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OPSA: Efficient and Verifiable One-Pass Secure
Aggregation with TEE for Federated Learning

Zhangshuang Guan, Yulin Zhao, Zhiguo Wan, and Jinsong Han

Abstract—In federated learning, secure aggregation (SA) pro-
tocols like Flamingo (S&P’23) and LERNA (ASIACRYPT’23)
have achieved efficient multi-round SA in the malicious model.
However, each round of their aggregation requires at least three
client-server round-trip communications and lacks support for
aggregation result verification. Verifiable SA schemes, such as
VerSA (TDSC’21) and Eltaras et al.(TIFS’23), provide verifiable
aggregation results under the security assumption that the server
does not collude with any user. Nonetheless, these schemes
incur high communication costs and lack support for efficient
multi-round aggregation. Executing SA entirely within Trusted
Execution Environment (TEE), as desined in SEAR (TDSC’22),
guarantees both privacy and verifiable aggregation. However,
the limited physical memory within TEE poses a significant
computational bottleneck, particularly when aggregating large
models or handling numerous clients.

In this work, we introduce OPSA, a multi-round one-pass
secure aggregation framework based on TEE to achieve efficient
communication, streamlined computation and verifiable aggrega-
tion all at once. OPSA employs a new strategy of revealing shared
keys in TEE and instantiates two types of masking schemes.
Furthermore, a result verification module is designed to be
compatible with any type of SA protocol instantiated under the
OPSA framework with weaker security assumptions. Compared
with the state-of-the-art schemes, OPSA achieves a 2∼10×
speedup in multi-round aggregation while also supporting result
verification simultaneously. OPSA is more friendly to scenarios
with high network latency and large-scale model aggregation.

Index Terms—Federated learning, secure aggregation, verifi-
able aggregation, trusted execution environment.

I. INTRODUCTION

FEDERATED learning (FL) represents a paradigm shift in
machine learning, replacing traditional centralized model

training methods with decentralized collaborative frame-
works [1]. In this approach, a global machine learning model is
trained on multiple decentralized devices with the assistance
of a server, each possessing its own local dataset. The dis-
tinguishing feature of FL is that model updates are computed
locally on these devices and uploaded to the server, eliminating
the necessity to transfer raw data to a central server. These
devices (clients) and the server engage in interactions through
the above operations for multiple rounds, ultimately achieving
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a convergent model. However, the original model update may
also lead to the leakage of original private data [2], [3].

To protect the privacy of model updates, secure aggregation
(SA) has been designed for model aggregation in FL. Its
core idea is that each client protects its local model in a
certain manner, the server then aggregates all hidden models to
recover a plaintext aggregated model. Furthermore, the secret
sharing scheme is used to ensure that the aggregated model can
still be recovered after some clients drop out, but this results
in each round of SA under the malicious model requiring four
client-server round-trip communications: (1) secret sharing; (2)
model transmission; (3) dropout list confirmation; (4) secret
reconstruction. The above idea is first proposed by Bonawitz et
al. [4]1, upgraded by Bell et al. [5], and subsequently adapted
into various variants [6], [7]. However, these schemes are
suitable for a single FL round, as each aggregation requires
each client to regenerate its key and share it with others, which
greatly increases the communication burden.

Fortunately, MicroFedML [8] addresses this issue by intro-
ducing a one-time setup phase to reuse secrets, Flamingo [9]
designs a multi-round SA protocol based on a double masking
scheme while LERNA [10] achieves the same goal based
on a single masking mechanism. While these schemes elim-
inate one client-server round-trip communication through the
reusable setup phase, they still require three client-server
round-trip communications for each round of SA (as shown
in Fig. 1), which poses a challenge for scenarios with high
network latency or limited bandwidth. In fact, these multi-
round SA protocols improve performance by introducing an
additional group, such as decryptors in Flamingo and a com-
mittee in LERNA, which can be treated as a singular entity
– essentially acting as a trusted party. Given this observa-
tion, could we potentially leverage hardware-based trusted
execution environment (TEE) instead of the special group to
optimize three client-server round-trip communications of SA
into one-pass aggregation? Moreover, all the single-round and
multi-round SA protocols mentioned above lack support for
the verifiability of aggregation results, which can be forged by
malicious servers (e.g., false aggregation) to launch privacy
attacks [11]–[13]. While many verifiable SA schemes [14]–
[18] have been proposed under different security assumptions,
they all incur high communication costs and lack support for
efficient multi-round aggregation.

While the trivial approach of executing SA entirely within
TEE ensures both privacy and verifiable aggregation, the
limited physical memory within TEE poses a significant

1We write the SecAgg and SecAgg+ term as [4] and [5], respectively.



2

4 Model	Aggregation

3 Dropout	Handling

Decode

2 Masked	Model	Collecting

Clients

local	model
Encode

Model	Masking1

masked	model

Client	v

local	model
Encode

Model	Masking1

masked	model

Client	u

Server

clientList

model
transmission

dropout	list
confirmation

mask
reconstruction

Communications

Fig. 1: Workflow of the state-of-the-art SA schemes

computational bottleneck, especially when aggregating large
models or handling numerous clients. For example, a global
model containing a million parameters takes about 3.8MB of
memory, with each parameter represented in 4 bytes. However,
in scenarios involving hundreds of clients, the memory require-
ments can easily exceed the 128MB physical memory capacity
of TEE. To address this issue, SEAR [19] adopts a strategy of
aggregating one layer of the models at a time. However, this
approach does not alleviate the overall computation burden
on TEE, and similar challenges may arise when processing
layers with a large number of parameters. Of course, sparse
gradient aggregation can reduce TEE memory usage, but Kato
et al. [20] have introduced an attack targeting the gradient
index within TEE.

In this work, we employ modularity to design a multi-
round one-pass aggregation framework based on hardware-
based TEE. Our key idea is for each client to share a secret
seed with the server-side TEE and then utilize it to generate
a mask for its local model. The server knows only the sum of
the secret seeds but not any individual secret seed, so it cannot
recover the mask of any client. Note that the secret seeds are
never disclosed to the server, even in case of client dropout. As
such, we propose OPSA, a highly efficient secure aggregation
framework for FL. Our contributions can be summarized as
follows:

• We propose OPSA, a multi-round one-pass secure ag-
gregation framework based on hardware-based TEE to
achieve efficient communication, streamlined computa-
tion and verifiable aggregation all at once. It addresses
the performance bottleneck of TEE capacity for high-
dimensional models and allows secret seeds to be shared
only once and used forever. Based on this framework, we
instantiate two types of SA protocols: a single masking
scheme KhPRF-OPSA and a double masking scheme
POT-OPSA, both of which only require one client-server
round-trip communication during aggregation.

• We design a result verification module OPSA-RV to pro-
tect against forged aggregation results using commitments
and proofs. Compared with state-of-the-art schemes, this
module is compatible with any type of SA protocol
instantiated under the OPSA framework and can be easily
utilized to construct a communication-efficient multi-
round verifiable SA protocol under the weaker security

assumption that a malicious server can collude with any
semi-honest client.

• We provide a rigorous security analysis to establish the
theoretical safety guarantees of the OPSA framework.
Furthermore, we implement two types of SA protocols
instantiated under the OPSA framework and conduct ex-
tensive experiments to evaluate them alongside the state-
of-the-art schemes for a comprehensive cost comparison.
The results demonstrate that our framework performs well
in terms of dropout resilience and efficiency.

II. PRELIMINARIES

Before introducing the preliminaries, we list the notations
used in this work.

Notations. Unless specified otherwise, we use λ to denote
the security parameter, lowercase letters (e.g., n, k, r) to denote
scalars, and bold lowercase letters (e.g., x,y,k) to denote
vectors. The format {su}u denotes a set of values indexed by
u. The variable x

(r)
u denotes the input vector x held by client

u in round r. The sets U ,D,V , where U = D ∪ V , contain
all clients, dropped clients, and surviving clients, respectively.
Note that we use the terms “user” and “client” interchangeably.

A. Federated Learning

A general federated learning (FL) scenario involves n clients
and a server, all participants repeat the following processes for
each round r until the current global model θ(r) converges:

• Local training: each client u ∈ U receives the global
model θ(r−1), which is trained and aggregated in the
previous round, and combines it with its private dataset
to train a local model x(r)

u to be sent to the server.
• Model aggregation: the server collects the individual

model x
(r)
u from distinct clients and computes an ag-

gregated model z(r) =
∑

u∈V x
(r)
u to update the global

model θ(r) to be delivered to clients for next round.
Note that these clients can drop out at any steps in each FL
training round.

B. Trusted Execution Environment

Trusted Execution Environment (TEE), whose notable im-
plementations include Intel Software Guard Extensions (SGX)
and ARM TrustZone, is a hardware solution designed to ensure
computational integrity and confidentiality by creating a secure
and isolated space, often referred to as an enclave, where the
data and its sensitive computations can be performed without
the risk of interference or compromise. In particular, TEE
allows remote users to verify the application and the hardware
it is running via remote attestation.

Given the widespread use of Intel SGX in personal com-
puters and cloud computing servers, we leverage it for secure
aggregation in FL. However, Intel SGX presents the following
challenges in achieving efficient SA protocols: (1) limited
physical memory, Intel SGX v1 only has 128MB physical
memory, exceeding its limit results in high overhead; (2) data
transmission overhead, the SGX application is divided into
trusted and untrusted parts, transmitting data between the two
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parts will incur significant overhead due to additional encryp-
tion/decryption operations; (3) side-channel attacks, which are
an important factor to be considered, although they are not part
of the Intel SGX threat model [21].

