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ABSTRACT
Banks publish daily a list of available securities/assets (axe list) to

selected clients to help them effectively locate Long (buy) or Short

(sell) trades at reduced financing rates. This reduces costs for the

bank, as the list aggregates the bank’s internal firm inventory per

asset for all clients of long as well as short trades. However, this

is somewhat problematic: (1) the bank’s inventory is revealed; (2)

trades of clients who contribute to the aggregated list, particularly

those deemed large, are revealed to other clients. Clients conduct-

ing sizable trades with the bank and possessing a portion of the

aggregated asset exceeding 50% are considered to be concentrated

clients. This could potentially reveal a trading concentrated client’s

activity to their competitors, thus providing an unfair advantage

over the market.

Atlas-X Axe Obfuscation, powered by new differential private

methods, enables a bank to obfuscate its published axe list on a

daily basis while under continual observation, thus maintaining an

acceptable inventory Profit and Loss (P&L) cost pertaining to the

noisy obfuscated axe list while reducing the clients’ trading activity

leakage. Our main differential private innovation is a differential

private aggregator for streams (time series data) of both positive

and negative integers under continual observation.

For the last two years, Atlas-X system has been live in production

across three major regions—USA, Europe, and Asia—at J.P. Morgan,

a major financial institution, facilitating significant profitability.

To our knowledge, it is the first differential privacy solution to be

deployed in the financial sector. We also report benchmarks of our

algorithm based on (anonymous) real and synthetic data to show-

case the quality of our obfuscation and its success in production.
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1 INTRODUCTION
An axe is an interest in a particular security that a firm is looking

to buy or sell
1
. In general, a firm providing an axe to external

counterparties has a strong interest in keeping such information

private as it provides an indication of the direction (buy or sell)

they want to trade a particular security. If other market participants

are informed of how a particular firm is axed in a given security,

they can extract precious information on the firm’s trading strategy

and, perhaps, could even drive the price of the security in a more

disadvantageous direction before the firm can transact.

Large broker-dealer banks, including J.P. Morgan, distribute ag-

gregated axe lists to clients (called hedge funds) with the aim of

reducing the costs of running their activities. The axe list is shared

electronically (via email or other means) and, most importantly,

is common to all clients receiving it. It consists of a list of tuples

(symb, direction, quantity) where symb is the symbol of the secu-

rity/asset to buy or sell based on the direction and quantity is the

number of the shares (positions) of the security to trade. The uni-

verse of assets covered by the axe list is rather large, encompassing

thousands of securities listed in major markets. For a given asset,

the bank’s axe is given by the aggregation of the positions held by

the bank. Importantly, when the traded positions of a large (“concen-

trated”) client contribute the most to the axe quantity, the published

axe reveals the trading activity of the client. This is particularly

problematic because hedge funds’ trading strategies are confiden-

tial and their disclosure can undermine the funds’ performance.

Sensitive trading moves reconstruction is feasible due to various

factors, including side information. Clients report positions exceed-

ing specific thresholds to regulatory bodies like the Fed, providing

a trail for piecing together trading patterns. Informal conversations

in financial circles can also divulge valuable insights. This scenario

poses the risk of someone replicating trading moves by observ-

ing aggregations, impacting the original strategy’s efficiency and

market dynamics.

The problem we address in this work is how to minimize the

adverse effects of the information leakage caused by sharing the

axe list with clients. Such undesirable consequences are important

both from a reputational point of view, with the bank losing clients

which don’t want their trading decision made public, as well as a

risk management / financial one when the information contained

1
The term comes from the jargon: “having an axe to grind”.



in the axe list is used to trade against the bank itself. Such problems

are also exacerbated by the fact that the axe list is published daily,

with clients having access to the full history of the published axe

lists.

Historically, banks have been using some ad-hoc methods to

mitigate the leakage. For instance, they might aggregate several

stocks together into buckets (e.g., reveal only range of available

stocks to trade in some sector), or trim the positions of other stocks.

This does not guarantee privacy and does not provide a useful

axe list with good utility (in the case, the profit for the bank). In

some cases the clients’ positions are removed from the inventory

to eliminate the leakage at the expense of poor utility for the bank

and the inability of the bank to offer reduced rates to clients.

Our approach is instead more robust, based on a new differential

private aggregator for data streams under continual observation.

We also introduce precise measures to quantify the utility of the

published axe (in terms of profits for the bank) as well as the quality

of the obfuscation.

2 PROBLEM STATEMENT
In this paper, we investigate an intriguing question related to the

secure sharing of aggregated time-series data (e.g. axe inventory

trades) on a daily basis of all clients, while preserving the privacy

of any changes in the direction (buy or sell) of the data/trades of

contributing concentrated clients’ trading activity.

How can a bank maintain the continuous release of updated aggre-
gate time-series market data while preserving each individual client’s
privacy?

As illustrated in Figure 1, by comparing two different axe lists -

one that includes the concentrated clients’ positions with the bank

and one that does not - we would like to obscure whether a single

concentrated client is buying or selling an asset on any given day. If

the direction is revealed, then the client’s activity is exposed, as they

are guiding the direction of the asset in question. As depicted in

Figure 2, a concentrated client (represented by the green line) holds

the majority of positions on the true axe list (represented by the

blue line), dictating daily movements. Our objective is to obscure

the true axe (represented by the orange line) by concealing the

directional activities of the concentrated client, whether it involves

buying or selling (increasing or decreasing quantity/ positions). If

all the clients follow the same direction as the concentrated client,

then this is normal behavior that we should not attempt to hide

since the client’s behavior is not particularly distinctive and follows

the crowd. We would like to maintain privacy with respect to a

utility constraint. Jumping ahead, the utility is determined by the

profits or losses the bank can incur by obfuscating the direction.

This problem calls for differential privacy. The notion of differ-

ential privacy was proposed by Dwork et al. [6]. Since then, there is

an extensive work in the literature studying the different tradeoffs

between utility and privacy. However, the differentially private

setting we consider is different from the traditional setting which

assumes a static input database, and a third party that needs to pub-

lish some obfuscated/sanitized aggregate statistics of the database

once. In our use case, the database is dynamic and changes every

Figure 1: The daily direction (Buy or Sell) of two axe lists that
differ only in the positions of a single concentrated client
should be statistically indistinguishable.

Figure 2: Example of an obfuscated published axe (in orange
color) for a given asset, together with the historical data for
the bank’s true axe (in blue color) and the positions of a
highly concentrated client (in green color). The Y-axis refers
to the axe quantity while the X-axis the observation date.

day. The differential private mechanism needs to update the pub-

lished aggregate statistics on a daily basis. Traditional differential

private mechanisms can lead to a significant loss in terms of utility

or privacy.

In the context of differential privacy we address the following

generic question:

How can data aggregators continuously release updated aggregate
statistics while preserving each individual user’s privacy and without
degrading the utility of the data?

The utility measure that we have identified and consider in this

work is the cost of keeping positions on the bank’s inventory. We

describe the P&L as the cost of financing a position on a given asset,

due to the need of raising the cash to buy it or acquiring the asset

to sell it in the market.

The work of [8] proposes algorithms for differential privacy

under continual observation but only for theminimum functionality

of counting binary (0 or 1) values at each time-step. The counter

statistic is a basic primitive in numerous data streaming algorithms.

In this work, we are interested in more complex statistics released

under continual observation and explore the utility of the use case

at hand.

In this section, for readability reasons we have abstracted and

generalized the problem statement based on the use case of axe

inventory. For an in-depth connection of the problem statement to



the axe inventory use case, please refer to Appendix A, wherein we

have also defined all the financial terms related to the problem.

2.1 Our Contributions
Our contributions can be succinctly summarized as follows:

• Real-World Use-Case Identification: We pinpoint a real-

world scenario that underscores the potential benefits of DP.

Atlas-X is the first DP solution under CO running live in the

financial arena.

• New algorithm for DP under continual observation
(CO): We introduce a new algorithm on the harder setting

of DP with CO; DP under CO presents greater challenges

than traditional DP due to the persistent data access. While

traditional DP focuses on static datasets. Key Challenges:

(1) Accumulative Privacy Risk: With ongoing data addition

and observations, the cumulative privacy risk grows. New

data points incrementally reveal more about individuals,

raising the risk of reidentification and sensitive informa-

tion exposure.

(2) Cumulative Knowledge: In CO, adversaries might exploit

the accumulated knowledge gained from earlier queries

to deduce more sensitive information.

These challenges require more advanced techniques and

strategies to ensure long-term privacy preservation while

enabling valuable insights from the continuously-observed

data.

• Analysis & Implementation: Identified the metrics/risks

studied for this use case together with the business and pro-

vided an analysis based on real production data. Furthermore,

we report benchmarks of the Atlas-X system, which runs

in production. The system offers increased opportunities

for clients to locate trades at advantageous prices as well

as achieving better profits for the bank. Atlas-X has also

proven to be useful in retaining existing clients of the bank,

as we are able to prove that information about their trading

activity is effectively safeguarded.

