
Security Guidelines for Implementing Homomorphic Encryption

Jean-Philippe Bossuat1, Rosario Cammarota2, Jung Hee Cheon3, Ilaria Chillotti, Benjamin
R. Curtis4(�), Wei Dai5, Huijing Gong2(�), Erin Hales6, Duhyeong Kim2, Bryan Kumara7, Changmin
Lee8, Xianhui Lu9, Carsten Maple7,10, Alberto Pedrouzo-Ulloa11, Rachel Player6(�), Luis Antonio Ruiz

Lopez12, Yongsoo Song3, Donggeon Yhee13, and Bahattin Yildiz14

1 jeanphilippe.bossuat@gmail.com
2 Intel Labs

{rosario.cammarota, huijing.gong, duhyeong.kim}@intel.com
3 Seoul National University

{jhcheon,y.song}@snu.ac.kr
4 Zama

ben.curtis@zama.ai
5 TikTok Inc.

weidai3141@gmail.com
6 Royal Holloway, University of London

{erin.hales.2018@live.,rachel.player@}rhul.ac.uk
7 The Alan Turing Institute

bkumara@turing.ac.uk
8 Korea Institute for Advanced Study

changminlee@kias.re.kr
9 Chinese Academy of Sciences

luxianhui@iie.ac.cn
10 University of Warwick

CM@warwick.ac.uk
11 atlanTTic, Universidade de Vigo

apedrouzo@gts.uvigo.es
12 Lorica Cybersecurity
luis@loricacyber.com
13 dgyhee@gmail.com

14 LG Electronics
bahattin.yildiz@lge.com

Abstract. Fully Homomorphic Encryption (FHE) is a cryptographic primitive that allows per-
forming arbitrary operations on encrypted data. Since the conception of the idea in [RAD78], it was
considered a holy grail of cryptography. After the first construction in 2009 [Gen09], it has evolved to
become a practical primitive with strong security guarantees. Most modern constructions are based
on well-known lattice problems such as Learning with Errors (LWE). Besides its academic appeal,
in recent years FHE has also attracted significant attention from industry, thanks to its applicability
to a considerable number of real-world use-cases. An upcoming standardization effort by ISO/IEC
aims to support the wider adoption of these techniques. However, one of the main challenges that
standards bodies, developers, and end users usually encounter is establishing parameters. This is
particularly hard in the case of FHE because the parameters are not only related to the security
level of the system, but also to the type of operations that the system is able to handle. In this
paper we provide examples of parameter sets for LWE targeting particular security levels, that can
be used in the context of FHE constructions. We also give examples of complete FHE parameter
sets, including the parameters relevant for correctness and performance, alongside those relevant for
security. As an additional contribution, we survey the parameter selection support offered in open
source FHE libraries.
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1 Introduction

An encryption scheme is said to be fully homomorphic if arbitrary computations can be conducted on
encrypted inputs without knowledge of the decryption key, and thus without access to the plaintext
input. From the time the first construction was proposed in [Gen09], there has been a significant effort to
improve fully homomorphic encryption (FHE) schemes in terms of both efficiency and security. The study
of its potential application started as early as [RAD78]. In fact, FHE supports many applications [KL21],
including computation over data stored on private clouds [BY88], private information retrieval [MCR21],
and secure inference [JVC18].

There has been significant academic and commercial effort towards developing real-world applications
for FHE. As a result, a community initiative towards standardizing FHE called HomomorphicEncryp-
tion.org was launched in 2017. More recently, there is an ongoing effort to formally standardize FHE
schemes by ISO/IEC. The schemes expected to be standardized are BFV [Bra12,FV12], BGV [BGV12],
CKKS [CKKS17] and CGGI [CGGI16] with their variants. These FHE schemes are based on variants of
the Learning with Errors (LWE) problem [Reg05], including Ring-LWE (RLWE) [SSTX09,LPR10] and
General-LWE (GLWE) [BGV12,CGGI17].15 To assess the concrete security of FHE schemes, we must
therefore estimate the concrete hardness of the underlying variant of LWE. Every instance of RLWE and
GLWE can be interpreted as an LWE instance. Moreover, it is not known how to cryptanalytically exploit
the algebraic structures of RLWE and GLWE. For this reason, it is appropriate to restrict focus to the
concrete security of LWE.

The purpose of this document is to support the ISO/IEC effort towards the standardization of FHE and
its goal is two-fold. The first goal is to present LWE parameter sets that can be used in FHE implemen-
tations that target particular levels of security. These parameter sets are presented in Section 4.1. They
are developed using the prevailing methodology to establish parameters for LWE-based cryptography,
following works such as [APS15] and the Lattice Estimator16. We make available our code for estimating
the security of these parameters sets at https://github.com/gong-cr/FHE-Security-Guidelines/.

Our second goal is to present examples of functional parameter sets that could be used for particular
FHE schemes in different contexts. These parameter sets, presented in Section 4.2, mention not only those
parameters that are relevant for security but also those relevant for correctness and performance. These
parameter sets are necessarily exemplar and may not suit all implementations in all application contexts.
Thus, in Section 4.3, we also survey the parameter selection support offered in open source FHE libraries.

1.1 Comparison to prior work [ACC+19]

Our approach builds upon the efforts in the prior work of HomomorphicEncryption.org [ACC+19], by
updating and expanding the LWE parameter sets for FHE schemes that target specific levels of security.
While their work provided valuable insights, it had certain limitations. Specifically, it did not consider
parameter sets commonly used in schemes like [CGGI16] and similar ones. Additionally, it overlooked
binary secret distributions, which are often used in practical applications. Furthermore, the LWE dimen-
sions considered in [ACC+19] are limited to a range of n = 1024 to n = 32768, despite larger dimensions
being employed in practice nowadays. Since currently there is no scientific evidence against including
these parameter sets, we overcome these limitations in this document. In addition, the parameter sets
provided in [ACC+19] may now be considered somewhat outdated, due to recent cryptanalytic advance-

15 GLWE is also referred to as Module LWE (MLWE) in the literature [BGV12,LS15], but we will use the termi-
nology “GLWE” in this document for consistency.

