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Abstract. This paper gives the first lattice-based two-round threshold signature based on lattice
assumptions for which the first message is independent of the message being signed without relying on
fully-homomorphic encryption, and our construction supports arbitrary thresholds.

Our construction provides a careful instantiation of a generic threshold signature construction by Tes-
saro and Zhu (EUROCRYPT ’23) based on specific linear hash functions, which in turns can be seen as
a generalization of the FROST scheme by Komlo and Goldberg (SAC ’20). Our reduction techniques
are new in the context of lattice-based cryptography. Also, our scheme does not use any heavy tools,
such as NIZKs or homomorphic trapdoor commitments.

1 Introduction

Multiple novel applications, primarily motivated by blockchains (e.g., digital wallets [GGN16]),
are re-energizing a multi-decade agenda aimed at developing practical threshold signatures [Des88,
DF90] with the goal of reducing trust assumptions in systems using digital signatures. To this
end, recall that in a t-out-of-n threshold signature scheme, a set of n signers each hold shares of a
secret signing key associated with a public verification key. Any subset of at least ¢ of these signers
should be able to come together and run a signing protocol to produce a signature on any message.
However, an adversary that controls an arbitrary subset of fewer than ¢ signers should not be able,
on its own, to come up with a valid signature, even when they maliciously deviate from the protocol.

Threshold signatures are currently the focus of standardization efforts by NIST [Natnt] and
IETF [CKGW22|, and threshold signing protocols for a number of existing signature schemes
have been given from a variety of cryptographic assumptions. These include threshold versions
of BLS [Bol03, BL22], Schnorr [SS01, GJKR03, KG20, Lin22, BCK 22, CGRS23, CKM23a] and
(EC-)DSA [GJKR96, GJKR07, GGN16, BGG19, GG18, LNR18, CGG'20], along with several
schemes for ad-hoc signatures in pairing-free groups with specific properties [CKM™*23b, TZ23,
BLT*23]. Several RSA-based constructions [DDFY94, GRJKO00, Sho00, DK01, TZ23] have also
been proposed.

LATTICE-BASED THRESHOLD SIGNATURES. With the threat of quantum computers looming on the
horizon (and, in particular, their ability to break all assumptions behind all aforementioned thresh-
old signatures), a widely recognized goal is to develop threshold signatures that are based on
quantum-safe assumptions. The most natural candidate for such schemes are lattice-based assump-
tions, considering in particular the fact that NIST has selected DILITHIUM [LDK*22] and FAL-
CON [PFH"22|, two lattice-based signature schemes, for standardization. Regardless of quantum
safety, it is also important to obtain constructions from a set of assumptions as diverse as possible.

While lattice-based cryptography has been enormously successful in enabling extremely sophis-
ticated functionalities, building efficient lattice-based threshold signatures has turned out to be
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very challenging. In principle, the problem can be solved generically and round optimally with
constructions [BGGK17, BGGT18, ASY22] based on Fully-Homomorphic Encryption (FHE), but
these require the homomorphic evaluation of the signing algorithm within the FHE, thus imposing
a substantial computational and communication overhead on the signing process.

There have been attempts [DOTT21, Che23| at giving more direct constructions of two-round
signing protocols based on the Fiat-Shamir-with-abort paradigm [Lyu09], obtained by adapting
constructions for the related notion of multi-signatures. These constructions only realize n-out-of-n
threshold signatures, i.e., do not tolerate arbitrary thresholds ¢ < n. Gur, Katz, and Silde [GKS23]
recently proposed a new two-round construction based on linearly homomorphic encryption (LHE)
which supports arbitrary thresholds. Both rounds are message-dependent, and they rely on homo-
morphic trapdoor commitments and NIZKs to ensure security against malicious signers. For n = 5
and t = 3, their signatures and public keys have sizes 46.6 and 13.6 KB, respectively, whereas
the communication costs for signing are roughly 3 MB per signer. Recent work by del Pino et
al. [APKM™24] proposes a more efficient lattice-based threshold signature scheme that does not
rely on FHE or the aforementioned heavy primitives, but the drawback is that the protocol has
three message-dependent rounds.