In this work, we assume that Intel SGX is trusted but with
fewer cryptographic primitives and less data to be loaded into
its enclave. The enclave stores a different shared key ke,u
for each client u ∈ U . Moreover, side-channel attacks are
excluded from the scope of this work, as we can integrate
some countermeasures [22], [23] into our framework to protect
against them, and we also consider the prevention of side-
channel information leakage as a responsibility falling more
on enclave developers.

C. Cryptographic Primitives

In our protocols, we will employ the following cryp-
tographic primitives for randomness generation and secure
communication. A cryptographically secure pseudo-random
generator (PRG) takes a uniformly random seed of some
fixed length and outputs a string that is computationally
indistinguishable from a random string; for example, it can
be instantiated with AES-CTR in practice [4]. A cryptograph-
ically secure pseudo-random function (PRF) indexed by a
key can also be regard as the PRG. A secure key-agreement
(KA) protocol enables any user to input their private key
and the public key of the other party, producing a shared
secret key as output; for example, it can be instantiated with
a Diffie–Hellman key agreement protocol followed by a key
derivation function in practice [4], [5]. A standard secure
signature scheme Πσ = (Sign, VerSig) that is existentially
unforgeable under chosen message attacks (EUF-CMA); for
example, it can be instantiated with ECDSA followed by a
key derivation function in practice. A commitment scheme
that is perfectly hiding and computationally binding under
the discrete logarithm assumption; for example, it can be
instantiated with vector Pedersen commitment in practice [7].

III. OPSA FRAMEWORK

In this section, we first give a threat model, and then present
our OPSA framework after describing its high-level ideas.

A. Threat Model

Let N = |U|, there are N clients and a single untrusted
server equipped with TEE, each client u holds a local model
xu, and all clients want to obtain the summation

∑
xu with the

help of the server S revealing nothing about xu. Note that in
FL, clients and the server need multiple rounds of aggregation
to obtain the final converged model. Like previous works
MicroFedML [8] and Flamingo [9], we target the following
failures and attacks: (1) honest clients that may dynamically
drop out or respond too slowly due to factors such as unstable
network conditions, power loss, etc.; and (2) arbitrary actions
by an adversary who has control over the server and a bounded
fraction of the clients.

Overall, in any given aggregation round, we assume that at
most δ ∈ [0, 1] fraction of N clients drop out during any step,
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Fig. 2: Workflow of OPSA

and that the adversary compromises γN clients before each
aggregation round begins, where γ ∈ [0, 1] is a maximum
fraction of corrupt clients, possibly also colluding with the
server. For KhPRF-OPSA and POT-OPSA, we also assume the
server is fully malicious, but for OPSA-RV we prove security
only in the case of semi-honest clients.

B. Intuition of the idea
Applying masks to local models has become an effective

way to protect privacy in FL: each client masks its local model
using a shared key, and then the server utilizes revealed keys
to remove these masks during model aggregation. However,
this method mandates each client to regenerate and share
a new key per round, along with requiring at least three
client-server round-trip communications to achieve dropout
resilience. Moreover, message authentication codes (MACs)
are commonly employed to verify the aggregation results, but
it incurs a doubling of the communication cost.

We can utilize TEE for secure aggregation to address the
aforementioned issues. However, the memory limit of TEE
becomes a severe computational bottleneck, particularly when
aggregating high-dimensional models or handling a large num-
ber of clients. To address such dilemma, we adopt a distinct
strategy leveraging TEE for managing shared keys, with model
aggregation and mask elimination performed outside TEE.
Importantly, our mask computation requires a shared key,
which is established between each client and TEE, ensuring
that TEE can handle dropout to help server remove masks. We
require that the inputs and cryptographic primitives run within
TEE are as minimal as possible.

We give a brief workflow of OPSA in Fig. 2. At first, a
shared key ku,e is generated between client u and the server’s
TEE through a key agreement protocol. For each round r, each
client u utilizes ku,e to mask it local model xu as follows:

yu = xu + Encode(ku,e, r)

Subsequently, the server collects masked models yu from
distinct clients to obtain an aggregated model as follows:

y =
∑

xu +
∑

Encode(ku,e, r)

Given a list of surviving clients V , the TEE can reveal some
variants of shared keys {k′u,e}u∈V to help the server unmask
the aggregated model as follows:∑

xu = y − Decode({k′u,e}u∈V , r)
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Finally, the server forms a proof proving that
∑

xu is correctly
aggregated according to masked models received from distinct
clients in the surviving list.

C. OPSA framework

Before introducing our OPSA framework, we formally
define a multi-round SA protocol as follows:

Definition 1 (Multi-round SA protocol). A multi-round SA
protocol involving a client set U , a server S, and an integer
R, consists of two phases:

• Setup phase: it is executed only once at the initiation of
the protocol.

• Training phase: for round r ∈ [1, R], the SA protocol
is executed once, beginning with a client generating its
local model x(r)

u and ending with the server computing
an aggregated model

∑
x
(r)
u .

Based on the provided definition, our OPSA framework
consists of three functional parts: one-time setup in the Setup
phase, one-pass aggregation in the Training phase, and result
verification in the Training phase. The red parts are required
to provide verifiable aggregation results and are not required
for the malicious setting.

One-Time Setup. During setup phase, all clients and the
server execute the following Setup algorithm respectively to
correctly generate public parameters.

• pp← Setup(1λ,m): takes as inputs a security parameter
λ, and a model dimension m. It outputs public parameters
pp, which defines a key space K, a model space M, a
mask space Y , and commitment parameters ppcom.

Then, the server loads a program code into its TEE to create an
instance, and distributes an initial global model to all clients.
After verifying the correctness of the server’s TEE instance
through remote attestation, each client accepts the initial global
model and proceeds to a FL training round.

We assume that all parties (client u, server S, and TEE
instance Me) have its own authenticated key pair (pk∗, sk∗)
based on Public Key Infrastructure (PKI). Each client u can
establish a key agreement with TEE instance Me as a root
seed to reuse its secret key as follows:

ku,e = KA(sku, pke) = KA(ske, pku) = ke,u. (1)

Note that all parties initialize a round as r = 1, and the TEE
instance sets an extra round as re = 0. The constraint r > re
means that the server can only invoke the TEE instance only
once in round r.

One-Pass Aggregation. Based on reusable shared keys and
TEE, a SA protocol can be optimized to a version with one
client-server round-trip communication, as long as the SA
protocol can implement the following algorithms:

• masku ← Encode(pp, shKey, r): takes as inputs public
parameters pp, a set of shared keys shKey, and round r.
It outputs a one-time mask masku.

• (reKey, rand)← RevealKey(pp,V,D, r): takes as inputs
public parameters pp, a list of surviving clients V , a
dropout list D, and round r. It outputs a set of revealed
keys reKey and a revealed random number rand.

•
∑

masku ← Decode(pp, reKey, r): takes as inputs pub-
lic parameters pp, a set of revealed keys reKey, and round
r. It outputs an aggregated mask

∑
masku.

More specifically, for each FL training round r, client u ∈ U
runs the Encode algorithm to mask its local model y

(r)
u =

x
(r)
u +Encode(pp, shKey, r). After obtaining the revealed keys

reKey = RevealKey(pp,V,D, r) from the TEE instance, the
server computes the plaintext aggregation model

∑
x
(r)
u =∑

y
(r)
u − Decode(pp, reKey, r).

Result Verification (RV). To provide verifiable aggregation
results, we divide the aggregation verification into two parts:
a valid aggregation range, secured through the combination
of a commitment scheme and TEE integrity, and an accurate
aggregation result, guaranteed by a proof. Overall, the output
of TEE, protected by its integrity, binds a valid aggregation
range and proves the accuracy of an aggregation result within
that range.

We require that a vector commitment scheme consists of
the following sets of algorithms:

• comvi ← Commit(vi, randi): takes as inputs a vector
vi and a random number randi. It outputs a vector
commitment comvi

.
• b ← Open(comv′

i
,vi, randi): this algorithm takes as

inputs a commitment comv′
i
, a vector vi, and a random

number randi. It outputs a bit b, which equals 1 iff the
equation comv′

i
= Commit(vi, randi) holds.

• com← Eval({comu}u): takes as input a set of commit-
ments {comu}u. It outputs a final commitment com.

Each semi-honest client can run the Commit algorithm to
commit to its local model comu = Commit(xu, randu) where
randu can be instantiated randomly via its shared key, and
sign its commitment to mitigate the risk of a malicious server.
Moreover, homomorphic commitments of any vector can be
aggregated in the Eval algorithm.

Building upon the commitment scheme described above, a
valid aggregation range V can be processed in TEE, as follows:

- assert: ∀u ∈ V,VerSig(pku, σu, comu) = 1.
- compute: ( , rand) := RevealKey(pp,V,D, r).
- compute: com := Eval({comu}u∈V).
- sign: σe := Sign(ske, com||rand||r).
- output: (σe, com, rand).

Subsequently, an accurate aggregation result
∑

xu∈V can be
guaranteed by the server, which takes the output of TEE as a
proof satisfying the following relation:{

VerSig(pke, σe, com||rand||r) = 1

Open(com,
∑

xu, rand) = 1
(2)

Finally, the server sends the plaintext aggregated model along
with its proof to all clients, and each client verifies this global
model before initiating a new FL training round.

Putting it all Together. A complete description is provided
in Fig. 3, OPSA first performs the Setup algorithm to generate
public parameters, the server loads the TEE instance and
delivers an initial model, and each client checks the TEE
instance through remote attestation and negotiates a shared
key with it (Setup phase).
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Parties: N clients and a TEE-equipped server.
Let r := 1 be the round shared by all parties.
Let re := 0 be the round maintained by TEE.

