
Modeling Mobile Crash in Byzantine Consensus
Hans Schmiedel
Monash University

Australia
hans.schmiedel@monash.edu

Runchao Han
BabylonChain Inc.

Australia
me@runchao.rocks

Qiang Tang
The University of Sydney

Australia
qiang.tang@sydney.edu.au

Ron Steinfeld
Monash University

Australia
ron.steinfeld@monash.edu

Jiangshan Yu ∗

The University of Sydney
Australia

jiangshan.yu@sydney.edu.au

Abstract—Targeted Denial-of-Service (DoS) attacks have been
a practical concern for permissionless blockchains. Potential
solutions, such as random sampling, are adopted by blockchains.
However, the associated security guarantees have only been
informally discussed in prior work. This is due to the fact that
existing adversary models are either not fully capturing this
attack or giving up certain design choices (as in the sleepy model
or asynchronous network model), or too strong to be practical
(as in the mobile Byzantine adversary model).

This paper provides theoretical foundations and desired prop-
erties for consensus protocols that resist against targeted DoS
attacks. In particular, we define the Mobile Crash Adaptive
Byzantine (MCAB) model to capture such an attack. In addition,
we identify and formalize two properties for consensus protocols
under the MCAB model, and analyze their trade-offs. As case
studies, we prove that Ouroboros Praos and Algorand are secure
in our MCAB model, giving the first formal proofs supporting
their security guarantee against targeted DoS attacks, which
were previously only informally discussed. We also illustrate
an application of our properties to secure a streamlined BFT
protocol, chained Hotstuff, against targeted DoS attacks.

I. INTRODUCTION

Byzantine Fault Tolerant (BFT) protocols provide a perfor-
mant and energy-efficient alternative to Proof-of-Work (PoW)
consensus for distributed ledgers. Many BFT protocols follow
the leader-based design [1]–[4], which uses a leader to propose
values, replaced in case of misbehavior or simply for fairness.

For leader-based protocols, and generally deterministic con-
sensus, security is guaranteed against a static or adaptive
Byzantine adversary, who can corrupt up to a threshold of
f nodes, and under a synchronous or partially synchronous
network to circumvent the Fischer, Lynch, and Paterson (FLP)
impossibility result [5]. In these network models, an honest
leader’s message is guaranteed to be delivered within a known
upper bound of network delay (after global stabilization time
in a partially synchronous network). The bounded network
delay enables leader rotations after a timeout.

Mobile DoS attacks. For internet implementations, an
adversary may attempt Denial-of-Service (DoS) attacks on
leaders to stall the protocol. If leaders are known a priori, then
the adversary can target every future leader in each rotation.

∗ Corresponding author

To highlight the capability of moving the target between
leaders, we call such an attack a mobile DoS attack. To date,
various DoS attacks on deployed blockchains have already
been attempted [6], [7], illustrating the need to consider
protocols secure in a model fully capturing DoS threats.

While such an attack is a common attack vector, classic
security models do not cover it — this attack is orthogonal to
the Byzantine threshold or network assumption. As a result,
BFT protocols under these models either do not tackle such
an attack, or only provide an informal discussion on it.

For example, two deployed Proof-of-Stake (PoS)
blockchains using provably secure protocols, Cardano
and Algorand, seem to consider handling DoS as a design
goal: Algorand [8] states that “Algorand is not susceptible
to either targeted compromises or DoS attacks” and Cardano
documentation states that Ouroboros Praos prevents DoS
attacks [9] without proofs. In fact, Ouroboros Praos and
Algorand are shown to be secure under an adaptive adversary
in a semi-synchronous or weak synchronous network
respectively, either of which does not allow an attacker to
perform mobile DoS attacks. This highlights the gap between
the considered adversary in practice and in theoretical security
analysis. A deep and systematic understanding is lacking,
including the desired properties required to resist against such
attacks.

Existing models and adversaries. Alternative system mod-
els (summarised in Table I and analyzed in §VII) have been
proposed in the literature. However, they either only partially
capture the mobile DoS attack, or make it impossible to design
protocols with desired features. For example, it is impossible
to design a system that is secure in the Sleepy or Mobile
Byzantine model in a network that is not synchronous [31],
[34]. For the asynchronous network model, deterministic con-
sensus is impossible due to the FLP result [5]. Therefore,
an adversary model is needed to capture mobile DoS attacks
but still allow consensus under different network models, and
allow both probabilistic or deterministic guarantees, without
contradicting the FLP result [5].

Our contribution. This work addresses the research gap
surrounding the mobile DoS attack with three major contribu-

1

TABLE I: Comparison of existing works and their system models. Further discussions for each column are in Section VII.

Existing works Adversary model Network

D
et

er
m

in
is

tic
co

ns
en

su
s

N
o

id
en

tit
y

re
-e

st
ab

lis
hm

en
t∗

Pa
rti

tio
n

to
le

ra
nc

e
po

ss
ib

le
∗∗

M
od

el
s

m
ob

ile
D

oS

[10]–[13] Adaptive/static Byzantine Asynchronous ✗ ✓ ✓ ✓
This work MCAB ✗ ✓ ✓ ✓

[1], [2], [4] Adaptive/static Byzantine
Partially

synchronous

✓ ✓ ✓ ✗
[14]–[16] Mixed faults ✓ ✓ ✓ ✗
[17] Alive-but-corrupt faults ✓ ✓ ✓ ✗
This work MCAB ✓ ✓ ✓ ✓

[18]–[20] Adaptive Byzantine

Synchronous

✓ ✓ ✓ ✗
[21]–[25] Mobile Byzantine ✓ ✗ ✓ ✓
[2], [26]–[28] Slowly Mobile Byzantine ✓ ✗ ✓ ✗

[29]–[31] Adaptive Sleepy model ?† ✓ ✗ ✓
[18], [32], [33] Mobile sluggish faults ✓ ✓ ✗ ✓
This work MCAB ✓ ✓ ✓ ✓
∗ Identity re-establishment is a very strong requirement, often requires manual operations, making it

impractical (More details in Section VII-C).
∗∗ This indicates the possibility of making protocols simultaneously tolerate partition and secure against a
given adversary model. (More details in Section VII-D.)
† This is still an open question as per [31, Section 6].

tions. First, we define an adversary model, the mobile crash
adaptive Byzantine (MCAB) adversary. While the mobile crash
adversary solely models mobile DoS attacks, it can be com-
bined with the widely accepted adaptive Byzantine adversary
for the targeted applications, i.e., reaching consensus over the
Internet. We adapt and extend the concept of roles [35] to
model consensus, in order to formally analyze the security gap
between the MCAB model and the adaptive Byzantine model.
Second, we explore and identify the entire design space for
maintaining liveness of consensus protocols under the MCAB
model through two key properties that we call abundance
and concealment, and analyze their trade-offs. Our general
positive results show that either one of those properties are
sufficient for liveness in the MCAB model, and can serve as a
modular tool for simplifying the analysis of existing and future
protocols in the MCAB model. Third, to illustrate the modular
utility of our general results, we leverage our findings on case
studies: we show that Ourorobors Praos and Algorand are
indeed still secure against the MCAB adversary by showing
that they satisfy our concealment key property above. We also
show how to augment Hotstuff to remain secure against the
MCAB adversary via showing its abundance property.

Formalizing the model and roles.We formally model consen-
sus by adopting the concept of roles. In addition, to decouple
the adversary’s capacity from network assumption, we define
the capacity of an adversary to corrupt nodes as oracles, al-
lowing our model to be applied to different networks, not only
covering different models in the literature but also providing
new unexplored scenarios (as shown in Fig 1). The MCAB
adversary has access to f adaptive Byzantine faults, and c
mobile crash faults. Assumed bounds on f and c enable a fine-
grained choice of adversarial power for different applications.

Properties for liveness in the MCAB adversary model. We
define two properties and prove that either is necessary, and

both are sufficient for liveness:

• Concealment, inspired by the random secret leaders in
blockchains [8], [36] and BFT achieving constant ex-
pected rounds [37], covers roles performed by nodes
whose identities are only revealed after they broadcast
the role’s messages.

• Abundance, inspired by paralleled BFT where every node
participates in each step [11], [13], [38], captures roles
performed by more nodes than the adversary’s fault
capacity f .

We also prove that the safety guarantee of consensus proto-
cols in their original model can be transferred into the MCAB
model (Theorem 1 and Theorem 2).

Understanding design trade-offs. To further our understand-
ing on concealment and abundance, we derive lower bounds
for the minimum number of communication rounds and mes-
sage complexity introduced by concealment or abundance
(Theorem 5-7). We are then able to present a full picture of the
trade-offs between concealed and abundant protocol designs
using our lower bounds and applicable existing work.

Case studies with known protocols. We show that Algorand
is safe and live in the MCAB adversary model, confirming the
informal discussion that Algorand solves consensus against
a stronger adversary than the adaptive Byzantine adversary.
Hotstuff, on the other hand, loses liveness as it was strictly
designed for the adaptive Byzantine adversary.

The rest of this paper is as follows. Section II introduces
the system model. Section III formalizes the MCAB adversary
model and proves that protocol’s persistence is maintained
against the MCAB adversary. Section IV analyzes necessary
and sufficient properties for liveness. Before concluding our
work, Section VI leverages our findings on two case studies,
Algorand and Hotstuff.