BETTER TWO-ROUND THRESHOLD SIGNATURES. In this paper, we pursue the question of design-
ing better and more efficient two-round threshold signatures. Clearly, we would like to minimize
communication along with signature and key sizes, but other properties are desirable. For exam-
ple, a fundamental property of FROST [KG20, BCK™22] is that it is partially non-interactive, in
that while the signing protocol consists of two rounds, the first round messages are simply nonces
independent of the message being signed. This allows us to recover some of the positive features of
non-interactive schemes by preprocessing the initial round. Currently, with the exception of FHE-
based schemes, we do not know of any partially non-interactive lattice-based threshold signatures.
Note that in fact partially non-interactive lattice-based multi-signatures exist [BTT22], inspired by
the discrete-log based counterparts [NRS21], but it is not clear how to turn these into threshold
signatures, especially for the case t < n.

OUR CONTRIBUTIONS. In this paper, we develop the first partially non-interactive lattice-based
threshold signatures where signing proceeds in two rounds, and the first round only consists of
message-independent nonces. Our scheme does not rely on FHE or other heavy primitives like NIZKs
and trapdoor commitments. The security of our scheme is based on standard lattice assumptions,
in particular, we rely on the Module-SIS assumption.

To achieve 128-bit of security and allow for up to 254 signatures to be generated with the same
key, for the case n = 5, which is the same setting considered by [GKS23], the signatures in our
scheme have sizes roughly of 219.2 KB with the size of public keys 33.7 KB, and the communication
complexity per signer is 1.1 MB. While the signature and public key sizes are larger than [GKS23],
we achieve better communication complexity.

Like other recent works [BCK ™22, BLT*23, CKM23a, dPKM™24], we do not propose an explicit
distributed key generation (DKG) protocol. (We can envision that keys are either set up manually,
or that they are the output of a suitable generic MPC protocol.) We leave the design of suitable
DKG protocols as an interesting open question.

OUR APPROACH. A common way to construct an efficient lattice-based primitive is to take an
efficient construction based on pairing-free groups and translate it into a lattice-based scheme.
However, one key barrier in translating ideas from FROST, the state-of-art group-based partially
non-interactive threshold signature scheme, to the lattice setting is that the security analysis of




FROST relies on the one-more discrete logarithm assumption, of which no analog is known in the
lattice world. A recent work by Tessaro and Zhu [TZ23] proposes a variant of FROST based on
linear hash functions (LHF') and gives a security reduction to the plain DL assumption. Inspired by
the work of Hauck et al. [HKLN20], which turns a LHF-based blind signature scheme into a lattice-
based one, our starting point is to translate the LHF-based threshold signatures into lattice-based
threshold signatures. The main difficulty in this idea is that the lattice-based linear hash functions
do not have the desirable algebraic properties as required in the original analysis from [TZ23]. We
refer to the technical overview below for the detailed issues and our solutions.

However, we want to particularly point out that our solution requires stronger properties from
the underlying secret sharing scheme, which are satisfied by the secret sharing scheme by Benaloh
and Leichter [BL90]. We also discuss in Section 3.3 the issues which make other secret sharing
schemes, such as the one by Applebaum et al. [ANP23], not applicable to our use case.

SIGNIFICANCE OF THE WORK. We emphasize that we see the primary value of our paper in showing
the feasibility of constructing partially non-interactive threshold signatures without using FHE and
new techniques involved in transforming a DL-based schemes into a lattice-based one. Nonetheless,
we note that the efficiency of our schemes is still within the practical realm and deserves further
investigation.

OTHER RELATED WORKS. We discuss some additional related works we have not discussed above.
An alternative approach to obtain threshold signatures is to leverage standard MPC techniques to
evaluate (part of the) signing. For example, Bendlin et al. [BKP13] use this approach to obtain a
threshold version of GPV signatures [GPV08]. More recently, Cozzo and Smart [CS19] considered
more broadly MPC-based instantiations of NIST post-quantum signature candidates and concluded
that they are unlikely to lead to practical solutions.

1.1 Technical Overview

Our starting point is a variant of FROST [KG20] proposed by [TZ23] which gives a threshold signa-
ture scheme based solely on the DL assumption, instead of the stronger one-more DL assumption.
The key idea is to replace the map = — ¢* (for a generator g) in FROST with a compressing
and collision resistant linear map F : ® — R, referred to as a linear hash function (LHF), where
® and R are two vector spaces over a scalar field &. The secret key of the scheme is a random
element sk € ® and the corresponding public key is pk < F(sk). The secret key shares {sk;}c[,
are generated using Shamir’s secret sharing. The signing protocol consists of one offline round and
one online round.

