
Re-Randomized FROST

Conrado P. L. Gouvêa, Chelsea Komlo⋆

Zcash Foundation

Abstract. We define a (small) augmentation to the FROST threshold signature scheme that additionally
allows for re-randomizable public and secret keys. We build upon the notion of re-randomizable keys in
the literature, but tailor this capability when the signing key is secret-shared among a set of mutually
trusted parties. We do not make any changes to the plain FROST protocol, but instead define additional
algorithms to allow for randomization of the threshold public key and participant’s individual public
and secret key shares.
We show the security of this re-randomized extension to FROST with respect to the algebraic one-more
discrete logarithm (AOMDL) problem in the random oracle model, the same security assumptions
underlying plain FROST.

1 Introduction

Threshold signatures are a class of multi-party signature schemes, where n possible signers hold shares
of a secret key, such that t < n signers are required to jointly produce a signature over a message. A
threshold signature scheme assumes that up to t−1 number of parties can be adversarial while still preserving
unforgeability.

Re-Randomized Signatures. In scenarios where privacy is important, regular signatures provide a challenge
since different signatures can be trivially linked to a specific party if their public key is known (by simply
verifiying the signatures). To address this issue, re-randomization techniques have been applied to single-party
signature schemes [5]. These allow the randomization of the key pair in such way that different signatures
can’t be linked to the same signer, while still allowing proving the authorship of a signature with the help of
zero-knowledge proofs.

Re-Randomized FROST. The goal of this work is to define a re-randomized threshold signature scheme that
outputs Schnorr signatures. Our choice of threshold signature is the FROST threshold signature scheme [10, 3,
1]. We build upon the definition and notions of security of re-randomized signature schemes by Fleischhacker
et al. [5], as well as the re-randomized Schnorr signature scheme presented in the same work.

Re-Randomized FROST applications. One use case for re-randomized FROST are privacy-focused
cryptocurrencies like Zcash [9] and Penumbra [12]. These cryptocurrencies require re-randomized signatures in
order to preserve privacy of transactions published on the public blockchain. Enabling the usage of FROST to
the setting where signatures are unlinkable allows it to be used to manage wallets for such privacy-preserving
cryptocurrencies. This has multiple benefits: by splitting a spending key into shares distributed to multiple
parties, the risk of losing funds by either key loss (i.e. losing the device with the key) or by an attacker
compromising the key is greatly mitigated.

As an example, for each transaction in Zcash [9], the spending key is re-randomized and the re-randomized
public key is included with the transaction along with a signature of the transaction contents generated with
the re-randomized key. A zero-knowledge proof is then included that proves that the re-randomized public key
is a re-randomization of the user’s spending public key with respect to some randomizer, while not disclosing
neither the randomizer nor the spending public key. The link between the spending public key and the user’s
address is also included in the proof, again without revealing the spending public key, binding everything
together. Re-randomized FROST could then be used to generate the transaction signature, without requiring
any change in the Zcash protocol.

⋆ This work was not part of my University of Waterloo duties.

Our Contributions. In this work, we present the following.

– We define the notion of a re-randomizable threshold signature scheme, building on the notion of a
single-party signature scheme by Fleischhacker et al. [5].

– We give definitions of correctness and security of a threshold signature scheme that can be re-randomized.
– We present a (small) natural extension to the FROST threshold signature scheme, allowing it to be securely

employed in a re-randomizable setting. We refer to this re-randomizable extension as Rerandomized-FROST.
– We prove Rerandomized-FROST secure using our new notions of security.

2 Preliminaries

2.1 General Notation

Let λ ∈ N denote the security parameter and 1λ its unary representation. A function f : N → R is called
negligible if for all c ∈ R, c > 0, there exists k0 ∈ N such that |f(k)| < 1

kc for all k ∈ N, k ≥ k0. For a
non-empty set S, let x ←$ S denote sampling an element of S uniformly at random and assigning it to x.
We use [n] to represent the set {1, . . . , n} and [0..n] to represent the set {0, . . . , n}. We represent vectors as
a⃗ = (a1, . . . , an).

Let PPT denote probabilistic polynomial time. Algorithms are randomized unless explicitly noted otherwise.
Let y ← A(x;ω) denote running algorithm A on input x and randomness ω and assigning its output to y. Let
y ←$ A(x) denote y ← A(x;ω) for a uniformly random ω. The set of values that have non-zero probability of
being output by A on input x is denoted by [A(x)].

Group Generation. Let GrGen be a polynomial-time algorithm that takes as input a security parameter 1λ

and outputs a group description (G, p, g) consisting of a group G of order p, where p is a λ-bit prime, and a
generator g of G.

Polynomial Interpolation. A polynomial f(x) = a0 + a1x+ a2x
2 + . . .+ at−1x

t−1 of degree t− 1 over
a field F can be interpolated by t points. Let η ⊆ [n] be the list of t distinct indices corresponding to the
x-coordinates xi ∈ F, i ∈ η of these points. Then the Lagrange polynomial Li(x) has the form:

Li(x) =
∏

j∈η;j ̸=i

x− xj

xi − xj
(1)

Given a set of t points (xi, f(xi))i∈[t], any point f(xℓ) on the polynomial f can be determined by Lagrange
interpolation as follows:

f(xℓ) =
∑
k∈η

f(xk) · Lk(xℓ)

2.2 Definitions and Assumptions

Assumption 1 (Algebraic One-More Discrete Logarithm Assumption) [11] Let the advantage of
an adversary A playing the ℓ-algebraic one-more discrete logarithm game Gameℓ-aomdl, as defined in Figure 1,
be as follows:

Advℓ-aomdl
A (λ) =

∣∣Pr[Gameℓ-aomdl
A (λ) = 1]

∣∣
The algebraic one-more discrete logarithm assumption holds if for all PPT adversaries A, Advℓ-aomdl

A (λ)
is negligible.