2

adapt.
Byz.

adapt.
Byz.+
mobile
crash

mobile
Byz.

sync.

part.
sync.

async.

Adversarial capability

N
et

w
or

k

Consensus impossible [34]
Deterministic consensus impossible [5]
Deterministic and probabilistic consensus possible
Covered in existing work [23] [24]
Covered in existing work [2] [10] [20] [31] [39]
and by the MCAB model
Covered only by the MCAB model

Fig. 1: Landscape of existing models (with more details in Section VII).

II. SYSTEM MODEL AND PRELIMINARIES

This section introduces the system model, network assump-
tions, and preliminaries on consensus.

A. System model

The system consists of a set of n distributed participants,
which we call nodes, running a pre-defined consensus proto-
col. In applications over the internet, they are usually online
servers. We include scenarios where nodes represent fractions
of stake or total hash power by considering the smallest units
of stake or hash power as the equivalent to single nodes. For
example, a participant controlling 1/3 of stake can be modeled
as 1/3 of all individual nodes in the system.

Honest nodes follow the specified protocol and send or
receive messages according to the network model. However,
some nodes may be faulty, which is modelled as an adversary
with access to different corruption oracles.

Section III defines the full range of adversarial capabilities
we consider.

B. Network assumptions

Nodes are connected to each other in a network of point-
to-point communication links. The three types of assumptions
on message delivery are as follows:

Synchrony In synchronous networks, all messages sent
between honest nodes are delivered within a known time
bound ∆. The order in which they arrive can be determined
by the adversary.

Asynchrony In an asynchronous network, message delivery
is determined by the adversary, as long as all messages
sent between honest nodes are eventually delivered. Messages
between honest nodes cannot be dropped or modified.

Partial synchrony Partial synchrony behaves asyn-
chronously until after an unknown time, Global Stabilization
Time (GST), after which the network behaves synchronously
with a known time bound ∆ between honest nodes.

C. Consensus protocols

We first define the concept of communication steps and
negligible functions and present the properties of consensus.

Communication steps To track time in the system, we use
a communication step counter denoted with s ∈ N0 and ini-
tialized at 1. As considered in asynchronous networks to count
rounds [13], all messages are assigned a virtual round number
by the system, with the condition that messages with virtual
round s + 1 can only be sent once all messages with virtual
round s− 1 between honest nodes have been delivered. Note
that virtual rounds are only used for analysis and not contained
in concrete messages. The current communication step s is
the highest assigned virtual round. In (partially) synchronous
networks, the communication step s is also incremented once
the network’s delay bound ∆ is reached.

Negligible function A negligible function refers to a func-
tion negl(x) where for every y ∈ N, there exists an z ∈ N
such that negl(x) < 1/xy for all x ≥ z.

Message complexity Message complexity is the expected
total number of messages generated by honest nodes.

Consensus Blockchain consensus mainly considers two
properties, namely persistence and liveness [20]. Intuitively,
persistence guarantees that a valid entry in the ledger is
consistent across nodes and time, while liveness ensures that
new inputs can be added to the ledger.

Definition 1 (Persistence [20]). A consensus protocol satisfies
persistence if the following holds. At each communication step
s, if an honest node reports a ledger that contains an input
v in a block more than k ≥ 0 blocks away from the end of
the ledger, then v will be eventually always be reported in
the same position in their ledger by all honest nodes for all
communication steps s′ > s except with probability negl(k).

The block depth k starts at k = 0 for the most recent one.
Persistence is achieved with probability 1 once a block reaches
a pre-defined k. In contrast, the probability of persistence in
Nakamoto consensus grows asymptotically close to 1 with k.

3

Definition 2 (t-Liveness [20]). A protocol P achieves t-
liveness if the following holds. At each communication step
s, if a valid input v, given to all honest nodes during each
communication steps s to s+t(k), then v is reported as k deep
by all honest nodes after communication step s′ > s+t(k), ex-
cept with probability negl(k). The number of communication
steps t is a known polynomial function of k.

III. MOBILE CRASH ADAPTIVE BYZANTINE ADVERSARY
MODEL

This section defines adversarial capabilities, presents a
framework for analyzing protocols with roles, and shows how
the persistence of protocols against the adaptive Byzantine
adversary can be transferred to the MCAB model.

A. Corruption oracles and fault mobility

A corruption oracle is an abstract black box representing
the adversary’s capabilities. It refers to either the Byzantine
oracle in Definition 3 or the crash oracle in Definition 4.

Definition 3 (Byzantine oracle OB). The Byzantine oracle
OB,f takes queries with an input id and is parameterized
by the corruption budget f ∈ {0, ..., n}. For simplicity, we
denote OB,f with OB . For a query at communication step s,
if |Bs| < f for the set Bs of Byzantine nodes at step s, OB

adds id to Bs, and outputs the internal state of node id to
the adversary. Nodes in Bs can deviate arbitrarily from the
protocol during s. If |Bs| ≥ f , OB outputs ⊥.

Definition 4 (Crash oracle OC). The crash oracle OC,c takes
queries with an inputs id and is parameterized by by the
corruption budget c ∈ {0, ..., n}. For simplicity, we denote
OC,c with OC . For a query at communication step s, if
|Cs| < c for the set Cs of crashed nodes, OC adds id to
Cs. Nodes in Cs keep their memory and follow the protocol,
but outgoing and incoming messages may not deliver during
communication step s. If |Cs| ≥ c, OC outputs ⊥.

Blockchains traditionally use an adaptive adversary [8],
[19], [20] that gradually corrupts nodes over time, reflected in
our definition by allowing corruption queries at any commu-
nication step. Once corrupted, nodes remain under adversarial
control. We define adaptive adversaries and obtain the adaptive
Byzantine adversary AAB .

Definition 5 (Adaptive adversary). An adaptive adversary with
a corruption oracle O ∈ {OC ,OB} can query O any number
of times at the start of any communication step s, before nodes
send or receive messages during s. A node corrupted by an
adaptive adversary at s is corrupted for all s′ > s.

Introduced in the context of traditional BFT [23], [24] and
proactive secret sharing [26], [27], mobile adversaries also
gradually corrupt nodes but can additionally make corrupted
nodes honest again. As the protocol progresses, this lets the
adversary corrupt more nodes in total while the number of
faults at any time remains bounded. We formally define a
mobile adversary in Definition 6.

Definition 6 (Mobile adversary). A mobile adversary with a
corruption oracle O ∈ {OC ,OB} can query O any number
of times at the start of any communication step s, before
any nodes send or receive messages. At the start of s, before
querying O, a mobile adversary is also able to cure a node it
has corrupted so that it becomes honest again, and receives
all messages previously sent to it.

By limiting the oracle queries and curing of nodes at a com-
munication step s before any nodes send or receive messages,
the possible number of faulty nodes at any communication step
s is not higher than the corruption budget of the adversary, as
in Buhrman et al. [23]. For example, by replacing a faulty
node during s with another one, both count as a fault during
s.

Using the previous definitions, we can define the mobile
crash fault adaptive Byzantine adversary AMCAB .

Definition 7 (Mobile crash adaptive Byzantine adversary).
The mobile crash adaptive Byzantine adversary AMCAB is
mobile with the crash oracle Oc and corruption budget c,
and is adaptive with the Byzantine corruption oracle OB and
corruption budget f .

Nodes in the Byzantine set cannot be replaced or removed
without some recovery mechanism for secret keys and authen-
ticated communication channels. In contrast, crashed nodes go
back online if they are not targeted again in communication
step s+1 and receive all previous pending messages as in the
sleepy model [31]. As a result AMCAB has adaptive Byzantine
and mobile crash faults.

B. Modelling roles in consensus
To analyze protocols in our proposed model, we follow and

extend the idea of a role/node framework for general multi-
party computation introduced in YOSO [35] for consensus.
A protocol consists of atomic tasks, performed by different
roles at every communication step. Roles, formalized in Def-
inition 8, are then assigned to nodes with a role assignment
mechanism as the protocol runs. Known protocols described
in this framework are provided in Section VI.

Definition 8 (Role). Roles are a subset of the protocol’s
sequence of tasks, whose input values come from received mes-
sages and local memory and whose outputs are one or more
messages communicated to one or more other participants and
updating local memory.

• Role assignment: A role R is assigned at communication
step s to a set of nodes, the committee Ms, by a
role assignment oracle assignRolesR(s, λ) with security
parameter λ.

• Role existence: A role R exists at a communication step
s if the protocol requires at least one node to perform
the role’s tasks at s. If R does not exist at step s, then
Ms = ∅.

C. Persistence in the MCAB model
We prove that protocols with persistence against AAB can

also achieve persistence against AMCAB .

4

Theorem 1 (Persistence against MCAB). If a protocol P
achieves persistence against AAB with f Byzantine corrup-
tions, then P achieves persistence against AMCAB with c
mobile crash and f − c Byzantine corruptions.

