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ABSTRACT
Transport Layer Security (TLS) is foundational for safeguarding

client-server communication. However, it does not extend integrity

guarantees to third-party verification of data authenticity. If a client

wants to present data obtained from a server, it cannot convince

any other party that the data has not been tampered with.

TLS oracles ensure data authenticity beyond the client-server

TLS connection, such that clients can obtain data from a server and

ensure provenance to any third party, without server-side modifica-

tions. Generally, a TLS oracle involves a third party, the verifier, in

a TLS session to verify that the data obtained by the client is accu-

rate. Existing protocols for TLS oracles are communication-heavy,

as they rely on interactive protocols. We present ORIGO, a TLS

oracle with constant communication. Similar to prior work, ORIGO

introduces a third party in a TLS session, and provides a protocol

to ensure the authenticity of data transmitted in a TLS session,

without forfeiting its confidentiality. Compared to prior work, we

rely on intricate details specific to TLS 1.3, which allow us to prove

correct key derivation, authentication and encryption within a Zero

Knowledge Proof (ZKP). This, combined with optimizations for TLS

1.3, leads to an efficient protocol with constant communication in

the online phase. Our work reduces online communication by 375×
and online runtime by up to 4.6×, compared to prior work.

1 INTRODUCTION
Ensuring sovereignty over digital content is imperative in contem-

porary computing systems and applications [31]. Recent endeavors

focus on cryptographic verification of digital identities [49, 52],

combating disinformation [42], and enforcing access control [43].

Nonetheless, these solutions are hampered by a bootstrapping

dilemma; they are rendered ineffective without a centralized root

of trust that ensures content authenticity.

Recent work introduces TLS oracles, which aim to solve this prob-

lem by cryptographically affirming the origin of digital content [67].

To do so, these solutions augment a standard TLS connection with

a third party, such that the third party is oblivious to the content

sent between a client and a server. The third party operates inde-

pendently of the content-serving server and acts as a verifier, solely
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Figure 1: Systematization of system designs for TLS Oracles.
Origo expands the existing set of systems by ensuring cipher-
text integrity in TLS 1.3 with ZKPs.

verifying the data exchanged. This approach empowers clients, al-

lowing them to secure attestations for their digital content without

demanding for clearance from a central application server.

One critical application of such a system are third-party logins.

Numerous websites permit user authentication via third-party cre-

dentials, bypassing the need for account creation. However, these

applications frequently overshare data and lack the capability for

selective content disclosure. Additionally, users are forced to de-

pend on the third-party application server for successful access

delegation—a reliance often unmet due to these applications’ disin-

clination to share user data. TLS oracles circumvent these issues,

allowing users to acquire verified content and credentials without

revealing their intentions to the application server. For example,

the user can obtain an attestation from the third party in the TLS

session, attesting that the information indeed originates from, e.g.,

a governmental server. Any website can now verify the attestation,

the user does not need any further interaction with the government

server to ensure that the presented information is authentic.

Previous approaches to TLS oracles that do not require server-

side changes can be divided based on whether they operate with the

verifier as an external entity [22, 23, 63, 67] or with a verifier as a

proxy in between the client and the server [46, 67] (cf. Figure 1). All

solutions aim to solve the same set of challenges — ensuring that the

message presented by the client is consistent with the response sent

by the server, ensuring that the verifier cannot provide an invalid

response to the client, and providing confidentiality towards the

verifier. To provide each of these guarantees, all protocols operate
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in roughly the same manner. First, a secure connection to the server

is established by executing the TLS handshake and key derivation

in 2PC. Second, the client and verifier collaboratively send the

request to the server, whereas the response is provided to the verifier

before the client obtains the full decryption key. Third, the client

generates a ZKP to prove a statement on the private payload. In the

proxy mode, post-handshake 2PC protocols can be discarded [67].

Notably, all previous approaches require an interactive protocol,

with communication linear in the number of gates in the 2PC circuit,

for non-repetitive computations [62].

In this work, we introduce ORIGO, a TLS oracle with constant

communication, independent of the size of the data requested from

an application server. We leverage that in TLS 1.3, the prevalent

version of TLS used to date, the IV for Authenticated Encryption

with Associated Data (AEAD) is derived from the traffic secret to fa-

cilitate a TLS oracle that does not demand for any communication

intensive 2PC. By doing so, we can use a simple Succinct Non-

interactive Argument of Knowledge (SNARK) to prove compliance

with TLS 1.3, ensuring the same properties as achieved in previ-

ous work, under the assumption of a weaker network adversary

that is unable to intercept traffic between the proxy verifier and

server. With ORIGO, clients can obtain attestations on resource

constrained devices, even in areas with low connectivity. Attesta-

tions can successively be used with arbitrary web applications and

blockchains. Additionally, we provide an efficient transformation

of AEAD ciphertexts to SNARK friendly commitments, enabling

clients to prove disjunct statements on data obtained — without

demanding re-execution of the protocol.

Technical Overview. Thus far, the proxy setting for TLS oracles

has only been sparsely described in academic works (cf. Figure 1).

Therefore, we set out to clarify security assumptions, and possible

attacks to determine efficient solutions for data provenance.

Security in the Proxy Setting. We start by examining the security

assumptions of TLS in the proxy model. Zhang et. al first introduce
the proxy setting in the appendix of their seminal work [67]. They

note that in the proxy setting, one has to assume a weaker network

adversary, as the client could perform a machine-in-the-middle

(MITM) attack between the client and the server. We find that

this assumption is indeed a necessity, as none of the server-side

messages are signed and TLS employs symmetric encryption. As

a result, a MITM client can always simulate an interaction with

an honest server. Further, Zhang et. al note that the handshake

remains to be executed with three parties, as AES-GCM is non-

committing as proven by Grubbs et. al [39]. Although AES-GCM

is non-committing, the attack as described by Grubbs et. al is not
trivially applicable, as a winning adversary needs to be able to

choose an arbitrary ciphertext to win the security game. In Section 4,

we introduce the notion of strong receiver binding, which applies to

the proxy setting in TLS oracles. We further introduce an attack,

showing that AES-GCM is not strong receiver binding in TLS 1.3.

SNARKs for TLS 1.3. Our protocol shows that a SNARK can be

used to enforce strong receiver binding in the proxy setting of a

TLS oracle in TLS 1.3. We derive a set of tailored optimizations that

are specific to TLS 1.3 and minimize the number of constraints in

the SNARK circuit. In comparison to the work of Grubbs et. al [38],
our circuit requires ∼ 3× less constraints to derive a key in TLS 1.3.

Client-side evidence generation. We detail an extension to our

protocol, which allows for expanded use-cases besides the issuance

of trivial credential. We ensure that clients can generate evidence

of ciphertext integrity by efficiently transforming AEAD plaintexts

to hiding and binding commitments in TLS oracles. To do so, we let

the client expand block-level nonces from the initialization vector

derived from the TLS handshake in TLS 1.3. We facilitate efficiency

by instantiating the HKDF.expand function with a SNARK friendly

MiMC hash, and instantiate the commitment to TLS records with

a salted hash. The generation of commited values augments exist-

ing circuits as an extension. We instantiate the implementation of

MiMC hashes with Groth16 as the outer SNARK and recurse the

inner verifier of the GKR protocol. Previous work shows that this

optimization leads an order of magnitude improvement in in-circuit

hash computation [16]. We show that generating evidence for a 1kB

TLS record only takes an additional 0.12 seconds when optimized

with the recursive construction by Belling et.al [16].
In summary, our contributions are as follows:

• A novel TLS oracle construction. We introduce ORIGO,

a protocol designed for proving data provenance with con-

stant communication in TLS 1.3. We observe that in TLS

1.3, a simple SNARK is sufficient to ensure integrity when

instantiating the third party in the TLS exchange as a proxy.

• A novel attack on TLS 1.3. We show that due to deriva-

tion of the traffic encryption key from the TLS handshake

transcript, a malicious client could arbitrarily manipulate

the plaintext, whilst retaining authenticity. We introduce

the notion of strong receiver binding, and an attack that

shows that the scheme used is not strong receiver binding.

• Client-side evidence generation. In TLS oracles, a client
is unable to prove arbitrary statements on transmitted data

once a session is completed without incurring significant

overhead. We introduce a protocol that enables client side

sovereignty by efficiently transforming an AEAD cipher-

text to a SNARK friendly commitment to the respective

plaintext. Our solution does not require the client to obtain

knowledge on the structure of the server response before

creating a proof for the proxy to verify.

• Evaluation and Application. We implement ORIGO in a

realistic setting with a real server [10]. For a server response

of 1.4kB, the online communication required is 2.4kB —

375× less than the most performant related work relying

on semi-honest 2PC. By globally dispersing clients, we show

that ORIGO is less dependent on the client location, and

up to 4.6× faster for remote clients. We leverage our real-

world implementation and introduce a novel application

by integrating ORIGO with Gitcoin Passport [5], extending

it to be used with private and personal data.

Limitations. Notably, ORIGO assumes that the client cannot

mount a MITM attack between the proxy verifier and the server in

the TLS 1.3 session. For prover integrity, we therefore assume that

the proxy can reliably connect to the server throughout the session.

Although this setting assumes a weaker network adversary, we

regard it as feasible due to existing detection techniques on other

layers of the OSI stack [9, 57, 59, 68], and similar assumptions in
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Table 1: Comparison of related works on data provenance.
For communication complexity, 𝑛 signifies the size of the
request/response sent to/by the server.

System Setting

Legacy

Compatibility

MITM Security Communication

DECO [67] External ✔ ✔ O(n)

DECO/Proxy Proxy ✔ ✗ O(n)

XYWY23 [63] External ✔ ✔ O(n)

Janus [46] Proxy ✔ ✔ O(n)

DiStefano [22] External ✔ ✔ O(n)

DIDO [23] External ✔ ✔ O(n)

This Work Proxy ✔ ✗ O(1)

other proxy applications [60, 67]. Our main focus is to enable im-

proved performance, assuming that MITM between the proxy and

the server is infeasible.

Another limitation in our protocol is the overhead introduced by

the pre-processing required for SNARKs. In our evaluation, the pre-

processing of circuits, especially to obtain the prover key, introduce

a significant offline runtime overhead. Further, ORIGO inherits the

randomized setup to sample a trapdoor from the respective SNARK

utilized (in our case, Groth16). Plonk [33] would yield a universal

and upatable SNARK. Fractal [24] would not require a trusted setup.

2 RELATEDWORKS
Proof Systems for TLS. Many works use proof systems with TLS

to filter network traffic [38], blindly obtain certificates [60], prove

non-repudiation [21, 55], and provide off-chain data to blockchains [66,

67]. Many require server-side changes [21, 55], which are insuffi-

cient for adoption. We provide a comparison to the most relevant

works as follows. TLS-N [55] is a server-side extension that allows

for the generation of privacy-preserving proofs on the contents of a

TLS session. As their work proposes a server-side extension, cooper-

ation of servers in adoption of their protocol is crucial. Our protocol

for evidence generation is similar to their proposed server-side ex-

tension, with the important difference that evidence is generated by

the client in our setting, without the need for server-side adaptation.
DECO[67] introduces the first TLS oracle for modern TLS versions

without server-side adaptation (cf. Table 1). Initially derived from

the PageSigner [2, 3] protocol first mentioned in 2014, their proto-

col asks the verifier and the client to jointly emulate a TLS client

interacting with an unmodified server. In Appendix C.4 the authors

of DECO describe an extension to their protocol which is similar to

our protocol — the verifier acts as a proxy between the server and

the client. However, their extension relies on 2PC during the TLS

handshake in the extended protocol. Grubbs et. al [38] introduce
Zero Knowledge Middleboxes, where clients send queries and simul-

taneously prove in zero knowledge that their traffic is compliant

with a network policy. Here, the client only commits to its own

request, rather than the response received from the server.