Definition 1 (Shamir secret sharing [13]). Shamir secret sharing is an (n, t)-threshold secret sharing
scheme SS = (IssueShares,Recover) that consists of the following algorithms:

2

main Gameℓ-aomdl
A (λ)

(G, p, g)← GrGen(1λ)

Q← ∅
q ← 0

for i ∈ [0..ℓ] do

xi ←$ Zp; Xi ← gxi

Q[Xi] = xi

x⃗← (x0, . . . , xℓ)

X⃗ ← (X0, X1, . . . , Xℓ)

x⃗′ ← AOdl

((G, p, g), X⃗)

if x⃗′ = x⃗ ∧ q < ℓ+ 1

return 1

return 0

Odl(X,α, {βi}ℓi=1)

x← α+

ℓ∑
i=0

xiβi

return x

Fig. 1. The Algebraic One-More Discrete Logarithm (AOMDL) games. G is a cyclic group with prime order p
and generator g. a⃗ is a vector whose elements are in Zp. In the AOMDL game, the adversary can query for linear
combinations of elements which the environment has generated directly; in the OMDL game, the adversary can query
its DL oracle with an arbitrary group element.

– IssueShares(x, n, t) → {(1, x1), . . . , (n, xn)}: On input a secret x, the number of participants n, and a
threshold t, perform the following. First, define a polynomial f(Z) = x+ a1 + a2Z

2 + · · ·+ at−1Z
t−1 by

sampling t coefficients at random (a1, . . . , at−1)←$ Zp. Then, set each participant’s share xi, i ∈ [n], to be
the evaluation of f(i):

xi ← x+
∑

j∈[t−1]

aji
j

Output {(i, xi)}i∈[n].

– Recover(t, {(i, xi)}i∈S)→ ⊥/x: On input a threshold t and a set of shares {(i, xi)}i∈S , output ⊥ if S ̸⊆ [n]
or if |S| < t. Otherwise, recover x as follows:

x←
∑
i∈S

λixi

where the Lagrange coefficient for the set S is defined by

λi =
∏

j∈S,j ̸=i

−j
i− j

2.3 Threshold Signature Schemes

A threshold signature scheme TS whose signing protocol consists of two rounds is a tuple TS = (Setup,KeyGen,
(Sign,Sign′),Combine,Verify), defined as follows. This definition assumes a centralized key generation mecha-
nism, but can adapted to be fully decentralized via a distributed key generation protocol (DKG).

– Setup(1λ)→ par: This algorithm generates the public parameters par that are implicitly given as input to
all other algorithms.

– KeyGen(n, t)→ (PK, {PKi}i∈[n], {xi}i∈[n]): A randomized protocol that takes as input the total number
of signing parties n and the threshold t. The output is the public key PK representing the set of n parties,
n public key shares {PKi}i∈[n]for each party, and the set of secret key shares {xi}i∈[n].

3

main GameUFTS,A(λ)

par← Setup(1λ)

W ← ∅; W ′ ← ∅ // open signing sessions

Q← ∅ // set of queried messages

(n, t, cor, stA)←$ A(par)
hon← [n] \ cor
(PK, {PKi}i∈[n], {xi}i∈[n])←$ KeyGen(n, t)

input← (PK, {PKi}i∈[n], {xj}j∈cor, stA)

(m∗, σ∗)←$ AOSign,Sign′

(input)

if m∗ /∈ Q ∧ Verify(PK,m∗, σ∗) = 1

return 1

return 0

OSign(k, ssid)

W ←W ∪ {(k, ssid)}
(ρk, stk,ssid)← Sign(m,S)
return ρk

OSign′(k, ssid,m,S, {ρi}i∈S)

if (k, ssid) /∈W return ⊥
if (k, ssid) ∈W ′ return ⊥
W ′ ←W ′ ∪ {(k, ssid)}
Q← Q ∪ {m}
ρ′k ← Sign′(stk,ssid, xk, {ρi}i∈S)

return ρ′k

Fig. 2. Static unforgeability games for a threshold signature scheme with two signing rounds. The public parameters
par are implicitly given as input to all algorithms, and ρ represents protocol messages defined within the construction.

– (Sign,Sign′) → ρi: A set of randomized algorithms where each Sign algorithm is a single stage in an
interactive signing protocol, performed by each signing party in a signing set S ⊆ [n], |S| ≥ t with respect
to a message m. The output from each signing algorithm is a protocol message ρi.

– Combine({(ρi, ρ′i)}i∈S)→ (m,σ): A deterministic algorithm that takes as input the set of protocol messages
(ρi, ρ

′
i) representing the messages sent in Sign and Sign′. It outputs σ as the signature representing the

signing set.