Proof. We prove by contradiction. Consider a protocol P that
achieves persistence against AAB , but not against AMCAB .
This means that, with probability larger than negl(k), a stable
input v′ ̸= v is reported at the same position as v in the
ledger by an honest node at communication step s′, where s′ >
s. The adversary may cause crashed nodes to send messages
supporting this persistence violation, such that in the worst
case, AMCAB has f − c+ c nodes with Byzantine behaviour.
AMCAB must be able to create this persistence violation with
probability greater than negl(k) using only these f − c + c
nodes. This forms a contradiction as P achieves persistence
with up to f Byzantine nodes, and AMCAB must be able to
create a persistence violation controlling only up to f nodes
with Byzantine behaviour.

IV. LIVENESS IN THE MCAB MODEL

In this section, we explore security requirements for a
protocol to maintain liveness against the MCAB adversary. We
first show that protocols secure in an asynchronous network
are always secure in the MCAB model. We then introduce
and prove the necessary and sufficient conditions for liveness
against the MCAB adversary.

Definitions in this section consider the following notations:
A consensus protocol P with persistence and t-liveness against
an adversary AAB with access to the Byzantine oracle OB and
corruption budget f ; An adversary AMCAB with access to the
crash oracle OC with corruption budget c and to the Byzantine
oracle OB with corruption budget f − c; The set Ns of ns

nodes running P at a communication step s, identified by id
where id ∈ [1, ..., ns]; The Byzantine set Bs, the crashed set
Cs, and the honest set Hs where Hs = Ns \ (Bs ∪ Cs) at a
communication step s; A role R in P , assigned to nodes in
the set Ms at a communication step s; The set SR = {Rj |j ∈
[1, p]} of all roles in P . Each Rj where j ∈ [1, p] is assigned
to nodes in the set Mj,s at a communication step s; The role
assignment oracle for R denoted as assignRolesR.

A. Asynchronous networks

We prove that asynchronous BFT protocols are also secure
in our model. In partial synchrony, AMCAB is hence only
different from AAB when considering liveness in the syn-
chronous period after GST.

Theorem 2 (Asynchronous BFT is secure against the MCAB
adversary). If a protocol P achieves persistence and t-liveness
(after t asynchronous rounds) in an asynchronous network
against AAB with f adaptive Byzantine corruptions, then
it achieves persistence and t-liveness against AMCAB in a
synchronous network with c mobile crash corruptions and f−c
adaptive Byzantine corruptions.

Proof. To show that persistence is maintained against AMCAB

by any protocol with persistence against AAB , see Theorem 1.

We prove t-liveness is maintained by contradiction. Consider a
protocol P with t-liveness in an asynchronous network against
AAB , but not against AMCAB in a synchronous network.
There therefore exists a valid input v given to all honest nodes
in Hs at communication step s, not considered stable for any
nodes in Hs′ for all communication steps s′ > s + t. This
means that the n− f nodes in each set Hs+i where i ∈ [0, t),
who receive all previous honest messages and deliver new
messages within a known delay ∆, don’t achieve stability for
v for at communication step s+t. However, P has t-liveness in
an asynchronous network against AAB , and any input becomes
stable after t asynchronous rounds between n−f honest nodes.
As t asynchronous rounds can always model t synchronous
communication steps by definition, this is a contradiction.

B. Properties for liveness

The rest of our analysis focuses on liveness in a syn-
chronous network or the synchronous period of a partially
synchronous setting when transferring protocols live against
AAB to AMCAB .

Inspired by protocols with secret block proposers [8], [19],
[20] and protocols where every node participates at every
step [11], [13], [38], we derive two properties using the role
framework of Section III-B, abundance and concealment.

A (r, q, t)-essential role is first defined to exclude superflu-
ous roles for the sake of counter-examples It is parameterized
by the minimum number r of assignments to the role that need
to be honestly executed at least q times out of t communication
steps for the t-liveness of the protocol.

Informally, essential roles represent the steps in a protocol
crucial to its proper execution, while non-essential roles could
be skipped without consequence.

Definition 9 ((r, q, t)-essential). Every role Rj with j ∈ [1, p]
in the set SR is (rj , qj , t)-essential where rj , qj ∈ N if the
following holds. At communication step s, for a valid input
w given to all nodes in every Hs+i where i ∈ [0, t) in P , if
there exists l ∈ [1, p] such that |Hs+i ∩ Ml,s+i| < rl more
than t−ql times in t communication steps s+i where i ∈ [0, t),
then w is stable in the ledger after t communication steps with
probability lower than 1− negl(t).

Conversely, if for every j ∈ [1, p], |Hs+i ∩ Mj,s+i| ≥ rj
more than qj times in t communication steps s + i where
i ∈ [0, t), then w is stable in the ledger after t communication
steps except with probability negl(t).

We first define abundance, where the role is assigned to a
sufficient number of nodes to tolerate all corruptions.

Definition 10 (Abundance). The (r, q, t)-essential role R is
abundant if, for at least q out of any t communication steps
s+ i where i ∈ [0, t)}, we have |Ms+i| ≥ f + r.

The second property is concealment, where the identity of
the assigned nodes is secret and AMCAB can only randomly
guess which nodes to target. This ensures that the adversary
can’t reliably stall the protocol.

5

Concealment is defined by considering the adversary’s win
probability in a game where the adversary tries to guess the
nodes assigned to a role.

Definition 11 (Concealment). The non-abundant (r, q, t)-
essential role R is concealed if it always wins the following
experiment except with probability negligible in t. The con-
cealment experiment between the (r, q, t)-essential role R and
the adversary AMCAB is defined as t consecutive runs of the
following game in all communication steps s + i for some s
with i ∈ [0, t). At the start of the game, up to f − c nodes are
in the Byzantine set Bs+i for i ∈ [0, t).

• Learning phase: AMCAB chooses any number of learn-
ing rounds. For each learning round, AMCAB picks
l /∈ [s, s+t), sends it to R who calls assignRolesR(l, λ)
to obtain Ml, and sends Ml to AMCAB .

• Challenge phase: AMCAB initiates the challenge phase,
calling OC any number of times and obtaining the
set of crashed nodes Cs+i. R obtains Ms+i with
assignRolesR(s+ i, λ), and AMCAB wins the game if
|Ms+i \ (Bs+i ∪ Cs+i)| < r, which we denote by di. We
also denote by di the indicator random variable for the
event di, which equals 1 if di occurs and 0 otherwise.

If event di occurs for more than t − q values of i ∈ [0, t),
AMCAB wins the experiment, denoted by the event D. Note
that AMCAB can add Byzantine nodes with OB each com-
munication step s+ i if |Bs+i| < f − c.

The (r, q, t)-essential concealed role R is ideally-concealed
if, for all i where R exists, the indicator random variables di

are i.i.d and Pr[di]−
∑r

j=0

(M
j

)
(fn)

j(1− f
n)

r−j < negl(λ).

We define protected roles as roles that can’t be reliably
targeted by the additional capabilities of AMCAB by being
abundant or concealed.

Definition 12 (Protected). The (r, q, t)-essential role R is
protected if it is abundant or concealed.

C. Necessity and sufficiency for liveness

We show that each role of a protocol being protected is
sufficient and necessary to remain secure against AMCAB .

With Lemma 1 we show the necessity. Intuitively this is
due to the adversary being able to target all roles that are not
protected with mobile crashes.

Lemma 1 (Necessity for liveness). For any consensus protocol
P , t-liveness against AMCAB is impossible if there exists one
(r, q, t)-essential role that is not protected.

Proof. We prove by contradiction. Say an (rj , qj , t)-essential
role Rj for P is not protected but P achieves t-liveness against
AMCAB .

As R is not protected, for t communication steps s+i where
i ∈ [0, t), the event (|Hs+i ∩Mj,s+i| < rj) can happen more
than t− qj times with probability larger than negl(t). Due to
the (rj , qj , t)-essential property of Rj , this means that a valid
input w given to every Hs+i where i ∈ [0, t) is not stable in

the ledger after t communication steps with probability larger
than negl(t). This contradicts the assumed t-liveness.

Lemma 2 shows the sufficiency of protected roles for
liveness.

Lemma 2 (Sufficiency for liveness). A consensus protocol P
with persistence and t-liveness against AAB always achieves
t-liveness in AMCAB if all node actions are implemented
through protected (r, q, t)-essential roles and their respective
role assignment mechanism.

Proof. We prove by contradiction. Let P be a consensus
protocol with persistence and t-liveness for AAB but not for
AMCAB . Let SR = {Rj |j ∈ [1, p]} be the set of all p
(rj , qj , t)-essential roles in P , which are protected, and let
Hs be the set of honest nodes at communication step s. For
every role {Rj ∈ SR|j ∈ [1, p]}, consider the following.

Since Rj is protected, in t communication steps s+i where
i ∈ [0, t), |Hs+i ∩Mj,s+i| ≥ rj occurs at least qj times with
probability 1 − negl(t). By the rj , qj , t-essential property of
every Rj , j ∈ [1, p], any valid input v given to every Hs+i

where i ∈ [0, t) is stable in the ledger after t communication
steps except with probability negligible in t. By definition of
t-liveness, P also has t-liveness in AMCAB , a contradiction.

Finally we show that, for protocols to maintain their security
properties against AMCAB , their roles must be protected.

Theorem 3 (Necessary and sufficient for liveness). Consider
a consensus protocol P that achieves t-liveness against AAB .
For P to have t-liveness against AMCAB , it is necessary and
sufficient that all node actions can be defined through pro-
tected roles and their respective role assignment mechanism.

