
Perfect Asynchronous MPC with Linear

Communication Overhead

Ittai Abraham∗ Gilad Asharov† Shravani Patil‡ Arpita Patra§

March 13, 2024

Abstract

We study secure multiparty computation in the asynchronous setting with perfect security
and optimal resilience (less than one-fourth of the participants are malicious). It has been
shown that every function can be computed in this model [Ben-OR, Canetti, and Goldreich,
STOC’1993]. Despite 30 years of research, all protocols in the asynchronous setting require
Ω(n2C) communication complexity for computing a circuit with C multiplication gates. In
contrast, for nearly 15 years, in the synchronous setting, it has been known how to achieveO(nC)
communication complexity (Beerliova and Hirt; TCC 2008). The techniques for achieving this
result in the synchronous setting are not known to be sufficient for obtaining an analogous result
in the asynchronous setting.

We close this gap between synchronous and asynchronous secure computation and show
the first asynchronous protocol with O(nC) communication complexity for a circuit with C
multiplication gates. Linear overhead forms a natural barrier for general secret-sharing-based
MPC protocols. Our main technical contribution is an asynchronous weak binding secret sharing
that achieves rate-1 communication (i.e., O(1)-overhead per secret). To achieve this goal, we
develop new techniques for the asynchronous setting, including the use of trivariate polynomials
(as opposed to bivariate polynomials).

∗Intel Labs. ittai.abraham@intel.com
†Department of Computer Science, Bar-Ilan University, Israel. Gilad.Asharov@biu.ac.il. Sponsored by the

Israel Science Foundation (grant No. 2439/20), by JPM Faculty Research Award, and by the European Union’s
Horizon 2020 research and innovation programme under the Marie Sk lodowska-Curie grant agreement No. 891234.

‡Indian Institute of Science, Bangalore, India. shravanip@iisc.ac.in. Supported by C3iHub IIT Kanpur 2020-
2025.

§Indian Institute of Science, Bangalore, India. arpita@iisc.ac.in. Supported by C3iHub IIT Kanpur 2020-2025,
Google India Faculty Award, and JPM Faculty Research Award.

Contents

1 Introduction 1
1.1 Related work . 2

2 Technical Overview 3
2.1 Basic Asynchronous Verifiable Secret Sharing . 3
2.2 Our Asynchronous Weak-Binding Secret Sharing . 5
2.3 Our MPC Protocol . 9
2.4 Multiplication Triplets with a Dealer . 10

3 Preliminaries 13
3.1 Asynchronous Secure Computation and SUC . 13
3.2 Hybrid Model and Composition . 15
3.3 Asynchronous Broadcast and Agreement on a Core Set 15
3.4 Finding a STAR in a Graph . 16
3.5 Bivariate Polynomials . 17
3.6 Trivariate Polynomials . 18

4 Verifiable Packed Bivariate Secret Sharing 18

5 Verifying Product Relation 24
5.1 Trivariate Polynomial Verification – Functionality . 25
5.2 Verifying Product Relation using Trivariate Polynomial 26
5.3 Trivariate Polynomial Verification – Protocol . 29

6 Rate-1 Asynchronous Weak-Binding Secret Sharing 36

7 Verifiable Triple Sharing 39
7.1 Batching for Linear overhead per triple . 41

8 Linear Perfectly Secure AMPC 42
8.1 Secret Reconstruction . 42
8.2 The complete MPC protocol . 43

8.2.1 Preparing the Beaver Triples and Input Sharing 43
8.2.2 Batched Beaver Multiplication . 45

8.3 The MPC Protocol . 46

1 Introduction

Secure multiparty computation (MPC) protocols can be divided into two broad categories: syn-
chronous and asynchronous, depending on their resilience to network conditions. In the synchronous
model of MPC, the assumption is that all messages sent between honest parties arrive after some
known bounded delay. This delay bound needs to be fixed in advance and must hold for the lifetime
of the system. Fixing a large delay bound may cause the protocol to be inefficient and slow. More
worrisome, using a delay that is smaller than the actual delay the adversary can impose may lead
to non-termination. In many real world settings it is very hard to guess in advance a bound on the
maximum delay the adversary can impose.

The second category of protocols is the asynchronous model, where each message sent between
honest parties arrives after some finite delay. This model allows protocols to dynamically adjust to
any adversarial network conditions, and obtain termination (with probability 1) even under very
powerful adversaries that can adaptively manipulate network delays.

In this paper we consider the most demanding setting: perfect security with optimal resilience
in the asynchronous model. From the lower bound of [11, 12, 4], perfect security implies that the
number of corruptions in this setting is at most t < n/4, so optimal resilience is when n = 4t + 1
(this is in contrast to n = 3t+ 1 in the synchronous setting). The seminal work of [11, 16] obtains
perfect security with optimal resilience in the asynchronous model.

Communication Complexity of Asynchronous MPC

The communication efficiency of MPC protocols is measured by the (amortized) cost of their com-
munication complexity per multiplication gate. In the perfectly secure, optimally-resilient syn-
chronous model, O(n log n) communication complexity per multiplication gate was obtained nearly
15 years ago by the work of [8] (recently [2] improves the round complexity from O(D + n) to
expected O(D) for circuits of depth D). Linear communication complexity per multiplication gate
seems to be a natural barrier. While there is no lower bound, getting o(n) per multiplication gate
seems to require fundamentally different techniques and comes at the cost of trading off optimal
threshold (e.g., see [23]).

Progress in the (perfectly secure, optimally resilient) asynchronous model over the last 30 years
has been slower. The work of [11] obtained Õ(n6) per gate. [30, 29] improve to Õ(n5) per gate.
[7] improves to Õ(n3) per gate. The best current bounds are by [27, 28] that obtained Õ(n2)
communication complexity per multiplication gate. A natural question remained open for 30 years:

Is there a perfectly secure, optimally-resilient asynchronous MPC with Õ(n)
communication complexity per multiplication gate?

Or is there an inherent lower bound due to asynchrony?

Our Main Result

Our main result is a perfectly secure, optimally-resilient asynchronous MPC protocol that achieves
Õ(n) communication per multiplication gate.

Theorem 1.1 (Main Result). For a circuit with C multiplication gates and depth D there exists
a perfectly-secure, optimally-resilient asynchronous MPC protocol with O((Cn + Dn2 + n5) log n)
communication complexity and O(D) expected run-time.

1

Previously, the best-known result required O((Cn2+Dn2+n5) log n) communication complexity
[27].

Main Technical Result

Our main technical result is a new Asynchronous Weak-Binding Secret Sharing that costs just
O(log n) bits of communication complexity per secret of size log n bits. It is perfectly secure,
resilient to t < n/4, and has constant round complexity and polynomial computation complexity.
For our MPC purposes, we do not need the reconstruction of those shares; we just need the dealer
to commit to a well-defined polynomial. We call this property as “weak-binding”.

Theorem 1.2 (Asynchronous Weak-binding Secret Sharing (informal)). There exists a perfectly
secure, optimally resilient protocol for asynchronous weak-binding secret sharing that can share
O(n4) secrets in constant time, with communication complexity of O(log n) bits per secret of size
log n bits.

Many forms of verifiable secret sharing, both in the synchronous and asynchronous settings, rely
on bivariate polynomial sharing. Our protocol is based on trivariate polynomial sharing. Our use
of trivariate polynomial sharing approach follows the recent work of Appelbaum and Kachlon [5].
Nevertheless, we show how to reconstruct the trivariate polynomial for future reference and for
independent interest. This variant is “weak” in the sense that reconstruction might fail (or not
terminate). In that case, however, the honest dealer can shun a set of t/2 + 1 corrupted parties.
Nonetheless, we remark again that we do not use reconstruction, and in particular, our final MPC
construction does not shun parties and does not use player elimination.

The first asynchronous verifiable secret sharing protocol [10] achieves O(n4) (amortized) over-
head per secret. In comparison, our trivariate-based asynchronous weak-binding secret sharing
achieves O(1) (amortized) overhead per secret. Nevertheless, we remark again that our primitive is
weaker as it does not guarantee reconstruction. Despite this fact, we show that this weak primitive
suffices for the crux of our MPC, which is a distributed ZK proof of multiplication triplets. The aim
of the ZK proof is to prove that some (secret) polynomial p(x) possesses a certain degree. To ac-
complish this, the prover incorporates the coefficients of p(x) as secrets in the trivariate polynomial
and distributes shares on this trivariate polynomial. Since the trivariate polynomial can contain
a predetermined number of secrets, the mere success of the sharing process and the existence of a
well-defined trivariate polynomial are sufficient evidence to confirm that p(x) indeed has the desired
degree. Here, there is no need for reconstruction. Reconstruction would also reveal the coefficients
of the polynomial p(x), which have to remain secret.

1.1 Related work

In the setting of perfect security with a synchronous network, the work of [9, 26] achieved Õ(n)
communication per multiplication gate. A lower bound of Õ(n) was later established in [25] for a
resilience of t < n/3 which is known to be necessary in this setting. The recent work of [2] improves
the round complexity of [9, 26] from O(D + n) to O(D) in expectation while maintaining linear
communication complexity in the number of parties.

The results in the perfect asynchronous setting have been mentioned earlier and we avoid
repetition here. We simply summarize that there is no linear overhead protocol in this setting thus
far. Nonetheless, linear-overhead protocols have been achieved earlier in two weaker setting– (a)

2

statistical security with non-optimal resilience of t < n/4 over asynchronous networks1 [22] (b)
perfect security with t < n/4 over hybrid network where the network permits a single synchronous
round before turning to fully asynchronous mode [21, 22].

As mentioned, our trivariate secret sharing protocol is inspired by the work of Applebaum
and Kachlon [5]. This work uses trivariate polynomial for constructing error-correcting code with
quasipolynomial-time conflict-decoder.

2 Technical Overview

In this section, we provide a technical overview of our work. We give some background on basic
asynchronous verifiable secret sharing (basically covering previous work) in Section 2.1, and proceed
to our asynchronous weak-binding secret sharing in Section 2.2. We overview our MPC protocol in
Section 2.3. Lastly, we conclude our triple secret sharing protocol in Section 2.4 which acts as the
building block for MPC and builds upon our asynchronous weak-binding secret sharing.

The model. Before we proceed, let us first introduce the model. We assume asynchronous
communication, which means the adversary can arbitrarily delay messages sent between honest
parties. However, such messages are eventually received. It is important to note that the adversary
does not see the content of the messages (as we assume ideal channels between the honest parties),
but it can see the type of messages that are being sent (e.g., identifying whether it’s the first,
second, or third message of the protocol). Since the adversary controls the corrupted parties,
messages that are supposed to be sent by the corrupted parties to the honest parties might never
be sent. Honest parties cannot distinguish whether a message is merely delayed or has not been sent
altogether. Consequently, honest parties must continue waiting, with the potential consequence of
certain foundational processes never reaching completion. However, it’s important to highlight that
the complete MPC protocol guarantees termination. This means that it possesses mechanisms to
recognize non-terminating sub-protocols and take appropriate measures to bring them to a halt.

Besides the point-to-point channels, we assume for now the existence of a broadcast channel
with the guarantee that (1) If the sender is honest and broadcasts M then eventually all honest
parties will receive M ; (2) If some honest party received a message M (in an instance of a corrupted
sender), then eventually all honest parties will receiveM . This can be implemented by asynchronous
broadcast or A-cast primitive [13]. The cost is O(n2|M |) for broadcasting the message M .

2.1 Basic Asynchronous Verifiable Secret Sharing

Our starting point is a variant of the verifiable secret sharing due to Ben-Or, Canetti, and Gol-
dreich [11]. In asynchronous verifiable secret sharing (AVSS), the dealer holds some secret s, and
its goal is to distribute the shares to the parties. The parties then verify that the shares define a
unique secret. At a later point, the parties might reconstruct the secret s. The properties that the
AVSS offers are:

• Validity: If the dealer is honest, then the protocol must terminate. At the end of the
reconstruction phase, all honest parties output s, the input of the dealer in the sharing phase;

• Secrecy: The view of the adversary in the sharing phase in the case of an honest dealer is
independent of s;

1The optimal resilience for statistical asynchronous MPC is t < n/3 [12].

3

• Binding: The view of the honest parties at the end of the sharing phase (if terminated)
uniquely defines some secret s′.

For simplicity, we assume for now that the dealer can efficiently solve the problem of finding the
maximal clique in a graph. At a high level, the secret-sharing protocol proceeds as follows:

1. The dealer: Choose a random bivariate polynomial S(x,y) of degree-t in both variables such
that S(0, 0) = s. Send over the private channels to each party Pi its shares (S(x, i), S(i,y)).

2. Each party Pi: Upon receiving the shares (fi(x), gi(y)) from the dealer, send to Pj the sub-
shares (fi(j), gi(j)).

3. Each party Pi: Upon receiving (uj,i, vj,i) from party Pj , verify that uj,i = gi(j) (= fj(i)) and
vj,i = fi(j) (= gj(i)). If so, then Pi broadcasts Good(i, j).

4. The dealer: Initialize an undirected graph G over the vertices V = [n]. Upon seeing Good(i, j)
broadcasted by Pi and Good(j, i) broadcasted by Pj , add the edge (i, j) to the graph. If a
clique K ⊆ [n] of cardinality at least 3t+ 1 is found in G, then broadcast (Clique,K).

5. Each party Pi: Initialize a similar graph as the dealer in the previous step. Upon seeing
a broadcasted message (Clique,K) from the dealer, verify that K is a 3t + 1 clique in the
graph. If not, continue to listen to Good messages broadcast and update the graph. Once K
is verified:

(a) If i ∈ K, then halt and output (fi(x), gi(y)).

(b) If i ̸∈ K, then wait to receive all sub-shares from parties in K (received from Step 3),
and reconstruct the polynomials fi(x), gi(y) using Reed-Solomon decoding.