16 https://github.com/malb/lattice-estimator.
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ments that may have implications on the concrete hardness of LWE instances used in FHE applications
[CHHS19,SC19,EJK20,GJ21,BLLW22,MAT22,CST22,DP23b,PS23,DP23a,XWW+24].

It is important to note that the goals of this document and [ACC+19] are different. In addition to pre-
senting wider ranges of LWE parameter sets targeting specific levels of security, we also include functional
parameter sets. These functional parameter sets offer examples of complete sets of parameters, rather
than presenting only the parameters that are relevant for security. However, we would like to emphasize
that the functional parameter tables provided are not exhaustive and should be viewed as examples. In
addition, in contrast to [ACC+19], we do not provide details for any particular FHE construction or crypt-
analytic attack. Instead, we encourage readers to consult the existing literature for detailed information
on these aspects.

1.2 Related work

There are many other works in the literature on subjects that are similar to, but not directly addressed
by, this document. Here we present an overview of these topics.

NTRU-based FHE. The NTRU problem [HPS98] can also be seen as a variant of RLWE and indeed is
equivalent to RLWE for suitable parameters [SS11]. Several FHE schemes based on NTRU have been pro-
posed [LTV12,BLLN13,Klu22,BIP+22,XZD+23]. However, it is known that the sublattice structure of the
NTRU lattice can be used to optimize attacks [ABD16,CJL16,KF17,DvW21], leaving some NTRU-based
FHE schemes insecure. Concretely, it was shown in [DvW21] that to avoid the sublattice attacks one should
use modulus smaller than O(n2.484). This seems to rule out the BGV/BFV-like NTRU-based FHE schemes
that require large modulus (e.g., [LTV12]), but not CGGI-like NTRU-based schemes (e.g., [BIP+22]). As
the NTRU-based schemes that are secure against the sublattice attacks are relatively new, they are not
considered further in this work.

Reductions between LWE and other lattice problems. This document considers the hardness of
LWE from the point of view of estimating the concrete security of specific LWE instances. The hardness of
LWE can also be established by considering reductions between this and other lattice problems. It is known
that solving LWE is at least as hard as quantumly [Reg05,Reg10], or classically [Pei09,BLP+13], solving
worst-case lattice hard problems such as the decisional shortest vector problem (Gap-SVP) and the Short-
est Independent Vectors Problem (SIVP). While these hardness proofs mainly focused on the case that
the secret key is sampled from the uniform distribution, there are also reductions from LWE with uniform
secret to LWE with some other secret key distributions, including the error distribution [ACPS09], a uni-
form binary distribution [BLP+13], and a sparse binary distribution [CHK+16]. RLWE (resp. GLWE)
is proved to be at least as hard as worst-case lattice hard problems over ideal (resp. module) lat-
tices [LPR10,PRSD17,LS15]. Algorithms for solving Ideal-SVP are considered in [CDPR16,PHS19,BL21].

Weak instances of RLWE. Although RLWE as originally defined is proved to be at least as hard as
worst-case lattice hard problems over ideal lattices, there are variants with particular choices for quotient
polynomial and modulus that have been shown to be weak [EHL14,ELOS15,CLS16,CIV16,Pei16]. The
RLWE instances in this document are not weak in this sense.

Machine learning attacks. The line of work [WCCL22,LSW+23,LWA+23,SWL+24] shows how a trans-
former model may sometimes be used to recover secrets from LWE instances with sparse secrets in di-
mensions n ≤ 1024 for relatively large modulus q. It is not clear whether the approach would be feasible
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or competitive for attacking LWE instances that are used in FHE, which would either use a much smaller
modulus q than considered in [SWL+24] for n ≤ 1024, or use a larger dimension n. Hence we do not
consider this approach further.

Side channel attacks. Side-channel attacks exploit leakage gained from a specific implementation of
an algorithm on a specific computer system, rather than weaknesses in the implemented algorithm it-
self. The discussion and mitigation of potential side-channel leakages in FHE is not considered in this
document. We merely note that prior literature has exploited side channels in certain FHE implementa-
tions [PPM17,AKP+22,DP22,AA22], and that any potential side-channel leakage deserves attention since
it can amplify the utility of algorithmic approaches for solving LWE [DDGR20,DGHK23].

IND-CPAD security. The notion of IND-CPAD security was introduced by Li and Micciancio [LM21]
as a stronger assumption than IND-CPA security for schemes on approximate data. More recent work
[CSBB24,CCP+24] has demonstrated that the IND-CPAD security notion is applicable to schemes on
exact data with non-negligible decryption failure probability, which includes existing instantiations of
exact schemes. Developing approaches to ensure IND-CPAD security is currently an active area of research.
In this work we target IND-CPA security. We note that there may be application scenarios where IND-
CPAD is more appropriate, but we do not discuss this further.

Parameter selection. In Section 4.1 we present LWE parameter sets for FHE that target particular
levels of security. Such sets could be used as part of an automatic parameter selection tool or compiler
that considers functionality and efficiency alongside security. Approaches for automating the selection
of FHE (or partial) parameters were given in e.g. [DKS+20,LHC+22,LCK+23,BBB+23,JCH23]. Similar
such sets [ACC+19] have also been used in major FHE libraries to inform default parameters. We will
mention this further in Section 4.3.