Proof. This statement follows from Lemma 2 and Lemma 1.

V. PERFORMANCE TRADE-OFFS IN THE MCAB MODEL

In this section we derive bounds and leverage existing works
to analyze the trade-offs between abundance and concealment,
summarized in Table I.

A. Lower bounds

The lower bound on t-liveness due to an abundant role
follows from Definition 9.

Theorem 4 (Abundance lower bound on t-liveness). For a
consensus protocol Pa with ta-liveness against AMCAB con-
taining an abundant (ra, q, ta)-essential role Ra, we always
have ta ≥ q.

Proof. Due to the (ra, q, ta)-essential property as defined in
Definition 9, ta-liveness requires at least ta ≥ q.

We show that using an abundant essential role requires at
least Ω(n) message complexity, due to Definition 10. When
every role is abundant, each node performing a role sends
its message to the nodes assigned to the next abundant role,
obtaining Ω(n2) message complexity.

6

Theorem 5 (Abundance lower bound on message complexity).
The minimum message complexity of a consensus protocol Pa

achieving ta-liveness against AMCAB containing an abundant
(ra, q, ta)-essential role Ra, which sends at least one message,
is Ω(n). If every role in Pa is abundant, the message complex-
ity of Pa is Ω(n2).

Proof. We prove by contradiction. Say an (ra, q, ta)-essential
role Ra, which sends one message in a consensus protocol
Pa, is abundant but the message complexity of Pa is less than
Ω(n). For Ra, we have |M| ≥ f + ra at least q times in
ta communication steps since it is abundant. Each node in
M sends at least one message by definition. At least f + ra
messages are therefore created in communication steps where
Ra exists. As f scales with n, this implies Ω(n) message
complexity, a contradiction.

We prove by contradiction if every role in Pa is abundant.
Say an (ra, q, ta)-essential role Ra, which sends messages to
the next abundant (ra′ , q′, ta′)-essential role Ra′ in a consen-
sus protocol Pa, is abundant but the message complexity of
Pa is less than Ω(n2). For Ra, we have |M| ≥ f + ra|
at least q times in ta communication steps since it is abun-
dant. Each node in M sends at least Ω(n) messages to
the |M′| ≥ f + ra′ | nodes assigned to Ra′ . At least
(f + ra)(f + ra′) messages are sent in communication steps
where Ra exists and is followed by Ra′ . As f scales with n,
this implies Ω(n2) message complexity, a contradiction.

To lower bound t-liveness when introducing a concealed
role, we use the Chernoff bound to obtain t given its param-
eters and the failure probability. Note that the bound on t is
optimistic due to our looser approximations of the Binomial
distribution tail bound, and a tighter bound could give a
slightly higher t. If ϵ → 0, t → ∞, and if p = 0, t ≥ q
matching the abundant case.

Theorem 6 (Concealment lower bound on t-liveness). For
a consensus protocol Pc achieving t-liveness with failure
probability ϵ containing a concealed (r, q, t)-essential role Rc,
we always have t ≥ q+ ν(q, ϵ) where ν(q, ϵ) > 0 and ϵ is the
liveness error probability.

Proof. For a protocol using Rc, t-liveness has a failure prob-
ability ϵ. To get the lowest t, Rc is ideally-concealed and
for all i ∈ [0, t), we denote the i.i.d. Pr[di] as p from the
game in Definition 12. We can therefore consider a Binomial
distribution with t trials, p as the success probability, and X as
the number of successes. We use the tail bound on Binomial
distributions [40, Lemma 4.7.2] to obtain a lower bound on t,
parameterized by ϵ, p, and q. Using the tail bound to bound
the maximal number of successes t− q, we get

Pr[X > t−q] = ϵ ≥ 1√
8tλ(1− λ)

2−tB(λ,p) ≥ 1√
2t
2−tB(λ,p).

where λ = t−q
t and B(λ, p) = λ log λ

p + (1 − λ) log 1−λ
1−p .

Using the inequality log x ≤ x − 1 where x ≥ 0, we loosen

the bound and derive the following inequality :

log
1

ϵ
≤ 1

2
log(2t) + tB(λ, p)

0 ≤ t2

p
+ t(log ϵ− 2q

p
− 1) +

q2

1− p
+

q2

p

Solving for t assuming t > 0 we obtain the lower bound:
t ≥ p log 1

ϵ + q + p
2 (1 +

√
(log ϵ− 2

p − 1)2 − 4q2

p (1
1−p + 1

p))

Since q > 0, and p, ϵ ∈ [0, 1], the terms are all positive.
We therefore have t ≥ q + ν(q, ϵ) where ν(q, ϵ) > 0 and ϵ

is the liveness error probability.

As a concealed role could be assigned to only one node,
the lower bound on message complexity comes from the
requirement that all n − f honest nodes receive the value to
decide upon, implying at least Ω(n) message complexity.

Theorem 7 (Concealment lower bound: message complexity).
The minimum message complexity of a consensus protocol Pc

amongst n nodes and f faults achieving t-liveness containing
a concealed (r, q, t)-essential role Rc is Ω(n).

Proof. We have |M| < f + r all communication steps and
|M \ (B ∪ C)| ≥ r at least q times in t communication
steps. As a result, there are at least r messages sent in the
communication steps where Rc exists. However by definition,
all n− f honest nodes must receive the input reported in the
same position in the ledger, requiring at least n− f messages
for Pc to achieve persistence. These n− f messages must be
sent by a role in Pc and its message complexity is Ω(n).

B. Discussion on trade-offs

Communication complexity and rounds It is proven that
deterministic consensus requires at least f + 1 rounds in
the worst case with f adaptive crash faults [41], and O(n2)
communication complexity [42]. These results apply to deter-
ministic fully abundant protocols. In contrast, with randomised
consensus, the number of rounds to reach an agreement is
probabilistic and is dependent on the error probability as a
system parameter (Theorem 6).

A protocol using concealment only requires O(n) message
complexity (Theorem 7), enabling subquadratic communica-
tion complexity similarly to Algorand [43] and Abraham et
al. [44].

After-the-fact-removal However, as shown by Abraham
et al. [44], subquadratic complexity is only possible with-
out after-the-fact-removal, which means that the adversary
is not able to stop messages already sent by a node it
corrupts. With after-the-fact-removal, the adversary is able to
“cheat” the game defined in Definition 11 by modifying it
such that in the learning phase, it can pick the challenge
phase’s communication steps. This implies that no role can
be concealed, allowing only abundance. The communication
complexity lower bound O(n2) with after-the-fact-removal
[44] then matches our derived bound in Theorem 5.

Consider the additional cases where after-the-fact removal
is allowed for one type of fault only:

7

• After-the-fact removal adaptive Byzantine faults only, not
mobile crashes: while the adversary hasn’t selected all
adaptive Byzantine faults, a protocol with subquadratic
communication complexity cannot achieve consensus
[44]. However,if the adversary has selected its maximum
allowed number of adaptive faults, the adversary has no
after-the-fact removal ability anymore, and concealment
is possible to maintain liveness.

• After-the-fact removal mobile crashes only, not adap-
tive Byzantine: After-the-fact-removal mobile crashes can
perpetually target concealed committees, and only abun-
dance is possible.

Sources of randomness While the implementation of abun-
dant roles has no additional overhead, concealed roles require
a mechanism to secretly assign roles to nodes. This line of
research has notable examples such as PoW mining [20],
Verifiable Random Function (VRF) selection [45], and Single
Secret Leader Election (SSLE) [46]. When the the size |M|
of the role’s committee is random, rounds where not enough
nodes are assigned may be wasted, but achieving deterministic
|M| is expensive.

Probabilistic |M|. A role assignment with probabilistic
|M| assigns a number of nodes sampled from a certain
probability distribution, usually such that E [|M|] > r. Since
|M| is probabilistic, it is still possible to occasionally have
|M| < r without interference from the adversary. This can add
additional communication rounds to terminate the protocol,
leading to higher values of t for the t-liveness guarantee. For
example, VRF random assignments such as in Algorand [8]
secretly select nodes, satisfying concealment, with a proba-
bilistic expected number of nodes in one committee. It can
be the case however, that a committee in Algorand does not
reach quorum due to not enough nodes being selected.

Deterministic |M|. A role assignment with deterministic
|M| assigns a fixed number of randomly chosen nodes. Since
|M| ≥ r is guaranteed, only by winning the game defined in
Definition 12 can |H∩M| < r still happen. SSLE introduces
a primitive to achieve such a design.

However, in the only existing protocol with adaptive se-
curity to our knowledge [47], SSLE runs with additional
communication between nodes which has at least O(n2) mes-
sage complexity for n synchronous broadcasts. It should also
maintain its security properties in the MCAB model, which
seems possible at first glance with similar arguments as in
Theorem 1 and due to the abundant all-to-all communications.

Random beacon. Concealed roles inherently require a
trusted source of randomness for their role assignment. This
has been achieved in various ways like an initial trusted
nonce for Bitcoin [20] or Algorand [8] that is updated as
the protocol runs. Distributed random beacons that uses either
consensus [48] or trusted setups [49] are also a way to agree
on a common source of randomness. However, they may leak
information, increasing Pr[d] in Definition 12 and t for t-
liveness which must be analyzed properly.