- In the offline round, each signer i samples r;,r;1 € © and publishes a token (R;o, Ri1) <
(F(rip), F(ri1)).

- In the online round, to sign a message u, the user selects a set of signers SS of size at least ¢
and sends a request Ir — (u, SS, { R0, Ri1}icss) to each signer in SS. Each signer i sends R «—
Yiess(Riro + bRy 1) with b« Hy(pk, Ir), and z; < ;0 + bri1 + eAPSsk; with ¢ < Ha(pk, p1, R)
to the user, where Hy and Hs are two hash functions.

- Finally, the signature is computed as (R, z = Y, qg 2i). To verify it, one checks whether F'(z) =
R + ¢ pk for ¢ = Ha(pk, i, R).

Here Hy,Hy : {0,1}* — & are hash functions. We note that the underlying signature scheme can
be viewed as a LHF-based analog of Schnorr signatures. The required properties of F' is that: 1.



it is linear, i.e. F'(a) + F(b) = F(a + b) holds for any a,b € ©; 2. it is collision resistance, i.e. it is
hard to find x # y € © such that F(x) = F(y) for a randomly sampled F’; 3. it is compressing,
i.e. the pre-image of any element in R under F' contains multiple elements. As observed by Hauck
et al. [HKLN20], a natural candidate to instantiate LHF from lattices is F'(x) = Az, where A is
a randomly sampled matrix A € RE*™ for a prime ¢ and the ring Ry := Z¢[X]/(X" + 1), with
D ={ze R}z, <oz}, R= Rg, and & = Ry, where 0, < ¢ is a constant. It is clear that F
is linear and compressing if |D| = (20,)™" » ¢*V = |R|. Also, F is collision resistance under the
Module-SIS (MSIS) assumption, which guarantees that given a uniform matrix A € R'; *€ it must
be infeasible to find a small-norm solution @ # 0 such that Az = 0. If one can find &1 # 2 € D
such that F(x1) = F(x2), we have A(x; — x2) = 0, which gives us a MSIS solution (x; — x2) for
A with infinite norm bounded by 20,..

Unfortunately, we cannot simply apply the analysis from [TZ23] to the above lattice-based
instantiation. A simple reason is that © as defined above is not a linear space,’ which are required
by the prior analysis. There are also more technical reasons why this does not work, and to see
what they are, we now try to apply the prior analysis here.

REDUCTION IDEA FROM PRIOR WORK. The reduction idea is simple. Denote an adversary that
breaks unforgeability of the threshold signature scheme as .4, which corrupts up to t — 1 signers,
engages in an arbitrary number of signing sessions with honest signers, and forges a valid signature
for a message that was not signed in any of the signing sessions. We construct a MSIS adversary B
as follows: (In the analysis, H; and Hy are modeled as random oracles.) Initially, B receives a MSIS
challenge A. Then, B runs A by simulating the key generation, the signing sessions and the random
oracles following the protocol by itself. If A returns a valid message-signature pair (u*, sig* =
(R*,z*)), B rewinds A to the step that the query Ha(pk, u*, R*) is made and runs A again while
answering its random oracle queries with refreshed randomness. If A returns (i*, sig- = (R", %))
with (pu*, R*) = (*, R"), then we find a collision F(2* —c-sk) = R* = R* = F(z* —¢-sk), where
c and ¢ are the outputs of Ha(pk, u*, R*) in the first and second execution respectively. Therefore,
B returns (z* — 2* — (¢ — ¢) - sk). Otherwise, B aborts.

By the Forking Lemma, we can show that with high probability B does not abort and ¢ # ¢ if A
breaks unforgeability with high probability. The difficulty here is to show we indeed find a collision,
ie. (2* —2* — (c—¢)sk) # 0. The prior analysis from [TZ23] shows that for any two different secret
keys sk, sk’ mapping to the same public key, there exists a bijection @ that maps the randomness
p of B to another randomness p’ such that the view of A given (sk, p) is identical to that given
(sk’, /). Therefore, A outputs the same (u*, R*, z*, i*, R, 2*) independent of whether B is run
with (sk, p) or (sk’, p’). Since sk # sk’ and ¢ # ¢, we have 2* —z* — (c—¢) -sk # z* —2* — (c—¢) -sk/,
so B wins in at least one of the cases. Hence, B wins with at least half of the probability that B
does not abort.