• Integration with Trading Platform: Our system seam-

lessly integrates into an existing trading platform of J.P. Mor-

gan, further validating its practical utility.

Next we provide more details on our new algorithm and the

novel use case.

New Algorithm: We show how to address the above questions

using differential privacy techniques. We propose a differentially

private continual aggregator that outputs at every time step the ap-

proximate updated aggregator. We can achieve a construction that

has error that is only poly-log in the number of time steps. Assume

that the input stream 𝜎 ∈ Z is a sequence of positive and nega-

tive integers. The integer 𝜎 (𝑡) at time 𝑡 ∈ N may denote whether

positions/shares in a stock increased or decreased at time 𝑡 , e.g.,

whether a client bought or sold 𝜎 shares of a stock at time 𝑡 . The

mechanism must output an approximate aggregator of the sum of

all positive and negative integers seen so far until timestep 𝑡 . We

propose an 𝜖-differentially private continual aggregator with small

error. For each 𝑡 ∈ N we guarantee 𝑂 (𝑇
1/4√Δ
𝜖 ) error with global

sensitivity Δ. See Theorem 6.4 for our formal statement and Theo-

rem 6.5. Prior works [5, 8] have considered simpler statistics under

continual observation as well as simpler utility considerations.

Use Case: We have identified a real-world problem for differential

privacy under continual observation on a large dataset in which

the privacy of the previous axe inventory publication can be signif-

icantly enhanced. We propose a new privacy preserving algorithm

that generates a noisy axe list while protecting clients’ privacy

and maintaining the desired profit for the bank (P&L). Differential

privacy is a statistical learning tool that enables us to add carefully

computed mathematical noise to the axe list. The noise term is large

enough to obfuscate individual client positions and small enough to

achieve the desired P&L. Our new algorithm is robust with provable

guarantees of privacy. To estimate the effectiveness of our method,

we have also defined the utility associated with the axe publication

as well as measures of the quality of the obfuscation. The model

parameters have then been derived by employing these findings,

as displayed in Section 7 for further detail.

2.2 Related work
The works of [5, 8] introduced the concept of differential privacy

under continual observation and constructed differentially private

continual counters of streams of 0’s and 1’s. Their binary mecha-

nisms are used in the context of the orthogonal problem of privacy-

preserving federated learning [4] with the most recent ones be-

ing [10] and it represents a separate context from our primary use

case where differential privacy under continuous observation is

used. Privacy-preserving federated learning is a distributed ma-

chine learning approach that allows multiple parties to collabo-

ratively train a shared model while keeping their data private. It

is an emerging technology that is gaining popularity due to its

ability to protect data privacy and reduce data movement while

allowing multiple parties to train a model with their own data.

To ensure differential privacy, federated learning employs various

clipping mechanisms [1, 2, 13] too. The latest advancements in

privacy-preserving federated learning [3, 9, 11, 12] based on secure

multiparty computation (MPC) provide enhanced securitymeasures

by employing masked or encrypted training gradients.

Prime Match [14] from J.P. Morgan, based on MPC, significantly

enhances security and privacy. In Prime Match, buy and sell orders

of clients and the bank are encrypted for matching, with orders

only being revealed if a match occurs. Unlike Atlas-X based on dif-

ferential privacy, which hides specific axe dataset/order properties

without requiring client participation in MPC, Prime Match ensures

no information leakage unless a match is found.

2.3 Technical Overview
Problem Statement. Our goal is to achieve a differential private

mechanism for aggregation under continual observation. A mech-

anism is differentially private if it cannot be used to distinguish

two streams that are almost the same. In other words, an attacker

cannot tell whether an event of interest took place or not by looking

the output of the mechanism over time. For example, the adversary

is unable to determine whether a concentrated clients’s positions

are included in the inventory axe list at some time 𝑡 .



We abstract the problem as follows: we consider streams of

positive and negative numbers. Let 𝜎 (𝑡) be an item in the stream at

time 𝑡 ∈ N which is either a positive or negative integer. At every

time 𝑡 , we wish to output the sum of numbers 𝛼 (𝑡) = ∑𝑡
𝑖 𝜎 (𝑡), the

aggregator, that have arrived up to time 𝑡 from 𝑖 = 1.

Naive mechanism In this mechanism at every time step 𝑡 , the

mechanism answers with a new sum, and randomizes the answer

with fresh independent noise i.e. 𝛼 (𝑡) + 𝑛𝑜𝑖𝑠𝑒 where 𝛼 (𝑡) is the
true aggregator at timestep 𝑡 . The drawback is that the privacy loss

grows linearly with respect to the number of queries, which is 𝑇 in

our setting. 𝑇 is an upper bound on time.

SimplemechanismAnother approach is to add independent noise

to each item of the stream, i.e. 𝜎 (𝑡) + 𝑛𝑜𝑖𝑠𝑒𝑡 and the mechanism

outputs

∑
𝑖≤𝑡 (𝜎 (𝑡) + 𝑛𝑜𝑖𝑠𝑒𝑡 ) at time 𝑡 . In this case the privacy loss

depends on

√
𝑇 .

Windowmechanism In this mechanism we want to publish noisy

versions of some partial sums as new items arrive. Given the partial

sums, an observer computes an estimate for the aggregator at each

time step by summing up an appropriate selection of partial sums.

For instance, in the naive mechanism, 𝛼 (𝑡) can be seen as a sum

of noisy partial sums where each item 𝜎 (𝑡) appears in 𝑂 (𝑇 ) of
these partial sums and this is why the privacy loss is linear in 𝑇 .

In particular, when an item is flipped in the incoming stream, O(T)

of the partial sums will be affected. In the simple mechanism, the

published partial sums are noisy versions of each item. That said,

each item appears in only one partial sum but each aggregator is

the sum of 𝑂 (𝑇 ) partial sums.

To guarantee small privacy loss, we would like to have each item

appear in a small number of partial sums. Moreover, to achieve

smaller errorwewant each aggregator to be a sum of a small number

of partial sums since the noises add up as we sum up several noisy

partial sums. Inspired by the work of [8] who consider a counter

mechanism for counting an incoming stream of only 0s and 1s, we

group consecutive items contiguous windows of size 𝐵. Then the

idea is that within a window, we apply the simple mechanism from

above. Then, treating each window as a single item we apply again

the simple mechanism. More details of our algorithm are given in

Algorithm 1. Jumping ahead, each 𝛼 (𝑡) and 𝛽 (𝑑 (𝑡)) is a noisy partial
sum and one can reconstruct the approximate aggregator at any

time step from these noisy partial sums. This Algorithm achieves

𝜖-differential privacy and 𝑂 (𝑇
1/4√Δ
𝜖 ) error where Δ is our dynamic

global sensitivity – which we calculated based on the windows.

Binary mechanism In Algorithm 2 we show that the error can

be reduced to logarithmic in the number of time steps using the so

called binary mechanism. The idea is that the grouping of the items

depends on the binary representation of the number 𝑡 . Consider

a binary interval tree, a partial sum corresponding to each node

in the tree is published. To reconstruct the current aggregator it

suffices to find a set of nodes in the tree to uniquely cover the time

range from 1 to 𝑡 . In this case, every time step appears in 𝑂 (log𝑇 )
partial sums and every aggregator can be represented with a set of

𝑂 (log𝑇 ) nodes.
Challenges for the Axe Inventory Obfuscation In Section 5

we carefully and formally define our obfuscation metrics for our

use case. As it is described in Section 5.1, our Axe obfuscation algo-

rithms should aim at publishing noisy obfuscated axes that are not

too different from the true one, as failure to do so can cause a P&L

loss for the bank. However, at the same time we define the leakage

probability in Section 5.2 which is a metric to indicate whether

increased or decreased positions to an asset are not observable in

the published noisy axe.

3 PRELIMINARIES
3.1 Differential Privacy
Differential privacy [6] states that if there are two databases that

differ by only one element, they are statistically indistinguishable

from each other. In particular, if an observer cannot tell whether the

element is in the dataset or not, she will not be able to determine

anything else about the element either.

Definition 3.1. (𝜖-differential privacy [7]) For any two neigh-
boring datasets D1 ∼ D2 that differ by one element, a randomized
mechanism A: D → O preserves 𝜖-differential privacy (𝜖-DP) when
there exists 𝜖 > 0 such that,

Pr [A(𝐷1) ∈ T ] ≤ 𝑒𝜖 Pr [A(𝐷2) ∈ T ] (1)

holds for every subset T ⊆ O, whereD is a dataset, T is the response
set, and O depicts the set of all outcomes.

The value 𝜖 is used to determine how strict the privacy is. A

smaller 𝜖 gives better privacy but worse accuracy. Depending on

the application 𝜖 should be chosen to strike a balance between

accuracy and privacy.

Definition 3.2. (Global Sensitivity [7]) For a real-valued query
function 𝑞 : D → R, where D denotes the set of all possible datasets,
the global sensitivity of 𝑞, denoted by Δ, is defined as

Δ = max

D1∼D2

|𝑞(D1) − 𝑞(D2) |, (2)

for all D1 ∈ D and D2 ∈ D .