Previous work has also shown the benefit of load bal-
ancing [38], [50], [51], which distributes computation and

TABLE II: Comparison of abundant and concealed roles. We
consider protected (q, r, t)-essential roles with the positive
factors µ(ϵ), ν(q, ϵ) > 0 depending on q and the acceptable
error probability for liveness ϵ.

t-liveness
bound

Message
complexity

No
random
beacon

Allow
after-

-the-fact-
-removal

Load
balancing

Abundant and
deterministic t ≥ f + 1 Θ(n2) ✓ ✓ ✓
Abundant and
randomized t ≥ q + µ(ϵ) Θ(n2) ✗ ✓ ✓

Concealed with
determin. |M| t ≥ q + ν(q, ϵ) O(n2) ✗ ✗ ✗
Concealed with

random |M| t ≥ q + ν(q, ϵ) Θ(n) ✗ ✗ ✗

communication workload to nodes, avoiding performance bot-
tlenecks and obtain higher throughput akin to abundant roles.

Table V-B summarizes the performance trade-offs between
the variants of abundance and concealment.

VI. CASE STUDIES: EXISTING PROTOCOLS IN THE MCAB
MODEL

This section leverages our theorems to analyze the security
of Ouroboros [36], [52], Algorand [8], [43] and Chained
Hotstuff [4] against AMCAB . We briefly summarize their
protocol flow and show Chained Hotsuff’s lack of liveness
and Algorand’s security against AMCAB . Their respective
full papers provide formal descriptions and proofs of security
against AAB . We additionally present a modified illustrative
version of Chained Hotstuff maintaining its liveness against
AMCAB with abundance, and discuss how to leverage existing
work on fallback protocols for AMCAB .

A. Ouroboros Praos

Ouroboros Praos is an adaptively secure PoS protocol where
nodes regularly compute a VRF output to check eligibility
to be a block proposer. The chain selection rule followed by
honest nodes allows them to converge to a consistent view of
the blockchain.

Only one role is needed to describe Ouroboros Praos, the
slot leader role where a node extends its view of the canonical
chain with a new block and broadcasts it to the network.
Arguments for Ouroboros’ security in the MCAB model are
analogous for the adaptively secure Snow White and other
similar protocols with a single leader role selected randomly
and secretly, for example using a VRF or PoW lottery.

Roles in Ouroboros Praos
• Slot leader role Rsl: Create a block of transactions and

gossip it to the network. The r value is 1.
Committees of roles

• Committee of role Rsl: contains a random number of slot
leaders, in the deployed protocol [9], we have expected
value E [τsl] = 0.05.

Role assignment

8

The role assignment oracle assignRoles in Ouroboros
Praos is implemented via the VRF selection mechanism.
Nodes are selected to be slot leaders with a parameterized
probability weighted by stake. The inputs to the VRF check
are their secret key, their number of coins, the output of the
on-chain random beacon, and the τ parameter determining the
expected number of selected nodes.

To prove the security of Ouroboros Praos against AMCAB ,
we simply show that the role in Ouroboros Praos satisfies the
concealment requirements of Definition 11, implying security
against AMCAB by Theorem 3 and Theorem 1.

Corollary 1 (Security of Ouroboros Praos). Ouroboros Praos
achieves t-liveness and persistence against AMCAB with f +
c ≤ n/2 where f is the number of adaptive Byzantine faults,
c is the number of mobile crash faults, and n is the number
of total nodes.

Proof. Role Rsl is concealed since the assigned nodes are
not public until the blocks are broadcast, and the probability
of AMCAB guessing all proposers is smaller than 1. As per
the full analysis of Ouroboros Praos [52], the probability
that the adversary influences the source of randomness drop
exponentially with the number of honest blocks in an epoch,
and therefore adds a probability negligible in the security
parameter for the adversary to guess assignments. This means
Rsl is even ideally-concealed.

B. Algorand

Nodes in Algorand [8] regularly obtain a pseudorandom
number with a Verifiable Random Functions (VRF) whose
randomness is verifiable with the node’s public key. Com-
puting the VRF output is done locally, allowing nodes to
check eligibility to propose blocks and participate in BA⋆ [8],
a Byzantine Agreement algorithm, without revealing their
identity. Once block proposers broadcast a block, nodes are
selected for each step of BA⋆ to eventually finalize the block
with the lowest VRF output, or an empty block in bad network
conditions.

We obtain three roles comprising Algorand: proposing a
block, performing a step in its own Byzantine Agreement
algorithm BA⋆, and finalizing a block in the last step of BA⋆.

Roles in Algorand
• Block proposer role RPROPOSER: Create a block of trans-

actions and gossip it to the network. The r value is 1.
• Voter in the binary BA⋆ algorithm, step i ∈

[1,MaxSteps] Ri
STEP: The CommitteeVote function

checks if one is selected for the next step’s role, and is
part of the role assignment mechanism of Algorand. The
r for RPROPOSER is TSTEP · τSTEP = 0.685 · 2000 = 1370.
We refer to Algorithm 8 in [8] for the specific operations
performed in each step i of BA⋆.

• Voter in the binary BA⋆ algorithm, final step RFINAL :
Perform final step of BA⋆. The r for RFINAL is TFINAL ·
τFINAL = 0.74 · 10000 = 7400.

Since the parameters for the role assignment mechanism and
the voting threshold per BA⋆ step are the same, we analyze

them together indexed with i. The last step denoted FINAL
has slightly different parameters and is therefore considered
separately.

Committees of roles
• Committee of role RPROPOSER: contains a random number

of block proposers with expected value E [τPROPOSER] =
26.

• Committee of role Rj
STEP: contains a random number

of BA⋆ members for BA⋆’s step j with expected value
E [τSTEP] = 2000.

• Committee of role RFINAL: contains a random number
of final BA members with expected value E [τFINAL] =
10000.

Role assignment
The role assignment oracle assignRoles in Algorand is

implemented via the VRF selection mechanism. Nodes are
selected for different roles with a parameterized probability
weighted by stake. The inputs to the VRF check are their secret
key, their number of coins, the current on-chain seed, and the τ
parameter determining the expected number of selected nodes.

To prove the security of Algorand against AMCAB , we sim-
ply show that every role in Algorand satisfies the concealment
requirements of Definition 11.

Corollary 2 (Security of Algorand). Algorand achieves t-
liveness and persistence against AMCAB with f + c ≤ n/3
for f adaptive Byzantine faults, c mobile crash faults, and n
total nodes at any time.

Proof. RPROPOSER is concealed since the assigned nodes are
not public until the blocks are broadcast, and the probability
of AMCAB randomly guessing all proposers is smaller than 1.
As per the full version of Algorand [8], probability of guessing
the next selection seeds drop exponentially with the number
of blocks committed in a synchronous period, and therefore
adds a probability negligible in the security parameter for the
adversary to guess assignments. This means RPROPOSER is even
ideally-concealed.
Rj

STEP is concealed for all j since the assigned nodes aren’t
public until the votes are broadcast, and the probability of
AMCAB guessing committee members for any s such that
RSTEP ∩Hs < TSTEP · τSTEP = 1370 is smaller than 1. As for
RPROPOSER, ∀j,Rj

STEP is ideally concealed.
RFINAL is concealed since the assigned nodes aren’t public

until the votes are broadcast, and the probability of AMCAB

guessing committee members for any s such that RFINAL ∩
Hs < TFINAL · τFINAL = 7400 is smaller than 1. As for
RPROPOSER, RFINAL is ideally concealed.

All roles in Algorand are concealed, and by Lemma 3,
Algorand achieves t-liveness and persistence in AMCAB .

C. Chained Hotstuff

Chained Hotstuff’s [4] protocol flow is as follows: a leader
collects signatures on the last proposed block and forms a
Quorum Certificate (QC) if the threshold is met. It broadcasts
the QC along with its own proposed block, which nodes verify
before sharing their signature with the next leader. This process

9

repeats and, to guarantee safety and liveness, blocks need three
sequential QCs to be finalized. If a threshold of nodes don’t
receive a leader’s message before a timeout, the next leader is
called through a view-change.

Chained Hotstuff [4] can be described in two roles, the
leader and voter roles. The leader role is first assigned to one
node selected in a round-robin fashion, followed by the voter
role assigned to every node.

Roles in Chained Hotstuff
• Voter role Rv: Wait for message from current commu-

nication step’s leader. If the SAFENODE(b∗, b∗.justify)
predicate passes, send a vote to the next leader. Decide
for blocks with a three-chain, commit on blocks with a
two-chain, and pre-commit blocks with a one-chain. If no
message is received from the current communication step
leader, send a NEXTVIEW(m)essage to the next leader. Its
r value is 2f + 1.

• Leader role Rl: Wait for all messages until there are n−f
votes and form QC with the partial signatures. Extend the
highest received QC with a new leaf, containing the new
input, and broadcast it. Its r value is 1.

Commitees of roles
• Committee of role Rl: contains only one node, that

communication step’s leader.
• Committee of role Rv: contains n nodes, with the same

voting rules.
Role assignment

For Rl, assignRolesRl
(s) outputs a single node in a round

robin fashion. For Rv , assignRolesRv
(s) outputs every node

that is assigned one vote each.
The leader role is neither abundant nor concealed, prevent-

ing Chained Hotstuff’s liveness against AMCAB by Theo-
rem 3. It is easy to see that liveness is not guaranteed against
AMCAB in streamlined BFT protocols with single leaders, for
example Tendermint [1], Damysus [3], and Jolteon [53].