– Verify(PK,m, σ)→ 0/1: A deterministic algorithm that takes as input the public key PK, a message m,
and signature σ. It outputs 0 or 1 indicating if σ is valid.

2.4 Unforgeability

We employ prior game-based unforgeability definitions for threshold signatures in the literature [4, 7, 8, 6],
and show this game in Figure 2.

In the unforgeability game, the adversary begins by choosing the corrupted participants cor. The challenger
performs KeyGen to generate the joint public key PK, the individual public key shares {PKi}i∈[n], and the
signing shares {xi}i∈[n]. It returns PK, {PKi}i∈[n], and the set of corrupt signing shares {xj}j∈cor to the
adversary.

After key generation, the adversary may query honest signers at each step in the signing protocol via the
oracles OSign,OSign′ . The adversary is free to choose the set of signers and the message.

The adversary wins if it produces a valid forgery σ∗ = (R∗, z∗) with respect to the public key PK, on a
message m∗ that has not been previously queried to the signing oracles.

Definition 2 (Unforgeability). Let the advantage of an adversary A playing the (static) unforgeability
game GameUFA (λ), as defined in Figure 2, be as follows:

AdvsecA,TS(λ) =
∣∣Pr[GameUFA,TS(λ) = 1]

∣∣
A threshold signature scheme TS is unforgeable if for all PPT adversaries A, AdvsecA (λ) is negligible.

4

main GameRUFΣ,A(λ)

par←$ Σ.Setup(1λ)

Q← ∅
(x,PK)←$ Σ.KeyGen()

(m∗, σ∗, α∗)←$ ASign,Sign′(par,PK)
if (m∗, σ∗) ∈ Q

return 0

if Σ.Verify(PK,m∗, σ∗) = 1

return 1

P̄K ← Σ.RandPK(PK, α∗)

if Σ.Verify(P̄K,m∗, σ∗) = 1

return 1

return 0

OSign(m)

σ ← Σ.Sign(x,m)

Q← Q ∪ {(m,σ)}
return σ

OSign′(α,m)

x̄← Σ.RandSK(x, α)

σ ← Σ.Sign(x̄,m)

Q← Q ∪ {(m,σ)}
return σ

Fig. 3. The Existential Unforgeability Game for a Rerandomized Signature scheme Σ.

3 Rerandomized Signatures

Let Σ be a standard signature scheme. We now define a signature scheme Σ̄ with perfectly rerandomized
keys. We build on the definition presented by Fleischhacker et al. [5], but additionally include an algorithm
to generate the randomizer, to be more explicit.

Definition 3. A signature scheme Σ = (Setup,KeyGen,Verify) is a re-randomized signature scheme Σ̄ if
there exists additional PPT algorithms (GenRand,RandSK,RandPK) and a randomness distribution X such
that:

- GenRand(): Outputs a randomizer α from a distribution X .
- RandSK(x, α): Accepts as input a secret signing key x and a randomizer α ∈ X . Outputs a randomized
secret key x̄.

- RandPK(PK, α): accepts as input a public verification key PK and a randomizer α ∈ X . Outputs a
randomized public key P̄K.

Existential Unforgeability. The existential unforgeability of a re-randomized signature scheme requires the
scheme to be unforgeable under keys that are not randomized, as well as keys which have been randomized.
The existential unforgeability game introduces one additional capability for an adversary over the standard
unforgeability game. Here, the adversary is additionally allowed to query for signatures under keys that have
been randomized using a randomizer which it is allowed to choose.

We show the game in Figure 3.

Definition 4 (Unforgeability). Let the advantage of an adversary A playing the unforgeability game
GameRUFA,Σ(λ), as defined in Figure 3, be as follows:

AdvrsecA,Σ(λ) =
∣∣Pr[GameRUFA,Σ(λ) = 1]

∣∣
A re-randoizable signature scheme Σ is unforgeable if for all PPT adversaries A, AdvrsecA,Σ(λ) is negligible.

5

main GameTRUFA,TS (λ)

par← Setup(1λ)

W ← ∅; W ′ ← ∅ // open signing sessions

Q← ∅ // set of queried messages

(n, t, cor, stA)←$ A(par)
hon← [n] \ cor
(PK, {PKi}i∈[n], {xi}i∈[n])←$ TS.KeyGen(n, t)

input← (PK, {PKi}i∈[n], {xj}j∈cor, stA)

(m∗, σ∗, α∗, aux∗)←$ AOSign,Sign′

(input)

if m∗ ∈ Q

return 0

if TS.Verify(PK,m∗, σ∗) = 1

return 1

P̄K ← TS.RandPK(PK, α∗, aux∗)

if TS.Verify(P̄K,m∗, σ∗) = 1

return 1

return 0

OSign(k, ssid)

W ←W ∪ {(k, ssid)}
(ρk, stk,ssid)← TS.Sign()

return ρk

OSign′(k, ssid,m,S, α, aux, {ρi}i∈S)

if (k, ssid) /∈W return ⊥
if (k, ssid) ∈W ′ return ⊥
W ′ ←W ′ ∪ {(k, ssid)}
Q← Q ∪ {m}
x̄i ← TS.RandShare(xk, α, aux)

P̄K ← TS.RandPK(PK, α, aux)
ρ′k ← TS.Sign′(stk, x̄k, P̄K, {ρi}i∈S)

return ρ′k

Fig. 4. The (static) unforgeability games for a randomizable threshold signature scheme with two signing rounds.