Laplacian Mechanism. One of the most well-known techniques in

differential privacy is the Laplacian mechanism, which uses random

noise𝑋 drawn from the symmetric Laplacian distribution. The zero-

mean Laplacian distribution has a symmetric probability density

function 𝑓 (𝑥) with a scale parameter 𝜆 defined as:

𝑓 (𝑥) = 1

2𝜆
𝑒−

|𝑥 |
𝜆 . (3)

Given the global sensitivity, Δ, of the query function 𝑞, and the

privacy parameter 𝜖 , the Laplacian mechanism A uses random

noise 𝑋 drawn from the Laplacian distribution with scale 𝜆 = Δ
𝜖 .

The Laplacian mechanism preserves 𝜖-differential privacy [6].

In our algorithms, the noise may not come from a single Laplace

distribution, but rather is the sum of multiple independent Laplace

distributions. The sum of independent Laplace distributions main-

tains differential privacy [5, 6].

Corollary 3.3. Suppose 𝜃𝑖 ’s are independent random variables,
where each 𝜃𝑖 has Laplace distribution 𝐿𝑎𝑝 (𝑏𝑖 ) and suppose𝑌 =

∑
𝑖 𝜃𝑖

for 𝑖 ∈ [𝑡]. The quantity |𝑌 | is at most 𝑂 (
√︃∑

𝑖 𝑏
2

𝑖
log

1

𝛿
). We use the

following property of the sum of independent Laplace distributions.



4 FINANCIAL CONCEPTS
In the supplementary material (see Section A) we introduce the

financial concepts and jargon used for the real use case in the the

paper. A concise summary of the axe inventory use case is that

the publishing bank aggregates its internal firm inventory of long

(buy) and short (sell) trades and then provides these offerings to

its customers in order to equalize their long and short aggregated

positions with regard to a given asset.

Outline of Section A: We define the profit and losses incurred

by “long” and “short” positions (which refer to buying and selling

respectively, and are defined in detail below), highlighting the im-

portance of hedging costs for the the bank (“funding” and “borrow”

rates). We then demonstrate how banks reduce their hedging costs

via a process known as “internalization” and how we can reduce

such costs by enticing clients to trade via axe lists. Lastly, we de-

scribe the implications of sharing axe lists among clients and how

axe lists can leak information about the trading activity of clients

with large (“concentrated”) positions.

5 OBFUSCATION METRICS
In this section, we present the obfuscation metrics used to measure

the quality of our differentially private method. We have also imple-

mented a monte carlo simulation engine to estimate such metrics,

see supplementary material Section B for the details.

5.1 P&L
Here we describe an approximation for the daily inventory P&L

realized when an axe trade is executed with a client. It should

be noted, as before, that while our approximation discards some

aspects of the netting process and other costs, it is anyway a faithful

representation of the true P&L impact.

Referring to Sec. A, the borrow/funding P&L accrued over one

day when keeping a net quantity 𝑥 (𝑡) of a given asset on balance

sheet can be summarized as follows:

𝑃𝐿𝐼𝑁𝑉 (𝑡) =
{
−𝑟𝐹 (𝑡)𝑥 (𝑡)𝑃 (𝑡) if 𝑥 (𝑡) ≥ 0

𝑟𝐵 (𝑡)𝑥 (𝑡)𝑃 (𝑡) if 𝑥 (𝑡) < 0

(4)

where 𝑃 (𝑡) is the asset’s price, 𝑥 (𝑡) the net inventory positions and

𝑟𝐹 / 𝑟𝐵 the funding / borrow rates, respectively. From now on we’ll

restrict our analysis to such P&L contributions, indicating them

as “inventory P&L” or, simply, P&L. Equation 4 can be obtained

from Equations 8 and 9 assuming that all risky P&L contributions

are perfectly hedged and setting 𝑡𝐸 − 𝑡𝑆 = 1. It should be noted,

nevertheless, that the total P&L accrued by the bank is affected by

other factors like, for instance, the P&L deriving from fees charged

to clients or other considerations.

When a client accepts an axe trade for a quantity 𝑎𝐻𝐼𝑇 (𝑡), the
net inventory changes from 𝑥 (𝑡) to 𝑥 (𝑡) + 𝑎𝐻𝐼𝑇 (𝑡) and the trade’s

marginal inventory P&L, which is the P&L with the axe trade minus

the P&L without, for the bank reads:

Δ𝑃𝐿𝐴𝑋𝐸 (𝑡) = 𝑃𝐿𝐼𝑁𝑉 (
𝑎𝐻𝐼𝑇 (𝑡) + 𝑥 (𝑡)

)
(5)

− 𝑃𝐿𝐼𝑁𝑉 (
𝑥 (𝑡)

)
= 𝑃𝐿𝐼𝑁𝑉 (

𝑎𝐻𝐼𝑇 (𝑡) − 𝑎𝑇𝑅𝑈𝐸 (𝑡)
)

− 𝑃𝐿𝐼𝑁𝑉 (
− 𝑎𝑇𝑅𝑈𝐸 (𝑡)

)

Figure 3: Marginal P&L profile (Y-axis) of a long axe trade as
a function of the axe quantity traded by a client (X-axis).

where 𝑎𝑇𝑅𝑈𝐸 (𝑡) = −𝑥 (𝑡) is the “true” axe of the positions in

inventory. The marginal P&L measures the effect of a trade on the

bank’s inventory P&L: a large positive marginal P&L is associated

with a good trade from a P&L perspective. By the same token, trades

with negative marginal P&L would cause a P&L loss for the bank if

executed.

The behaviour of the marginal P&L as a function of the traded

axe quantity 𝑎𝐻𝐼𝑇 (𝑡) is rather intuitive, see Fig. 3:
- The maximum is achieved when the traded axe quantity is

equal to the true one, 𝑎𝐻𝐼𝑇 (𝑡) = 𝑎𝑇𝑅𝑈𝐸 (𝑡). That corresponds
to the perfect case in which the axe trade fully consumes

the balance sheet, flattening it to zero, hence removing all

inventory costs.

- When the traded axe 𝑎𝐻𝐼𝑇 (𝑡) is larger then the true axe

𝑎𝑇𝑅𝑈𝐸 (𝑡), the marginal P&L decreases at the funding rate

𝑟𝐹 (𝑡). That is because any additional axe quantity will make

the net inventory longer, hence increasing the funding costs.

- Otherwise, the marginal P&L increases at the borrow rate

𝑟𝐵 (𝑡). Any smaller traded axe quantity makes the net inven-

tory shorter and increases the borrowing costs.

It should be noted that an axe trade generates a profit only when

its quantity stays close enough to the true axe quantity:

𝑎𝐻𝐼𝑇 (𝑡) ∈


[
0, 𝑎𝑇𝑅𝑈𝐸 (𝑡)

(
1 + 𝑟𝐵 (𝑡 )

𝑟𝐹 (𝑡 )

)]
if 𝑎𝑇𝑅𝑈𝐸 (𝑡) ≥ 0[

𝑎𝑇𝑅𝑈𝐸 (𝑡)
(
1 + 𝑟𝐹 (𝑡 )

𝑟𝐵 (𝑡 )

)
, 0

]
if 𝑎𝑇𝑅𝑈𝐸 (𝑡) < 0

(6)

The intervals above identify the values of 𝑎𝐻𝐼𝑇 (𝑡) making the mar-

ginal P&L Δ𝑃𝐿𝐴𝑋𝐸 (𝑡) positive. As a consequence, axe obfuscation
algorithms should aim at publishing obfuscated axes that are not

too different from the true one, as failure to do so can cause P&L

losses for the bank.

5.2 Leakage Probability
We define the Leakage Probability as the probability of correctly

guessing a client trading direction (i.e. whether a given fund is

increasing or decreasing its positions on given assets) using the



direction of change of the published axe, i.e.:

𝐿𝑃 (𝑡) = 𝑃𝑟𝑜𝑏
[
sgn

( (
𝑝 (𝑡) − 𝑝 (𝑡 − 𝜏)

)
(7)(

𝑎𝑃𝑈𝐵 (𝑡) − 𝑎𝑃𝑈𝐵 (𝑡 − 𝜏)
) )

< 0

]
where 𝑎𝑃𝑈𝐵 (𝑡) is the published obfuscated axe list, 𝑝 (𝑡) is the

client’s position in the asset and 𝜏 a time lag (a few days, typically).

Please notice that when the client increases their positions (𝑝 (𝑡) −
𝑝 (𝑡 − 𝜏) > 0) the effect on the axe is the opposite (𝑎𝑃𝑈𝐵 (𝑡) −
𝑎𝑃𝑈𝐵 (𝑡 − 𝜏) < 0), and viceversa hence the definition above.