CHALLENGES IN LATTICE INSTANTIATIONS. The main challenges lie in how to construct @. Note
that given the secret key sk, the execution of B is determined by the randomness h for answering
RO queries, the secret key shares {ski}ie[n], and the randomness (7, 7;,1) for generating the tokens
of each signing session. Therefore, we only consider @ defined over those variables. First of all, @
maps h to itself since A can learn h from RO queries. For the other two parts, @ satisfies the
following:

1 This is because given a1, x2 with infinite norm bounded by o, Hazl + ngm can exceed 0.



(1) @ maps {ski}ie[n) to {ski};e[n] such that {ski};c[, is the shares of sk’ and sk; = sk} for any
corrupted signer .

(2) For the interaction with signer i during signing, ¢ maps (7i0,7i1) to (7}, 7;;) such that
F(rig) = F(r}g), F(ri1) = F(rj,), and

LbY (rip N APski\ _ [z _ (1D (Tio N cAPOsK]
1b) \ri1 eAFS sk; Z; 1) \r}, eAFSskl )
where we use (-) to denote the variables after rewinding. (It is possible that the adversary makes

only one query or the same queries for the token during the two executions, but these cases are
easier to deal with. Thus, we only discuss the above hardest case here.)

It is not hard to satisfy the first condition due to the property of secret sharing. For the second
condition, by the idea of prior work, if b — b is invertible, we can set (7 0:7i1) = (rio + (¢ —b(b—
B)*lAc)Ask,r;l + (b—b)"tA.A), where A, = ¢ — ¢ and Ag = /\fs(ski — sk!). It is not hard to
check that it satisfies the above equation. However, the problem is that the map is not a bijection
since D is not a vector space. There is no guarantee that (], 7} ;) € © for ;9,71 € ©. A common
solution, which was also used by Hauck et al. [HKLN20], is to enlarge ® (by increasing o,) such
that (réyo, A 7"2,6) € © except for a negligible fraction of (74, ...,7;¢). Still, there are two issues
we need to address: 1. We need to show that the shift (b— 5)_1AcAsk is small. is small; 2. To make
the fraction of bad randomness negligible, we have to set o, = 2(2% (b — b) "' AcAs|), where &
denotes the security parameter. This would lead to a very large modulus.

OUR SOLUTION. For the first issue, we need to show all of the three parts, i.e., (b; — b;)™!, A,
and Ag, are small. To make sure the inverse of (b; — l_)j)*l is small, the idea is to restrict the
range of H; to be {0,1}. As a result, with 1/2 probability, b — b € {1,—1} and thus its inverse is
small (either 1 or —1). Then, we boost the probability to 1 — 272" by increasing the number of
nonces. More precisely, in the offline round, each signer i samples 7;,7;1,...,7;¢ for £ = 2x. In
the online round, signer i returns z; < 7,0 + Zjem bjri;, where (bq,...,b.) € {0, 1}¢ are computed

from Hy. Also, @ maps (70, ...,7i¢) to (rig,...,75,) = (Tio+ (c—b;(b; —bj)) LA Asy -y T,
ri; + (bj — Ej)*lAcAsk,ri,jH, ...,Tir), where j denotes the first index with b; # l_)j.

For A., it is a common practice to sample ¢ with small ¢;-norm, which implies the norm of
A, is small. Lastly, we have to ensure that the norm of Ay is small. This imposes an additional
requirement on the secret sharing scheme. Namely, it requires that there exists a map @ satisfying
the aforementioned condition (1) and in addition, satisfying that Hski - sk;HOO is small. We show
that a special class of secret sharing schemes, referred to as linear secret sharing schemes with
small coefficients, satisfies the requirement. We refer to Section 3 for the detailed definition and
instantiation.