We do not specify the reconstruction phase, as it is immediate and less relevant to our discussion.
Moreover, note that the protocol might never terminate in a case of a corrupted dealer. E.g., the
parties might wait forever for the dealer to broadcast the message (Clique,K). A party cannot
decide whether to abort or whether this message will eventually arrive.

We first claim that if one honest party terminates, all honest parties eventually terminate. An
honest party terminates only after the dealer has broadcasted a clique K, and it validated that the
clique exists in its graph. Since those are all broadcasted messages if one honest party saw this, all
honest parties would eventually see the same property.

If a clique of 3t + 1 parties is found, the clique must contain at least 2t + 1 honest parties.
All the messages of those honest parties are broadcasted; therefore, we know that their shares
agree. Their shares define a unique bivariate polynomial S(x,y) of degree-t in both variables. It is
also guaranteed that all honest parties eventually output shares on the same bivariate polynomial.
Specifically, when running the Reed-Solomon decoding on messages received from parties in K,
there are 2t + 1 shares on the polynomial S(x,y) and at most t errors. Reed Solomon decoding
results in shares on the bivariate polynomial. Finally, validity holds from the fact that when the
dealer is honest, all honest parties agree with each other, and therefore a 3t+1-clique must appear
in the graph.

Making it polynomial time – the STAR algorithm. The problem with the above protocol
is that the dealer has to solve clique, which is an NP-hard problem. A beautiful idea in the work
of Ben-Or, Canetti, and Goldreich [11] (credit within is given to Canetti’s thesis [17]) shows that
an approximation of clique suffices to bind a unique bivariate polynomial. Specifically, the dealer
searches for a (C,D)-star, which is defined as follows:

4

(C,D)-Star: sets C,D ⊆ [n] are Star in G if (1): C ⊆ D; (2) |C| ≥ 2t+1 and |D| ≥ n− t;
(3) For every c ∈ C and d ∈ D it holds that (c, d) ∈ G.

Note that C is a clique, whereas nodes in D agree with all nodes in C, but not necessarily with
each other. The main idea is that if there exists a clique K of size n − t ≥ 3t + 1 in G, it might
be hard to find it, but it is easy to find smaller cliques of size n − 2t ≥ 2t + 1. For example, to
find such a clique, look at the complement graph G. The clique K is now an independent set;
Find a maximal matching in the graph G; let M be that maximal matching. The set [n] \M is an
independent set in G and, therefore, a clique in G. Moreover, when the dealer is honest, since all
the edges are between honest parties and corrupted parties, or between corrupted parties, then M
is of size at most 2t. Therefore, [n] \M is of size n− 2t and is a clique in the graph G. Canetti [17]
shows a procedure that, if a 3t+1 clique exists, then it efficiently finds a (C,D)-STAR in a graph –
i.e., a smaller clique (C) of size 2t+ 1, together with a larger set D where each d ∈ D is connected
to all of C.

The verifiable secret sharing is slightly more involved when the dealer finds a (C,D)-star and
not a 3t + 1-clique. We do not get into the exact details. Yet, the main ideas why the STAR
structure suffices are as follows:

• Validity: When the dealer is honest, then the dealer must eventually find a STAR. That is,
when the dealer is honest, then eventually, we will have a clique K of size 3t+1 in the graph.
In that case, the STAR algorithm always finds a (C,D)-star.

• Binding: If a (C,D)-star was found (either when the dealer is honest or corrupted), then a
unique bivariate polynomial is defined from the shares of the honest parties in C. Since the
size of C is at least 2t+1, it contains at least t+1 honest parties. The shares of those honest
parties uniquely define a bivariate polynomial. Moreover, the honest parties in D agree with
all the honest parties in C; therefore, their shares lie on the same bivariate polynomial. At
this point, we have at least 2t + 1 honest parties that hold correct shares, and therefore all
honest parties can eventually reconstruct correct shares.

Communication complexity. Before we proceed, let us first elaborate on the communication
complexity of the protocol above. It is easy to see that the parties exchange a total of O(n2 log n)
bits over the point-to-point channels and additional O(n2 log n) bits over the broadcast channel.
This is translated to O(n4 log n) total communication complexity over point-to-point channels and
no broadcast (using the broadcast protocol of [13]). That is, we have an overhead of O(n4 log n)
for sharing just a single value!

2.2 Our Asynchronous Weak-Binding Secret Sharing

Our goal: O(1) overhead per secret. To achieve secure computation with linear communication
complexity, our ultimate goal is to reach O(1) overhead per secret. This necessitates a substantial
enhancement of the basic scheme by a factor of O(n4). Borrowing ideas from the synchronous MPC
[2], this goal is achieved via two routes: (1) batching; and (2) packing. However, packing in the
asynchronous case gets an intriguing turn and requires borrowing new ideas.

Reducing the communication complexity by batching. It is immediate to reduce the com-
munication complexity using a batching technique: The dealer will invoke m instances of AVSS in
parallel. At the same time, the broadcasted information will be shared for all m instances. That is,

5

a party Pi will broadcast Good(i, j) only after it receives from Pj the sub-shares in all m instances
and verifies that they agree with the share it received from the dealer in each one of the m instances.
This reduces the total cost to O(m ·n2 log n) over point-to-point plus O(n2 log n) broadcast (notice
that the broadcast cost is independent of m). Setting m = n2, we obtain a protocol that runs in
total communication complexity of O(n4 log n) bits for sharing n2 secrets (each is of size log n bits).
At this point, we have an overhead of O(n2) per secret.

Reducing the communication complexity by packing. Packing in the asynchronous case
turns out to be radically different than in the synchronous case. The main reason for the O(n2)
overhead in the secret sharing is because a single secret is hidden in a structure of size O(n2), i.e., a
bivariate polynomial. To achieve O(1) overhead, we have to pack O(n2) secrets in a single bivariate
polynomial or use a different structure.

In the basic AVSS protocol, a single secret is shared using a (t, t)-bivariate polynomial.2 The
adversary, which controls at most t parties, receives fi(x) = S(x, i) and gi(y) = S(i,y) for every
i ∈ I, when I is the set of corrupted parties, and assume for simplicity that |I| = t (and not smaller).
The f -shares give the adversary a total of t(t + 1) points on the polynomial. Since fi(k) = gk(i)
for every i, k ∈ I, the g-shares gives the adversary just additional t(t + 1) − t2 = t “new” points
on the polynomial (those are gi(0) for i ∈ I), and thus the adversary gets a total of t2 + 2t. The
polynomial S(x,y) =

∑t
i=0

∑t
j=0 ai,jx

iyj contains a total of (t+ 1)2 points, and thus we have just
a single degree of freedom, i.e., we can hide just a single secret.

The main idea of packing is to use a polynomial of a higher degree while maintaining the same
cost for the sharing and verification:

Using (t+ t/2)×t–bivariate polynomial.3 If we use a bivariate polynomial of degree, e.g.,
(t + t/2, t), then there are in total (t + t/2 + 1)(t + 1) values on the polynomial. The important
part of this particular choice of parameters is that the degree of the y is t, which still allows using
Reed-Solomon decoding as part of the protocol. Similar calculation as in the (t, t) case leads to the
adversary’s shares revealing a total of t(t+ t/2+1)+ t values. The bivariate polynomial, therefore,
contains t/2 + 1 degrees of freedom, i.e., we can hide O(n) values in a single bivariate polynomial.

Packing O(n) values instead of O(1) reduced the overhead per secret from O(n2) to O(n). The
important message here is that the STAR algorithm still suffices. Specifically, a (C,D)-star defines
a unique bivariate polynomial: Recall that C is a clique of 2t + 1 parties, and therefore it must
contain at least t + 1 honest parties with their shares agreeing with each other. Moreover, all the
honest parties in C are consistent with all the parties in D where D contains at least 2t+ 1 honest
parties. The shares f shares of honest parties in C together with the g-shares of honest parties in
D define a unique bivariate polynomial S(x,y) that satisfies S(x, c) = fc(x) for every c ∈ C (recall
that each fc has degree t + t/2). Moreover S(d,y) = gd(y) holds for every honest party d ∈ D.
Guaranteeing these parties will also hold correct f -shares requires some additional work, which was
already shown in previous works (see [22]).

This protocol plays a pivotal role in our final construction, but for our ultimate goal, we still
need to go one step further and push for O(1)-word overhead per secret. Note, however, that this
one step forward will not give us verifiable secret sharing, but only some weaker form of sharing.

2We use (q, ℓ)-bivariate polynomial to denote a bivariate polynomial which is of degree at most q in x and at most
ℓ in y.

3We use t + t/2 just as an example. The above works for any t × (t + d)-bivariate polynomial for d ≤ t and
d ∈ O(n).

6

Using (t + t/2) × (t + t/2)–bivariate polynomial. If we use a bivariate polynomial of
degree (t+ t/2, t+ t/2), there are (t+ t/2+1)2 total values on the polynomial. Similar calculations
as above lead to (t/2 + 1)2 values that we can pack in the polynomial, i.e., O(n2) secrets.

However, here the STAR technique does not give us a binding guarantee. A (C,D)-star provides
a clique C of size 2t+1, which contains, in the worst case, t+1 honest parties. Their f -shares, their
g-shares, separately or combined, do not uniquely define a (t+ t/2)×(t+ t/2)-bivariate polynomial.
Since the parties in D do not necessarily agree with each other, we cannot use their shares to define
the bivariate polynomial before we have a unique one that is defined by the parties in C.

It is easy to see that an alternative, stronger guarantee, would suffice for binding:

(C,D)-BigStar: sets C,D ⊆ [n] are BigStar in G if: (1) C ⊆ D; (2) |C| ≥ 2t + t/2 + 1
and |D| ≥ n− t; (3) For every c ∈ C and d ∈ D it holds that (c, d) ∈ G.

Note that the only difference between BigStar and Star is that C is of size 2t + t/2 + 1 instead
of 2t + 1 as in Star. Such a larger set C ensures t + t/2 + 1 honest parties that agree with each
other, hence defining a unique bivariate polynomial. However, we are unaware of any polynomial-
time algorithm that finds BigStar in a graph. At this point, we can potentially reach the O(1)
overhead in communication complexity, but at the expense of having the dealer find a large clique
in exponential time. This is clearly not ideal.

Exponential-time improvement using trivariate polynomials. To solve the above problem,
we add one more dimension, which will allow us, in particular, to pack O(n3) secrets and find a
BigStar efficiently, if it exists. Instead of using a bivariate polynomial S(x,y) of degree t + t/2 in
both variables x,y, the dealer will use a trivariate polynomial S(x,y, z) of degree t + t/2 in all
three variables x,y, z. We then naturally extend the protocol to trivariate sharing. E.g., the share
of each party Pi is now three bivariate polynomials:

S(x,y, i), S(x, i, z), S(i,y, z) .

Two parties, Pi and Pj then exchange six univariate polynomials:

S(x, j, i), S(x, i, j), S(i,y, j) ,

S(j,y, i), S(j, i, z), S(i, j, z) .

and a party Pi broadcasts Good(i, j) if the shares it receives from Pj (i.e., the six univariate
polynomials) agree with those it received from the dealer.

The dealer then constructs a graph G as in the basic AVSS scheme. However, as mentioned,
we are now looking for a more robust condition on the graph since our polynomials are of degree
t + t/2. Thus, we need a clique of size 2t + t/2 + 1, which will imply having at least t + t/2 + 1
honest parties. BigStar now also suffices for binding, but it is unclear how to find it just as in the
bivariate sharing case. However, at this point, some seemingly weaker property on the graph also
suffices to achieve binding, which was insufficient in bivariate sharing. The property is:

Dense: A set of vertices L ⊆ [n] is called Dense if it is of cardinality at least 3t + 1,4

and each node in L has at least degree 3t+ t/2 + 1.

4We note that an L of size 2t+ t/2 + 1 would, in fact, suffice for defining a unique trivariate polynomial. However,
we are able to find a larger set of size 3t + 1 in polynomial time.

7

This is clearly a property that is easy to find in a graph G. The intuition is that the set L contains
at least 2t + 1 honest parties. Moreover, two honest parties Pk, Pℓ that have degree 3t + t/2 + 1
must agree with each other, even though they did not necessarily hear the shares of one another due
to communication delays (we will see why this holds soon). The honest parties in Dense therefore
define a clique of at least 2t+1 honest parties, and their shares define a unique trivariate polynomial.

Binding: For binding, it suffices to have one of the two following properties:

1. Dense: which essentially defines a clique of 2t+ 1 honest parties;

2. BigStar: where |C| ≥ 2t+t/2+1, and |D| ≥ n−t. The set C defines a clique of t+t/2+1 honest
parties that agree with each other, which defines a unique trivariate polynomial. Moreover,
the set D defines overall 2t+ 1 honest parties that have correct shares.

Therefore, whenever one of those properties occurs in the graph, we are satisfied and can terminate
the protocol. We show a poly-time algorithm that finds those properties.

Validity. For validity, we have to guarantee that when the dealer is honest, it must find one of
these two properties (Dense or BigStar) in the graph. In the honest dealer case, the graph will
eventually contain a clique of size 3t + 1. At this point, the following algorithm must find either
Dense or BigStar:

1. The dealer looks for a Dense set L in the graph. If found, output (Dense, L).

2. If the graph does not contain a dense set L, then it implies that there is at least one honest
party, say Pj , whose degree is less than 3t+t/2+1. Moreover, all missing edges in the graph are
between honest parties and corrupted parties, or between corrupted parties. We then consider
the graph G while considering only the neighbors of Pj (including Pj). We will obtain a graph
of size n′ = 3t+ t/2 + 1 vertices, where all removed vertices correspond to corrupted parties,
and so we have t′ = t/2 corrupted parties remaining. Moreover, this graph contains a clique
of size 3t + 1. The standard (C,D)-star returns a clique |C| ≥ n′ − 2t′ ≥ 2t + t/2 + 1, and a
set |D| ≥ n′ − t′ ≥ 3t+ 1, which is essentially a BigStar in G. The dealer does the above for
every low-degree party Pj until it hits on a BigStar, and this procedure is efficient.

