
Fastcrypto: Pioneering Cryptography Via Continuous Benchmarking

Kostas Kryptos Chalkias1, Jonas Lindstrøm1, Deepak Maram1, Ben Riva1, Arnab Roy1, Alberto
Sonnino1,2, and Joy Wang1

1Mysten Labs
2University College London

March 14, 2024

Abstract

In the rapidly evolving fields of encryption and
blockchain technologies, the efficiency and security
of cryptographic schemes significantly impact perfor-
mance. This paper introduces a comprehensive frame-
work for continuous benchmarking in one of the most
popular cryptography Rust libraries, fastcrypto.
What makes our analysis unique is the realization that
automated benchmarking is not just a performance
monitor and optimization tool, but it can be used for
cryptanalysis and innovation discovery as well. Sur-
prisingly, benchmarks can uncover spectacular security
flaws and inconsistencies in various cryptographic im-
plementations and standards, while at the same time
they can identify unique opportunities for innovation
not previously known to science, such as providing a)
hints for novel algorithms, b) indications for mix-and-
match library functions that result in world record
speeds, and c) evidences of biased or untested real
world algorithm comparisons in the literature.

Our approach transcends traditional benchmark-
ing methods by identifying inconsistencies in multi-
threaded code, which previously resulted in unfair
comparisons. We demonstrate the effectiveness of our
methodology in identifying the fastest algorithms for
specific cryptographic operations like signing, while re-
vealing hidden performance characteristics and secu-
rity flaws. The process of continuous benchmarking
allowed fastcrypto to break many crypto-operations
speed records in the Rust language ecosystem.

A notable discovery in our research is the identifi-
cation of vulnerabilities and unfair speed claims due
to missing padding checks in high-performance Base64
encoding libraries. We also uncover insights into al-
gorithmic implementations such as multi-scalar ellip-
tic curve multiplications, which exhibit different per-
formance gains when applied in different schemes and
libraries. This was not evident in conventional bench-
marking practices. Further, our analysis highlights

bottlenecks in cryptographic algorithms where pre-
computed tables can be strategically applied, account-
ing for L1 and L2 CPU cache limitations.

Our benchmarking framework also reveals that
certain algorithmic implementations incur additional
overheads due to serialization processes, necessitat-
ing a refined ‘apples to apples’ comparison approach.
We identified unique performance patterns in some
schemes, where efficiency scales with input size, aiding
blockchain technologies in optimal parameter selection
and data compression.

Crucially, continuous benchmarking serves as a tool
for ongoing audit and security assurance. Variations in
performance can signal potential security issues during
upgrades, such as cleptography, hardware manipula-
tion or supply chain attacks. This was evidenced by
critical private key leakage vulnerabilities we found in
one of the most popular EdDSA Rust libraries. By
providing a dynamic and thorough benchmarking ap-
proach, our framework empowers stakeholders to make
informed decisions, enhance security measures, and op-
timize cryptographic operations in an ever-changing
digital landscape.

Keywords— cryptography, cryptanalysis, continuous
benchmarking, Rust language, blockchain, crypto audits,
supply chain attacks.

1 Introduction

Cryptography plays a pivotal role in safeguarding the in-
tegrity and confidentiality of secure communication chan-
nels, decentralized applications, digital identity and au-
thentication systems, among the others. In the last 10-15
years, the demand for secure and scalable blockchain solu-
tions caused an exponentially increased need for compre-
hensive performance evaluations of the underlying crypto-
graphic components, such as digital signatures, zero knowl-
edge proofs, Merkle trees, regular or exotic encryption
mechanisms, multi-party computations and randomness
beacons. It is believed that blockchain research has ad-
vanced the cryptography space rapidly [20], offering some

1



of the most robust and fastest implementations that are
now reused outside web3 as well.

Fastcrypto [24] is one of the most recent and mod-
ern Rust [23] libraries focusing on high performance im-
plementations of cryptographic primitives, typically re-
quired by blockchain applications. Although originally de-
signed to provide all cryptographic functionality for the
Sui1 blockchain, it has been widely adopted by the cryp-
tographic community, and is currently used in at least 167
other projects2.

