
Malicious Security for Sparse Private Histograms

Lennart Braun1⋆, Adrià Gascón2, Mariana Raykova2, Phillipp Schoppmann2, and Karn Seth2

1 Aarhus University
2 Google

braun@cs.au.dk,{adriag,marianar,schoppmann,karn}@google.com

Abstract. We present a construction for secure computation of differentially private sparse his-
tograms that aggregates the inputs from a large number of clients. Each client contributes a value
to the aggregate at a specific index. We focus on the case where the set of possible indices is
superpolynomially large. Hence, the resulting histogram will be sparse, i.e., most entries will have
the value zero.
Our construction relies on two non-colluding servers and provides security against malicious
adversaries that may control one of the servers and any numbers of clients. It achieves communication
and computation complexities linear in the input size, and achieves the optimal error O

( log(1/δ)
ϵ

)
,

independent of the size of the domain of indices. We compute the communication cost of our
protocol, showing its scalability. For a billion clients, the communication cost for each server is
under 26 KiB per client.
Our paper solves an open problem of the work of Bell et al. (CCS’22) which presented a solution
for the semi-honest setting while incurring sublinear overhead in its efficiency. We formalize a
proof approach for proving malicious security in settings where the output and possible additional
information revealed during the execution need to provide differential privacy.
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1 Introduction

Designing solutions that allow to learn the aggregate of inputs coming from many clients without learning
individual data has been the objective of many works [Bon+17; CB17; Bon+21; Add+22; Bel+23; Li+23].
In order to protect individual data even in the setting of aggregation, there is a requirement that the output
also provides differential privacy (DP) [Dwo+06]. Thus, it is important to obtain optimal parameters
that allow to maximize the utility of the output while meeting the privacy bar for it.

Another challenge in many of the settings is that the domain of the possible input contributions is
very large and the actual clients’ inputs are very sparse within that domain. Thus solutions which require
communication that is proportional to the domain size [Bon+17; CB17; Add+22; Bel+23; Li+23] are not
applicable in these settings. While there have been constructions [BS15; ZXX16; Bas+20] that show how
to use sketching techniques to manage the sparsity with logarithmic communication in the domain size
D, they pay a price in terms of incurring log D factor in their privacy loss.

The work of Bell et al. [Bel+22] tackles the question of computing private distributed histogram
over large sparse domains with communication proportional to the number of contributions and optimal
differential privacy guarantees for the output. They present a construction which leverages two non-
colluding servers to process the clients’ contributions and provides security in the setting of semi-honest
servers and clients. Their construction is a secure computation protocol that reveals to the servers some
additional leakage about the inputs beyond the output private histogram, but this additional leakage is
proven to be differentially private with respect to the clients’ contributions.

The semi-honest requirement is needed for the security of that construction and, as the authors point
out, relaxing it leads immediately to an attack where misbehaving clients colluding with one of the
semi-honest servers can violate the privacy guarantees for the output. Their paper leaves as an open
question how to achieve stronger security while preserving the optimal efficiency of their protocol and the
optimal DP privacy parameters for the output.

In this work we resolve the open question of Bell et al. [Bel+22] and present a protocol for distributed
sparse histograms that provides differential privacy for the clients’ inputs. The computation is executed
between two non-colluding servers. We prove security for our construction against malicious adversaries
that control one of the servers and a subset of the clients. Similarly to Bell et al. [Bel+22] our protocol
reveals additional information beyond the output to the servers which we prove is differentially private.
The constructions achieve optimal error, independent of the domain size of the indices. It incurs only
sublinear overhead compared with the semi-honest version of the protocol which means communication
and computation linear in the inputs size.

Setting. There are N clients each of which has an input pair that consists of an index ui ∈ D, where D is
a large domain such that |D| ≫ N , i.e., the contributions are sparse within the domain, and a value vi.
The desired output of the computation is an aggregate histogram of the clients’ contributed values that
is of the form (ij , Vj)j where Vj =

∑
ui=ij

vj . However, this histogram should also provide differential
privacy for the individual contributions.

The computation model allows two non-colluding servers to process the clients’ contributions. The
privacy guarantees require that the servers should learn only information that is differentially private with
respect to the inputs. The ideal amount of information learnt by the servers will be just the differentially
private histogram. However, the goal is to obtain a protocol that realizes the following efficiency, utility
and security properties while minimizing the additional differentially private leakage about the inputs
beyond the output. The protocol should require communication and cryptographic computation that
scales linearly with the number of inputs and may depend only additively logarithmically on the domain
size D. The error of the output O

( log(1/δ)
ϵ

)
should match the optimal central DP accuracy. The privacy

guarantees for the protocol should hold against a malicious adversary corrupting one of the servers and
all but one of the clients.

Semi-honest construction. The construction of Bell et al. [Bel+22] achieves all of the above efficiency
and accuracy goals, but only in the semi-honest setting where both servers and clients honestly follow
their prescribed steps. In fact, relaxation of the semi-honest requirement allowing malicious clients leads
directly to an attack on the privacy guarantees.

This work introduced several clever ideas of how to simulate optimal central DP mechanisms for sparse
histogram in two party computation, which we also leverage in our construction. The DP mechanisms
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that achieve optimal error in the trusted curator model [Kor+09; BNS19] computes the non-private
histogram (ij , Vj)j from the inputs, then add DP noise to each of the non-zero values Vj + ηj in this
histogram and releases the indices and the noisy values when these values are above a threshold τ :
(ij , Vj + ηj){j | Vj+ηj>τ}.

The challenge for emulating the above central DP mechanism in two-party computation is to do
this without running time linear in the domain size and without revealing the indices where the noisy
aggregates are below the threshold. Bell et al. [Bel+22] suggests a mechanism which leverages the
multiplicity histogram of the input, which we can think of the histogram obtained by replacing the real
indices with random values. It reveals the number j of indices that occur k times in the input for all
values of k. They show an efficient protocol that allows the servers to compute a differentially private
version of the multiplicity histogram using an oblivious PRF evaluation on the input indices, where one
server holds the PRF key, and the other learns the OPRF output.

Working with the DP multiplicity histogram, which we also refer to as the anonymous histogram
for the input since the indices are transformed to pseudorandom values, enables the servers to identify
the contributions with the same index and whose values need to be added without revealing anything
about distribution of the indices over the domain and while doing work only linear in the number of
contributions. The remaining steps for adding noise and thresholding can also be executed efficiently.

Malicious security. Our new construction follows the idea of leveraging the multiplicity histogram to
enable the input aggregation. However, this requires new techniques to enable the servers to compute the
anonymous histogram from the clients’ inputs.

The first challenge to resolve is the one that is also the reason for the attack possible in the presence
of malicious clients. It stems from the fact that in the construction of Bell et al. [Bel+22] the clients are
trusted to honestly perform the first step of the oblivious PRF evaluation, i.e., applying a hash function
H which is modeled as random oracle, that transforms the indices into pseudorandom values. We replace
the H(u)K PRF construction in that paper with the Dodis-Yampolskiy PRF [DY05] that allows oblivious
evaluation between the two servers, where the client provides just an encryption of its index and is not
trusted with any other steps. While there are previous works [Mia+20] that have shown maliciously
secure oblivious PRF evaluation for the Dodis-Yampolskiy construction, our protocol achieves better
efficiency by leveraging the HSM-CL encryption scheme [CLT18] which can be instantiated with plaintext
size that matches the prime-order of the group used by the PRF. This modification on its own achieves a
construction that provides security against semi-honest servers colluding with malicious clients.

In the semi-honest protocol [Bel+22] it suffices that only one of the servers generates the noise
needed to achieve differential privacy for the multiplicity histogram. To achieve full malicious security
against adversaries that control one server and any number of clients, we can no longer use this approach
efficiently since it will require that the party adding the noise proves that it has correctly sampled from
the appropriate DP distribution. We introduce completely different distributed noise generation protocols
for the computation of the anonymous histogram which enables both servers to see the anonymous
histogram and to perform the aggregation (without needing to provide a proof of correctness). Similarly,
both servers can add noise to the aggregated values and do the thresholding in the clear.

As a result our malicious construction requires asymptotically the same amount of communication
and computation as the semi-honest protocol.

Formal proof. The two-party computation construction here computes a functionality which outputs a
differentially private sparse histogram. However, the protocol itself has additional leakage which is also
differentially private. This opens up the question how to compose MPC and DP proofs to obtain a formal
argument for the security guarantees of the construction. In the case of the semi-honest protocol [Bel+22],
the security argument that the authors present has two steps: First, it computes the leakage from an
honest execution and shows that it is differentially private. Second, it provides an MPC proof that the
execution does not reveal anything more than the desired output plus the honest leakage.

The above argument is sufficient in the semi-honest case since we can think of the leakage and
the output as something that can be generated by the ideal functionality as a single DP query on the
underlying data even though these are revealed at different steps of the protocol. The important point is
that semi-honest adversary cannot change the queries adaptively depending on what it may learn about
the DP noise used in previous queries. In the malicious case this is no longer true since the adversary
participated in the generation of the DP noise applied to queries.
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We introduce a general methodology to argue security for MPC protocols with DP leakage in the
malicious setting. In this case the interaction between the simulator and the ideal functionality can be
viewed as a setting of interactive differential privacy queries [VZ23]. Thus, as a first step we need to prove
that the view of the simulator in the interaction with the ideal functionality is indeed differentially private.
To do this we show that the view of the simulator can be simulated using a non-interactive DP release
from the database that is independent of the adversary’s input. Once we can claim that the leakage
in the ideal world is DP, we proceed with the simulation proof of our MPC protocol in the universal
composability (UC) model using this simulator.

In our particular construction we first identify the maximum leakage that a malicious server can obtain
from the database, which essentially is the private histogram from the semi-honest protocol [Bel+22] plus
the additional leakage of the total number of frequency dummies generated by the servers and the total
number of duplication. We show that this maintains DP properties for the input (see Theorem 3). We
then construct a simulator for the MPC protocol who is interacting with the ideal functionality and we
show: 1) that we can simulate the outputs that the simulator receives from the ideal functionality using
the maximal leakage from above that we have proven DP (see Theorem 4), and 2) that the view of the
adversary in the real world is indistinguishable from the view in the ideal world where it interacts with
the simulator (see Theorem 5).

1.1 Technical Overview

Semi-honest Construction. We start with an overview of the technical details for the semi-honest
construction of Bell et al. [Bel+22] which is the starting point for our construction. Understanding the
approach of that work is essential in order to understand the challenges for the malicious protocol and
the techniques we leverage to resolve them.

DP Multiplicity Histogram. As we discussed above a central contribution in the work of Bell et al. [Bel+22]
is a protocol for two parties to efficiently learn a differentially private multiplicity histogram of the clients’
indices I = (uj)j∈[n].

The starting observation one can use an oblivious PRF construction for the parties to learn a
multiplicity histogram of I. More concretely, the parties compute the multi-set HI := {{Fk(k, i) | i ∈ I}}
for a secret-shared key k, which reveals exactly the multiplicity histogram to a computationally bounded
adversary. Therefore, we denote by HI the multiplicity histogram of I. Concretely, HI is the mapping
[n]→ [n] such that HI [k] = j if and only if there are j distinct indices in I occurring exactly k times
in I. To see better why the PRF evaluation on the indices provides a multiplicity histogram is the fact
that the information that the pseudorandom indices provide is just the cardinality of the contributions
to different buckets (with no further information about the buckets) and thus we can count how many
buckets have received k contributions.

However, the challenging task is to construct a differentially private approximation of HI . For this
purpose, Bell et al. [Bel+22] rely on two noising mechanisms that can be applied homomorphically on
appropriately encrypted I.

Consider an index i ∈ I with multiplicity k, i.e., appearing k times in I. Bell et al. [Bel+22] describe
two mechanisms that consist on generating fake client contributions. The first mechanism Mfreq only
works under the assumption that k < T , for a fixed threshold T > 0, while the second one, denotedMdup,
works for k ≥ T . The solution then consists on composing these mechanisms sequentially on the input I,
i.e. Mdup(Mfreq(I)).

– Frequency dummies (Mfreq): This mechanism consists on noisingHI [j], for each j < T , by introducing
X · j copies of a fresh index fj disjoint with the domain of I. Here, X is a positive random variable
appropriately chosen to provide DP, e.g., a shifted discrete Laplace. One can think of the “frequency
dummies” as simulating additional fake clients. Note that the communication overhead of this
mechanism is significant, as it inflates |I| by O(T 2) additional inputs.

– Duplication dummies (Mdup): This mechanism noises directly the counts in the buckets of HI
that have more than T contributions by creating a number of copies each encrypted following an
appropriately parameterized Negative Binomial distribution. Note that the duplication can be applied
on encrypted entries without any knowledge of their destination bucket in the histogram, by copying
and rerandomizing the ciphertexts. Duplication is applied on both the real clients’ contributions as
well as the frequency dummies.
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In the construction by Bell et al. [Bel+22] one of the servers receives all encrypted inputs from the clients,
generates the dummy items as above, shuffles real inputs and dummies and forwards them to the second
server. All dummy items have contribution values of 0 so that they will not affect the actual aggregates
that will be revealed. In this step the first server also applies its partial PRF evaluation as we discuss in
more detail next. The second server who receives all shuffled real and dummy items can learn the total
number of dummies that are added by virtue of knowing the input size.

Oblivious PRF constructions and Malicious Attack Bell et al. [Bel+22] compute an anonymous multiplicity
histogram on the clients’ input by transforming the indices in the input into pseudorandom indices
by having the two servers jointly apply a PRF function. Specifically the construction uses the PRF
H(x)K : {0, 1}∗ → G [JL09] where the key K is held by the first server. The distributed evaluation protocol
is as follows. The client encrypts the hash of its index H(u) under the public key of the second server
and sends the ciphertext to the first server who holds the PRF key. The encryption is multiplicatively
homomorphic which enables the fist server to apply the exponentiation by K on top of the encryption.
The result can then be decrypted by the second server.

The security of the above construction fails in the presence of malicious clients. An adversary who
controls malicious clients and the second server and wants to identify contributions for index u can
instruct the clients to encrypt the values H(u) and H(u)2 instead of hashes of their indices. The oblivious
PRF evaluation results in H(u)K and H(u)2K . Now it is easy to see that these can be easily identified by
a server who sees the pseudorandom indices just by looking for values such that one is the square of the
other.

DP Sparse Histogram from DP Multiplicity Histogram. The transformation of the input to an anonymous
multiplicity histogram in the protocol of Bell et al. [Bel+22] enables one of the servers who obtain
the pseudorandom indices needed to group the client contributions whose values need to be added
together. Those values are provided encrypted under additive homomorphic encryption, which allows
adding encrypted values and rerandomizing them during the shuffling step needed to hide the dummy
contributions added by the first server. The second server holds pairs (H(ui)K , Enc(vi)) and computes
Enc(Vi) = Enc(

∑
u=ui

vi + ηu) where ηu is appropriately sampled DP noise.
The remaining steps are to compute a threshold for the value Vi which can be done by the first server

who does not learn the PRF indices. For this purpose all vi values are encrypted under a public key where
the secret key is shared between the two servers. The second server that aggregates the values removes its
part of the key and then passed the encrypted aggregates to the first server to complete the decryption.

Once the first server identifies the value Vi > τ bigger than the threshold τ for the DP protocol, the
two servers jointly decrypt the value Enc(u) included in the input.

Malicious servers. In the following, we overview the main new insights and techniques that we introduce
to obtain a construction with malicious security.

Different PRF with Efficient Oblivious Evaluation. As we discussed above, malicious client behavior leads
to direct attack in the semi-honest protocol. To solve this issue we use a PRF that is more friendly to
a malicious oblivious evaluation protocol. We use the Dodis-Yampolskiy PRF [DY05], which is of the
form FDY(k, x) = g

1
k+x where G = ⟨g⟩ is a group of prime-order q. The idea of the oblivious evaluation

is to have one server homomorphically compute Enc(k + x), and then blind it as Enc(r · (k + x)). The
second server can decrypt the blinded value and then compute g

1
r·(k+x) . Now the first server removes the

blinding factor to obtain the correct PRF evaluation g
1

k+x . This masking idea works well only when the
plaintext space Fq for the encryption scheme and the group order q = |G| for the PRF match. We achieve
this by using the HSM-CL encryption scheme [CLT18] and improving on previous work [Mia+20] that
has constructed malicious oblivious evaluation for the Dodis-Yampolskiy PRF using Camenisch-Shoup
(CL) encryption [CS03] which has a different plaintext domain.