In addition to the above, there is a set of works conceived con-

currently to our work. Xie et. al [63] introduce the garble-then-
prove paradigm, which replaces authenticated garbled circuits and

SNARKs with semi-honest garbled circuits and interactive ZKPs

based on vector oblivious linear evaluation (VOLE). Their work

introduces a 14× improvement in communication and up to 15×

improvement in runtime as compared to DECO. They also provide a

protocol for converting ciphertexts to SNARK compatible commit-

ments. Celi et. al [22] introduce DiStefano which guarantees ring

privacy by using ring signatures produced over TLS certificates

and relies on maliciously secure 2PC, similar to DECO. Lauinger et.
al [46] introduce Janus, a TLS oracle tailored to TLS 1.3 in the proxy
setting for verifying the provenance of kilobytes of data, relying on

an honest verifier ZK proof system. Janus employs handshake and
record layer 2PC on AES encrypted counter blocks, rendering it

secure against MiTM attacks in the proxy mode. Notably, all of the

above utilize 2PC and hence require communication in size linear

to the number of gates in the garbled circuit.

Regular Expressions in Probabilistic Proofs. A recent line of

work focuses on optimizing regular expressions in probabilistic

proofs, which can be utilized in TLS oracles to prove that the plain-

text underlying a ciphertext fulfills a specified set fo constraints.

Although this problem is not the core focus of this work, we consider

it important orthogonal work. Zombie [65] extends ZKMB [38] and

allows proofs on DNS requests by transforming a regular expres-

sion to an NFA and uses the sum-check based SpartanNIZK as the

probabilistic proof system. Luo et. al introduce zk-regex [48], which
follows a similar NFA approach as Zombie but transforms the NFA

to a Boolean circuit and uses MPC-in-the-head for the proof. Ray-

mond et. al introduce zkreg [53] for matching regular expressions

based on the Aho-Corasick automaton and use a commit-and-prove

scheme to prove membership in large dictionaries of strings. Out

of all, Zombie supports the most expressive expressions.

TLS Security and Integrity. Other related works include TLS

security analysis and message franking protocols. Message Frank-

ing protocols follow a similar setting as ORIGO, as the participants

engage in a protocol that similarly requires the receiver of a mes-

sage to report upon the message content [27, 39–41, 58]. However,

the setting of message franking differs to our setting, as the server

verifying the message reported by a message receiver does not keep

track of the ciphertext initially sent by the message sender. Recent

works on message franking are especially relevant, as they depict

attacks that allow equivocation about its content [39].

3 PRELIMINARIES
3.1 Cryptographic Primitives in TLS
TLS is a cryptographic protocol designed to provide secure commu-

nication over a computer network. It ensures that the data transmit-

ted between a client and a server remains confidential and cannot

be intercepted or tampered with by third parties. The most recent

version is TLS 1.3 [54], which improves over TLS 1.2 [26] by reduc-

ing the number of applicable algorithms for message encryption

and authentication, and further introducing a 0-RTT mode, which

optionally enhances performance at the cost of security. TLS 1.3

relies on AEAD, a family of encryption algorithms which simulta-

neously ensure confidentiality and authenticity of transmitted data.

On a high level, a TLS protocol consists of two layers — a handshake
layer, where the server and the client negotiate the traffic encrypt-

ing keys (i.e., the Client Application Traffic Key CATK and Server

Application Traffic Key SATK), and a record layer, which applies

the traffic keys in an AEAD algorithm to securely send application
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Server S Client C

𝑟𝑐
$←− {0, 1}256

𝑥
$←− Z𝑝 , 𝑋 ←− 𝑔𝑥

ClientHello: 𝑟𝑐
ClientKeyShare: 𝑋

ES←− HKDF.extract(0, 0)
dES←− HKDF.expand(ES, 𝑙1, 𝐻0)

𝑟𝑠
$←− {0, 1}256

𝑦
$←− Z𝑝 , 𝑌 ←− 𝑔𝑦

ServerHello: 𝑟𝑠
ServerKeyShare: 𝑌

DHE ←− 𝑌𝑥DHE ←− 𝑋 𝑦

HS←− HKDF.extract(dES,DHE)
CHTS←− HKDF.expand(HS, 𝑙4, 𝐻2)
SHTS←− HKDF.expand(HS, 𝑙5, 𝐻2)
dHS←− HKDF.expand(HS, 𝑙3, 𝐻0)

CHTK←− DeriveTK(CHTS)
SHTK←− DeriveTK(SHTS)

{ServerCert} : 𝑝𝑘S
𝑆𝐶𝑉 ←− Sign(𝑠𝑘S, 𝑙11 | |𝐻6)
{ServerCertVfy} : 𝑆𝐶𝑉

fkS ←− HKDF.expand(SHTS, 𝑙6, “
′′)

SF ←− HMAC(fkS, 𝐻7)
{ServerFinished} : SF

abort if

Vfy(𝑝𝑘S, 𝑙11 | |𝐻6) ≠ 1

SF ≠ HMAC(fkS, 𝐻7)

MS←− HKDF.extract(dHS, 0)
CATS←− HKDF.expand(MS, 𝑙7, 𝐻3)
SATS←− HKDF.expand(MS, 𝑙8, 𝐻3)
EMS←− HKDF.expand(MS, 𝑙9, 𝐻3)

fkC ←− HKDF.expand(CHTS, 𝑙6, “
′′)

CF ←− HMAC(fkC, 𝐻9)
{ClientFinished} : CF

abort if

CF ≠ HMAC(fkC, 𝐻9)

RMS←− HKDF.expand(MS, 𝑙10, 𝐻4)

CATK←− DeriveTK(CATS)
SATK←− DeriveTK(SATS) Record Layer

Figure 2: TLS 1.3 1-RTT handshake transcript without op-
tional messages and client certificate verification. Secrets and
keys derived by both server and verifier are highlighted in
blue and gray respectively. Handshake messages encrypted
with handshake encryption keys are highlighted in green.
We refer the reader to RFC 8446 [54] and related work [29]
for abbreviations and extended definitions.

data. We provide an overview of TLS 1.3 in one round-time trip

(1-RTT) mode without pre-shared keys in Figure 2.

HKDF and HMAC. Key Derviation from the established DHE

secret HMAC-based Extract-and-Expand Key Derivation Function

(HKDF) follows the encrypt-and-expand paradigm, where the ex-

traction function HKDF.extract(salt, 𝐼𝐾𝑀) derives a pseudoran-
dom key from the keying material and the expansion function

HKDF.expand(𝑃𝑅𝐾, info, 𝐿) expands the pseudorandom key into

another pseudorandom key of length 𝐿. Both HKDF.extract and

HKDF.expand internally make use of an Hashed Message Authenti-

cation Code (HMAC) [45], which is augmented with a hash function

𝐻 (usually SHA-256). An HMAC is computed as follows:

HMAC = 𝐻 (𝐾 ⊕ opad, 𝐻 (𝐾 ⊕ ipad, 𝑀)) (1)

The HMAC takes as input the message M and is keyed with a key

𝐾 ∈ {0, 1}𝜆 . The security parameter 𝜆 determines padding length

in the inner and outer hash [45].

AEAD. In TLS 1.3, the application data is fragmented in records,
where each record has amaximum size of 16kB, such that one record

contains a maximum of 1024 chunks of size 16 byte or 128 bit. Each

𝐹 (𝐾, 𝐼𝑉 , {𝑃1, 𝑃2, ..., 𝑃𝑚 })
\\ Derivation of IV and Encryption

\\ 𝐼𝑉 ←− HKDF.expand(𝑆𝐴𝑇𝑆, “𝑖𝑣′′, 𝑙 )
𝑅𝑖 ←− 𝐸𝐾 {𝐼𝑉 | |𝑐𝑡𝑟𝑖 }
𝐶𝑖 ←− 𝑅𝑖 ⊕ 𝑃𝑖 , ∀𝑖 ∈ 𝑚
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

\\ GHASH Tag computation

𝐻 ←− 𝐸𝐾 {0128 }
𝑋 ←− ∑𝑚

𝑖=1
𝐶𝑖𝐻

𝑚−𝑖

𝑇 ←− 𝐸𝐾 {𝐼𝑉 } ⊕ 𝑋
Return {𝐶1,𝐶2, ...,𝐶𝑚 },𝑇

Figure 3: Description of AES-GCM as applied in the TLS 1.3
record layer. The nonce applied in AES-GCM is directly de-
rived from the handshake with a hash-based key derivation
function. For clarity, GCM is simplified as compared to the
NIST specification [1].

record is encrypted and authenticated through AEAD. TLS 1.3 sup-

ports a set of ciphersuites, namely TLS_AES_128_GCM_SHA256,

TLS_AES_256_GCM_SHA384 and TLS_CHACHA-20_POLY1305_SHA256,

where support for the first is mandatory and the latter two are

optional. Hence, the most common mode of operation for the un-

derlying block cipher is AES in Galois Counter Mode (GCM) with

an output length of 16 bytes or 128 bit. Importantly, the traffic sent

by the client and server in the record layer are encrypted with

their respective symmetric keys CATK and SATK. Both keys are

known by the client and server. In the remainder of this work, we

assume AES-GCM is applied for both encryption and decryption,

where the ciphertext carries a 128-bit authentication tag. We de-

tail a simplified description of AES-GCM as applied in TLS 1.3 to

encrypt record layer data in Figure 3. For simplicity, we ignore asso-

ciated data. 𝐹 (𝐾, 𝐼𝑉 , {𝑃1, 𝑃2, ..., 𝑃𝑚}) uses the key 𝐾 with the AES

blockcipher 𝐸 of block size 128 bit. It encrypts the plaintext chunks

{𝑃1, 𝑃2, ..., 𝑃𝑚}, where𝑚 is maximally 1024, and outputs the Tag 𝑇

and the chunks of ciphertext {𝐶1,𝐶2, ...,𝐶𝑚}. The tag is computed

with an 𝜖 −𝐴𝑋𝑈 hash function that relies on binary polynomials

of degree 128 in the Galois Field 𝐺𝐹 (2128). The polynomial is eval-

uated at the encryption of the 0-vector 𝐻 and successively 𝑋𝑂𝑅-ed

with the encryption of the initialization vector 𝐼𝑉 to obtain the tag

𝑇 (for details, see the GHASH Function [1]).

3.2 zkSNARKs
In the realm of cryptographic protocols, zero-knowledge proofs

(ZKPs) enable one party, referred to as the prover, to convince

another, the verifier, of the veracity of a statement, while not dis-

closing any other information aside from its validity. At its core,

the objective of a ZKP is to establish that a given instance 𝑥 and

its associated witness 𝑤 conform to an NP relation R. This can be

formally depicted by the relationship (𝑥,𝑤) ∈ R, which can be

ascertained in polynomial time by a Turing machine.

A typical ZKP encompasses three algorithms:

• Setup(pp) → (pk, vk). Given public parameters pp as in-

put, compute and output proving and verification keys pk
and vk, respectively.



ORIGO: Proving Provenance of Sensitive Data with Constant Communication

sr − BIND
A
AEAD

( (𝐾, 𝐼𝑉 , 𝑃 ), (𝐾 ′, 𝐼𝑉 ′, 𝑃 ′ ),𝐶,𝑇 ) ←− A
𝑏 ←− Ver(𝐾, 𝐼𝑉 , 𝑃,𝐶,𝑇 )
𝑏′ ←− Ver(𝐾 ′, 𝐼𝑉 ′, 𝑃 ′,𝐶,𝑇 )
if (𝐾, 𝐼𝑉 , 𝑃 ) == (𝐾 ′, 𝐼𝑉 ′, 𝑃 ′ ) :

return false

return (𝑏 = 𝑏′ = 1)

Figure 4: Strong Receiver Binding Security Game for an
AEAD algorithm. An adversary wins if it finds a differing
key 𝐾 , nonce 𝐼𝑉 and plaintext 𝑃 for a fixed ciphertext 𝐶 and
authentication tag 𝑇 .

• Prove(pk, 𝑥,𝑤) → 𝜋 . Given the proving key pk, the in-

stance 𝑥 , and the witness𝑤 , such that (𝑥,𝑤) ∈ R, as input,
compute and output a proof 𝜋 .

• Verify(vk, 𝑥, 𝜋) → 0/1. Given the verification key vk, the
instance 𝑥 , and the proof 𝜋 as input, output 1 if the proof

is valid and 0 otherwise.