From a practical point of view, both the direction and quantity

of the change in the published axe are important. Our definition of

Leakage Probability keeps into account only the direction because

it is meant to be a simple and ”robust” estimator of the information

leaked by the published axe. Any attacker able to detect both the

sign and the quantity of change in the true axe will also be able to

infer the sign only. A high Leakage Probability denotes a situation

in which an attacker could understand whether the bank (or a

concentrated client) are taking new positions on. A low Leakage

Probability means, instead, that the bank trading decisions (whether

they have been increasing or decreasing their exposure to an asset)

are not observable in the published axe.

We also define the over-axe frequency and worst case cost in

the supplementary material Section B. The over-axe measures how

often the published axe, if fully accepted by clients, would cause a

negative inventory P&L / loss for the bank

6 AXE OBFUSCATION VIA CONTINUAL
AGGREGATOR DP MECHANISM

We consider streams of positive and negative numbers. Specifically,

𝜎 (𝑡) at time 𝑡 ∈ N denotes a positive or a negative integer. At every

time 𝑡 , we wish to output the sum of numbers that have arrived up

to time 𝑡 .

Definition 6.1. (Continual Aggregator) Given a stream 𝜎 of pos-
itive and negative integers, let 𝜎 (𝑡) ∈ Z be an integer at time step
𝑡 ∈ N and let:

𝜎+ (𝑡) = 𝜎 (𝑡) if 𝜎 (𝑡) ≥ 0 else 0,

𝜎− (𝑡) = 𝜎 (𝑡) if 𝜎 (𝑡) ≤ 0 else 0,

the aggregator for the stream is a mapping 𝛼 : Z→ Z such that for
each 𝑡 ∈ N, 𝛼 (𝑡) := ∑𝑡

𝑖=1 𝜎
+ (𝑖) +∑𝑡

𝑖=1 𝜎
− (𝑖).

Next, we define the notion of a continual aggregator mechanism

which continually outputs the sum of integers seen thus far.

Definition 6.2. (Continual Aggregator Mechanism) A counting
mechanism𝑀 takes a stream 𝜎 of integers in Z and produces a (ran-
domized) mapping𝑀 (𝜎) : Z→ Z. Moreover, for all 𝑡 ∈ N,𝑀 (𝜎) (𝑡)
at timestep 𝑡 is independent of all 𝜎 (𝑖)’s for 𝑖 > 𝑡 .

Definition 6.3. (Utility) An aggregator mechanism𝑀 is (𝜆, 𝛿)-
useful at time 𝑡 , if for any stream 𝜎 , with probability (over the ran-
domness of 𝑀) at least 1 − 𝛿 , we have |𝛼 (𝑡) −𝑀 (𝜎) (𝑡) | ≤ 𝜆. Note
that 𝜆 may be a function of 𝛿 and 𝑡 .

The above definition covers the usefulness of the mechanism for

a single time step. A standard union bound argument can be used

for multiple time steps.

Sensitivity: By using clipping to bound the sensitivity of our sum-

mation queries, we are able to enforce upper max and lower min

bounds on the positions. This ensures that all positions will be

below the upper bound, and the resulting sensitivity of a summa-

tion query is equal to the difference between the upper and lower

bounds used in clipping, max−min over a period of time 𝑇 , de-

noted as either max𝑇 −min𝑇 or, for brevity, Δ in the rest of the

paper. We do not choose our clipping bounds by looking at the data;

instead, we calculate them by exploiting a property of the dataset

that can be determined without viewing the data, thereby providing

us with prior knowledge about the scale of the data for clipping.

The property refers to the Average Daily Trading Volume (ADTV)

of each stock which helps us determine the bounds. ADTV is the

average number of shares traded within a day for a given stock,

calculated by taking the total number of shares traded over a period

of time and dividing it by the number of days in that period. As a

rule of thumb in our use case the daily added positions of a client

is never above the ADTV (our max) and this is public knowledge,

i.e. the bank forbids trades exceeding the Average Daily Trading

Volume (ADTV). It is forbidden by the bank since the bank does

not want to take any risk executing such large daily trades with

(concentrated) clients. We would like to note that ADTV can help

confirm trends and patterns to market participants, which is public

information that we do not seek to hide.

Our Window Algorithm: We concentrate on obfuscating the

already clipped True Axe’s changes over 1-day periods. Given a

time-grid {𝑡 = 0 . . .𝑇 − 1}, define the True Axe differences as:

𝜎 (𝑡) = 𝑎𝑇𝑅𝑈𝐸 (𝑡) − 𝑎𝑇𝑅𝑈𝐸 (𝑡 − 1)

Then split them into positive and negative parts:

𝜎+ (𝑡) = 𝜎 (𝑡) if 𝜎 (𝑡) ≥ 0 else 0

𝜎− (𝑡) = 𝜎 (𝑡) if 𝜎 (𝑡) ≤ 0 else 0

We can reconstruct the True Axe as:

𝑎𝑇𝑅𝑈𝐸 (𝑡) = 𝑎𝑇𝑅𝑈𝐸 (0) +
𝑡∑︁
𝑖=1

𝜎+ (𝑖) +
𝑡∑︁
𝑖=1

𝜎− (𝑖)

Perturbations are applied to the Axe differences (𝜃+ (𝑡) and 𝜃− (𝑡)
are random shocks we describe in a moment):

𝛼+ (𝑡) = 𝜎+ (𝑡) + 𝜃+ (𝑡)
𝛼− (𝑡) = 𝜎− (𝑡) + 𝜃− (𝑡)

The Published Axe is eventually given by:

𝑎𝑃𝑈𝐵 (𝑡) = 𝑎𝑇𝑅𝑈𝐸 (0) +
𝑡∑︁
𝑖=1

𝛼+ (𝑖) +
𝑡∑︁
𝑖=1

𝛼− (𝑖)

= 𝑎𝑇𝑅𝑈𝐸 (𝑡) + Θ+ (𝑡) + Θ− (𝑡)

where Θ+ (𝑡),Θ+ (𝑡) are the cumulative shocks.



To get better efficiency we also split the time-grid into buckets,

each long 𝐵 days:

𝑡 = 𝑑 (𝑡)𝐵 + 𝑐 (𝑡)
𝑐 (𝑡) = 𝑡 (mod 𝐵)

𝑑 (𝑡) =
𝑡 − 𝑐 (𝑡)
𝐵

and define the cumulative shocks Θ+ (𝑡),Θ+ (𝑡) as follows:

Θ+ (𝑡 ) = Θ+ (𝑝 (𝑡)) + 𝜃+ (𝑡 )
Θ− (𝑡 ) = Θ− (𝑝 (𝑡)) + 𝜃− (𝑡 )

where 𝑇 > 𝐵 is a reset period and 𝑝 (𝑡) is the start of the current
B-bucket:

𝑝 (𝑡) = 𝑑 (𝑡)𝐵
The random shocks inside a T-period are given by sensitivity

which is the difference between maximum and minimum change

of the True Axe:

𝜃+
(
𝑡
)

∼ Lap

©­­«
���max𝑖∈[𝑝 (𝑡 ),𝑡 ] −min𝑖∈[𝑝 (𝑡 ),𝑡 ]

���
𝜖

ª®®¬
𝜃−

(
𝑡
)

∼ Lap

©­­«
���max𝑖∈[𝑝 (𝑡 ),𝑡 ] −min𝑖∈[𝑝 (𝑡 ),𝑡 ]

���
𝜖

ª®®¬
See Algorithm 1 in the supplementary material for a concrete

description of our algorithm.

Theorem 6.4. Let 0 < 𝛿 < 1 and 𝜖 > 0. The continual aggregator
mechanism is 2𝜖-differentially private. Furthermore, for each 𝑡 ∈ N,
the mechanism with block size 𝐵 is (𝑂 ( 1𝜖 ·

√︁
Δ · (𝑇 /𝐵 + 𝐵) · log 1

𝛿
), 𝛿)-

useful at time 𝑡 out of the 𝑇 time steps.

Proof. We will use the term item to refer to an integer in the

stream 𝜎 . We let

∑𝑗

𝑘=𝐼
𝜎 (𝑘) to denote a partial sum involving items

𝑖 through item 𝑗 . We start by observing that each item 𝜎 (𝑡) in
the published stream 𝛼𝑃𝑈𝐵 (𝑡) appears in at most two noisy partial

sums: at most one of the 𝛽’s and at most one of the 𝛼 ’s. In particular,

let 𝑑 (𝑡) = 𝑡
𝐵
, then 𝜎 (𝑡) appears in only 𝛽 (𝑑 (𝑡)) and 𝛼 (𝑡). That said,

the aggregator mechanism preserves 2𝜖-differential privacy. This

means that if we change 𝜎 (𝑡), at most 2 noisy partial sums will be

affected.