Malicious DP Multiplicity Histogram Generation. In the semi-honest protocol of [Bel+22], one of the
servers generates both the frequency and the duplication dummies. To preserve the same approach for
the malicious setting, we would require the server to generate zero-knowledge proofs for correct sampling
for DP noise distributions while hiding the sample. Moreover, the second server would need to prove in
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zero-knowledge that it performed the aggregation step correctly. We are not aware of any specialized ZK
proof approaches for these functionalities. At the same time the functionality is quite complex even if we
assume that the parties have generated jointly uniform randomness, so the use of generic approaches will
result in high costs.

We adopt a different approach where both parties will add dummies in a distributed way such that
they can both obtain the view of the anonymous histogram. We will use frequency and duplication
dummies as in the semi-honest protocol to generate Mmal

freq(Mmal
freq(I)) but the two mechanisms will be

implemented differently.

– Frequency dummies (Mmal
freq): each server will run independently the semi-honest protocol for frequency

dummy generation Mfreq(I) and the results of both executions will be used as frequency dummies.
Since we are using a large domain for the indices of both the frequency dummies and the real input,
the probability that the dummies of the malicious server collide with those of the honest server is
negligible. Then, we can consider the malicious frequency dummies as additional clients’ inputs and
the security follows from the semi-honest protocol. This will result in a factor of two greater noise for
the differential privacy property since the dummies from the honest server will have to be enough to
guarantee differential privacy for the view of the malicious server.

– Duplication dummies (Mmal
freq): Having each server generate its own set of duplication dummies does

not work directly as in the case of frequency dummies. A misbehaving server could replicate a single
input value in all of its duplication dummies instead of duplicating each real input and each frequency
dummy with the appropriate probability. Generating a proof for correct duplication will require
proving sampling correctly noise for each item, which, as we discussed above, is challenging to do
efficiently.
We adopt a different approach instead where the two servers shuffle the real contributions and
frequency dummies and then jointly agree on a seed which determines how many times each item in
the shuffled encrypted ciphertext will be duplicated. This reveals to each party the number of times
each ciphertext (which is shuffled and cannot be linked to any real or dummy index) is duplicated. In
order to make this leakage equivalent to revealing the total number of duplications, which is the case
in the semi-honest protocol, we use the Bernoulli distribution to determine whether we duplicate each
ciphertext. Thus, each ciphertexts is duplicated at most once and knowing which shuffled ciphertexts
are duplicated will reveal only the total number of duplications. This results in DP noise per index
sampled from a Binomial distribution Bin(n, p), in contrast to the semi-honest protocol which used
negative binomial noise distribution. We show in Lemma 2 that this noise also provides differential
privacy.

DP Sparse Histogram from DP Multiplicity Histogram. Our dummy generation mechanism allows both
servers to see the differentially private multiplicity histogram. This enables them both to locally compute
the encrypted aggregates of values per index

∑
u=ui

Enc(vi) without learning the indices – avoiding costly
zero-knowledge proofs of correct aggregation. Then, both servers can add independent noise samples η1

u

and η2
u to the aggregate Enc(

∑
u=ui

vi + η1
u + η2

u) before decrypting it jointly. For all values above the
threshold τ , the two servers jointly decrypt Enc(u).

1.2 Related Work

Starting with the seminal Prio protocol [CB17], several works have explored two-server aggregation
protocols for various aggregate functionalities. Prio+ [Add+22] extends the functionality to support inputs
that are shared via boolean/XOR sharing, and Boneh et al. [Bon+19] and Davis et al. [Dav+23] improve
the distributed zero-knowledge proofs that Prio needs to provide security agains malicious clients. Boneh
et al. [Bon+21] introduce Poplar, a two-server aggregation protocol for a heavy hitters functionality,
which can be viewed as a private histogram with a fixed threshold. More recently, both Davis et al.
[Dav+23] and Mouris, Sarkar, and Tsoutsos [MST23] presented improved constructions for heavy hitters
that build on Poplar. The main difference between all of the above works and ours is that they do not
provide differential privacy for the output. And while they can be extended to provide DP, doing so while
achieving a good privacy–utility trade-off has proven challenging for large, sparse domains. Bell et al.
[Bel+22] provide the first two-server protocol with asymptotically optimal accuracy in this setting, and
we follow their approach while strengthening the security guarantees.
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Several large-scale deployments of two-server aggregation protocols have led to an increased industry
interest in these technologies. Examples include Mozilla’s Origin Telemetry [Moz22], Apple’s and Google’s
Exposure Notification Privacy-preserving Analytics [AG21], and ISRG’s Divvi Up service [Int22]. Driven
by this industry interest, the IETF is working towards standardizing two-server aggregation protocols
and their underlying cryptographic primitives [Bar+23; Geo+23].

An alternative threat model is followed by Secure Aggregation (SecAgg) [Bon+17]. Here, instead of
two non-colluding servers, a single server is used, and privacy is guaranteed as long as a predefined fraction
of clients remains honest. Several works [Rot+19; Bel+20; Bel+23; Li+23; Ma+23] have built on this
paradigm, providing more efficient constructions, input validation, or better security and privacy guarantees.
When considering sparse domains, works in the single-server setting are either using sketching [BS15;
ZXX16; Bas+20], or use trie-based approaches [Zhu+20], requiring a privacy budget that scales with the
domain size. To our knowledge, no work has considered private histograms with asymptotically optimal
accuracy in the single-server setting. While our protocol can be trivially transferred to the single-server
setting by replacing one of the two servers by an MPC committee of clients, doing so with satisfactory
efficiency remains an open question.

2 Preliminaries

2.1 Notation

We use [n] for the set {1, . . . , n}, [a, b] for {a, . . . , b}, and [a, b) for [a, b− 1]. An ordered list is written as
Ja, b, cK and we write Shuffle(L) to denote that a list L is randomly permuted.

Let λ and σ denote the computational and a statistical security parameter, respectively. Let q > 2λ

be a prime, and Fq the finite field of size q. For negative numbers, we use a centered representation
Fq = {−⌊q/2⌋, . . . ,−1, 0, 1, . . . , ⌊q/2⌋}.

We use prime-order groups as well as unknown order groups in our protocols: Let G = ⟨g⟩ a cyclic
group of order q where DDH is assumed to be hard (e.g., an elliptic curve group). We use the CL
framework [CL15] for groups of unknown order with parameters generated as ppcl ← CLGen(1λ, q) with
the same prime q. They define a class group Ĝ ⊃ G = ⟨gcl⟩ ≃ F ×Gq = ⟨f⟩ × ⟨gq⟩, where F is of order q
with the discrete logarithm to base f efficiently computable, and Gq of unknown order. Let Dq induce an
almost uniformly distribution in Gq.

2.2 Differential Privacy for Histograms

We are interested in histograms that aggregate datasats of up to N datapoints which are index-value pairs
xi = (ui, vi) ∈ I × V . In practice the index set will be a finite field I = Fq and the values are integers up
to a sensitivity bound ∆ also represented as field elements, i.e., V = [0, ∆] ⊆ Fq. We write a dataset M
as an ordered list/tuple M = Jx1, . . . , xN K ⊆

⋃
n∈N(I × V)n. We define neighboring datasets M0, M1 to

have the same size and differ in a single position xh. We define a (non-interactive) mechanism M to be a
randomized algorithm that takes a dataset M as input and releases some output.

Definition 1 (Differential Privacy [DR14]). A mechanism M is (ε, δ)-differentially private if for
all neighboring datasets M0, M1 in M’s domain and for all S ⊂ Range(M): Pr[M(M0) ∈ S] ≤ eε ·
Pr[M(M1) ∈ S] + δ.

An interactive mechanism M is a randomized algorithm that takes a dataset as input and releases
some output to the adversary (or analyst) A. In contrast to before, we then can have several rounds of
interaction, where A can adaptively send messages to M, which releases more outputs depending on all
the messages received so far. We denote the interaction between an interactive M and A as ⟨M(M),A⟩
and use View(⟨M(M),A⟩) for the view of A in this interaction. This is a random variable depending on
the dataset M as well as the random coins used by M and A. We can also define differential privacy for
such interactive mechanisms:

Definition 2 (Interactive Differential Privacy [VZ23]). An interactive mechanism M is (ε, δ)-
differentially private if for all neighboring datasets M0, M1 in M’s domain, for all adversaries A, and
for all S ⊂ Range(View(⟨M(·),A⟩)):

Pr[View(⟨M(M0),A⟩) ∈ S] ≤ eε · Pr[View(⟨M(M1),A⟩) ∈ S] + δ.
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In some of the proofs we rely on the the tighter definition of DP by means of hockey-stick di-
vergences. The ε-hockey stick divergence between two distributions U ,U ′ is defined as dε(U∥U ′) :=∑

support(U)[pU (x)− eεpU ′(x)]+, where pU (x) (resp. pU ′(x)) denotes the probability mass of U (resp. U ′)
at x, and [y] = max(y, 0). Distributions U ,U ′ are (ε, δ)-close if dε(U∥U ′) ≤ δ and dε(U ′∥U) ≤ δ. Relating
back to Definition 1, if distributions M(M0) and M(M1) are (ε, δ)-close for all neighboring datasets
M0, M1, then M is differentially private.

Distributions We use the following probability distributions to sample noise for differential privacy
throughout our paper. The truncated, discrete Laplace distribution with scale λ, denoted TDLap(λ, t), is
the discrete distribution with support [−t, t] and mass function ∝ exp(−|x|/λ). As shown by Bell et al.
[Bel+22], adding a noise sample from TDLap((, λ), t), with λ = ∆/ϵ, to the result of a sensitivity ∆ query
provides (ϵ, 2e−(t−∆)ϵ/∆)-DP. When noise values are required to be non-negative, we use the truncated,
shifted, discrete Laplace distribution, denoted TSDLap(λ, t), with scale λ, support [0, 2t], and mass function
∝ exp(−|x− t|/λ). Analogous to before, adding a noise sample from TSDLap((, λ), t = ⌈∆+∆/ϵ log(2/δ)⌉)
provides (ϵ, δ)-DP. For our duplication mechanism, we use the Bernoulli distribution Ber(p) with support
{0, 1} and mass function px(1− p)1−x to determine if a given (encrypted) index should be duplicated.
Therefore, the number of duplicates after considering an set of n indices is binomially distributed. We
denote the Binomial distribution as Bin(n, p), with support [0, n] and mass function (

(
n
k

)
px(1− p)1−x.

2.3 Pedersen Commitments
We use standard Pedersen commitments in the prime order group G with message space Fq. The are
information-theoretically hiding and computationally binding based on the discrete logarithm assumption.
We use the notation PedSetup() to denote generation of the commitment public key hP ∈R G, and we
write PedCommithP(m; r) : Fq × Fq → G to commit to a message m ∈ Fq by sampling r ∈R Fq and
outputting cm := hP

m · gr.

2.4 Encryption Schemes
In our histogram protocol, we use two different encryption schemes, ElGamal and HSM-CL, to encrypt
values and indices, respectively. We use lifted ElGamal encryption [ElG84] over the group G where the
message is encrypted in the exponent of g. The message space is Fq, but only small messages can be
decrypted efficiently. Instantiating G with elliptic curves yields relatively small ciphertexts. The second
encryption scheme is HSM-CL [CLT18] with the same message space Fq. The ciphertexts are larger
compared to ElGamal, but HSM-CL has the advantage that arbitrary messages m ∈ Fq can be decrypted
without size restriction.

The security proof of our histogram protocol uses that both encryption schemes admit so-called lossy
public keys: A lossy public key is indistinguishable from a normal public keys, but all encryptions under
this public key will statistically indistinguishable from encryptions of 0, i.e., they are independent of
the encrypted message. These special keys are of the form pk = (pk, Enc(pk, b)) with b ∈ {0, 1}, and
encryption uses the homomorphic properties of the scheme to multiply the ciphertext from the public
key (containing b) with a message m. In case of a normal key, we have b = 1, and for a lossy key b = 0
ensures that the resulting ciphertext does not contain any information about m.

We write the schemes as ΠHSM-CL = (KeyGencl
b , Enccl, Deccl) and ΠElGamal = (KeyGenpo

b , Encpo, Decpo),
respectively. To distinguish between data used by the two schemes, we use notation with a po-prefix for
ElGamal in a prime-order group (e.g., posk, popk, poct-m for secret keys, public keys, and ciphertexts
containing some message m), and for HSM-CL, we analogously use a cl-prefix (e.g., clsk, clpk, clct-m). We
formally describe both encryption schemes in Figures 5 and 6 in Appendix A. Following the notation in
[BDO23], we overload the operators ·, + to describe homomorphic operations. Moreover, we use, e.g., +s

R

to denote homomorphic addition followed by rerandomization with randomness s.

2.5 Oblivious Pseudorandom Functions
In our histogram protocol, we use a two-party oblivious PRF protocol to evaluate a PRF F on encrypted
inputs x1, . . . , xn such that neither of the parties learns anything about the PRF key k or the inputs, but
both parties obtain the outputs F(k, x1), . . . , F(k, xn). We make use of a PRF construction by Dodis and
Yampolskiy [DY05], which especially friendly to oblivious evaluation (see e.g. [Mia+20]).
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Definition 3 (Dodis-Yampolskiy PRF). Let {FDY : Fq × Fq → Gq}q prime be the family of functions
where Gq = ⟨g⟩ is a group of prime order q = Ω(2λ), and FDY(k, x) = g

1
k+x .

Originally, Dodis and Yampolskiy proved standard PRF security for FDY, but only for polynomially
sized input spaces (i.e. |X | = poly(λ)) under the computational ℓ-DHI assumption (Definition 5 in
Appendix B). In our case, the input space is large – it is the set of possible indices of the sparse histogram.
Miao et al. [Mia+20] proved that with an exponentially large input space the Dodis-Yampolskiy PRF
satisfies their weaker notion of a selectively secure PRF (Definition 7 in Appendix B) under the decisional
ℓ-DHI assumption (Definition 5). In this work, we define the following notion of an ℓ-non-adaptive
pseudorandom function, which is more convenient in our use case. The adversary A is allowed to make a
fixed number ℓ of non-adaptive queries for some ℓ ∈ N. This is similar to the notion of [Mia+20], but now
all outputs are either real or random, instead of only the last output.

Definition 4 (ℓ-Non-Adaptive PRF). For an ensemble of PPT functions {Fλ : Kλ ×Xλ → Yλ}λ∈N
define the following game Gameℓ-naPRF

A,b (λ) for a two-stage adversary A = (A1,A2) and b ∈ {real, rand}:
1. Run (st, (xi)i∈[ℓ])← A1(1λ). 2. Sample k ∈R Kλ and H ∈R Funs[Xλ → Yλ]. 3. Compute y

(rand)
i := H(xi)

and y
(real)
i := Fλ(k, xi) for i ∈ [ℓ]. 4. Output A2(1λ, st, (y(b)

i )i∈[ℓ]).
We say {Fλ}λ is a family of ℓ-non-adaptive pseudorandom functions, if for all PPT adversaries A

and all large enough λ ∈ N, we have

Advℓ-naPRF
A (λ) :=

∣∣∣ Pr
[
Gameℓ-naPRF

A,real (λ)
]
− Pr

[
Gameℓ-naPRF

A,rand (λ)
]∣∣∣ ≤ negl(λ). (1)

Definition 5 (Decisional ℓ-DHI Assumption (following [Mia+20])). Let G = ⟨g⟩ be a group of
prime order q. We say that the ℓ-DHI assumption holds for G if for every PPT algorithm A we have∣∣∣Pr

[
A(1λ, g, gx, . . . , gxℓ

, g
1
x ) = 1 | x ∈R F∗

q

]
−

Pr
[
A(1λ, g, gx, . . . , gxℓ

, h) = 1 | x ∈R F∗
q , h ∈R G

]∣∣∣ ≤ negl(λ),

where the probability is taken over the random choice of x and the randomness used by A.