We say that (Setup, Prove,Verify) is a zkSNARK if it satisfies

completeness, succinctness, knowledge soundness and zero-knowledge.

Completeness ensures that for any genuine statement, an honest

prover should be able to convince an honest verifier. Knowledge

soundness, informally, describes that for every adversarial prover,

there exists an extractor, such that whenever the prover convinces

the verifier to output 1, the extractor can use the prover algorithm

to output𝑤 such that (𝑥,𝑤) ∈ R [15]. Further, a SNARK is succinct

if the size of the proof and the verification time are 𝑜 ( |𝑅 |).

3.3 Security Guarantees & Threat Model
Throughout this paper, we assume that the adversary can arbitrar-

ily deviate from the specified protocols. The server is assumed to

behave correctly and respond honestly to any request sent by a

client. Due to the impossibility of preventing a MITM attack in the

proxy setting, we assume that an adversarial client cannot perform

a MITM attack between the server and the proxy. We assume that

security, as proven in numerous previous works [32], holds for the

standard TLS protocol in version 1.3. The security properties to be

retained by a protocol proposing a TLS oracle are the following:

Client Integrity. A malicious client cannot convince a verifier of

an untrue statement about the TLS session.

Verifier Integrity. A malicious verifier cannot prevent a client

from receiving the correct message from the server.

Privacy. A malicious proxy verifier cannot obtain any knowledge

beyond the size of the message that it forwards.

4 ATTACK ON TLS 1.3 IN THE PROXY
SETTING

In this section, we detail an attack on the integrity of messages sent

via TLS 1.3.We show that the receiver of a ciphertext {𝐶1,𝐶2, ...,𝐶𝑚}
(i.e. encrypted TLS record) can equivocate about the underlying

plaintext 𝑃 = {𝑃1, 𝑃2, ..., 𝑃𝑚}. Grubbs et. al detail an attack for GCM

that allows a receiver to equivocate about the underlying plaintext

by arbitrarily choosing the ciphertext {𝐶1,𝐶2, ...,𝐶𝑚} in the con-

text of “Message Franking” [39], where the receiver of a message

intends to report the content of a received message to a third party.

The third party needs to be sure that the reported message is the

one initially sent by the sender. It is hence shown that GCM is not

receiver binding due to the the applied Carter-Wegman MAC not

being collision resistant [39]. We introduce an orthogonal notion

called strong receiver binding, which further restricts the adversary

in manipulating the ciphertext and the associated MAC. This is

important in the proxy setting of a TLS oracle, as in this case the

proxy obtains a ciphertext from a server, which is assumed to be-

have honestly. If the client can find a colliding ciphertext for a

differing plaintext, additional care needs to be taken to ensure the

integrity of the content with respect to verification by the proxy.

Integrity Attack on TLS 1.3. Trivially, AES-GCM in TLS 1.3 only

provides ciphertext integrity between the two participating enti-

ties, the sender and the receiver, due to symmetric keys that allow

the receiver (i.e., the client) to encrypt and authenticate arbitrary

ciphertexts [67]. We further show in the following that AES-GCM

as applied in TLS 1.3 is not only not receiver binding, but also not

strong receiver binding. To do so, we formalize the pseudocode

of the security game sr − BINDA
AEAD

in Figure 4. The adversary

A has to output a pair of triples specifying the symmetric key,

nonce and authentication tag. The adversary wins if verification

succeeds for both tuples, given the same ciphertext and tag. The

formal advantage of an adversary A can be specified as

Adv
sr-BIND (A) = Pr[sr-BINDA

AEAD
−→ true]

For our specification, we rely on the definition of committing AEAD

as introduced by Grubbs et. al [39]. Note that sr-BIND (strong re-

ceiver binding) security implies r-BIND (receiver binding) security.

We give an adversary A𝐺𝐶𝑀 which wins if it outputs

((𝑃, 𝐼𝑉 , 𝐾), (𝑃 ′, 𝐼𝑉 ′, 𝐾 ′), {𝐶1,𝐶2, ...,𝐶𝑚},𝑇 ), such that

𝐹 (𝐾, 𝐼𝑉 , 𝑃) = 𝐹 (𝐾 ′, 𝐼𝑉 ′, 𝑃 ′)
Choosing (𝐾 ′, 𝐼𝑉 ′, 𝑃 ′) is trivial, as the adversary must solve the

following equation in order to obtain a conflicting decryption to

the ciphertext {𝐶1,𝐶2, ...,𝐶𝑚} and authentication tag 𝑇 :

𝐸𝐾 {𝐼𝑉 } + 𝐸𝐾 ′ {𝐼𝑉 ′} +
𝑚∑︁
𝑗=1

(𝑅𝑖 ⊕ 𝑃𝑖 )𝐻𝑚−𝑖

+
𝑚∑︁
𝑗=1

(𝑅′𝑖 ⊕ 𝑃
′
𝑖 )𝐻

𝑚−𝑖 = 0

To compute a valid Tag𝑇 ,A𝐺𝐶𝑀 chooses a key 𝐾 ′, computes 𝑋

and chooses 𝐼𝑉 ′ such that 𝑇 = 𝑇 ′. To successively compute 𝐶 and

𝐶′, such that 𝐶 = 𝐶′, A𝐺𝐶𝑀 computes the series 𝑅′
𝑖
from 𝐼𝑉 ′ and

computes 𝑃 such that the above equation is fulfilled. We elaborate

on the practical feasibility of this attack in Appendix C.

Why receiver-binding holds in TLS 1.2. In TLS 1.2, the IV for

AEAD cipher suites is generated using a pseudorandom function

(PRF) based on the master secret and a nonce value. The nonce

value is generated by the sender and included in the record header

of the TLS message. The IV is derived by applying the PRF to the

master secret and the nonce value and using the first N bytes of

the output as the IV, where N is the size of the IV required for

the particular AEAD cipher suite being used. In TLS 1.3, the IV

is generated using a key derivation function (KDF) based on the
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Circuit — Key Derivation: (HS; H2, H3, SHTS)

1. SHTS←− HKDF.expand (HS,“s hs traffic” | | H2)

2. dHS←− HKDF.expand (HS,“derived”, H(“ ”))

3. MS←− HKDF.extract (dHS, 0)

4. CATS←− HKDF.expand (MS, “c ap traffic” | | H3)

5. SATS←− HKDF.expand (MS, “s ap traffic” | | H3)

6. CATK←− DeriveTK(CATS)

7. SATK←− DeriveTK(SATS)

Figure 5: ZKP circuit to prove the TLS 1.3 key derivation. We
highlight the public input with bold text.

secret and the record sequence number, and it is used to initialize

the AEAD cipher. The secret is a value derived from the master

secret and the handshake hash, and the record sequence number is

an incrementing counter that is used to differentiate each record in

a TLS session. The IV is not transmitted in the header of the TLS

record. Instead, it is used internally by the AEAD cipher to encrypt

and decrypt the message payload. Consequently, the recipient of a

message over TLS 1.3 can arbitrarily choose the IV when reporting

to a third party. We ensure that this attack is not possible in our

protocol tailored to TLS 1.3 by deriving the 𝐼𝑉 in a SNARK and

proving correct encryption with the correct application traffic key.

5 THE ORIGO PROTOCOL
In this section we describe ORIGO, a novel TLS oracle in the proxy

setting. The protocol operated in three phases. Whereas the first

phase involves the server, proxy verifier and the client, the second

and last phase only involve the latter two. The last phase is the only

phase involving online operations beyond the TLS session.

• Handshake & Request Execution. In this phase, the

client engages in the handshake with the server, sends a

request and obtains a response which is fragmented into

records of max. 16kB size. The handshake, request and

response is routed through the proxy. The proxy obtains

the encrypted TLS 1.3 handshake transcript, the encrypted

query and the encrypted server response.

• Pre-Processing. During pre-processing, the client gener-

ates public values from the handshake transcript for opti-

mized proof generation.

• Proof Generation & Verification. The client utilizes the

pre-processed private and public input to generate a proof

for integrity of data transmitted in the TLS session. The pre-

processed public values and the proof are transmitted to the

verifier, which verifies the authenticity of the handshake by

verifying the server certificate, assigning the public input

to the arithmetic circuit and verifying data authenticity.

Following, we detail (i) the key derivation circuit, (ii) the formal

specification of ORIGO, Π𝑂𝑅𝐼𝐺𝑂 , and (iii) the extension for client-

side evidence generation. In Appendix E we show that Π𝑂𝑅𝐼𝐺𝑂
securely realizes the ideal functionality for data provenance FDP.

5.1 Proof of Key Derivation
The key derivation circuit is a building block used by the proxy to

force the client into computing correct and non-ambiguous proofs

of data provenance. First, the proxy must verify a valid authenti-

cation of the intercepted TLS 1.3 transcript data. In order to au-

thenticate the transcript data, the proxy uses the server’s Public

Key Infrastructure (PKI) certificate to validate the server’s tran-

script signature. Second, the proxy requires the client to show a

non-ambiguous mapping of private TLS 1.3 session keys against

intercepted and public TLS 1.3 transcript data. Correctness of data

provenance holds because the challenges ensure that the client

cannot forge the signature of transcript data. Thus, under the as-

sumption of an honest server, the transcript data is correct. Further,

non-ambiguity of the session keys lets the proxy verify that the

record data complies with a correct TLS 1.3 session.

To verify non-ambiguity and, with that, correctness of session

keys, the proxy demands the client to compute a ZKP circuit. The

ZKP circuit ensures integrity of a cryptographically binding map-

ping between private session keys and public TLS 1.3 transcript

data. A cryptographically binding computation is a collision resis-

tant function evaluation which guarantees an unequivocal mapping

of input data to a specific output. Further, the ZKP circuits main-

tains privacy of private session keys. If the client is able to compute

a valid proof of the ZKP circuit, the proxy is convinced that non-

ambiguity of session keys holds.

The naive approach to compute a cryptographically bindingmap-

ping between private session keys and their public transcript is to

follow TLS 1.3 key exchange and key derivation specification. In the

TLS 1.3 handshake, the server and client randomly choose secrets 𝑥
$←− {0, 1}256 and 𝑦 $←− {0, 1}256, which they exchange based on pub-

lic diffie-hellman key exchange parameters X=𝑔𝑥 and Y=𝑔𝑦 . The
parties involved in the secret exchange obtain a shared secret by

computing DHE←−Y𝑥 = X𝑦 with their respective secret random-

ness. With access to the shared secret DHE, server and client are

eligible to compute the handshake secret HS←− HKDF.extract (dES,
DHE), which only they can compute by knowing DHE. The param-

eter dES is publicly known and computed as dES←− HKDF.expand

(ES,“derived”, H(“ ”)) with ES ←− HKDF.extract (0,0). With access

to HS, the client and server derive handshake and record layer

application traffic secrets. Grubbs et.al[38] show that deriving HS

based on the private input 𝑦 and public input Y leads to a non-

ambiguous sample of HS. Further, derivation and verification of the

server certificate signature must be computed in the ZKP circuit to

verify a correct authentication of Y and, thus, HS. Doing all these

computation in the ZKP circuit is costly. Luckily, a shortcut exists.

Due to the key independence property of TLS 1.3 [28], the client

can disclose the Server Handshake Traffic Secret (SHTS) to the

proxy without compromising security of HS and record layer appli-

cation traffic secrets. Leaking SHTS is possible becauseHKDF.expand

utilizes a one-way collision resistant hash function HS with suffi-

cient entropy of the input secret. The proxy utilizes SHTS to derive

the handshake encrypting key SHTK to decrypt handshake traf-

fic and verify the server finished message (cf. SHTS verification

in Figure 6). Further, the proxy accesses the server’s certificate

and can efficiently verify transcript authenticity in a local out-of-

circuit computations. We depict the efficient key derivation circuit

in Figure 5, where we follow the convention of notations intro-

duced by Dowling et. al [29]. Notice that transcripts hashes H7 =

H(ClientHello∥. . . ∥ServerCertVfy),H2 =H(ClientHello∥ServerHello),
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Π
Auth

(SHTS, H7, SF)
1. fkS ←− HKDF.expand (SHTS, “finished” | | “ ”)
2. SF’←− HMAC(fkS , H7)

3. SF’

?