Re-randomized Schnorr. Fleischhacker et al. [5] proved that re-randomized single-party Schnorr signatures
are existentially unforgeable.

4 Randomized Threshold Signature Schemes

We now extend the definition of a threshold signature scheme TS as given in Section 2.3 to one that is
perfectly rerandomizable.

Definition 5. A threshold signature scheme TS = (Setup,KeyGen, (Sign,Sign′),Combine,Verify) is perfectly
re-randomizable if there exists additional PPT algorithms (GenRand,RandShare,RandPKShare,RandPK) and
a randomness distribution X such that:

- GenRand(): Outputs a randomizer α from a distribution X .
- RandShare(xi, α, aux)→ x̄i: Accepts as input a secret signing key share xi, a randomizer α ∈ X , and an
auxiliary string aux ∈ {0, 1}∗. Outputs a randomized secret key x̄i.

- RandPKShare(PKi, α, aux): accepts as input a threshold public verification key share PKi for a participant
i, a randomizer α ∈ X , and an auxiliary string aux ∈ {0, 1}∗. Outputs a randomized public key P̄Ki.

- RandPK(PK, α, aux): accepts as input a threshold public verification key PK, a randomizer α ∈ X , and
an auxiliary string aux ∈ {0, 1}∗. Outputs a randomized public key P̄K.

Remark 1 (Including Auxiliary Information in Re-Randomization). Sometimes, it is useful to contribute to
the re-randomization of a key using the transcript of some external protocol. In doing so, when the external
protocol changes (i.e, by starting a new session), then the re-randomized key will also change. We model this
optional contributory factor as the auxiliary string aux.

Unforgeability. The unforgeability of a re-randomizable threshold signature scheme builds upon the notion
of unforgeability for the single-party setting. In short, it requires the scheme to be unforgeable under keys

6

that are not randomized, as well as keys which have been randomized. This notion is reflected in the game,
as the adversary can simply submit a randomizer that is equal to zero. The existential unforgeability game
introduces the additional capability for an adversary over the standard unforgeability game, where signatures
are allowed to be generated under a adversarially-chosen randomizer.

We show the attack game for the unforgeability of a randomized threshold signature scheme in Figure 4.

Definition 6 (Unforgeability). Let the advantage of an adversary A playing the re-randomizable un-
forgeability game GameTRUFA,TS (λ) against a re-randomizable threshold signature, as defined in Figure 4, be as
follows:

AdvrsecA,TS(λ) =
∣∣Pr[GameTRUFA,TS (λ) = 1]

∣∣
A re-randomizable threshold signature scheme TS is unforgeability if for all PPT adversaries A, AdvrsecA,TS(λ)

is negligible.

5 Rerandomized FROST

We now introduce an extension to FROST [10, 1], a two-round threshold signature scheme, to allow for
rerandomizable keys. We refer to this re-randomized variant as Rerandomized-FROST. We highlight the
changes to plain FROST in grey in Figure 4.

The Protocol. We show the exact details of Rerandomized-FROST in Figure 4. In short, the protocol extends
plain FROST by deriving additional algorithms to generate a randomizer and randomize the group public key
and each signer’s private key share.

Rerandomized-FROST is identical to FROST but additionally defines the algorithms GenRand, RandShare,
RandPKShare, and RandPK. Similarly to FROST, Rerandomized-FROST assumes an external mechanism to
choose the set S ⊆ {1, . . . , n} of signers, where t ≤ |S| ≤ n. S must be required to be ordered to ensure
consistency.

The algorithm GenRand simply selects a randomizer α uniformly at random from Zp. RandShare accepts
as input a secret key share xi, a randomizer α, and an auxiliary string aux. It first hashes aux and α via Hr,
and then adds the output to the secret key share, deriving the randomized key share x̄i. It outputs x̄i as its
result.

The algorithm RandPK accepts public key PK, the randomizer α, and auxiliary string aux, It likewise
hashes aux and α via Hr, deriving the value α̂. The randomized public key that is output is then P̄K = PK·gα̂.

The algorithm RandPKShare accepts a public key share PKi for participant i, a randomizer α, and an
auxiliary string aux. It follows the same steps as for RandPK, by hashing aux and α via Hr, and then deriving
the value α̂. The randomized public key share that is output is then P̄Ki = PKi · gα̂.

Correctness. Rerandomized-FROST is correct, because the signature it produces is equivalent to a regular
rerandomized signature for the rerandomized public key P̄K = PK · gα̂ where α̂ = Hr(α, aux), as shown below.
Note that

∑
i∈S xiλi = x (where x is the original secret key) because x is Shamir secret shared among all

parties; also note that
∑

i∈S λi = 1 since it is the interpolation of the constant polynomial f(X) = 1. Thus,

z =
∑
i∈S

ri +
∑
i∈S

siai + c
∑
i∈S

λix̂i

=
∑
i∈S

ri +
∑
i∈S

siai + c
(∑
i∈S

λixi +
∑
i∈S

λiα̂
)

=
∑
i∈S

ri +
∑
i∈S

siai + c
(∑
i∈S

λixi + α̂
∑
i∈S

λi

)
= r + c(x+ α̂)

= r + cx̂

(2)

Hence, verification will hold when the protocol is performed honestly.