A few prominent examples of fastcrypto’s community
usage include the following: (1) DB3 Network3, which
is a lightweight, permanent JSON document database
for Web3. It is designed to store and retrieve data
for decentralized applications built on blockchain technol-
ogy, (2) Rooch Network4, which is a fast, modular, se-
cured, developer-friendly infrastructure solution for build-
ing Web3 Native applications, and (3) Fleek Network5,
which facilitates the deployment and running of perfor-
mant, geo-aware decentralized web and edge services.
These codebases typically use the base64, hashing, and sig-
nature algorithms from fastcrypto.

In order to meet the performance demands of a scalable
blockchain that must process thousands of transactions per
second, fastcrypto has been continuously and rigorously
benchmarked through the entire development process. This
has informed decision-making, in particular in the early
stages of the development where many crucial and largely
irreversible choices had to be made.

This paper gives examples of some actionable insights ac-
quired through our benchmarking efforts while developing
the fastcrypto library. These insights have been lever-
aged for both the refinement of the library itself, and the
optimization of cryptographic operations within Rust and
Move [11] language based blockchains. In some cases this
also led to changes in external libraries. It is our hope that
these insights may be useful for researchers or developers
working on performance critical systems.

2 Method

All cryptographic functions in the fastcrypto library are
benchmarked continuously as part of the library’s contin-
uous integration workflow6 and a report of the results are
published online7. The report is generated using the cri-
terion crate [3] and when applicable, functions are bench-
marked with various input sizes and grouped together with
similar functions to enable comparisons. Benchmarks are
run sequentially and each measurement is run 100 times.
The report contains the mean and standard deviation of

1https://sui.io/
2https://github.com/MystenLabs/fastcrypto/network/

dependents
3https://db3.network/
4https://rooch.network/
5https://fleek.network
6https://github.com/MystenLabs/fastcrypto/blob/main/

.github/workflows/benchmarking.yml
7https://mystenlabs.github.io/fastcrypto/benchmarks/

criterion/reports/

Figure 1: Historic performance of a digital signature
verification using the ECDSA signature scheme over
the secp256r1 curve.

the observed timings for further analysis. At the time of
writing (January 2024), the report contains 109 different
benchmarks.

The report contains historic data, allowing the detection
of improvements or regressions in performance. As an ex-
ample, Figure 1 shows a plot from the published report of
the performance of verifying a digital signature using the
ECDSA signature scheme over the secp256r1 (aka P-256)
curve. This function has been improved several times which
is reflected in the graph. These particular improvements
are described in detail in section 3.1.3.

The data behind the report is published online in JSON
format and may be analyzed using any statistical analysis
tool. We have implemented a tool in Python8 to utilize
statistical libraries such as numpy [25] for more elaborate
statistical analysis and plotting of the data. All plots in
this paper were generated using this Python script.

To identify bottlenecks when the cryptographic functions
in fastcrypto are used elsewhere, we have made Dummy
implementations of digital signatures and hash functions.
These implementations use the same interfaces as the ac-
tual cryptographic functions and can be used in place of
these. They are not cryptographically secure but are ex-
tremely fast, so when they are used in testing they allow a
developer to identify where cryptographic operations are a
bottleneck in their implementation.

8https://github.com/jonas-lj/fastcrypto-analyzer

2

https://sui.io/
https://github.com/MystenLabs/fastcrypto/network/dependents
https://github.com/MystenLabs/fastcrypto/network/dependents
https://db3.network/
https://rooch.network/
https://fleek.network
https://github.com/MystenLabs/fastcrypto/blob/main/.github/workflows/benchmarking.yml
https://github.com/MystenLabs/fastcrypto/blob/main/.github/workflows/benchmarking.yml
https://mystenlabs.github.io/fastcrypto/benchmarks/criterion/reports/
https://mystenlabs.github.io/fastcrypto/benchmarks/criterion/reports/
https://github.com/jonas-lj/fastcrypto-analyzer


Figure 2: Performance of signing and verifying
a message using various digital signature schemes.
Secp256k1 and Secp256r1 are variants of ECDSA.

3 Case studies

The continuous benchmarks have greatly influenced the
decision-making in the development of the fastcrypto li-
brary and in how it is used in the Sui blockchain and later
in other projects. In this section, we outline some of the
insights we achieved through the benchmarks and their con-
sequences for the development.