= SF
4. ok

?

= verifyCertificate()

Figure 6: Protocol for out of circuit verification of the server-
side certificate to ensure authenticity of the obtained cipher-
text and handshake transcript.

...

Figure 7: Circuit optimization based on Merkle-Damgård
structure of SHA-256. Dotted boxes indicate private input,
whereas solid boxes indicate public input. For a private key,
the prover computes the first 𝑓 in-circuit. All remaining in-
termediate hash values 𝑓 can be computed out of circuit and
compared with the public hash ℎ.

H3 = H(ClientHello∥... ∥ServerFinished), and H0 = H(“ ”) are com-

puted at the proxy. Further, application traffic secrets are com-

puted according to the formula SATK| CATK= (key,iv) = Deriv-

eTK(secret) = (HKDF.expand (secret,“key”,H(“ ”), 𝐿𝑘 ), HKDF.expand

(secret,“iv”,H(“ ”), 𝐿𝑖𝑣 ))), where 𝐿𝑘 /𝐿𝑖𝑣 indicate the key or iv length

of the selected TLS 1.3 cipher suite. Following, we show how the

Key Derivation circuit can be further optimized.

HMAC Optimization. The TLS 1.3 key derivation can be further

optimized when looking at the structure of HMAC with SHA-256.

The optimization is relevant becauseHKDF.extract andHKDF.expand

both make use of HMAC (see Section 3). Further depending on the

required key size of the TLS 1.3 cipher suite, HKDF.expand calls

HMACmultiple times. For example, with TLS_AES_128_GCM_SHA256
128 bit encryption keys are used such that both functionsHKDF.extract

and HKDF.expand call HMAC once internally.

With TLS_AES_128_GCM_SHA256, the concatenation of the inner

hash𝐻 ((𝐾 ′ ⊕ 𝑖𝑝𝑎𝑑) | |𝑚) (32 bytes) and𝐾 ′ ⊕𝑜𝑝𝑎𝑑 (64 bytes) yields a

96 byte output, which in turn, is the input to the outer hash function.

The input to the inner hash function is of size 64 + len(𝑚) bytes.
Thus, both hash input sizes in HMAC are above 64 bytes. If the

hash input of SHA256 is above 64 bytes, SHA256 applies the Merkle-

Damgård structure which repeats calls to an internal compression

blockcipher 𝑓 to reduce the input to a fixed sized output. The com-

pressing blockcipher SHACAL-2 of SHA256 uses 64 computation

rounds to hide its input and has not been broken [47]. Thus depend-

ing on whether the inner or outer hash is computed, the first call

of the one-way compression blockcipher inside SHA256 already

hides inputs (𝐾 ⊕ 𝑖𝑝𝑎𝑑) or (𝐾 ⊕ 𝑜𝑝𝑎𝑑) of size 64 bytes and with

that, hides the secret 𝐾 of the prover [67]. As a result, the output

of the compressing blockcipher in SHA256 can be used as public

input to reduce ZKP circuit complexity.

Figure 7 shows a ZKP circuit to compute the HMAC inner hash

𝐻𝑖𝑛𝑛𝑒𝑟 = 𝐻 ((𝐾 ′ ⊕ 𝑖𝑝𝑎𝑑) | |𝑚), where e.g.𝑚 =H2 is publicly known

input. If𝑚 is publicly known by the verifier, the prover can com-

pute the grey 𝑓 and disclose it to the verifier, which computes the

remaining part of the hash out of circuit. The same optimization

of SHA256 is feasible when computing the outer hash 𝐻outer =

𝐻 ((𝐾 ′ ⊕ 𝑜𝑝𝑎𝑑) | |Hinner). Thus, proving HMAC in a ZKP takes two

evaluations of 𝑓 if the message input𝑚 is publicly known.

Detailed Invocation ofCompression Functions. Figure 8 shows
the computation trace of the TLS 1.3 key derivation, detailed to the

level of single invocations of the compression function 𝑓 . The figure

summarizes computations executed at the proxy as the verifier (v),

and the client as the prover (p, zk). “zk” indicates computations

that are part of the optimized ZKP circuit. Public parameters are

highlighted in bold. Note that dHS
𝑖𝑛

is the only private input on

the client side. The ZKP circuit shows that if the client discloses

hHS,𝑜𝑝𝑎𝑑 and SHTSin as public input (line 2 and 3), SHTS (line 4)

can be computed out of circuit to verify SF, and dHS (line 11) can be

computed in-circuit, mapping to the only private input dHS
𝑖𝑛

of the

optimized ZKP circuit. Thus, deriving either one of the application

traffic keys CATK or SATK requires 8 in-circuit invoations of the

SHACAL-2 compression function 𝑓 (lines 11, 14, 17, 20, 21).

5.2 Formal Protocol Specification
We formally specify our full protocolΠ𝑂𝑅𝐼𝐺𝑂 in Figure 10.Π𝑂𝑅𝐼𝐺𝑂
relies on F𝑍𝐾 to abstract away the complexity of ZKPs in the

protocol, and hence operates in the F𝑍𝐾 -hybrid model. Π𝑂𝑅𝐼𝐺𝑂
is parametrized by a signature scheme Σ(𝐾𝐺𝑒𝑛, 𝑆𝑖𝑔,𝑉 𝑓 ) and an

AEAD algorithm AE(𝐸𝑛𝑐, 𝐷𝑒𝑐), defined by the ciphersuite

(TLS_AES_128_GCM_SHA256 & Curve P-256).

Notation. In our formal specification, we denote the TLS server as

S, the proxy verifier asV and the TLS client as C. In ORIGO, the

verifier V acts as a Proxy between C and S. ΠS denotes the un-

modified server protocol as specified in TLS 1.3. We further denote

the handshake transcript between S and C as Γ. The encrypted
TLS request 𝑄̂ and response 𝑀̂ are sent by C and S respectively.

We denote a request response pair as a tuple ⟨𝑄̂, 𝑀̂⟩. In general, we

denote encrypted values with a caret, e.g., 𝑀̂ for𝑀 .

a) Handshake. To send a request, the client C first has to engage

in a TLS 1.3 handshake with the server S by initializing the pro-

tocol. As discussed in Section 3 TLS handshake we assume in our

protocol is standard, besides that each message from the handshake

is routed throughV , such thatV obtains the handshake transcript

Γ̂, which is encrypted after establishment of the handshake traffic

keys (SHTK and CHTK in Figure 2).

b) Request Execution. Upon establishment of the traffic encrypt-

ing keys, C is ready to send a request 𝑄̂ to S. The client C builds

the request by invoking "request". The client embeds the secret

for authentication with the server 𝜃S (e.g., API key) and encrypts

the request with the client application traffic key CATK. The client

successively calls the "request" subroutine of the verifierV with

the request 𝑄̂ . The verifierV forwards 𝑄̂ to S and, under the as-

sumption that S operates honestly, receives a record 𝑅̂ from S. The
proxy stores 𝑅̂ and forwards the record to C.
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Initialize:
𝑙2 = “tls13 s hs traffic”; 𝑙3 = “tls13 s ap traffic”

𝑙0 = “tls13 derived”; 𝑙𝑓 = “tls13 finished”

𝑙𝑘 = “tls13 key”; 𝑙𝑖𝑣 = “tls13 iv”;

𝑚H2 = 32 | | 𝑙𝑒𝑛(𝑙2) | | 𝑙2 | | 𝑙𝑒𝑛(H2) | | H2 | | 1;
𝑚H3 = 32 | | 𝑙𝑒𝑛(𝑙3) | | 𝑙3 | | 𝑙𝑒𝑛(H3) | | H3 | | 1;
𝑚H0 = 32 | | 𝑙𝑒𝑛(𝑙0) | | 𝑙0 | | 𝑙𝑒𝑛(H0) | | H0 | | 1;
𝑚𝑓 = 32 | | 𝑙𝑒𝑛(𝑙𝑓 ) | | 𝑙𝑓 | | 0 | | 1;
𝑚𝑘 = 16 | | 𝑙𝑒𝑛(𝑙𝑘 ) | | 𝑙𝑘 | | 0 | | 1;
𝑚𝑖𝑣 = 12 | | 𝑙𝑒𝑛(𝑙𝑖𝑣) | | 𝑙𝑖𝑣 | | 0 | | 1;
Key Derivation Trace:
1. p: ℎHS,𝑖𝑝𝑎𝑑 , 𝑙𝑥 = 𝑓 (IV, 0, HS ⊕ 𝑖𝑝𝑎𝑑)
2. p: SHTSin, _ = 𝑓 (ℎHS,𝑖𝑝𝑎𝑑 , 𝑙𝑥 ,𝑚H2

)

3. p: hHS,𝑜𝑝𝑎𝑑 , 𝑙 = 𝑓 (IV, 0, HS ⊕ 𝑜𝑝𝑎𝑑)
4. v: SHTS , _ = 𝑓 (hHS,𝑜𝑝𝑎𝑑 , 𝑙 , SHTSin)
5. v: fkS

𝑖𝑛, _ = 𝑓 (𝑓 (IV, 0, SHTS ⊕ 𝑖𝑝𝑎𝑑),𝑚𝑓 )

6. v: fkS , _ = 𝑓 (𝑓 (IV, 0, SHTS ⊕ 𝑜𝑝𝑎𝑑), fkS𝑖𝑛)
7. v: SF’

𝑖𝑛, _ = 𝑓 (𝑓 (IV, 0, fkS ⊕ 𝑖𝑝𝑎𝑑), H7 | | 1)
8. v: SF’ , _ = 𝑓 (𝑓 (IV, 0, fkS ⊕ 𝑜𝑝𝑎𝑑), SF’𝑖𝑛)
9. v: SF’

?

= SF

10. p: dHS
𝑖𝑛, 𝑙 = 𝑓 (ℎHS,𝑖𝑝𝑎𝑑 , 𝑙𝑥 ,𝑚

H0
)

11. zk: dHS , _ = 𝑓 (hHS,𝑜𝑝𝑎𝑑 , 𝑙 , dHS𝑖𝑛)
12. p: hdHS,𝑖𝑝𝑎𝑑 , 𝑙 = 𝑓 (IV, 0, dHS ⊕ 𝑖𝑝𝑎𝑑)
13. v:MS𝑖𝑛, _ = 𝑓 (hdHS,𝑖𝑝𝑎𝑑 , 𝑙 , 0bytes)
14. zk: MS , _ = 𝑓 (𝑓 (IV, 0, dHS ⊕ 𝑜𝑝𝑎𝑑),MS𝑖𝑛)
15. p: hMS,𝑖𝑝𝑎𝑑 , 𝑙 = 𝑓 (IV, 0, MS ⊕ 𝑖𝑝𝑎𝑑)
16. v: SATS𝑖𝑛, _ = 𝑓 (hMS,𝑖𝑝𝑎𝑑

, 𝑙 ,𝑚H3
)

17. zk: SATS , _ = 𝑓 (𝑓 (IV, 0, MS ⊕ 𝑜𝑝𝑎𝑑), SATS𝑖𝑛)

18. p: hSATS,𝑖𝑝𝑎𝑑 , 𝑙 = 𝑓 (IV, 0, SATS ⊕ 𝑖𝑝𝑎𝑑)
19. v: SATK𝑖𝑛, _ = 𝑓 (hSATS,𝑖𝑝𝑎𝑑 , 𝑙 ,𝑚𝑘 )
20. zk: ℎSATS,𝑜𝑝𝑎𝑑 , 𝑙 = 𝑓 (IV, 0, SATS ⊕ 𝑜𝑝𝑎𝑑)
21. zk: SATK, _ = 𝑓 (ℎSATS,𝑜𝑝𝑎𝑑 , 𝑙 , SATK𝑖𝑛)[:16]
22. v: sIV𝑖𝑛, _ = 𝑓 (hSATS,𝑖𝑝𝑎𝑑 , 𝑙 ,𝑚𝑖𝑣 )
23. p: sIV, _ = 𝑓 (ℎSATS,𝑜𝑝𝑎𝑑 , 𝑙 , sIV𝑖𝑛)[:12]