Therefore, once we have a clique of 3t+ 1 honest parties, the dealer is guaranteed to find either a
Dense or a BigStar in polynomial time.

Why do bivariate polynomials not suffice? A natural question is why we could not find the
same property on the graph with bivariate polynomials, and we have to work with trivariates. This
is an idea we borrow from [5], and is the crux of this part of the paper. The property we need here
is transitivity. Suppose Pk and Pj are both honest, and they agree with a common set E of at least
2t + 1 honest parties, but they did not hear the sub-shares from each other since the adversary
delays their communication. Do their shares agree?

Note that in the setting of the Dense graph, Pk and Pj are two honest parties that have a high
degree of 3t + t/2 + 1. This means they have at least 3t + 1 parties in their intersection, which
implies that they agree with some common set E of at least 2t+ 1 honest parties. To see whether
or not their shares agree, let’s consider bivariate sharing versus trivariate sharing:

1. Bivariate: In bivariate sharing, the parties hold univariate polynomials as shares, and they
exchange points. It is easy to see that the shares of Pk and Pj do not necessarily agree with
each other, even if they agree with a common set E of cardinality 2t + 1. We can set Pk

8

to have fk(x), gk(y) and Pj to have fj(x), gj(y) such that fk(j) ̸= gj(k) and fj(k) ̸= gk(j).
Yet, we can give a set E of cardinality 2t + 1 arbitrary shares such that fj(e) = ge(j) and
gj(e) = fe(j) for every e ∈ E, and likewise, fk(e) = ge(k) and gk(e) = fe(k) for every e ∈ E.
This does not impose many constraints on the polynomials fe(x), ge(y) for every e ∈ E.
Therefore, the existence of the property Dense does not necessarily imply a clique of honest
parties of large cardinality that agree with each other.

2. Trivariate: In trivariate sharing, the parties hold bivariate polynomials as shares, and they
exchange univariate polynomials. If Pj and Pk have a common set of neighbors E of cardinality
2t + 1, then they necessarily hold shares that agree with each other 5. The key idea is that
Pk exchanges with each party Pe for e ∈ E univariate polynomials. Since the univariate
polynomials agree, they also agree on the index j. The 2t + 1 points of parties in E on the
index j uniquely define the univariate polynomials that Pk expects to receive from Pj . Thus,
even though Pk did not hear yet the message from Pj , and Pj is honest, it knows that the
shares would agree, even if the dealer is corrupted. A similar argument holds for Pj . The
formal argument appears in Section 3.

To conclude, to share the trivariate polynomial, we have a total of O(n3 log n) bits over point-
to-point channel together with O(n2 log n) bits over the broadcast channel. If we batch n instances
together, we get a total of O(n4 log n) bits over point-to-point channels and no broadcast for sharing
O(n4) secrets, each of log n bits. I.e., we obtain an overhead of O(1).

Note, however, that the sharing is weak. Namely, we know that there is a well-defined trivariate
polynomial, but we cannot necessarily reconstruct it robustly. In particular, even in the case of an
honest dealer, reconstruction might fail. In that case, however, the dealer can shun at least t/2+ 1
corrupted parties. We show the reconstruction in Section 6.

However, as we will see, the reconstruction is not required for our MPC, and the sharing itself
suffices. We gave it for completeness and as it might be useful as an independent primitive.

2.3 Our MPC Protocol

Our MPC protocol follows the following structure: an offline phase in which the parties generate
Beaver triplets [6], and an online phase in which the parties compute the circuit while consuming
those triples.

Beaver triplets generation. Our goal is to distribute (Shamir, univariate degree-t) shares of
random secret values a, b, and c, such that c = ab. If the circuit contains C multiplication gates,
we need C such triplets. Towards that end, we follow the same steps as in [22], and generate such
triplets in three stages:

1. Triplets with a dealer: Each party generates shares of ai, bi, ci such that ci = ai · bi. We
generate all the triplets in parallel using expected O(1) rounds. We overview this step below
in Section 2.4. Our main contribution is in improving this step using the asynchronous weak-
binding secret sharing with O(1)-overhead. Despite the fact that this secret sharing with
O(1)-overhead is not robust, it suffices since it is used as part of a perfect zero-knowledge
proof where the dealer proves that the shares it generated indeed correspond to a product
relation. If the sharing fails, then we can simply ignore the contribution of that dealer.

5In fact, as shown in [5], having a common set of honest neighbors of size t+ t/2 + 1 suffices for Pj and Pk to hold
shares that are consistent with the same trivariate polynomial of degree t + t/2 in each variable.

9

In our protocol, each party acts as a dealer to generate C/n triplets. This step requires a cost
of O(n4 log n+C log n) communication for a single party and an overall cost of O(n5 log n+
Cn log n) for all the parties together.

2. Agreeing on a core set (ACS): All triplet generations of honest dealers eventually termi-
nate, whereas those of corrupted dealers might never terminate. However, if one honest party
sees that the triplet generation of some player Pi terminates, then all the honest parties will
eventually receive output in that triplet generation.
As t instances might never terminate, the parties proceed with the protocol once at least n−t
parties successfully complete the triplet generation. Since parties might receive messages in
different orders, they have to agree on the set of parties for which their triplet generation was
successful.
The set Core of at least n − t parties (who have successfully completed the triple sharing)
will be chosen using the agreement on core set (ACS) protocol. The communication cost of
ACS from [17] is O(n7 log n), and its run-time is log n. In [3], the communication is improved
to O(n5 log n), and run-time is expected constant time. We use the latter to quote our
complexity. 6

3. Triplets with no dealer: Once agreed which triplets to consider (Core), using triplet ex-

traction of [22], we can extract from a total of C(n−t)
n triplets generated by the dealers in

Core, O(C) triplets where no party knows the underlying values. This step costs O(n2 log n+
Cn log n).

In summary, for generating C triplets we pay a total of O(n5 log n+ Cn log n).
The MPC protocol follows the standard structure where each party shares its input, and the

parties evaluate the circuit gate-by-gate, or more exactly, layer-by-layer. In each multiplication gate,
the parties have to consume one multiplication triple. Using the method of [22], if the ith layer of the
circuit contains Ci multiplications (for i ∈ [D], where D is the depth of the circuit), the evaluation
costs O(n2 log n + Ci · n log n). Summing over all layers, this is

∑
i∈[D](n

2 + nCi) log n = (Dn2 +

Cn) log n. Together with the generation of the triplets, we get the claimed O((Cn+Dn2+n5) log n)
cost as in Theorem 1.1. We refer the reader to Section 8 for further details on our MPC protocol.

One point worth addressing is that we parallelize the input-sharing phase to the triplet gen-
eration. In that case, the ACS protocol selects the parties for which their triplet generation and
input sharing were successful. Moreover, the input-sharing phase uses the robust secret-sharing
with O(n) overhead and not the non-robust O(1). After the parties obtain robust shares (either
sharing inputs or of product relations), all other computations are merely reconstructions and linear
combinations of shared values. Since messages of honest parties are guaranteed to be delivered,
and we have at least 2t + 1 honest parties in Core with at most t corruptions, all reconstructions
are guaranteed to terminate successfully and asynchrony has no effect.

2.4 Multiplication Triplets with a Dealer

The goal is that a dealer wishes to distribute shares of secret values a⃗, b⃗, c⃗ such that for every i it
holds that ci = aibi. Towards this end, the dealer plants a⃗ into some bivariate polynomial A(x,y)
using the asynchronous VSS scheme that employs a bivariate polynomial of degree-(t + t/2, t).
Such a VSS is given in [22], which we slightly simplify and give it for completeness in Section 4.
Specifically, a⃗ is placed at (A(−β, 0))β∈0,...,t/2. Similarly, the dealer plants b⃗ into B(x,y) and c⃗ into

6Without [3], the cost of our entire MPC is O((Cn + Dn2 + n7) logn) and O(D + logn) expected-time.

10

C(x,y). It is important to note that we deploy robust AVSS here, to ensure that the triplets are
shared via degree-t polynomials (which is utilized by our MPC protocol). So we can plant only
O(n) values in each bivariate polynomial. Specifically, the ith secret in a⃗ is shared via the t-degree
polynomial A(−i,y).

Next, the dealer has to prove, using a distributed zero-knowledge protocol, that indeed ci = aibi
for every i (i.e., that C(−β, 0) = A(−β, 0) ·B(−β, 0) for every β ∈ {0, . . . , t/2}). The input of each
party Pj is a point on the univariate polynomials A(−β,y), B(−β,y) and C(−β,y). The zero-

knowledge proof shares and operates on the coefficients of the polynomials used for sharing a⃗, b⃗, c⃗.
If the dealer shared O(M) triplets, then the zero-knowledge involves sharing of O(Mn) values. For
simplicity, assume hereafter that M = O(n2).

Verifying product relation. We now provide a detailed disposition of the zero-knowledge for
product relations via the asynchronous weak-binding secret sharing. For simplicity of notation,
the dealer has already (verifiably) shared, for every u ∈ U = {0, . . . , t/2}2, degree-t polynomial
Au(x), Bu(x), Cu(x). Each party Pj holds shares Au(j), Bu(j), Cu(j). The goal of the dealer is to
prove that Au(0) ·Bu(0) = Cu(0). The zero-knowledge proof shares and operates on the coefficients
of the polynomials used for sharing. Since |U | ∈ O(n2) and each product polynomial has O(n)
coefficients, we have a total of O(n3) coefficients to pack. We now need O(1) trivariate polynomials
to pack all needed coefficients. This sharing does not need to produce t-sharing of the secrets.
Rather the mere confirmation that the dealer commits to a unique set of secrets is good enough.
Hence, as discussed in the previous section, we can utilize the asynchronous weak-binding secret
sharing with light-enhanced features.

Constructing the trivariate polynomials. For every u ∈ U , define:

Eu(x) := Au(x) ·Bu(x)− Cu(x) .

We redefine U = V×V where V = {0, . . . , t/2}. Then, we need to verify that for every (β, γ) ∈ V×V
it holds that

E(β,γ)(0) = A(β,γ)(0) ·B(β,γ)(0)− C(β,γ)(0) = 0 ,

which implies that A(β,γ)(0) · B(β,γ)(0) = C(β,γ)(0). Since A(β,γ)(x), B(β,γ)(x), and C(β,γ)(x) are
polynomials of degree-t, the polynomial E(β,γ)(x) is of degree-2t. We explicitly write

E(β,γ)(x) = e
(β,γ)
1 x+ . . .+ e

(β,γ)
2t x2t .

Since the constant term of this polynomial is supposed to be 0 (if indeed A(β,γ)(0) · B(β,γ)(0) =
C(β,γ)(0)) we do not specify it. The dealer embeds the 2t coefficients of each of those (t/2 + 1)2

polynomials in four trivariate polynomials, each of degree t + t/2 in x,y and z. Note that each
trivariate polynomial can pack (t/2 + 1)3 values, where we have a total of (t/2 + 1)2 · 2t values
to pack; We therefore need four trivariate polynomial S1,S2,S3,S4 (in each we pack t/2(t/2 + 1)2

while we can pack (t/2 + 1)3 values; i.e., we do not fully pack it). Specifically (where in all of the
following rows we quantify over all k ∈ [1, . . . , t/2], and (β, γ) ∈ V × V):

11

The coefficients Embedded in the trivariate The embedding

e
(β,γ)
1 , . . . , e

(β,γ)
t/2 S1(x,y, z) S1(−β,−k,−γ) = e

(β,γ)
k

e
(β,γ)
t/2+1, . . . , e

(β,γ)
t S2(x,y, z) S2(−β,−k,−γ) = e

(β,γ)
t/2+k

e
(β,γ)
t+1 , . . . , e

(β,γ)
t+t/2 S3(x,y, z) S3(−β,−k,−γ) = e

(β,γ)
t+k

e
(β,γ)
t+t/2+1, . . . , e

(β,γ)
2t S4(x,y, z) S4(−β,−k,−γ) = e

(β,γ)
t+t/2+k

This fixes t/2(t/2+1)2 points on each trivariate polynomial. The dealer chooses random trivariate
polynomials under the above constraints. It then “secret shares” those trivariate polynomials
among the parties. Each party Pi receives the share:

sharei = (Sr(x,y, i), Sr(x, i,y), Sr(i,y, z))r∈[4] .

Let us assume for simplicity that shareis are distributed such that all the honest parties’ shareis
uniquely define four trivariate polynomials of degree at most t+ t/2 in each variable. We have to
perform the following checks:

1. The shares that the dealer distributes uniquely define four trivariate polynomials of degree
at most t+ t/2 in each variable.

2. The trivariate polynomials define coefficients of polynomials E(β,γ)(x) for every (β, γ) ∈ V ×V .
It should hold that for at least 2t+ 1 indices i:

a
(β,γ)
i · b(β,γ)i − c

(β,γ)
i = E(β,γ)(i) = i · e(β,γ)1 + i2 · e(β,γ)2 + . . .+ i2t · e(β,γ)2t (1)

Since eachA(β,γ)(x), B(β,γ)(x), C(β,γ)(x) is of degree-t, the polynomialA(β,γ)(x)·B(β,γ)(x)−C(β,γ)(x)
is of degree-2t. If Eq. (1) holds for at least 2t+1 indices i, then this polynomial is exactly E(β,γ)(x).
Since E(β,γ)(0) = 0, we have that A(β,γ)(0) · B(β,γ)(0) = C(β,γ)(0). To require that the above veri-
fication holds for at least 2t+ 1 honest parties, we actually require that it holds for at least 3t+ 1
parties.

