ∈ {0, . . . , 2n − 1}n be a
vector of n secret weights.

At step j the knapsack generator produce a new bit out of an LFSR given by

un+j = P (uj , . . . , uj+n−1)

and an internal state vi given by

vj =

n−1∑
i=0

ui+jωi mod 2n

The output sj is given by the leading n− ℓ bits of vj :

sj = vj//2
ℓ

where // is the Euclidean division. We denote by δj the truncated value: vj = 2ℓsj + δj
In 2011, S. Knellwolf and W. Meier found the main weakness of this generator and presented a

first attack [2].

Weakness: The secret of the generator is made of the seed u –n bits– and the vector of
weights ω – n2 bits –. It is unbalanced: if we decide to work with a secret key of 1024 bits
it means the seed u will only be made of 32 bits. We can construct an attack based on an
exhaustive search on u.

The main part of the attack will be to describe an algorithm ApproxWeights that, given the
secret seed u and some outputs of the generator, can compute an approximation of the vector ω.
As the subset-sum step is linear in ω, the outputs given by the generator applied on u and an
approximation of ω will be close to the outputs of the generator applied on u and ω.

Let m be the number of outputs need in ApproxWeights and ϵ the number of additional
outputs need for checking the consistance. We denote s = (s0, . . . , sm−1) and ŝ = (s0, . . . , sm−1+ϵ).

The layout of the attack is the following:

4

Algorithm 1 General Attack
1: procedure Attack(ŝ)
2: for u′ ∈ {0, 1}n do
3: ω′ ←ApproxWeights(u, s)
4: t← KnapsackGenerator(u,ω′)
5: if t is close to ŝ then
6: return u,ω′

3.2 ApproxWeights by Knellwolf and Meier
We present in this subsection the algorithm by Knellwolf and Meier to highlight difference between
their version and our version.

Let v = (v0, . . . , vm−1) be the vector of m consecutive internal states, with m > n, then

ω × U ≡ v mod 2n

where the matrix U ∈Mn×m is given by

U =


u0 u1 . . . um−1

u1 u2 . . . um

...
un−1 un . . . un+m−2

 .

As U is full rank over 2n [4] and u is supposed to be known, we can construct with basic
arithmetical operations T ∈Mm×n(Z) such that

UT = In mod 2n

If we consider δ = (δ0, . . . , δm−1), we can try to decompose ω as

ω ≡ vT mod 2n (1)
≡ 2ℓsT + δT mod 2n (2)

The only unknown left is δT where δ is small. If we can control the size of T we can obtain the
higher bits of ω as the higher bits of 2ℓsT .

Let L1 = { x ∈ Zm | Ux ≡ 0 mod 2n}. We will construct the matrix T̂ column by column.
For the i-th column we consider a vector Ti such that UTi ≡ ei mod 2n where ei is the vector

with a one on the i-th position and zeros elsewhere. Now, using lattice techniques, we find xi a
close vector to Ti in L1. Then the vector T̂i = Ti − xi is small and satisfies UT̂i ≡ ei mod 2n: it
becomes the i-th column of T̂ .

The infinite norm |ω−2ℓsT̂ |∞ is bounded by |δ|∞∥T̂∥∞. Bounding heuristically ∥T̂∥∞ appears
to be challenging.

4 A more directly lattice-based original attack
In this section we present our version of the ApproxWeight algorithm that retrieve more information.

5

We still consider u to be known. Instead of using lattice technique to shrink the matrix T , we
can use it to directly solve the problem.

As ωU ≡ v mod 2n, v is in the lattice L2 = { y ∈ Zm | xU ≡ y mod 2n for x ∈ Zn} and by
construction v is close to the public vector 2ℓs. We compute v′ the closest vector to 2ℓs in L2. In
practice, this vector is never v so it does not give us ω. Let ω′ be a pre image of v′ such that

ω′U ≡ v′ mod 2n.

Is ω′ a good approximation of ω ? Yes !
Why that it works ?