3.1 Picking the right dependencies and
specs

3.1.1 Signature aggregation can be catalytic

The BLS signature scheme [13] allows multiple signatures
generated under different public keys for the same message
to be aggregated into a single signature which is valid only
if all the individual signatures are valid [12]. In a blockchain
setting, this has the potential to speed up validators’ signa-
ture verification significantly, as it is possible to aggregate
signatures and batch the verification, instead of individu-
ally submitting and verifying many independent signature
payloads.

Signature schemes such as EdDSA and ECDSA are much
faster than BLS for individual signatures (see Figure 2), but
do not provide the same performance gain when signatures
are batched, so choosing the right signature scheme requires
careful assessment of performance [21].

Our benchmarks (see Figure 3) show that there are a
number of signatures where verifying an aggregated BLS
signature is the fastest option compared to EdDSA, and

Figure 3: Performance of batched verification of dig-
ital signatures using the EdDSA and BLS signature
schemes.

that using the fastest available implementations of EdDSA
[26] and BLS [30], the break-even point is around 40-45
signatures.

Since BLS is used in the Sui blockchain to aggregate val-
idators’ signatures, this implies that if there are more than
45 validators, using BLS will be faster than EdDSA. At
the time of writing, there are 106 validators in Sui, mean-
ing that verifying aggregated BLS is about 2× faster than
EdDSA, when all validators sign.

3.1.2 Hash functions - in the mercy of hard-
ware specs

In blockchains, cryptographic hash functions are arguably
the most used cryptographic primitive, so even though they
are relatively fast functions they may eventually become a
bottleneck.

The performance of all cryptographic hash functions are
approximately linear in the input size for sufficiently large
inputs, but there are subtle differences in performance be-
cause the data is processed in blocks of varying sizes and
this difference is more noticeable for small inputs. Sui origi-
nally used the Sha3-256 hash function that Meta’s Libra [1]
project originally utilized, but after benchmarking alterna-
tives it switched to Blake2b [6] which is almost 3× faster
and more zero knowledge proof friendly.

A plot of the benchmarks is shown in Figure 4. Note
that Sha256 is the fastest hash function here, but this is
not the case on all platforms. This is evident, for example,
from the benchmarks published by the Blake2 team9 which

9https://www.blake2.net/

3

https://www.blake2.net/


Figure 4: Performance of cryptographic hash func-
tions.

shows that Sha256 is more than 2× slower than Blake2b,
but we have also observed this in our benchmarks where
the performance of Sha256 suddenly improved significantly
between two runs without any changes in the software. We
identified that this spike is due to recent updates in hard-
ware for the cloud runner, because some hardware vendors
have specialized CPUs to support Sha256 instructions; but
running purely in software, Blake2b is faster.

We want to investigate this further and make our bench-
marks fairer and more consistent, but it emphasizes the
importance of benchmarking on a system similar to the pro-
duction system because subtle differences (like CPU brand
and model) can affect the performance significantly.

3.1.3 Deserialization can be expensive in cryp-
tography

Many modern blockchains enable cryptographic agility for
account signature key types. For instance in Sui blockchain,
users may choose between a variety of signature schemes to
sign their transaction10. This allows them to pick their fa-
vorite hardware wallet or their smartphone and store their
keys securely. The default choice for the Sui blockchain
(and many others) is EdDSA [10] over the ed25519 curve
which was chosen based on high performance, determinism,
adoption and standardization.

There are a few implementations of EdDSA in Rust, and
comparing two popular crates (libraries) ed25519-dalek

[15] and ed25519-

consensus [26], which are backed by the same crypto arith-
metic library, revealed some unexpected results, namely

10https://docs.sui.io/guides/developer/sui-101/

sign-and-send-txn

that the prior was much faster. Studying the source code
closely showed that the difference was almost exclusively
due to the fact that public keys in the latter are given in
compressed serialized form, which is a representation where
only one affine coordinate from the elliptic-curve point is
given, meaning that the other coordinate has to be recon-
structed before it can be used using a modular square root
computation. This decompression operation is not for free.
Accounting for this extra computation, the difference be-
tween the two libraries were then negligible. Some impor-
tant lessons from this exercise are that a) we should be
careful when comparing similar functions, (de)serialization
can be expensive in cryptography, and b) there is a reason
why some cryptographic libraries prefer one or the other,
for instance the authors of ed25519-consensus explained
that their method is safer when receiving public keys from
the network, because the user does not need to take care of
invalid keys before invoking the signature.verify() func-
tion; this is indeed a valid argument when keys are not
cached or are unknown (typically the case in blockchain
transactions).