To check that the trivariate shares pack the correct values, each Pi must be able to reconstruct
E(β,γ)(i), where

E(β,γ)(i) =
∑t/2

k=1

(
ik · S1(−β,−k,−γ)︸ ︷︷ ︸

e
(β,γ)
k

+it/2+k · S2(−β,−k,−γ)︸ ︷︷ ︸
e
(β,γ)
t/2+k

+it+k · S3(−β,−k,−γ)︸ ︷︷ ︸
e
(β,γ)
t+k)

+it+t/2+k · S4(−β,−k,−γ)︸ ︷︷ ︸
e
(β,γ)
t+t/2+k

)

We therefore let Pi get the bivariate polynomial from the dealer in addition to sharei, which
embeds (E(β,γ)(i))(β,γ)∈V×V :

Ti(x, z) =
4∑

r=1

t/2∑
k=1

i(r−1)·(t/2)+k · Sr(x,−k, z) . (2)

Note that for every (β, γ), Ti(−β,−γ) = E(β,γ)(i).

12

We now need a mechanism for Pi to verify that the dealer indeed passes on a correct bivariate
polynomial Ti consistent with the unique trivariate polynomials (Sr)r∈{1,2,3,4} defined by sharejs of
the honest parties. We observe that Ti(x, j) can be computed by Pj based on sharej . Since the
degree of Ti is t+ t/2 in both variables, it is enough if t+ t/2 + 1 honest parties or alternatively a
total of 2t+ t/2+ 1 parties confirm that their Ti(x, j) is consistent with Pi’s received Ti. So, to let
Pi verify Ti(x, z), the parties jointly perform the following:

1. On holding (Sr(x,y, j))r∈[4] as part of sharej , for every r ∈ [4], Pj evaluates Sr(x,y, j) on t/2
values y = −1, . . . ,−t/2 to obtain Sr(x,−1, j), . . . ,Sr(x,−t/2, j).

2. Define tji (x) =
∑4

r=1

∑t/2
k=1 i

(r−1)·(t/2)+k · Sr(x,−k, j).
3. Send Pi the univariate polynomial tji (x).

Pi can then verify if tji (x) = Ti(x, j) for at least 2t+ t/2 + 1 Pjs.
We require the dealer to find a set of size at least 3t + 1 such that: (a) the honest parties

in it must define four unique trivariate polynomials; (b) every honest party in it holds Ti that is
consistent with every honest party in the set; and (c) every honest party in it must have successfully
verified Equation (1). We note that an honest dealer will always be able to find eventually such a
set.

Modeling. We describe our protocol in the Simple UC (SUC) framework due to Canetti, Cohen,
and Lindell [19]. This implies standard UC security [18]. We try to avoid over-formalism in
the protocol descriptions (e.g., we ignore sid while those are implicit). As standard secret-shared
protocols in the perfect setting, we conjecture that our protocols are also adaptively secure.

Organization. The rest of the paper is organized as follows. In Section 3, we provide the
preliminaries, mainly overview the SUC framework. In Section 5, we provide full details of our
zero-knowledge protocol, i.e., verifying product relation. In Section 6, we provide our rate-1, asyn-
chronous weak-binding secret sharing. We remark again that we do not use this secret sharing
directly, and we provide it just for completeness. In Section 7, we show verifiable triple sharing,
followed by the MPC protocol in Section 8.

3 Preliminaries

Notations. Our protocols are defined over a finite field F where |F| > n + t + 1. We denote the
elements by {−t, . . . , 0, 1 . . . , n}. We use ⟨v⟩ to denote the degree-t Shamir-sharing of a value v
among parties in P, and ⟨v⟩i to denote the share held by a party Pi.

3.1 Asynchronous Secure Computation and SUC

We consider an asynchronous network where the parties are P = {P1, . . . , Pn}. The parties are
connected via pairwise ideal private channels. To model asynchrony, messages sent on a channel
can be arbitrarily delayed, however, they are guaranteed to be eventually received after some
finite number of activations of the adversary. In general, the order in which messages are received
might be different from the order in which they were sent. Yet, to simplify notation and improve
readability, we assume that the messages that a party receives from a channel are guaranteed to be
delivered in the order they were sent. This can be achieved using standard techniques – counters,
and acknowledgements, and so we just make this simplification assumption.

13

We prove our protocols in this simplified universally composable setting (SUC), which is a
simplified UC model aimed for modeling secure protocols, formalized by Canetti, Cohen and Lin-
dell [20], and implies UC security. We briefly review the definitions, but many details are left out,
see [20] for additional information.

Main difference from SUC. The SUC model allows the adversary to also drop messages, and
the adversary is not limited to eventually deliver all messages. To model “eventual delivery” (which
is the essence of the asynchronous model), we limit the capabilities of the adversary and quantify
over adversaries that eventually transmit each message in the network (i.e., they do not drop
messages). Formally, any message sent must be delivered after some finite number of activations
of the adversary.

As in SUC, the parties are modeled as interactive Turing machines, with code tapes, input
tapes, outputs tapes, incoming communication tapes, outgoing communication tape, random tape
and work tape.

Communication. In each execution there is an environment Z, an adversary A, participating
parties P1, . . . , Pn, and possibly an ideal functionality F and a simulator S. The parties, adversary
and ideal functionality are connected in a star configuration, where all communication is via an
additional router machine that takes instructions from the adversary. That is, each entity has one
outgoing channel to the router and one incoming channel. When Pi sends a message to Pj , it sends
it to the router, and the message is stored by the router. The router delivers to the adversary
a general information about the message (i.e., “a header” but not the “content”. That is, the
adversary can know the type of the message and its size, but cannot see its content). When the
adversary allows the delivery of the message, the router delivers the message to Pj . As mentioned,
we quantify only over all adversaries that eventually deliver all messages. In particular, even in an
execution with an ideal functionality, communication between the parties and this functionality is
done via the router machine and is subject to (finite) delivery delays imposed by the adversary.

Note that the router machine is also part of the ideal model. When the functionality gives
for instance, some output to party Pj , then this is performed via the router, and the simulator is
notified. Thus, if the adversary, for instance, delays the delivery of the output of some party Pj , we
do not explicitly mention that in the functionality (e.g., “wait to receive OKj from the adversary
and then deliver the output to Pj”), yet it is captured by the model.

Finally, the environment Z communicates with the adversary directly and not via the router. In
particular, the environment can communicate only with the adversary (and it cannot communicate
even with the ideal functionality F). In addition, Z can write inputs to the honest parties’ input
tapes and can read their output tapes.

Execution in the ideal model. In the ideal model we consider an execution of the environment
Z, dummy parties P1, . . . , Pn, the router, a functionality F and a simulator S. In the ideal model
with a functionality F the parties follow a fixed ideal-model protocol. The environment is first
activated with some input z. The environment delivers the inputs to the dummy honest parties,
which forward the inputs to the functionality (recall that this is done via the router, which then
gives some leakage about the message header to S, which can adaptively delay the delivery by any
finite amount). Moreover, Z can also give some initial inputs to the corrupted parties via S. At
a later stage where the dummy parties receive output from the functionality F , they just write
the outputs on their output tapes (and Z can read those outputs). The simulator S can send
messages to Z and to the functionality F . The simulator cannot directly communicate with the

14

participating parties. We stress that in the ideal model, the simulator S interacts with Z in an
online way, and the environment can essentially read the outputs of the honest parties, and query
the simulator (i.e., can see the view of the adversary) at any point of the execution. At the end
of the interaction, Z outputs some bit b. We denote by IdealF ,S,Z(z) an execution of this ideal
model of the functionality F with a simulator S and environment Z, which starts with an input z.

Execution in the real model with protocol π. In the real model, there is no ideal functionality
and the participating parties are Z, the parties P1, . . . , Pn, the router and the real-world adversary
A. The environment is first activated with some input z, and it can give inputs to the honest
parties, as well as some initial inputs to the corrupted parties controlled by the adversary A.
The parties run the protocol π as specified, while the corrupted parties are controlled by A. The
environment can see at any point the outputs of the honest parties, and communicate directly with
the adversary A (and see, without loss of generality, its partial view). At the end of the execution,
the environment outputs some bit b. We denote by Realπ,A,Z(z) an execution of this real model
with the protocol π, the real-world adversary A and the environment Z, which starts with some
input z.

Definition 3.1. We say that an adversary A is an asynchronous adversary if any message that it
receives from the router, it allows its delivery within some finite number of activations of A.

Definition 3.2. Let π be a protocol and let F be an ideal functionality. We say that π securely
computes F in the asynchronous setting if for every real-model asynchronous adversary A there
exists an ideal-world adversary S that runs in polynomial time in A’s running time, such that for
every Z:

{IdealF ,S,Z(z)}z ≡ {Realπ,A,Z(z)}z

3.2 Hybrid Model and Composition

We also consider a hybrid model where the parties follow some protocol π as in the real model but
also have access to some ideal functionality F , and the protocol instructs the parties to send mes-
sages to that ideal functionality and how to process its response. As previously, all communication
is performed via the router. We denote the output of Z from a hybrid execution of π with ideal
calls to F as HybridF

π,A,Z(z), where A,Z, z are as above. We call this as F-hybrid model.
The composition theorem states that if a protocol π realizes F in the G-Hybrid model, and a

protocol ρ realizes G in the plain model, then the protocol πρ realizes F in the plain model. To
clarify, when the parties in π call G in the protocol π, in the protocol πρ the parties will invoke
the code of the protocol ρ. This is a difference between the SUC and UC model, in which in the
UC model, each subprotocol is invoked as a separate interactive Turing machine, which introduces
some extra complexity. See [19] for elaborated discussion.

3.3 Asynchronous Broadcast and Agreement on a Core Set

A-Cast. Bracha’s asynchronous broadcast (A-Cast) protocol [13] allows a sender to send a message
m identically to all the parties at a cost of O(n2ℓ) where ℓ is the length of the message in bits.
If the sender is honest, then all the honest parties eventually terminate with output m. If the
sender is corrupt, and some honest party terminates with the output m′, then all the honest parties
eventually terminate with the same output m′. In our protocol, the cost of A-Cast can be amortized

15

over multiple instances of triple generation with the same dealer. For ease of description, we use
the following representation in our protocols.

• “Pi broadcasts a message m” represents an instance of A-Cast with Pi as the sender.

• “Pj receives a message m from the broadcast of Pi” represents that Pj outputs m in the
instance of A-Cast with Pi as the sender.

Agreement on a Core Set (ACS). The ACS primitive [17] allows parties to agree on a common
set of at least n−t parties Core ⊂ P, such that each party in Core satisfies some predefined property
prop which has the following features:

1. Every honest party eventually satisfies prop.

2. If some honest Pi sees that a party Pj satisfies prop, then eventually all the honest parties
see that Pj satisfies prop.

We model ACS as a functionality below. In the functionality, each party i receives (record, i, k)
commands with k ∈ [n] and sends them to the functionality. Each party is guaranteed to receive at
least n− t such commands and if some honest i receives a (record, i, k) command, every honest j is
guaranteed to eventually receive a (record, j, k) command as well. In addition, parties can receive
receiveS() commands which they forward to the functionality. The functionality then returns a set
S ⊆ [n] as a response. Note that in either case, all parties eventually receive the same set of indices
S ⊆ [n], such that for every k ∈ S at least one honest party received a (record, i, k) command.

Functionality 3.3: Agreement on a Core Set

The functionality is parameterized by a set of corrupted parties I ⊆ [n]. Initialize sets Si ← ∅ for
every i ∈ [n] and S ← ⊥. In addition, initialize returned← 0.

1. (record, i, k): Upon receiving this command from party i, add the index k to Si. Forwards
(record, i, k) to the adversary. If |Si| ≥ n − t then set i as ready. If n − t honest parties are
ready, then set S to be the set of all indices k ∈ [n] such that there exists some ℓ ̸∈ I for
which (record, ℓ, k) was sent.

2. (set, S′): Upon receiving this command from the adversary, check that S′ ⊆ [n] and that
|S′| ≥ n− t. Moreover, check that for every k ∈ S′, there exists some ℓ ̸∈ I for which k ∈ Sℓ

(i.e., Pℓ has submitted (record, ℓ, k)). If all those conditions hold, and returned = 0, then store
S ← S′.

3. receiveS(): Upon receiving this command from some party i, if S ̸= ⊥, set returned ← 1.
Return S.

Looking ahead, we use the ACS primitive to identify a common set of parties with the property
that a verifiable triple sharing instance and a asynchronous VSS instance initiated by a party in
this set must terminate eventually for all the honest parties.

3.4 Finding a STAR in a Graph

Definition 3.4. Let G be a graph over the nodes [n]. We say that a pair (C,D) ⊆ [n]2 such that
C ⊆ D is an (n, t)-STAR in G of the following holds:

16

• |C| ≥ n− 2t,

• |D| ≥ n− t,

• For every c ∈ C and every d ∈ D the edge (c, d) exists in G.

Canetti [15] showed that if a graph has a clique of size n − t, then there exists an efficient
algorithm which always finds an (n, t)-star. For completeness, we describe the algorithm below.

Algorithm 3.5: STAR Algorithm (G,n, t)

• Input: undirected graphs G (over the nodes {1, . . . , n}), a parameter t.

1. Find a maximum matching M in G (i.e., in the complement graph). Let N be the set
of matched nodes (namely, the endpoints of the edges in M).

2. Let T be the set of triangle-heads, i.e., all vertices that are not endpoints of the matching
in G, but they have two neighbors in the matching.

T := {i ̸∈ N | ∃j, ℓ s.t. (j, ℓ) ∈M and (i, j), (i, ℓ) ∈ G} .

Let C := [n] \ (N ∪ T).

3. Let D the set of unmatched nodes that have no neighbors in C in G. That is, the set:

D := {j ̸∈ N | ∀i ∈ C, (i, j) ̸∈ G} .

4. Output: If |C| ≥ n− 2t, and |D| ≥ n− t then output (C,D). Otherwise, output ⊥.

Claim 3.6. Let I be a set of cardinality of size at most t. Let G be an undirected graph over [n]
such that for every j, k ̸∈ I it holds that (j, k) ∈ G. Then, C \ I contains at least n− 2t indices.

Proof. As in [1] we get that the number of parties in (N ∪ T) \ I is at most t. Since C is defined as
[n] \ (N ∪ T), we get that C \ I is at least n− 2t.

Claim 3.7 ([16]). Let G be a graph over n vertices that contains a clique of size n− t. Then, the
algorithm outputs sets (C,D).