Figure 8: Computation trace of the key derivation of a sin-
gle TLS 1.3 application traffic key. The figure differentiates
between in-circuit and out of circuit computations which
are separately computed by the prover and verifier respec-
tively. The function 𝑓 is the one-way compression block-
cipher SHACAL-2 of SHA256 and takes a 32 byte input as
the first argument, a padding length helper as the second
argument, and a 64 byte input as the third argument. The
function returns the length 𝑙 (required for padding) of the
hashed input and the output of the SHACAL-2 blockcipher.
The initialization vector of 𝑓 computes as IV = 𝐻 [0, . . . , 7].

c) Pre-Processing. Upon invocation of "response", the client C
decrypts the record to obtain the plaintext record 𝑅 . The client

proceeds to pre-processes the record by finding the indices of AES

blocks which match the provided ctx by invoking Πpost (see Fig-

ure 9). If the record in question matches the context, C outputs the

pre-processed transcript Γ′. The pre-processed values in Γ′ are sent

Π
postR

(𝑅, ctx)
firstBlock←− 0, lastBlock←− 0, offset←− 0, found←− 0

𝑓 𝑜𝑟 𝑖 ←− 1 to 𝑛:

𝑖 𝑓 ctx[0] ∈ 𝐵𝑖 :
firstBlock←− 𝐵𝑖 ; offset←− 𝐵𝑖 [ctx[0] ] − 16 · 𝑖 ; found←− 1

𝑖 𝑓 ctx[”.”] ∈ 𝐵𝑖 :

pos←− 𝐵𝑖 [ctx[”.”] ]
𝑖 𝑓 ctx[ |ctx | ] ∈ 𝐵𝑖 :

lastBlock←− 𝐵𝑖
𝑠𝑒𝑡 p

R
←− (firstBlock, lastBlock, offset, pos )

𝑟𝑒𝑡𝑢𝑟𝑛 p
R

Figure 9: Protocol ΠpostR for post-processing the record to
identify the correct indices of AES Blocks containing the
context. Gray values identify floating point values.

to V in plain and decrease the number of HMAC evaluations in

the Key Derivation Circuit. The secret input to the ZKP is dHS
𝑖𝑛
,

as specified in line 11 of 8, which depicts all computations for key

derivation, including circuit optimizations introduced in Section 5.1.

d) Proof Generation & Verification. To prove data provenance,

C needs to prove the integrity of the plaintext underlying the ob-

tained TLS record by (i) proving the key derivation (cf. Figure 8),

(ii) proving that the authentication tag is correct, and (iii) prov-
ing that the private input 𝑅 encrypts to the encrypted response 𝑅̂

stored by the verifierV . Additionally, the client proves that the TLS

record in question satisfies the statement as defined by the context

ctx. Formally, we adopt the ZKP functionality F𝑍𝐾 as described

in [61]. In F𝑍𝐾 , C andV provide their private and public inputs,

and F𝑍𝐾 sends true toV if the private witness provided by C sat-

isfies the circuit C. The client utilizes F𝑍𝐾 by assigning the private

input 𝑤 , which includes the server application traffic key SATK,

the authentication secret 𝜃S , dHS
𝑖𝑛

and the plaintext record 𝑅 . The

public input 𝑥 is assigned accordingly, and the client C invokes

"prove" in F𝑍𝐾 . The client sends the post-processed transcript and

the post-processed record by calling "proof" at the verifierV .

The verifier parses the pre-processed transcript Γ′ and obtains

the public input SHTSin, throughwhich it can derive the handshake
encrypting key SHTK. Successively, the verifier V decrypts the

encrypted handshake. The client utilizes Π
Auth

as a subroutine to

verify the server-side certificate and check the validity of 𝑆𝐹 . Upon

successful verification,V sets as public input the post-processed

values p
R
obtained through the context, the post-processed tran-

script Γ′ and the stored encrypted record 𝑅̂ . The verifier V calls

"verify" in F𝑍𝐾 , and attests with a signature once F𝑍𝐾 returns.

We characterize the security of Π𝑂𝑅𝐼𝐺𝑂 through the following

theorem (formal proof in Appendix E):

Theorem 1. Assuming ECDSA is EUF-CMA secure and the com-
pression function 𝑓 is a random oracle, Π𝑂𝑅𝐼𝐺𝑂 UC-realizes the ideal
functionality for data provenance (FDP) in the (F𝑍𝐾 )-hybrid world.

5.3 Client Side Evidence Generation
In this section, we outline how ORIGO can be extended beyond sim-

ple attestations to generate a commitment to the plaintext records
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Π𝑂𝑅𝐼𝐺𝑂 {Σ,AE, S,V, C}
A client C interacts with a verifier V to obtain data from a server S. The server S inputs a secret

key 𝑠𝑘S and a certificate 𝛿S to authenticate the data sent. The context ctx describes the key/value

pair of interest. Further, the protcol is parametrized with a circuit C.

01: Server S: Follow standard TLS 1.3 with verification of client certificates.

02: Client C:
03: Initialize:

04: Send ClientHello B 𝑟𝑐
$←− {0, 1}256 to S, receive Γ from S,

05: obtain CHTS,CATK, SHTS, SATK and verify the server certificate 𝛿S .
06: On input (sid, "request", 𝜃S ) from environment Z:

07: set𝑄 with 𝜃S
08: set 𝑄̂ B AE .𝐸𝑛𝑐 (𝑄,CATK)
9: send (sid, "request", 𝑄̂ ) to V
10: On receive (sid, "response", 𝑅̂ ) from environment Z:

11: set 𝑅 B AE .𝐷𝑒𝑐 (𝑅̂, SATK)
12: run Π

postR
(𝑅, ctx) locally to obtain p

R

13: run Π
postH

(Γ) to obtain Γ′

14: extract dHS
𝑖𝑛

and set 𝑤 B (SATK, 𝜃S , dHS𝑖𝑛 , 𝑅 )
15: set 𝑥 B (p

R
, Γ′, 𝑅̂ )

16: send (sid, "prove", C, 𝑥 , 𝑤) to F𝑍𝐾
17: send (sid, "proof", Γ’, p

R
) to V

18: Proxy V :

19: Initiatlize:
20: Initialize (𝑝𝑘V , 𝑠𝑘V ) ←− Σ.𝐾𝐺𝑒𝑛 (1𝜆 ) ,
21: transcribe encrypted handshake transcript Γ̂.

22: On receive (sid, "request", 𝑄̂ ) from C:
23: store 𝑄̂ and send (sid, "request", 𝑄̂) to S
24: On receive (sid, "response", 𝑅̂ ) from S:
25: store 𝑅̂ and send (sid, "response", 𝑅̂ ) to C
26: On receive (sid, "proof", Γ’, p

R
) from C:

27: Parse Γ′ , derive SHTK from SHTSin

28: set Γ B AE .𝐷𝑒𝑐 (Γ̂, (SHTK) )
29: invoke Π

Auth
and verify the server certificate 𝛿S

30: set 𝑥 B (p
R
, Γ′, 𝑅̂ )

31: send (sid, "verify", C, 𝑥 ) to F𝑍𝐾
32: wait for F𝑍𝐾 to respond, if false return ⊥
33: send 𝜎 B Σ.𝑠𝑖𝑔𝑛 (ctx, 𝑅̂ ) to C

Figure 10: The ORIGO post-handshake protocol specifica-
tion. The protocol is parametrized by a signature scheme
Σ(𝐾𝐺𝑒𝑛, 𝑆𝑖𝑔,𝑉 𝑓 ) and an AEAD scheme AE(𝐸𝑛𝑐, 𝐷𝑒𝑐), which
is specified by the ciphersuite applied in TLS 1.3.

transmitted in a TLS session. The rationale of evidence genera-

tion follows the paradigm of evidence generation as introduced

by Ritzdorf et. al [55], with the important difference that evidence

is generated by the client rather than the server. This preserves
that no server-side changes are demanded to generate evidence of

data provenance. In Figure 11 we depict the process of client side

evidence generation for 4 plaintext chunks of size 16B. We realize

the conversion of plaintext to hiding and binding commitments

in two steps. First, the client expands the per-record nonce into a

salt tree. Second, the client generates a salted Merkle Tree, where

the tree leafs are instantiated as hash functions over the plaintext

AEAD blocks salted with the per-block salts generated by the salt

tree. We assume that a hash function salted with a sufficiently

large salt therein provides a hiding and binding commitment. Im-

portantly, the initial nonce is the initialization vector 𝐼𝑉 , which is

derived from SATS in TLS 1.3 and directly binds the nonce utilized

to generate salt values to the TLS handshake.

Generating a Proof of Evidence. To generate evidence, the client
needs to convince the proxy verifier that the root hash of the salted

merkle tree ℎ0 was correctly derived with respect to the salt tree

expansion and Merkle tree computation. Therefore, the client com-

putes a ZKP, attesting the correct derivation of the root hash ℎ0,

in addition to the proof of key derivation, authentication tag and

encryption of records as described in Section 5.2. As in TLS 1.3,

we instantiate the expansion function that is used in the salt tree

with HKDF.expand, which is a common pseudorandom function

for deriving keying material that is cryptographically secure, con-

textually bound, and properly domain-separated. However, due

to the requirement of computing HKDF.expand inside a SNARK,

and the omitted demand to base HMAC on SHA-256, the MiMC

hash [12] can be used in HKDF.expand for HMAC. The output size

of a MiMC hash is determined by the field that it operates over, as it

is designed to work in a finite field setting. In our implementation,

we instantiate a SNARK over BN254, which operates over a prime

field of 254 bit. This is differing to SHA-256, which outputs a 256 Bit

hash value. Therefore, each salt in the leafs of the salt tree is of size

127 bit. As the maximum number of blocks in TLS record is 1024,

the maximum depth of the salt expansion tree is 10, which results

in a maximum of 1023 invocations of HKDF.expand. When instanti-

ated with MiMC, this is equivalent to 1022 HMAC evaluations with

a pseudorandom key of 127 bit and a single HMAC evaluation with

a pseudorandom key of 96 bit (the initial 𝐼𝑉 ). As each HMAC inter-

nally composes two hash evaluations (cf. Section 3), this demands

2046 MiMC invocations over BN254.

The same optimizations for proof generation as in the key deriva-

tion circuit can be applied for the generation of the salt and merkle

tree, such that the number of MiMC evaluations can be divided

by two, as described in Section 5.1. Additionally, recent work by

Belling et. al [16] describes how hashing in a SNARK can be signif-

icantly sped up by embedding the GKR [36] verification algorithm

in a Groth16 prover. We evaluate the performance of client side

evidence generation and optimizations in Section 7.2.

Presenting Evidence to a Third Party. The client submits ℎ0 as

an additional public input to the verifier, such that𝑥 B (p
R
, Γ′, 𝑅̂, ℎ0)

(cf. Figure 10). The private input remains𝑤 B (SATK, 𝜃S, dHS𝑖𝑛, 𝑅).
The verifier derives the SATK, and additionally derives the salt and

computes the saltedmerkle tree to check the validity of the provided

Merkle Root. Once verified, the prover obtains a signature from the

verifier which attests to the validity of the provided ℎ0. If the client

intends to disclose a full block in plain, it can open the commitment

to the plaintext by disclosing a number of hashes and salts that is log-

arithmic in the number of elements in the salt and merkle tree. An

example of disclosing 𝑃3, 𝑃4 to a third party in plain can be observed

in Figure 11, where all disclosed values are highlighted in green.

Similarly, the client can prove an arbitrary statement on any non-

disclosed block by proving ZK-PoK{𝑠𝑖 , 𝑃𝑖 : ℎ0 = 𝑀𝑇 (𝐻𝑀,𝑖 (𝑠𝑖 , 𝑃𝑖 ))}
and disclosing all other outputs of 𝐻𝑀,𝑗 where 𝑗 ≠ 𝑖 . This is es-

pecially interesting, as the client does not need to decide on the

statement or context to be attested by the proxy verifier. Instead,

the proxy verifier can simply authenticate the evidence provided by

the client, and the client can reveal a custom amount of information

whenever demanded once the TLS session has concluded.