We prove that ℓ-non-adaptive security is implied by the notion of [Mia+20] (see Lemma 3 in Appendix B)
and obtain the following theorem as corollary:

Theorem 1. The Dodis-Yampolskiy PRF FDY is ℓ-non-adaptively secure (Definition 4)) under the
decisional ℓ-DHI assumption (Definition 5).

2.6 Zero-Knowledge

To ensure security against a malicious adversary, our protocols make use of zero-knowledge proofs for
various relations. To simplify notation, we use non-interactive proof systems in an abstract way. For a
witness relation RRel, we write the corresponding proof system as ΠZK

Rel . To simplify the notation, we assume
that the relations are implicitly parameterized by the public parameters and public keys clpk, popk. Proving
is written as π ← ΠZK

Rel .Prove(x, w) for (x; w) ∈ RRel and proofs are verified as {⊤,⊥} ← ΠZK.Verify(π, x).
Moreover, we use π ← ΠZK.SimProve(x) to simulate a proof. Note that this notation can hide, e.g.,
programming a random oracle when the Fiat-Shamir [FS87] transformation is used.

For most of the relations, the proofs can be instantiated using the canonical Σ protocols [Cra97] in
prime-order groups and in class groups (cf. [BDO23]). In the following, we discuss the most important
relations and the instantiations of the corresponding proofs. Further relations that are not used in the
main body of this paper are deferred to Appendix D.

Proofs of Plaintext Knowledge To extract the corrupted parties’ contributions in our security proofs, we
need proof of plaintext knowledge for both encryption schemes. This also ensures that corrupted servers
cannot create ciphertexts containing values that are related to the plaintext of honest users. Note that we
only need to extract the message, but not the randomness. Hence, for HSM-CL, we can use the proof
of plaintext knowledge from [BDO23], written as ΠZK

CL-PoPK, and the standard Σ protocol for ElGamal
ΠZK

PO-PoPK, Note that due to our use of working/lossy public keys of the form clpk = (clpk, clpkct) (and
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analogous for ElGamal), the encryption relations are actually the relations for homomorphic multiplication
with a constant followed by rerandomization.

RCL-PoPK :=
{

clct; (m, r)
∣∣ clct1 = clpkctm

1 · gr
q ∧ clct2 = clpkctm

2 · (clpk)r
}

(2)
RPO-PoPK :=

{
poct; (m, r)

∣∣ poct1 = popkctm
1 · gr ∧ poct2 = popkctm

2 · (popk)r
}

(3)

Range Proofs For the lifted ElGamal encryption, we additionally need to make sure that the encrypted
values lie in a certain range [a, b] ⊆ Fq. This is i.a. needed to ensure that decryption always succeeds. We
can instantiate ΠZK

Range-[a,b] for example with Bulletproofs [Bün+18].

R[a,b]
Range :=

{
poct; (m, r)

∣∣∣ (poct; (m, r)) ∈ RPO-PoPK ∧m ∈ [a, b]
}

(4)

Client Inputs The clients need to prove with ΠZK
Client that their contribution is well-formed, i.e., they send

valid ciphertexts containing index and value in the appropriate ranges:

RClient :=
{

(clct, poct); (u, r, v, s)
∣∣∣

(clct; (u, r)) ∈ RCL-PoPK ∧ (poct; (v, s)) ∈ R[0,∆]
Range

}
.

(5)

Shuffle Proofs We repeatedly need to randomly shuffle lists of ciphertext pairs consisting of one ElGamal
and one HSM-CL ciphertext. It is essential that after the shuffle each pair of input ciphertexts corresponds
exactly to one pair of output ciphertexts while ensuring that the random permutation stays hidden.
Hence, we rerandomize the permuted ciphertexts and then prove correctness of the whole operation in
zero-knowledge. Moreover, for the security proof of our protocol, we will need to extract the permutation,
but not necessarily the randomness used for rerandomization. We can use the protocols by Bayer and
Groth [BG12] or by Hoffmann et al. [HKR19] to instantiate a shuffle proof ΠZK

Shuffle for the following
relation:

RShuffle :=
{

((clct-ui, poct-vi)i∈[n], (clct-u′
i, clct-v′

i)i∈[n]); (σ, (ri)i∈[n], (si)i∈[n])∣∣∣ ((clct-ui, clct-u′
σ(i)); ri) ∈ Rcl

Randomize for i ∈ [n]

∧ ((poct-vi, poct-v′
σ(i)); si) ∈ Rpo

Randomize for i ∈ [n]
}

.

(6)

OPRF Subprotocol In our OPRF protocol ΠOPRF, we use zero-knowledge proofs for the following two
relations:

RAddBlindCom :=
{

(clctk, clct, clct′, cm); (r, s, ρ)∣∣∣ clct′ = (clct + clctk) ·sR r ∧ cm = PedCommit(r; ρ)
}, (7)

RExpCom :=
{

(h, t, cm); (r, ρ)∣∣∣ t = hr ∧ cm = PedCommit(r; ρ)
}. (8)

2.7 Auxiliary Functionalities

We make use of some auxiliary functionalities, which are formally described in Appendix C. First, we
assume a way for the servers to reliable broadcast messages to all clients and model this as functionality
FSBCast (Figure 7). Then, we use a commitment functionality FCom (Figure 8), which has a simple
instantiation in the random oracle model, and a functionality FRand (Figure 9) that outputs random
bit-strings with each bit Bernoulli-distributed.

Finally, we use FEnc (Figure 10), which models a two-party threshold encryption scheme for ElGamal
and HSM-CL encryption (see Section 2.4). It has the methods KeyGen, CL-Decrypt, and PO-Decrypt to
generate key pairs, and decrypt ΠHSM-CL and ΠElGamal ciphertexts, respectively. Moreover, FEnc contains
the methods CL-Random and CL-Constant to generate ΠHSM-CL ciphertexts with a random or publicly
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known value. PO-Zero is used to create an ΠElGamal encryption of zero. Finally, DecExpInv decrypts given
ΠHSM-CL ciphertexts clct-ai and outputs g

1
ai ∈ G while leaking ai to one of the servers. We formally define

FEnc in Appendix E which also contains an instantiation with the protocol ΠEnc and the corresponding
security proof.

3 Differentially Private Sparse Histograms

In this section, we introduce the DP mechanism implemented by our protocol. It follows a similar structure
as Bell et al. [Bel+22], but uses a different dummy distribution for duplication dummies. To simplify
the description, we analyze our algorithms under add/remove DP. However, our final privacy theorem
(Theorem 3) is stated in terms of standard substitution DP.

3.1 Mechanism
The starting point of our DP mechanism is the work of Bell et al. [Bel+22]. We define our variant MHist
in Figure 1. The formal definition of the noise generation algorithms is deferred to Appendix F.

The main difference with the work of Bell et al. is that we sample duplicate dummies in step 1(b)
using the Bernoulli distribution, i.e., the mechanism tosses a coin with bias p to determine if a given
index must be duplicate or not. In contrast, Bell et al. samples a Negative Binomial, which dictates how
many times a given index must be duplicated. The latter is more efficient in terms of communication
overhead for small ε, as the number of required dummies scales with 1/ε, as opposed to the Bernoulli
case, which scales with 1/ϵ2. However, the advantage of the approach based on Bernoulli in our setting is
that the servers can jointly toss coins as long as we can guarantee that they will have the right bias. This
leads to an efficient protocol where servers can simply sample a seed to derive unbiased coins from which
coins with the right bias can be securely obtained.

The mechanism consists on three noise addition stages. In the first one, so-called frequency dummies
are added (step 1(a)). These are indices sampled from a set sampled from a set of indices disjoint with
the input. The purpose of this mechanism is to provide DP for indices occurring less that a threshold
T number of times. Next, the duplication dummies discussed above are generated. These are obtained
by duplicating according to a Bernoulli distribution with parameter p the set of indices obtained so far
(including the previously generated frequency dummies). Next, the multiplicity histogram HA of the
resulting set of indices is computed (step 3). HA is outputted by the mechanism, along with both (a)
the total number of frequency dummies added in Step 1(a), and (b) the total number of duplicating
dummies added in Step 1(b). Showing that this triple (|DIF |, |DID|,HA) is differentially private is the
main challenge in the proof. Finally, the third noise addition mechanism samples dummy buckets as
a way to randomize an anonymous histogram with differentially private counts. Note that removing a
user’s input might alter the output of the corresponding anonymous histogram computation by either
(i) reducing a count in a bucket by the sensitivity ∆ or (ii) introducing a new bucket with value in [∆].
The sampling of dummy buckets accounts for (ii) by adding appropriately distributed buckets with all
possible values 1, . . . , ∆.

DP Mechanism MHist for Sparse Histogram

Parameters: sensitivity ∆, size of the dataset N , noise parameters (t3, λ3), p, (t2, λ2), (t1, λ1),
threshold τ = ∆ + t1 + 1, threshold T > 0 for frequency and duplicate dummy generation, dummy
domain D that is disjoint from the input domain.
Input: A dataset written as an ordered list M = J(ui, vi)K of length N , with (ui, vi) ∈ I × [0, ∆]
for i ∈ [N ]. Let MU := Ju | (u, _) ∈MK be the list of the indices in M .

1. Add dummy contributions that include an index, but have no value:
(a) DIF , _← SampleFrequencyDummies(D, T, λ3, t3, plain,⊥), and
(b) DID ← SampleDuplicateDummies(MU || DIF , p).
Set M ′ := M ||

q
(u, 0) | u ∈ (DIF || DID)

y
.

2. Define the following:
(a) Let U := {u | (u, _) ∈M ′} be the set of occurring bucket indices, and let B := |U | be the

number of buckets.
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(b) For u ∈ U , let Vu := {v | (u, v) ∈M ′} be the multiset of values for the bucket with index
u, and let V :=

⊎
u∈U Vu be the multiset of overall occurring values.

3. Compute the anonymous histogram of M ′, i.e., the (sorted) list

HA :=
q
nu := |{(x, y) ∈M ′ | x = u}|

∣∣ u ∈ U
y
. (9)

4. Compute the (normal) histogram of M ′a as sorted list:

H :=
r

(u, v)
∣∣∣ u ∈ U ∧ v :=

∑
vi∈Vu

vi

z
. (10)

5. Add dummy buckets:
(a) DB ← SampleDummyBuckets(∆, λ2, t2, plain,⊥)
(b) Set H′ := H || J(⊥, v) | v ∈ DBK with B′ := |H′|.

6. Compute the private histogram:
(a) Write J(u1, v1), . . . , (uB′ , vB′)K := H′.
(b) Sample noise as ζi ← TDLap(λ1, t1) for i ∈ [B′].
(c) Compute the private histogramb as list:

HP := J(ui, vi + ζi) | vi + ζi ≥ τK. (11)

(d) Compute the threshold leakage as a shuffled list:

V ⊥ := Shuffle(Jvi + ζi | vi + ζi < τK). (12)

Output: Release the following: (|DIF |, |DID|,HA, |DB |, V ⊥,HP ).
a Except for potentially additional zero-values buckets, this coincides with the histogram of the original

dataset M , since the dummy elements all have an associated value of zero.
b HP will not contain any entries of the form (⊥, v), since they never make it above the threshold τ .

Fig. 1: Description of the DP Mechanism implemented by our protocol.

Before we prove the fact that the mechanism is DP we introduce auxiliary lemmas regarding the
frequency and duplication dummies. The following lemma states that adding dummies according to
SampleFrequencyDummies provides DP for inputs with multiplicity below T . It is not hard to see by
inspecting the definition of SampleFrequencyDummies that the expected number of dummies added by
this mechanism is Oϵ,δ(T 2).

Lemma 1 (Frequency Dummies via Laplace [Bel+22]). Let D be a multi-set of indices in I, and let
T > 0 be an integer threshold value. Let i ∈ D be an index such that |D|i = k ≤ T , and let D′ be the multi-
set obtained by removing one copy of i from D. LetM(X) be SampleFrequencyDummies(D, T, λ, t, plain,⊥).
Then, M(D) and M(D′) are (ε, δ)-indistinguishable for λ = log(1/δ)/ϵ and t = 1 + log(1/δ)/ϵ.

The following theorem states that adding appropriately calibrated binomial noise provides differential
privacy for sensitivity k queries. We use this result in the proof of the subsequent lemma, which shows
that our duplication-based mechanism achieves differential privacy.

Theorem 2 ([Gha+21]). For any ε, δ ∈ (0, 1), and k > 0, let n ≥ 90k2 ln(2/δ)
ε2 and p be such that

90k2 ln(2/δ)
nε2 ≤ p ≤ 0.5. Then, we have

dε(Bin(n, p) + k∥Bin(n, p)) ≤ δ,

dε(Bin(n, p)∥Bin(n, p) + k) ≤ δ.

Lemma 2 (Duplicate Dummies via Binomial). Let D be a multi-set of indices in I, and let T > 0
be an integer threshold value. Let i ∈ D be an index such that |D|i = k > T , and let D′ be the multi-set
obtained by removing one copy of i from D. Let M(X) be a mechanism that replicates every value
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in a multi-set X with probability p. Then, M(D) and M(D′) are (ε, δ)-indistinguishable, so long as
T ≥ 360 ln(2/δ)

ε2 and 360 ln(2/δ)
T ε2 ≤ p ≤ 0.5.

Proof. We first show that (i) dε(Bin(T +1, p)+1∥Bin(T, p)) ≤ δ and that (ii) dε(Bin(T, p)∥Bin(T +1, p)+1) ≤ δ,
i.e., that adding up enough Bernoulli random variables with small enough bias hides the presence of a
value in the sum, in the sense of (ε, δ)-closeness. That our duplication mechanism is DP follows quite
directly from this result.

First, note that that Bin(T + 1, p) + 1 can be written as a mixture of distributions Bin(T, p) + 2
and Bin(T, p) + 1, where the former is chosen with probability p. Therefore, we have dε(Bin(T + 1, p) +
1∥Bin(T, p)) ≤ max{dε(Bin(T, p)+2∥Bin(T, p)), dε(Bin(T, p)+1∥Bin(T, p))} ≤ δ, where the first inequality
follows from the definition of hockey stick divergence, and the last one follows from Theorem 2, with k = 2,
and the choice of T and p in the statement of the lemma. The proof that dε(Bin(T, p)∥Bin(T +1, p)+1) ≤ δ
is analogous.

Having concluded (i) and (ii), the statement of the Lemma follows from a standard DP analysis. Note
that the multiplicity histograms HD and HD′ corresponding to M(D) and M(D′), respectively, differ
only in bucket k. Moreover HD and HD′ are (ε, δ)-close if Bin(k + 1, p) + 1 and Bin(k, p) are (ε, δ)-close,
which follows from (i, ii) and the fact that k > T .

It is worth remarking that the expect number of dummies added by duplication is Oε,δ(n/T ), in
expectation. Therefore choosing T = O(n1/3) yields a total number of dummies, including frequency
dummies, that is sublinear in n.
Theorem 3. Let ε, δ be privacy parameters. Let εi = ε/3 and δi = δ/3, for i ∈ [3]. The mechanism
MHist is (ε, δ)-differentially private for T (ε3/2) as required by Lemma 2, p(ε3/2, δ3/(1 + eε3)) as required
by Lemma 2, t3 = 1 + 2 log((1 + eε3)/δ3)/ε3, λ3 = log((1 + eε3)/δ3)/ε3, t2 = 1 + log(1/δ2)/ε2, λ2 =
2 log(2/δ2)/ε2, t1 = ∆ + log(1/δ1), and λ1 = ∆ log(2/δ1)/ε1.
Proof. To prove that the output distributions (|DIF |, |DID|,HA, |DB |, V ⊥,HP ) under two neighboring
datasets D0, D1 are (ϵ, δ)-close we first consider the tuple (|DIF |, |DID|,HA). Assume that D1 is obtained
from D0 by removing an index-value pair whose index has multiplicity k in D0. We distinguish to cases:
k ≤ T , and k > T . In the former case the fact that (|DIF |, |DID|,HA) is DP follows from Lemma 1,
as the quantity |DID| can be seen as post-processing of a differentially private value (recall that the
mechanism also duplicates frequency dummies). Note that while Lemma 1, is stated in terms of removal
DP, we set privacy budget according to the equivalence that if a function is removal-DP with parameters
(ε, δ), then it is substitution-DP with parameters 2ε, ((1 + eε)δ). The case where k > T follows from
Lemma 2, under substitution DP, given the parameter choices for T, p in the statement of the theorem.
Note that similarly as above the claim holds for substitution DP, and therefore the HA is DP even when
revealed along with |DID|. That the second part of the view, namely |DB |, V ⊥,HP is DP follows from a
standard application of the Laplace mechanism and a stability argument for non-thresholded values given
the choice of τ , just like in [Bel+22].