Next we focus on the utility: Observe that at any time 𝑡 =

𝑑 (𝑡)𝐵 + 𝑐 (𝑡) where 𝑑 (𝑡), 𝑐 (𝑡) ∈ Z and 0 ≤ 𝑐 (𝑡) < 𝐵, the error

of 𝛼𝑃𝑈𝐵 (𝑡) includes the sum of 𝐾 = 𝑑 (𝑡) + 𝑐 (𝑡) independent Lapla-
cian distributions 𝐿𝑎𝑝 (Δ/𝜖). The estimated aggregator at any time

𝑡 is the sum of at most ⌊𝑡/𝐵⌋ +𝐵 partial sums. Followed from Corol-

lary 3.3, since 𝑡/𝐵 ≤ 𝐾 ≤ (𝑡/𝐵 + 𝐵), at time T, the Aggregator

Mechanism is (𝑂 ( 1𝜖 ·
√︁
Δ · (𝑇 /𝐵 + 𝐵) · log 1

𝛿
), 𝛿)-useful at time t .

□

Suppose a mechanism M adds 𝐿𝑎𝑝 (Δ/𝜖) noise to every par-

tial sum before releasing it. In M, each item in the stream ap-

pears in at most 𝑥 partial sums, and each estimated aggregator

is the sum of at most 𝑦 partial sums. Then, the mechanism M

achieves 𝑥𝜖-differential privacy. Moreover from Corollary 3.3 the

error is 𝑂 (
√
Δ·𝑦
𝜖 ) with high probability. Alternatively, to achieve 𝜖-

differential privacy, one can scale appropriately by having 𝜖′ = 𝜖/𝑥 .
Now if the mechanism instead adds 𝐿𝑎𝑝 (Δ/𝜖′) noise to each partial

sum we achieve 𝜖-differential privacy, and 𝑂 ( 𝑥
√
Δ·𝑦
𝜖 ) error with

high probability.

If we let 𝐵 =
√
𝑇 , then the estimated aggregator at any time

is the sum of at most 2𝐵 noisy partial sums. The error is roughly

𝑂 (𝑇
1/4√Δ
𝜖 ) with high probability.

6.1 Binary Mechanism with Less Error
In Algorithm 2 of the supplementary material we present a version

of our mechanism which incurs a smaller error. In Algorithm 2

the estimated aggregator is the sum of at most log𝑇 noisy partial

sums and each partial sum has an independent Laplace noise of

𝐿𝑎𝑝 ( log𝑇 ·Δ
𝜖 ). That said, from Corollary 3.3 we get the following:

Theorem 6.5 (Utility). The continual aggregator mechanism in
Algorithm 2 is (𝑂 ( 1𝜖 · (log𝑇 ) ·

√︁
Δ · log 𝑡 · log 1

𝛿
), 𝛿)-useful at time 𝑡

out of the 𝑇 time steps.

7 ATLAS-X PERFORMANCE
We have implemented our differentially private continual Aggrega-

tor mechanism in the production (in Python code) of the internal

brokerage platform. The production system operates on a Linux

machine based on python 3.7 (256GB memory). The algorithm runs

daily to obfuscate the bank’s axe list for three different regions

(USA, Europe and Asia). The obfuscated axe is then sent to roughly

60 selected clients (hedge funds), which all receive the same axe list.

The rest of this section describes the results of several experiments

performed with the monte carlo simulation engine described in

Section B of the supplementary material based on real inventory

data.

We first turn to the important question of how to determine the

obfuscation model parameters discussed in Section 6. To do that,

we have, instead, run several monte carlo simulations (using the

methodology described in Section B of the supplementary mate-

rial) for a grid of obfuscation parameters {(𝜖,𝑇 , 𝐵)}. We have then

measured the obfuscation statistics described in Section 5, namely

the Expected P&L / Leakage Probability and discussed the results

with the trading desk who were took the final decision (in the sup-

plementary material we also measure the Over Axe Frequency and

Worst Case Cost). Moreover, given that our application revolves

around high-frequency trading, signals spanning a few days pose

a significant threat if revealed. We have judiciously chosen a time

parameter of T=30 days.

Our analysis was based on the selection of the most concen-

trated client, whose positions were effectively driving our axe on

many assets. In particular, Fig. 4 shows the expected inventory

P&L difference between the case in which the bank publishes the

DP obfuscated axe including the most concentrated client versus

those calculated with the true (un-obfuscated) axe. As expected

the results, calculated for different privacy budgets as well as ob-

fuscation parameters, show that publishing the true axe is always

advantageous from a P&L perspective. The expected loss with the



Figure 4: Expected inventory P&L differ-
ence (Y-axis) between the case in which
the bankpublishes theDPobfuscated axe
including the most concentrated client
versus those calculated with the true (un-
obfuscated) axe, measured in dollar per
day per asset and calculated for different
privacy budgets 𝜖 (X-axis) as well as ob-
fuscation parameters.

Figure 5: Expected inventory P&L differ-
ence (Y-axis) between publishing the ob-
fuscated axe with and without the con-
centrated client, respectively, measured
in dollar per day per asset and calculated
for different privacy budgets 𝜖 (X-axis)
as well as obfuscation parameters.

Figure 6: Expected Leak Probability dif-
ference (Y-axis) between publishing the
DP-obfuscated axe including the most
concentrated client versus those exclud-
ing it, calculated for different privacy
budgets 𝜖 (X-axis) and with a lag of 1 day.

DP budget chosen in production (𝜖 = 0.3) is roughly 1$ (daily, for

each asset we publish an axe for). The P&L difference increases

with 𝜖 and flattens for larger values of 𝜖 .

Fig. 5, instead, compares the expected P&L difference between

publishing the obfuscated axe with and without the concentrated

client, respectively, using the same model parameters. The results,

show that there is an average 4.4$ P&L increase when including

the concentrated client (per asset, per day) using the DP budget

chosen in production. Again, the P&L difference increases with 𝜖

and flattens for larger values.

The 𝑃&𝐿 estimates above were then compared with the expected

Leakage Probability using the same model parameters. Fig. 6, 7 and

Fig. 18 (Fig. 18 in the supplementary material) show the difference

in the estimated Leakage Probability between publishing the obfus-

cated axe with and without the most concentrated client for time

lags of 1-day / 1-week / 2-weeks, respectively. The results show

that, for the DP budget chosen in production, there is an increase

of ∼ 6% in Leak Probability when including the most concentrated

client over a 1-day lag, and ∼ 3% for 1-week or-2 weeks lags instead.

That means that only in 3% of the cases our published axe leaks

information about the trading activity (direction) of the concen-

trated client over a 1-week or 2-weeks lags. This was considered

as acceptable by the trading desk and the final model parameters

used in production, corresponding to (𝜖 = 0.3,𝑇 = 30, 𝐵 = 20).
In a different experiment, we have analyzed a population of 600

assets traded by a highly concentrated client, for a period of one year

based on real data, performing monte carlo simulations using the

production DP parameters. Fig. 8 shows the simulated histogram

of the 2-weeks Leakage Probability in three different scenarios:

(a) The bank publishes the un-obfuscated axe, calculated without

keeping the client’s positions into account. (b) The bank publishes

the obfuscated axe, including the client’s positions. (c) The bank

publishes the obfuscated axe, excluding the client’s positions. The

histogram shows, when one compares the data for cases (b) and (c),

that the obfuscated axes calculated with and without the client’s

positions are indistinguishable.

Please also notice that the strategy (a) of publishing the axe

without DP obfuscation but calculated w/o the concentrated client

positions, actually results in a Leakage Probability between 90% and

100% for the majority of the assets simulated (80%). This means that,

even when removing a client contribution from the axe calculation,

it can often happen that the published axe moves in the same direc-

tion as the client’s trading activity. This is not a case of information

leakage, but instead one in which hedge funds are effectively trad-

ing along similar strategies. It is a phenomenon sometimes called

”herding behaviour”. As discussed, it is nevertheless very important

to publish an axe calculated using all clients positions, no matter

how concentrated, because failure to do so would expose the bank

to P&L losses. In the supplementary material we present more

results.

8 CONCLUSION
The Axe Inventory offering is a fundamental service in the financial

world. In this work, we introduce a differential private mechanism

under continual observation to obfuscate the axe inventory daily

while hiding the client trading activity. Along the way we propose

a continual differential private aggregator for streams of numbers.

Our system is successfully running live in production in three

different regions (USA, Europe and Asia) at a major USA bank and,

to our knowledge, it is the first differential privacy solution to be

deployed in the financial sector.
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their long and short aggregated positions with regard to a given

asset.

Outline: We define the profit and losses incurred by “long” and

“short” positions (which refer to buying and selling respectively,

and are defined in detail below), highlighting the importance of

hedging costs for the the bank (“funding” and “borrow” rates). We

then demonstrate how banks reduce their hedging costs via a pro-

cess known as “internalization” and how we can reduce such costs

by enticing clients to trade via axe lists. Lastly, we describe the

implications of sharing axe lists among clients and how axe lists

can leak information about the trading activity of clients with large

(“concentrated”) positions.

In order to maintain a level of simplicity, we have disregarded

the formalization of complexities regarding the execution of real

trades that are not central to the main themes of this paper.