Corollary 3 (Security of Chained Hotstuff). Chained Hotstuff
does not achieve t-liveness against AMCAB with f +c ≤ n/3
for f adaptive Byzantine faults, c mobile crash faults, and n
total nodes at any time.

Proof. The role Rl is not abundant since |Rl| = 1 ≤ c+ 1.
In addition, Rl is not concealed since, with the public round-
robin schedule, AMCAB can win the protected game with
probability 1 by choosing to crash the next publicly known
leader. By Lemma 1, Chained Hotstuff does not achieve t-
liveness against AMCAB .

D. Adding abundance: Abundant Chained Hotstuff

By running n Chained Hotstuff instances in parallel whose
round-robin leader schedules don’t overlap, we obtain the
Abundant Chained Hotstuff protocol where every role is
abundant, live against AMCAB . This modified protocol does
not necessarily perform better practically and simply illustrates
the use of abundance to maintain security against AMCAB .

We use Hotstuff-2’s [54] improvements where only three
consecutive honest leaders are required to finalize blocks,

while maintaining optimistic responsiveness. To handle con-
flicts between instances, each instance’s blocks of the same
height are combined according to the instance number. This
necessitates a finalized block in an instance to wait for every
other block of the same height from other instances. To
maintain progress at each instance in spite of faulty leaders,
honest leaders extend every instance’s highest QC, instead of
only its own QC.

Roles in Abundant Chained Hotstuff:
• Voter role Rv: Wait for proposals from the n instances at

communication step s or after waiting for ∆. For each i, if
the SAFENODE((b∗i , b

∗
i .justify)) predicate passes, send a

vote to instance i’s next leader. If no message is received
or the SAFENODE((b∗i , b

∗
i .justify) predicate fails, send a

nextView message to instance i’s next leader. Once every
instance’s block for the same height have a two-chain,
decide for these blocks, and commit on blocks with a
one-chain. There are n messages in total, either a vote or
a nextView, which are sent once n messages are received,
or after timeout. The r value of Rv is 2(f + c) + 1.

• Leader role Rl: Wait for all messages until there are 2(f+
c)+1 votes and form QC with the partial signatures. Wait
for up to a timeout ∆ to receive the highest QC for every
instance, extend them with a new leaf, containing the new
input, and broadcast it. The r value of Rl is f + 2c+ 1
to obtain 2 consecutive honest leaders on one instance.

Committees of roles
• Committee of role Rl: contains n nodes, that communi-

cation step’s leaders.
• Committee of role Rv: contains n nodes.

Role assignment
For Rl, assignRolesRl

(s) assigns an instance to each
node, rotating in round robin. For Rv , assignRolesRv

(s)
assigns every node to vote for every proposals.

To show that Abundant Chained Hotstuff achieves per-
sistence, we first show that Abundant Chained Hotstuff has
persistence against AAB . We analyze all cases for two con-
flicting decisions v and w and show that each case leads to
a contradiction. We then use Theorem 1 to show persistence
against AMCAB .

Corollary 4 (Persistence of Abundant Chained Hotstuff).
Abundant Chained Hotstuff achieves persistence against
AMCAB with n > 3(f + c) nodes for f adaptive Byzantine
faults and c mobile crash faults at any time.

Proof. We first show that Abundant Chained Hotstuff has
persistence against AAB .

Proof by contradiction: Assume two conflicting proposals
v and w are delivered at communication steps sv and sw
respectively. We analyze the three cases for this assumption,
each leading to a contradiction.

• Case 1: an individual Chained Hotstuff instance in the
protocol delivered v and w. This is a contradiction as
two-chain Chained Hotstuff is safe against AAB as shown
in the original work [4], and can’t deliver v and w.

10

• Case 2: v and w are delivered by separate Chained
Hotstuff instances, and sv = sw. Each instance’s proposal
has received a two-chain, at which point every honest
node will discard conflicting proposals. Only v or w is
therefore delivered, a contradiction.

• Case 3: v and w are delivered by separate Chained
Hotstuff instances and, w.l.o.g, sv < sw. To deliver w,
w requires at least 2f +1 votes in one step. However, to
reach 2f + 1 votes, at least one honest node has voted
for both v and w, a contradiction.

By Theorem 1, persistence is maintained against AMCAB .

For liveness, we use the liveness against of AAB of
Hotstuff-2 [54] to show that individual Abundant Chained
Hotstuff instances have liveness. We then show that every role
is abundant, implying liveness against AMCAB by Theorem 3.

Corollary 5 (Liveness of Abundant Chained Hotstuff). Abun-
dant Chained Hotstuff achieves liveness against AMCAB with
n > 3(f + c) nodes for f adaptive Byzantine faults and c
mobile crash faults in a partially synchronous network.

Proof. Hotstuff-2 has liveness after GST against AAB as
shown in the original paper [54]. For its chained version, it
is known that liveness additionally requires three consecutive
honest leaders to commit a proposal thanks to previous work
on Chained Hotstuff [4], [55]. After GST when n > 3f
with round-robin leaders, three consecutive honest leaders are
eventually obtained and Chained Hotstuff-2 also has liveness
after GST against AAB . In Abundant Chained Hotstuff, each
instance has round-robin leaders and obtains three consecutive
honest leaders after GST against AAB .

To show that Abundant Chained Hotstuff maintains liveness
against AMCAB , we show that both roles are abundant. Rv is
abundant since |Rv| = n ≥ c+2f +1 every communication
step where it is assigned. For Rl to be abundant, |Rl| must be
large enough so that at least one instance is able to have three
consecutive honest leaders. In three leader phases, AMCAB

is able to mobile crash the leader of 3c instances, while 3f
instances may have a Byzantine leader. We therefore require
3f + 3c + 1 leader roles assigned to distinct nodes. Rl is
abundant since |Rl| = 3f + 3c + 1 ≥ 3f + 3c + 1 every
communication step where it is assigned. By Theorem 3,
Abundant Chained Hotstuff has persistence in AMCAB .

E. Extensions and future directions

Generic frameworks for asynchronous fallback proto-
cols [53], [56] may be modified for the MCAB setting, such
that a protocol can switch between a protocol without conceal-
ment or abundance, vulnerable to DoS attacks, and a protocol
secure against AMCAB . Knowing how to efficiently switch
modes involves subtleties explored for the asynchronous case,
for MCAB fallback we may follow the general framework
[56], but dedicated redesign might be needed. For example,
differentiating between simple leader failures, mobile DoS
attacks, and network failures requires care.

The ACE framework [57] has a similar design to Abundant
Hotstuff as it runs multiple instances of leader-based protocols
in parallel, however it is designed to add asynchronous liveness
while Abundant Hotstuff is secure in a partially synchronous
network against AMCAB .

The condition of abundance or concealment may be a
starting point to generalize Byzantine quorum systems’ [58]
availability property with parameters r and q. Instead of
requiring the number of honest roles in a committee to be
a full quorum, only r are required, and it must hold only for
at least q communication steps in t, as opposed to at all steps.
Links between Byzantine quorum systems [58] and conditions
in the MCAB model could be further explored.

Optimal resilience bounds in the MCAB are still open. In a
synchronous network where n > 2f + c with MCAB, or the
sleepy model, no known deterministic protocol exists to our
knowledge. In partial synchrony, Abundant Chained Hotstuff
is an example of a deterministic protocol with n > 3(f + c).
When the crashes are static and not mobile, n > 3f + 2c has
been achieved [15].

VII. EXISTING ADVERSARY MODELS

Compared to existing models, only our model allows con-
sensus protocols with the following properties, which we
explain in the following paragraphs and summarize in Ta-
ble I: capturing mobile DoS attacks, allowing deterministic
consensus, allowing partition tolerant protocols, and requiring
no identity re-establishment.

A. Capturing mobile DoS

To model the mobile DoS attack, the adversary always needs
the ability to target a new node. This is not the case when
the adversary eventually can’t target certain honest nodes. For
example, the classical adaptive adversary can’t corrupt new
nodes after f corruptions. Network models that eventually
deliver all messages similarly can’t model mobile DoS.

The mobile Byzantine adversary in some works [2], [26],
[27], [59], which we call slow, compromises new sets of nodes
periodically, such that the adversary can’t corrupt new nodes
after f corruptions within one period.

B. Deterministic consensus

As shown by the FLP impossibility result [5], deterministic
consensus is impossible in a fully asynchronous network.
In the sleepy model [31], deterministic protocols remain an
open question. As a result, using asynchronous BFT’s or the
sleepy model’s line of work may be unsuitable for applications
requiring deterministic guarantees.

C. Requiring no identity re-establishment

Protocols requiring identity re-establishment need to re-gain
control of the identity after the mobile attacker leaves [23],
[24], [26], [27], [60]. This includes two common implementa-
tions, including physical links and manual operations. For the
former, it assumes that the servers are authenticated through
physical channels, such that when the attacker leaves at time

11

t′, it cannot impersonate as the victim at time t > t′. For the
latter, it assumes that the victim has the capacity to re-establish
its identity at the speed of the adversary in corrupting a node.
This typically requires manual process such as re-registration
over the PKI or manually accessing a secure off-line storage.