3.2 UC Ideal Functionality
Since we are about to construct an MPC protocol for computing sparse histograms and prove its security
we need to specify exactly what security properties it should satisfy. We use the universal composibility
model, so we do this by defining the UC ideal functionality FHist in Figure 2.

The functionality FHist is defined for N clients Ci that provide inputs (ui, vi) and two servers S1 and
S2 who obtain a private histogram as output. The adversary (or environment) Z is able to statically and
actively corrupt up to N − 1 clients and one of the servers. To obtain a more efficient protocol, we allow a
corrupted server to learn additional information and influence the computation of FHist. This is specified
in FHist by receiving influence from and sending leakage to the simulator (a.k.a. ideal adversary) SHist.

Since the simulator SHist interacts with the functionality FHist we can interpret the latter as an
interactive mechanism in the context of differential privacy (see Section 2.2). While it has essentially the
same goal as the non-interactive mechanism MHist from Section 3.1, it is defined with the UC formalities
in mind to enable a security proof of the corresponding MPC protocol. For example, the simulator SHist
is allowed to contribute its own noise to the noisy histograms, which corresponds to the noise of the
corrupted party in our MPC protocol. In the following Section 3.3, we prove that the view of SHist is
differentially private despite the additional influence and leakage.
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UC Ideal Functionality FHist for Sparse Histograms

Parameters: sensitivity ∆, number of clients N , noise parameters, (t3, λ3), p, (t2, λ2), (t1, λ1),
threshold τF = ∆ + 2 · t1 + 1

Init On input (Init) from Sj , j ∈ {1, 2}, send (InitReceived, Sj) to SHist and ignore futher (Init)
messages from Sj . Once both servers have sent (Init), initialize an empty list M = JK and send
(Initialized) to all Ci.
Client Input This method must be called after initialization is completed. On input (Input, ui, vi)
from Ci, where (ui, vi) ∈ I × V if Ci is honest, and (ui, vi) ∈ (I × V) ∪ {(⊥,⊥)} if Ci is corrupted:
1. Store M := M || J(i, ui, vi)K, and send (InputReceived, Ci) to SHist.
2. All further input from Ci is ignored.

Evaluation This method must be called after initialization is completed. On input (Eval) from Sj ,
j ∈ {1, 2}:
1. Ignore all future client inputs.
2. Send (EvalReceived, Sj) to SHist.

Once both servers have sent (Eval):
1. If one of S1 and S2 is corrupted:

(a) Compute the set of client indices I := {i | (i, _, _) ∈M}.
(b) Receive a subset of client indices (Influence-1, J ⊆ I) from SHist and filter the contributions:

M ′ := J(u, v) | (i, u, v) ∈M ∧ i ∈ JK.
If both S1 and S2 are honest, define M ′ := J(u, v) | (_, u, v) ∈ MK. Let N ′ := |M ′| be the
number of remaining client contributions.

2. Add dummy contributions
(a) Frequency dummies

i. Do D
(j)
IF , _← SampleFrequencyDummies(D, T, λ3, t3, plain,⊥) for j ∈ {1, 2}.

ii. If Sj is corrupted, receive (Influence-2, D
(j)
IF ) from SHist, where D

(j)
IF contains Fq elements.

Send (Leakage-1, |D(3−j)
IF |) to SHist.

(b) Let M ′
U := Ju | (u, _) ∈ M ′K be the list of the indices in M ′; and let M ′′

U be a random
permutation of M ′

U || D
(1)
IF || D

(2)
IF .

(c) Duplication dummies
i. DID ← SampleDuplicateDummies(M ′′

U , r, p, plain,⊥).
ii. If S1 or S2 is corrupted, send (Leakage-2, |DID|) to SHist.

(d) Set M ′′′ := M ′ ||
q
(u, 0) | u ∈ (D(1)

IF || D
(2)
IF || DID)

y
.

3. Define the following:
(a) Let U := {u | (u, _) ∈ M ′′′} be the set of occurring bucket indices, and let B := |U | be

the number of buckets.
(b) For u ∈ U , let Vu := {v | (u, v) ∈M ′′′} be the multiset of values for the bucket with index

u, and let V :=
⊎

u∈U Vu be the multiset of overall occurring values.
4. Compute the anonymous histogram of M ′′′, i.e., the (sorted) list

HA :=
q
nu := |{(x, y) ∈M ′′′ | x = u}|

∣∣ u ∈ U
y
. (13)

If one of S1 and S2 is corrupted, send (Leakage-3,HA) to SHist.
5. Compute the (normal) histogram of M ′′′ as list, sorted by the first component (which is

unique):
H :=

r
(u, v)

∣∣∣ u ∈ U ∧ v :=
∑

vi∈Vu
vi

z
. (14)

6. Add dummy buckets:
(a) For j ∈ {1, 2}, D

(j)
B ← SampleDummyBuckets(∆, λ2, t2, plain,⊥).

(b) If Sj is corrupted, send (Leakage-4, |D(3−j)
B |) to SHist, and receive (Influence-3, D

(j)
B ) from

SHist, where D
(j)
B is a list containing at most 2t2∆ elements from [0, ∆].a

(c) Define H′ := H ||
q
(⊥, v) | v ∈ D

(1)
B || D(2)

B

y
and B′ := |H′|.

7. Compute the private histogram
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(a) Write J(u1, v1), . . . , (uB′ , vB′)K := Shuffle(H′).
(b) Sample noise.

i. For j ∈ {1, 2} and i ∈ [B′], sample ζ
(j)
i ← TDLap(λ1, t1).

ii. If Sj is corrupted, receive (Influence-4, (ζ(j)
i )i∈[B′] ∈ [−t1, t1]B′) from SHist.

iii. Set ζi := ζ
(1)
i + ζ

(2)
i for i ∈ [B′].

(c) Compute the private histogram as sorted list:bc

HP
I := J(i, ui, vi + ζi) | vi + ζi ≥ τFK. (15)

(d) Compute the threshold leakage as sorted list:

V ⊥ := J(i, vi + ζi) | vi + ζi < τFK. (16)

8. If one of S1 and S2 is corrupted:
(a) Send (Leakage-5, V ⊥,HP

I ) to SHist.
(b) If SHist responds with (abort), stop the execution.

9. Let HP := J(u, v) | (_, u, v) ∈ HP
I K be a sorted list. Send (Output,HP ) to the uncorrupted

server(s).
a This could be optimized that arbitrary values from Fq are accepted. If these values make it over the

threshold after the noise is added, it will be noticed as dummy bucket since there is no index associated.
This is ok because it will only happen for maliciously chosen dummy buckets.

b We need to leak the i since we do not shuffle again after adding the noise, and SHist knows the malicious
noise corresponding to each i.

c Note that by the choice of τF , we never have the case that ui = ⊥.

Fig. 2: Ideal functionality realized by our protocol ΠHist.

3.3 Privacy Proof

Theorem 4. The view of SHist when interacting with FHist is (ε, δ)-differentially private for the same
parameters as in Theorem 3 and threshold τ = ∆ + 2 · t1 + 1.

Proof. We assume that all clients except for Ci∗ are corrupted, so that the adversary knows (or can even
select) the inputs xi = (ui, vi) for each client Ci, i ̸= i∗. Hence, we consider differential privacy for two
neighboring datasets M0, M1 that agree on all xi for i ̸= i∗, and differ in arbitrary x

(0)
i∗ , x

(1)
i∗ ∈ Fq × [0, ∆].

Moreover, the ideal functionality FHist takes the role of the interactive mechanism and the simulator SHist
is the adversary.

In the following, we show how to translate the first two influence queries of SHist into a transformation
of the input dataset that is independent of the concrete value of xi∗ . 1. In Step 1b of the interaction,
the adversary is allowed to filter the dataset by specifying an index set J . 2. Then in Step 2(a)ii, the
adversary submits a set of frequency dummies. This has the effect of extending the dataset with points
(d, 0) ∈ I × V for each d ∈ D

(j)
IF .

Since both actions are independent of the value xi∗ , they will be the same for any two neighboring
datasets M0, M1 that differ in position i∗. If we apply these actions to both datasets, we obtain two new
datasets M̂0 and M̂1. If i∗ ̸∈ J , then M̂0 = M̂1 and the adversary’s view in the following interaction is
identical in both cases. Hence, from now on, we assume that i∗ ∈ J . In this case, M̂0 and M̂1 will be
neighboring datasets of size |J |+ |D(j)

IF |.
In the following, we show how to obtain the remainder of the transcript of ⟨FHist(M),SHist⟩ by post-

processing the output of MHist(M̂), which is (ε, δ)-differentially private by Theorem 3. Let (|DIF |, |DID|,
HA, |DB |, V ⊥,HP )←MHist(M̂).

As the first leakage, we can directly forward the number of frequency dummies |DIF | (Step 2(a)ii),
the number of duplications |DID| (Step 2(c)ii), and the anonymous histogram HA (Step 4) to SHist. These

16



values are already distributed correctly, because FHist samples the frequency dummies in the same way
as MHist. Also when sampling the duplication dummies, each element of the original dataset and each
frequency dummy is duplicated independently with the same distribution. Hence, it does not make a
difference, if we treat the frequency dummies chosen by SHist as zero-valued elements of M̂ as described
above, and DID (and thus also |DID|) will be distributed correctly. Moreover, the anonymous histogram
is also computed in the same way based on the dataset and the dummies.

In the next step, the private (non-anonymous) histogram is computed. First, we leak the number
of dummy buckets |DB | to SHist (Step 6b). Then, we receive the dummy buckets Dc

B (Step 6b), where
c ∈ {1, 2} is the index of the corrupted server, and the noise values ζ(c) (Step 7(b)ii) that SHist has chosen
for the corrupted server.

We now use these to post-process the threshold leakage V ⊥ and the histogram HP that we obtained
from MHist. Note that FHist shuffles the histogram with the dummy buckets in Step 7a. So we also create
a shuffled list, but while the values from HP and V ⊥ already include honestly generated noise, we need
to add the same noise to the dummies buckets that were provided by SHist:

A := Shuffle
(
HP || J(⊥, v) | v ∈ V ⊥K || J(⊥, vj + ζj) | vj ∈ Dc

B , ζj ← TDLap(λ1, t1)K
)
.

Now we need to add the noise values ζ
(c)
i provided by SHist and then simulate the thresholding step. Note

that the threshold τF used by FHist is higher than τM used in MHist. The difference is t1, which is also
the maximum value of the ζ

(c)
i noise values chosen by SHist. Hence, by adding the noise from SHist, it

can never be the case that any values from V ⊥ make it over the threshold τF . Moreover, all the dummy
buckets in D

(c)
B are constraint to be in [0, ∆], so they do not make it over the threshold either. Write

A =: J(u1, v1), . . . , (uB′ , uB′)K. We compute

H̃P
I := J(i, ui, vi + ζ

(c)
i ) | i ∈ [B′] ∧ vi + ζ

(c)
i ≥ τFK and

Ṽ ⊥ := J(i, vi + ζ
(c)
i ) | i ∈ [B′] ∧ vi + ζ

(c)
i < τFK,

and send these as final output to SHist (Step 8a).
Because the noise is independently added to each bucket, and the buckets have been shuffled, the

distribution matches what SHist seeds in its interaction with FHist. Hence, we have shown that the view of
SHist is (ε, δ)-differentially private, because we can generate the same distribution by post-processing the
output of an (ε, δ)-differentially private mechanism MHist.

4 Our Protocol

4.1 Subprotocols

In our histogram protocol, we use two major subprotocols, ΠShuffle and ΠOPRF. These do not realize
UC functionalities, but should be seen as subroutines to make the presentation more modular. In
ΠShuffle (formally stated in Figure 14, Appendix G) the servers take turns in randomly permuting and
rerandomizing a list of HSM-CL/ElGamal ciphertext pairs while proving correctness in zero-knowledge
with ΠZK

Shuffle. Common output is a new list of ciphertext pairs such that neither party knows how they
correspond to the input list. The second protocol ΠOPRF (Figure 3) is used to obliviously evaluate the
Dodis-Yampolskiy PRF on a list of encrypted inputs ui under a randomly sampled key k such that
both parties learn the output ti = F (k, ui) = g

1
k+ui . A similar protocol appeared in [Mia+20] who used

Camenisch-Shoup [CS03] encryption instead of HSM-CL.

Protocol ΠOPRF

Common input: Sequence of ciphertexts (clct-ui)i∈[n].

1. Sample the OPRF key: S1 and S2 send (CL-Random) to FEnc and receive a ciphertext clct-k.
2. Prepare the OPRF evaluation: For i ∈ [n], S2 does:

(a) Sample ri ∈R F∗
q and si, ρi ∈R Fq.

(b) Compute clct-ai := (clct-ui + clct-k) ·si

R ri and cmi ← PedCommit(ri; ρi).
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(c) Compute a proof of correctness according to RAddBlindCom:

πoprf1
i ← ΠZK

AddBlindCom.Prove
(
(clct-k, clct-ui, clct-ai, cmi), (ri, si, ρi)

)
.

(d) Send (clct-ai, cmi, πoprf1
i ) to S1.

S1 aborts if ΠZK
AddBlindCom.Verify

(
πoprf1

i , (clct-k, clct-ui, clct-ai, cmi)
)

= ⊥ for any i ∈ [n].
3. Perform the exponentiations: S1 and S2 send (DecExpInv, (clct-a1, . . . , clct-an)) to FEnc such

that both obtain hi = g
1

ai ∈ G for i ∈ [n].
4. Complete the OPRF evaluation:

For i ∈ [n], S2 does:
(a) Compute ti := hri

i

(
= g

ri
ai = g

ri
ri·(ui+k) = g

1
ui+k

)
.

(b) Compute a proof of correctness according to RExpCom:

πoprf2
i ← ΠZK

ExpCom.Prove
(
(hi, ti, cmi), (ri, ρi)

)
.

(c) Send (ti, πoprf2
i ) to S1.

S1 aborts if ΠZK
ExpCom.Verify

(
πoprf2

i , (hi, ti, cmi)
)

= ⊥ for any i ∈ [n].

Common output: Sequence of PRF outputs (ti)i∈[n].

Fig. 3: OPRF protocol in the FEnc-hybrid model.

4.2 Computing Histograms

Our starting point is the protocol by Bell et al. [Bel+22] which is secure against semi-honest adversaries.
We follow their blueprint and modify the protocol as needed to achieve malicious security. On a high
level, the protocol ΠHist, which we formally specify in Figure 4, proceeds as follows: In an initialization
phase, the servers jointly generate public keys for homomorphic encryption schemes such that the public
keys gets published and each server obtains a share of the secret keys. Then, every client sends a single
message with their encrypted index-value pair to both servers. Once the servers decide to compute a
histogram of all collected client contributions, they start a two-party computation protocol: First, each
server generates encrypted dummy contributions that have value zero such that they do not affect the
final histogram. This is followed by a shuffle to mix the set real and dummy contributions. Then the
servers run the OPRF protocol ΠOPRF to map each encrypted index to a random-looking tag. These tags
are used to aggregate the values that are associated with the same index (without revealing either) into
buckets, i.e., pairs of encrypted index and corresponding sums. Both servers add dummy buckets followed
by another shuffle phase to mix real and dummy buckets. Finally the servers decrypt each sum and, if
they are above a certain threshold, the corresponding index to obtain the histogram.