3.5 Bivariate Polynomials

We consider bivariate polynomials of degree t+ q in x and degree t in y. Such polynomials can be
written as follows: S(x,y) =

∑t+q
i=0

∑t+q
j=0 ai,jx

iyj . Looking ahead, in Section 4 we use q = t. We
have:

Claim 3.8. Let t be a nonnegative integer, let H ⊂ [n] be a set of cardinality t + 1 and let
(fh(x))h∈H be t + 1 univariate polynomials of degree at most t + q. Then, there exists a unique
bivariate polynomial S(x,y) of degree t + q in x and degree t in y satisfying for every h ∈ H:
S(x, h) = fh(x).

17

3.6 Trivariate Polynomials

We consider trivariate polynomial of degree t + q in variables x,y, z. Such polynomial can be
written as follows:

S(x,y, z) =

t+q∑
i=0

t+q∑
j=0

t+q∑
k=0

ai,j,kx
iyjzk .

Looking ahead, in our protocol we consider q = t/2.

Claim 3.9 (Interpolation). Let t be a nonnegative integer, let H ⊂ [n] be a set of cardinality
t+ q + 1, and let (Sh(x,y))h∈H be t+ q + 1 bivariate polynomials of degree at most t+ q (in both
x,y) each. Then, there exists a unique trivariate polynomial S(x,y, z) of degree t+ q such that for
every h ∈ H:

S(x,y, h) = Sh(x,y)

Proof. Define the trivariate polynomial S(x,y, z) via a generalization of the Lagrange interpolation.
For every h ∈ H, define the trivariate polynomial Sh(x,y, z) as follows:

Sh(x,y, z) = Sh(x,y) ·
∏

j∈H\{h}(z− j)∏
j∈H\{h}(h− j)

.

Note that Sh(x,y, h) = Sh(x,y), and for every j ∈ H \ {h}, Sh(x,y, j) = 0. Moreover, Sh(x,y, z)
is of a trivariate polynomial of degree t+ q. Then, define:

S(x,y, z) =
∑
h∈H

Sh(x,y, h) .

Clearly, for every h ∈ H it holds that S(x,y, h) = Sh(x,y), and S(x,y, z) is a trivariate polynomial
of degree t + q. We now show that S is unique. Assume that there exist two different polynomi-
als S1(x,y, z) and S2(x,y, z) that satisfy the conditions in the claim. Consider the polynomial
R(x,y, z) = S1(x,y, z)− S2(x,y, z). Since S1 and S2 are two trivariate polynomial of degree t+ q
then R is also a trivariate polynomial of degree t + q. Moreover, for every h ∈ H it holds that
R(x,y, h) = 0. For every α, β ∈ F, consider the degree t + q univariate polynomial R(α, β, z).
It holds that R(α, β, h) for all h ∈ H, and thus it equals 0 on t + q + 1 points, i.e., this is the
all-zero univariate polynomial. Moreover, for every α, β, γ ∈ F it holds that R(α, β, γ) = 0, that is,
R(x,y, z) is the all-zero polynomial and thus S1(x,y, z) = S2(x,y, z).

4 Verifiable Packed Bivariate Secret Sharing

In this section, we provide a protocol for packing O(n) secretes in a bivariate polynomial. We
model the packed VSS in Functionality 4.1 below. The protocol is a simplification of the protocol
of [22]: instead of the dealer re-broadcasting sets, we show how to do it with just a single broadcast
message. Moreover, as opposed to [22], we provide full simulation in the SUC framework.

Functionality 4.1: Packed VSS Functionality

The functionality is parameterized by the set of corrupted parties I ⊆ [n].

1. The dealer sends to the functionality its input S(x,y).

18

2. The functionality verifies that S is of degree at most 3t/2 in x and degree at most t in y. If
not, it does not terminate.

3. If the above condition does hold, then the functionality sends to the ideal adversary the shares
S(x, i), S(i,y) for every i ∈ I, and for each honest party Pj it sends S(x, j), S(j,y).

Definition 4.2. For an undirected graph G = (V,E) with V = [n], we say that the four sets
(C,D,G,F) are valid if the following conditions are satisfied:

1. |C| ≥ 2t+ 1, C ⊆ D, and |D|, |G|, |F| ≥ 3t+ 1.

2. For every c ∈ C and d ∈ D it holds that (c, d) is an edge in G.

3. For every g ∈ G it holds that |Γ(g) ∩ C| ≥ 2t+ 1.

4. For every f ∈ F it holds that |Γ(f) ∩ G| ≥ 3t+ 1.

Protocol 4.3: Packed VSS Protocol

• Input: The dealer holds a bivariate polynomial S(x,y) of degree 3t/2 in x and degree t in
y. Other parties hold no input.

• The protocol:

1. (Dealing Shares): The dealer sends (shares, D, i, (fi(x), gi(y)) with fi(x) = S(x, i) and
gi(y) = S(i,y) to each party Pi.

2. (Pairwise Consistency Checks:) Each party Pi does as follows
(a) Upon receiving shares from the dealer, Pi verifies that fi(x) is of degree at most

3t/2 and gi(y) is of degree at most t. If so, Pi sends (exchange, i, j, fi(j), gi(j)) to
every Pj .

(b) Upon receiving shares (exchange, j, i, uj,i, vj,i) from Pj , check that uj,i = gi(j) and
vj,i = fi(j). If so, broadcast the message Good(i, j).

3. (Valid (C,D,G,F) finding:) The dealer does as follows
(a) Initialize an undirected graph G where V = [n]. Upon viewing broadcasted messages

Good(k, ℓ) broadcasted by Pk and Good(ℓ, k) broadcasted by Pℓ, add the edge (k, ℓ)
to G.

(b) Run the STAR algorithm (Algorithm 3.5) to find sets (C,D) ⊂ [n]2 where |C| ≥ 2t+1,
|D| ≥ 3t+ 1, and for every c ∈ C and d ∈ D, the edge (c, d) is in G.

(c) Let G be the set of parties that agree with at least 2t + 1 parties in C. That is,
initialize G = ∅ and add i to G if |Γ(i) ∩ C| ≥ 2t+ 1.

(d) Let F be the set of parties that agree with at least 3t + 1 parties in G. That is,
initialize F = ∅ and add i to F if |Γ(i) ∩ G| ≥ 3t+ 1.

(e) If |C| ≥ 2t+1, C ⊆ D, and |D|, |G|, |F| ≥ 3t+1, then broadcast (C,D,G,F). Otherwise,
continue to listen to Good messages, and repeat.

4. (Verifying (C,D,G,F):) Each party Pi:
(a) Initialize an undirected graph Gi where V = [n]. Upon viewing broadcasted mes-

sages Good(k, ℓ) from Pk and Good(ℓ, k) from Pℓ, add the edge (k, ℓ) to Gi.

(b) Check if (C,D,G,F) is valid for the graph Gi. If not, then continue to listen to Good
message, and with each new edge, re-check validation.

19

5. (Deciding on output) Once (C,D,G,F) are valid for Gi, Pi outputs its share as follows
and terminates subsequently
– (Parties i ∈ G ∩ F) Output (fi(x), gi(y)).

– (Parties i ̸∈ G)
(a) Consider the messages (uj,i, vj,i) from Step 2b for parties j ∈ F, and using

Reed Solomon decoding, try to decode the unique univariate polynomial gi(y)
of degree-t satisfying gi(j) = uj,i for all but t values in F. If there is no unique
decoding, wait to receive additional points (uj,i, vj,i).

(b) Once decoded, send (reconstruct, i, k, gi(k)) to each party Pk for k ̸∈ F.

– (Parties i ̸∈ F):
(a) Consider all points (j, vj,i) obtained from messages (·, vj,i) from Step 2b for

parties j ∈ G, or points (j, vj,i) obtained from messages (reconstruct, j, i, vj,i)
from parties not in G. Use Reed Solomon decoding procedure to decode the
unique univariate polynomial fi(x) of degree 3t/2 satisfying fi(j) = vj,i for all
but t parties. If there is no unique decoding, wait to receive additional points
(uj,i, vj,i) or (reconstruct, ℓ, i, vℓ,i).

– Once both fi(x) (for i ̸∈ F) and gi(y) (for i ̸∈ G) were reconstructed, then terminate
and output (fi(x), gi(y)).

Theorem 4.4. Let n ≥ 4t + 1. Protocol 4.3 securely computes Functionality 4.1 in the pres-
ence of a malicious adversary controlling at most t parties. It has a communication complexity
of O(n2 log n) bits over point-to-point channels and O(n2 log n) bits of broadcast for sharing O(n)
values simultaneously. Each party broadcasts at most O(n log n) bits.

Before showing full simulatability, we have the following two claims regarding the protocol:
validity and binding. We will use those claims in the proof of theorem 4.4 when we show full
simulation.

Claim 4.5 (Validity). If the dealer is honest, then the protocol eventually terminates, and each
honest party Pi output S(x, i), S(i,y), where S(x,y) is the input of the dealer.

Proof. Eventually, each honest Pj broadcast Good(j, ℓ) for all honest parties ℓ ̸∈ I. We show that
the dealer must eventually broadcast (C,D,G,F). Consider time T in which all Good messages
between pairs of honest parties were received by the dealer. There are two cases to consider:

Case I – The dealer broadcast (C,D,G, F) before time T . In that case, the dealer terminates
before time T . Claim 4.6 below shows that all honest parties output shares that lie on the same
bivariate polynomial. Moreover, this polynomial is determined by the set of honest parties in C,
which is the bivariate polynomial S(x,y) that the dealer holds.

Case II – The dealer did not broadcast (C,D,G, F) before time T . At time T , the dealer
is guaranteed to find an (n, t)-star (C,D) such that |C| ≥ n− 2t ≥ 2t+ 1, and |D| ≥ n− t ≥ 3t+ 1
(see Claim 3.6). Moreover, C contains at least 2t+1 honest parties. Since G is defined as the set of
parties that agree with at least 2t+ 1 in C, we get that the set G must contain all honest parties.
Moreover, the set F is defined as the set of parties that agree with at least 3t + 1 parties in G.
Since G contains all honest parties (i.e., at least 3t+1 parties), all honest parties are part of F. We
conclude that the dealer finds and eventually broadcasts (C,D,G,F).

20

All honest parties will eventually receive the shares from the dealer, and each pair of honest
parties Pk, Pℓ will eventually broadcast the messages Good(k, ℓ) and Good(ℓ, k). Therefore, the
graph of the dealer G, eventually contains a clique of all honest parties (i.e., of 3t+ 1). Once this
occurs, each honest party is both in G and F, and therefore output the same shares as received from
the dealer. Since the dealer chose all polynomials to lie on the same bivariate polynomial S(x,y),
we have that (fi(x), gi(y)) = ((S(x, i), S(i,y)).

Claim 4.6 (Binding). When one honest party terminates, all honest parties will eventually ter-
minate with shares on the same bivariate polynomial S(x,y). The bivariate polynomial S(x,y) is
interpolated from the shares that the lexicographically first t + 1 honest parties in C received from
the dealer, where C is defined as the set that the dealer broadcasts.

Proof. Consider the first honest party that terminates, say some Pj∗ . If Pj∗ terminates, then the
dealer must have broadcasted sets (C,D,G,F), and Pj∗ must have validated the property in its local
graph.

Let H ⊆ C be a set of some t+ 1 honest parties in C. Since |C| ≥ 2t+ 1, there must exist such
a set H. Consider the unique bivariate polynomial S(x,y) satisfying S(x, h) = fh(x) for every
h ∈ H, see Claim 3.8. At this point:

1. For every honest d ∈ D it holds that gd(y) = S(d, y). Specifically, gd(y), S(d,y) are two
univariate polynomials of degree-t, and for every h ∈ H it holds that gd(h) = fh(d) = S(d, h),
as otherwise the edge (d, h) does not exist in G. Since the two polynomials agree on t + 1
points, they are the same polynomial.

2. For every honest c ∈ C it holds that fc(x) = S(x, c). This trivially holds for the
parties in H ⊆ C. We show that this also holds for the other honest parties in C. Specifically,
for every honest c ∈ C and d ∈ D, Pc and Pd checked that fc(d) = gd(c). Therefore, the two
degree-3t/2 univariate polynomials, fc(x) and S(x, c) agree on 2t+1 points, and therefore it
holds that fc(x) = S(x, c).

3. For every honest j ∈ G it holds that gj(y) = S(y, j). Each party in G agrees with at
least 2t + 1 parties in C. Therefore, Pj agrees with at least t + 1 honest parties in C. Thus,
the two polynomials gj(y) and S(y, j) must agree on t+1 points (i.e., each such honest c ∈ C
that agrees with Pj exchanged gj(c) and fc(j) and it holds that gj(c) = fc(j) = S(c, j)). As
a result, gj(y) = S(y, j).

4. For every honest j ∈ F it holds that fj(x) = S(x, j). Each party in F agrees with at
least 3t+ 1 parties in G. Since |G| ≥ 3t+ 1, we get that Pj agrees with at least 2t+ 1 honest
parties in G. For each such Pj and an honest k ∈ G it holds that fj(k) = gk(j) = S(j, k).
We get that two degree-3t/2 polynomials fj(x) and S(x, j) must agree on 2t+ 1 points, and
therefore fj(x) = S(x, j).

Since all Good messages are broadcasted, each honest party will eventually see the same edges as
the first honest party that terminated, Pj∗ , and the set (C,D,G,F) will also be validated by each
one of the honest parties.

We get that all honest parties j ∈ F hold a polynomial fj(x) = S(x, j). Moreover, all honest
parties j ∈ G holds a polynomial gj(y) = S(j,y). If j ∈ G ∩ F, then it has both (fj(x), gj(y)) and
it can just terminate. For parties that do not hold both polynomials:

1. If j ̸∈ G, then it considers all the points that it received from parties in F in Step 2b. Those
points lie on the polynomial S(j,y). Since G contains 3t + 1 parties, it contains at least

21

2t + 1 honest parties. Moreover, Pj might receive at most t incorrect points. Therefore,
the decoding algorithm must eventually have a unique decoding, to the polynomial S(j,y).
Therefore, Pj eventually obtains gj(y) = S(j,y). At that point it sends (reconstruct, j, gj(k))
for every k ̸∈ F, where gj(k) = S(j, k).