3.1.4 Asymptotic complexity does not always
tell the truth

EdDSA has a batched verification mode, where multiple
signatures may be verified in a batch, giving some speed-
up if enough signatures are verified together (see also sec-
tion 3.1.1). While benchmarking this, we found an un-
tapped potential optimisation: Typically, batch verifica-
tion of n EdDSA signatures requires sampling n random
scalars, but we found that n−1 is actually sufficient. For a
small number of signatures, this gives a small speed-up as
shown in Figure 5; this might make sense when we verify
sponsored or atomic-swap transactions, where two accounts
sign over the same transaction bytes.

3.2 Mix and Match Optimizations

3.2.1 Optimize ECDSA over the P-256 curve

As discussed in section 3.1.3 above, clients are allowed to
choose among many signature schemes when signing their
transactions, but it turns out that some schemes are slower
than others so to avoid that verifying signatures of a par-
ticular scheme becomes a bottleneck for the entire system,
the signature schemes are benchmarked continuously. The
information from the benchmarks may be used to encour-
age users to use the faster schemes, for example by using
these schemes as default choice in wallet implementations,
but also to identify where optimising an implementation
will have the largest effect.

As an example, the ECDSA signature scheme [2] may
be realised over different elliptic curves. Two commonly
used curves are secp256k1 which is used by the Bitcoin11

and Ethereum blockchains [31] and the secp256r1 or P-
256 curve which was specified by NIST and is used, for
example, by the secure hardware on iPhone12. Both of

11https://en.bitcoin.it/wiki/Secp256k1
12https://developer.apple.com/documentation/

cryptokit/p256/signing/ecdsasignature

4

https://docs.sui.io/guides/developer/sui-101/sign-and-send-txn
https://docs.sui.io/guides/developer/sui-101/sign-and-send-txn
https://en.bitcoin.it/wiki/Secp256k1
https://developer.apple.com/documentation/cryptokit/p256/signing/ecdsasignature
https://developer.apple.com/documentation/cryptokit/p256/signing/ecdsasignature


Figure 5: Relative performance improvement between
using n and n− 1 random scalars to verify a batch of
n Ed25519 signatures.

these are supported by the Sui blockchain and may be used
by clients to sign their transactions.

Besides the choice of curve, there is no difference in the
protocols for ECDSA over the two curves, but our bench-
marks revealed that the fastest implementation of ECDSA
over secp256k1 [27] is significantly faster than the fastest
implementation of ECDSA over P-256 [28]. This motivated
us to develop a new implementation of ECDSA over P-256
which uses a combination of faster elliptic curve arithmetic
from Arkworks library [4] with a new, fast multi-scalar mul-
tiplication algorithm which requires some pre-computation.
The optimised implementation verification for ECDSA over
the P-256 curve is 5.5× faster, and is currently the fastest
Rust implementation of ECDSA over the P-256 curve avail-
able.

Choosing the right number of pre-computed points for
the multi-scalar multiplication required careful benchmark-
ing, see figure 6. More pre-computed points (at least up to a
certain limit) gives better performance but takes time and
space. For our implementation, we use 256 points (each
taking up 64 bytes) as default which gives a 68% improve-
ment compared to not using multi-scalar multiplication at
all and a 17.5% improvement compared to pre-computing
only 16 points. Increasing the precomputation further to,
say, 512 points would only give an 1.3% performance im-
provement, and for 1024 points, performance regresses, so
256 points was chosen as a compromise for our implemen-
tation. See Figure 6 for a plot of performance over number
of pre-computed points.

Figure 6: Performance of windowed multi-scalar mul-
tiplication with two points on Secp256r1 where one
is known in advance over the number of precomputed
points. As a reference, a naive computation without
any precomputation takes 175 µs.

3.2.2 A faster Poseidon hash function

The Poseidon hash function [16] is a hash function which
is commonly used in zero-knowledge applications because
it is easy to compute inside a zero-knowledge circuit. The
Poseidon hash function is defined over a specific curve con-
struction, and you need to use the same construction as
for the zero-knowledge proof it is used in to get the perfor-
mance benefit.

There are a few Rust implementations of the Poseidon
hash, but not all implementations support all curve con-
structions. For our purpose, we needed to use the BN254
curve construction for zkLogin13 [7] and only the poseidon-
ark [5] crate supported this construction.