1.3 Structure of document

The remainder of this document is organised as follows. Section 2 introduces the LWE problem and its
algebraic variants used in FHE schemes. Section 3 states the security levels that we target and describes the
tools and assumptions that we use to give concrete security estimates of LWE parameter sets. Section 4.1
gives examples of LWE parameter sets chosen to target a given security level that can be used in FHE
applications. Section 4.2 presents examples of complete FHE parameter sets. These parameters include
the LWE parameters relevant to security, as well as other parameters (such as plaintext modulus) that
are relevant for correctness and performance. Section 4.3 surveys the parameter selection support offered
in open source FHE libraries.

2 Notation and definitions

In this section, we specify the notation used in the remainder of the document. We define the LWE, RLWE,
and GLWE problems. We also specify the secret and error distributions that are used in practice.
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Learning With Errors (LWE). The LWE problem is parametrized by (n,m, q, χs, χe), where n is the
dimension, m is the number of available samples, q is the modulus, χs is the secret distribution over Zn

q ,
and χe is the error distribution over Zm.

Definition 1 (LWE distribution). For a secret s ∈ Zn
q that is chosen according to χs, the LWE distri-

bution samples a ∈ Zn
q uniformly at random, samples e ∈ Z from χe, computes b := a · s+ e mod q, and

outputs (a, b).

Definition 2 (Decision LWE). The Decision LWE problem asks to decide whether samples (a, b) are
from the LWE distribution or are chosen uniformly at random from Zn+1

q .

Definition 3 (Search LWE). The Search LWE problem asks to recover s (or equivalently e1, . . . , em)
given m samples {(ai, bi) : i = 1, . . . ,m} from the LWE distribution.

Ring Learning With Errors (RLWE).

Definition 4 (RLWE distribution). Let Rq = Zq[X]/(fN (x)) be a polynomial ring with modulus q,
where fN (x) is an irreducible polynomial of degree N . We often take a power-of-two cyclotomic ring so
that N is a power of two and fN (x) = xN+1. Let χs denote a secret distribution over Rq, and let χe denote
an error distribution over Rq. For a secret s ∈ Rq that is chosen according to χs, the RLWE distribution
samples a ∈ Rq uniformly, samples an error e ∈ Rq according to χe, computes b := as + e ∈ Rq, and
outputs (a, b).

Definition 5 (Decision RLWE). The Decision RLWE problem asks to decide whether samples (a, b) are
from the RLWE distribution or are chosen uniformly at random from Rq ×Rq.

Definition 6 (Search RLWE). The Search RLWE problem asks to recover s given m samples {(ai, bi =
ai · s+ ei) : i = 1, . . . ,m} from the RLWE distribution.

General Learning With Errors (GLWE).

Definition 7 (GLWE distribution). We again let Rq be an (e.g. cyclotomic) polynomial ring with
modulus q. We overload notation to let χs denote a secret distribution over Rk

q , and to let χe denote an

error distribution over Rq. For a secret s ∈ Rk
q that is chosen according to χs, sample a ∈ Rk

q uniformly,
and sample an error e ∈ Rq from χe. The GLWE distribution computes b := a · s+ e ∈ Rq, and outputs
(a, b).

Definition 8 (Decision GLWE). The Decision GLWE problem asks to decide whether samples (a, b) are
from the GLWE distribution or are chosen uniformly at random from Rk+1

q .

Definition 9 (Search GLWE). The Search GLWE problem asks to recover s given m samples {(ai, bi) :
i = 1, . . . ,m} from the GLWE distribution.
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Error distributions. If the standard deviation of the error distribution is Ω(
√
n), the best-known

algorithm to solve the LWE problem requires exponential time [Reg10]. In practice, implementations
of RLWE/GLWE-based homomorphic encryption schemes typically choose much narrower distributions.
For RLWE-based schemes with an underlying power-of-two cyclotomic ring, each coordinate of the error
polynomial is independently sampled from a Gaussian distribution centered at 0 with standard deviation
σ. A very common choice is σ ≈ 3.2 [ACC+19,HS20]. For RLWE-based schemes where the underlying
ring is the kth cyclotomic ring (where k is not a power of two), each coordinate of the error polynomial is
sampled from Gaussian distribution centered at 0 with standard deviation σ

√
k [HS20]. As an alternative,

the FIPS 203 (draft) [oST23] makes use of a centered binomial distribution as the error distribution. For
example, a centered binomial distribution resulted from 42 fair coin tosses centers at 0 and has standard
deviation 3.24. Constant-time sampling from a centered binomial distribution can be more efficient than
that from a discrete Gaussian distribution when σ is small.

Secret distributions. Various choices are used in practice for the secret key distribution. Below we list
some examples.

– The coefficients of the secret polynomial s are chosen uniformly at random from Zq: this is known as
uniform secret.

– The secret polynomial s is chosen according to the error distribution χe: this is known as normal
form secret.

– The coefficients of the secret polynomial s are chosen uniformly at random from {−1, 0, 1}: this is
known as ternary secret.

– The coefficients of the secret polynomial s are chosen uniformly at random from {0, 1}: this is known
as binary secret.

– The coefficients of the secret polynomial s are chosen in {−1, 0, 1} with a restriction that exactly h
of them are 1 or −1, and the rest are all zeros: this is known as fixed Hamming weight secret. The
exact method for sampling the nonzero entries may vary depending on the implementation.

– For a fixed Hamming weight secret such that the Hamming weight is small (e.g., h < 0.25 · n), keys
chosen from this distribution are called sparse secret keys. We discuss sparse secrets in the following
subsection. The LWE parameter sets presented in this document do not have sparse secrets.