Why Proving Knowledge of Dummy Contributions Intuitively, if a malicious server produces invalid
dummy contributions and buckets, that should not matter, because they only affect the other (honest)
server’s view, but not the output of the computation, and the simulator does not need to simulate the
view of honest parties. We do not care that the malicious server’s dummies were sampled according to
the correct distribution, but we need to make sure that the server knows them. Otherwise, the server
could just duplicate ciphertexts provided by an honest client. and obtain leakage that is biased depending
on the client’s data in a way that it is no longer differentially private. Moreover, for the security proof
we need to extract the corrupted server’s dummy indices and bucket values to pass them to the ideal
functionality FEnc.
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Protocol ΠHist realizing FHist

Init Each server Sj sends (KeyGen) to FEnc. All parties receive (clpk, popk).
Client Input Every client Ci, i ∈ N , with input (ui, vi) ∈ I × V ⊆ F2

q:
1. Encrypt inputs: clct-ui ← Enccl(clpk, ui; ri), poct-vi ← Encpo(popk, vi; si).
2. Prove correctness: πC,i ← ΠZK

Client.Prove
(
(clct-ui, poct-vi), (ui, ri, vi, si)

)
.

3. Send (clct-ui, poct-vi, πC,i) to S1 and S2.
The servers ignore any additional messages from Ci.
Eval 1. Agree on client inputs – Each Sj does the following:

(a) If Ci did not send a message, set (clct-ui, poct-vi, πC,i) = (⊥,⊥,⊥).
(b) Send J(clct-ui, poct-vi)Ki∈[N ] to the other server.
(c) Let J(clct-ui, poct-vi)Ki∈[N ] denote the ciphertexts received from S3−j . Define

J :=
{

i ∈ [N ]
∣∣∣ clct-ui = clct-ui ∧ poct-vi = poct-vi ∧

ΠZK
Client.Verify

(
πC,i, (clct-ui, poct-vi)

)
= ⊤

}
.

(17)

(d) Filter the valid contributions: Set M ′ := J(clct-ui, poct-ci)Ki∈J and N ′ := |J |.
2. Add dummy contributions:

(a) Both Sj send (PO-Zero) to FEnc and receive a ciphertext poct-0.
(b) Frequency dummies: Each Sj does

i. Compute

D
(j)
IF ,W ← SampleFrequencyDummies(D, T, λ3, t3, enc, clpk)

ii. Write D
(j)
IF = Jclct-d(j)

F,1, . . . , clct-d(j)
F,nK and W = J(d(j)

F,1, r
(j)
F,1), . . . , (d(j)

F,n, r
(j)
F,n)K with

n := |D(j)
IF |, and prove knowledge of the plaintexts:

P
(j)
IF :=

r
π

(j)
F,i ← ΠZK

CL-PoPK.Prove
(
clct-d(j)

F,i, (d(j)
F,i, r

(j)
F,i)

)
| i ∈ [n]

z
.

iii. Let id1, id2 be fresh IDs. Send (Commit, idj , D
(j)
IF , P

(j)
IF ) to FCom. Upon receipt

of (Committed, id3−j) from FCom, send (Open, idj) to FCom. Receive (Opened,

id3−j , D
(3−j)
IF , P

(3−j)
IF ) from FCom.

iv. Verify the received D
(3−j)
IF and proofs: Abort if for any i ∈ [|D(3−j)

IF |]

ΠZK
CL-PoPK.Verify

(
π

(3−j)
F,i , clct-d(3−j)

F,i

)
= ⊥.

(c) Shuffle client and frequency dummies inputs: Let N ′′ := N ′ + |D(1)
IF |+ |D

(2)
IF | and

M ′′ ← ΠShuffle

(
M ′ || J(clct-d, poct-0) | clct-d ∈ D

(1)
IF K

|| J(clct-d, poct-0) | clct-d ∈ D
(2)
IF K

)
.

(d) Duplication dummies:
i. Send (Rand, N ′′, p) to FRand and receive rndID ∈ {0, 1}N ′′ .
ii. Locally compute DID ← SampleDuplicateDummies(M ′′, p; rndID).

(e) Shuffle the duplications into the ciphertexts: Let N ′′′ := N ′′ + |DID| and

J(clct-u′
i, poct-v′

i)Ki∈[N ′′′]

← ΠShuffle

(
M ′′ || J(clct-d, poct-0) | clct-d ∈ DIDK

)
.

3. Evaluate the PRF on the encrypted indices: Run (t1, . . . , ti∈[N ′′′])← ΠOPRF((clct-u′
i)i∈[N ′′′]).

4. Aggregate – Both parties locally compute the following:
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(a) Define the set T := {ti | i ∈ [N ′′′]} ⊆ G, and for each t ∈ T set It := {i ∈ [N ′′′] | ti = t}
and it := min(It).

(b) Compute clct-ut := clct-u′
it

and poct-vt :=
∑

i∈It
poct-v′

i for t ∈ T .
(c) Set H := J(clct-ut, poct-vt)Kt∈T and B := |H| (number of buckets).

5. Add dummy buckets
(a) Let uD ∈ D be a public constant. Both Sj send (CL-Constant, uD) to FEnc and receive a

ciphertext clct-uD.
(b) Each Sj computes

D
(j)
B ,W ← SampleDummyBuckets(∆, λ2, t2, enc, popk)

.
(c) Write D

(j)
B = Jpoct-d(j)

B,1, . . . , poct-d(j)
B,nK and W = J(d(j)

B,1, r
(j)
B,1), . . . , (d(j)

B,n, r
(j)
B,n)K with

n := |D(j)
B |, and prove knowledge of the plaintexts:

P
(j)
B :=

r
π

(j)
B,i ← ΠZK

Range-[0,∆].Prove
(
poct-d(j)

B,i, (d(j)
B,i, r

(j)
B,i)

)
| i ∈ [n]

z
.

and sends D
(j)
B , P

(j)
B to Sj .

(d) Verify the received D
(3−j)
B and proofs: Abort if for any i ∈ [|D(3−j)

B |]

ΠZK
Range-[0,∆].Verify

(
π

(3−j)
B,i , poct-d(3−j)

B,i

)
= ⊥.

(e) Set H ′ := H || J(clct-uD, poct-d) | poct-d ∈ D
(1)
B K || J(clct-uD, poct-d) | poct-d ∈ D

(2)
B K with

B′ := |H ′|.
6. Shuffle the buckets: Run J(clct-ūi, poct-v̄i)Ki∈[B′] ← ΠShuffle(H ′).
7. Add noise to the output – Every Sj does:

(a) Sample ζ
(j)
i ← TDLap(λ1, t1) for i ∈ [B′].

(b) Encrypt poct-ζ(j)
i ← Encpo(popk, ζ

(j)
i ; r

(j)
ζ,i ), prove

πζ,i ← ΠZK
Range-[−t1,t1].Prove

(
poct-ζ(j)

i , (ζ(j)
i , r

(j)
ζ,i )

)
,

and send poct-ζ(j)
i , πζ,i to the other server for i ∈ [B′].

(c) Verify the received ciphertexts and proofs: Abort if for any i ∈ [B′]

ΠZK
Range-[−t1,t1].Verify

(
π

(3−j)
ζ,i , poct-ζ(3−j)

i

)
= ⊥.

(d) Locally compute poct-ṽi := poct-v̄i + poct-ζ(1)
i + poct-ζ(2)

i .
8. Threshold – Both servers:

(a) Send (PO-Decrypt, poct-ṽi) to FEnc and receive ṽi ∈ Fq for i ∈ [B′].a
(b) Set I := {i ∈ [B′] | ṽi ≥ τF} where τF = ∆ + 2 · t1 + 1.
(c) Send (CL-Decrypt, clct-ūi) to FEnc and receive ūi for i ∈ I.

9. Compute the histogram: Both Sj compute and output the histogram (as sorted list):

HP := J(ũi, ṽi) | i ∈ IJ. (18)
a Decryption failures do not happen due to the proofs that the encrypted values are small enough.

Fig. 4: Histogram Protocol in the FEnc-hybrid model.

4.3 Proof of Security
Theorem 5. Given that we have zero-knowledge proofs for all relations etc.
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The protocol ΠHist (Figure 4) securely UC-realizes the functionality FHist (Figure 2) in the (FEnc, . . .)-
hybrid model with computational security, tolerating active and static corruptions of any number of clients
and at most one server.

Our proof strategy is similar to the security proof of SPDZ [Dam+12] and the MPC protocol in
[BDO23].

Since we are in the FEnc-hybrid model, the simulator SHist simulates an instance of this functionality
and can generate the encryption keys such that it knows the secret keys. Hence, it can extract the
corrupted parties’ inputs by decrypting them. For all ciphertexts generated by honest parties, SHist
uses encryptions of zero. Once it obtains the necessary information from FHist (e.g., the final output or
intermediate leakage) it can simulate the decryption operation by letting FEnc return the appropriate
values.

To argue that this simulation is indeed indistinguishable from the real protocol, we need to use the
security of the encryption scheme and the non-adaptive security of the Dodis-Yampolskiy PRF.

For the former, we use that the encryption scheme admits so-called “lossy” public keys. These are
indistinguishable from real public keys, but encrypting and value results in an encryption of 0, i.e., the
ciphertexts do not contain any information about the encrypted value. In the reduction, we use an
environment Z that can distinguish the simulation from the real protocol to build a distinguisher between
lossy and normal public keys.

Proof. Due to space reasons, the formal description of the simulator SHist is given in Figures 15, 16,
and 17 in Appendix H, and only provide a summary here: we need to prove that the simulation is indeed
indistinguishable from the real execution, i.e., no computationally bounded environment Z can tell them
apart. Let GameHist

Z,real(λ) denote Z’s interaction with the real protocol ΠHist and its output is whatever Z
outputs. Likewise, define GameHist

Z,ideal(λ) as Z’s interaction with the simulator SHist. We need to show that

AdvHist
Z (λ) :=

∣∣∣Pr
[
GameHist

Z,real(λ) = 1
]
− Pr

[
GameHist

Z,ideal(λ) = 1
]∣∣∣ ≤ negl(λ).

We want to prove indistinguishability of the simulation in two steps, where we use the security of the
encryption schemes and of the PRF, respectively. These are intertwined however, since the protocol uses an
encryption of the PRF key. Hence, we define two hybrid execution, GameHist

Z,hybrid-1(λ) and GameHist
Z,hybrid-2(λ),

and prove indistinguishability in three steps using the security of the encryption schemes twice.

Simulation Overview SHist simulates ciphertexts sent by honest parties by encryptions of zero. Since
SHist simulates an instance of FEnc, it also generates the key pairs and, therefore, can use the secret keys
clsk, posk to extract the inputs of corrupted clients as well as dummies generated by the corrupted server.
For most of the simulation, SHist lets the simulated honest parties follow the instructions in ΠHist. When it
comes to the OPRF evaluations in ΠOPRF it needs to produce outputs that match the input submitted by
the clients. Here it used the anonymous histogram HA leaked by FHist, to simulate random PRF outputs
accordingly, i.e., if there are l indices in the input that appear k times each, then SHist will simulate
that l random group elements appear k times each in the output of ΠHist. Finally, when decrypting the
aggregated values and indices (if the values make it over the threshold), SHist uses the leaked V ⊥ and HP

I

obtained from FEnc to simulate FEnc returning the corresponding values.

Hybrid-1 The first hybrid GameHist
Z,hybrid-1(λ), identical to GameHist

Z,real(λ) except for the following modification:
In the real protocol, the parties use an encryption of the PRF key clct-k in the OPRF subprotocol. Now
we patch the execution such that the FDY is evaluated using an unrelated key: We use clsk generated by
FEnc to decrypt the inputs ui ← Deccl(clsk, clct-ui) for i ∈ [n] of the OPRF subprotocol ΠOPRF and sample
a fresh PRF key k′ ∈R Fq. If S1 is corrupted, we let S2 in Step 4c of ΠOPRF) send t′

i := FDY(k′, ui) instead
of ti = hri

i and simulate the corresponding proof. This is indistinguishable, since the ri are uniformly
random in F∗

q . If S2 is corrupted, we extract ri = ai · (ui + k)−1 and then let FEnc in Step 3 output
h′

i := (FDY(k′, ui))1/ri such that again t′
i = FDY(k′, ui). In both cases, the output of the modified ΠOPRF

is now the output of FDY under a fresh random key k′ ∈R Fq.
This is indistinguishable due to the security of the encryption scheme and because the parties only

ever see an encryption of the PRF key k; it is never revealed in plain. Moreover, while S1 sees values
related to the key, they are randomized with the masks ri that are only known to S2.
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Claim 1. The environment’s view in the real execution is computationally indistinguishable from the
view in the first hybrid execution:

AdvHist
Z,1(λ) :=

∣∣∣Pr
[
GameHist

Z,real(λ) = 1
]
− Pr

[
GameHist

Z,hybrid-1(λ) = 1
]∣∣∣ ≤ negl(λ).

Hybrid-2 The second hybrid GameHist
Z,hybrid-2(λ) is identical to the first, except that we replace the Dodis-

Yampolskiy PRF with a random function. We first (lazily) sample a random function H : Fq → G. Then
we modify the execution in the same way as above, but injecting outputs of the random function H(ui)
instead of FDY(k′, ui) such that the output of the modified ΠOPRF is now the output of H.

We argue indistinguishability by using the non-adaptive security of the Dodis-Yampolskiy PRF.
Non-adaptive security is sufficient, since the inputs (ui)i∈[n] are fixed before the key k′ is sampled.

Claim 2. Given that the Dodis-Yampolskiy PRF is an N ′′′-non-adaptively secure PRF, the environment’s
views in the two hybrid executions are computationally indistinguishable:

AdvHist
Z,2(λ) :=

∣∣∣Pr
[
GameHist

Z,hybrid-1(λ) = 1
]
− Pr

[
GameHist

Z,hybrid-2(λ) = 1
]∣∣∣ ≤ negl(λ).

UC Simulation Finally, we show that the second hybrid is indistinguishable to our simulation with the
simulator SHist given in Figure 15. We show indistinguishability based on the security of the encryption
schemes:

Claim 3. The environment’s view in the second hybrid execution is computationally indistinguishable
from the view in the simulation:

AdvHist
Z,3(λ) :=

∣∣∣Pr
[
GameHist

Z,hybrid-2(λ) = 1
]
− Pr

[
GameHist

Z,ideal(λ) = 1
]∣∣∣ ≤ negl(λ).

Due to space reasons, the formal proofs of the three claims are given in Appendix I. Combining the
three claims, we use the triangle inequality to bound

AdvHist
Z (λ) ≤ AdvHist

Z,1(λ) + AdvHist
Z,2(λ) + AdvHist

Z,3(λ) ≤ negl(λ),

which concludes the proof of Theorem 5.

5 Evaluation

In this section, we compute the concrete communication overhead of our protocol for various values
of ε and numbers of client inputs N . For the sizes of CL ciphertexts and group elements, we used
BICYCL [Bou+23, Tables 2 and 3]. We use the Bulletproofs-based construction from Acorn [Bel+23,
Section 5.3.2] for range proofs, and Bayer-Groth [BG12, Table 1] for shuffle proofs, plugging in the
appropriate group and scalar sizes for our protocol.

Our results are shown in Table 1. As expected, communication grows quadratically with 1/ε for
small N . However, as the total number of dummies remains sub-linear in N , this impact becomes less
severe as N grows.

Table 1: Communication cost per client (in bytes) for each server of our ΠHist for different values of N, ε,
and δ = 10−9, λ = 128, and σ = 40.

ε 105 106 107 108 109

4 403476 45205 9106 5114 4554
2 8744547 878653 92063 13404 5538
1 217639887 21768184 2181013 222296 26424

0.5 5956609178 595665111 59570705 5961264 600320
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Theorem 6 (Security of modified HSM-CL [BDO23]). Under the HSM assumption, the ΠHSM-CL
encryption scheme

1. provides indistinguishability under chosen plaintext attacks (IND-CPA), and
2. has lossy public keys which are indistinguishable from real public keys.