Benchmarking the zkLogin flow end-to-end revealed that
computing the Poseidon hash took about 40% of the time
so we decided to see if we could optimise it. We found
that there are faster implementations of the Poseidon hash
function in Rust in particular the neptune [22] crate, but
at the time the neptune crate only supported the BLS12-
377 curve construction and not the BN254 construction we
needed in zkLogin. Using neptune over BN254 required a
few changes to the implementation which we contributed by
submitting code to the official repository 14 before we could
use it. The resulting implementation is almost 70% faster
cutting of 25% of the total end-to-end flow for zkLogin
(Figure 7).

13https://sui.io/zklogin
14https://github.com/lurk-lab/neptune/pull/236

5

https://sui.io/zklogin
https://github.com/lurk-lab/neptune/pull/236


Figure 7: Performance of computing the Poseidon
hash over the BN254 curve construction for 0-16 in-
put points using the fastcrypto implementation com-
pared with the arkworks-rs crate.

3.2.3 Combining dependencies for optimal
performance

Fastcrypto supports non-interactive zero-knowledge
proofs using the Groth16 zk-SNARK construction [18]
over two popular curves, namely the BN254 and BLS12-381
[8] curve constructions. Arkworks [4] have implementa-
tions of Groth16 for both of these constructions, but for
the BLS12-381 construction the blst crate [30] provides a
much faster implementation of the curve arithmetic, but
does not provide any implementation of Groth16.

In fastcrypto we have combined Arkworks’ implemen-
tation of Groth16 with the elliptic curve arithmetic from
the blst crate to create a Groth16 implementation over
BLS12-381 that is almost 2× faster than Arkworks imple-
mentation. To make this implementation efficient it was
important to benchmark all steps of the algorithm indepen-
dently, in particular the data conversions necessary to com-
bine the blst and Arkworks libraries, to ensure that these
conversions did not introduce a significant overhead. A
performance comparison of our implementation with Ark-
works’ implementation is shown in Figure 8. Note that a
full verification of a Groth16 zk-proof consists of processing
the verification key and verifying the proof, but the pro-
cessing of the verification key only have to happen once per
circuit.

Figure 8: Performance our implementation of Groth16
zk-proof verification vs. Arkworks’ implementation.
The performance is independent of the input size, as
the plot also shows.

3.3 Errors and inconsistencies in de-
pendencies

3.3.1 Bug in base64 implementations

Fastcrypto contains functions to encode data to and from
base64 which is a very commonly used method to map bi-
nary data to ASCII characters, for example for use for seri-
alization purposes. Implementing this, we tested out a few
potential Rust crates to wrap in fastcrypto and bench-
marked them on different input sizes.

The benchmarks revealed unexpectedly significant dif-
ferences in performance between different libraries, and a
closer study found that the difference was caused by some
of the libraries not handling padding correctly. This incon-
sistency causes some libraries for base64 encoding to be in-
compatible, which is very unfortunate since base64 is often
used for serialization and thus depends on portability. It
also allows an attack vector on some systems because an at-
tacker may utilize that different base64 strings are decoded
into the same data to leverage an attack. This finding and
a thorough description of the potential consequences has
been published [14].

3.3.2 Exploitable vulnerability in EdDSA li-
braries

As previously mentioned, fastcrypto compares many im-
plementations of the same signature schemes and then
wraps the fastest or uses mix and match or applies extra
expert optimizations. We realized that some exposed pub-

6



lic functions for EdDSA signing were significantly slower
than other implementations even when the libraries where
backed by the same back-end arithmetic dependency. A
closer look resulted in identifying one of the most spectac-
ular exploitable cryptography vulnerabilities, not only in
Rust, but as a domino effect in dozens of cryptographic li-
braries, a potential vulnerability that was featured in the
news [9] and for which a RUSTSEC fix was issued [29]. In
short, many libraries, including the popular ed25519-dalek
expose a sign function that additionally takes the public
key as an input, and not only the private key and the mes-
sage, which is the typical architecture in digital signature
APIs. The reason behind this implementation design is
speculated to be related to performance optimizations, be-
cause that addition allowed the function to avoid comput-
ing the public key (from the private) internally, and hence
it was faster due to avoiding deserialization and other op-
erations we highlighted in section 3.1.3. Note that exploit-
ing such a function could result in private key leakage, an
attack that we published as “Double Public Key Signing
Function Oracle Attack on EdDSA Software Implementa-
tions” [17].