The Prime desk of a broker-dealer bank facilitates clients’ trad-

ing activities. Clients are generally hedge funds willing to profit

on the price movement of assets belonging to a large universe,

encompassing Equity / Fixed Income and Commodity instruments.

When a client is betting on a given asset to appreciate in the

future, he/she can execute a “long” trade i.e. buy the asset with

the idea of selling it later to capitalize on the price increase. To do

that, the client needs to raise cash to cover the initial purchase. The

client’s Profit & Loss (P&L) after the asset is sold back in the market

is given by:

𝑃&𝐿 = 𝑁
(
𝑃 (𝑡𝐸 ) − 𝑃 (𝑡𝑆 )

)
− 𝑁𝑃 (𝑡𝑆 )𝑟𝐹 (𝑡𝐸 − 𝑡𝑆 ) (8)

where 𝑡𝑆 and 𝑡𝐸 are the trade’s inception(Start)/termination(End)

times, respectively. 𝑁 is the number of shares/units traded, 𝑃 (𝑡) is
the price of the asset at time 𝑡 and 𝑟𝐹 is the “funding rate” i.e. the

interest rate paid to borrow the cash required to buy the asset.

If, instead, the client’s view is that an asset will lose value in the

future, he/she can put on a “short” trade i.e. sell the asset to then

buy it back when its price has decreased in the market. To do so,

the client needs to borrow the asset to cover the initial sale. In this

case the client’s P&L after the trade is terminated is:

𝑃&𝐿 = 𝑁
(
𝑃 (𝑡𝑆 ) − 𝑃 (𝑡𝐸 )

)
− 𝑁𝑃 (𝑡𝑆 )𝑟𝐵 (𝑡𝐸 − 𝑡𝑆 ) (9)

where 𝑟𝐵 is the “borrow rate”, that is the interest paid to borrow

the asset.

The first term in Eq. 8 and 9 is the “risky” P&L, called in such a

way because it is affected by the asset price movements. The second

term is the funding/borrowing cost.

In general, the “funding rate” 𝑟𝐹 depends on the clients’ credit-

worthiness as well as the quality of the asset. It measures the ability

of an institution to raise cash and it is in general not very volatile.

The “borrow rate” 𝑟𝐵 , instead, depends much more on the asset

borrowed and can be very volatile when the underlying asset is

under market stress.

A Prime desk facilitates the aforementioned activities by allow-

ing its clients to execute “leveraged” trades, which means supplying

clients with the required cash or assets to initiate their long/short

trades, in exchange for a fee. When it does so, the Prime desk

needs to hedge the corresponding risky P&L and minimize the

funding/borrowing costs of the hedge trades it needs to execute.

If the bank was to hedge each single client trade independently,

something known as “matched-book” approach, it would then incur

high costs due to the need - for each trade - to either (1) raise cash

to allow a long trade, or (2) borrow the assets necessary for the

short trade.

A better alternative for the bank is to utilize the cash/asset re-

serves on its “balance sheet” (See an example below). A broker-

dealer bank generally holds a balance sheet composed of a large

number of positions of different types belonging on a large asset

universe. For instance, some of them might be hedges for deriva-

tives contracts, others might be inventory kept for market-making

purposes while others are client positions that can be utilized (“re-

hypothecated”). In particular, if the bank has a large enough balance

sheet it will likely be able to match long and short positions on a

given asset directly from its balance sheet, hence saving the corre-

sponding financing or borrowing costs that would be present using

a “matched-book” strategy. This process is known as “internaliza-

tion” and is at the core of how a Prime desk functions.

We indicate the quantity of a position of type 𝑝 on a given asset at

time 𝑡 as 𝑥𝑝 (𝑡)2. A positive position corresponds to long trades (the

bank bought the asset) while negative positions correspond to short

trades (the bank borrowed then sold the asset). The net/internalized

position is then given by the sum over all position types:

𝑥 (𝑡) =
∑︁
𝑝

𝑥𝑝 (𝑡) (10)

For instance, the table below represents a hypothetical balance

sheet for three assets 𝐴, 𝐵 and 𝐶:

Asset Type Long Quantity Short Quantity

A Client 100 0

A Delta One 0 -100

B Client 100 0

B Delta One 50 -50

B Exotics 20 -10

C Client 0 -30

After internalizing the positions, the net position vector 𝑥 (𝑡)
would then be:

Asset Net Quantity

A 0

B 110

C -30

In this example, asset 𝐴 is perfectly internalized having a net

position equal to zero. In such a case the bank would incur no

funding or borrowing cost as there are no hedge trades to be kept

on balance sheet. The net positions for assets 𝐵 and 𝐶 , instead,

would be positive/negative. This means that the bank would incur

funding/borrowing costs, respectively.

2
The definition of “position type” is loose, it can refer to the individual executed trades

as well to a coarser categorization. For instance, in the example below, the position

types used, Client / Delta One / Exotics, are representative of trading desks.



Figure 9: Illustration of the difference between a hedge traded
with another bank (Case A) and an axe traded with a client
(Case B). The arrows indicate the direction in which the asset
(red) or cash fee moves (black) for instance, when the bank
is selling an asset, the corresponding arrow points out of the
bank. The bank is a net seller of 𝑞 shares of an asset (red
arrows on the left) and to neutralize its risk it has to buy the
same amount of shares (red arrows on the right). In Case A
the bank transacts with another bank, which will charge fees
for the service provided (black arrow). In Case B, instead, the
bank managed to find a client willing to enter into an axe
trade and the hedge will be costless (no fees).

Whenever the net position is different from zero, 𝑥 (𝑡) ≠ 0, the

bank is hit by an inventory cost which accrues daily. When 𝑥 (𝑡) > 0

corresponding to long net positions, the bank needs to raise cash

to cover the purchase of the shares of the asset that have not been

internalized. We indicate, again, the interest paid on the borrowed

cash with the funding rate 𝑟𝐹 (𝑡). On the other hand, for short

net positions which correspond to 𝑥 (𝑡) < 0, the bank needs to

borrow the (non internalized) asset shares at a cost measured by

the borrowing rate 𝑟𝐵 (𝑡).
If the internalization was perfect we would have 𝑥 (𝑡) = 0 for

all assets on balance sheet. This is an ideal situation because the

bank would run its activities with no financing or borrowing costs

whatsoever. In practice, perfect internalization is never achievable

and hedge trades need to be executed. Referring to Case A in Figure

9, such hedges are generally put in place with another bank and

are expensive because of the need to pay fees to the counterparty.

Hence it makes sense for the bank to publish (via email or other

communication channels) a list of assets / quantities on which it

is willing to trade at a discount for the sole purpose of achieving

better internalization. Such a list is generally called an “axe” and

we indicate it with 𝑎𝑃𝑈𝐵 (𝑡). If the bank can find a matching client

who is willing to sell the same amount of shares (Case B in Figure

9), it can replace the expensive hedge with a client trade where no

fees are paid, thus saving costs. An axe trade is beneficial for the

client as well, because of the lower cost charged by the bank. Banks,

therefore, put efforts in locating such client matches.

When the published axe is not obfuscated, it corresponds to

the opposite of the true balance sheet positions and is given by

𝑎𝑇𝑅𝑈𝐸 (𝑡) = −𝑥 (𝑡)3. However, this is unsatisfactory: (1) The bank
reveals its aggregate inventory, signaling whether it is a net buyer

or seller of the stock. Clearly, the bank would like to prevent this

kind of leakage; (2) Releasing aggregate/summed information about

clients in the list may seem harmless. However, such statistical data

can expose sensitive information about a “concentrated” client,

i.e. one which holds a large portion of the assets in the bank’s

balance sheet. The trading activity of a concentrated client can

be revealed to other clients even though the list is anonymized

and includes aggregated information of all clients. In particular,

continually updating the published statistics over time can give

even more leverage to the adversary and result in more privacy

concerns. For example, when a concentrated client executes a large

trade, such a move will be reflected in the published axe and reveal

a trading strategy that should instead be kept secret.

When a client receives a published axe 𝑎𝑃𝑈𝐵 (𝑡) from the bank,

it can opt to execute a quantity 𝑎𝐻𝐼𝑇 (𝑡) of it. If the published axe is
positive, the client can opt to enter long / buy trades (𝑎𝐻𝐼𝑇 (𝑡) ≥ 0).

Otherwise, if the published axe is negative the client can sell the

asset short (𝑎𝐻𝐼𝑇 (𝑡) ≤ 0). Also, the client cannot trade more than

the communicated axe quantity. Such constraints can be expressed

as follows:

sgn(𝑎𝐻𝐼𝑇 (𝑡)) = sgn(𝑎𝑃𝑈𝐵 (𝑡)) (11)

|𝑎𝐻𝐼𝑇 (𝑡) | ≤ |𝑎𝑃𝑈𝐵 (𝑡) |

When an axe trade happens, the corresponding net positions on

the bank’s balance sheet change from 𝑥 (𝑡) to 𝑥 (𝑡) + 𝑎𝐻𝐼𝑇 (𝑡) and a

P&L profit is realized for the bank (See Section 5.1 for details on

the P&L).