Theorem 7 (Security of modified ElGamal). Under the DDH assumption, the ΠElGamal encryption
scheme

1. provides indistinguishability under chosen plaintext attacks (IND-CPA), and
2. has lossy public keys which are indistinguishable from real public keys.

– KeyGencl
b (ppcl) for b ∈ {0, 1}:

1. Sample clsk, β ← Dq.
2. Set clpk := gclsk

q

3. Set clpkct := (gβ
q , fb · clpkβ) and clpk := (clpk, clpkct).

4. Output (clsk, clpk).
– Enccl(clpk, m ∈ Fq):

1. Parse clpk = (clpk, clpkct).
2. Sample r ← Dq.
3. Output clct = (clpkctm

1 · gr
q , clpkctm

2 · clpkr).
– Deccl(clsk, clct):

1. Compute M := clct2 · (clct1)−clsk

2. If M ∈ F , then output m := logf (M), and otherwise output m := ⊥.
– PDeccl(clski, clct):

1. Compute clct2
′ := clct2 · (clct1)−clski .

2. Output clct′ := (clct1, clct2
′).

– Randomizecl(clpk, clct; r):
1. Sample r ← Dq.
2. Output clct′ := (clct1 · gr

q , clct2 · clpkr).

Fig. 5: The HSM-CL encryption scheme [CLT18] modified to have normal/lossy public keys as in [BDO23].
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– KeyGenpo
b (pppo) for b ∈ {0, 1}:

1. Sample posk, β ← Fq.
2. Set popk := gposk

3. Set popkct := (gβ , gb · popkβ) and popk := (popk, popkct).
4. Output (posk, popk).

– Encpo(popk, m ∈ Fq):
1. Parse popk = (popk, popkct).
2. Sample r ← Fq.
3. Output poct = (popkctm

1 · gr, popkctm
2 · popkr).

– Decpo(posk, poct):
1. compute M := poct2 · (poct1)−posk

2. run m := logg(M) (for limited time)
3. output m ∈ {x ∈ Fq | x small} ∪ {⊥}

– PDecpo(poski, poct):
1. compute poct2

′ := poct2 · (poct1)−poski

2. output poct′ := (poct1, poct2
′)

– Randomizepo(popk, poct; r):
1. sample r ∈ Fq

2. set poct′
1 := poct1 · gr

3. set poct′
2 := poct2 · popkr

4. output poct′ := (poct′
1, poct′

2)

Fig. 6: The ElGamal encryption scheme [ElG84] modified to have normal/lossy public keys analogous to
HSM-CL in Figure 5.
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B Non-Adaptive Pseudorandom Functions

Recall that in the standard definition of a pseudorandom function (PRF) ([GGM86], see Definition 6) the
adversary A is a PPT oracle machine. It must distinguish whether the oracle is the PRF Fλ(k, ·) with a
randomly sampled key k ∈ Kλ or a randomly chosen function H : Xλ → Yλ. Here, A is in particular able
to perform adaptive queries, i.e., it can query the oracle on inputs that depend on previously obtained
outputs.

Definition 6 (Pseudorandom Function). An ensemble of PPT functions {Fλ : Kλ ×Xλ → Yλ}λ∈N is
a family of pseudorandom functions, if for all oracle PPT adversaries A and all large enough λ ∈ N, we
have

AdvPRF
A (λ) :=

∣∣∣[ Pr
[
AFλ(k,·)(1λ) = 1

∣∣ k ∈R Kλ

]
−Pr

[
AH(·)(1λ) = 1

∣∣ H ∈R Funs[Xλ → Yλ]
]]∣∣∣ ≤ negl(λ).

A weaker notion is the non-adaptive PRF, where A must decide on all oracle queries before learning
any of the corresponding outputs (see e.g. [MP04; Mye04; BH12; ST20]). Miao et al. [Mia+20] similarly
defined ℓ-selective security, where A specifies ℓ + 1 inputs x1, . . . , xℓ+1 ∈ Xλ. Then it receives PRF
outputs Fλ(k, xi) for the first ℓ inputs under a randomly chosen key k ∈R Kλ, and either Fλ(k, xℓ+1) or a
uniformly random h ∈R Yλ.

Definition 7 (ℓ-Selectively Secure PRF [Mia+20]3). For an ensemble of PPT functions {Fλ : Kλ ×
Xλ → Yλ}λ∈N define the following game Gameℓ-naPRF

A,b (λ) for a two-stage adversary A = (A1,A2) and
b ∈ {real, rand}:
1. Run (st, (xi)i∈[ℓ+1])← A1(1λ) such that all xi are pairwise distinct.
2. Sample k ∈R Kλ.
3. Compute yi := Fλ(k, xi) for i ∈ [ℓ].
4. Set y

(rand)
ℓ+1 ∈R Yλ and y

(real)
ℓ+1 := Fλ(k, xℓ+1).

5. Output A2(1λ, st, (yi)i∈[ℓ], y
(b)
ℓ+1).

We say {Fλ}λ is a family of ℓ-selectively secure pseudorandom functions, if for all PPT adversaries
A and all large enough λ ∈ N, we have

Advℓ-naPRF
A (λ) :=

∣∣∣ Pr
[
Gameℓ-ssPRF

A,real (λ)
]
− Pr

[
Gameℓ-ssPRF

A,rand (λ)
]∣∣∣ ≤ negl(λ). (19)

Note that this definition differs from the definition of a selectively secure PRF by Hemenway et
al. [Hem+16]. Here, the adversaryA first choses a challenge point x∗ ∈ Xλ and obtains either y∗ = Fλ(k, x∗)
or y∗ ∈R Yλ. Then is can (adaptively) query Fλ(k, ·) on any point x ̸= x∗.

In Lemma 3, we will prove that ℓ-non-adaptive security is implied by the notion of [Mia+20]:

Lemma 3. An (ℓ− 1)-selectively secure family of pseudorandom functions {Fλ}λ (Definition 7) is also
ℓ-non-adaptively secure (Definition 7). Every adversary A with advantage Advℓ-naPRF

A (λ) for the latter, can
be transformed into an adversary B for the former with advantage Adv(ℓ−1)-ssPRF

B (λ) = 1
ℓ · Advℓ-naPRF

A (λ).

Proof. We prove the statement using a standard hybrid argument. Assume towards contradiction that
there exists an adversary A with non-negligible advantage Advℓ-naPRF

A (λ). Using A as a black box, we
construct a new adversary B.

Define hybrid games Gameℓ-naPRF
A,i (λ) for i ∈ [0, ℓ] as follows:

1. Run (st, x1, . . . , xℓ)← A1(1λ).
2. Sample k ∈R Kλ and H ∈R Funs[X → Y].
3. Output A2(1λ, st, (F(k, xj))j≤i, (H(xj))j>i).
3 Actually the definition of selective security in [Mia+20] is broken: For any candidate selectively secure PRF

F, an adversary can win the security game with good probability by choosing x1 = · · · = xℓ+1 and checking
whether the last output yℓ+1 equals the first ℓ outputs. This is always the case if yℓ+1 = F(k, xℓ+1), but happens
only with probability at most 1/|Y| if yℓ+1 ∈R Y. The definition is easily fixed by requiring that all the xi are
different. This is already implicitly assumed by the security proof for their construction.
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Note that we have Gameℓ-naPRF
A,real = Gameℓ-naPRF

A,ℓ and Gameℓ-naPRF
A,rand = Gameℓ-naPRF

A,0 .
Now we define the adversary B = (B1,B2) for Game(ℓ−1)-ssPRF

A,b : In the first stage (B1), we run
(st, x1, . . . , xℓ)← A1(1λ) (for simplicity, assume that all the xi are distinct), and sample i∗ ∈R [ℓ]. Now
the goal is to provide A2 with a view that matches its view in either Gameℓ-naPRF

A,i∗−1 (λ) or Gameℓ-naPRF
A,i∗ (λ).

So we need to pass Fλ(k, xj) for j ∈ [i∗ − 1], either Fλ(k, xi∗) or random hi∗ ∈R Yλ at index i∗, and
random hj ∈R Yλ for j ∈ [i∗ + 1, ℓ]. Therefore, we output ((st, i∗), x1, . . . , xi∗−1, xi∗+1, . . . , xℓ, xi∗). Note
that we moved the element xi∗ to the end of the tuple. In the second stage (B2), we get as input from the
challenger ((st, i∗), y1, . . . , yi∗−1, yi∗+1, . . . , yℓ, yi∗) where yj = Fλ(k, xj) for all j ∈ [ℓ] \ {i∗} and either
yi∗ = Fλ(k, xi∗) (if b = real) or yi∗ ∈R Yλ (if b = rand). We sample random hj ∈R Yλ for j ∈ [i∗ + 1, ℓ],
and run A2(1λ, st, y1, . . . , yi∗ , hi∗+1, . . . , hℓ). The output of B2 is whatever A2 outputs. Hence, we have

Pr
[
Game(ℓ−1)-ssPRF

B,real (λ) = 1
]

=
∑
j∈[ℓ]

Pr[i∗ = j] · Pr
[
Gameℓ-naPRF

A,i∗ (λ) = 1
∣∣∣ i∗ = j

]
= 1

ℓ

∑
j∈[ℓ]

Pr
[
Gameℓ-naPRF

A,j (λ) = 1
]

, and

Pr
[
Game(ℓ−1)-ssPRF

B,rand (λ) = 1
]

=
∑
j∈[ℓ]

Pr[i∗ = j] · Pr
[
Gameℓ-naPRF

A,i∗−1 (λ) = 1
∣∣∣ i∗ = j

]
= 1

ℓ

∑
j∈[0,ℓ−1]

Pr
[
Gameℓ-naPRF

A,j (λ) = 1
]

.

When plugging the above into Equation (19) all but the terms for j = 0 and j = ℓ cancel out, and we
obtain the advantage of B in the (ℓ− 1)-ssPRF game, which concludes the proof:

Adv(ℓ−1)-ssPRF
B (λ) = 1

ℓ
·
∣∣∣Pr

[
Gameℓ-naPRF

A,ℓ (λ) = 1
]
− Pr

[
Gameℓ-naPRF

A,0 (λ) = 1
]∣∣∣

(1)= 1
ℓ
· Advℓ-naPRF

A (λ).

Definition 8 (Computational ℓ-DHI Assumption (following [DY05]) ). Let G = ⟨g⟩ be a group of
prime order q. We say that the ℓ-DHI assumption holds for G if for every PPT algorithm A we have

Pr
[
A(1λ, g, gx, . . . , gxℓ

) = g
1
x | x ∈R F∗

q

]
≤ negl(λ),

where the probability is taken over the random choice of x and the randomness used by A.
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C Helper Functionalities

Server Broadcast Functionality FSBCast

Broadcast On input (Broadcast, m) from Sj , j ∈ {1, 2}, FSBCast sends (BroadcastMsg, Sj , m) to
the other server and all clients.

Fig. 7: The server broadcast functionality FSBCast

Commitment Functionality FCom

Commit On input (Commit, id, m) from Sj , j ∈ {1, 2}, where id is a fresh identifier, FCom stores
(Sj , id, m) and sends (Committed, Sj , id) to the other server.
Open On input (Open, id) from Sj , j ∈ {1, 2}, if FCom has stored a tuple (Sj , id, m), it sends
(Opened, Sj , id, m) to the other server.

Fig. 8: The commitment functionality FCom

Coin Tossing Functionality FRand

Rand On input (Rand, n, p ∈ [0, 1]) from S1 and S2, FRand samples a string r ∈ {0, 1}n such that
ri ← Ber(p) for i ∈ [n], and returns r to both servers.

Fig. 9: The coin tossing functionality FRand
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D Further Zero-Knowledge Proofs

We keep the public parameters and public keys implicit except for the proofs involving shares of the
public and secret keys, e.g., for partial decryptions.

At two places in ΠEnc, we need straight-line extractable proofs, and denote them with ΠZK-SE. They
can be instantiated by applying the Fischlin transformation [Fis05] to the canonical Σ protocol. For
example, ΠZK-SE

CL-PoPK is the straight-line extractable version of ΠZK
CL-PoPK.

Discrete Logarithm The standard proofs for the discrete logarithm in the CL group (ΠZK
CL-DLog) and in the

prime order groups (ΠZK
PO-DLog) are building blocks for several of the following proofs.

Rcl
DLog :=

{
h; x

∣∣ h = gx
q

}
(20)

Rpo
DLog := {h; x | h = gx} (21)

Key Generation When generating the public key shares in ΠEnc, the servers need to prove that they are
well-formed. We use a straight-line extractable PoK ΠZK-SE

ServerPK here to allow the simulator to extract the
secret key (share) of the corrupted server.

RServerPK :=
{

(clpkj , popkj); (clskj , poskj)
∣∣∣ (clpkj ; clskj) ∈ Rcl

DLog ∧ (popkj ; poskj) ∈ Rpo
DLog

}
(22)

Partial Decryptions To realize the threshold decryption functionality, we need to use proofs of partial
decryption for HSM-CL encryption (ΠZK

CL-PoPD) and ElGamal (ΠZK
PO-PoPD) for the following relations:

Rcl
PoPD :=

{
(clpk, clct, clct′); (clsk)∣∣∣ (clpk; clsk) ∈ Rcl

DLog ∧ clct1
′ = clct1 ∧ clct2

′ = clct2 · (clct1)−clsk
} (23)

Rpo
PoPD :=

{
(popk, poct, poct′); (posk)∣∣∣ (popk; posk) ∈ Rpo

DLog ∧ poct1
′ = poct1 ∧ poct2

′ = poct2 · (poct1)−clsk
} (24)

Moreover, we also need a proof ΠZK
DecExpInv that we obtained a G element by raising the generator g to the

inverse of whatever we just decrypted.

RDecExpInv :=
{

(clpk, clct, h); (clsk, m)∣∣∣ (clpk; clsk) ∈ Rcl
DLog ∧ fm = clct2 · (clct1)−clsk ∧ hm = g

} (25)

Rerandomization of Ciphertexts The following two relations formalize the rerandomization of HSM-CL
and ElGamal ciphertexts.

Rcl
Randomize :=

{
(clct, clct′); (r)∣∣∣ clct′

1 = clct1 · gr
q ∧ clct′

2 = clct2 · clpkr
} (26)

Rpo
Randomize :=

{
(poct, poct′); (r)∣∣∣ poct′

1 = poct1 · gr ∧ poct′
2 = poct2 · popkr

} (27)
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E Two-Party Threshold Encryption

E.1 Ideal Functionality FEnc

Ideal Encryption Functionality FEnc

KeyGen On input (KeyGen) from Sj , j ∈ {1, 2}, FEnc runs:
1. (clsk, clpk)← KeyGencl

b , and (posk, popk)← KeyGenpo
b

2. If one of S1 and S2 is corrupted, send (Leakage, clpk, popk) to S. Receive continue or abort
from S. In the latter case, abort.

3. Send (clpk, popk) to all honest Sj and Ci

CL-Random On input (Random) from Sj , j ∈ {1, 2}, FEnc runs:
1. Sample m ∈R Fq and compute clct-m← Enccl(clpk, m).
2. If one of S1 and S2 is corrupted, send (Leakage, clct-m) to S. Receive continue or abort from
S. In the latter case, abort.

3. Send (Output, clct-m) to the honest Sj .
CL-Constant On input (CL-Constant, c) from Sj , j ∈ {1, 2}, FEnc returns clct-c := Enccl(clpk, c; 0).
PO-Zero On input (PO-Zero) from Sj , j ∈ {1, 2}, FEnc returns poct-0 := Encpo(popk, 0; 0).
CL-Decrypt On input (CL-Decrypt, Jclct-m1, . . . , clct-mnK) from Sj , j ∈ {1, 2}, FEnc runs:
1. Compute Mi := clct-mi2 · clct-mi

−clsk
1 for i ∈ [n].

2. If Sj is corrupted, send (Leakage, JM1, . . . , MnK) to S. Receive continue or abort from S. In
the latter case, abort.