3.3.3 Unwanted parallelization for BLS verifi-
cation

As with the base64 bug described above, surprising bench-
mark results are often a hint that some libraries are be-
having unexpectedly. In an earlier version of fastcrypto,
both BLS signature verification [13] over the BLS12-381
and the BLS12-377 constructions [8] were supported. How-
ever, BLS12-377, which used the Arkworks [4] implemen-
tation, was significantly slower than BLS12-381 which uses
the blst [30] crate. Analysing this further, we noticed that
blst by default allows multi-threaded computations. How-
ever, when allowing BLS12-377 to do the same, we got a
regression in performance. It is unclear why this was the
case, but the benefit of using multiple threads for BLS sig-
natures is small (around 25% for blst), so if the threads
are not managed tightly the small potential improvement
from using multiple threads will be lost and performance
will regress instead.

In our case, where the primary usage is to verify trans-
action signatures on the Sui blockchain, we decided to only
allow single-threaded verification, because Sui is already a
multi-threaded application, and allowing multiple threads
for signature verification alone will complicate the thread
management for Sui.

3.3.4 Unwanted parallelization for Groth16
proving

An important dependency for zkLogin is rapidsnark [19], a
software library that leverages assembly code to speed up
the process of generating a Groth16 zero-knowledge proof.
It is well known that proving is one of the main remaining
bottlenecks for zero-knowledge proofs. In order to optimize
as much as possible, rapidsnark provides a server-like in-
terface to process several requests at once. However, our
testing revealed that the results returned by the prover un-
der simultaneous requests was often erroneous. This was

likely due to improper handling of state between threads
resulting in one of the threads over-writing results of an-
other.

Further inspection revealed that rapidsnark already
utilizes available parallelism to generate a single zero-
knowledge proof. Given this scenario, we decided to modify
the library to disable the multi-request feature. We adopt
a simpler strategy to handle simultaneous requests: scale
the deployment horizontally by adding multiple machines.

We leave it for future work to conduct thorough bench-
marks to identify if processing simultaneous requests on
a single machine is actually useful. We suspect that it
may only be useful on machines with a lot of parallelism
or cores. Also note that when the number of cores is not
high, then there is a risk of performance regression, that is,
processing a request takes more time if there are simultane-
ous requests than otherwise, which is undesirable in most
user-facing applications.

3.4 Continuous benchmarks

The life cycle of our primitives, from initial prototyping
to production readiness, extends over several months. The
initial implementation is typically unoptimized, emphasiz-
ing simplicity and accompanied by basic unit tests. Subse-
quent cycles focus on refining the primitive until it reaches
a state suitable for performance measurements. Various
evaluations are integral to this process:

• Local Benchmarks. These involve extensive testing
with a diverse range of inputs. These benchmarks
serve dual purposes—facilitating rapid development
and ensuring progress across optimization cycles.

• Continuous Integration (CI) Tests. These tests are
vital for ensuring that any future changes do not in-
troduce performance regressions. They act as a safe-
guard against unintended setbacks in the optimiza-
tion journey. This step is crucial as recent changes in
sub-components of the library can impact the perfor-
mance of primitives implemented and benchmarked in
the past.

Continuous tests also guarantee accurate and up-to-date
benchmark outcomes. They ensure that the latest perfor-
mance measurements are reported, even in primitives im-
plemented and benchmarked long ago.

4 Conclusion and future work

In the development of the fastcrypto library, continuous
benchmarking has been a crucial tool in identifying bottle-
necks and in qualifying the decision-making, notably when
choosing what protocols and software libraries to use, but
the benchmarks have in some cases also revealed unex-
pected insights into the inner workings of dependencies and
even revealed critical bugs.

The benchmarks are published online and may also be
used by developers to compare implementations or to com-
pare with their own implementations. We have published
a Python script to analyse the published data 15, and we

15https://github.com/jonas-lj/fastcrypto-analyzer

7

https://github.com/jonas-lj/fastcrypto-analyzer


hope to integrate this script with our continuous integration
workflow, e.g. to detect performance regressions automat-
ically. The measurements show a large variation, probably
because they are run on a cloud service, and we would also
like to explore how to make measurements more consistent.