To address the second issue, we sample each r;; from an m-dimensional discrete Gaussian
distribution centered at the origin with variance o,. Intuitively, ® becomes a probability distribution

instead of a set, and we can show that B wins with high probability as long as the ratio o =
Pr(ri,0,--s74,0)]
Pr[@(’l‘i’o,...,’l"iyg)]
need to show a% € (1 —e,1 + ¢) for some constant €, where qs; denotes the number of signing

sessions. Since the map only shifts ;o and r;; by roughly A = A Ag, the ratio is roughly
5 <A2+24'|(7'i,0,-~-77'i,e)

is close to 1 except for a negligible fraction of (r;p,...,r;¢). More precisely, we

2
Oz

>, and we can achieve the desired bound by setting o, = 2(qs |4]).
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We now discuss two important optimizations we made to improve the efficiency of our protocol
in the following paragraphs.

DECREASING THE NUMBER OF NONCES. In the above protocol, the number of nonces generated is
equal to the security parameter, resulting in significant overhead in communication complexity. To
decrease the number of nonces ¢, the key observation is that we can extend the domain of b to
Sp := {*eo,...,ten_1}, where e; = X' € R,. Although for any b # be Sp, (b—b) is not invertible,
we show that there exists v,_; € R such that v, 3(b—b) = 2 and Hvb_l;Hl < 1. Therefore, we let

each signer compute z; < 7o + Zjem bjri; + 2c- /\,LSSski, and, then we can structure the map @
following the same way as above except that we replace (b — b)~! with v, ;. As a result, we just
need to set £ = 2x/log(2N), which is 10 times smaller for N = 512 used in our concrete efficiency
analysis.

IMPROVING MODULUS SIZE USING THE RENYI DIVERGENCE. Another main efficiency problem is
that the modulus size depends linearly on qs, which is implied by how we set o,. To address this,
we observe that the ratio M is not evenly distributed. It gets larger as the norm of
r;; becomes larger. However, ag the lﬁorrn of r; ; becomes larger, its probability of being sampled
becomes exponentially small. As a result, there are only a small fraction of points with ratios close
to the ratio bound, while a large proportion of points have much smaller ratios. Therefore, we try to
use the Rényi divergence, which computes the average of the probability ratio of two distributions.
More precisely, instead of considering the probability that a particular random value (r;g,...,7i¢)
is sampled, we consider the distribution of the view of A conditioning on sk (denoted by T)
directly. We show that B wins with high probability as long as the Rényi divergence R (Tsk|Tge)
is close to 1. Then, we observe that the Rényi divergence of the view of A in a single signing session
given sk from that given sk’ is roughly the Rényi divergence of two discrete Gaussian distributions

both with variance O(o,) and with distance |A| between their centers. Thus, considering all signing

sessions (both before and after the rewinding), Ry (Tek|/ Ty ) is roughly exp <q s A2/ a%), where the

constants and unimportant factors are omitted. Therefore, we can set o, = £2(,/qs | 4||), improving
the modulus size by a factor of |/qs. We also note that similar techniques have been used by Agrawal
et al. [ASY22] to improve the modulus size of the FHE-based scheme.

2 Preliminaries

2.1 Notations

For any positive integers k < n, [n] denotes {1,...,n}, and [k..n] denotes {k,...,n}. We use « to
denote the security parameter. For a finite set S, |S| denotes the size of S, and = «<s S denotes
sampling an element uniformly from S and assigning it to . For a distribution D, x «<—s D denotes
sampling x according to D. For a sequence of variables 1, . .., z, we use z;_j) to denote (@i, .., x5).
For any vector space V over a field F' and a set S € V, we denote Spany(S) as the F-span of S,
which is the smallest F-subspace of V' that contains S. In particular, we omit F from the subscript
if FF = R. For a finite set S = {v1,...,v,} €V, we say S is F-linearly independent if and only if
for any non-zero (aq,...,a,) € F", Zie[n] a;v; # 0. We say S is a F-basis of V if and only if S is
F-linearly independent and Spanz(S) = V. The dimension of V is equal to the size of S.