3. Let mi ← logf (Mi) for i ∈ [n]. If any mi = ⊥, abort. Send Jm1, . . . , mnK to the honest Sj .
PO-Decrypt On input (PO-Decrypt, Jpoct-m1, . . . , poct-mnK) from Sj , j ∈ {1, 2}, FEnc runs:
1. Compute Mi := poct-mi2 · poct-mi

−posk
1 for i ∈ [n].

2. If Sj is corrupted, send (Leakage, JM1, . . . , MnK) to S. Receive continue or abort from S. In
the latter case, abort.

3. Let mi ← logf (Mi) (with time limit) for i ∈ [n]. If any mi = ⊥, abort. Send Jm1, . . . , mnK to
the honest Sj .

DecExpInv On input (DecExpInv, Jclct-m1, . . . , clct-mnK) from Sj , j ∈ {1, 2}, FEnc runs:
1. If S2 is corrupted, then receive either continue or abort from S. In the latter case, abort.
2. Compute Mi ← clct-mi2 · clct-mi

−clsk
1 for i ∈ [n].

3. If S1 is corrupted, then send (Leakage, JM1, . . . , MnK) to S. Receive either continue or abort
from S. In the latter case, abort.

4. Let mi := logf (Mi) for i ∈ [n]. If any mi = ⊥, abort. Set hi := g
1

mi , and send Jh1, . . . , hnK to
the honest Sj .

Fig. 10: Helper functionality for 2-out-of-2 threshold encryption for CL and ElGamal encryption.

E.2 Protocol ΠEnc

Protocol ΠEnc realizing FEnc

KeyGen 1. Each Sj

(a) runs (clskj , clpkj) ← KeyGencl
b (ppcl), (poskj , popkj) ← KeyGenpo

b (pppo), and computes
πS,j ← ΠZK-SE

ServerPK.Prove
(
(clpkj , popkj), (clskj , poskj)

)
.

(b) send (Commit, (clpkj , popkj , πS,j)) to FCom
(c) once received (Committed, S3−j) from FCom, send send (Open) to FCom
(d) receive (Open, S3−j , (clpk3−j , popk3−j , πS,3−j)) from FCom
(e) abort if ΠZK-SE

ServerPK.Verify
(
πS,3−j , (clpk3−j , popk3−j)

)
= ⊥.

(f) set clpk := clpk1 · clpk2 and popk := popk1 · popk2 (implicitly clsk := clsk1 + clsk2 and
posk := posk1 + posk2).

(g) and sends (Broadcast, (clpk, popk)) to FSBCast
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(h) abort if the public keys broadcasted by S3−j do not equal the computed ones
2. Each Ci aborts if the broadcasted public keys are not equal, otherwise it stores the public keys

(clpk, popk)
CL-Random On input (Random), each Sj does
1. sample mj ∈R Fq, and compute clct-mj ← Enccl(clpk, mj ; rj) and πR,j ←

ΠZK-SE
CL-PoPK.Prove

(
clct-mj , (mj , rj)

)
.

2. send (Commit, (clct-mj , πR,j)) to FCom
3. once received (Committed, S3−j) from FCom, send (Open) to FCom
4. receive (Open, S3−j , (clct-m3−j , πR,3−j)) from FCom
5. abort if ΠZK-SE

CL-PoPK.Verify
(
πR,3−j , clct-m3−j

)
= ⊥.

6. set clct-m := clct-m1 + clct-m2
7. and sends (Broadcast, clct-m) to FSBCast
8. abort if the ciphertext broadcasted by S3−j do not equal the computed clct-m

Clients abort the servers broadcast different ciphertexts.
CL-Constant On input (CL-Constant, c) each Sj outputs clct-c := Enccl(clpk, c; 0).
PO-Zero On input (PO-Zero) each Sj outputs poct-0 := Encpo(popk, 0; 0).
CL-Decrypt On input (CL-Decrypt, Jclct-m1, . . . , clct-mnK), each Sj does
1. Compute clct-mi

(j) := PDeccl(clskj , clct-mi) and πD,i,j ←
ΠZK

CL-PoPD.Prove
(
(clpkj , clct-mi, clct-mi

(j)), clskj

)
for i ∈ [n].

2. Send (clct-mi
(j)
2 , πD,i,j)i∈[n] to S3−j .

3. Abort if ΠZK
CL-PoPD.Verify

(
πD,i,3−j , (clpk3−j , clct-mi, clct-mi

(3−j))
)

for any i ∈ [n].
4. Compute mi := Deccl(clskj , clct-mi

(3−j)). If any mi = ⊥, abort. Otherwise, output
Jm1, . . . , mnK.

PO-Decrypt Analogous to CL-Decrypt.
DecExpInv On input (DecExpInv, Jclct-m1, . . . , clct-mnK)
1. S2 computes clct-mi

′ ← PDeccl(clsk2, clct-mi) for i ∈ [n] and πDEI,i,2 ←
ΠZK

CL-PoPD.Prove
(
(clpk2, clct-mi, clct-mi

′), clsk2
)

and sends (clct-mi
′
2, πDEI,i,2) (NB: clct-mi

′
1 =

clct-mi1) for i ∈ [n] to S1
2. S1 aborts if ΠZK

CL-PoPD.Verify
(
πDEI,i,2, (clpk2, clct-mi, clct-mi

′)
)

= ⊥ for any i ∈ [n]. Otherwise
it computes mi ← Deccl(clsk1, clct-mi

′) for i ∈ [n]. If mi = ⊥ for any i, abort. Send hi := g
1

mi

and πDEI,i,1 ← ΠZK
DecExpInv.Prove

(
(clpk2, clct-mi

′, hi), clsk1
)

for i ∈ [n] to S2

3. S2 aborts if ΠZK
DecExpInv.Verify

(
πDEI,i,1, (clpk2, clct-mi

′, hi)
)

for any i ∈ [n].
4. Both parties output Jh1, . . . , hnK.

Fig. 11: Encryption helper protocol in the (FSBCast,FCom)-hybrid model

E.3 Proof of Security

Theorem 8. The protocol ΠEnc (Figure 11) securely realizes the functionality FEnc (Figure10) in the
(FCom,FSBCast)-hybrid model with computational security, tolerating active and static corruptions of any
number of clients Ci and at most one server Sj.

Proof. We give the simulator SEnc in Figure 12. In the following, we argue that the simulation is
indistinguishable to the real execution, because for each method SHist can send what the adversary would
expect to see given their state and the output generated by FEnc.

KeyGen SEnc extracts the public key shares (clpkc, popkc) chosen by the corrupted server from the
commitment, and also extracts the corresponding secret keys from the straight-line extractable proof.
It then computes shares (clpkh, popkh) such that the products match the pair of public keys (clpk, popk)
received from FEnc. Since SHist does not know the corresponding secret keys (clskh, poskh), it simulates
the proofs.
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CL-Random This method is simulated analogously to the key generation. SEnc extracts the ciphertext
prepared by the server, and then computes a ciphertext on behalf of the honest party such that their
product matches the output of FEnc.

CL-Decrypt, PO-Decrypt, and DecExpInv Here, SEnc obtains the decrypted values Mi from FEnc. From
these values, the input ciphertexts, and the corrupted server’s share of the secret key, it can exactly
compute what the honest server would have to send without having to know their share of the secret
key.

Simulator for ΠEnc realizing FEnc

KeyGen Case of Sh being honest and Sc being corrupted:
1. After receiving (KeyGenReceived, Sh) from FEnc, send (Committed, Sh) from FCom to Sc.
2. Receive a message (Commit, (clpkc, popkc, πS,c)) for FCom from Sc.
3. Verify ΠZK-SE

ServerPK.Verify
(
πS,c, (clpkc, popkc)

)
∈ {⊥,⊤}. If successful, extract clskc and poskc from

πS,c and store them for later. Otherwise, set clpkc = 1 and popkc = 1 (in the corresponding
groups).

4. Send (KeyGen) on behalf of Sc to FEnc.
5. Receive (Leakage, clpk, popk) from FEnc.
6. Set clpkh := clpk · clpk−1

c and popkh := popk · popk−1
c . Simulate a corresponding proof πS,h ←

ΠZK-SE
ServerPK.SimProve

(
(clpkh, popkh)

)
.

7. Send (Open, Sh, (clpkh, popkh, πS,h)) from FCom to Sc.
8. Receive (Open) from FCom from Sc.
9. Simulate abort of Sh if πS,c was invalid.

10. Simulate Steps 1g to 2 for Sh and honest Ci. If any of them aborts, send (abort) to FEnc and
stop. Otherwise, send (continue).

Case of both S1 and S2 honest: Perform the simulation where S1 follows the protocol and the
actions of S2 are simulated in the same way as Sh in the case above.
CL-Random Case of Sh being honest and Sc being corrupted:
1. Simulate in the same way as the KeyGen operation

Case of both S1 and S2 honest: Nothing to simulate since the clients do not receive any output.
CL-Constant Nothing to simulate since the parties have only local computation.
PO-Zero Nothing to simulate since the parties have only local computation.
CL-Decrypt Case of Sh being honest and Sc being corrupted: – On input Jclct-m1, . . . , clct-mnK
1. Receive (Leakage, JM1, . . . , MnK) from FEnc.
2. Compute Wi := clct-mi2 · clct-mi

clskc
1 · M−1

i and simulate proofs of correctness πD,i,h ←
ΠZK

CL-PoPD.Prove
(
(clpkh, clct-mi, (clct-mi1, Wi))

)
for i ∈ [n].

3. Send J(Wi, πD,i,h)Ki∈[n] on behalf of Sh to Sc.
4. If Sc sends no or an invalid response, send abort to FEnc. Otherwise, send continue.

Case of both S1 and S2 honest: Nothing to simulate since the clients do not receive any output.
PO-Decrypt Analogous to CL-Decrypt.
DecExpInv Case of S1 being honest and S2 being corrupted:
1. Receive clct-mi

′
2 for i ∈ [n] and proofs of correctness from S2. If proof verifies, send continue

to FEnc.
2. If FEnc aborts, simulate abort. Otherwise, receive h1, . . . , hn from FEnc.
3. Simulate proofs of correctness w.r.t. clct-mi

′ and hi, and send both to S2.
Case of S2 being honest and S1 being corrupted:
1. Receive (Leakage, JM1, . . . , MnK) from FEnc.
2. Compute clct-mi

′
2 := Mi · clct-mi

clsk1
1 for i ∈ [n], simulate the corresponding proofs, and send

all to S1.
3. Receive h1, . . . , hn and proofs from S1 (alternatively, if it aborts, send abort to FEnc). If they

verify, send continue to FEnc, otherwise send abort.
Case of both S1 and S2 honest: Nothing to simulate since the clients do not receive any output.

Fig. 12: Simulator SEnc for the security proof ΠEnc for Theorem 8.
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F Noise Generation Algorithms

Noise Generation Algorithms

The algorithms work either on plaintext or on encrypted tuples depending on the mode parameter.
Moreover, when mode = enc, then clpk is expected to be a valid CL public key, and S consists of
ciphertexts under this key. In this case, we also output the necessary witnesses W to create proofs
of plaintext knowledge.

SampleFrequencyDummies(D, T, λ3, t3, mode ∈ {plain, enc}, clpk)
1. Let R := JK and W := JK be empty lists.
2. For every i ∈ [T ]:

(a) sample Ni ← TSDLap(λ3, t3)
(b) for j ∈ [Ni]:

i. choose fresh x ∈ D
ii. – If mode = plain, then append i copies of x to R.

– If mode = enc, then append Enccl(clpk, x; rk) for k ∈ [i] to R where rk denotes the
randomness used in the kth encryption.
Also append (x, r1), . . . , (x, ri) to W.

3. Output R,W
SampleDuplicateDummies(S = (ui)i∈[n], p; rnd ∈ {0, 1}n)
1. Let R := JK be an empty list.
2. For every i ∈ [n]:

(a) If rnd is explicitly passed, set Ni := rndi. Otherwise, sample Ni ← Ber(p).
(b) If Ni = 1, append ui to R.

3. Output R
SampleDummyBuckets(∆, λ2, t2, mode ∈ {plain, enc}, popk)
1. Let R := JK and W := JK be empty lists.
2. For every i ∈ [∆]:

(a) sample Ni ← TSDLap(λ2, t2)
(b) for j ∈ [Ni]:

– If mode = plain, then append i to R.
– If mode = enc, then append Encpo(popk, i; ri) to R where ri ∈ Fq denotes the random-

ness used in the encryption. Also append (i, ri) to W.
3. Output R

Fig. 13: Algorithms to generate the different kinds of dummy indices and dummy buckets to make the
anonymous and the normal histogram differentially private.
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G Shuffle Protocol

Protocol ΠShuffle

Common input: Sequence of ciphertext pairs (clct-ui, poct-vi)i∈[n].

1. Shuffle 1, S1 does:
(a) Sample a permutation σ1 ∈R Perms([n]).
(b) Sample randomness ri ← Dq and si ∈R Fq for i ∈ [n].
(c) Set clct-u(1)

σ1(i) := Randomizecl(clct-ui; ri) and poct-v(1)
σ1(i) := Randomizepo(poct-vi; si) for

i ∈ [n].
(d) Compute a proof

π(1) ← ΠZK
Shuffle.Prove

(
((clct-ui, poct-vi)i∈[n],

(clct-uσ1(i), poct-vσ1(i))i∈[n]), (σ, (ri)i∈[n], (si)i∈[n])
)
.

(e) Send (clct-u(1)
i , poct-v(1)

i )i∈[n] with π(1) to S2.
(f) S2 verifies the proof and aborts on failure:

ΠZK
Shuffle.Verify

(
π(1), ((clct-ui, poct-vi)i∈[n],

(clct-uσ1(i), poct-vσ1(i))i∈[n])
) ?= ⊤.

2. Shuffle 2: S2 and S1 perform the same steps in reverse to obtain (clct-u(2)
i , poct-v(2)

i )i∈[n].

Common output: Sequence of ciphertext pairs (clct-u(2)
i , poct-v(2)

i )i∈[n].

Fig. 14: Shuffle and rerandomization protocol for CL/ElGamal ciphertext pairs
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H Simulator SHist for the Proof of ΠHist

Initially, the simulator SHist receives corruption messages from the environment Z: at most one of (Corrupt,
S1) and (Corrupt, S2), and at most N − 1 of (Corrupt, Ci) for i ∈ [N ]. In every case, SHist forwards these
messages to FHist. Moreover, SHist creates virtual instances of FEnc and all parties in its head, and gives
Z control over those parties that correspond to the corrupted parties. Depending on which of the servers
is corrupted, we distinguish the following three simulation strategies.

Simulator SHist for ΠHist (Case: One malicious server)

Let c and h be the indices of the corrupted and honest server, respectively.

Init Simulate the key generation with FEnc, store the key pairs (clsk, clpk), (posk, popk).
Client Input – Simulating honest parties’ inputs:

After receiving (InputReceived, Ci) for some uncorrupted Ci from FHist, run the Client Input
protocol for the simulated Ci with inputs ui = 0 and vi = 0.

– Extracting corrupt parties’ inputs:
On receiving message (clct-ui, poct-vi, πC,i) from a corrupted Ci to Sh, verify the proof. If the
input is valid, decrypt ui ← Deccl(clsk, clct-ui) and vi ← Decpo(posk, poct-vi), and send (Input,
ui, vi) on behalf of Ci to FHist. Otherwise, send (Input,⊥,⊥).

– Keep track of the set I ⊆ [N ] of indices of clients that provided input.
Eval 1. Agree on client contributions:

(a) Set (clct-ui, poct-vi) := (⊥,⊥) for all i ∈ [N ] \ I (Step 1a of ΠHist).
(b) Send the ciphertexts J(clct-ui, poct-vi)Ki∈[N ] to Sc (Step 1b of ΠHist).
(c) Receive ciphertexts J(clct-ui, poct-vi)Ki∈[N ] from Sc, and compute index set J ⊆ I as in

Equation (17) corresponding to the proofs πi received by Sh (Step 1c of ΠHist).
(d) Send (Influence-1, J) to FHist.
(e) Filter the valid contributions to obtain a list M ′ of length |J | (Step 1d of ΠHist).