As discussed in this paper, the problem with publishing the true

axe 𝑎𝑇𝑅𝑈𝐸 (𝑡) is that its dynamics track the bank’s balance sheet’s

and, worse, the trading activity of large concentrated clients (whose

positions drive the bank’s balance sheet for specific assets). This

can leak valuable information to external observers, namely all the

clients receiving the axe list, and can have serious consequences

from a risk or reputational perspective.

B AXE SIMULATION
To analyze the quality of various axe obfuscation strategies (both

in terms of P&L and information leakage), we have implemented a

monte carlo axe simulation engine whose logic mimics the follow-

ing sequence of trading actions executed every day by the bank’s

Prime desk (see Fig. 10):

- The true (Pre) axe is calculated at start of day.

- An obfuscation strategy is applied to the true axe, producing

a published axe that is presented to clients.

- Some of the published axe offers are accepted by clients, who

trade with the Bank hence changing the true axe as well as

the inventory P&L.

The approach we have taken is to use our historical axe data

as the backbone of our simulations and then keep into account

3
The minus follows the convention according to which a long published axe (positive

quantity) corresponds to a short (negative) net balance sheet position, and vice versa.



Algorithm 1:
Input: Stream 𝑎𝑇𝑅𝑈𝐸 ∈ Z, privacy budget 𝜖 and time upper bound 𝑇

Output: At each time step 𝑡 , output 𝑎𝑃𝑈𝐵 (𝑡)
Initialization: For all 𝑡 ∈ [𝑇 ], compute two streams 𝜎+ (𝑡) and 𝜎− (𝑡) representing the true axe differences:

𝜎 (𝑡) = 𝑎𝑇𝑅𝑈𝐸 (𝑡) − 𝑎𝑇𝑅𝑈𝐸 (𝑡 − 1)
𝜎+ (𝑡) = 𝜎 (𝑡) if 𝜎 (𝑡) > 0 else 𝜎+ (𝑡) = 0

𝜎− (𝑡) = 𝜎 (𝑡) if 𝜎 (𝑡) < 0 else 𝜎− (𝑡) = 0

such that:

𝑎𝑇𝑅𝑈𝐸 (𝑡) = 𝑎𝑇𝑅𝑈𝐸 (0) +
𝑡∑︁
𝑖=1

𝜎+ (𝑖) +
𝑡∑︁
𝑖=1

𝜎− (𝑖)

Obfuscation at time step 𝑡 ∈ 𝑇 : Split the time-grid 𝑇 into buckets, each long 𝐵 days such that 𝑡 = 𝑑 (𝑡)𝐵 + 𝑐 (𝑡) where
𝑐 (𝑡) = 𝑡 (mod 𝐵) and 𝑑 (𝑡) = 𝑡−𝑐 (𝑡 )

𝐵
.

If 𝑐 (𝑡) ≠ 0 perturb each value as follows:

𝛼+ (𝑡) = 𝜎+ (𝑡) + 𝜃+
(
𝑡 − 𝑐 (𝑡), 𝑡

)
𝛼− (𝑡) = 𝜎− (𝑡) + 𝜃−

(
𝑡 − 𝑐 (𝑡), 𝑡

)
where:

𝜃+
(
𝑝 (𝑡), 𝑡

)
∼ Lap

©­­«
���max𝑖∈[𝑝 (𝑡 ),𝑡 ] −min𝑖∈[𝑝 (𝑡 ),𝑡 ]

���
𝜖

ª®®¬
𝜃−

(
𝑝 (𝑡), 𝑡

)
∼ Lap

©­­«
���max𝑖∈[𝑝 (𝑡 ),𝑡 ] −min𝑖∈[𝑝 (𝑡 ),𝑡 ]

���
𝜖

ª®®¬
For the case where 𝑐 (𝑡) = 0

𝛽+
(
𝑑 (𝑡)

)
=

𝑡∑︁
𝑖=𝑑 (𝑡 ) ·𝐵

𝜎+ (𝑖) + 𝜃+
(
(𝑑 (𝑡) − 1)𝐵, 𝑡

)
𝛽−

(
𝑑 (𝑡)

)
=

𝑡∑︁
𝑖=𝑑 (𝑡 ) ·𝐵

𝜎− (𝑖) + 𝜃−
(
(𝑑 (𝑡) − 1)𝐵, 𝑡

)
Compute the published axe as follows:

𝑎𝑃𝑈𝐵 (𝑡) = 𝑎𝑇𝑅𝑈𝐸 (0) +
𝑑 (𝑡 )∑︁
𝑖=1

(
𝛽+ (𝑖) + 𝛽− (𝑖)

)
+

𝑡∑︁
𝑖=𝑑 (𝑡 )𝐵+1

(
𝛼+ (𝑖) + 𝛼− (𝑖)

)
= 𝑎𝑇𝑅𝑈𝐸 (𝑡) +

𝑑 (𝑡 )∑︁
𝑖=1

(
𝜃+

(
(𝑖 − 1)𝐵, 𝑖 · 𝐵

)
+ 𝜃−

(
(𝑖 − 1)𝐵, 𝑖 · 𝐵

) )
+

𝑡∑︁
𝑖=𝑑 (𝑡 )𝐵+1

(
𝜃+

(
𝑑 (𝑡)𝐵, 𝑖

)
+ 𝜃−

(
𝑑 (𝑡)𝐵, 𝑖

) )

the effect of simulated axe trades. To do that, we introduce the

following axe quantities:

- 𝑎𝐻𝐼𝑆𝑇 (𝑡): Historical axe, not simulated

- 𝑎𝑃𝑅𝐸 (𝑡): True axe at the start the trading day, keeps into ac-

count both the historical axe as well as axe trades generated

in the previous simulation steps

- 𝑎𝑃𝑂𝑆𝑇 (𝑡): True axe at the end of the trading day, keeps into

the axe traded generated at the current simulation step

- 𝑎𝑃𝑈𝐵 (𝑡): Published axe

- 𝑎𝐻𝐼𝑇 (𝑡): Axe trades executed by clients

The monte carlo stepping is then implemented as follows:

𝑎𝑃𝑅𝐸 (𝑡) = 𝑎𝐻𝐼𝑆𝑇 (𝑡) −
∑︁

𝑡 ′∈[𝑡−𝐻,𝑡 )
𝑎𝐻𝐼𝑇 (𝑡 ′)

𝑎𝑃𝑈𝐵 (𝑡) = 𝐹

(
𝑎𝑃𝑅𝐸 (𝑡)

)
𝑎𝐻𝐼𝑇 (𝑡) = ℎ 𝑎𝑃𝑈𝐵 (𝑡)
𝑎𝑃𝑂𝑆𝑇 (𝑡) = 𝑎𝐻𝐼𝑆𝑇 (𝑡) −

∑︁
𝑡 ′∈[𝑡−𝐻,𝑡 ]

𝑎𝐻𝐼𝑇 (𝑡 ′)

= 𝑎𝑃𝑅𝐸 (𝑡) − 𝑎𝐻𝐼𝑇 (𝑡)



Figure 10: Axe Simulation Steps

where:

- ℎ is the axe hit ratio, the constant proportion of executed

axe trades versus published axe. In our simulations, we have

used a hitting ratio ℎ ≃ 5%/10% which is consistent with

historical data.

- 𝐻 is the axe holding period, indicating the duration of the

axe trades. We use two weeks as the holding period.

- 𝐹 () is the chosen obfuscation strategy

Using such monte carlo engine the authors have run several

experiments and measured the effect of different DP parameters

on metrics of interest, see Sections 5 and 7 of the main body of the

paper.

B.1 Over-Axe Frequency and Worst Case Cost
We define the Over-Axe Quantity as the following Hinge loss:

𝑄𝑂𝐴 (𝑡) =



max

(
0, 𝑎𝑃𝑈𝐵 (𝑡) − 𝑎𝑇𝑅𝑈𝐸 (𝑡)[

1 + 𝑟𝐵 (𝑡 )
𝑟𝐹 (𝑡 )

] )
+max

(
0,−𝑎𝑃𝑈𝐵 (𝑡)

)
if 𝑎𝑇𝑅𝑈𝐸 (𝑡) ≥ 0

max

(
0,−𝑎𝑃𝑈𝐵 (𝑡) + 𝑎𝑇𝑅𝑈𝐸 (𝑡)[

1 + 𝑟𝐹 (𝑡 )
𝑟𝐵 (𝑡 )

] )
+max

(
0, 𝑎𝑃𝑈𝐵 (𝑡)

)
if 𝑎𝑇𝑅𝑈𝐸 (𝑡) < 0

(12)

It measures how far the published axe is from the P&L bounds given

in Eq. 6 (of the main body of the paper) and it is directly related

to P&L losses due to over-axing. The Over-Axe Frequency is then

given by:

𝐹𝑂𝐴 (𝑡) = 𝑃𝑏

[
𝑄𝑂𝐴 (𝑡) > 0

]
(13)

It measures how often the published axe, if fully accepted by clients,

would cause a negative inventory P&L / loss for the bank. As metric

for the losses due to over-axing we use the Over-Axe Worst Case

Cost, which is the cost incurred if the axe is fully hit every time the

Over-Axe Quantity is different from zero and never hit otherwise.