2.2 Polynomial Rings

Let ¢ be an odd prime and N be a power of 2. We denote the ring R := Z[X]/(X" + 1), which
is contained in the field Kg = R[X]/(XY + 1), and let R, := R/qR = Z,[X]/(X" + 1). For an
element v € Kgr, where v = Zf\;_ol v; X*, we denote its conjugate as v* = Zi]\i_()l —0; XN We say
v € R if and only if v; = 0 for all i € [N — 1]. We use ¢ to denote the coefficient embedding that
embeds Ky in RV, and ¢ maps v to vector (voy ..., UN—1) € RY. When applying ¢ to a vector
v € Kg', ¢ maps v to a vector in R™N by applying ¢ to each entry of v. The map ¢ is a bijection,
and we denote its inverse by ¢~1. An £,-norm of v € KII' is given by

m N—1 %
lvll, == l¢()l, = (Z >, vf’,j) :

i=1 j=0

where v; ; denotes the coefficient of X7 of the i-th entry of v. Additionally, the ¢-norm of v is
defined as |vl|,, := maX;e[m] je[o.N—1] Vi,j- For the fo-norm, we omit the subscript and denote |v|
as the fo-norm of v. Denote the conjugate transpose of v € K as v' := (v*)T. We define the
inner product of two vectors v,v' € K as (v,v) := v'v’. We say the two vectors are orthogonal
if v'v’ = 0. Also, we have |v|| = viv. We say v is a unit vector if |jv| = 1.

Also, we define a map ¢p that maps each element in K to a matrix in

0 Iy

Let Mx := (_1 0
om(v) = SN ! o ViM%, which can be viewed as the matrix representation of v. In particular, for ¢
and ¢p, the following properties hold: for any v, v’ € Kg,

om(v*) = om(v)", dm(vv') = dm(v)dm (V') and i (v)p(v') = p(vv') . (1)

RVXN ag follows.

> e RN, where Iy_; is the identity matrix in RN=1 For each v € Kg,

We extend the above definitions to R, by representing each v € R, as v = Z -0 vZX2 where
vie{—(g—1)/2... (g — 1)/2}.

For a matrix M e Kyp'*™, we denote its conjugate transpose as MY = (M*)T, and we say M
is hermitian if M = M. We say M is positive definite if and only if M is hermitian and for all
x € KP\{0}, ' Mz is a positive real number. We show the following lemma, which extends the
spectral theorem to positive definite matrices over Kp.

Lemma 1. For any integer m > 1 and a positive definite matric M € Kp'™™*™, there exists
A,y ..oy Am € R and orthogonal unit vectors vy, ..., vy, € Kg* such that \; > 0 and M = Z;zl )\i'viv;r.

Proof. Let M' = ¢y (M) € R™N*mN We first show M’ is positive definite. Since M = M, we have
= om(M) = pm(MT) = pm(M)T = (M")T, which means M’ is a symmetric matrix. Therefore,
there exists 5\1, ey j\mN € R and orthogonal unit vectors r, . .., rmn € R™Y such that M'r; = 5\1-7'2-
for i € [mN]. For each r;, we know v, = ¢~ 1(r;) is an eigenvector of M for eigenvalue \; since
qb( v;) = dm(M)g(v;) = M'r; = Airi = oAV 1). Also, since M is positive definite, (v )TM’U =
Ai |04 > 0, which implies A; > 0. For each eigenvalue ), let S be the set of eigenvectors v} such
that )\; = X and let T = Span(S). Then, each v € T is also an eigenvector of M with eigenvalue
A. Since for each v,v' € T and a € Kg, we have that M (v + av’) = Mv + aMv' = N,(v + av’)
and thus v + av’ € S, which implies S is a Kg-vector subspace of Kp'. Therefore, there exists an

orthonormal Kg-basis {ng), ce vfj‘)} of T'. We find such a basis for each eigenvalue ;\; and let V be



their union. Since for two different eigenvalues A, X', their eigenvectors are orthogonal, we know V
is an orthonormal Kg-basis of Kg'. Let {v1,...,v,} = V and A; be the corresponding eigenvalue
of v;. Let U be a matrix in Kﬁ”m such that the i-th column is v;. Then, we have UTU = I = UUT
and thus M = MUUT = UAUT = Dt Aiv; 'v , where A is a diagonal matrix with diagonal entries
)\17 ey Am O

Also, we show the following lemmas establishing the properties of the set S, := {+1,..., + XV -1}
R, which are used in the security analysis.