2. If j ̸∈ F, then it considers all the points from parties in G as received from Step 2b, and in
addition it considers the points from parties not in G, after they reconstruct their correct g
polynomial. As a result, Pj is guaranteed to eventually receive 3t + 1 correct points on the
polynomial S(x, j), and it would have at most t incorrect points. Reed Solomon decoding is
guaranteed to succeed.

We conclude that eventually, all honest parties terminate and output shares (fi(x), gi(y)) =
(S(x, i), S(i,y)).

Proof. We separate the analysis to the case of an honest dealer and a corrupted dealer.

Case I – the case of an honest dealer. We present the simulator S:

1. Upon activation, the simulator invokes the adversary A.
2. The simulator receives from the functionality the shares (fi(x), gi(y)) = S(x, i), S(i,y) for

every i ∈ I. Moreover, it receives requests from the router to deliver the outputs of the
functionality to the honest parties. The simulator will allow to deliver the outputs as the
protocol proceed.

3. S sends to the adversary A the message (shares, D, i, fi(x), gi(y)) for every i ∈ I as coming
from the dealer.

4. Send to the adversary A all delivery requests (shares, D, j) for j ̸∈ I as coming from the
router.

5. Once A delivers (shares, D, j), simulate Pj sending to each corrupted party Pi the message
(exchange, j, i, fj(i), gj(i))) where (fj(i), gj(i)) = (S(j, i), S(i, j)) = (gi(j), fi(j)). Moreover,
simulate Pj sending (exchange, j, k) for every k ̸∈ I.

6. Once A delivers the message (exchange, j, k), simulate Pk broadcasting Good(k, j).

7. Once the adversary sends (exchange, i, j, ui,j , vi,j), verify that ui,j = fi(j) and vi,j = gi(j). If
so (and Pj already received its shares from the dealer), simulate Pj broadcasting Good(j, i).

8. Initialize an undirected graph G over nodes [n]. For each message Good(j, k) broadcasted (by
the adversary or a simulated honest party), if the message Good(k, j) was also delivered to the
dealer, then add the edge (j, k) to G. Check whether the graph G contains sets (C,D,G,F)
as in the protocol. If so, simulate the dealer broadcasting (C,D,G,F).

9. For each party Pj , simulate the following:

(a) Pj initializes a graph Gi. Once A delivers the broadcasted messages Good(j, k) and
Good(k, j), add the edge (k, j) to Gi. Moreover, once the adversary delivers the broad-
casted message (C,D,G,F) to Pj , check that (C,D,G,F) is valid in Gi. If not, continue
to listen to addition Good messages.

(b) Once (C,D,G,F) is valid for Pj , if j ∈ G∩ F, then allow the router to deliver the output
of party Pj from the ideal functionality the the dummy party.

(c) If j ̸∈ G, then wait until the adversary delivers additional (exchange, k, j) messages for
honest k ̸∈ I. Moreover, the simulator can identify the number of incorrect shares that
the adversary sent to Pj via (exchange, i, j, ·, ·). Let t′ ≤ t be that number of incorrect

22

shares. Once the adversary allows receiving t′ + t + 1+ shares from F \ I, then Pj can
reconstruct its polynomial gj(y). Simulate Pj sending (reconstruct, j, k, gj(k)) for each
honest party Pk for k ̸∈ F by giving the adversary A the messages (reconstruct, j, k) as
coming from the router.

(d) If j ̸∈ F, then continue to listen to all messages (exchange, k, i) delivered from the ad-
versary, and all (reconstruct, ℓ, i). Moreover, the simulate can identify the number of
incorrect sub-shares that the adversary had sent Pj via (exchange, i, j) messages. Let t′

be the number of incorrect shares. Once the adversary delivers to Pj exactly t′+3t/2+1
shares from honest parties, then Pj can reconstruct fj(x).

(e) Once Pj can reconstruct (if needed) fj(x) and gj(y), the simulator S allows the router
in the ideal model to deliver the output of Pj from the functionality to Pj .

10. The adversary must eventually allow delivering all messages, in then each simulated honest
party Pj eventually delivers all messages sent from the functionality to the honest parties in
the ideal execution.

We now show that the view of the environment Z is the same in both executions. From
inspection, it is easy to see that the view of the adversary A is the same in both execution. In
particular, this is due to the fact that the protocol and the simulation are deterministic, and that
the messages of the honest parties to the corrupted parties can be simulated from the shares of the
corrupted parties. Our goal is to show now that the outputs of the parties is the same between
the two executions (and in particular, each party receives its output at the same “time” in both
executions). Regarding the stage in which each party receives its output, we remark that this is
determined by the adversary and how it instructs the router in the real world, or the simulated
router in the ideal world (in which the simulator then forwards the request to deliver to the real
router in the ideal world).

Therefore, it suffices to show that the outputs of the honest parties are the same in both
executions. Claim 4.5 shows that in the real world, each honest party Pj eventually receives shares
S(x, j), S(j,y), while the scheduling is determined by the adversary. In the ideal, the trusted
party delivers to each honest party Pj the shares S(x, j), S(j,y). The adversary A decides on the
scheduling (via S and the router), but since the view of A is exactly the same in the real and ideal,
the scheduling is exactly the same.

Case II - the case of a corrupted dealer. We provide the simulator S:

1. Upon activation, the simulator activates the adversary A.
2. Since the protocol is deterministic and the honest parties have no inputs, the simulator can

simulate all honest parties (and the router) in an execution with A. This means that it
listens to the messages A sends to the honest parties, and it can also simulate the messages
between honest parties (where A receives notifications from the simulated router). Note that
the simulation might not terminate.

3. When the first honest party Pj∗ terminates, then all honest parties will eventually terminate
(see Claim 4.6). Consider the set C that dealer has broadcasted in the simulated execution.
Interpolate the polynomial S(x,y) according to the lexicographically first t+1 honest parties
in C, similarly to the binding property in the proof of Claim 4.6. Send to the functionality
the polynomial S(x,y). It is guaranteed that S has degree at most 2t in x and degree at
most t in y.

23

4. The functionality delivers to each honest party Pj . The simulator instructs the router to
deliver the output to Pj∗ .

5. It continues to simulate the protocol to the adversary, where whenever a simulated honest
party Pj obtains an output in the simulated protocol, then the simulator S delivers to the
router to send the output to the dummy party Pj in the ideal.

6. Eventually, all honest parties will receive output in the simulated execution. The simulator
then terminates.

Clearly, the view of the adversary is exactly the same in the real and ideal executions, as the honest
parties have no inputs and are deterministic. If some honest party terminates, then as follows
from the proof of Claim 4.6, all honest parties eventually output shares that all lie on a bivariate
polynomial that is defined from the lexicographically first t+1 honest parties in C. We note that the
environment Z sees that the outputs at the same activation in the real and ideal. Specifically, upon
the activation in which the first honest party Pj∗ terminates, in the ideal execution the simulator
extracts the input to send to the trusted party, and it delivers the output to Pj∗ in the ideal. Since
the protocol proceeds in the same way in both executions, parties receive their outputs at the same
activations.

5 Verifying Product Relation

In this section, we show how to realize the product-relation verification functionality. Assume that
a dealer owns and preshares O(n2) Shamir-sharings of triples, such that each of the triples are
supposed to satisfy a product relation. That is, for a triple (a, b, c), c must be equal to ab. The
parties input shares of those shared triples to the functionality, and the functionality checks that
shares define triples satisfying product relations.

Functionality 5.1: Verifying Product Relation

The functionality is parameterized by a set of corrupted parties I ⊆ [n].

1. Let U = [(t/2 + 1)2]. Each party Pj sends to the functionality a set of points (auj , b
u
j , c

u
j)u∈U .

2. For every u ∈ U , the functionality reconstructs the unique degree-t univariate polynomials
Au(x), Bu(x), Cu(x) satisfying

Au(j) = auj , Bu(j) = buj , Cu(j) = cuj .

If the dealer is honest, then the dealer also sends Au(x), Bu(x), Cu(x).

3. If the dealer is honest, then give the adversary the shares Au(i), Bu(i) and Cu(i) for every i ∈
I. If the dealer is corrupted, then give the adversary the reconstructed Au(x), Bu(x), Cu(x).

4. The functionality verifies that for every u ∈ U it holds that

Au(0) ·Bu(0) = Cu(0).

If yes, then it sends OK to all parties and halts. Otherwise, the functionality never terminates.

24

5.1 Trivariate Polynomial Verification – Functionality

We overviewed the ZK property in Section 2.4. Towards realizing Functionality 5.1, we introduce
an aiding functionality. To recall, we write U = V × V where V = {0, . . . , t/2}, and the dealer
embeds the coefficients of the polynomials A(β,γ), B(β,γ), C(β,γ) in four trivariate polynomials. We
abstract some computations that the parties perform to improve readability by considering general
predicates. Specifically:

1. Each party Pi also receives from the dealer the bivariate polynomial Ti(x, z) as part of its
share; each party Pj computes from its share sharej a univariate polynomial that is supposed
to be Ti(x, j) by applying some linear combination over its shares. We abstract this linear
combination as “linear circuit”, formally defined below. Note that the same computation
that the dealer performs on the trivariate shares to obtain Ti(x,y), each party performs on
its share sharej to obtain Ti(x, j).

2. Each party Pi also checks that for every (β, γ) it holds that Ti(−β,−γ) = a
(β,γ)
i ·b(β,γ)i −c

(β,γ)
i .

We abstract this check as an “external validity” predicate that Pi enters as input.

Linear circuits. We consider a circuit Lj that receives as an input a bivariate polynomial F (x,y)
and it has the following structure:

1. Evaluate F (x,y) on several constants y = α1, . . . , αk in the field. The results are univariate
polynomials f1(x) = F (x, α1), . . . , fk(x) = F (x, αk).

2. Output the univariate polynomial fLj (x) =
∑k

ℓ=1 λℓ · fℓ(x) for some constants λ1, . . . , λk.
That is, output a fixed linear combination of f1(x), . . . , fk(x).

We write fLj(F)(x) = Lj(F (x,y)). We also evaluate the circuit Lj on a trivariate polynomial
F(x,y, z). In that case:

1. Evaluate F(x,y, z) on the same constants y = α1, . . . , αk. The results are bivariate polyno-
mials (F1(x, z), . . . , Fk(x, z)) = (F(x, α1, z), . . . ,F(x, αk, z)).

2. Output the bivariate polynomial which is a fixed linear combination FLj (x, z) :=
∑k

ℓ=1 λℓ ·
Fℓ(x, z).

We write FLj(F)(x,y) = Lj(F(x,y, z)). For every i ∈ [n], consider Fi(x,y) = F(x,y, i), and let
fLj(Fi)(x) = Lj(Fi(x,y)). Then clearly it holds that

fLj(Fi)(x) = Lj(Fi(x,y)) = Lj(F(x,y, i)) = FLj(F)(x, i) .

The specific linear circuit that we use is given below in Circuit 5.2.

External validity. The predicate ExternalValidityj receives as input the share of Pj and outputs
0 or 1. The exact predicate that we use is given in Algorithm 5.3.

Linear Circuit 5.2 (The circuit Li:).

• Input: Trivariate polynomials S1,S2,S3,S4.

1. For r ∈ [1, . . . , 4], evaluate Sr(x,y, z) on the constants y = −1, . . . ,−t/2.
2. Obtain Sr(x,−k, z) for k ∈ [1, . . . , t/2] and r ∈ [1, . . . , 4].

3. Define Ti(x, z) :=
∑4

r=1

∑t/2
k=1 i

(r−1)·(t/2)+k · Sr(x,−k, z).

25

• Output: The bivariate polynomial Ti(x, z).

Algorithm 5.3: The predicate ExternalValidityi

• Input: The share sharei of Pi, which consists of shares on each one of the polynomials
S1, . . . ,S4 and bivariate polynomial Ti(x, z).

• Parameters: For every (β, γ) ∈ V×V the algorithm is hardwired with values a
(β,γ)
i , b

(β,γ)
i ,

c
(β,γ)
i ∈ F.

• The algorithm: Output 1 iff for every β, γ ∈ V it holds that:

Ti(−β,−γ) = a
(β,γ)
i · b(β,γ)i − c

(β,γ)
i .

We are now ready to provide the functionality which the product-relation verification protocol
uses as its main building block:

Functionality 5.4: Trivariate Polynomial Verification

The functionality is parameterized by (1) The set of corrupted parties I ⊆ [n]; (2) Some linear
circuits L1, . . . , Ln as defined above. The functionality works as follows:

1. The dealer sends four trivariate polynomials S1(x,y, z), . . . ,S4(x,y, z).

2. Define the share of each party Pi to be

sharei =
(
(Sr(x,y, i),Sr(x, i, z),Sr(x,y, i))r∈[4] , Li(S1,S2,S3,S4)

)
.

If the dealer is honest, then for every i ∈ I send Pi the share sharei.

3. The honest parties send to the functionality their external validity predicates ExternalValidityj
to the functionality. Each ExternalValidityj takes as input sharej and outputs 0 or 1.

4. If the dealer is corrupted, then send (ExternalValidityj)j ̸∈I to the adversary.

5. If each one of the four trivariate polynomials S1, . . . ,S4 is of degree t+ t/2 in each one of the
three variables, and ExternalValidityj(sharej) = 1 holds for at least 2t+1 honest parties, then
send OK to all parties and halt. Otherwise, the functionality does not terminate.

5.2 Verifying Product Relation using Trivariate Polynomial

We now proceed to show how to implement Functionality 5.1, using the trivariate sharing as a
building block (i.e., Functionality 5.4). We then provide the theorem statement which we prove
subsequently.