Further Optimization. To optimize the performance of client

side evidence generation, one may resort to an alternative com-

mitment based on the counter block CB𝑖 = E𝑘 (𝐼𝑉 | |0| |𝑖 + 1). This
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Figure 11: Client side evidence generation for a single TLS record. The example shows 4 blocks encrypted with AES-GCM
(components of AES-GCM are highlighted in light gray). The maximum number of blocks𝑚 is 1024, where each block has a size
of 16B. 𝐸 is the expansion function HKDF.expand instantiated with SHA-256, whereas 𝐸𝑀 is HKDF.expand instantiated with
MiMC. To disclose 𝑃2, 𝑃3 to a third party, the client reveals all values highlighted in green. Additionally, the third party verifies
the signature of the proxy verifier, which verifies that ℎ0 is authentic.

is possible as the AES encryption of the counter values in GCM

mode act as a pseudorandom function. As long as the counter val-

ues are unique for each block of plaintext under a given key, the

resulting keystream will be pseudorandom, making the ciphertext

appear random and ensuring that repeated plaintexts do not result

in repeated ciphertexts. Hence, a client can utilize CB𝑖 as a suffi-

ciently random value to build the Merkle Tree obtain the hash ℎ0.

This demands for additional storage of counter blocks by the client,

in addition to the plaintext and ciphertext. After proving correct

derivation of the counter block Merkle Tree, the client can prove

an arbitrary statement on any non-disclosed block by computing

ZK-PoK{𝑘 : ℎ0 = 𝑀𝑇 (𝐻𝑀,𝑖 (CB𝑖 ))}, where 𝑘 is SATK for the server

response, or CATK for the request. This introduces a significant

performance improvement, as it does not demand the generation

of any salt values, rendering the salt tree expansion superfluous.

6 IMPLEMENTATION
We implement ORIGO in ∼ 5𝑘 lines of golang code, out of which

2.7𝑘 lines of code are the implementation of SNARK circuits. This

number excludes the adapted Golang TLS standard library. To fa-

cilitate parsing of HTTP requests and responses over TLS, as well

as to transcribe the TLS handshake and extract relevant intermedi-

ate values, we customize the standard TLS package as provided in

go/crypto [6]. We rely on gnark [17] for our implementation of

general-purpose SNARKs. Gnark is a library that provides a pro-

gramming interface to facilitate the development of ZKP applica-

tions. It relies on gnark-crypto [18], a library for arithmetic in finite

fields and operations over common (pairing-friendly) elliptic curves.

Gnark supports implementations of three SNARKs - Groth16, Plonk

with the KZG polynomial commitment and Plonk with FRI as a com-

miment scheme and interactive proof. Our implementation includes

circuits for proving SHA-256, HMAC, HMAC with MiMC, AES-128,

AES in Galois Counter Mode, and the full TLS key derivation.

We open-source our implementation of ORIGO in a public repos-

itory [10]. ORIGO can either be run in a local environment with

a mock server, or in a realistic setting with an externally hosted

server supporting TLS 1.3. To demonstrate a realistic setting, we

integrated ORIGO with the PayPal API [7]. We further depict a

practical implementation of our protocol in Appendix A, showing

how to obtain attestations in Gitcoin Passport [5].

7 EVALUATION
We evaluate the performance of ORIGO by evaluating (i) the over-
head of ORIGO over the TLS baseline handshake and request exe-

cution, (ii) the individual performance of techniques introduced in

ORIGO (§ 5.1-§ 5.3) and (iii) a realistic, global client-side deployment

and (iv) a holistic evaluation with regard to related works.

Experimental Setup. Experiments to measure the circuit runtime

are conducted on a MacBook Air configured with 24GB of RAM and

the Apple M2 chip. In the global deployment, each client is executed

on an AWS EC2 c5.4xlarge instance with 32GB of RAM and and Intel

Xeon Platinum 8124M CPU with 16 vCPUs. We leverage the insight

of Ernstberger et. al [30], which states that circuits in gnark are

40% − 50% faster on compute optimized hardware. The proxy runs

on an Intel server with 128GB of RAM and an Intel(R) Xeon(R) Gold

6130 CPU @ 2.10GHz. All results are averaged over 20 executions.

In our experiments with adjusted bandwidth and throughput, we

throttle bandwidth and throughput with tc.
Preprocessing. We do not evaluate the pre-processing on the

client and proxy side, which are the out of circuit operations as

described in Section 5.1. Omitting preprocessing is acceptable, as it

is performed out of circuit and only requires a minimal amount of

compute and bandwidth. Further, preprocessing is concretely faster

than the generation of the Zero Knowledge Proof.
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Figure 12: Overhead required for tunneling a TLS session
through a proxy. The proxy is fixed in Munich, the client is
in 6 different cities. The execution time is in milliseconds.
The TLS server is hosted by PayPal [7].

7.1 Overhead over TLS in request execution
Figure 12 shows that the overhead introduced by the proxy setting

is minimal with regard to the overall protocol runtime. We measure

the latency averaged over 20 invocations with the real-world API

provided by PayPal. We deploy the client in 6 distinct locations

around the globe, and execute (i) a plain request to the API server as
well as (ii) a handshake and request through the proxy, where the

proxy save the relevant handshake transcript as well as the query

and response transmitted by the client and server respectively. We

find that the overhead introduced by the proxy ranges between

1.2× in Mumbai and 3.5× in Sydney, as opposed to a plain TLS

connection the server hosted by PayPal. The overall end-to-end

runtime for an HTTP request with ORIGO is 1𝑠 to 1.6𝑠 , which is

well below application-specific TLS timeouts ( 10 − 15 seconds).

7.2 Performance of Circuit Implementations
Table 3 in the appendix provides microbenchmarks for the circuits

relevant to ORIGO. We measure the size of the circuit in number

of constraints, offline and online runtime, and offline and online

communication. Note, that offline communication differs depend-

ing on the protocol setting and proof system used. For example, for

Groth16 there is no separation of a randomized and deterministic

setup procedure. Hence, the trusted setup would be executed by an

external party, and the prover key and verifier key can be dispersed

to the prover and verifier respectively. On the other hand, the ran-

domized setup procedure in Plonk can be executed separately (see

e.g. [50] or [8] for a practical example). The SRS can be dispersed,

whereas the prover and verifier derive the prover and verifier key

locally in a determinstic setup. The complete end-to-end circuit

for ORIGO counts 896.3k constraints. We find that the bottleneck

in generating the proof is the AES encryption in Galois Counter

Mode, which counts 288.1k constraints for encrypting a 32 Byte

plaintext and takes 0.61 seconds (cf. Figure 13).

Client Side Evidence Generation. To measure the performance

of client side evidence generation, we evaluate the time it takes to

(i) generate the salt tree and (ii) generate the salted merkle tree.

In an unoptimized setting the HMAC circuit with the MiMC hash

function takes up 52.2k constraints and 0.41s, whereas a comparable

SHA-256 based HMAC evaluation takes up 184.9k constraints and

0.75s. Each expansion function requires a single HMAC evaluation

for MiMC over BN254, which totals the prover time to ∼ 419s - a

significant overhead requiring further optimization.
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Figure 13: Prover Time for AES in Galois Counter Mode. The
circuit is executed with (i) a Groth16 backend and (ii) a Plonk
backend. The x-axis depicts the byte size of the plaintext.

In case counter blocks are utilized in an optimized evidence

generation, only the merkle tree over the encrypted counter blocks

needs to be computed in-circuit in addition to the circuits described

in Table 3 in the appendix. The generation of an in-circuit Merkle

Tree with 1024 leaves of depth 10 takes 2.04s with aMiMC hash, and

0.12s when instantiated recursively with an inner GKR proof and

an outer Groth16 proof as desribed by Belling et. al [16]. For both,
AES encryption remains the bottleneck in overall proof generation.

Utilizing lookup arguments to prove AES as described by Orru et.
al can further lower the cost of AES [51].

7.3 Global Deployment
In Figure 14, we present a comprehensive evaluation of the execu-

tion times experienced by clients distributed across the globe when

accessing data from a server, using our protocol, via a proxy verifier

located in Munich. All clients are running on the same type of

AWS instance. We benchmark the performance of our protocol by

integrating it with the real-world TLS server hosted by PayPal [7].

The request sent aims to create an order for a product valuated at a

specific price. An order in PayPal is an agreement between a buyer

and a seller, the integration with ORIGO allows the client to prove

that a product has been purchased via PayPal payment for a certain

price. This API has a request size of 873 byte and a response size

of 1429 byte. We deploy the client in 6 different cities and observe

that the online execution time of our protocol ranges from 1.44s to

2.05s. Xie et. al [63] conduct a similar experiment by deploying the

client in 18 different cities, reporting an online runtime between

0.3s and 9.6s for a similarly sized request / response pair, which

indicates that ORIGO enjoys a more stable online execution time,

independent of the geographical location of the TLS session verifier.

This is primarily caused by the number of online communication

rounds, which is 1 for ORIGO, and 31 in the case of Xie et. al.

7.4 Comparison with Related Works
We compare the performance of ORIGO to DECO [67] and the

concurrent work of Xie et. al [63]. Both works rely on a three-party

handshake, which replaces the traditional TLS handshake, and do

allow for a stronger network adversary as opposed to our protocol.

For the measurements of DECO, we rely on the performance evalu-

ation conducted by Xie et. al [63], which instantiate DECO with the

state-of-the-art protocol for malicious 2PC, Ferret [64]. Note, that

the evaluation of DECO only includes the time needed in malicious
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Figure 14: Execution time for globally dispersed clients requesting data from a PayPal server through a proxy verifier situated
in Munich. For the proxy, the “Offline” time includes the setup of pk & vk, and compiling the constraint system. For clients, the
“Offline” time is equivalent to compiling the constraint system. The “Online” execution time is the time to create the proofs as
described in Section 5, verifying them on the proxy side, and receiving a response.

Table 2: Comparing DECO, XYWY23, and this work under WAN conditions. For communication cost, values in brackets signify
the communication cost for prover/verifier keys respectively. For runtime, we report online operations; the values in brackets
are offline operations for the SNARK setup and compilation of the circuit. The proof system used in our work is Groth16.

Communication cost WAN (100Mbps, RTT=50ms)

256 B 1 KB 2 KB 256 B 1 KB 2 KB

DECO [67] 206 MB 345 MB 476 MB 24 s 36.3 s 51.6 s

XYWY23 [63] 15.2 MB 22.9 MB 33.3 MB 3.19 s 3.96 s 4.9 s

This Work

2.4 kB
(111.9 MB /

10.9 kB)

2.4 kB
(111.9 MB /

10.9 kB)

2.4 kB
(111.9 MB /

10.9 kB)

1.50 s
(28.6 s /

9.2 s)

1.53 s
(28.6 s /

9.2 s)

1.51 s
(28.6 s /

9.2 s)

2PC, which includes computing the TLS session keys and 4 pairs

of AES-GCM ciphertext/tags [63]. All performance numbers are

measured using the same type of AWS instance (AWS c5.4xlarge).

We summarize the results of our comparison in Table 2.

As expected, we observe that our protocol reports constant com-

munication cost and constant execution time, independent of the

size of the request and response. For communication cost, we can ob-

serve that the required online communication in ORIGO is smaller

than in both DECO and the work of Xie et. al [63]. For a query

size of 587 bytes and response size of 894 bytes, Xie et. al report a
communication cost of 17.6 MB offline and 0.9 MB online, whereas

ORIGO requires a constant 2.4 kB, which is 375× less. For a request
and response of 256 Byte, our solution completes in 1.50 seconds,

which is significantly faster than DECO’s 24 seconds. This presents

an approximate 16× speedup. Note, that the reported online execu-

tion time highly depends on the size of the statement to be proven.

In our example, the statement fits into two chunks of 128 bits. If the

statement to be proven requires in-circuit encryption of multiple

chunks, the online time of ORIGO scales as described in Section 7.2.

8 DISCUSSION AND FUTUREWORK
This paper introduces ORIGO, a TLS oracle with constant com-

munication built on general purpose ZKPs. The main challenge is

to minimize the in-circuit operations to achieve practical prover

runtimes (§ 5.1) to ensure mitigation of an attack on integrity (§ 4).