Setup phase
All parties compute pp := Setup(1λ,m).
Server S:
- load TEE instance Me.
- send the initial global model θ(1) to clients.
Client u ∈ U :
- verify the validity of the server-side TEE Me.
- generate a shared key ku,e := KA(sku, pke).

Training phase // repeat steps for all r ∈ [1, R]

1. Mask step.
Client u ∈ U : // 1⃝ model masking

• receive from the server θ(r) and a proof, and
check the proof πvalid(

∑
x(r−1)
u ) if r > 1.

• train a local model x(r)
u based on θ(r).

• send to the server a message msg
(r)
u consisting of

- y
(r)
u := x

(r)
u + Encode(pp, shKey, r),

- com
(r)
u := Commit(xu, randu),

- σ
(r)
u := Sign(sku, com

(r)
u ).

Server S: // 2⃝ masked model collecting
• collect msg

(r)
u from users (denote with V(r) ⊆ U).

• VerSig(pku, σ
(r)
u , com

(r)
u ) = 1 (otherwise abort).

• load (V(r), D(r), {com(r)
u , σ(r)

u }u, r) into Me.
2. Unmask step.

TEE instance Me: // 3⃝ dropout handling
• if re ≥ r, abort; otherwise, re := r.
• assert |V(r)| ≥ ⌈(1− δ)N⌉.
• VerSig(pku, σ

(r)
u , com

(r)
u ) = 1 for all u ∈ V(r).

• return to the server an output consisting of
- (reKey, rand) := RevealKey(pp,V(r),D(r), r),
- com := Eval({comu}u∈V(r)),
- σe := Sign(ske, com||rand||r).

Server S: // 4⃝ model aggregation
•
∑

x
(r)
u :=

∑
y
(r)
u − Decode(pp, reKey, r).

• update θ(r) to θ(r+1) using
∑

x
(r)
u .

• form πvalid(
∑

x(r)
u ) according to Equation 2.

• send θ(r+1) and πvalid(
∑

x(r)
u ) to clients.

Fig. 3: Detailed description of the OPSA framework. Red parts
are required to guarantee result verification (and not necessary
in the malicious setting).

Upon receiving the global model, during the Training
phase, all clients utilize a proof to validate the global model
to start a new FL training round. Each client combines the
approved global model with its private data to train a local
model, which is then encoded as a masked model. To achieve
aggregation verification, each client commits to its local
model and signs the corresponding commitment. A message,

including the masked model, commitment, and signature, is
uploaded to the server ( 1⃝ Model Masking). Subsequently, the
server collects masked models from distinct clients, which are
appended into a list of surviving clients. Obtaining a dropout
list becomes straightforward once the server has the surviving
list, and both lists are then loaded into the TEE instance ( 2⃝
Masked Model Collecting). Following that, the TEE instance
checks whether it has been invoked in the current round,
ensuring it executes only once per round. Utilizing the loaded
lists, the TEE instance publishes relevant keys, an aggregated
commitment, and its signature to the server ( 3⃝ Dropout
Handling). Upon obtaining the output from the TEE instance,
the server utilizes the relevant keys to unmask the aggregated
model and takes the commitment and the signature as a proof,
proving the model’s accuracy ( 4⃝ Model Aggregation). Finally,
a new global model is updated and sent to all clients for the
next round.

IV. CONSTRUCTION

Based on the OPSA framework, we instantiate two types of
SA protocols: one is a single masking scheme based on the
key-homomorphic pseudo-random function (KhPRF), and the
other is a double masking scheme based on proxy oblivious
transfer (POT) techniques. Moreover, the one-time setup and
the result verification (RV) module are independent of SA
protocols, allowing us to share these general modules for both
constructions mentioned above.

A. Construction Based on KhPRF

We construct a single masking scheme with KhPRF [24]
based on the learning with rounding (LWR) assumption [25].

Definition 2 (LWR [25]). Given a security parameter λ, let
ℓ = ℓ(λ), q = q(λ), p = p(λ), and moduli q ≥ p ≥ 2 be inte-
gers, for a vector s ∈ Zℓ

q , the LWRℓ,q,p assumption states that

for any a
$← Zℓ

q , b $← Zq , the following indistinguishability
holds: (a, ⌊⟨a, s⟩⌉p) ≈c (a, ⌊b⌉p), where ⌊·⌉p : Zq → Zp is
the rounding function defined as ⌊x⌉p = ⌊x · (p/q)⌋ mod p.

Definition 3 (KhPRF by LWR [24]). Let H1 : X → Zℓ
q be a

hash function modeled as a random oracle, define the function
FLWR : Zℓ

q ×X → Zp as FLWR(k, x)← ⌊⟨k, H1(x)⟩⌉p under
the LWRℓ,q,p assumption. For every k1,k2 ∈ Zℓ

q , FLWR is
1-almost key homomorphic in the sense that FLWR(k1, x) +
FLWR(k2, x) = F(k1 + k2, x) + e where e ∈ {0, 1}.

Note that KhPRF can also be instantiated based on the
Ring-LWR assumption [25]. In this work, we instantiate it
as KF(k,x) = (⌊⟨k, H1(x1)⟩⌉p, · · · , ⌊⟨k, H1(xm)⟩⌉p).

Construction 1 (KhPRF-OPSA). Let F1 : Zq×Z∗
q → Zℓ

q be a
secure PRF, and F0 : Zq ×Z∗

q → Zq be a secure PRF. Based
on the LWRℓ,q,p assumption, let KF(·, ·) be 1-almost KhPRF,
the key space be K = Zℓ

q , the model space be M = Zm
p , and

the mask space be Y = Zm
p .

• masku ← Encode(pp, shKey, r): each client u parses
the shared key ku,e from shKey, computes a temporary
key ku = F1(ku,e, r), and outputs masku = KF(ku,b)
where b ∈ Zm

q is parsed from public parameters pp.
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• (reKey, rand) ← RevealKey(pp,V,D, r): TEE instance
Me loads the surviving list V , computes the temporary
key ku = F1(ke,u, r) and randu = F0(ke,u, 0||r) for all
u ∈ V , and sums up temporary keys kV =

∑
u∈V ku

and random numbers rand =
∑

u∈V randu. It outputs
reKey = {kV} and rand.

• maskV ← Decode(pp, reKey, r): the server parses
the revealed key kV from reKey, and outputs a mask
maskV = KF(kV ,b) where b ∈ Zm

q is parsed from
public parameters pp.

Since 1-almost KhPRF causes an error e ∈ {0, 1}m, the
summation of masks is given by

∑
u∈V masku = maskV +

eV where |eV,i|i∈[m] < |V|. To remove the mask correctly, we
can set a model scaling factor ∆ sufficiently large to ensure
that errors are removed by the rounding operation. The process
of the above construction is the same as shown in Fig. 3, except
for the following modifications:

• In the mask step, each client u masks its local model
yu = ∆ · xu + Encode(pp, shKey, r).

• In the unmask step, the server obtains the model∑
u∈V xu = 1

∆

(∑
u∈V yu − Decode(pp, reKey, r)

)
.

B. Construction Based on Proxy-OT

Here, we extend the notion of non-interactive proxy obliv-
ious transfer (POT1

2) defined by Choi et al. [26] to k-out-of-n
proxy oblivious transfer (POTk

n), and then utilize it to construct
a double masking scheme.

We introduce the syntax of our POTk
n protocol in Ap-

pendix A. The POTk
n protocol involves three parties: a sender,

a chooser, and a proxy. Let F2 : Zq × Z∗
q → Zn

q be a secure
PRF, and ks,c = KA(pkC , skS) be the shared key between the
sender and the chooser, we can instantiate POTk

n from the key
agreement protocol as follows:

• A← Send(r, skS , pkC , {mi}i∈[n]): the sender computes
(z1, z2, · · · , zn) = F2(ks,c, r) where |zi| = λ, generates
a permuted order π := Perm[n], and sets A = {cti}i∈[n]

where ctπ(i) = zi ⊕mi.
• B ← Choose(r, skC , pkS , {bj}j∈[k]): the chooser com-

putes (z1, z2, · · · , zn) = F2(kc,s, r) where |zi| = λ,
generates a permuted order π = Perm[n], and reveals
only the part associated with the choice B = {auxj}j∈[k]

where auxj = (π(bj), zbj ).
• M ← Proxy(r, pkS , pkC , A,B): the proxy parses A =

(ct1, ct2, · · · , ctn) and B = {(b′j , zbj )}j∈[k], and com-
putes M = {mb′j

}j∈[k] where mb′j
= ctb′j ⊕ zbj .

In our POTk
n protocol designed for one-pass aggregation, we

designate the TEE as the chooser (rather than the proxy) to
alleviate its processing burden, with the clients as the senders
and the server as the proxy. Given that OPSA only requires
safeguarding the privacy of clients, our focus is solely on
ensuring sender privacy in POT. This implies that the proxy
can know choice of the chooser, thereby enabling the TEE to
make choices based on the client list provided by the server.
Moreover, the permuted operation in the above instantiation
can also be removed. Note that the chooser (i.e., TEE) is
required to choose only once per round.