7

Setup(1λ)

(G, p, g)← GrGen(1λ)

Hnon,Hsig : {0, 1}∗ → Zp

par← ((G, p, g),Hnon,Hsig)

return par

KeyGen(n, t)

x←$ Zp;PK ← gx

{(i, xi)}i∈[n] ←$ SS.IssueShares(x, n, t)
// Shamir secret sharing of x

for i ∈ [n] PKi ← gxi

return (PK, {PKi}i∈[n], {xi}i∈[n])

GenRand()

α←$ Zp

return α

RandShare(xi, α, aux)

α̂← Hr(α, aux)

x̄i ← xi + α̂

return x̄i

RandPKShare(PKi, α, aux)

α̂← Hr(α, aux)

P̄Ki ← PKi · gα̂

return P̄Ki

RandPK(PK, α, aux)
α̂← Hr(α, aux)

P̄K ← PK · gα̂

return P̄K

Sign() // Local signer has index k

rk, sk ←$ Z2
p

Rk ← grk ; Sk ← gsk ;

stk ← (Rk, rk, Sk, sk)

ρk ← (Rk, Sk)

return (ρk, stk)

Sign′(stk, x̄i, P̄K,m, {ρi}i∈S)

parse (Rk, rk, Sk, sk)← stk

parse {(i, Ri, Si)}i∈S ← {ρi}i∈S

return ⊥ if (Rk, Sk) ̸∈ {Ri, Si}i∈S

for i ∈ S do

ai ← Hnon(k,m, P̄K, {(i, Ri, Si)}i∈S)

R←
∏
i∈S

Ri · Si
ai

c← Hsig(P̄K, R,m)

zk ← rk + skak + cλkx̄k

ρ′k ← zk

return ρ′k

Combine({(P̄K, ρi, ρ′i)}i∈S)

parse (Ri, Si)← ρi, zi ← ρ′i, i ∈ S

R←
∏
i∈S

Ri · Si
ai

c← Hsig(P̄K, R,m)

z ←
∑
i∈S

zi

σ ← (R, z)

return σ

Verify(P̄K,m, σ)

// Identical to plain single-party Schnorr

parse (R, z)← σ

c← Hsig(P̄K,m,R)

if R · P̄Kc
= gz

return 1

return 0

Fig. 5. Rerandomized-FROST, which extends the two-round threshold signature scheme FROST to allow for reran-
domizable keys. Differences with plain FROST are highlighted in a grey box.

8

5.1 Alternative Designs

The design of re-randomized FROST assumes a central party to choose the randomization factor; and hence
is trusted with preserving privacy of the scheme. However, this party is not trusted with security; even if this
party were to act maliciously, then the scheme remains secure.

To remove this trusted party, a distributed key generation (DKG) scheme could instead be used, where all
parties would contribute to the randomization factor, but no party would learn the value directly. However,
this approach requires additional network rounds of communication, and so requires a tradeoff in increased
performance and complexity overhead.

6 Security

We now demonstrate the unforgeability of Rerandomized-FROST.

Theorem 1. Rerandomized-FROST is unforgeable in the random oracle model, assuming the AOMDL as-
sumption holds in G. In other words, for every adversary A that wins the existential unforgeability game
against Rerandomized-FROST, there exists an adversary D that wins the AOMDL game.

Concretely, the advantage of A is bounded by Equation 3.

AdvsecTS,A ≤
√
q · Advaomdl

D (λ) + 2q2/p− negl(λ) (3)

where q = qh + qs, qh is the number of allowed random oracle queries, and qs is the number of allowed
signing queries.

Proof. Let B be an adversary playing against the algebraic one-more discrete logarithm game as defined in
Figure 1. Let A be an adversary playing against the unforgeability game against a rerandomized threshold
signature scheme as defined in Figure 4, instantiated with Rerandomized-FROST.

The Reduction B. To begin, B receives the set of 2qS + 1 challenges X = {X0, . . . , X2qs} ∈ G2qs+1. It sets
the public key PK = X0 to be the first AOMDL challenge. It runs A twice, simulating Rerandomized-FROST
for each execution. After its first execution, A outputs a forgery (m∗, σ∗ = (R∗, z∗, α∗, aux∗).. Before it runs
A a second time, it re-programs on the challenge query Hsig(PK′, R∗,m∗) with a freshly sampled random
value from Zp. It then runs A a second time. By the local forking lemma [2], with non-negligible probability,
A outputs a second forgery (m∗, σ∗ = (R∗, z∗∗), α∗∗, aux∗∗). Without loss of generality, we assume A queries
Hsig on its forgeries before outputting them.

We next explain in more detail how B performs its simulation.

Setup. B performs setup in the same way as for plain FROST. B is initialized with the parameters (G, g, p),
and 2qs + 1 AOMDL challenges. It initializes tables Qrand ← ∅, Qnon ← ∅, Qsig ← ∅ to simulate random
oracles Hr,Hnon,Hsig. It initializes Q1 ← ∅, Q2 ← ∅, Q3 ← ∅ to maintain state during its simulation. Finally,

it initializes Q← ∅ to maintain the set of messages queried by A to OSign′ .
B then picks random coins ρ, and runs A(par; ρ) once on the public parameters par and randomness ρ. A

chooses the total number of potential signers n, the threshold t, and the initial set of corrupted participants
cor← {j}, |cor| ≤ t− 1. B sets hon← [n] \ cor. B then proceeds to simulating key generation to A.