Another challenge was achieving flexibility for clients, such that

they can create arbitrary proofs post-sessionwithminimal overhead

(§ 5.3). We show that the total online communication of ORIGO is

2.4kB. We evaluate our protocol in a practical setting with globally

dispersed clients, showing that the online runtime for proof genera-

tion and presentation ranges between 1.44 seconds and 2.05 seconds.

The performance benefit is primarily obtained by the proxy setting,

and the assumption that MITM attacks are infeasible, which allows

us to use a SNARK in a public coin protocol. This is interesting,

as it allows outsourcing the prover to an untrusted server without

forfeiting confidentiality [35].

There are three limitations of ORIGO that demand for further

exploration. First, assuming that MiTM is impossible demands for

additional mitigation on other OSI layers. Certain applications,

like Gitcoin Passport, may deem this tradeoff sufficient for their
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application, as practically instantiating an attack is non-trivial. For

the client to perform the attack, it would need to manipulate the

DNS resolution at the proxy, or intercept the traffic between the

proxy and the actual server. This could be attempted through DNS

hijacking or spoofing. Doing so would require compromising the

DNS resolver used by the proxy. By using DNSSEC, the proxy can

ensure that the domain name resolution is secure and authentic. To

ensure that the client doesn’t supply a malicious domain name in

its request, the proxy can pre-specify a set of whitelisted domain

names. We further discuss the feasibility of an MITM attack for

traffic injection in Appendix D. Second, the size of the SRS is large

(∼ 100 − 300MB for Groth16/Plonk) and requires additional offline

communication. Albeit constant, it is unclear how clients receive

an SRS. If each proxy verifier creates its own SRS, clients need to

download large files before executing a session. Usage of established

SRS, with a sufficient amount of public randomness in a public MPC

setup ceremony [8], may be a suitable alternative to lessen this issue.

Third, AES encryption remains the bottleneck in circuit compilation

and proof generation. Recent work shows how to minimize AES

constraints with lookup arguments [51]. We believe instantiating

their construction in-circuit to be clear items for future work.
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A APPLICATION TO GITCOIN PASSPORT
To demonstrate the practical use of our construction, we integrated

ORIGO with Gitcoin Passport [5]. With Gitcoin Passport, users

collect stamps from authenticators such as Facebook, Twitter or

Github. By collecting stamps, a user can prove sybil-resistance. The
more stamps a user collects, the higher the trust score, which in-

dicates how difficult it is to forge an identity. To issue a stamp, a

user has to authorize the Gitcoin Passport application to write to

its personal Ceramic datastream
1
(“Passport”). The user connects

to the Gitcoin Passport app, which communicates with the Gitcoin

Identity and Access Management (IAM) server, to verify that an

account with one of the previously mentioned platforms exists. The

Gitcoin passport application, in collaboration with the Gitcoin IAM

server, acts as centralized issuer of a verifiable credential (“stamps”)

as specified by the standardization of theW3C [25]. Once a stamp is

issued, anyone can verify its validity. Note that presently, all stamps

issued through Gitcoin Passport rely on publicly available data.

With ORIGO, users can create stamps from their private data,

without relying on an centralized entity which is trusted for confi-

dentiality. We integrated ORIGO with Gitcoin Passport to create a

stamp from a successful PayPal payment through the PayPal API.

To initiate the session, the client signs up with the PayPal API to

generate an access token. The client executes Π𝑂𝑅𝐼𝐺𝑂 with the

proxy as a verifier, the PayPal API acts as the server and Gitcoin/Ce-

ramic acts as an external third party. After obtaining a response

to the HTTPS GET request, the client proves that the response

submitted via TLS contains information about a payment, that is

greater than a certain threshold, to the proxy verifier. Upon ver-

ification of message integrity and the correctness of values, the

proxy verifier creates a signed verifiable credential
2
and sends it

to the client. We leverage an adapted version of the writer SDK

of Gitcoin Passport
3
, such that the client can create and write to

its personal Ceramic Tile Stream [4]. The verifiable credential is

then included as a stamp under the previously created DID. As

such, our application allows for stamps from private data, where

the user does not give up control over its “passport” to another

entity. By issuing verifiable credentials from private data, the proxy

verifier can act as a complementary issuer to the Gitcoin Passport

application, without being trusted for confidentiality.

B PRIVACY RIGHTS & REGULATIONS
In our practical implementation, each session in ORIGO is governed

by a policy. The purpose of a policy for data feeds for confidential

data is twofold — to provide a set of constraints that enables the

verifier to validate the correctness of statements of the client, and

to provide an interface that ensures the validity of data sources pro-

viding qualitatively equivalent data (e.g., age verification through

either the DMV or governmental API endpoints). In our current im-

plementation, the policy specifies applicable data sources, response

formats and value constraints to be proven by the client.

Further, a policy can also implicitly or explicitly guarantee data

accuracy. To address liability concerns, the policy could include

1
A data storage network for Web 3.0 applications which identifies data streams by a

Decentralized Identifier (DID).
2
We integrate a JavaScript SDK for W3C Verifiable Credentials https://github.com/

digitalbazaar/vc-js

3
https://github.com/gitcoinco/passport-sdk/tree/main/packages/writer

https://eprint.iacr.org/2022/1286
https://eprint.iacr.org/2022/1286
https://github.com/digitalbazaar/vc-js
https://github.com/digitalbazaar/vc-js
https://github.com/gitcoinco/passport-sdk/tree/main/packages/writer
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Table 3: Benchmarks for SNARK circuits in ORIGO. We assume the context spans 32 Byte, i.e. two TLS record blocks need to be
encrypted in-circuit. We separate offline and online runtime and communication. CCS is the compiled constraint system, SRS is
the reference string established in the randomized setup of the SNARK, PK and VK are the prover key and verifier key which are
derived in a determinstic setup, PW is the public witness, and proof 𝜋 .

Execution Offline Execution Online Communication Offline Communication Online

ZKP Circuit # Constraints (x10
3
) Compile (s) Setup (s) Prove (s) Verify (s) CCS, SRS (MB) PK (MB) VK (KB) 𝜋 (KB) PW (B)

Groth16 backend

KDC 322.4 0.9 11.12 0.48 0.001 35.3 47.8 4.93 0.128 128

Tag 285.8 1.28 9.17 0.6 0.001 106.6 40.1 2.37 0.128 44

Record 288.1 1.31 9.24 0.61 0.001 105.1 40.4 2.02 0.128 72

Plonk backend

KDC 573.0 7.64 6.08 7.38 0.002 52.7, 33.5 327.1 0.54 0.552 128

Tag 551.9 7.65 6.14 7.46 0.002 61.5, 33.5 327.1 0.54 0.552 44

Record 556.5 7.83 6.16 7.67 0.002 61.9, 33.5 327.1 0.54 0.552 72

terms that specify the extent of the data provider’s liability for data

accuracy. Moreover, including a hash of a Terms of Service (ToS) or

Disclaimer within the policy can serve as an immutable reference

to the terms under which the data is provided and attested.

Thus, ORIGO can enforce terms under which data is attested,

and deny attestations that violate these terms. We expect that a set

of policies will provide clients with a choice of data providers and

endpoints, from which attested data can be obtained – similar to

how passport stamps can be obtained in Gitcoin Passport [5].

C FEASIBILITY OF THE ATTACK ON TLS 1.3
The attack presented in Section 4 challenges the integrity and

uniqueness aspects of AES-GCM, aiming to compromise its se-

curity by finding collisions in encryption and authentication. The

attack applies in a setting, where the adversary aims to convince an

entity about an underlying plaintext, whereas the entity verifying

the statement already holds the ciphertext encrypted with AES-

GCM. The attack leverages that in TLS 1.3, the 𝐼𝑉 is not explicitly
included in the transmitted messages, but rather derived from the

handshake transcript. We begin to outline the trivial attack on an

arbitrary plaintext, and successively discuss the feasibility of the

attack given an adversarial chosen, structured plaintext.

First, the adversary A𝐺𝐶𝑀 a key 𝐾 ′. Successively, A𝐺𝐶𝑀 com-

putes the evaluation of the binary polynomial at 𝐻 , by computing

𝑋 ←−
𝑚∑︁
𝑖=1

𝐶𝑖𝐻
𝑚−𝑖

where 𝐻 ←− 𝐸𝐾 {0128} is the encryption of the zero vector. Here,

A𝐺𝐶𝑀 is unable to choose 𝑋 , as each𝐶𝑖 is fixed (i.e. known by the

verifying entity). Now,A𝐺𝐶𝑀 chooses 𝐼𝑉 ′ such that𝑇 = 𝑇 ′, i.e. the
newly computed tag is equivalent to the one known by the verifying

entity for a differing, adversarial chosen initialization vector. 𝑇 ′ is
computed as𝑇 ′ ←− 𝐸𝐾 ′ {𝐼𝑉 ′} ⊕𝑋 . Now that an adversarial tag for a

differing 𝐼𝑉 is computed, it remains to show that the adversary can

derive a colluding ciphertext with a differing plaintext, given 𝐼𝑉 ′

and 𝐾 ′. To do so, the adversary computes 𝑅′ ←− 𝐸𝐾 ′ {𝐼𝑉 ′ | |𝑐𝑡𝑟 } and

chooses an arbitrary plaintext 𝑃 such that 𝐶 ←− 𝑅′ ⊕ 𝑃 ′ is satisfied.
Given an arbitrary plaintext, this attack is hence trivial.

For a chosen plaintext, A𝐺𝐶𝑀 needs to find a second preimage

attack where they generate a different set of inputs (𝐾 ′, 𝐼𝑉 ′, 𝑃 ′)
that produce the same encrypted output and authentication tag

as the original (𝐾, 𝐼𝑉 , 𝑃). While an adversary can freely choose

a new key and IV, ensuring these selections result in the same

tag and ciphertext for a different plaintext requires reversing the

GHASH and AES. For A𝐺𝐶𝑀 to revert AES-GCM, the expected

number of attempts is in the order of 2
128

, which is the size of the

key space. Previous work on cryptanalytic techniques demonstrate

a rebound attack that can, under certain conditions, significantly

lower the complexity of finding a set of inputs that satisfy a given

cryptographic condition than what a brute-force approach would

suggest [56]. For AES-based functions, this attack lowers the com-

plexity to about 2
48

for constructing valid pairs that follow a specific

differential trail. We consider a concrete analysis with cryptanalytic

techniques out of scope and interesting for future research.

D ON THE POSSIBILITY OF MITM ATTACKS
Assuming that MITM by a malicious client is not possible demands

for additional mitigation on another OSI layer (without any server-

side changes). For example, a proxy can employ IP Address Moni-

toring [59] and Secure BGP Practices on the network layer [9, 68]

or Certificate Pinning on the transport layer to ensure correct cer-

tificates [57]. Further, external verification of the server’s public

key, separate to the proxy session, can ascertain additional security.

Similar assumptions, which assume additional care to account for

traffic injection through e.g. BGP attacks, have been acknowledged

and embraced in similar settings that require a proxy [60, 67]. The

reason for this is that BGP attacks are (i) are difficult to mount in

practice, and (ii) various detection techniques have been proposed

to detect BGP attacks [9, 68]. To additionally enhance the security

of the approach introduced in this work, one may rely on an N-out-

of-N multisignature with globally dispersed proxies, or a similar

approach that relies on N-version programming, following the ini-

tial specification outlined in this work. However, we acknowledge
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F𝐷𝑃 (𝜆, R, S,V, C)
01: \\ Initialize
02: Init: Set Storage B ∅ and initialize the corruption state as uncorrupted.