Construction 2 (POT-OPSA). Let F0 : Zq × Z∗
q → Zq be a

secure PRF, G : Zq → Zm
q be a secure PRG. Based on the

instantiation POTk
n, let the key space be K = Zq , the model

space be M = Zm
q , and the mask space be Y = Zm

q .
• masku ← Encode(pp, shKey, r): each client u parses

its shared keys {ku,v}v∈U from shKey, samples a tem-
porary individual key k̃u

$← {0, 1}λ, and computes a
temporary pairwise key k̃u,v = F0(ku,v, r) for v ∈ U . It
outputs a one-time mask summation masku = G(k̃u) +∑

v∈U,u<v G(k̃u,v)−
∑

v∈U,u>v G(k̃u,v).
• (reKey, rand) ← RevealKey(pp,V,D, r): TEE instance

Me loads the surviving list V and the dropout list D,
constructs a choice set {bv}v∈D, and computes an auxil-
iary set Bu = POTk

n.Choose(r, ske, pku, {0}∪{bv}v∈D)
and a random number randu = F0(ke,u, 0||r) for u ∈ V .
It outputs reKey =

⋃
u∈V Bu and rand =

∑
u∈V randu.

• maskU ← Decode(pp, reK̃ey, r): the server parses
the revealed keys {k̃u, k̃u,v}u∈V,v∈D from reK̃ey,
and outputs the summation of all masks maskU =∑

u∈V,v∈D

(
G(k̃u) +

∑
u<v G(k̃u,v)−

∑
u>v G(k̃u,v)

)
.

In fact, POTk
n is instantiated as POT|D|+1

|U| . For all u ∈ V , the
TEE instance chooses {0} and {bv}v∈D to obtain the auxiliary
messages corresponding to k̃u and {k̃u,v}v∈D, respectively.
The process of this construction is the same as shown in Fig. 3,
except for the following new additions and modifications:

• In the mask step, each client u sends to the server
Au = POTk

n.Send(r, sku, pke, {k̃u} ∪ {k̃u,v}v∈U ),
and the server stores Au received from distinct clients.

• In the unmask step, the server parses
⋃

u∈V Bu from
reKey, runs POTk

n.Proxy(r, pku, pke, Au, Bu) to recover
reK̃eyu = {k̃u} ∪ {k̃u,v}v∈D, and obtains the model∑

u∈V xu =
∑

u∈V yu − Decode(pp, reK̃ey, r) where
reK̃ey =

⋃
u∈V reK̃eyu.

To reduce the number of pairwise masks, we can employ
the sub-graph technique [5], [9] to generate fewer pairwise
masks, directly reducing the values of n and k to improve the
performance of our POTk

n for one-pass aggregation.

C. Construction of Result Verification
Let ppcom = (g, h) be commitment public parameters where

g = (g1, · · · , gm)
$← Gm and h

$← G, and F0 : Zq×Z∗
q → Zq

be a secure PRF. Each client u can generate a random number
randu = F0(ku,e, 0||r) where r is the round and ku,e is the
shared key between client u and TEE instance Me.

Commitments. We first extend the Pedersen commitment
scheme [27] on vectors as follows:

• comu ← Commit(xu, randu): outputs a model commit-
ment comu = gxuhrandu .

• b ← Open(comu′ ,xu, randu): outputs b = 1 iff the
equation comu′ = Commit(xu, randu) holds.

• com ← Eval({comu}u): outputs an aggregated commit-
ment com =

∏
u comu.

TEE Verification. Upon loading (V,D, {comu, σu}u, r),
TEE instance Me performs the following checks to make sure
such the aggregation range V is valid:
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- assert VerSig(pku, σu, comu) = 1 for all u ∈ V .
- run RevealKey to obtain rand :=

∑
u∈V randu.

- run Eval to obtain com :=
∏

u∈V comu.
- generate σe := Sign(ske, com||rand||r).
- output (σe, com, rand).
In practice, these TEE operations can be encapsulated within

another TEE instance, which only requires data and code
integrity to be protected (transparent enclave model [28]) and
can be deployed on any other party equipped with TEE.

Proofs. Based on the above instantiations, the server can
form a proof πvalid(

∑
xu) = (rand, σe) and send it along with

an aggregated model
∑

u∈V x
(r)
u to all clients. Each client first

computes a commitment com′ = g
∑

u∈V x(r)
u hrand and then

verifies the signature VerSig(pke, σe, com
′||rand||r) = 1 to

ensure that
∑

u∈V x
(r)
u is accurate.

V. SECURITY ANALYSIS AND DISCUSSION

Here, we first analyze the security of our framework given
in Fig. 3, and then discuss its privacy attacks and robustness.

A. Security of OPSA

Following Definition 4.1 and Theorem 4.9 in SecAgg+ [5],
we define a SA protocol as being α-secure if honest clients
can be guaranteed that their private inputs are aggregated at
most once with at least αN other inputs from honest clients.
Note that the following ideal functionality can be queried once
for round r ∈ [1, R].

Definition 4 (α-Summation Ideal Functionality). Let q,m, k
be integers, and α ∈ [0, 1]. Let L ⊆ U and XL = {xu}u∈L
where xu ∈ Zm

q . Let VL be the set of partitions of L, i.e.,
all partitions {L1, · · · ,Lk} ∈ VL, the α-summation ideal
functionality over XL for all subsets in VL is defined as
Fα,XL({Li}i∈[1,k]) = {zi}i∈[1,k] where

∀i ∈ [1, k], zi =

{∑
u∈Li

xu if |Li| ≥ α · |L|,
⊥ otherwise.

Then, the security of our protocol is given by the following
theorems, and their full proofs, based on a standard hybrid
argument, are presented in Appendix B.

Theorem 1 (Dropout resilience). Given secure cryptographic
primitives and TEE, as described in Section II, a dropout
rate δ, and a fraction α defined in Definition 4, the OPSA
framework (Fig. 3), instantiated with Construction 1 or 2 with
parameter (1− δ) ≥ α, satisfies dropout resilience: when all
parities follow the protocol, for round r ∈ [1, R], all input
vectors X (r), and all sets of dropout clients D ⊆ U with
|D| ≤ ⌊δN⌋, the server S outputs

∑
u∈U\D x

(r)
u at the end of

round r, except with negligible probability.

Theorem 2 (Security). Given secure cryptographic primitives
and TEE, as described in Section II, a corruption rate γ, and
a fraction α defined in Definition 4, the OPSA framework
(Fig. 3), instantiated with Construction 1 or 2 with parameter
(1 − γ) ≥ α, guarantees security: when there exists a PPT
simulator SIM such that for any round r ∈ [1, R], all input

vectors X (r), and all sets of corrupted parities C ⊆ U∪{S} of
size |C\{S}| ≤ ⌊γN⌋, the output of SIM is computationally in-
distinguishable from the view of a malicious adversary A, i.e.,

REALU,S,R
C,r (A, {xu}u∈U\C) ≈c SIM

U,S,R,F
α,{x(r)

u }u∈U\C
C,r (A).

Theorem 3 (Correctness against a malicious server). Given
secure cryptographic primitives and TEE, as described in
Section II, a dropout rate δ, and a fraction α defined in
Definition 4, the OPSA framework (Fig. 3), instantiated with
Construction 1 or 2 providing result verification (subsec-
tion IV-C) with parameter (1 − δ) ≥ α, ensures security
(Theorem 2) and correctness against a malicious adversary A
that only controls S: when all clients follow the protocol, for
round r ∈ [1, R], all input vectors X (r), and all sets of dropout
clients D ⊆ U of size |D| ≤ ⌊δN⌋, each client u ∈ U obtains∑

u∈U\D x
(r)
u at the end of round r, except with negligible

probability.

B. Privacy Attacks

Here, we discuss privacy attacks on SA protocols and
analyze how to resist them within the OPSA framework. Fowl
et al. [11] make changes to the shared model architecture
on a malicious server, enabling it to directly access precise
copies of user data from gradient updates. Pasquini et al. [12]
manipulate model parameters on a malicious server to execute
two privacy attacks targeting SA protocols. Zhao et al. [13]
demonstrate how the privacy of SA protocols in FL can
be compromised by a malicious server sending customized
models to clients. It is evident that such attacks are initiated by
a malicious server modifying the model, and result verification
of the OPSA framework can prevent these attacks.

Furthermore, the work [29] proposes a privacy attack that
leverages the aggregated models and participation informa-
tion across multiple training rounds to reconstruct individual
models, leading to privacy leakage. To counteract this at-
tack, the OPSA framework requires hiding client participation
information, either by enhancing the structured strategy for
client selection [29] or mandating clients to form minimum
batches [30] for uploading models. Another study [31] in-
troduces t−1 sybil devices to assist a malicious server in
reconstructing individual models, and the OPSA framework
can prevent it by setting a low dropout rate, especially when
there is a considerable number of training participants in FL.
Overall, while the OPSA framework cannot protect against all
privacy attacks, it can mitigate them with additional strategies.

C. Extension with Robustness

While the OPSA framework can prevent the server from
tampering with the aggregation results when all clients are
semi-honest, challenges arise when clients exhibit malicious
behavior. In cases like model poisoning attacks, which in-
volve intentional submission of errors or malicious models,
the OPSA framework cannot guarantee the validity of the
final aggregated model. To enhance client robustness, the
OPSA framework can further integrate existing strategies to
counteract these attacks. One strategy is to permit the server
to aggregate models on a small scale, followed by scoring
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TABLE I: Comparison of communication (Comm.) and computation (Comp.) overhead in a secure aggregation round.