Sparse secrets. Sparse secrets were first used in homomorphic encryption to reduce the complexity of
recryption, a part of bootstrapping [HS21]. For certain schemes, the multiplicative depth of bootstrapping
depends on the Hamming weight of the secret key [CH18]. For others, the bootstrapping approach relates
the Hamming weight of the secret key to the approximation interval of a sine function, and consequently
this Hamming weight must be bounded and somewhat small for these algorithms [CHK+18,CCS19,HK20]
(see also Appendix A). For these reasons, some implementations of BFV, BGV, and CKKS bootstrapping
use sparse secret keys [CHK+18,CH18,CCS19,HK20] or temporarily switch the ciphertext to a sparse
secret [BTPH22]. However, more recent works have achieved correct and efficient bootstrapping with
non-sparse keys for CKKS [BMTPH21] and some instances of BFV [OPP23].

Reductions exist for the sparse secret variant of LWE, denoted as spLWE. The reduction [CHK+16] shows
that spLWE can be reduced from standard LWE. However, the reduction is not sufficiently tight to provide
useful insight into parameter setting.

Many attacks leverage properties of sparse secrets [NMW+24,HKLS22,May21,CHHS19,CP19,HG07]. Es-
timates of the cost of these attacks are not currently implemented in the Lattice Estimator, which is the
tool used to estimate security in this work, so it is difficult to assess the security of parameter sets for
which these attacks are applicable. Some of these attacks (e.g. [HKLS22,May21]) are not yet applicable to
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FHE parameter sets. However, given the pace of development in this area, we expect future improvements
in algorithms for solving spLWE.

3 Concrete security estimation

In this section we state the security levels that the parameter sets in Section 4.1 target, and we outline
the assumptions under which we give estimates for the concrete security of those parameter sets.

3.1 Security Levels

We define three classical security levels, and corresponding quantum security levels according to Appendix
A of FIPS 203 (draft) [oST23], as follows.

Category 128, 192, 256: Any algorithm that solves the underlying LWE instance must require (classi-
cal) computational resources comparable to or greater than those required for key search on a block
cipher with a 128-bit, respectively 192-bit, respectively 256-bit key.

Category 128Q, 192Q, 256Q: Any algorithm that solves the underlying LWE instance must require
quantum computational resources comparable to or greater than those required for key search on a
block cipher with a 128-bit, respectively 192-bit, respectively 256-bit key.

3.2 The Lattice Estimator

We estimate concrete security of the FHE parameter sets given in Section 4.1 using the open-source
Lattice Estimator tool [APS15]. The Lattice Estimator is widely used in estimating the security of FHE
parameter sets [ACC+19] as well as more broadly in lattice-based cryptography.

Algorithms for solving LWE, that are currently supported in the Lattice Estimator, include the primal
attack [BG14,ADPS16], the dual attack [MR09,Alb17,GJ21,MAT22], decoding attacks [LN13], Coded-
BKW [GJS15,KF15], and algebraic algorithms [AG11,ACF+15]. Some combinatorial algorithms, including
hybrid combinatorial and lattice algorithms [How07,ACW19,CHHS19,EJK20] are also supported.

However, it is important to note that some cryptanalytic algorithms applicable to LWE instances, includ-
ing those typical of FHE applications, are not supported in the Lattice Estimator. This includes some
combinatorial and hybrid approaches [May21,HKLS22,BLLW22,EGMS23]. Moreover, recent work sug-
gests the success probability of the dual attack may be overestimated in some cases, which may impact
the utility of the dual attack estimates in the Lattice Estimator [DP23b].

3.3 Lattice reduction algorithms and cost models

Since several of the algorithms for solving LWE rely on a lattice reduction subroutine (most commonly
instantiated as BKZ), it is important to specify the cost model used for lattice reduction. There are
several cost models available in the Lattice Estimator and there is not consensus in the literature as to a
universally preferred cost model (see e.g. [ACD+18]). Following [ACC+19], our estimates for the security
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for the parameters presented in Section 4.1 are derived using the following cost models. To estimate the
cost of BKZ with block size β in a lattice of dimension d, in the classical setting, we use:

TBKZ(β, d) = 8d · 20.292β+16.4.

In the quantum setting, we use:
TBKZ(β, d) = 8d · 20.265β+16.4.

To configure this in the Lattice Estimator, we set RC.BDGL16 [BDGL16] as the cost model in the clas-
sical setting and RC.LaaMosPol14 [LMvdP14] as the cost model in the quantum setting. We further set
red shape model = "gsa" as the behaviour model for BKZ.

3.4 Computational cost metric

To assess whether we have met a target security level as defined in Section 3.1, we need to define a
metric for the “computational resources”. Multiple such metrics exist (see e.g. [ADPS16,ABD+20]) and
their refinement is the subject of ongoing research. Since we use the Lattice Estimator to estimate the
concrete cost of algorithms for solving LWE, we use the unit of computation used in the Estimator: “ring
operations”. That is, we will estimate that a particular parameter set meets Category 128 (respectively
128Q) if the Lattice Estimator estimates that all algorithms cost greater than 2128 ring operations when
using a classical (respectively quantum) lattice reduction cost model. Note that “ring operations” can be
converted into CPU cycles for classical computers.

4 Tables of parameters

In this section, we provide examples of parameter sets for FHE, targeting security (Section 4.1) and
functionality (Section 4.2). We also review the parameter selection support offered in some of the major
open-source FHE libraries. The notation used in Sections 4.1 and 4.2 is summarised in Table 4.1.

4.1 Parameter sets that target particular security levels

In this section, we give in Table 4.2 and 4.3 examples of LWE parameter sets that can be used in FHE
applications. These LWE parameter sets target particular security levels as defined in Section 3.1 using
the Lattice Estimator under the assumptions stated in Section 3.3 and 3.4. As such, the tables in this
section are similar to those presented in [ACC+19]. The concrete security of the parameter sets is assessed
by estimating the cost of primal usvp, primal bdd, hybrid bdd, and hybrid dual using commit 00ec72c of
the Lattice Estimator.