Protocol 5.5: Verifying the Product Relation

• Input: The dealer holds A(β,γ)(x), B(β,γ)(x), C(β,γ)(x) for every (β, γ) ∈ V × V . Each party
Pi holds the points A(β,γ)(i), B(β,γ)(i), C(β,γ)(i) for every (β, γ) ∈ V × V .

• The protocol:

1. The dealer computes E(β,γ)(x) = A(β,γ)(x)·B(β,γ)(x)−C(β,γ)(x) for every (β, γ) ∈ V ×V
and define the coefficients e

(β,γ)
1 , . . . , e

(β,γ)
2t .

26

2. The dealer chooses four trivariate polynomials S1, . . . ,S4 of degree t + t/2 in all three

variables uniformly at random while embedding the coefficients e
(β,γ)
1 , . . . , e

(β,γ)
2t as de-

scribed in the text in Section 2.4.

3. The parties invoke Functionality 5.4 where the dealer inputs S1, . . . ,S4 and each party
Pi (eventually) inputs its private ExternalValidityi as defined in Algorithm 5.3. The
functionality is parameterized by the linear circuits L1, . . . , Ln, each is defined as in
Circuit 5.2.

4. Each party Pi: upon receiving an output OK from Functionality 5.4, then terminate and
output OK.

Theorem 5.6. Let n ≥ 4t + 1. Protocol 5.5 securely computes Functionality 5.1 in the presence
of a malicious adversary controlling at most t parties. It requires communication of O(n3 log n)
bits over point-to-point channels and O(n2 log n) bits of broadcast. Each party broadcasts at most
O(n log n) bits.

Proof. We show separately the case of an honest dealer and of a corrupted dealer.

The case of an honest dealer.

1. The simulator invokes the adversary A.
2. The simulator receives from the functionality the shares Au(i), Bu(i), Cu(i) for every i ∈ I.

3. It chooses trivariate polynomials S1(x,y, z), . . . ,S4(x,y, z) uniformly at random under the
constraints that for every i ∈ I:

4∑
r=1

t/2∑
k=1

i(r−1)·(t/2)+k · Sr(−β,−k,−γ) = A(β,γ)(i) ·B(β,γ)(i)− C(β,γ)(i) .

Note that this imposes (t/2+1)2 · |I| ≤ (t/2+1)2 ·t total constraints, while in each polynomial
we pack up to (t/2 + 1)3 secrets.

4. Simulate the invocation of Functionality 5.4: for every i ∈ I, give the adversary

sharei =
(
(Sr(x,y, i),Sr(x, i, z),Sr(x,y, i))r∈[4], Li(S1,S2,S3,S4)

)
5. It simulates the functionality returning OK. Whenever the adversary delivers the message OK

to party Pj in the simulated protocol, the simulator delivers the output of Functionality 5.1
to party Pj in the ideal world.

We first show that the output of the honest parties is identical in the real and ideal exe-
cutions. In the real execution, since the dealer is honest, it always holds valid polynomials
A(β,γ)(x), B(β,γ)(x), C(β,γ)(x) each of degree-t such that A(β,γ)(0) · B(β,γ)(0) = C(β,γ)(0) holds for
every (β, γ) ∈ V ×V . Moreover, it chooses the the trivariate polynomials S1, . . . ,S4 such that they
satisfy the conditions of Functionality 5.4. Specifically, S1, . . . ,S4 are of the degree t+ t/2 in each
of the three variables and ExternalValidityj(sharej) = 1 holds for all the honest parties. Hence, the
functionality always returns OK to all the parties. Consequently, honest parties always output OK
in the real execution. In the ideal execution, all honest parties hold shares on the valid degree-t
polynomials A(β,γ)(x), B(β,γ)(x), C(β,γ)(x) for every (β, γ) ∈ V ×V shared by the dealer, with which

27

they invoke the Functionality 5.1. Since the dealer is honest, for each (β, γ) ∈ V × V it holds that
A(β,γ)(0) ·B(β,γ)(0) = C(β,γ)(0). The output of the functionality is fully determined by the honest
parties’ inputs and hence it always returns OK to all the honest parties. It thus remains to show
that the view of the adversary is identically distributed in the real and ideal executions.

Below, we prove the claim for a single trivariate polynomial to ease the notations. However,
the claim easily extends to the case of four trivariate polynomials as used in the actual protocol.

Claim 5.7. Let E1 and E2 be any arbitrary sets of (t/2 + 1)× t/2× (t/2 + 1) field elements each
and let I ⊂ [n] be a set of cardinality at most t. Then, under the constraint that for each i ∈ I

and (β, γ) ∈ V ×V ,
∑t/2

k=1 i
k ·E1(β, k, γ) =

∑t/2
k=1 i

k ·E2(β, k, γ), the following two distributions are
identical:

Process I: Choose a random trivariate polynomial F(x,y, z) such that F(−β,−k,−γ) =
E1(β, k, γ) for every β, γ ∈ {0, . . . , t/2} and every k ∈ {1, . . . , t/2}. Output (i,F(x,y, i),F(x, i, z),

F(i,y, z),
∑t/2

k=1 i
k · F(x,−k, z)) for every i ∈ I.

Process II: Choose a random trivariate polynomial F′(x,y, z) such that F′(−β,−k,−γ) =
E2(β, k, γ) for every β, γ ∈ {0, . . . , t/2} and every k ∈ {1, . . . , t/2}. Output (i,F′(x,y, i),F′(x, i, z),

F′(i,y, z),
∑t/2

k=1 i
k · F′(x,−k, z)) for every i ∈ I.

Proof. We show that the probability distributions {{(i,F(x,y, i),F(x, i, z),F(i,y, z), Ti(x, z))}i∈I}
corresponding to Process I and {{(i,F′(x,y, i),F′(x, i, z),F′(i,y, z), T ′

i (x, z))}i∈I} corresponding
to Process II are identical. Towards that, let S and S′ denote the probability ensembles corre-
sponding to Process I and Process II respectively. We thus show that S ≡ S′. For this, we
show that given any set of tuple of bivariate polynomials with degree 3t/2 in both variables, say
Z = {Qi(x,y),Wi(x, z), Ri(y, z), Ti(x, z)}i∈I that satisfy Definition 5.8, the number of trivariate
polynomials in support of S that are consistent with Z are the same as the number of polynomials
in support of S′.

Note that if the set Z does not satisfy Definition 5.8, then there does not exist any trivariate
polynomial that is in support of S or S′. Now, consider a set Z that satisfies Definition 5.8. For
simplicity, consider the case when |I| = t. Choose a set, say E, of (t/2 + 1)2 elements selected
uniformly at random from F. Note that E1 ∪ E together with Z defines a unique trivariate poly-
nomial S(x,y, z) as follows. For each k ∈ {0, . . . , t/2}, construct W−k(x, z) of degree-3t/2 in each
variable such that W0(−β,−γ) = E(β, γ) and W−k(−β,−γ) = E1(β, k, γ). Note that this defines
(t/2 + 1)2 points on each W−k(x,y). Moreover, for every i ∈ I, we set W−k(x, i) = Qi(x,−k) and
W−k(i, z) = Ri(−k, z). This defines 2t(t+1) more points on each W−k(x, z). Thus, in total we have
(t+ t/2+1)2 points defined on each W−k(x, z) which defines the polynomial completely. Given the
t polynomials Wi(x, z) for every i ∈ I and t/2+1 polynomials W−k(x,y) for every k ∈ {0, . . . , t/2},
these define a unique polynomial F(x,y, z) due to Claim 3.9. The same argument holds true for
the case of the set E2 ∪ E and the corresponding unique polynomial F′(x,y, z). Hence, the sup-
port for S and S′ is equal. For the case when |I| < t, we can view process I (respectively process
II) as first choosing t − |I| polynomials Wj(x, z) (respectively W ′

j(x, z)) for some j ̸∈ I uniformly
at random under the constraint that Z together with {Wj(x, z)} (respectively {W ′

j(x, z)}) satisfy
Definition 5.8. Following this, the analysis is same as the case with |I| = t.

The case of a corrupted dealer.

1. The simulator invokes the adversary A.

28

2. The simulator receives from the functionality the polynomialsA(β,γ)(x), B(β,γ)(x) and C(β,γ)(x)
for every (β, γ) ∈ V × V .

3. It simulates the invocation of Functionality 5.4: It receives from the adversary four trivariate
polynomials S1,S2,S3,S4.

4. It generates the external validity functions ExternalValidityj for every j ̸∈ I with a
(β,γ)
j =

A(β,γ)(j), b
(β,γ)
j = B(β,γ)(j) and c

(β,γ)
j = C(β,γ)(j). It sends to the adversary the predicates

ExternalValidityj for every j ̸∈ I as in Functionality 5.4.

5. Define Ti(x, z) = Li(S1,S2,S3,S4) where Li is defined as in Circuit 5.2.

6. Check that each polynomial Sr for r ∈ [4] is of degree t + t/2 in each one of the three
variables. Moreover, if ExternalValidityj holds for at least 2t+1 honest parties, then simulate
Functionality 5.4 sending output OK. Otherwise, do not terminate.

7. Whenever the adversary delivers the message OK to party Pj in the simulated protocol, the
simulator delivers the output of Functionality 5.1 to party Pj in the ideal world.

Clearly the view of the adversary is the same in both executions. We now prove that if Function-
ality 5.4 returns OK, then Functionality 5.1 also return OK. That is, we claim that once A sent
polynomials Sr for r ∈ [4] for which ExternalValidityj holds for at least 2t+ 1 parties, then it holds

that A(β,γ)(0) ·B(β,γ)(0) = C(β,γ)(0) for every (β, γ) ∈ V ×V . To see that, fix some (β, γ). Consider
the following polynomial:

Y(β,γ)(x) :=
4∑

r=1

t/2∑
k=1

x(r−1)·(t/2)+k · Sr(−β,−k,−γ)

= e1x+ . . .+ e2tx
2t

where each eℓ directly corresponds to some Sr(−β,−k,−γ). This is a univariate polynomial where
the only variable is x and is of of degree 2t. Moreover, Y(β,γ)(j) = Tj(−β,−γ), where Tj(x, z) =
Lj(S1, . . . ,S4) as defined in Step 5 of the simulation. Furthermore, consider the polynomial:

E(β,γ)(x) = A(β,γ)(x) ·B(β,γ)(x)− C(β,γ)(x) .

This is also a univariate polynomial of degree-2t. From the external validity property, for at least
2t+ 1 honest parties J ⊆ [n] it holds that

E(β,γ)(j) = a
(β,γ)
j · b(β,γ)j − c

(β,γ)
j = Tj(−β,−γ) = Y(β,γ)(j) .

Therefore, the two degree-2t polynomials E(β,γ)(x), Y(β,γ)(x) agree. Since the constant term of the

polynomial Y(β,γ)(x) is 0, we get that the constant term of E(β,γ)(x) is 0. Therefore it holds that

E(β,γ)(0) = A(β,γ)(0) ·B(β,γ)(0)− C(β,γ)(0) = 0 ,

and therefore A(β,γ)(0) ·B(β,γ)(0) = C(β,γ)(0) for every (β, γ) ∈ V × V .

5.3 Trivariate Polynomial Verification – Protocol

In the remainder of this sub-section, we show how to implement Functionality 5.4. To ease notations,
we show how to implement the functionality with general linear functions L1, . . . , Ln and general

29

ExternalValidityj . Moreover, we assume that the dealer sends just one trivariate polynomial S
instead of four; generalizing for the case of four polynomial is straightforward. This construction
is essentially our asynchronous weak-binding trivariate secret sharing, for which we provided an
extensive overview in Section 2.2.

Definition 5.8. We say that the share that Pi received from the dealer

sharei = (Qi(x,y), Wi(x, z), Ri(y, z), Ti(x, z))

(= (S(x,y, i), S(x, i, z), S(i,y, z), Li(S(x,y, z)))

is consistent with an exchange sub-share message mj→i that Pj sends to Pi,

mj→i :=
(
exchange, j, i, f

Qj

i (x), g
Qj

i (y), f
Wj

i (x), g
Wj

i (z), f
Rj

i (y), g
Rj

i (z), tLi(Qj)(x)
)

,

denoted as consistent(sharei,mj→i) = 1, if the following conditions hold:

f
Qj

i (x) = Wi(x, j) (= S(x, i, j)), g
Qj

i (y) = Ri(y, j) (= S(i,y, j)),

f
Wj

i (x) = Qi(x, j) (= S(x, j, i)), g
Wj

i (z) = Ri(j, z) (= S(i, j, z)),

f
Rj

i (y) = Qi(j,y) (= S(j,y, i)), g
Rj

i (z) = Wi(j, z) (= S(j, i, z)) ,

and,
tLi(Qj)(x) = Ti(x, j)

Protocol 5.9: Trivariate Polynomial Verification

Input: The input of the dealer is some trivariate polynomial S(x,y, z). The input of each party
Pj is some predicate ExternalValidityj .

Public parameters: The protocol is parameterized by linear circuits L1, . . . , Ln.

The protocol:

1. (Share Distribution) For each party Pi, the dealer sends the share:

(share, i, S(x,y, i), S(x, i, z), S(i,y, z), Li(S(x,y, z))

2. (Exchange sub-share) Each party Pi:

(a) Upon receiving (share, i, Qi(x,y),Wi(x, z), Ri(y, z), Ti(x, z)) from the dealer, check if:
ExternalValidityi (Qi(x,y),Wi(x, z), Ri(y, z), Ti(x, z)) = 1.

(b) If the above condition holds, then for every Pj define the following seven polynomials:

fQi
j (x)

def
= Qi(x, j) (= S(x, j, i)) , gQi

j (y)
def
= Qi(j,y) (= S(j,y, i)) ,

fWi
j (x)

def
= Wi(x, j) (= S(x, i, j)) , gWi

j (z)
def
= Wi(j, z) (= S(j, i, z)) ,

fRi
j (y)

def
= Ri(y, j) (= S(i,y, j)) , gRi

j (z)
def
= Ri(j, z) (= S(i, j, z)) ,

and
tLj(Qi)(x) = Lj(Qi(x,y)) .