Setting Flamingo POT-OPSA LERNA khPRF-OPSA

Client Comm. Regular client: O(m+ L+A)
O(m+A)

Regular client: O(m)
O(m)Decryptor: O(L+ δAN + (1− δ)N) Committee: O(m+M)

Client Comp. Regular client: O(mA+ L)
O(mA)

Regular client: O(m log ℓ)
O(m log ℓ)

Decryptor: O(δAN + (1− δ)N + ϵN2) Committee: O(m log ℓ+ δNℓ)

Server Comm. O((m+ L+A)N) O((m+A)N) O(m(N +M)) O(mN)

Server Comp. O(t2 + δmAN + (1− δ)mN)
O(δmAN + (1− δ)mN + ϵN2)

O((1− δ)mN + t∗m)
O((1− δ)mN +m log ℓ)

TEE: O((1− δ)AN) TEE: (1− δ)Nℓ
C/S Comm. 3 1 3 1

Remark N : the number of clients, m: the model vector size, δ: the dropout rate. C/S Comm. denotes the number of client-server round-trip communications.
Flamingo A: the number of neighbors of a client, L: the number of decryptors, ϵ: graph generation parameter, t: threshold of Shamir secret sharing.
LERNA M : the number of commitee members, ℓ: the key size of KhPRF, t∗: threshold of flat secret sharing.

the aggregation results using cosine similarity [32] to identify
malicious clients. Another approach is to prove that the model
input satisfies the L∞ specification through zero-knowledge
proofs [7]. However, when both the server and client may
act maliciously simultaneously, it is essential to combine
result verification with a robust defense strategy to ensure the
correctness and validity of the final aggregation result.

VI. EVALUATION

In this section, we compare two constructions under the
OPSA framework with state-of-the-art schemes, conducting
theoretical analysis and performance analysis, respectively.

A. Theoretical Analysis

The number of client-server communications has a critical
impact on the overall execution time of SA protocols. In real-
world FL training scenarios across wide area networks, the
round-trip time (RTT) delay can reach tens of milliseconds,
resulting in notable differences in the arrival time of messages
from different clients. Consequently, the server spends consid-
erable waiting time in each communication round.

Table I provides a comprehensive comparison of OPSA’s
communication and computation costs with those of Flamingo
and LERNA. Compared with double masking schemes, the
computation cost of single masking schemes increases more
obviously with the model dimension. This is because single
mask computations involve the multiplication of polynomials
of the model dimensions by the Ring-LWR key polynomials,
requiring a computational complexity of O(m log ℓ) with NTT
acceleration. In contrast, double mask calculations can be
regarded as a PRG instantiated by AES encryption, involv-
ing an O(m) computational complexity. When considering
server computation cost, double masking schemes are more
expensive than single masking schemes, especially in scenar-
ios with a large number of dropped clients, which require
recovering their pairwise masks. Moreover, single masking
schemes support dynamic client access. Overall, among the
two proposed constructions, KhPRF-OPSA is more suitable
for scenarios with low-dimensional models and more dropped
clients, while POT-OPSA is better suited for situations with
high-dimensional models and fewer dropped clients.

B. Experimental Setup

Implementation. The OPSA framework is implemented
in Python, and the TEE code is developed in C++. In our
implementation, we leverage the Intel SGX SDK to construct
trusted applications inside the enclave, instantiate crypto-
graphic primitives as detailed in subsection II-C, and employ
the NIST P-256 curve. For the input vector, each element is
set to 64 bits, requiring the encoding of floating-point model
weights into 64 bits. To achieve a 128-bit security level, we set
the key size to 128 bits for AES-CTR, configure the RLWR
dimension as 211, and set the modulus q to n∆·2286, consistent
with the LERNA setting. The hardness of this configuration
can be validated by the evaluator [33].

Experimental environment. We integrate all of our code
into the ABIDES simulation framework [34] and run simu-
lation on a machine equipped with a 2.90GHz Intel Core i7-
10700 CPU and 32GB memory, supporting Intel SGX and
running 64-bit Ubuntu 20.04.2 LTS. Our baseline is set as
the current state-of-the-art solutions, Flamingo and LERNA.
Since the committee members or decryptors are selected from
the clients, we set them to the same dropout rate. To ensure an
equivalent level of security, Flamingo is set with 60 decryptors
for a 1% dropout rate and 170 decryptors for a 5% dropout
rate, while LERNA’s committee size is consistently set to 214.
Unless otherwise specified, the default dropout rate of clients
in our experiments is set as δ = 5%.

Training setting. We conduct extensive experiments using
common datasets, MNIST and CIFAR-10. MNIST comprises
60K training images and 10K testing images of handwritten
digits across 10 classes. CIFAR-10 consists of 60K total
samples, each being a 32×32 pixel RGB image, divided into
50K training samples and 10K testing samples. The number
of SA rounds for the global model is set to 50 for MNIST and
200 for CIFAR-10. In every SA round, each client undergoes
5 iterations of local mini-batch training, with batch size 32
and learning rate 0.01. To simulate realistic FL training,
we distribute the training data among clients in a non-IID
setting, using a Dirichlet distribution with hyperparameter 0.9
as described in [35].

To facilitate training on the above datasets, we employ two
models based on the classic CNN structure. For MNIST, the
model dimension is 21, 840. However, for CIFAR-10, we opt
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for a more intricate model network with larger convolutional
and fully connected layers, along with batch normalization
and dropout layers. Consequently, the model dimensions for
CIFAR-10 is significantly higher, totaling 551, 722.

C. Experimental Performance

Here, we provide a benchmark to compare our two types of
SA protocols with Flamingo and LERNA. For detailed com-
parison, we divide the entire protocol into five stages: “setup”
(one-time setup phase), “mask” (masked model generation and
upload), “check” (consistency check), “unmask” (aggregated
model recovery), and “verify” (result verification).

Computation costs. To fairly evaluate the computation time
of clients and server, we only choose the regular clients of
Flamingo and LERNA for comparison with our scheme. Note
that the server computation time of our scheme includes the
execution time within TEE. For computation time measure-
ments, we report an average over 10 experiment runs.
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Fig. 4: Computation time vs. model dimension, with fixed
number of clients N = 1K and dropout rate δ = 5%.

1000 1500 2000 2500 3000
Number of Clients

100

150

200

250

300

350

Co
m

pu
ta

tio
n 

Ti
m

e 
Pe

r C
lie

nt
 (m

s)

Flamingo
POT-OPSA
LERNA
KhPRF-OPSA

(a) Client computation time.

1000 1500 2000 2500 3000
Number of Clients

102

103

104

105

Se
rv

er
 C

om
pu

ta
tio

n 
Ti

m
e 

(m
s)

Flamingo
POT-OPSA
LERNA
KhPRF-OPSA

1000 1500 2000 2500 3000

800

1000

1200

1400

(b) Server computation time.

Fig. 5: Computation time vs. number of clients, with fixed
model dimension m = 20K and dropout rate δ = 5%.

Fig. 4 and Fig. 5 show the computation time for different
model dimensions and different number of clients respectively.
For double masking schemes, the client computation time of
POT-OPSA is notably shorter than that of Flamingo. This
advantage arises from the fact that Proxy-OT in our scheme
utilizes simple XOR calculations instead of complex encryp-
tion operations. Moreover, at the server side, the process of
mask recovery in POT-OPSA is significantly lighter compared
to Flamingo, highlighting the efficiency of our approach.
For single masking schemes, the server computation time of
KhPRF-OPSA is slightly higher than that of LERNA due
to the additional execution time required by the RevealKey

operation within TEE, which is calculated by the committee
in LERNA. However, when the model dimension is larger,
our server computation time will be more advantageous,
because TEE aggregates all low-dimensional secret keys, while
LERNA aggregates all high-dimensional masks received from
the committee. Overall, the computation time of KhPRF-
OPSA is comparable to that of LERNA.
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Fig. 6: Computation time vs. dropout rate, with fixed number
of clients N = 1K and model dimension m = 20K.

As shown in Fig. 6, Flamingo’s computation time increases
significantly as the dropout rate rises. This can be attributed
to the varying number of decryptors required by Flamingo to
maintain a same level of security across different dropout rates.
In contrast, the client-side computation time for other schemes
remains relatively stable, since the number of LERNA’s com-
mittee is fixed, and our scheme only requires to interact with
TEE. At the server side, double masking schemes experience
a slight increase in computation time with the dropout rate due
to their involvement in recovering pairwise masks of dropped
clients. In contrast, the computation time of single masking
schemes decreases as the dropout rate increases, as the server
doesn’t need to recover masks for dropped clients. Note that
our scheme can resist larger dropout rates, whereas Flamingo
and LERNA are limited to smaller dropout rates to maintain
the same level of security.

TABLE II: Computation time for different stages per round of
secure aggregation with N = 1K, m = 20K, and δ = 5%.

Scheme Type Stages for secure aggregation (ms)
setup mask check unmask verify

Flamingo
Server 40.37 335.75 7.94 24397.08
Client 355.34

Decryptor 7143.84 4.44 833.11

POT-OPSA
Server 1192.60 3914.28
TEE 178.64 13.28 122.60

Client 0.89 79.23 64.89

LERNA
Server 208.96 518.39
Client 4245.30 107.33

Committee 392.69 3.98 107.11

KhPRF-OPSA
Server 573.02
TEE 178.73 104.16 123.94

Client 0.37 111.97 65.44

We compare our scheme with Flamingo and LERNA across
various stages of a SA round, and their computation times
are presented in Table II. The key advantage of our scheme
lies in its significant reduction of the overall computation
time. This efficiency is achieved by transforming the complex
recovery operation carried out by Flamingo’s decryptors and
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LERNA’s committee members into a concise and lightweight
TEE responsible for performing the recovery of secret seeds.
Moreover, our scheme provides verifiable aggregation results,
and the detailed computation times are provided in Table III.
Compared with VerSA [16] and the work proposed by Eltaras
et al. [18] (which we call ESLAM), our OPSA-RV has fixed
TEE computation time and communication cost.