Table 4.2 presents the maximal log (base 2) of the modulus q that can be used in dimension N , for
Gaussian error distribution with standard deviation σ = 3.19, and for secret distributions that are either
uniform ternary or Gaussian with standard deviation σ = 3.19, to give LWE parameter sets that target the
Category 128 or 128Q, 192 or 192Q, 256 and 256Q security levels. This table is suitable in but not limited
to the BFV/BGV/CKKS application settings where the error distribution standard deviation σ = 3.19 is
typically fixed, but the modulus q can be varied.

In the CGGI setting, q is typically fixed to either 32-bit or 64-bit, and the error standard deviation can
be varied. Thus, in Table 4.3, we present the minimal log (base 2) of the error distribution standard
deviation σ, that can be used in dimension n = k ·N , for modulus q, and for secret distributions that are
either uniform binary, uniform ternary, or Gaussian, to give LWE parameter sets that target the Category
128, 192, 256, 128Q, 192Q, or 256Q security levels.
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Parameter Definition

λ Security level (classical or quantum) of the parameter set.

N Dimension of the RLWE instance.

n Dimension of the LWE instance, n = kN when modelling GLWE.

q LWE modulus. Largest ciphertext modulus for BGV, BFV, CGGI.

Q Largest modulus of the ciphertext space, for CKKS.

P
Multiplication modulus for CKKS,
with q = PQ bounded according to security level.

t BGV/BFV/CGGI plaintext modulus.

χs Probability distribution of the LWE secret.

χe Probability distribution of the error of a fresh LWE sample.

σ

Standard deviation of the LWE error distribution, also target
standard deviation of the error distribution for ciphertexts
after CKKS bootstrapping.

L Level, number of maximal repeated multiplication supported.

Scaling Factor CKKS scaling factor.

Base prime
Number of significant bits for CKKS.size

Precision Bit

Evaluated by logarithmically transforming the difference
between results from standard (cleartext) calculation and those
computed homomorphically.

Table 4.1: Notation used in Tables 4.2 4.3 4.4 4.5 4.6 and 4.7.
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n log2(q) (Classical) log2(q) (Quantum)

Ternary Gaussian Ternary Gaussian

λ = 128

1024 26 29 25 27

2048 54 56 50 52

4096 108 110 101 103

8192 217 219 203 205

16384 438 439 409 411

32768 881 883 825 827

65536 1776 1778 1663 1665

131072 3576 3578 3348 3351

λ = 192

2048 37 39 34 36

4096 75 77 70 72

8192 151 153 141 143

16384 304 306 283 285

32768 611 613 570 572

65536 1229 1230 1145 1147

131072 2469 2471 2302 2304

λ = 256

2048 28 30 26 28

4096 58 60 54 56

8192 117 119 109 111

16384 237 239 220 222

32768 475 477 442 444

65536 955 957 889 890

131072 1918 1920 1784 1786

Table 4.2: Maximal log (base 2) of the modulus q that can be used in dimension N , for Gaussian error
distribution with standard deviation σ = 3.19, and for secret distributions χs that are either uniform
ternary or Gaussian with standard deviation σ = 3.19, to give LWE parameter sets that target the
Category 128, 192, 256 (‘Classical’), 128Q, 192Q, or 256Q (‘Quantum’) security levels.
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n log2(q) log2(σ) (Classical) log2(σ) (Quantum)

Binary Ternary Gaussian Binary Ternary Gaussian

λ = 128

630

32

17.9 16.6 14.2 18.9 17.7 15.4

1024 7.6 6.3 4.5 9.2 8.0 6.3

≥ 2048 2.0 2.0 2.0 2.0 2.0 2.0

630

64

49.9 48.6 46.2 50.9 49.7 47.4

750 46.8 45.5 43.0 48.0 46.7 44.4

870 43.7 42.4 39.9 45.0 43.8 41.4

1024 39.6 38.3 36.1 41.2 40.0 37.9

2048 12.6 11.4 9.4 16.0 14.8 12.7

≥ 4096 2.0 2.0 2.0 2.0 2.0 2.0

λ = 192

630

32

23.6 22.2 19.7 24.3 23.0 20.6

1024 16.3 15.0 12.4 17.5 16.2 13.8

≥ 2048 2.0 2.0 2.0 2.0 2.0 2.0

630

64

55.6 54.2 51.7 56.3 55.0 52.6

750 53.4 52.0 49.5 54.2 52.9 50.5

870 51.2 49.8 47.3 52.2 50.9 48.5

1024 48.3 47.0 44.4 49.5 48.2 45.8

2048 29.4 28.1 25.5 31.9 30.6 28.2

≥ 4096 2.0 2.0 2.0 2.0 2.0 2.0

λ = 256

1024

32

21.0 19.6 16.9 21.9 20.6 18.1

2048 6.2 4.8 2.4 8.1 6.8 4.6

≥ 4096 2.0 2.0 2.0 2.0 2.0 2.0

1024

64

53.0 51.6 48.9 53.9 52.6 50.1

2048 38.2 36.8 34.2 40.1 38.8 36.3

4096 8.9 7.2 4.8 12.5 11.3 8.8

≥ 8192 2.0 2.0 2.0 2.0 2.0 2.0

Table 4.3: Minimal log (base 2) of the error distribution standard deviation σ, that can be used in
dimension n = kN and for secret distributions χs that are either uniform binary, uniform ternary, or
Gaussian with standard deviation σs = 4, to give LWE parameter sets that target the Category 128, 192,
256 (‘Classical’), 128Q, 192Q or 256Q (‘Quantum’) security level. Since CGGI considers LWE ciphertexts,
the dimension n is not restricted to a power of two, and therefore other values of n can be used (similarly,
other values of q can be used). In both cases, we the value of log2(σ) should be adapted accordingly.

11



4.2 Functional parameter sets

In this section, we give examples of SHE and FHE parameters sets that could be used for BGV, BFV,
CGGI, or CKKS applications. These parameter sets include the LWE parameters relevant to security, as
well as other parameters (such as plaintext modulus for BGV or BFV) that are relevant for correctness
and performance.