Lemma 2. Let Sy := {+1,...,+XN"1Y < R. For any b,b € S, such that b # b, the ideal generated
by b — b contains 2.

Proof. Let b= sX% b= 5X%for a,a e [0.N — 1] and s,5 € {—1,1}. Consider two cases:

- a=a: Then, b—b = 2X® or —2X¢. It is easy to see that the statement holds as (b—b) XV =% = 2
or —2.

- a # a: W.Lo.g. assume a > a. Then, b—b generates X% ?—s5 since (b—b)-(—sz™V~%) = X% %4 s5.
We can see that this generates X2°(¢=® — 1 for any e > 1, since (z — 1)(x + 1) = 22 — 1. Since
a—a < N and N is a power of 2, there exists e such that N|2¢(a — d) ut N ¢ 2e Ya — a).
Then, 2¢(a —a) = Nd’ for some odd o/, and thus b — b generates XV —1 = (=1)¢ —1 = —2,
which implies the statement. ]

Lemma 3. Let Sy, be as in Lemma 2. For by, ..., by, b1,...,by € Sy such that there exists k € [{]

_ 2
such that b # bj, |1+ 35_, bib;| < % +1.
Proof. Let v =1 —I—Zl LbEb; = k, ' v; X7 Since for any i € [¢], b¥b; € S, |[v], < ¢+ 1. Moreover,

since by, # by, then either bfb;, = —1 or £X* for some a € [1..N — 1]. Then, we have that |vo| < ¢
S5 vl < £, and [ +zj.V;11 o] <1+,

If Juo] = 0, o3 < (X5 [vj))? < €2 Otherwise, 1 < |vo| < £ Thus, Y, " [v;[* < |vol® +
(Zj.vz‘ll [0;1)? < Jvol2+ (0+1—|vg|)? < 2 +20+1+2Jvg|> —2(£+1)|vo| = 2 +1+2(Jvg| —£)(Jvo| — 1) <
¢% + 1, where the last inequality is due to the fact that 1 < |vg| < £. o

2.3 Lattices and Discrete Gaussian Distributions

In this subsection, we give definitions for lattices and discrete Gaussian distributions over R and
Kgr. An m-dimensional lattice A over R (resp. Kg) is a discrete additive subgroup of R™ (resp.
Kg'). Equivalently, A = L({by, ..., bg}) := {D;cp) 2ibi : @i € Z} for a set of R-linearly independent
vectors by, ..., b, € R™ (resp. Kg'), which is referred to as a basis of A. The size k is the rank of
the lattice A. We say A is a full rank lattice if k = m (resp. k = mN for A over Kg). For any
a e R™ (resp. Kg'), A+ a is a coset of A. The dual lattice of A is denoted as A* = {x € Span(A) :
Vye AxTy e Z}). A A-subspace is the linear span of some subset of A, i.e., a subspace S such
that S = Span(S n A). For any two vectors v € R™ (resp. Kp') and uw € R" (resp. Kg), denote
vu = (Vi1UL, ..., Viln, ..., Upll, ..., Unly,) € R™" (resp. Kg'). For any two lattices A € R™
(resp. K§') and A’ € R™ (resp. K§), denote their tensor product as A ® A’, which is the smallest
lattice over R™" (resp. K¢'") that contains {x @y : x € A,y € A'}.

Further, for a lattice A € Kg', we say A is a R-lattice if and only if A is a R-module, or
equivalently, r@ € A for any » € R and ® € A. For a R-lattice A, it can be represented as A =

N



Lr({b1,...,br}) == {Xep) ibi  xi € R} for a set of Kg-linearly independent vectors by, ..., by €
Kg', which is referred to as a R-basis of A. Also, for a matrix A € Rfjxm, we define the R-lattice
Aé(A) < R™ as

1 - m . —
A;(A) :=={x e R": Az = 0 mod q} .

We know Aé(A) has full-rank since ¢R™ < AqL(A).

For a positive definite matrix X' € R™*™ (resp. Ky' ™), there exists an invertible matrix
S e R™*™ (resp. Kg'*™ by Lemma 1) such that X = SST (resp. X = SS1). We call S the square
root of ¥ and denote S = v/X. Note that such S is not unique and we use VX to refer to some
arbitrary but fixed square root of X. For ¢ € R" (resp. Kg'), we define the function p V5, over R
(resp. Kg') as

Pz .o(T) == exp <—7r H\/E_l(az - c)H2> =exp(—n(z —c)f Tz —¢)) .