TABLE III: Computation time and communication (comm.)
cost of result verification with N = 1K and δ = 5%.

Model Scheme Client (ms) Server/TEE Comm. cost
dimension commit verify (ms) per client (B)

20K
VerSA 768.07 6.22 23879.57 160000

ESLAM 214.49 4.60 21.19 191506
OPSA-RV 32.91 32.26 125.35 152

40K
VerSA 1526.02 10.18 43921.27 320000

ESLAM 222.43 10.41 45.71 351506
OPSA-RV 65.25 64.33 124.89 152

60K
VerSA 2223.32 14.14 64412.10 480000

ESLAM 224.26 14.18 65.39 511506
OPSA-RV 98.21 97.18 123.81 152

80K
VerSA 2998.85 18.49 86986.30 640000

ESLAM 229.63 17.92 86.03 671506
OPSA-RV 130.02 129.32 121.79 152

100K
VerSA 3769.42 22.45 108853.58 800000

ESLAM 238.34 23.59 103.32 831506
OPSA-RV 163.53 163.11 121.52 152

Communication cost. As shown in Fig. 7, we evaluate
the communication cost across different stages of a single
SA round. During the “setup” phase, our scheme requires
only TEE and clients to execute the key agreement protocol
and remote attestation, eliminating the need for secret shar-
ing among clients. In the “mask” stage, all schemes must
upload masked models, with the communication cost of single
masking schemes slightly higher than that of double masking
schemes due to the larger value of key-homomorphic PRF.
Compared with Flamingo and LERNA, our scheme saves
communication costs in the “check” and “unmask” stages with
the help of TEE. Furthermore, during the “verify” stage, our
communication cost is fixed for the size of a commitment and
a signature, significantly lower than that of a global model,
which is also provided in Table III.
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Fig. 7: Communication cost for different stages in a single
round over 1K clients, with m = 20K and δ = 5%.

Total time cost. To demonstrate the practicality of our
scheme, we evaluate the overall execution time required for
the client and server to complete a 10-round SA across all
schemes, including the server’s wait time, the time for all

messages to be delivered and received, and various com-
putation times, but excluding the one-time setup time. As
shown in Fig. 8, our scheme has significant advantages in both
verifiable and non-verifiable SA. For SA without verification,
our scheme is nearly 5× faster than Flamingo and almost 2×
faster than LERNA. When verification is involved, our scheme
is nearly 10× faster than VerSA [16] and almost 3× faster than
ESLAM [18]. This improvement is expected to be even more
significant in scenarios with high network latency, thanks to
the one client-server round-trip communication provided by
the OPSA framework.
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Fig. 8: End-to-end completion time of 10 rounds of secure
aggregation over 1K clients with m = 20K and δ = 5%.

As shown in Table IV, our scheme demonstrates advantages
in server-side runtime compared with SEAR [19]. Obviously,
the runtime per client is independent of the number of clients,
and the OPSA’s server-side time cost is 4∼8 times lower than
that of SEAR. Furthermore, it also shows that POT-OPSA
is better suited for situations with high-dimensional models
and fewer dropped clients. Additionally, our scheme enables
clients to verify the codes of SA and the server’s hardware
it is running through remote attestation. Table V presents the
total time required for remote attestation between TEE and
the clients, considering different numbers of open threads.
This process is generally carried out during the setup phase to
ensure the integrity of the code executed by Intel SGX.

TABLE IV: Time cost comparison with the TEE-based SA
scheme with m = 500K and δ = 0.

Scheme Per client runtime (ms) Server runtime (ms)
N = 500 N = 1000 N = 500 N = 1000

SEAR 82.79 82.99 33516.24 105756.45
POT-OPSA 438.65 463.08 5245.55 12163.33

KhPRF-OPSA 2578.46 2580.20 8542.36 13647.76

TABLE V: Execution time of remote attestation on the server
with multiple threads for different numbers of clients.

Number of threads Remote attestation (s)
N = 1K N = 2K N = 3K

20 367.97 737.72 1109.38
30 318.04 634.15 947.06
50 270.78 539.11 809.48

Training accuracy. To evaluate the feasibility of the OPSA
framework, we deploy two types of SA protocols in the real
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model training process. We compare their performance with
FedAvg, which serves as the baseline and does not employ any
SA scheme. The evaluation is conducted on common datasets
MNIST and CIFAR-10, with 100 clients participating in each
training session, and its accuracy score is determined by the
proportion of correctly predicted samples in the validation set
relative to the total number of samples. Similar to Flamingo
and LERNA, the primary deviation in our model training
process from the baseline lies in the encoding of model
floating-point parameters. As shown in Fig. 9, our SA scheme
does not impact model performance and accuracy.
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Fig. 9: Accuracy comparison under different datasets.

VII. RELATED WORK

In this section, we mainly discuss three types of secure
aggregation (SA): SA based on Differential Privacy (DP), SA
based on Trusted Execution Environment (TEE), and SA based
on One-Time Pad (OTP). Moreover, we also discuss some
verifiable SA schemes.

DP-based SA. Differential Privacy (DP) is a concept in
data privacy that aims to protect the sensitive information of
individuals when analyzing or mining data. The fundamental
idea behind DP is to add a controlled amount of noise to
the data or query results to prevent the disclosure of specific
details about any individual’s contribution to the data set.

In DP-based SA schemes [36]–[38], each client adds sta-
tistical noise (e.g., Gaussian noise) to hide their local models,
but this method introduces significant noise during model
aggregation, affecting the accuracy of the results. Moreover,
the work [31] has proposed an attack against FL protected
with distributed differential privacy and secure aggregation.

TEE-based SA. TEE is a secure and isolated environment
within a computer system or a microprocessor, providing a
protected execution space for sensitive and critical operations.
TEE is designed to prevent data and code from unauthorized
access, tampering, and other security threats.

Secure aggregation can also be designed based on TEE [19],
[39], [40], i.e., the TEE-equipped server decrypts models re-
ceived from clients and aggregates them within TEE. However,
this method may lead to a notable performance degradation
when handling high-dimensional models or a large number
of clients, due to the TEE’s limited memory. Moreover, TEE
still has the risk of being attacked, such as side-channel
attacks [41].

OTP-based SA. One-time pad (OTP) is a cryptographic
technique that employs a randomly generated secret key of

the same length as the message to encrypt and decrypt
information. It is a type of symmetric encryption algorithm
where the key is used only once for a single message.

In OTP-based SA schemes, each client generates one-time
pads as single or double masks to protect its local models,
and the server then can eliminate the sum of masks to recover
a original aggregated model. This approach is introduced by
SecAgg [4] and the subsequent work, SecAgg+ [5], applies
sub-grouping technique to create random connected graphs to
reduce the cost of pairwise masks. FLDP [37] and ACORN [7]
optimize one-time masks using the additive homomorphism of
(Ring) LWE. As the secret keys are one-time in these schemes,
each client is required to regenerate and share a new key with
others per FL round, leading to a substantial increase in the
communication burden.

To achieve a multi-round setting, MicroFedML [8] intro-
duces a one-time setup phase to reuse secrets. Flamingo [9]
designs a multi-round SA protocol integrating threshold de-
cryption with a double masking scheme, while LERNA [10]
achieves the same goal integrating flat secret sharing with
a key-homomorphic pseudo-random function. These multi-
round SA protocols introduce an additional group, such as de-
cryptors in Flamingo and a committee in LERNA, to improve
performance in handling dropout. Even then, it requires three
client-server round-trip communications for every aggregation.

Verifiable SA. In SA protocols, a server provides a list of
surviving clients who have successfully uploaded their masked
models. The verifiability of the aggregation result, indicating
that the result is indeed aggregated according to this list, is
achieved by the verifiable SA, which ensures that a malicious
server can perform aggregation honestly.

VerifyNet [14], based on a double masking scheme, intro-
duces a homomorphic hash function and non-interactive zero-
knowledge proofs (NIZK) to verify the aggregation result.
VeriFL [15] builds upon this by replacing NIZK with a
commitment mechanism. VerSA [16], derived from a double
masking scheme, generates two sets of model masks and
employs the message authentication code (MAC) concept
for result verification. VOSA [17] designs a single mask
scheme under the Decisional Composite Residuosity (DCR)
assumption and utilizes NIZK to achieve result verification.
Eltaras et al. [18] construct a single mask scheme based on
key agreement protocols and also utilize the MAC concept for
result verification.

In these verifiable SA schemes, all clients are considered
to be semi-honest. VerifyNet [14] and VeriFL [15] further
assume that the server is semi-honest but capable of forging the
aggregation result. VerSA [16] and ESLAM [18], on the other
hand, assume that the server is malicious but does not collude
with any client at any stage. This assumption is primarily
due to the MAC being computed by the same common factor
among all clients, which is unknown to the server. Moreover,
the client communication overhead in these schemes [16]–
[18] is twice that of the original SA schemes, which put
huge transmission pressure on clients, especially for high-
dimensional models.
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VIII. CONCLUSION

In this paper, we analyzed the limitations of existing SA
protocols, focusing on computational efficiency, communica-
tion rounds, and result verifiability. To address these concerns,
we introduced OPSA, a multi-round SA framework designed
to achieve one client-server round-trip communication per
aggregation for FL via hardware-assisted TEE. Moreover, we
designed a result verification module compatible with any type
of SA protocol instantiated under the OPSA framework to
detect the forged aggregation results. Building upon the OPSA
framework, we implemented a single masking scheme based
on key-homomorphic PRF and a double masking scheme
based on proxy-OT. Our extensive experiments showcase
the remarkable improvements in effectiveness and dropout
resilience brought by our OPSA framework.
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APPENDIX A
PROXY OBLIVIOUS TRANSFER

Here, we review the notion of non-interactive proxy obliv-
ious transfer (POT1

2) defined by Choi et al. [26]. A POT1
2

protocol involves three parties: a sender, a chooser, and a
proxy. The sender knows two inputs m0 and m1, and the
chooser holds a choice b ∈ {0, 1}. At the end of the protocol,
the proxy learns mb, while the two other parties learn nothing.
Based on [26], a proxy OT protocol requires both sender
privacy and chooser privacy. Sender privacy denotes that
the proxy learns only the value of the sender input that
corresponds to the chooser’s input sequence. Chooser privacy,
on the other hand, means that the proxy learns no information
about the chooser’s input sequence.