D. Partition tolerance

Typically protocols under synchronous networks do not con-
sider partition tolerance; however, partition tolerant protocols
can still be secure against some adversaries in synchronous
networks. Nonetheless, it is impossible for protocols to be
secure under the sleepy model [31] and the mobile sluggish
fault model [32], while tolerating partition.

VIII. CONCLUSION

In this work, we identified and filled a gap for generic
adversary models, between traditional blockchain adversaries
unable to model mobile DoS, and existing models that do
model mobile DoS but only under restrictive conditions. To
understand the security requirements of our model, we proved
that abundance and concealment are sufficient, and that at
least one of them is necessary for security. Additionally,
we analyzed the trade-offs between the two properties. We
applied our findings to evaluate the security of Ouroboros
Praos, Algorand, and Hotstuff as case studies, confirming the
intuition that Ouroboros Praos and Algorand tolerate a stronger
adversary.

IX. ACKNOWLEDGEMENT

This work was partially supported by the Australian Re-
search Council (ARC) under project DE210100019.

REFERENCES

[1] E. Buchman, “Tendermint: Byzantine fault tolerance in the age of
blockchains,” Ph.D. dissertation, University of Guelph, 2016.

[2] M. Castro and B. Liskov, “Practical Byzantine fault tolerance and
proactive recovery,” ACM Transactions on Computer Systems (TOCS),
vol. 20, no. 4, pp. 398–461, 2002.

[3] J. Decouchant, D. Kozhaya, V. Rahli, and J. Yu, “DAMYSUS: stream-
lined BFT consensus leveraging trusted components,” in EuroSys,
Y. Bromberg, A. Kermarrec, and C. Kozyrakis, Eds. ACM, 2022,
pp. 1–16.

[4] M. Yin, D. Malkhi, M. K. Reiter, G. Golan-Gueta, and I. Abraham, “Hot-
stuff: BFT consensus with linearity and responsiveness,” in Proceedings
of the 2019 ACM Symposium on Principles of Distributed Computing,
PODC 2019, Toronto, ON, Canada, July 29 - August 2, 2019. ACM,
2019, pp. 347–356.

[5] M. J. Fischer, N. A. Lynch, and M. Paterson, “Impossibility of dis-
tributed consensus with one faulty process,” J. ACM, vol. 32, no. 2, pp.
374–382, 1985.

[6] A. Hertig, “So, ethereum’s blockchain is still under attack. . . ,”
https://www.coindesk.com/markets/2016/10/06/so-ethereums-
blockchain-is-still-under-attack/, 2016, accessed: 2023-04-06.

[7] H. Maishera, “Solana’s latest ddos attack leads to poor network perfor-
mance,” https://finance.yahoo.com/news/solana-latest-ddos-attack-leads-
120022342.html, 2022, accessed: 2023-04-06.

[8] Y. Gilad, R. Hemo, S. Micali, G. Vlachos, and N. Zeldovich, “Algorand:
Scaling Byzantine agreements for cryptocurrencies,” in Proceedings of
the 26th symposium on operating systems principles, 2017, pp. 51–68.

[9] IOHK, “Cardano docs: Ouroboros overview,”
https://docs.cardano.org/learn/ouroboros-overview/, 2023, accessed:
2023-12-28.

[10] C. Cachin, K. Kursawe, A. Lysyanskaya, and R. Strobl, “Asynchronous
verifiable secret sharing and proactive cryptosystems,” in Proceedings of
the 9th ACM Conference on Computer and Communications Security,
2002, pp. 88–97.

[11] Y. Lu, Z. Lu, Q. Tang, and G. Wang, “Dumbo-mvba: Optimal multi-
valued validated asynchronous Byzantine agreement, revisited,” in Pro-
ceedings of the 39th Symposium on Principles of Distributed Computing
(PODC), 2020, pp. 129–138.

[12] B. Guo, Z. Lu, Q. Tang, J. Xu, and Z. Zhang, “Dumbo: Faster
asynchronous BFT protocols,” in CCS ’20: 2020 ACM SIGSAC Confer-
ence on Computer and Communications Security, Virtual Event, USA,
November 9-13, 2020, J. Ligatti, X. Ou, J. Katz, and G. Vigna, Eds.
ACM, 2020, pp. 803–818.

[13] A. Miller, Y. Xia, K. Croman, E. Shi, and D. Song, “The honey badger
of bft protocols,” in Proceedings of the 2016 ACM SIGSAC conference
on computer and communications security, 2016, pp. 31–42.

[14] I. Abraham, D. Dolev, A. Kagan, and G. Stern, “Brief announcement:
Authenticated consensus in synchronous systems with mixed faults,”
in 36th International Symposium on Distributed Computing (DISC).
Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2022.

[15] G. G. Gueta, I. Abraham, S. Grossman, D. Malkhi, B. Pinkas, M. Reiter,
D.-A. Seredinschi, O. Tamir, and A. Tomescu, “Sbft: a scalable and
decentralized trust infrastructure,” in 2019 49th Annual IEEE/IFIP
international conference on dependable systems and networks (DSN).
IEEE, 2019, pp. 568–580.

[16] M. Serafini, P. Bokor, D. Dobre, M. Majuntke, and N. Suri, “Scrooge:
Reducing the costs of fast Byzantine replication in presence of un-
responsive replicas,” in 2010 IEEE/IFIP International Conference on
Dependable Systems & Networks (DSN). IEEE, 2010, pp. 353–362.

[17] D. Malkhi, K. Nayak, and L. Ren, “Flexible byzantine fault tolerance,”
in Proceedings of the 2019 ACM SIGSAC Conference on Computer
and Communications Security, ser. CCS ’19. New York, NY, USA:
Association for Computing Machinery, 2019, p. 1041–1053. [Online].
Available: https://doi.org/10.1145/3319535.3354225

[18] I. Abraham, D. Malkhi, K. Nayak, L. Ren, and M. Yin, “Sync hotstuff:
Simple and practical synchronous state machine replication,” in 2020
IEEE Symposium on Security and Privacy (SP). IEEE, 2020, pp. 106–
118.

[19] B. David, P. Gaži, A. Kiayias, and A. Russell, “Ouroboros praos:
An adaptively-secure, semi-synchronous proof-of-stake blockchain,” in
Annual International Conference on the Theory and Applications of
Cryptographic Techniques. Springer, 2018, pp. 66–98.

[20] J. Garay, A. Kiayias, and N. Leonardos, “The bitcoin backbone protocol:
Analysis and applications,” in Annual international conference on the
theory and applications of cryptographic techniques. Springer, 2015,
pp. 281–310.

[21] N. Banu, S. Souissi, T. Izumi, and K. Wada, “An improved Byzantine
agreement algorithm for synchronous systems with mobile faults,”
International Journal of Computer Applications, vol. 43, no. 22, pp.
1–7, 2012.

[22] F. Bonnet, X. Défago, T. D. Nguyen, and M. Potop-Butucaru, “Tight
bound on mobile Byzantine agreement,” in International Symposium on
Distributed Computing. Springer, 2014, pp. 76–90.

[23] H. Buhrman, J. A. Garay, and J.-H. Hoepman, “Optimal resiliency
against mobile faults,” in Twenty-Fifth International Symposium on
Fault-Tolerant Computing. Digest of Papers. IEEE, 1995, pp. 83–88.

[24] R. Ostrovsky and M. Yung, “How to withstand mobile virus attacks,”
in Proceedings of the tenth annual ACM symposium on Principles of
distributed computing, 1991, pp. 51–59.

[25] T. Sasaki, Y. Yamauchi, S. Kijima, and M. Yamashita, “Mobile Byzan-
tine agreement on arbitrary network,” in International Conference On
Principles Of Distributed Systems. Springer, 2013, pp. 236–250.

[26] A. Herzberg, S. Jarecki, H. Krawczyk, and M. Yung, “Proactive secret
sharing or: How to cope with perpetual leakage,” in annual international
cryptology conference. Springer, 1995, pp. 339–352.

[27] D. Schultz, B. Liskov, and M. Liskov, “Mpss: mobile proactive secret
sharing,” ACM Transactions on Information and System Security (TIS-
SEC), vol. 13, no. 4, pp. 1–32, 2010.

[28] L. Zhou, F. B. Schneider, and R. Van Renesse, “Coca: A secure dis-
tributed online certification authority,” ACM Transactions on Computer
Systems (TOCS), vol. 20, no. 4, pp. 329–368, 2002.

[29] V. Goyal, H. Li, and J. Raizes, “Instant block confirmation in the sleepy
model,” in International Conference on Financial Cryptography and
Data Security (FC). Springer, 2021, pp. 65–83.

12

[30] A. Momose and L. Ren, “Constant latency in sleepy consensus,” in
Proceedings of the 2022 ACM SIGSAC Conference on Computer and
Communications Security, CCS 2022, Los Angeles, CA, USA, November
7-11, 2022. ACM, 2022, pp. 2295–2308.

[31] R. Pass and E. Shi, “The sleepy model of consensus,” in International
Conference on the Theory and Application of Cryptology and Informa-
tion Security. Springer, 2017, pp. 380–409.