4.1 Counting lattice points again
We would like to have something in the line of :

|v − v′|∞ small ⇒ |ω − ω′|∞ small

We will now denote x the small vectors in Zn and y the small vectors in L2 with the relation
y = xU mod 2n

We already know the following given by the definition of the induced norm

|x|∞ <
2k

∥U∥∞
⇒ |y|∞ < 2k. (3)

We consider two sets :
A = {x ∈ Zn s.t. |x|∞ ≤

2k

∥U∥∞
}

and
B = {y ∈ L2 s.t. |y|∞ ≤ 2k}

With the notation A×U : = {xU s.t. x ∈ A}, we already know that A×U ⊂ B thanks to equation
3 and as long as 2k∥U∥∞ < 2n we have |A × U mod 2n| = |A|.

We search for k such that |B| ≤ |A| to ensure B ⊂ A× U

How to compute |A|: We can exactly compute the number of points in A, it is given by

|A| = (2× ⌈ 2k

∥U∥∞
⌋ − 1)n

How to approach |B|: The set B can be rewritten as an intersetcion: B = L2

⋃
Bm,∞(2k). So

the number of point in B is roughtly vol(Bm,∞(2k))
|det(L2)|

The lattice L2 is a 2n-ary lattice or rank n and Zm so its determinant satisfies det(L2) > 2n(m−n)

[1].
Hence

|B| ≤ (2× 2k − 1)m

2n(m−n)

For n = 32 and m = 40 we obtain |B| < |A| for k ≤ 15 (we approximate ∥U∥∞ by n
2).

6

To end the explanation: We fix y = v − v′. Because both v and v′ are close to 2ℓs, we have
|y|∞ < 2k with k = ℓ+1. If k is such that |B| < |A| then there exists x ∈ Zn such that |x|∞ < 2k

|U∥∞

and xU = y.
If we consider α = ω − ω′ mod 2n then αU ≡ y mod 2n. As U has a pseudo inverse mod 2n

then α ≡ x mod 2n and if the two already live in {−2n−1, . . . , 2n−1}n, we obtain α = x and thus
|ω − ω′| < 2ℓ+1

∥U∥∞
.

4.2 Experimental Results
For n = 32 and m = 40 we obtain the following results for the two algorithms ApproxWeigthts.

ℓ 5 10 15 20 25
log2(∥ω − 2ℓsT̂∥∞) 9.9 14.9 19.8 24.7 ��ZZ31
log2(∥ω − ω′∥∞) 3.6 8.7 13.6 18.7 ��ZZ31

About the range of the attack: This new attack was supposed to work at least up to ℓ = 15,
we can see it works better in practice. But it does not seem to work on a larger range than the
original attack by Knellwolf and Meier.

About the information retrieved: On the set of parameters where both attacks work, our
retrieve much more information.

About the complexity: The bottleneck of theses algorithms is the use of the LLL-algorithm. In
our version we run one LLL by call to our ApprowWeight function. In their version, they would
call n LLL by call to their ApprowWeight function but they could reuse some of the results for
other calls to their ApprowWeight function. In the end we both call the LLL-algorithm around
2n times for the full attack.

References
[1] Daniel Dadush. Mastermath, Lecture Notes: Intro to Lattice Algorithms and Cryptogra-

phy , 2018. URL: https://homepages.cwi.nl/~dadush/teaching/lattices-2018/notes/
lecture-9.pdf.

[2] Simon Knellwolf and Willi Meier. Cryptanalysis of the knapsack generator. In Antoine Joux,
editor, Fast Software Encryption – FSE 2011, volume 6733 of Lecture Notes in Computer
Science, pages 188–198. Springer, Heidelberg, February 2011.

[3] RA Rueppel and JL Massey. Knapsack as nonlinear function, ieee intern. symp. of inform.
theory, 46, 1985.

[4] Joachim von zur Gathen and Igor Shparlinski. Predicting subset sum pseudorandom generators.
In Helena Handschuh and Anwar Hasan, editors, SAC 2004: 11th Annual International Work-
shop on Selected Areas in Cryptography, volume 3357 of Lecture Notes in Computer Science,
pages 241–251. Springer, Heidelberg, August 2004.

7