Note that the parameter sets presented herein are intended as illustrative examples and may not necessar-
ily represent optimal configurations to the individual libraries, and they are not intended for comparison
among libraries.

Functional parameters for BGV and BFV. Table 4.4 provides examples of parameter sets for (RNS
variants of) BGV/BFV in an SHE setting, i.e., without bootstrapping. In Table 4.4 there are param-
eters that are estimated to meet the Category 128, 192, 256, 128Q, 192Q or 256Q security levels.
The parameters in Table 4.4 were generated17 using Microsoft SEAL [SEA23]. The notation used is
described in Table 4.1. Since BFV/BGV bootstrapping has seen a lot of recent developments and im-
provements [GV23,GIKV23,OPP23,Gee24,KSS24,KDE+24,MHWW24,LW24], we choose not to present
example parameters for BFV/BGV with bootstrapping.

λ 128 192 256 128Q 192Q 256Q

log2(N) 14 15 16 14 15 16

log2(q) 424 585 920 391 562 880

log2(t) 20 20 20 20 20 20

χs Ternary Ternary Ternary Ternary Ternary Ternary

σ (χe) 3.2 3.2 3.2 3.2 3.2 3.2

L (BFV) 10 14 23 9 13 22

L (BGV) 5 8 13 4 8 12

Table 4.4: Sample parameters for BFV/BGV without bootstrapping.

Sample parameters for CGGI. In Table 4.5 we present examples of parameters for CGGI that are
estimated to meet the Category 128 security level. The notation used in Table 4.5 is as defined in Table 4.1,
with the following additions: (χLWE, σLWE) denote the secret key distribution, and the standard deviation
of the Gaussian error used in LWE ciphertexts; (χGLWE, σGLWE) denote the secret key distribution and the
standard deviation of the Gaussian error used in GLWE ciphertexts; (βks, ℓks) denote the decomposition
parameters used in key-switching keys; and (βpbs, ℓpbs) denote the decomposition parameters used in the
bootstrapping keys. Finally, perror denotes the error probability for a single bootstrapping operation.
Parameters in Table 4.5 were generated using the optimization techniques found in Concrete [BBB+23].

17 Table 4.4 can be reproduced using a script available at https://github.com/WeiDaiWD/SEAL-Depth-Estimator.
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λ 128 128 128 128

n 742 777 630 512

log2(N) 11 9 10 10

k 1 3 1 1

q 264 264 232 227 / 214

t 24 2 2 2

χLWE Binary Binary Binary Ternary

χGLWE Binary Binary Binary Ternary

βks 223 218 27 128

ℓks 5 3 3 -

βpbs 223 218 22 27

ℓpbs 1 1 8 -

σLWE 2−17.11 2−18.03 2−15 3.2

σGLWE 2−51.60 2−38.08 2−25 3.2

perror 2−40 2−40 2−165 2−52

Table 4.5: Sample parameters for CGGI. The first two parameter sets (with n = 742 and 777) are parameter
sets from the TFHE-rs library. The third parameter set (with n = 630) is from TFHElib, and the fourth
parameter set (with n = 512) is taken from the parameters reccomended for OpenFHE in [MP21]. Note
that the failure probabilities perror are computed using varying techniques. Note that the parameter t,
plaintext modulus, is sometimes referred to as p in the literature.

Sample parameters for RNS-CKKS. In Table 4.6, respectively Table 4.7, we present example pa-
rameter sets for (an RNS variant) of CKKS without, respectively with, bootstrapping. The parameters
in Table 4.6 are estimated to meet the Category 128, 192, 256, 128Q, 192Q, 256Q levels of security. The
parameters in Table 4.7 are estimated to meet the Category 128 and 192 levels of security.

The parameters in Table 4.6 were selected using OpenFHE v1.1.3 (commit 7b08ce1) [BBB+22]. The
parameters in Table 4.7 are selected18 using Lattigo v5.0.2 [Tun23]19 for Set I and using OpenFHE
v1.1.3 (commit 7b08ce1) [BBB+22] for Sets II and III. The rescale method for OpenFHE is set to
FLEXIBLEAUTO. Both libraries contain implementation of several bootstrapping algorithms, including
[CHK+18,CCS19,HK20,BMTPH21,BCC+22].

The total cost in levels of CKKS bootstrapping can be broken down into several specific building blocks,
with the most resource-intensive steps being: (1) CoeffsToSlots, (2) EvalMod and (3) SlotsToCoeffs. Ta-
ble 4.7 provides the number of consumed levels for the execution of each of these blocks.

18 Tables 4.6 and 4.7 can be reproduced using scripts available at https://github.com/gong-cr/

FHE-Security-Guidelines/.
19 Lattigo also provides support by default for the sparse secret encapsulation technique [BTPH22], but this

feature was disabled to instead use a dense secret.
20 Number of Slots refers to the number of complex numbers that are encrypted in each separate ciphertext.
21 This scaling factor does not affect bootstrapping as Lattigo uses different independent internal scaling factors

for each step of the bootstrapping circuit.
22 Detailed explanation on this bootstrapping failure probability and the parameterK can be found in Appendix A.
23 Following [BCC+22], Iterations corresponds to the number of repetitions applied to improve the final precision.

Here, Iterations set to 1 means that no additional bootstrapping repetitions are applied.
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λ 128 192 256 128Q 192Q 256Q

log2(N) 14 15 15 14 15 15

χs Ternary Ternary Ternary Ternary Ternary Ternary

σ (χe) 3.19 3.19 3.19 3.19 3.19 3.19

Base Prime Size 40 44 40 40 44 40

L 7 9 8 6 8 7

log2(PQ) 426 602 472 388 560 434

log2(Q) 306 422 352 268 380 313

log2(P ) 120 180 120 120 180 120

log2 (Scaling Factor) 38 42 39 38 42 39

Precision Bit 25.1 26.7 22.4 24.0 28.2 23.5

Table 4.6: Sample parameters for RNS-CKKS without bootstrapping.