Simulating KeyGen. Simulating key generation in a trusted dealer manner is the same for Rerandomized-FROST
as for the plain FROST setting. In particular, B simulates a Shamir secret sharing of the discrete logarithm
of the AOMDL challenge PK = X0 by performing the following steps. Assume without loss of generality that
|cor| = t− 1.

1. B samples (t− 1) random values xj ←$ Zp for j ∈ cor.
2. Let f be the polynomial whose constant term is the challenge f(0) = ẋ and for which f(j) = xj for all

j ∈ cor.

9

3. For all 1 ≤ i ≤ n, B computes

PKi = PKλ0
i ·

t−1∏
i=1

gxkλ
j
i

where λj
i is the jthLagrange coefficient interpolating point i, and where PKi is implicitly equal to gf(i).

The joint public key is PK = gf(0) = X0. B runs AOSign,Sign′

(PK, {PKi}i∈[n], {xj}j∈cor).

Simulating Random Oracles. Simulating the random oracles Hnon and Hsig is also identical between Rerandomized-FROST
and plain FROST. B simulates random oracle queries by lazy sampling, as follows.

Hr : When A queries Hr on (αi, auxi), B checks whether (αi, auxi) ∈ Qrand and, if so, returns α̂. Else, B samples
α̂←$ Zp, appends (αi, auxi) to Qrand, and returns α̂.

Hnon : When A queries Hnon on (k,PK, {(k,Ri, Si)}i∈S), B checks whether (k,PK,m, {(i, Ri, Si)}i∈S , ak) ∈
Qnon and, if so, returns ak. Else, B samples ak ←$ Zp and appends (k,PK,m, {(i, Ri, Si)}i∈S , ak) to Qnon.

Then, for all other j ∈ S, B samples aj ←$ Zp and appends (j,PK,m, {(i, Ri, Si)}i∈S , ak) to Qnon. Finally,
B derives R←

∏
i∈S RiS

ai
i , and checks if (PK, R,m) ∈ Qsig. If the check holds, then B returns BadHashEvent.

Otherwise, B samples c←$ Zp, appends (PK,m,R, c) to Qsig, and returns c.

Hsig : When A queries Hsig on (PK,m,R), B checks whether (PK,m,R, c) ∈ Qsig and, if so, returns c. Else,

B samples c←$ Zp, appends (PK,m,R, c) to Qsig, and returns c.

Simulating Randomized Signing. B handles A’s queries to perform randomized signing as follows.

Round 1 (OSign(k, ssid)): When A queries OSign on honest participant identifier k ∈ hon, and session
identifier ssid, B simulates its response in exactly the same way as plain FROST. It picks the next two
available AOMDL challenges (Xi, Xi+1) and sets Ri = Xi, Si = Xi+1. It then outputs (Ri, Si).

Round 2 (OSign′(k, ssid,m,S, α, aux, {Ri, Si}i∈S)):WhenA queriesOSign for honest participant identifier
k ∈ hon and session identifier ssid, B obtains the blinding factor ai and the challenge c honestly. B then
performs RandPK honestly; it does not perform RandShare because it does not know its own share. However,
it does perform RandPKShare(PKk, α, aux), obtaining the randomized public key ˆPKi. It then derives

Zk ← Ri · Sak
i · ˆPKk

c
. It queries Odl on Zi and its representation, obtaining zk in return. It outputs zk.

Analysis of Simulation. B’s simulation of Hnon and Hsig are indistinguishable because it performs lazy sampling.
The bad event BadHashEvent will occur with negligible probability, because A would need to guess each ai
for it to occur.
B’s simulation of Sign and Sign′ are perfect. Because B outputs two AOMDL challenges (Ri = Xi, Si =

Xi+1) as its commitments for Sign, these are indistinguishable from values sampled honestly. Because B
queries Odl on Zi = RiS

ai
i P̄K

ci
i , the output signature zi will be valid and indistinguishable from an honestly

generated signature.

Output. At the end of A’s first execution, it will output a forgery (m∗, σ∗ = (R∗, z∗), α∗, aux∗). By the local
forking lemma [2], with non-negligible probability, A outputs a second forgery (m∗, σ∗ = (R∗, z∗∗), α∗∗, aux∗∗).

Extracting the Discrete Logarithm of X0. B can extract y0 which is the discrete logarithm of X0 as follows. If
α = ⊥, it simply follows the same steps to extract y0 as in the plain FROST proof (this is the non-rerandomized
case). However, if α ̸= ⊥, it solves for y0 as follows. It first derives z0 ← z∗ − c∗Hr(α

∗, aux∗), output during
the first execution of A. It then derives z1 ← z∗∗ − c∗∗Hr(α

∗∗, aux∗∗), output during the second execution of
A. It then solves for:

y0 =
z0 − z1
c∗ − c∗∗

10

Extracting X1, . . . , X2qs . Extracting the discrete logarithms of the remaining challenges is identical to the
proof for FROST [1], with the exception that D must additionally take into consideration the randomizer
when extracting. However, because this value is public, it can extract using similar techniques as in the proof
for plain FROST.