Now, we extend POT1
2 to k-out-of-n proxy oblivious transfer

(POTk
n). First, we introduce the syntax of our POTk

n protocol,
which consists of the following algorithms:

• A← Send(r, skS , pkC , {mi}i∈[n]): in the r-th POTk
n ex-

ecution, the sender takes as inputs its private key skS , the
chooser’s public key pkC , and a plaintext set {mi}i∈[n].
It outputs an encoded message set A = {cti}i∈[n] to be
sent to the proxy.

• B ← Choose(r, skC , pkS , {bj}j∈[k]): in the r-th POTk
n

protocol, the chooser takes as inputs its private key skC ,
the sender’s public key pkS , and a choice set {bj}j∈[k].
It outputs an auxiliary set B = {auxj}j∈[k] to be sent to
the proxy.

• M ← Proxy(r, pkS , pkC , A,B): in the r-th POTk
n proto-

col, the proxy takes as inputs the sender’s public key pkS ,
the chooser’s public key pkC , the sender message A, and
the chooser message B. It outputs a selected plaintext set
M = {mbj}j∈[k].

APPENDIX B
SECURITY PROOFS

B.1 Proof of Theorem 1

Proof. The proof of dropout resilience is rather simple: in each
round of the training phase, δ fraction of clients can drop out,
i.e., |D| ≤ ⌊δN⌋. Since |V| ≥ ⌈(1 − δ)N⌉ (Fig. 3), the TEE
instance can always help the server to reveal the secret keys.
Therefore, the dropout resilience property directly follows that
of the underlying key agreement protocol instantiated with
Equation 1. For each client u ∈ U , there are two primary
approaches to mask individual models.

For KhPRF-OPSA, client u masks its individual model as
y
(r)
u = ∆·x(r)

u +masku where masku = KF(F1(ku,e, r),b).
Here, F1 is a secure pseudo-random function invoked on a
round r ∈ [1, R] and a shared key ku,e between client u and
TEE instance Me, and KF is a 1-almost key-homomorphic
PRF invoked on a temporary key ku = F1(ku,e, r) and a
public parameter b. For the surviving list V(r), TEE computes
kV(r) =

∑
u∈V(r) F1(ke,u, r). Now, given ku,e = ke,u, we can

observe that
∑

u∈V(r) KF(F1(ku,e, r),b) = KF(kV(r) ,b) + e

where |ei| < ∆ for all i ∈ [1,m], and obtain an aggregated
model as follows:

∑
u∈V(r)

x(r)
u =

1

∆

 ∑
u∈V(r)

y(r)
u − KF(kV(r) ,b)


=

1

∆

 ∑
u∈V(r)

∆ · x(r)
u +

∑
u∈V(r)

masku − KF(kV(r) ,b)


=

1

∆

∆
∑

u∈V(r)

x(r)
u + e


=

∑
u∈V(r)

x(r)
u + 0

For POT-OPSA, each client u ∈ U masks its individual
model as y

(r)
u = x

(r)
u + masku where masku = G(k̃u) +∑

v∈U,u<v G(F0(ku,v, r))−
∑

v∈U,u>v G(F0(ku,v, r)). Here,
F0 is a secure pseudo-random function invoked on a round
r ∈ [1, R] and a shared key ku,v between client u and its
neighbor v, and G is a secure pseudo-random generator
invoked on a temporary individual key k̃u

$← {0, 1}λ or a
temporary pairwise key k̃u,v = F0(ku,v, r). For the client list
U = V(r)∪D(r), the TEE instance helps the server to recover
{k̃v,u}v∈D(r),u∈V(r) for dropped clients and {k̃u}u∈V(r) for
surviving clients. Then, the server computes mask

(r)
U =∑

u∈V(r),v∈D(r)

(
G(k̃u) +

∑
u<v G(k̃u,v)−

∑
u>v G(k̃u,v)

)
.

Now, given ku,v = kv,u for all client u and v, we can observe
that

∑
u,v∈L,u<v G(k̃u,v) =

∑
u,v∈L,u>v G(k̃u,v) for all

u, v ∈ L and L ⊆ U , and obtain an aggregated model as
follows:∑
u∈V(r)

x(r)
u =

∑
u∈V(r)

yu −mask
(r)
U

=
∑

u∈V(r)

x(r)
u +

∑
u∈V(r),v∈U

masku −mask
(r)
U

=
∑

u∈V(r)

x(r)
u +

∑
u,v∈V(r)

(∑
u<v

G(k̃u,v)−
∑
u>v

G(k̃u,v)

)

=
∑

u∈V(r)

x(r)
u + 0

This is satisfied when the number of surviving clients with
|V| ≥ ⌈(1 − δ)N⌉ and (1 − δ) ≥ α, where α is defined in
Definition 4.

B.2 Proof of Theorem 2

Proof. The proof is based on a standard hybrid argument
using the simulator SIM. For any round r ∈ [1, R], all input
vectors X (r), and all sets of corrupted clients C ⊆ U of size
|C| ≤ ⌊γN⌋, we prove the output of SIM is computationally in-
distinguishable from the view of a malicious adversary A, i.e.,

REALU,S,R
C,r (A, {xu}u∈U\C) ≈c SIM

U,S,R,F
α,{x(r)

u }u∈U\C
C,r (A)

where Fα,X (r) is α-summation ideal functionality defined in
Definition 4.

Following the MicroFedML [8] and Flamingo [9], we first
define the behavior of our simulator SIM for KhPRF-OPSA:

• Setup phase:
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(1) Each honest client u and TEE instance Me follow
the protocol description in one-time setup.

(2) For each corrupt client v, TEE instance Me computes
and stores ke,v = KA(ske, pkv).

(3) For each honest clients u, the simulator chooses
ka

$← {0, 1}λ and sets k∗u,e = k∗e,u = ka.
• The r-th round of the Training phase:

(1) Each honest client u randomly chooses a random
vector y∗

u and sends it the server.
(2) The server S first adds the client u to the surviving

list V(r), and then the simulator makes a query to
Fα,X (r)(V(r) \ C) to get x(r).

(3) For all honest clients u ∈ V(r) \ C, the simu-
lator randomly samples x∗

u
$← M under the re-

striction
∑

u∈V(r)\C x
∗
u = x(r), and then computes

mask∗
u = y∗

u − x∗
u by programming the random

oracle to set the output of KhPRF. The simulator
sets k∗

u = PRF(k∗u,e, r) and samples a random
vector b such that mask∗

u = RKhPRF(k
∗
u,b) for

each u ∈ V(r) \ C, reveals masked keys k∗
V(r) =∑

u∈V(r) k∗
u for TEE instance Me, and computes

mask∗
V(r) = RKhPRF(k

∗
V ,b) for the server.

Below, we present a series of subsequent hybrids to the real
execution REAL of our KhPRF-OPSA protocol.

Hyb0: This random variable is the joint views of all parties
in C in the real execution.

Hyb1: In this hybrid, the simulator, which knows all secrets of
honest parties in every round, runs the execution of the
KhPRF-OPSA protocol with A. Therefore, the view of
the adversary is the same as the previous hybrid.

Hyb2: This hybrid is identical to Hyb1 except that the sim-
ulator substitutes the shared key ku,e = KA(sku, pke)
between honest client u and TEE Me with a random
key ka

$← {0, 1}λ. The 2ODH assumption [4] guaran-
tees this hybrid is indistinguishable from the previous
one.

Hyb3: This hybrid is same as Hyb2 except that the values of
yu computed by SIM on behalf of the honest client u
and sent to the server, are substituted with uniformly
sampled values y∗

u. Since A does not know the secrets
of honest parities and yu has the same distribution
as y∗

u, the view of the adversary in this hybrid is
statistically indistinguishable from the previous one.

Hyb4: This hybrid is same as Hyb3 except that the sim-
ulator replaces the revealed keys outputted by TEE
instance Me with k∗

V and computes the aggregated
mask mask∗

V (as in Behavior 3 of Training phase of
SIM) by querying the Fα,X (r)(V(r) \ C) and utilizing
a random oracle RKhPRF. Since A does not know the
secrets of honest parities and the aggregated mask in
SIM have the same distribution as the one in REAL,
this hybrid is indistinguishable from the previous one.

Hyb5: This hybrid is same as Hyb4 except one modifica-
tion: SIM sets the output of the ideal functionality
Fα,X (r)(V(r) \ C) (as in Behavior 2 of Training phase
of SIM) as the aggregated model x(r). Note that the

ideal functionality will not return ⊥ in this case. This
modification does not change the view seen by the
adversary, and hence this hybrid is indistinguishable
from the previous one.

After completing these hybrids, SIM simulates REAL without
relying on inputs from the honest parties, indicating that the
joint view of A in the real execution (Hyb0) is computationally
indistinguishable from the output of SIM (Hyb5).