All in all, continuous benchmarks are more than a per-
formance metric tool, it can be an excellent tool to identify
vulnerabilities and allow for novel protocol designs and even
world record implementations.

References

[1] Zachary Amsden, Ramnik Arora, Shehar Bano, Math-
ieu Baudet, Sam Blackshear, Abhay Bothra, G Cabr-
era, C Catalini, K Chalkias, E Cheng, et al.
The libra blockchain. URl: https://developers. li-
bra. org/docs/assets/papers/the-libra-blockchain. pdf,
2019.

[2] X9 ANSI. 62: public key cryptography for the financial
services industry: the elliptic curve digital signature
algorithm (ecdsa). Am. Nat’l Standards Inst, 1999.

[3] Jorge Aparicio and Brook Heisler. criterion.rs:
Statistics-driven micro-benchmarking library. https:

//github.com/japaric/criterion.rs, 2024.

[4] Arkworks. arkworks-rs. https://github.com/

arkworks-rs/, 2024.

[5] arnaucube. poseidon-ark. https://github.com/

arnaucube/poseidon-ark, 2024.

[6] Jean-Philippe Aumasson, Samuel Neves, Zooko
Wilcox-O’Hearn, and Christian Winnerlein. Blake2:
simpler, smaller, fast as md5. In Proceedings of the
11th International Conference on Applied Cryptogra-
phy and Network Security, ACNS’13, page 119–135,
Berlin, Heidelberg, 2013. Springer-Verlag.

[7] Foteini Baldimtsi, Konstantinos Kryptos Chalkias,
Yan Ji, Jonas Lindstrøm, Deepak Maram, Ben Riva,
Arnab Roy, Mahdi Sedaghat, and Joy Wang. zklogin:
Privacy-preserving blockchain authentication with ex-
isting credentials, 2024.

[8] Paulo S. L. M. Barreto, Ben Lynn, and Michael Scott.
Constructing elliptic curves with prescribed embed-
ding degrees. In Stelvio Cimato, Giuseppe Persiano,
and Clemente Galdi, editors, Security in Communi-
cation Networks, pages 257–267, Berlin, Heidelberg,
2003. Springer Berlin Heidelberg.

[9] Ben Dickson. Dozens of cryptography libraries
vulnerable to private key theft. The Daily
Swig: https://portswigger.net/daily-swig/

dozens-of-cryptography-libraries-vulnerable-to-private-key-theft,
2022.

[10] Daniel J. Bernstein, Niels Duif, Tanja Lange, Pe-
ter Schwabe, and Bo-Yin Yang. High-speed high-
security signatures. Journal of Cryptographic Engi-
neering, 2(2):77–89, 2012.

[11] Sam Blackshear, Evan Cheng, David L Dill, Vic-
tor Gao, Ben Maurer, Todd Nowacki, Alistair Pott,

Shaz Qadeer, Dario Russi Rain, Stephane Sezer, et al.
Move: A language with programmable resources. Li-
bra Assoc, page 1, 2019.

[12] Dan Boneh, Craig Gentry, Ben Lynn, and Hovav
Shacham. Aggregate and verifiably encrypted signa-
tures from bilinear maps. In Eli Biham, editor, Ad-
vances in Cryptology — EUROCRYPT 2003, pages
416–432, Berlin, Heidelberg, 2003. Springer Berlin
Heidelberg.

[13] Dan Boneh, Ben Lynn, and Hovav Shacham. Short sig-
natures from the weil pairing. In Colin Boyd, editor,
Advances in Cryptology — ASIACRYPT 2001, pages
514–532, Berlin, Heidelberg, 2001. Springer Berlin
Heidelberg.

[14] Konstantinos Chalkias and Panagiotis Chatzigiannis.
Base64 malleability in practice. In Proceedings of
the 2022 ACM on Asia Conference on Computer
and Communications Security, ASIA CCS ’22, page
1219–1221, New York, NY, USA, 2022. Association
for Computing Machinery.

[15] dalek cryptography. ed25519-dalek. https://github.
com/dalek-cryptography/ed25519-dalek, 2024.

[16] Lorenzo Grassi, Dmitry Khovratovich, Christian
Rechberger, Arnab Roy, and Markus Schofnegger. Po-
seidon: A new hash function for zero-knowledge proof
systems. In USENIX Security Symposium, 2021.