03: \\ Client sends request
04: On receive (sid, "request", 𝜃S ) from C:
05: set𝑄 = Request(𝜃S )
06: notify A of (sid, "request", |𝑄 | )
07: set Storage[sid] B (𝑄, _)
08: \\ Server send response

9: On receive (sid, "response",𝑄 , 𝑅 ) from S:
10: set𝑄′ from Storage[sid]
11: check that𝑄′ = 𝑄 , else return ⊥
12: notify A of (sid, "response", |𝑅 |)
13: update Storage[sid] B (𝑄,𝑅 )
14: \\ Forward any data

15: On receive (sid, "forward", P) from V :

16: if P = S set out = 𝑄 from Storage[sid]
17: if P = C set out = 𝑅 from Storage[sid], else return ⊥
18: notify A of (sid, "forward", |out | , P), block until A replies

19: send (sid, out) to P
20: \\ Client proves provenance (and statement, optional)

21: On receive (sid, "prove", 𝑅 ) from C:
22: set 𝑅′ from Storage[sid]
23: check that 𝑅′ = 𝑅 , else return ⊥
24: send (sid, R(𝑅 )) to V
25: On receive ("corrupted") from V
26: set corruption state to corrupted and return an element

27: randomly sampled from {0, 1}𝜆 when invoked with "forward"

Figure 15: The ideal functionality for data provenance via
TLS with a proxy verifierV.

that additional MiTM mitigation mechanisms introduce an addi-

tional overhead to our protocol when compared with approaches

that do not face this issue [22, 46, 63, 67], which our evaluation

does not account for. We leave further exploration of extending the

security guarantees in the proxy mode as future work.

E FORMAL SECURITY ANALYSIS
In this section, we analyze and prove the security of Π𝑂𝑅𝐼𝐺𝑂 in

the UC paradigm by Cannetti et. al [19]. In short, the UC model

employs a real-ideal world paradigm, where security follows from

indistinguishability between an execution of the real protocol in

the real world and execution of an ideal version in the ideal world.

The reasoning is that the ideal functionality specifies the ideal se-

curity properties and fulfills them by definition. If the real protocol

execution is indistinguishable from the execution with the ideal

world, it follows that it yields exactly the same security properties.

Formally, a protocol Π UC-realizes and ideal functionality F
if Π emulates 𝐼F , the ideal protocol of F . A protocol Π emulates

protocol 𝐼F if for any polynomial time (PT) adversary A, there

exists a PT adversary Sim such that for all PT environmentsZ that

only output one bit the following executions are indistinguishable:

∀Z;𝐸𝑋𝐸𝐶𝑃𝑅𝑂𝑇,A,Z ≈ 𝐸𝑋𝐸𝐶𝐼F ,Sim,Z (2)

E.1 Ideal Functionality F𝐷𝑃
We model the security of proving data provenance as an ideal

functionality F𝐷𝑃 in Figure 15. Each participant in the ideal func-

tionality is identified by a unique identifer, denoted as S, V , C
and P respectively. Further, F𝐷𝑃 is parametrized with a relation

R to be satisfied by the data provided by the server S. The unique
identification of participants models the requirement of uniquely

identifiable communication partners, which is a requirement to

account for the possibility of adversarial MITM clients. Note that in

the UC model, identifiers assumed to be provided via an underlying

lower-level protocol that also guarantees authenticated commu-

nication [20]. The network adversary is formalized through the

delayed output terminology [19]. At a high level, the client C first

calls the "request" subroutine of F𝐷𝑃 by providing a authentication

secret 𝜃S . The functionality internally stores the query 𝑄 for the

session identifier sid. Note that only once the proxy verifierV calls

"forward", the request is forwarded to the server S. However, the
verifierV never learns the content request. The adversary solely

learns the size of the request 𝑄 . Once the server S receives the

response, it checks whetherV actually forwarded the request sent

by C. Similarly, once the client receives the response 𝑅 , it checks

whetherV actually forwarded the response sent by S. Intuitively,
F𝐷𝑃 describes implies the following security properties, which are

similarly described in related works [63, 67]: Client Integrity. A
malicious client cannot convince a verifier of an untrue statement

about the TLS session. Verifier Integrity. A malicious verifier

cannot prevent a client from receiving the correct message from

the server. Privacy. A malicious proxy verifier cannot obtain any

knowledge beyond the size of the message that it forwards.

E.2 Security Proof
In the following, we show the validity of Theorem 1. For clarity, we

highlight that Theorem 1 presumes EUF-CMA security of ECDSA

for verification of certificates, and security of the SHACAL-2 com-

pression function 𝑓 underlying the SHA-256 hash function, as only

the input to the first compression function of the Merkle-Damgard

structure is proven in our circuit. To prove thatΠ𝑂𝑅𝐼𝐺𝑂 UC-realizes

F𝐷𝑃 , we specify a simulator Sim, such that no environmentZ can

distinguish an interaction between Π𝑂𝑅𝐼𝐺𝑂 and A from an inter-

action with F𝐷𝑃 and Sim.
Construction of Sim. We construct the simulator Sim by distin-

guishing the twomain cases for adversarial entities inΠ𝑂𝑅𝐼𝐺𝑂 — an

adversarial C and an adversarialV . We assume the ideal function-

ality as presented in Figure 15. As the server S is always presumed

to be honest, we distinguish between the simulator for (i) an ad-

versarial C and (ii) an adversarialV below. Sim runs AC (and for

2) AV ), as well as F𝑍𝐾 , internally. Sim forwards any input from

Z and tracks messages sent from and to AC / AV . The simulator

Sim simulates the compression function 𝑓 as a random oracle by

sending uniformly random strings from {0, 1}256 when queried by

the adversary.

1) Sim for malicious C. For a malicious client C we intend to

prove client integrity.
(1) When A sends (sid, "request", 𝑄) to S, Sim forwards (sid,
"forward", S) to F𝐷𝑃 . When server sends (sid, "response", 𝑅) to
C, Sim forwards (sid, "forward", C) to F𝐷𝑃 and (sid, out) to A.

Sim obtains (𝑄̂, 𝑅̂), where 𝑄̂ is the encrypted request and 𝑅̂ is the

encrypted response.

(2) When receiving (sid, "prove", C, 𝑥 ,𝑤 ) from A, Sim checks that

𝑘 B KDC(Γ) for with the TLS transcript and 𝑅̂ B Enc𝑘 (𝑅) with
AES-GCM.
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(3) If the previous checks pass, Sim forwards (sid, "prove", 𝑅) to
F𝐷𝑃 , which successively outputs toV . Sim outputs whatever A
outputs.

Indistinguishability. We now argue that the execution with

Sim and F𝐷𝑃 is indistinguishable from the real-world execution

withA and Π𝑂𝑅𝐼𝐺𝑂 through a set of hybrids. We start off with hy-

brid 𝐻1, which represents the real-world execution of the protocol.

𝐻2 lets Sim emulate F𝑍𝐾 . 𝐻3 lets Sim simulates V . 𝐻4 adds the

integrity checks from step 3).
Hybrid 𝐻1. Is the real-world execution of Π𝑂𝑅𝐼𝐺𝑂 .
Hybrid 𝐻2. proceeds as in 𝐻1, but in addition the simulator Sim
emulates F𝑍𝐾 . All communication betweenAC and S orV is sent

through Sim, which forwards it as in the real execution. It is trivial

to see that 𝐻1 and 𝐻2 are indistinguishable as the simulation of

F𝑍𝐾 is perfect.

Hybrid 𝐻3. 𝐻3 is the same as 𝐻2, but Sim internally simulatesV .

Sim only forwards the client request and server response if it was

recorded. 𝐻3 is indistinguishable from 𝐻2, as the distribution in

the ideal and real world are the same, i.e. bothV and Sim would
abort under the same circumstances when C presents an invalid

proof.

Hybrid 𝐻4. 𝐻4 is the same as 𝐻3, with the change that the addi-

tional check for record existence is performed by Sim. To show that

𝐻3 is indistinguishable from 𝐻4, we show that both V and Sim
would abort in the same cases. In the real world, the misbehavior of

the client would lead to an abort in two cases — the client deviates

during the handshake with the server or in the proof presentation.

We argue that the same two would lead to an abort in𝐻4 as follows.

First, the client may deviate during handshake. This will be detected

by Sim and will result in exactly the same behavior as in the real

world. Second, the client may provide a proof on data that is not

associated with the record transmitted. This would lead similarly

to an abort in the real and ideal world as Sim internally checks

whether the sent queries and records match the session id.

It remains to argue that 𝐻4 is indistinguishable from the ideal

execution. As 𝐻4 only accepts a valid statement if the client is in

posession of 𝜃S and obtained the records from S, 𝐻4 and the ideal

world are indistinguishable.

2) Sim for maliciousV. For a maliciousV , we intend to show

verifier integrity, such that a maliciousV cannot prevent a client

from receiving correct messages from the server. Recall that Sim
runs AV internally and forwards all traffic betweenZ and AV .

(1) Upon reception of any message sent by AV , Sim forwards it to

F𝐷𝑃 . During initialization, Sim obtains the encrypted handshake

transcript and forwards it to AV . The client C decrypts the hand-

shake and verifies 𝛿S .
(2) After C calls F𝐷𝑃 with "request" or S calls F𝐷𝑃 with "response",

Sim obtains the leaked output sizes |𝑄 | and |𝑅 |.
(3) Upon request of AV , Sim runs the handshake with S by sim-

ulating C, obtaining the handshake secrets and traffic encryption

secrets negotiated with S.
(4) Sim sends a random request 𝑄 to AV and forwards to F𝐷𝑃
whatever AV responds.

(5) Sim asserts that 𝛿S verifies with 𝑝𝑘S .
(6) Sim prepares the alternative handshake transcript by pre-computing

internal hash functions and forwarding them toAV . Sim discloses

the handshake keys to AV .

(7) In the proof presentation phase, Sim sends (sid, R(𝑅)) to AV
and responds whatever AV responds.

Indistinguishability. We argue that the ideal execution with

Sim and F𝐷𝑃 is indistinguishable from the real-world execution

withA and Π𝑂𝑅𝐼𝐺𝑂 through a set of hybrids.𝐻1 represents the ex-

ecution of the real-world protocol.𝐻2 lets Sim additionally emulate

F𝑍𝐾 . 𝐻3 additionally lets Sim simulate C.
Hybrid 𝐻1. is the real-world execution of Π𝑂𝑅𝐼𝐺𝑂 .
Hybrid 𝐻2. 𝐻2 is the same as 𝐻1, but Sim internally simulates

F𝑍𝐾 . Further, Sim calls F𝐷𝑃 with "request" to receive |𝑄 | and |𝑅 |.
Since the simulation of the ideal functionality is perfect, 𝐻2 and

𝐻1 are indistinguishable.

Hybrid 𝐻3. 𝐻3 is the same as 𝐻2, but 𝐻3 additionally internally

simulates C. Sim engages in the handshake with S. Sim emulates a

handshake transcript encrypted with random keys and chooses 𝑄 ,

𝑅 at random and provides them to AV . Finally, Sim directly sends

(sid, "prove", data, S) toAV alongside the pre-computed adapted

handshake transcript and the handshake encrypting keys.

It remains to argue that 𝐻3 is the same as the ideal world. We

argue that this is the case because: When providing the alternative

transcript, AV only learns a hash function in the real world, as

𝑓 is a random oracle. Further, as EUF-CMA security holds, signed

certificates cannot be forged. Due to key independence, AV does

not learn anything about the record layer from the handshake layer.

Records and Queries appear equally random. In the record layer,

𝑄 and 𝑅 are encrypted and of the same size as in the real world,

such that they’re indistinguishable Finally, AV receives the same

output as in the real-world execution.

Instantiating F𝑍𝐾 . Universally Composable security of SNARKs

has been deeply investigated in previous works [11, 13, 14, 34,

44]. The core problem with ensuring universal composability for

SNARKs is that they commonly rely on the Fiat-Shamir transform

for non-interactivity and therefore demand a non-black-box extrac-

tor. For Groth16, it has been shown that it only satisifies weak sim-

ulation extractability [14], a weaker notion than universal compos-

ability. Achieving universal composability for e.g. Groth16 demands

for custom designs that achieve a stronger notion of simulation ex-

tractability with black-box simulation[37]. Recent work shows how

to obtain strong simulation extractability for Groth16 with minimal

overhead [13]. Further, Abdolmaleki et. al [11] provide a generic
UC compiler for NIZKs with updatable CRS, such as Plonk, that

introduces a ≈ 1.2× overhead in concrete instantiation. Note, that

the implementation of Groth16 and Plonk in gnark is not adapted,

and hence they do not satisfy F𝑍𝐾 . We leave an instantiation with

universally composable SNARKs to future work.
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