𝐶𝑂𝐴 (𝑡) = 𝐸
[ {
𝑄𝑂𝐴 (𝑡)𝑟𝐵 (𝑡) if 𝑎𝑇𝑅𝑈𝐸 (𝑡) ≥ 0

𝑄𝑂𝐴 (𝑡)𝑟𝐹 (𝑡) if 𝑎𝑇𝑅𝑈𝐸 (𝑡) < 0

]
(14)

This is a very conservative estimator, as it corresponds to the worse-

case scenario in which clients only accepts axes that cause a P&L

loss and never those producing a gain. Please notice, in this sense,

that clients very rarely trade on the full published axe, see the

discussion on the “axe hit ratio” in Section B.

C EXPERIMENTAL RESULTS CONT.
Using the same model parameters, Fig. 11 illustrates four simu-

lated scenarios for the obfuscated published axe for a given asset,

together with the historical data for the bank’s true axe and the

positions of a highly concentrated client. It can be noticed how

the differential private published axe randomization makes any

short-term inference, on whether the bank’s true balance sheet

positions or the client positions are increasing or decreasing, very

challenging. At the same time the published axe follows, on aver-

age, the dynamics of the true axe. For such a reason, any axe trade

executed in those scenarios would have produced a P&L gain for

the bank.

We eventually double-checked the production model parameters

by analyzing the expected Over Axe Frequency and Worst Case

Cost. Fig 12 and 13 report such metrics for the production model pa-

rameters. With the chosen parameters, the trading desk was happy

to bear the risk of an Over Axe Frequency of ∼ 3.5% and Over Axe

Worst Case Cost of ∼ 6 $ per day for each asset. Regarding this

point, please also notice that over-axing is in general not a problem

because (1) our algorithm very rarely publishes axe quantities be-

yond the limits given by Eq.6 and (2) clients rarely accept the full

axe but only a small proportion of it
4
.

Using a different asset inventory, Figures 14, 15 and 16 show the

histograms of simulated Leak Probabilities (2-weeks lag), obtained

using the full balance sheet data (red color) or discarding the po-

sitions belonging to a concentrated client (green color), for three

different values of the Privacy Budget (𝜖 = 0.9 / 𝜖 = 0.5 / 𝜖 = 0.1,

respectively). It can be noted how higher obfuscation make the two

Leak Probability histograms closer.

Fig. 17 describes a simple experiment in which we generated a

synthetic scenario in which a single client (1) contributes to the full

axe for a given name and (2) increases his position gradually with a

10-fold increment in a period of two months. We report six random

scenarios for the obfuscated axe, calculated with production DP

parameters (See below for how they were determined), to give the

reader a feeling of how obfuscation is affecting the published axe in

such a simplified setting. We can note how the noise injected in the

published axe is enough to make difficult for an external attacker

to correctly guess the direction of change of the true balance sheet

positions, at least over short time horizons. Over longer periods,

the published axe follows the true axe.

4
As discussed in section B the historical axe hitting ratio is ≃ 5% i.e. very low in

practice.



Figure 11: Four simulated scenarios for the obfuscated published axe (in orange color) for a given asset, together with the
historical data for the bank’s true axe (in blue color) and the positions of a highly concentrated client (in green color). The
Y-axis refers to the axe quantity while the X-axis the observation date.

Figure 12: Expected Over Axe Frequency (Y-axis) calculated
with monte carlo runs for different privacy budgets 𝜖 (X-
axis) and obfuscation model parameters.

Figure 13: Expected Worst Case Over Axe Cost (Y-axis) cal-
culated with monte carlo runs for different privacy budgets
𝜖 (X-axis) and obfuscation model parameters.



Figure 14: Histogram of simulated Leak Probabilities with
2-weeks lag (Y-axis), sampled with a concentrated client’s
positions included (red color) or excluded (green color) from
the calculation of the published axe. The X-axis refers to
the Leak Probability and the used Privacy Budget is 𝜖 = 0.9.

Figure 15: Histogram of simulated Leak Probabilities with
2-weeks lag (Y-axis), sampled with a concentrated client’s
positions included (red color) or excluded (green color) from
the calculation of the published axe. The X-axis refers to
the Leak Probability and the used Privacy Budget is 𝜖 = 0.5.

Figure 16: Histogram of simulated Leak Probabilities with
2-weeks lag (Y-axis), sampled with a concentrated client’s
positions included (red color) or excluded (green color) from
the calculation of the published axe. The X-axis refers to
the Leak Probability and the used Privacy Budget is 𝜖 = 0.1.
Compared to the results in Figure 14, the lower 𝜖 make the
two distribution closer.



Figure 17: Monte carlo obfuscation scenarios generated with synthetic balance sheet data. We assume that a single client
contributes to the bank’s positions on a given asset, steadily increasing the balance sheet quantity over a period of two months.
The Y-axis refers to the axe quantity while the X-axis the observation date. The plots report six different randomized scenarios
for the published axe (in green color) as well as the true axe (in blue color).

Figure 18: Expected Leak Probability difference (Y-axis) be-
tween publishing the DP-obfuscated axe including the most
concentrated client versus those excluding it, calculated for
different privacy budgets 𝜖 (X-axis) andwith a lag of 2weeks.



Algorithm 2:
Input: Stream 𝑎𝑇𝑅𝑈𝐸 ∈ Z, privacy budget 𝜖 and time upper bound 𝑇

Output: At each time step 𝑡 , output 𝑎𝑃𝑈𝐵 (𝑡)
Initialization: For all 𝑡 ∈ [𝑇 ], compute two streams 𝜎+ (𝑡) and 𝜎− (𝑡) representing the true axe differences:

𝜎 (𝑡) = 𝑎𝑇𝑅𝑈𝐸 (𝑡) − 𝑎𝑇𝑅𝑈𝐸 (𝑡 − 1)
𝜎+ (𝑡) = 𝜎 (𝑡) if 𝜎 (𝑡) > 0 else 𝜎+ (𝑡) = 0

𝜎− (𝑡) = 𝜎 (𝑡) if 𝜎 (𝑡) < 0 else 𝜎− (𝑡) = 0

such that:

𝑎𝑇𝑅𝑈𝐸 (𝑡) = 𝑎𝑇𝑅𝑈𝐸 (0) +
𝑡∑︁
𝑖=1

𝜎+ (𝑖) +
𝑡∑︁
𝑖=1

𝜎− (𝑖)

Obfuscation at time step 𝑡 ∈ 𝑇 : Divide the time-grid 𝑇 into log𝑇 intervals and initialize 𝜌1, ..., 𝜌log𝑇 to zero. Take the binary

representation of 𝑡 , denoted as (𝑡)2 and let (𝑡𝑖 )2 denote the 𝑖-th bit of (𝑡)2.
Let 𝑖 be the least significant bit of (𝑡)2 for which (𝑡𝑖 )2 = 1 (i.e., 𝑖 = 𝐿𝑆𝐵{ 𝑗 : (𝑡 𝑗 )2 ≠ 0}) then

𝜌+𝑖 =
∑︁
𝑗<𝑖

𝜌+𝑗 + 𝜎
+ (𝑡)

𝜌−𝑖 =
∑︁
𝑗<𝑖

𝜌−𝑗 + 𝜎− (𝑡)

Perturb each value as follows:

𝛼+𝑖 = 𝜌+𝑖 + 𝜃+
(
𝑡 − log𝑇, 𝑡

)
𝛼−𝑖 = 𝜌−𝑖 + 𝜃−

(
𝑡 − log𝑇, 𝑡

)
where:

𝜃+
(
𝑝 (𝑡), 𝑡

)
∼ Lap

©­­«
log𝑇

���max𝑖∈[𝑝 (𝑡 ),𝑡 ] −min𝑖∈[𝑝 (𝑡 ),𝑡 ]
���

𝜖

ª®®¬
𝜃−

(
𝑝 (𝑡), 𝑡

)
∼ Lap

©­­«
log𝑇

���max𝑖∈[𝑝 (𝑡 ),𝑡 ] −min𝑖∈[𝑝 (𝑡 ),𝑡 ]
���

𝜖

ª®®¬
Compute the published axe as follows:

𝑎𝑃𝑈𝐵 (𝑡) = 𝑎𝑇𝑅𝑈𝐸 (0) +
∑︁

𝑗 :(𝑡 𝑗 )2=1

(
𝛼+ ( 𝑗) + 𝛼− ( 𝑗)

)
= 𝑎𝑇𝑅𝑈𝐸 (𝑡) +

∑︁
𝑗 :(𝑡 𝑗 )2=1

(
𝜃+ ( 𝑗) + 𝜃− ( 𝑗)

)
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