Here, we redefine the behavior of our simulator SIM for
POT-OPSA:

• Setup phase:
(1) Each honest client u and TEE instance Me follow

the protocol description in one-time setup.
(2) For each corrupt client v, an honest client u computes

and stores ku,v = KA(sku, pkv), and TEE instance
Me computes and stores ke,v = KA(ske, pkv).

(3) For each honest clients u, the simulator chooses
ka

$← {0, 1}λ and sets k∗u,e = k∗e,u = ka. For
each pair of honest clients u, v, the simulator chooses
kb

$← {0, 1}λ and sets k∗u,v = k∗v,u = kb.
• The r-th round of the Training phase:

(1) Each honest client u randomly chooses a random
vector y∗

u and sends it the server. For each corrupt
client v, Each honest client u randomly chooses ct∗u,v
as a ciphertext and sends it to the server.

(2) The server S first adds the client u to the surviving
list V(r), and then the simulator makes a query to
Fα,X (r)(V(r) \ C) to get x(r).

(3) For all honest clients u ∈ V(r) \ C, the simu-
lator randomly samples x∗

u
$← M under the re-

striction
∑

u∈V(r)\C x
∗
u = x(r), and then computes

mask∗
u = y∗

u − x∗
u by programming the ran-

dom oracle to set the output of PRG. The simu-
lator sets {k̃∗

u,v}v∈U = {RPRG(k̃
∗
u,v)}v∈U where

{k̃∗u,v}v∈U = {PRF(k∗u,v, r)}v∈U , and samples a
random k̃∗u to set k̃∗

u = RPRG(k̃
∗
u) such that

mask∗
u = k̃∗

u +
∑

u<v k̃
∗
u,v −

∑
u>v k̃

∗
u,v for each

u ∈ V(r) \ C and v ∈ U . The simulator computes
{k̃∗

u, k̃
∗
u,v}u∈V(r)\C,v∈D(r) for Me, and computes

mask∗
U =

∑
k̃∗
u +

∑∑
u<v k̃

∗
u,v −

∑∑
u>v k̃

∗
u,v

where u ∈ V(r) \ C and v ∈ D(r) for the server.
Below, we present a series of subsequent hybrids to the real
execution REAL of our POT-OPSA protocol.
Hyb0: This random variable is the joint views of all parties

in C in the real execution.
Hyb1: In this hybrid, the simulator, which knows all secrets

of honest parties in every round, runs the execution of
the POT-OPSA protocol with A. Therefore, the view
of the adversary is the same as the previous hybrid.

Hyb2: This hybrid is identical to Hyb1 except that the sim-
ulator substitutes the shared key ku,e = KA(sku, pke)
between honest client u and TEE Me with a random
key ka

$← {0, 1}λ, and replaces the shared key ku,v =
KA(sku, pkv) between honest client u and v with a
random key kb

$← {0, 1}λ. The 2ODH assumption [4]
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guarantees this hybrid is indistinguishable from the
previous one.

Hyb3: This hybrid is same as Hyb2 except that the values of
(yu, {ctu,v}v∈U ) computed by SIM on behalf of the
honest client u and sent to the server, are substituted
with uniformly sampled values (y∗

u, {ct∗u,v}v∈U ) at
random. Since A does not know the secrets of honest
parities and (yu, {ctu,v}v) has the same distribution as
(y∗

u, {ct∗u,v}v), the view of the adversary in this hybrid
is statistically indistinguishable from the previous one.

Hyb4: This hybrid is same as Hyb3 except that the simulator
replaces the revealed keys outputted by TEE instance
Me with {k̃∗

u, k̃
∗
u,v}u,v and computes the aggregated

mask mask∗
U (as in Step 3 of Training phase behavior

of SIM) by querying the Fα,X (r)(V(r)\C) and utilizing
a random oracle RPRG. Since A does not know the
secrets of honest parities and the aggregated mask in
SIM have the same distribution as the one in REAL,
this hybrid is indistinguishable from the previous one.

Hyb5: This hybrid is same as Hyb4 except one modifica-
tion: SIM sets the output of the ideal functionality
Fα,X (r)(V(r) \ C) (as in Step 2 of Training phase be-
havior of SIM) as the aggregated model x(r). Note that
the ideal functionality will not return ⊥ in this case.
This modification does not change the view seen by the
adversary, and hence this hybrid is indistinguishable
from the previous one.

After completing these hybrids, SIM simulates REAL without
relying on inputs from the honest parties, indicating that the
joint view of A in the real execution (Hyb0) is computationally
indistinguishable from the output of SIM (Hyb5).

For KhPRF-OPSA and POT-OPSA, SIM can simulate REAL
without knowledge of the inputs from the honest parties, indi-
cating the security of our OPSA framework in the malicious
setting. Note that our malicious setting includes the semi-
honest setting, thereby extending the scope of our security
proof to encompass the latter.

B.3 Proof of Theorem 3

Proof. We first prove the security of individual models in the
construction instantiated with Construction 1 or 2 providing
result verification (subsection IV-C), following the proof of
Theorem 2. As aforementioned, we assume that all clients are
semi-honest and .

Now, we define how our simulator SIM behaves during
result verification of KhPRF-OPSA or POT-OPSA. In fact,
SIM behaves similarly to that in in the proof of Theorem 2,
with the following new additions and modifications:

• The r-th round of the Training phase:
(1) Each honest client u samples com∗

u at random. It
then computes a signature σ∗

u = Sign(sku, com
∗
u)

and sends (com∗
u, σ

∗
u) to the server.

(3) For all honest clients u ∈ V(r) \ C, the simu-
lator samples rand∗u = PRF(k∗u,e, 0||r) such that
com∗

u = Commit(x∗
u, rand

∗
u). For TEE instance Me,

the simulator computes rand∗ =
∑

u rand
∗
u and

com∗ =
∏

u com
∗
u for all u ∈ V(r) \ C and generates

a signature σ∗
e := Sign(ske, com

∗||rand∗||r). The
server sends (xr, rand∗, σ∗

e) to all clients.
Below, we present a series of subsequent hybrids to the real
execution REAL of our KhPRF-OPSA protocol with result
verification.

Hyb0: This random variable is the joint views of all parties
in C in the real execution.

Hyb1: In this hybrid, the simulator, which knows all secrets
of honest parties in every round, runs the execution
of the KhPRF-OPSA protocol with result verification
with A. Therefore, the view of the adversary is the
same as the previous hybrid.

Hyb2: This hybrid is identical to Hyb1 except that the sim-
ulator substitutes the shared key ku,e = KA(sku, pke)
between honest client u and TEE Me with a random
key ka

$← {0, 1}λ. The 2ODH assumption [4] guaran-
tees this hybrid is indistinguishable from the previous
one.

Hyb3: This hybrid is same as Hyb2 except that the values
of (yu, comu, σu) computed by SIM on behalf of the
honest client u and sent to the server, are substi-
tuted with uniformly sampled values (y∗

u, com
∗
u, σ

∗
u).

Since A does not know the secrets of honest pari-
ties and (yu, comu, σu) has the same distribution as
(y∗

u, com
∗
u, σ

∗
u), the view of the adversary in this hybrid

is statistically indistinguishable from the previous one.
Hyb4: This hybrid is same as Hyb3 except that the simu-

lator replaces the output of TEE instance Me with
(k∗

V , com
∗, rand∗, σ∗

e) and computes the aggregated
mask mask∗

V (as in Behavior 3 of Training phase of
SIM) by querying the Fα,X (r)(V(r) \ C) and utilizing
a random oracle RKhPRF. Since A does not know the
secrets of honest parities and the aggregated mask in
SIM have the same distribution as the one in REAL, this
hybrid is indistinguishable from the previous one. Note
that the indistinguishability of this hybrid relies on
the hiding property of the underlying vector Pedersen
commitment scheme and the security property of the
signature schemes.

Hyb5: This hybrid is same as Hyb4 except one modifica-
tion: SIM sets the output of the ideal functionality
Fα,X (r)(V(r) \ C) (as in Behavior 2 of Training phase
of SIM) as the aggregated model x(r). The server
sends (xr, rand∗, σ∗

e) to all clients. Note that the ideal
functionality will not return ⊥ in this case. This
modification does not change the view seen by the
adversary, and hence this hybrid is indistinguishable
from the previous one.

After completing these hybrids, SIM simulates REAL without
relying on inputs from the honest parties, and we can see
that the joint view of A in the real execution (Hyb0) is
computationally indistinguishable from the output of SIM
(Hyb5).

Here, we omit the hybrids to the real execution REAL of our
POT-OPSA protocol with result verification, as they undergo
the same modifications as described above.



16

Next, we give the proof for correctness against a ma-
licious server. At the end of round r, the server sends
(x(r), com(r), rand(r), σ

(r)
e ) to all clients. Here, x(r) =∑

u∈V(r) x
(r)
u represents an aggregated model computed hon-

estly, com(r) = Commit(x(r), rand(r)) denotes a valid
commitment with a random number rand(r), and σ

(r)
e :=

Sign(ske, com
(r)||rand(r)||r) is a signature generated by TEE

instance Me. Let x̃(r) = x(r)+ ẽ be a tampered global model,
where ẽ is an error vector introduced by the malicious server.
There are two situations where the client can accept x̃(r):
one happens if the server generates x̃(r) based on com(r) and
rand(r), and the other happens if the server utilizes x̃(r) to

generate c̃om
(r) and r̃and

(r)
while forging the signature of

TEE instance Me. The former contradicts the binding property
of vector Pedersen commitment scheme, and the latter violates
the EUF-CMA secure signature scheme.

Therefore, for KhPRF-OPSA and POT-OPSA, we prove the
security and correctness of our OPSA framework against the
malicious server.