2. Add dummy contributions by simulating Step 2 as in ΠHist.
(a) Simulate the call to PO-Zero of FEnc and generate poct-0.
(b) Simulate frequency dummies:

i. Let id1, id2 be two fresh IDs. Simulate FCom to send (Committed, idh) to Sc. Receive
(Commit, idc, D

(c)
IF , P

(c)
IF ) from Sc.

ii. Verify the ciphertexts in D
(c)
IF with the proofs in P (c) (as in Step 2(b)iv of ΠHist). If

successful, extract Sc’s dummy indices by decrypting: DIF
(c) ← JDeccl(clsk, clct-d) |

clct-d ∈ D
(c)
IF K. Otherwise, set DIF

(c) := JK. Send (Influence-2, DIF
(c)) to FHist.

iii. Receive (Leakage-1, n
(h)
DIF ) from FHist. Create a list of ciphertexts D

(h)
IF ←

JEnccl(clpk, 0)K
i∈[n(h)

DIF
] with a corresponding list P

(h)
IF of proofs according to RCL-PoPK

of matching cardinality.
iv. Send (Opened, idh, D

(h)
IF , P

(h)
IF ) to Sc.

v. Receive (Open, idc) from Sc. If the proofs did not verify in Step 2(b)ii above, simulate
an abort.

(c) Simulate the shuffling of M ′, D
(1)
IF , and D

(2)
IF (Step 2c of ΠHist) according to ΠShuffle to

obtain M ′′. Let N ′′ := |M ′′|.
(d) Simulate duplication dummies:

i. Receive (Leakage-2, nDIP ) from FHist.
ii. Simulate the (Rand, N ′′, p) call to FRand to output a string rnd ∈ {0, 1}N ′′ with

Hamming weight nDIP .
iii. Compute DID as in Step 2(d)ii of ΠHist.

(e) Simulate the shuffling of M ′′ and DID (Step 2e of ΠHist) according to ΠShuffle to obtain
M ′′′. Let N ′′′ := |M ′′′|.

3. Receive (Leakage-2,HA) from FHist, and set B := |HA|. Simulate the OPRF evaluation protocol
ΠOPRF as described in Figure 16.

4. Aggregation: Simulate Step 4 as in ΠHist.
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5. Add dummy buckets
(a) Simulate the call to (CL-Constant, uD) of FEnc and generate poct-uD.
(b) Receive (Leakage-3, n

(h)
DB) from FHist.

(c) Create a list of ciphertexts D
(h)
B ← JEncpo(popk, 0)K

i∈[n(h)
DB

] with a corresponding list P
(h)
B

of proofs according to RPO-PoPK of matching cardinality, and send D
(h)
B , P

(h)
B to Sc.

(d) Receive D
(c)
B , P

(c)
B from Sc. Verify the ciphertexts in D

(c)
I with the proofs in P

(c)
B (as in

Step 5d of ΠHist), and simulate abort not successful.
(e) Extract Sc’s dummy buckets by decrypting: DB

(c) ← JDecpo(posk, poct-d) | poct-d ∈ D
(c)
B K,

and send (Influence-3, DB
(c)) to FEnc.

(f) Define H ′ and B′ as in Step 5e of ΠHist.
6. Simulate the shuffle in Step 6 as in ΠHist to obtain (clct-ūi, poct-v̄i)i∈[B′].
7. Add noise to outputs

(a) Simulate Step 7 for Sh and simulate the encrypted noise by creating ciphertexts poct-ζ(h)
i ←

Encpo(popk, 0) for i ∈ [B′].
(b) Receive (poct-ζ(c)

i , π
(c)
ζ,i)i∈[B′] from Sc. Verify the ciphertexts poct-ζ(c)

i with the proofs π
(c)
ζ,i

for i ∈ [B′] (as in Step 7c of ΠHist) , and simulate abort not successful.
(c) Decrypt ζ

(c)
i ← Decpo(posk, poct-ζ(c)

i ) for i ∈ [B′].
(d) Send (Influence-4, (ζ(c)

i )i∈[B′]) to FHist.
(e) Compute the ciphertexts poct-ṽi ← poct-v̄i + poct-ζ(c)

i + poct-ζ(h)
i for i ∈ [B′].

8. Thresholding
(a) Receive (Leakage-4, V ⊥,HP

I ) from FHist, which are of the form HP
I = J(i, ūi, ṽi)Ki∈I V ⊥ =

J(i, ṽi)Ki∈[B′]\I for some I ⊆ [B′].
(b) Simulate the calls to (PO-Decrypt, poct-ṽi) of FEnc by returning ṽi (and leaking gṽi to Z)

for i ∈ [B′].
(c) Simulate the calls to (CL-Decrypt, poct-ūi) of FEnc by returning ūi for i ∈ I.

9. Send (continue) to FHist.

Fig. 15: Simulator SHist for the security proof ΠHist for Theorem 5 in the case of one corrupted server.

Simulation subprocedure for the ΠOPRF subprotocol

This procedure is part of the simulation of Eval in ΠHist and is executed in Step 3 of Figure 15.
Recall that we want to simulate the execution of the ΠOPRF subprotocol on a list of CL ciphertexts
Jclct-u′

iKi∈[N ′′′]. Moreover, we also know the corresponding secret key clska and the anonymous
histogram HA.

Common steps
1. Key generation: simulate the call to CL-Random of FEnc by sampling a key k ∈R Fq and

outputting clct-k ← Enccl(clpk, k).
Case of corrupted S1

2. Preparation:
(a) Simulate according to the protocol (Step 2 of ΠOPRF).
(b) Additionally decrypt ai ← Deccl(clsk, clct-ai) for each i ∈ [N ′′′]. (If ai = 0 we abort, but

this happens with negligible probability.)
3. Exponentiation:

(a) Set hi := g
1

ai for i ∈ [N ′′′].
(b) Simulate the call to DecExpInv of FEnc by outputting Jh1, . . . , hN ′′′K and leaking

Ja1, . . . , aN ′′′K to Z.
4. Completion:

(a) Let T := JK. For each n ∈ HA, sample t(n) ∈R G and add n copies of it to T .
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(b) Let Jt1, . . . , tN ′′′K := Shuffle(T ). of the elements of T .
(c) Simulate the proofs πoprf2

i ← ΠZK
ExpCom.SimProve

(
(hi, ti, cmi)

)
. This works, because the

commitment scheme is perfectly hiding, so there exists a valid witness.
Case of corrupted S2

2. Preparation:
(a) Receive (clct-ai, cmi, πoprf1

i ) for each i ∈ [N ′′′] from S2.
(b) Simulate abort if the proofs are not valid.

3. Exponentiation
(a) Decrypt ai ← Deccl(clsk, clct-ai) and u′

i ← Deccl(clsk, clct-u′
i), and compute ri := ai · (u′

i +
k)−1 for all i ∈ [N ′′′].

(b) Sample t1, . . . , tN ′′′ ∈ G as in Step 4 in the case of corrupted S1.
(c) Set hi := t

1
ri
i .

(d) Simulate the call to DecExpInv of FEnc, by outputting (h1, . . . , hN ′′′).
4. Completion:

(a) Receive t′
i ∈ G and πoprf2

i from S2 (it should be ti = t′
i).

(b) Simulate abort if the proofs do not verify.
a NB: While we can use clsk to decrypt in the UC simulation, we will use rewinding and extractions from

proofs of knowledge when proving indistinguishability of the simulation based on the security of the
encryption scheme.

Fig. 16: Subprocedure that is called in Step 3 of the simulator SHist (Figure 15) for the security proof
ΠHist for Theorem 5.

Simulator SHist for ΠHist (Case: Honest servers)

Init Simulate the key generation with FEnc, store the key pairs (clsk, clpk), (posk, popk).
Client Input On receiving message (clct-ui, poct-vi, πi) and (clct-ui

′, poct-vi
′, π′

i) from a corrupted
Ci to S1 and S2, respectively, verify the proofs. If they verify and additionally clct-ui = clct-ui

′

and poct-vi = poct-vi
′, then decrypt ui ← Deccl(clsk, clct-ui) and vi ← Decpo(posk, poct-vi). Send

(Input, ui, vi) on behalf of Ci to FHist. Otherwise, send (Input,⊥).
Eval Nothing to be done, since the clients to not participate in the evaluation.

Fig. 17: Simulator SHist for the security proof ΠHist for Theorem 5 in the case no corrupted server.
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I Missing Proofs of Claims in the Proof of Theorem 5

I.1 Proof of Claim 1 in Theorem 5

Proof of Claim 1. We prove the indistinguishability based on the IND-CPA security of the modified
HSM-CL encryption scheme (Theorem 6).

Suppose towards contradiction that there exists an environment Z that can distinguish between
GameHist

Z,real(λ) and GameHist
Z,hybrid-1(λ) with non-negligible advantage AdvHist

Z,1(λ). We now use Z to construct
a distinguisher D for the HSM-CL IND-CPA game GameIND-CPA,cl

D,b with b ∈R {0, 1}.
In the IND-CPA game, D receives an HSM-CL public key clpk. We setup an execution with Z that is

identical to GameHist
Z,hybrid-1(λ) until we let FEnc, return the given clpk when (KeyGen) is called instead of

generating a fresh HSM-CL key pair.
Note that in the reduction, we do not know the secret key clsk. Hence, we cannot use it to decrypt

the inputs ui to ΠOPRF. Instead we make use that each party provides proofs of plaintext knowledge
(ΠZK

CL-PoPK) for their inputs. So we use rewinding of the execution to extract all plaintexts (this is not the
UC simulation, so it does not need to be straight-line), and we keep track of which plaintext is encrypted
in which ciphertext. For this to succeed, we also use that we can extract the used permutations from the
shuffle proofs ΠZK

Shuffle.
We continue the execution normally, until (CL-Random) of FEnc is called in Step 1. Now we sample

k0, k1 ∈R Fq and submit them to the IND-CPA challenger. We obtain a ciphertext clct-kb ← Enccl(clpk, kb)
which we let FEnc return as clct-k := clct-kb for (CL-Random). We continue as in GameHist

Z,hybrid-1(λ), except
that we use k′ := k0 when computing the FDY outputs. The output of D is whatever Z outputs.

If b = 1, then the view of Z is identical to its view in GameHist
Z,hybrid-1(λ) because the ciphertext clct-k

contains a random field element, and the FDY evaluation uses an independent random key k′. Otherwise,
if b = 0, Z’s view is identical to its view in GameHist

Z,real(λ), since then the FDY evaluation uses the same
key k that is contained in clct-k.

Hence, D would win the game GameIND-CPA,cl
D,b (λ) with non-negligible advantage AdvIND-CPA,cl

A (λ) =
AdvHist

Z,1(λ), and we reached a contradiction. Therefore such an environment Z cannot exist. ■

I.2 Proof of Claim 2 in Theorem 5

Proof of Claim 2. We prove the indistinguishability based on the ℓ-non-adaptive PRF security of the
Dodis-Yampolskiy PRF (Theorem 1), where we set ℓ := N ′′′

Suppose towards contradiction that there exists an environment Z that can distinguish between
GameHist

Z,hybrid-1(λ) and GameHist
Z,hybrid-2(λ) with non-negligible advantage AdvHist

Z,2(λ). We now use Z to con-
struct a distinguisher D for the ℓ-non-adaptive PRF security game Gameℓ-naPRF

D,b (λ) with b ∈R {real, rand}
(Definition 4).

In the security game Gameℓ-naPRF
D,b (λ), D first specifies ℓ inputs x1, . . . , xℓ ∈ Fq, and then obtains either

outputs yi ∈ G of a random oracle (yi = H(xi) if b = rand) or outputs of the DY-PRF (yi = FDY(k′, xi)
if b = real) for a random k′ ∈R Fq.

We setup an execution with Z that is identical to GameHist
Z,hybrid-1(λ) and GameHist

Z,hybrid-2(λ) until the
beginning of ΠOPRF. At this point we decrypt the inputs ui ← Deccl(clsk, clct-ui) for i ∈ [ℓ]. We submit
them to the Gameℓ-naPRF

D,b challenger and obtain y1, . . . , yℓ ∈ g. The remainder of the execution is identical
to the hybrid games, except that we inject the values yi instead of FDY(k′, ui) and H(ui), respectively.
We let the output of D be whatever Z outputs.

Consequently, if b = real, then the view of Z is identical to its view in GameHist
Z,hybrid-1(λ), and if

b = rand, it is identical to its view in GameHist
Z,hybrid-2(λ). Hence, D would win the game Gameℓ-naPRF

D,b (λ)
with non-negligible advantage Advℓ-naPRF

A (λ) = AdvHist
Z,2(λ), and we reached a contradiction. Therefore such

an environment Z cannot exist. ■

I.3 Proof of Claim 3 in Theorem 5

Proof of Claim 3. For this indistinguishability proof, we again us the security of the encryption schemes.
However, we do not use IND-CPA security directly, but the property that both encryption schemes admit
lossy public keys (Theorems 6 and 7).
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By a hybrid argument, we can show that indistinguishability also holds for pairs of public keys that
are both lossy or both working:

{
(
KeyGencl

0 (), KeyGenpo
0 ()

)
} ≈C {

(
KeyGencl

1 (), KeyGenpo
0 ()

)
}

≈C {
(
KeyGencl

1 (), KeyGenpo
1 ()

)
}.

(28)

Let GameIND-LK
D,b with b ∈R {0, 1} denote the security game that gives a distinguisher D a sample of the

distribution (clpk, popk)←
(
KeyGencl

b (), KeyGenpo
b ()

)
.

We follow the strategy of the proof of Πq
ABB of [BDO23]: Suppose towards contradiction that there exists

an environment Z that can distinguish between GameHist
Z,hybrid-2(λ) and GameHist

Z,ideal(λ) with non-negligible
advantage AdvHist

Z,3(λ). We now use Z to construct a distinguisher D for GameIND-LK
D,b .

First, we sample a bit b∗
D ∈R {0, 1}. Depending on this we execute either GameHist

Z,ideal(λ) (if b∗
D = 0) or

GameHist
Z,hybrid-2(λ) (if b∗

D = 1), with two differences:

1. First, we now simulate all the zero-knowledge proofs, even if we knew the corresponding witnesses.
2. Second, since we construct a distinguisher for the GameIND-LK

D,b game, we do not know the secret
keys (clsk, posk) corresponding to the given public keys (clpk, popk). Therefore, we employ the same
strategy as in the proof of Claim 1 and extract all plaintexts from the corresponding proofs of plaintext
knowledge.

Let b∗
Z ∈ {0, 1} denote the environment’s output. If b∗

Z = b∗
D, then D outputs b′ := 1, and if b∗

Z ̸= b∗
D, D

outputs b′ := 0. We distinguish two cases:

– Case b = 0: All encryptions are made with lossy public keys so that all ciphertexts that the environment
Z sees are statistically indistinguishable from encryptions of zero. Since additionally all the proofs are
simulated, the view of Z in the hybrid-2 execution is statistically independent of the honest parties’
inputs and statistically coincides with its view in the ideal execution. So we have

Pr
[
D outputs 1 | b = 0

]
= 1/2− negl(σ).

– Case b = 1: Since the public keys are working, the execution is statistically indistinguishable (the
only difference is the simulation of the zero-knowledge proofs) to the ideal execution (if b∗

D = 0) or
the hybrid-2 execution (if b∗

D = 1). Hence, we have

Pr
[
D outputs 1 | b = 1

]
= 1/2 + AdvHist

Z,3(λ)− negl(σ).

Combining both case, we obtain that

AdvIND-LK
D (λ) =

∣∣∣Pr
[
GameIND-LK

D,1 (λ) = 1
]
− Pr

[
GameIND-LK

D,0 (λ) = 1
]∣∣∣

= AdvHist
Z,3(λ)/2− negl(σ).

If σ is chosen such that negl(σ) is also negligible in λ, then we have constructed a distinguisher D that
has non-negligible advantage in the GameIND-LK

D,b (λ) game. We reached a contradiction, and therefore such
an environment Z cannot exist. ■
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