Set I Set II Set III

λ 128 128 192

log2(N) 16 16 17

Number of Slots20 32768 32768 65536

χs Ternary Ternary Ternary

σ (χe) 3.19 3.19 3.19

Base Prime Size 45 60 60

L (after bootstrapping) 11 5 14

log2(Scaling Factor) 35 21 55 55

log2(PQ) 1769 1750 2425

log2(Q) 1464 1270 1765

log2(P ) 305 480 660

Level cost of SlotsToCoeffs 4 2 2

Level cost of EvalMod 12 13 13

log2(Pr[||I(X)|| > K])22 -37.65 -37.65 -11.66

K 512 512 512

Level cost of CoeffsToSlots 3 2 2

Iterations23 1 1 1

Precision Bit 15.9 9.4 7.5

Table 4.7: Sample parameters for RNS-CKKS with bootstrapping.

4.3 Parameter selection on open source libraries and compilers

Most FHE libraries lack a systematic process to select parameters for a desired application. However,
external tools have been developed to help with this task for some of the most popular libraries. Table
4.8 lists some of the available open source FHE libraries and the schemes they support. In this section,
we will overview parameter selection approaches in some of the major FHE libraries.
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Library Link BFV BGV CKKS CGGI Note

blyss blyssprivacy/sdk Combines GSW and ba-
sic LWE.

Cingulata CEA−LIST/Cingulata ✓ Also a compiler
toolchain for its own
BFV implementation
and for TFHElib.

Cupcake facebookresearch/Cupcake Only implements of the
additive version of BFV.

FHE-DECK FHE-Deck/fhe-deck-core Contains only the basics
for RLWE and NTRU in-
frastructure.

FHELib Crypto-TII/fhelib ✓

HEaaN cryptolabinc/heaan ✓ ✓ Proprietary. Free for
non-commercial usage.

HELib homenc/HElib ✓ ✓

HEHub primihub/hehub ✓ ✓ ✓

HEU secretflow/heu ✓ ✓ Contains additive ho-
momorphic encryption.
FHE algorithms still in
development.

Lattigo tuneinsight/lattigo ✓ ✓ ✓ ✓

Liberate.FHE Desilo/liberate-fhe ✓

NFLLib quarkslab/NFLlib ✓

OpenFHE openfheorg ✓ ✓ ✓ ✓

Parmesan crates/parmesan Builds on TFHE-rs.

Phantom
encryptorion-lab/

phantom-fhe

✓ ✓ ✓

Poseidon luhang-HPU/Poseidon ✓ ✓ ✓

REDcuFHE
TrustworthyComputing/

REDcuFHE

✓

SEAL microsoft/SEAL ✓ ✓ ✓

TFHE-rs zama-ai/tfhe-rs ✓

TFHElib tfhe/tfhe ✓

Table 4.8: Open source homomorphic encryption libraries and the algorithms they support.
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OpenFHE. OpenFHE [BBB+22] supports the schemes BFV, BGV, CKKS, and the CGGI-like scheme
FHEW. For each of BFV, BGV, and CKKS, the authors of the library provide a process to select parameters,
depending on various factors such as desired security level, depth support, batch size, key-switching
mechanism, etc. The library then finds24 the appropriate parameters based on the tables in [ACC+19].

SEAL and EVA. Microsoft’s SEAL [SEA23] supports BFV, BGV and CKKS. The main library does
not have an elaborate system to find optimal parameters for the desired application. Nonetheless, it does
provide25 a list of upper bounds for the ciphertext modulus depending on the dimension of the ring, the
desired security level and the distribution of the secret key. This list follows the tables from [ACC+19]. It
is worth noting that SEAL uses, by default, a centered binomial distribution for the generation of LWE
samples. Microsoft’s EVA [DKS+20] is a compiler for homomorphic encryption built to work with the
SEAL library. It contains a mechanism26 to select an adequate decomposition of the ciphertext modulus
depending on the desired application.

Lattigo. Tune Insight’s Lattigo [Tun23] contains implementations of BFV, BGV and CKKS as well as
support for the CGGI-like scheme FHEW. The library allows the user to set their own parameters, only
providing a method to verify that the parameters are valid, i.e., that the parameters follow the hypotheses
required for the construction to work and that they do not lead to a zero secret or error.

TFHE-rs and Concrete. Zama’s TFHE-rs [Zam22b] implements a variant of the CGGI scheme.
The library offers parameter sets for different configurations depending on the application. Zama’s
Concrete [Zam22a] is a compiler for CGGI built on top of THFE-rs. It contains an optimizing tool27

to find appropriate parameters for a given FHE computation. It makes use of the Lattice Estimator to
find the security level of the parameters.

HECATE and ELASM. Besides EVA, there have been other efforts proposing automatic scale man-
agement schemes through compilers. For instance, HECATE [LHC+22] and ELASM [LCK+23] target
CKKS implementations. HECATE explores the scale management space to optimize for latency, while
ELASM additionally considers the error/latency tradeoff.

5 Conclusion

This work provides example LWE parameter sets that can be used in FHE implementations to target
particular levels of security. We also make available the code used to estimate the security of these
parameter sets. We recognize the dynamic nature of cryptographic attacks and the necessity of updating
our parameters in response to significant advancements in lattice cryptanalysis. We anticipate if these
advancements are integrated into the Lattice Estimator, then using our methods and code will enable users

24 The relevant code can be found in files bfvrns-parametergeneration.cpp, bgvrns-parametergeneration.cpp,
and ckksrns-parametergeneration.cpp (Retrieved from OpenFHE v1.1.4 – commit 94fd76a).