Then, we denote 2" as the discrete Gaussian distribution over a lattice coset A + a < R™
A+a/Z,c

(resp. Kg') with covariance matrix X, centered at ¢ € R™, where for & € A + a, we define

m . m p\/f,c(m)
A+a,\/f,c(w) = Pr[x s A+a,\/f,v] = p\/f,c(‘/l + a)

where p\/fc(/l +a) = erta p@c(m). In particular, for A +a < R™, we denote gAm:;loj%c( )

as the distribution of (x mod ¢) € R for & sampled from Dy o N

The following lemma shows that a discrete Gaussian distribution over Kg can be viewed as a
discrete Gaussian distribution over R via the coefficient embedding ¢.

Lemma 4. For a random variable * € Kg', the distribution of x is @A+a,\/f,c for some lattice

coset A+ a < K, positive definite matriz X € Kg™™, and vector ¢ € Kg' if and only if the
distribution of ¢(x) is 2™V

$(A+a).\/om(2).6(c)’
Proof. Since ¢m(vE)dm(VE)T = dm(VE)om(VE') = ou(VEVE') = gm(D), for any v € Kz,
oS (e (V) = exp(=m(6(v) — 6(c) o (2) 7 (¢(v) = 6()))
(= onvmr 60 - o)
~exp (< ovw- o))
(—7r NoRICE c)H2> — psa®).

= exp

= exp

m _ ¢gmN
Therefore, for any x € A + a, ‘@/Ha,\/ic(x) = .@¢(A+a)7\/m’¢(c)(¢(w)). O

Also, we make some remarks about the notations we will use throughout the paper. When
Y =021, for o € R (resp. Kg), we will use p, . and DR ac.c @S N and ‘@T+a,\/§,c’ respectively.
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Game MSIS?, . 5

A<—$ RI;xm
z — A(A)
Return (|z|| < 8 A Az =0)

Fig. 1. The module-SIS problem.

— 1 1 m
If the center ¢ = 0, then we omit the subscript ¢ from N and ‘@A+a,\@,c

A+a=7Z" (resp. A+ a = R"), we omit A+ a from the subscript of @T—i-a,\/fc'
The smoothing parameter of a lattice A with respect to & > 0, denoted by 7. (A), is the smallest
o > 0 such that p;/,(A*\{0}) < . Throughout the paper, we set ¢ = 272k,
We borrow the following lemma from [AGHS13] that bounds the f2-norm of discrete Gaussian

random variables and adapt it to lattices over Kg by Lemma 4.

. Moreover, when

Lemma 5 (Lemma 3 in [AGHS13] adapted to Kg). For any e € (0,1), a lattice A = Ky,
ce Kg', and 0 = n.(A), then

1+€‘2—mN.

Prl|le —¢c| = ovmN : x<sP,,.] < .
[ACh) — €

We also borrow the following lemma from [BTT22] to bound the smoothing parameters of
Aé(A) for a randomly sampled A.

Lemma 6 (Lemma 2.5 of [BTT22]). Letq be an odd integer and A a uniformly random matriz
n R’;X"L, k <m. Then, for any € > 0, except with probability at most 2~ on the choice of A, we
have

ne(AL(4)) < j%qr]fz\/N log(2mN(1 + 1/&)) .

2.4 Assumptions

We recall the module short integer solution (MSIS) problem (defined in Figure 1). The advantage
of A for the MSIS problem is defined as

Advss 5(A) == Pr[MSIS7, 5 =1] .

2.5 Rényi Divergence

We define the notion of Rényi Divergence between two distributions P, ) which we will use in our
analysis of the scheme.

Definition 1 (Rényi Divergence). Let P,Q be two discrete probability distributions such that
Supp(P) < Supp(Q) and « € [1,4+0w0]. We define the Rényi Divergence of order a, for o € (1,00)
as N
P(x)~ -
Ro (P|Q) := el

a—1
zeSupp(P) (SL’)
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For a =1 and a = o0, the Rényi Divergence is defined as