For example, in the case where the adversary queries OSign′ on the nonce pair (Ri, Si) but with a different
challenges c0 ̸= c1 and different randomizers a0 ̸= a1, B can derive (ri, si) with the following steps:

1. Derive z′ ← z0 − z1, cancelling out ri.
2. Derive si ← z′−c0xiλi−c0α0λi−c1xiλi−c1α1λi

a0−a1
.

3. Use si to obtain ri ← z0 − sia0 − c0xiλi − c0α0λi.

Note that the above approach would hold even if α0 ̸= α1, due to the fact that this value is public. Further,
in the case where c0 = c1, ai0 = ai1 but α0 ̸= α1, the reduction could still solve for (ri, si) given that these
values are known to the reduction.

The remaining cases of when the adversary queries OSign′ on the same challenge or the bad event cases
are similarly identical to the case of plain FROST, but where additionally (α0, α1) are used when solving for
(ri, si).

As such, D can solve for 2qs + 1 AOMDL challenges given 2qs queries to the AOMDL solution oracle.
This completes the proof. ⊓⊔

7 Implementation

To validate the protocol in practice, we have implemented re-randomized FROST as a Rust crate1, on top
of a regular FROST implementation on the same repository. Since re-randomized FROST uses the same
operations as regular FROST, the only thing needed was to implement methods to randomize private and
public keys, as well as public key shares. We do provide re-randomized “sign” and “aggregate” functions
which do the randomization internally, this makes it easier for callers to use the crates correctly.

These crates provide generic implementations which require the specification of a “ciphersuite”, that is,
the set of parameters being used which include the elliptic curve and hash functions. Thus we have also
implemented two re-randomized FROST ciphersuites2, one for the JubJub curve and other for the Pallas
curve, both used in the Zcash protocol [9]. These allow signing Zcash transactions with FROST, enabling
threshold wallets.

The straightfoward approach for implementing re-randomized FROST is to change FROST in the following
ways:

– After round 1, when the coordinator receives the commitments from the signers, it generates the randomizer
α and derives the “effective” randomizer α̂ ← Hr(α, aux). Note that in practice this can be simplified,
without loss of security, by generating a string of random bytes with the same size as the randomizer and
hashing that into Hr along with aux, which is easier than generating a random scalar α. As for aux, a
sensible approach is to use a byte encoding of the message and the set of commitments, which will bind
the randomizer to this specific signing session, ensure that each signing session will use a unique and
uniformly random randomizer, even in case of random number generator failure. Other application-specific
data might be included along with aux.

– The coordinator then sends the effective randomizer α̂ along with the message and the set of commitments
to each participant. Note that, in most applications, it will be desirable to encrypt the randomizer so
that eavesdroppers can’t break unlinkability.

– In round 2, when generating the signature share, each participant re-randomizes their signing key and
the group pubic key using the effective randomizer, and the proceed as the regular FROST signing step.

1 https://github.com/ZcashFoundation/frost/
2 https://github.com/ZcashFoundation/reddsa/

11

https://github.com/ZcashFoundation/frost/
https://github.com/ZcashFoundation/reddsa/

Table 1. Benchmark results of regular and re-randomized FROST, in µs.

2 signers 7 signers 67 signers

Function Sign Aggregate Sign Aggregate Sign Aggregate

Regular 205 573 396 757 2740 3139
Re-randomized 375 734 573 953 2974 3436
Overhead 170 161 177 196 234 297
Overhead 83% 28% 45% 26% 8% 9%

– After round 2, before aggregating the received signature shares into the final signature, the coordinator
also re-randomizes the group public key (and the signers’ public key shares) with the effective randomizer
and proceeds as the regular FROST aggregation step.

Using this approach, the coordinator is trusted with the privacy of the signature (i.e. they could leak
the randomizer and allow attackers to link different signatures) but they still can’t forge signatures. This
aligns with applications such as Zcash [9], where the transaction builder is trusted with the privacy of the
transaction, including the generation of the zero-knowledge proof, while spend authority is restricted to the
holder of the spending key (which allows, for example, using hardware devices to sign transactions, without
requiring the expensive zero-knowledge proof creation).

The performance overhead over regular FROST is thus:

For each participant: one fixed-base elliptic curve point multiplication to compute gα̂, to randomize the
group public key;

For the coordinator: one fixed-base elliptic curve point multiplication to compute gα̂, to randomize the
group public key and the signer’s public key shares (it can be reused in both computations).

The most time-consuming part of regular FROST is the group commitment computation which requires a
multi-scalar point multiplication (one scalar for each signer). The precise performance impact will depend on
the specific multi-scalar and fixed-base optimizations being employed, but assuming naive non-optimized
implementations, the worst-case overhead of re-randomized FROST (which is for two signers), is (2+1)/2 = 1.5,
i.e. 50%. This overhead is reduced when the number of signers is larger. We expect that this overhead is
acceptable in most practical deployments.

To validate this analysis, we have benchmarked our implementation of the Pallas ciphersuite. A 3.7 GHz
AMD Ryzen 9 5900X 12-core processor running Ubuntu 22.04 was used. We provide these benchmarks with
the purpose of a high-level comparison between regular and re-randomized FROST, and not to provide
cycle-accurate state-of-the-art performance numbers; in particular, note that an assembly-optimized elliptic
curve implementation was not used. The results are shown in Table 1.