[17] Sam Grierson, Konstantinos Chalkias, and William J
Buchanan. Double public key signing function ora-
cle attack on eddsa software implementations. arXiv
preprint arXiv:2308.15009, 2023.

[18] Jens Groth. On the size of pairing-based non-
interactive arguments. pages 305–326, 05 2016.

[19] iden3. rapidsnark. https://github.com/iden3/

rapidsnark, 2024.

[20] Kostas Kryptos. Blockchain research has advanced
systems and cryptography. https://twitter.com/

kostascrypto/status/1626983601572302848, 2023.

[21] Zhuolun Li, Alberto Sonnino, and Philipp Jovanovic.
Performance of eddsa and bls signatures in committee-
based consensus. In Workshop on Advanced tools, pro-
gramming languages, and PLatforms for Implement-
ing and Evaluating algorithms for Distributed systems,
2023.

[22] lurk-lab. neptune. https://github.com/lurk-lab/

neptune, 2024.

[23] Nicholas D Matsakis and Felix S Klock. The rust
language. ACM SIGAda Ada Letters, 34(3):103–104,
2014.

[24] Mysten Labs. fastcrypto. https://github.com/

MystenLabs/fastcrypto, 2024.

[25] NumPy Team. Numpy. https://numpy.org, 2024.

[26] Penumbra. ed25519-consensus. https://github.com/
penumbra-zone/ed25519-consensus, 2024.

[27] Rust Bitcoin Community. rust-secp256k1. https://

github.com/rust-bitcoin/rust-secp256k1/, 2024.

8

https://github.com/japaric/criterion.rs
https://github.com/japaric/criterion.rs
https://github.com/arkworks-rs/
https://github.com/arkworks-rs/
https://github.com/arnaucube/poseidon-ark
https://github.com/arnaucube/poseidon-ark
https://portswigger.net/daily-swig/dozens-of-cryptography-libraries-vulnerable-to-private-key-theft
https://portswigger.net/daily-swig/dozens-of-cryptography-libraries-vulnerable-to-private-key-theft
https://github.com/dalek-cryptography/ed25519-dalek
https://github.com/dalek-cryptography/ed25519-dalek
https://github.com/iden3/rapidsnark
https://github.com/iden3/rapidsnark
https://twitter.com/kostascrypto/status/1626983601572302848
https://twitter.com/kostascrypto/status/1626983601572302848
https://github.com/lurk-lab/neptune
https://github.com/lurk-lab/neptune
https://github.com/MystenLabs/fastcrypto
https://github.com/MystenLabs/fastcrypto
https://numpy.org
https://github.com/penumbra-zone/ed25519-consensus
https://github.com/penumbra-zone/ed25519-consensus
https://github.com/rust-bitcoin/rust-secp256k1/
https://github.com/rust-bitcoin/rust-secp256k1/


[28] RustCrypto. p256. https://github.com/

RustCrypto/elliptic-curves/tree/master/p256,
2024.

[29] Rustsec. Double public key signing function oracle at-
tack on ed25519-dalek. RUSTSEC-2022-0093: https:
//rustsec.org/advisories/RUSTSEC-2022-0093,
2022.

[30] Supranational. blst. https://github.com/

supranational/blst, 2024.

[31] Gavin Wood et al. Ethereum: A secure decentralised
generalised transaction ledger, 2014.

9

https://github.com/RustCrypto/elliptic-curves/tree/master/p256
https://github.com/RustCrypto/elliptic-curves/tree/master/p256
https://rustsec.org/advisories/RUSTSEC-2022-0093
https://rustsec.org/advisories/RUSTSEC-2022-0093
https://github.com/supranational/blst
https://github.com/supranational/blst

	Introduction
	Method
	Case studies
	Picking the right dependencies and specs
	Signature aggregation can be catalytic
	Hash functions - in the mercy of hardware specs
	Deserialization can be expensive in cryptography
	Asymptotic complexity does not always tell the truth

	Mix and Match Optimizations
	Optimize ECDSA over the P-256 curve
	A faster Poseidon hash function
	Combining dependencies for optimal performance

	Errors and inconsistencies in dependencies
	Bug in base64 implementations
	Exploitable vulnerability in EdDSA libraries
	Unwanted parallelization for BLS verification
	Unwanted parallelization for Groth16 proving

	Continuous benchmarks

	Conclusion and future work