25 The relevant code can be found in the file hestdparms.h (Retrieved from SEAL v4.1.1 – commit 206648d).
26 The relevant code can be found in the file encryption parameter selector.h (Retrieved from EVA v1.0.1 –

commit 4cd3254).
27 Documentation on the optimizer can be found in the file optimizer.md (Retrieved from Concrete v2.5.0 –

commit 240ae2d).
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to independently update these parameter sets as necessitated by new developments. Furthermore, as the
field of FHE matures and expands, we hope that more types of FHE schemes, diverse secret distributions,
and comprehensive attack scenarios can be integrated into future guidelines.

This work provides examples of functional parameter sets that could be used for particular FHE schemes
in different contexts, and reviews parameter selection support in some of the major FHE libraries. In
practice, it is not only security that must be considered, but also functional correctness and efficiency;
and the optimal choice of parameters may be application- and library-dependent. An advanced parameter
selection framework for FHE that takes into account all these aspects is an important direction for future
research.
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A CKKS bootstrapping failure probability

In this Appendix we give more details about the failure probability in CKKS bootstrapping as briefly
mentioned in Table 4.7. We omit a full description of CKKS bootstrapping and refer the reader to
e.g. [CHK+18,CCS19,HK20,BMTPH21,BCC+22] for more details.

The bootstrapping failure probability plays a crucial role in the practicality of CKKS bootstrapping and
it is related to the EvalMod step. The EvalMod step of the bootstrapping takes as input the message
I(Y ) · Q + ∆m(Y ) with Y = XN/2M (M being the number of complex slots) and aims to vanish the
integer polynomial I(Y ) by homomorphically evaluating the function fmod = x mod 1 in the union of
intervals ∪K

i=−K [i− ϵ, i+ ϵ], with [−ϵ, ϵ] being the expected interval where the original message lies. The
coefficients of the polynomial I(Y ) are the sum of h+ 1 uniform random variables in [−0.5, 0.5), with h
the Hamming weight of the secret.

Remark 1. There have been many works proposing different approaches for the EvalMod step. However,
all practical approaches follow the same blueprint, which is to find a good polynomial approximation of
fmod. Which function is chosen to closely match fmod and how the polynomial approximation is done has
no effect on the failure probability. Only the interval in which it is approximated, i.e. the parameter K,
affects the failure probability.

If ∥I(Y )∥ > K, then the EvalMod step returns an unusable corrupted plaintext. This failure probability is
defined as ffail(K,h,M) = Pr [∥I(Y )∥ > K] by [BTPH22] and they show how to compute it by adapting
the Irwin Hall cumulative distribution function:

ffail(K,h,M) : 1−

 2

(h+ 1)!

⌊K+0.5(h+1)⌋∑
i=0

(−1)i
(
h+ 1

i

)
(K + 0.5(h+ 1)− i)h+1

− 1

2M

. (1)

Usually the bootstrapping parameters are instantiated using a secret with fixed Hamming weight h, which
allows to get an exact estimation of ffail(K,h,M), and thus to choose K according to the desired failure
probability. However, in our case we have a ternary secret with coefficients sampled with probability
[p/2, 1− p, p/2] and p = 2/3, thus the exact value of h is unknown and this prevents from being able to
estimate the exact failure probability. We provide a procedure to find a suitable K in such case given N ,
p and M and a desired failure probability 2δ for some δ < 0:

1. Estimate K based on E[h]: This step is straightforward and can be done with a binary search on K
by successive evaluations of ffail(K,E[h],M).

2. Estimate a correction factor K ′ such that 1 − Pr[ffail(K + K ′, h,M) ≤ 2δ] ≤ 2δ: Since I follows an
Irwin Hall distribution, it is O(

√
h) and we have

K =
⌈
κ ·

√
E[h] + 1

⌉
,

from which we obtain κ. Let now σh =
√

Np(1− p), then the value K will increase by d κσh√
E[h]+1

≈

κ
√
1− p if h deviates by dσh of E[h]. 28 Therefore

Pr
[
h ≤ E[h] + dσh

]
= erf

(
dσh√
2σh

)
= erf

(
d√
2

)
.

28 We assume that d is positive since the converse would not have a negative impact on the failure probability.
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Thus given 1− erf
(

d√
2

)
≤ 2δ we have K ′ =

⌈
dκ

√
1− p

⌉
.

3. Set K = K +K ′.

Following the procedure described above, we implemented the following two helper functions:

1. Probability(Xs,K, log2(N), log2(M)) → δ: given Xs the secret distribution,K, log2(N) and log2(M)
returns δ = log2(Pr [∥I(Y )∥ > K]).

2. FindSuitableK(Xs, log2(N), log2(M), δ) → K: given given Xs the secret distribution, log2(N) and
log2(M) and δ, returns K such that Pr [∥I(Y )∥ > K]) ≤ 2δ.

Both 1. and 2. take into account the correction factor K ′ if Xs is specified as a probability den-
sity. The code is available at https://github.com/gong-cr/FHE-Security-Guidelines/blob/main/

RNS-CKKS-examples/lattigo/templates/bootstrapping/failure/failure_probability.go.

Remark 2. Equation 1 require arbitrary precision arithmetic of precision 2h to produce accurate results
due to (i) the alternating sum over K + h/2 and (ii) the exponentiation by h + 1. Thus evaluating 1
is O(h3), making it prohibitively expensive for large values of h. Instead, we can pre-compute a table
of (K, δ) for a fixed large enough h (e.g. 8192) and a range of δ that are likely to be used in practice
(e.g. 0 > δ > −512). Then the value K ′ for some other h′ can be approximated by using the relation
κ ≈ K/

√
h+ 1 ≈ K ′/

√
h′ + 1 for a given δ.
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