The overhead for signing with two participants (83%) is worse than the naive estimate (50%) because the
implementation optimizes the multi-scalar implementation, making the baseline timing faster, and due to
additional overheads like point additions for the re-randomized variant. The Aggregate overhead is smaller
then the Sign overhead because baseline Aggregate is slower than Sign (it requires a signature verification
in addition to the group commitment computation which is shared between the two operations). It can be
clearly seen that the relative overhead is reduced when the number of signers increase, since the absolute
overhead mostly does not depend on the number of signers (it does require a point addition per signer to
randomize the public key shares).

8 Acknowledgements

Thank you to the engineers at the Zcash Foundation and Daira Hopwood for their helpful feedback and
discussion.

12

References

[1] M. Bellare, E. Crites, C. Komlo, M. Maller, S. Tessaro, and C. Zhu. Better than advertised security for
non-interactive threshold signatures. CRYPTO 2022. To appear. 2022.

[2] M. Bellare, W. Dai, and L. Li. “The Local Forking Lemma and Its Application to Deterministic Encryption”.
In: ASIACRYPT 2019, Kobe, Japan, December 8-12, 2019. Ed. by S. D. Galbraith and S. Moriai. Vol. 11923.
LNCS. Springer, 2019, pp. 607–636.

[3] D. Connolly, C. Komlo, I. Goldberg, and C. Wood. Two-Round Threshold Schnorr Signatures with FROST.
2022. url: https://datatracker.ietf.org/doc/draft-irtf-cfrg-frost/.

[4] E. C. Crites, C. Komlo, and M. Maller. “Fully Adaptive Schnorr Threshold Signatures”. In: Advances in
Cryptology - CRYPTO 2023 - 43rd Annual International Cryptology Conference, CRYPTO 2023, Santa Barbara,
CA, USA, August 20-24, 2023, Proceedings, Part I. Ed. by H. Handschuh and A. Lysyanskaya. Vol. 14081.
Lecture Notes in Computer Science. Springer, 2023, pp. 678–709. doi: 10.1007/978-3-031-38557-5_22. url:
https://doi.org/10.1007/978-3-031-38557-5_22.

[5] N. Fleischhacker, J. Krupp, G. Malavolta, J. Schneider, D. Schröder, and M. Simkin. “Efficient Unlinkable
Sanitizable Signatures from Signatures with Re-randomizable Keys”. In: Public-Key Cryptography - PKC 2016
- 19th IACR International Conference on Practice and Theory in Public-Key Cryptography, Taipei, Taiwan,
March 6-9, 2016, Proceedings, Part I. Ed. by C. Cheng, K. Chung, G. Persiano, and B. Yang. Vol. 9614.
Lecture Notes in Computer Science. Springer, 2016, pp. 301–330. doi: 10.1007/978-3-662-49384-7_12. url:
https://doi.org/10.1007/978-3-662-49384-7_12.

[6] R. Gennaro and S. Goldfeder. “Fast Multiparty Threshold ECDSA with Fast Trustless Setup”. In: CCS 2018,
Toronto, ON, Canada, October 15-19, 2018. Ed. by D. Lie, M. Mannan, M. Backes, and X. Wang. ACM, 2018,
pp. 1179–1194.

[7] R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin. “Robust Threshold DSS Signatures”. In: Inf. Comput.
164.1 (2001), pp. 54–84.

[8] R. Gennaro, T. Rabin, S. Jarecki, and H. Krawczyk. “Robust and Efficient Sharing of RSA Functions”. In: J.
Cryptol. 20.3 (2007), p. 393.

[9] D. Hopwood, S. Bowe, T. Hornby, and N. Wilcox. Zcash Protocol Specification. 2022. url: https://zips.z.
cash/protocol/protocol.pdf.

[10] C. Komlo and I. Goldberg. “FROST: Flexible Round-Optimized Schnorr Threshold Signatures”. In: SAC 2020,
Halifax, NS, Canada (Virtual Event), October 21-23, 2020. Ed. by O. Dunkelman, M. J. J. Jr., and C. O’Flynn.
Vol. 12804. LNCS. Springer, 2020, pp. 34–65.

[11] J. Nick, T. Ruffing, and Y. Seurin. “MuSig2: Simple Two-Round Schnorr Multi-signatures”. In: CRYPTO
2021, Virtual Event, August 16-20, 2021. Ed. by T. Malkin and C. Peikert. Vol. 12825. LNCS. Springer, 2021,
pp. 189–221.

[12] Penumbra Labs. The Penumbra Protocol. 2022. url: https://protocol.penumbra.zone/main/penumbra.html.
[13] A. Shamir. “How to Share a Secret”. In: Commun. ACM 22.11 (1979), pp. 612–613.

13

https://datatracker.ietf.org/doc/draft-irtf-cfrg-frost/
https://doi.org/10.1007/978-3-031-38557-5_22
https://doi.org/10.1007/978-3-031-38557-5_22
https://doi.org/10.1007/978-3-662-49384-7_12
https://doi.org/10.1007/978-3-662-49384-7_12
https://zips.z.cash/protocol/protocol.pdf
https://zips.z.cash/protocol/protocol.pdf
https://protocol.penumbra.zone/main/penumbra.html

	Re-Randomized FROST