[32] Y. Guo, R. Pass, and E. Shi, “Synchronous, with a chance of partition
tolerance,” in Annual International Cryptology Conference. Springer,
2019, pp. 499–529.

[33] J. Kim, V. Mehta, K. Nayak, and N. Shrestha, “Brief announcement:
Making synchronous BFT protocols secure in the presence of mobile
sluggish faults,” in ACM Symposium on Principles of Distributed Com-
puting (PODC), Virtual Event, Italy, July 26-30, 2021. ACM, 2021,
pp. 375–377.

[34] P. Sousa, A. N. Bessani, M. Correia, N. F. Neves, and P. Verissimo,
“Resilient intrusion tolerance through proactive and reactive recovery,”
in 13th Pacific Rim International Symposium on Dependable Computing
(PRDC). IEEE, 2007, pp. 373–380.

[35] C. Gentry, S. Halevi, H. Krawczyk, B. Magri, J. B. Nielsen, T. Rabin,
and S. Yakoubov, “Yoso: you only speak once,” in Annual International
Cryptology Conference. Springer, 2021, pp. 64–93.

[36] C. Badertscher, P. Gazi, A. Kiayias, A. Russell, and V. Zikas,
“Ouroboros chronos: Permissionless clock synchronization via proof-
of-stake,” Cryptology ePrint Archive, 2019.

[37] I. Abraham, S. Devadas, D. Dolev, K. Nayak, and L. Ren,
“Synchronous byzantine agreement with expected O(1) rounds,
expected o(n2) communication, and optimal resilience,” in Financial
Cryptography and Data Security - 23rd International Conference, FC
2019, Frigate Bay, St. Kitts and Nevis, February 18-22, 2019, Revised
Selected Papers, ser. Lecture Notes in Computer Science, I. Goldberg
and T. Moore, Eds., vol. 11598. Springer, 2019, pp. 320–334.
[Online]. Available: https://doi.org/10.1007/978-3-030-32101-7 20

[38] C. Stathakopoulou, T. David, M. Pavlovic, and M. Vukolic,
“[solution] mir-bft: Scalable and robust BFT for decentralized
networks,” J. Syst. Res., vol. 2, no. 1, 2022. [Online]. Available:
https://doi.org/10.5070/sr32159278

[39] C. Liu, S. Duan, and H. Zhang, “Epic: efficient asynchronous bft
with adaptive security,” in 2020 50th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN). IEEE, 2020,
pp. 437–451.

[40] R. B. Ash, Information theory. Courier Corporation, 2012.
[41] M. K. Aguilera and S. Toueg, “A simple bivalency proof that t-resilient

consensus requires t + 1 rounds,” Inf. Process. Lett., vol. 71, no. 3-4,
pp. 155–158, 1999. [Online]. Available: https://doi.org/10.1016/S0020-
0190(99)00100-3

[42] D. Dolev and R. Reischuk, “Bounds on information exchange for
Byzantine agreement,” J. ACM, vol. 32, no. 1, pp. 191–204, 1985.
[Online]. Available: https://doi.org/10.1145/2455.214112

[43] J. Chen and S. Micali, “Algorand: A secure and efficient distributed
ledger,” Theor. Comput. Sci., vol. 777, pp. 155–183, 2019.

[44] I. Abraham, T.-H. H. Chan, D. Dolev, K. Nayak, R. Pass, L. Ren,
and E. Shi, “Communication complexity of byzantine agreement,
revisited,” in Proceedings of the 2019 ACM Symposium on Principles
of Distributed Computing, ser. PODC ’19. New York, NY, USA:
Association for Computing Machinery, 2019, p. 317–326. [Online].
Available: https://doi.org/10.1145/3293611.3331629

[45] S. Micali, M. Rabin, and S. Vadhan, “Verifiable random functions,” in
40th annual symposium on foundations of computer science (cat. No.
99CB37039). IEEE, 1999, pp. 120–130.

[46] D. Boneh, S. Eskandarian, L. Hanzlik, and N. Greco, “Single secret
leader election,” in Proceedings of the 2nd ACM Conference on Ad-
vances in Financial Technologies, 2020, pp. 12–24.

[47] D. Catalano, D. Fiore, and E. Giunta, “Adaptively secure single secret
leader election from ddh,” in Proceedings of the 2022 ACM Symposium
on Principles of Distributed Computing (PODC), 2022, pp. 430–439.

[48] S. Das, V. Krishnan, I. M. Isaac, and L. Ren, “Spurt: Scalable distributed
randomness beacon with transparent setup,” in 2022 IEEE Symposium
on Security and Privacy (SP). IEEE, 2022, pp. 2502–2517.

[49] A. Bhat, N. Shrestha, Z. Luo, A. Kate, and K. Nayak, “Randpiper–
reconfiguration-friendly random beacons with quadratic communica-
tion,” in Proceedings of the 2021 ACM SIGSAC Conference on Computer
and Communications Security, 2021, pp. 3502–3524.

[50] G. Danezis, L. Kokoris-Kogias, A. Sonnino, and A. Spiegelman,
“Narwhal and tusk: a dag-based mempool and efficient BFT
consensus,” in EuroSys ’22: Seventeenth European Conference on
Computer Systems, Rennes, France, April 5 - 8, 2022, Y. Bromberg,
A. Kermarrec, and C. Kozyrakis, Eds. ACM, 2022, pp. 34–50.
[Online]. Available: https://doi.org/10.1145/3492321.3519594

[51] Y. Gao, Y. Lu, Z. Lu, Q. Tang, J. Xu, and Z. Zhang, “Dumbo-
ng: Fast asynchronous BFT consensus with throughput-oblivious
latency,” in Proceedings of the 2022 ACM SIGSAC Conference on
Computer and Communications Security, CCS 2022, Los Angeles,
CA, USA, November 7-11, 2022, H. Yin, A. Stavrou, C. Cremers,
and E. Shi, Eds. ACM, 2022, pp. 1187–1201. [Online]. Available:
https://doi.org/10.1145/3548606.3559379

[52] C. Badertscher, P. Gaži, A. Kiayias, A. Russell, and V. Zikas, “Ouroboros
genesis: Composable proof-of-stake blockchains with dynamic availabil-
ity,” in Proceedings of the 2018 ACM SIGSAC Conference on Computer
and Communications Security, 2018, pp. 913–930.

[53] R. Gelashvili, L. Kokoris-Kogias, A. Sonnino, A. Spiegelman, and
Z. Xiang, “Jolteon and ditto: Network-adaptive efficient consensus with
asynchronous fallback,” in Financial Cryptography and Data Security
- 26th International Conference, FC 2022, Grenada, May 2-6, 2022,
Revised Selected Papers, ser. Lecture Notes in Computer Science,
I. Eyal and J. A. Garay, Eds., vol. 13411. Springer, 2022, pp. 296–315.
[Online]. Available: https://doi.org/10.1007/978-3-031-18283-9 14

[54] D. Malkhi and K. Nayak, “Extended abstract: Hotstuff-2: Optimal
two-phase responsive BFT,” IACR Cryptol. ePrint Arch., p. 397, 2023.
[Online]. Available: https://eprint.iacr.org/2023/397

[55] N. Giridharan, F. Suri-Payer, M. Ding, H. Howard, I. Abraham,
and N. Crooks, “Beegees: Stayin’ alive in chained bft,” in
Proceedings of the 2023 ACM Symposium on Principles of Distributed
Computing, ser. PODC ’23. New York, NY, USA: Association
for Computing Machinery, 2023, p. 233–243. [Online]. Available:
https://doi.org/10.1145/3583668.3594572

[56] Y. Lu, Z. Lu, and Q. Tang, “Bolt-dumbo transformer: Asynchronous
consensus as fast as the pipelined BFT,” in Proceedings of the 2022
ACM SIGSAC Conference on Computer and Communications Security,
CCS 2022, Los Angeles, CA, USA, November 7-11, 2022, H. Yin,
A. Stavrou, C. Cremers, and E. Shi, Eds. ACM, 2022, pp. 2159–2173.
[Online]. Available: https://doi.org/10.1145/3548606.3559346

[57] A. Spiegelman, A. Rinberg, and D. Malkhi, “ACE: abstract consensus
encapsulation for liveness boosting of state machine replication,” in 24th
International Conference on Principles of Distributed Systems, OPODIS
2020, December 14-16, 2020, Strasbourg, France (Virtual Conference),
ser. LIPIcs, Q. Bramas, R. Oshman, and P. Romano, Eds., vol. 184.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020, pp. 9:1–9:18.
[Online]. Available: https://doi.org/10.4230/LIPIcs.OPODIS.2020.9

[58] O. Alpos, C. Cachin, and L. Zanolini, “How to trust strangers: Com-
position of Byzantine quorum systems,” in 2021 40th International
Symposium on Reliable Distributed Systems (SRDS). IEEE, 2021, pp.
120–131.

[59] L. Zhou, F. B. Schneider, and R. Van Renesse, “Apss: Proactive secret
sharing in asynchronous systems,” ACM transactions on information and
system security (TISSEC), vol. 8, no. 3, pp. 259–286, 2005.

[60] J. A. Garay, “Reaching (and maintaining) agreement in the presence
of mobile faults,” in International Workshop on Distributed Algorithms.
Springer, 1994, pp. 253–264.

13