Then, define the message:

mi→j :=
(
exchange, i, j, fQi

j (x), gQi

j (y), fRi
j (x), gRi

j (z), fWi
j (y), gWi

j (z), tLj(Qi)(x)
)

.

30

(c) Verify that consistent(sharei,mi→i) = 1 (as per Definition 5.8), i.e., the share that Pi

received from the dealer is consistent with itself.

(d) If all the above conditions hold, then Pi sends to each Pj its sub-share mi→j .

(e) Upon receiving a message mj→i from Pj , verify that it is consistent with sharei (i.e.,
consistent(sharei,mj→i) = 1), where sharei received from the dealer and consistent is as
Definition 5.8. If so, then broadcast Good(i, j).

3. (Identifying Star or Clique) The dealer does as follows. Initalize a dynamic undirected
graph G = (V,E) with V = [n]. Upon receiving broadcasted messages Good(i, j) from Pi and
Good(j, i) from Pj , add the edge (i, j) to E. Run Algorithm 5.10 and if the output is not ⊥
then broadcast the output and output OK. Otherwise, continue to listen to Good messages and
repeat.

4. (Verifying Star or Clique) Each party Pi:

(a) Initialize an undirected graph Gi = (Vi, Ei) with Vi = [n]. Upon receiving broadcasted
messages Good(i, j) from Pi and Good(j, i) from Pj , add the edge (i, j) to Ei.
i. If (Dense,C) is received from the broadcast of the dealer, validate that |C| ≥ n− t, and

that each node i ∈ C has a degree at least 3t + t/2 + 1 in Gi. If the conditions hold,
output OK.

ii. If (BigStar,C,D) is received from the broadcast of the dealer, Pi verifies that C ⊂ D,
|C| ≥ 2t+ t/2 + 1, |D| ≥ n− t and that for every c ∈ C and d ∈ D the edge (c, d) is in
Gi. If the conditions hold, then output OK.

(b) Otherwise, continue to listen to Good messages, and with each message it updates the graph
Gi and repeats the above checks.

Algorithm 5.10: Finding a BigStar or a Clique

• Input: An undirected graph G over [n].

1. Initialize a set C = ∅.
2. For each node i that has degree higher than 3t+ t/2 + 1, add i to C.

3. If |C| ≥ 3t+ 1 then output (Dense,C).

4. Otherwise, let C = [n] \ C, i.e., the set of all nodes with degree less than 3t + t/2 + 1.
For each node i ∈ C:
(a) Consider the graph G[Γ(i)] which consists of all vertices in G that have an edge

to i (including i). If G[Γ(i)] consists of less than 3t + t/2 + 1 vertices, then add
arbitrary vertices in G (say the lexicographically first one) to have a graph with
exactly 3t+ t/2 + 1 vertices.

(b) Run STAR algorithm on input (G[Γ(i)], n′, t/2) where n′ is the number of vertices in
G[Γ(i)] (i.e., at least 3t+t/2+1). If the output is (C,D), then output (BigStar,C,D).

5. Otherwise, output ⊥.

Theorem 5.11. Let n ≥ 4t + 1. Protocol 5.9 securely computes Functionality 5.4 in the pres-
ence of a malicious adversary controlling at most t parties. It has a communication complexity of
O(n3 log n) bits over point-to-point channels and O(n2 log n) bits of broadcast. Each party broad-
casts at most O(n log n) bits.

31

To show the full simulatability, We prove the following two claims regarding the protocol:
validity and binding.

Claim 5.12 (Validity). If the dealer is honest and starts with S(x,y, z), and the inputs of the
honest parties ExternalValidityj are such that ExternalValidity(sharej) = 1 where sharej is defined as
in the protocol, then the protocol eventually terminates and each honest party outputs OK.

Proof. Since for each honest party it holds that ExternalValidity(sharej) = 1, and all shares of honest
parties agree with each other, we have that eventually, each honest Pj will broadcast Good(j, ℓ)
for all honest parties ℓ ̸∈ I. We show that the dealer must eventually broadcast either Dense or
BigStar messages. Consider time T in which all Good messages between pairs of honest parties were
received by the dealer. There are two cases to consider:

• The dealer broadcasted (Dense,C) or (BigStar,C,D) before time T ;

• At time T , if each honest node has degree at least 3t+ t/2 + 1 then we have a total of n− t
nodes that have high degree, and thus the dealer broadcasts (Dense,C) where C contains (at
least) all honest parties.

• Otherwise, there exists an honest party j ̸∈ I that has degree smaller than 3t+ t/2+1. Since
we are at time T , all the missing edges are of corrupted parties. That is, when considering
the graph G[Γ(j)], the vertices that are removed correspond to t/2 corrupted parties. Thus,
the graph G[Γ(j)] contains n′ ≥ 3t + t/2 + 1 vertices, and contains a clique of size 3t + 1
(i.e., all honest parties). According to Claim 3.7, the STAR algorithm finds a (C,D)-star with
|C| ≥ n′ − 2 · (t/2) ≥ 2t+ t/2 + 1 and |D| ≥ n′ − t/2 ≥ 3t+ 1.

The dealer thus eventually broadcasts one of the messages (Dense,C) or (BigStar,C,D), and all
honest parties eventually receive this message. Moreover, since all Good messages are broadcasted,
eventually all honest parties will see the same edges as the honest dealer, and validates the (Dense,C)
or (BigStar,C,D) messages. Once the broadcasted message of the dealer is validated by an honest
Pj , it halts and output OK.

Claim 5.13 (Termination). If one honest parties terminate, then all honest parties eventually
terminates.

Proof. This follows immediately from the guarantees of the broadcast (aka. A-cast): If the dealer
broadcasts (Dense,C) or (BigStar,C,D) then all honest parties will eventually see this message.
Moreover, if the property holds in the graph of one honest party, then all honest parties eventually
see those edges and validate the property in their respective graphs. This is because the graph is
defined by the Good messages that were also broadcasted.

Claim 5.14 (Binding). When the first honest party terminates, there exists a unique trivariate
polynomial S(x,y, z) of degree t+ t/2 in each one of the variables x,y, z that can be extracted from
the views of the honest parties. Moreover, for at least 2t+1 honest parties J ⊂ [n] \ I it holds that
ExternalValidityj(sharej) = 1.

Proof. Consider the first honest party that terminates, say some Pj∗ . If Pj∗ terminates then the
dealer must have broadcasted Dense or BigStar messages, and Pj∗ validated the respective property
in its local graph. There are two cases to consider:

32

Case I: The property is (Dense,C). In that case, the graph that the honest party Pj∗ sees con-
tains n−t vertices C, where each has degree at least 3t+t/2+1. Consider the set of the lexicograph-
ically first t+ t/2+1 honest parties H ⊆ C\I. Each such party inputs some Qh(x,y),Wh(x, z) and
Rh(y, z). Consider the unique trivariate polynomial S(x,y, z) that satisfies S(x,y, h) = Qh(x,y)
for every h ∈ H. Such a trivariate polynomial is guaranteed to exist by Claim 3.9.

We now show that all honest parties in C agree with S(x,y, z).

Claim 5.15. For every honest party j ∈ C it holds that Rj(y, z) = S(j,y, z).

Proof. Fix some j ∈ C and h ∈ H. Since Pj and Ph both have bivariate polynomials with degrees
3t+ t/2 + 1 (otherwise, they would never send Good), and so they have at least 3t+ 1 vertices in
common, in which at least 2t+ 1 honest parties are in their intersection. That is, there is a set K
of honest parties of cardinality at least 2t+ 1 in which Good(j, k) and Good(h, k) was broadcasted
for every k ∈ K. In particular, Ph and Pk verified that (among other things):

(S(x, k, h) =) Qh(x, k) = fQh
k (x) = fWk

h (x) = Wk(x, h) .

Pk and Pj also exchanged shares, and verified that gWk
j (z) = g

Rj

k (z), that is, it holds that

Wk(j, z) = gWk
j (z) = g

Rj

k (z) = Rj(k, z) ,

and in particular on z = h:
S(j, k, h) = Wk(j, h) = Rj(k, h) .

Since this holds for every k ∈ K, we get that two degree t+ t/2 polynomials S(j,y, h) and Rj(y, h)
agree on 2t + 1 points, and therefore S(j,y, h) = Rj(y, h). Moreover, since this holds for every
h ∈ H, we have that two degree-(t+ t/2) bivariate polynomials S(j,y, z) and Rj(y, z) must agree,
i.e., S(j,y, z) = Rj(y, z).

Claim 5.16. For every honest party j ∈ C it holds that Wj(x, z) = S(x, j, z).

Proof. As before, fix some j ∈ C and h ∈ H, and consider K of cardinality 2t+ 1 that agree both
with Pj and Ph. For every k ∈ K, Ph and Pk verified that

(S(k,y, h) =) Qh(k,y) = gQh
k (y) = fRk

h (y) = Rk(y, h) .

Moreover, Pj and Pk verified that

Wj(k, z) = g
Wj

k (z) = gRk
j (z) = Rk(j, z) .

In particular, for z = h it holds that Wj(k, h) = Rk(j, h) = S(k, j, h). Since this holds for every
k ∈ K, we have that two univariate polynomials Wj(x, h) and S(x, j, h) must agree. Since this
holds for every h ∈ H, we get that the two polynomials Wj(x,y) and S(x, j,y) must agree, and so
Wj(x,y) = S(x, j,y).

Claim 5.17. For every honest party j ∈ C it holds that Qj(x,y) = S(x,y, j).

33

Proof. As before, Ph and Pk exchanged the shares

(S(h, k, z) =) Rh(k, z) = gRh
k (z) = gWk

h (z) = Wk(h, z) ,

where S(h, k, z) = Rh(k, z) follows from Claim 5.15. Moreover, Pk and Pj verified that

Qj(x, k) = f
Qj

k (x) = fWk
j (x) = Wk(x, j) ,

and in particular for x = h it holds that Qj(h, k) = Wk(h, j) = S(h, k, j). Since this holds for every
k ∈ K, we get that the two univariate polynomials Qj(h,y) and S(h,y, j) agree. Since it also holds
for every h ∈ H, this means that Qj(x,y) = S(x,y, j).

Case II: The property is (BigStar,C,D). In that case, the graph that the honest party P ∗
j sees

contains a clique C of size 2t+ t/2+1. This implies that there is a set of at least t+ t/2+1 honest
parties for which for every j, k ∈ C, the party Pj∗ viewed Good(j, k) and Good(k, j), and thus the
shares that Pk and Pj agree with each other. Let H be the lexicographically first t+ t/2+1 honest
parties in C. Consider the unique trivariate polynomial S(x,y, z) that satisfies S(x,y, h) = Qh(x,y)
for every h ∈ H. Such a trivariate polynomial is guaranteed to exist by Claim 3.9. We now show
that all honest parties in D hold shares on the polynomial S(x, y, z).

All honest parties in H hold shares on S(x, y, z). Clearly, for every h ∈ H it holds that
Qh(x,y) = S(x,y, h). For every i, j ∈ H we have that Pi and Pj verified their shares, and thus we
have that

S(x, i, j) = Qj(x, i) = f
Qj

i (x) = fWi
j (x) = Wi(x, j) .

Since this holds for every j ∈ H, we get that that the two t+ t/2+1 bivariate polynomials S(x, i, z)
and Wi(x, z) agree, and so for every i ∈ H, S(x, i, z) = Wi(x, z).

Similarly, for every i, j ∈ H we have that Pi and Pj verified that

(S(i,y, j) =) Qj(i,y) = g
Qj

i (y) = fRi
j (y) = Ri(y, j)

Since this holds for every j ∈ H, we get that the two t+ t/2+1 bivariate polynomials S(i,y, z)
and Ri(y, z) agree on t + t/2 + 1 univariate polynomials, and so for every i ∈ H it holds that
Si(y, z) = Ri(y, z).

All honest parties in D hold shares on S(x, y, z). Similarly to above, each party in i ∈ D
agrees with each party in H. Thus, for every i ∈ D and h ∈ H we have that

(S(x, h, i) =) Wh(x, i) = fWh
i (x) = fQi

h (x) = Qi(x, h) .

Since this holds for every h ∈ H, we have that S(x,y, i) = Qi(x,y). Likewise,

S(x, i, h) = Qh(x, i) = fQh
i (x) = fWi

h (x) = Wi(x, h) .

Since this holds for every h ∈ H, we get that Wi(x, z) = S(x, i, z). Finally,

(S(i,y, h) =) Qh(i,y) = gQh
i (y) = fRi

h (y) = Ri(y, h) ,

and since this holds for every h ∈ H, we have that S(i,y, z) = Ri(y, z).

External validity. An honest party Pj does not send shares to other parties, and in particular
does not broadcast Good(j, k) for every party Pk if its external validity was not 1. In the case

34

of (Dense,C), we are guaranteed to have |C| ≥ n − t ≥ 3t + 1 and therefore the set contains at
least 2t + 1 honest parties. Since those parties broadcasted Good, we have 2t + 1 honest parties
with validated external validity predicate. Likewise, in the case of (BigStar,C,D), we have that
|D| ≥ n− t ≥ 3t+ 1, honest parties in D validated their external validity, and therefore we have at
least 2t+ 1 honest parties with validated external validity predicate.

Proof. We are now ready to show the simulation.

The case of an honest dealer. In the honest dealer case, we assume that the honest parties
input ExternalValidityj which on the shares of the honest parties output 1. We then have:

1. The simulator receives from the functionality the shares of the corrupted parties sharei for
every i ∈ I.

2. Invoke the adversary A. Simulate A receiving headers (shares, j) for every j ∈ [n]. More-
over, simulate A receiving the message (share, i, sharei) where sharei is as received from the
functionality.

3. Once A delivers the message (shares, j) for j ̸∈ I, simulate Pj sending exchange(j, k) for every
k ̸∈ I. Moreover, for each i ∈ I, simulate Pj sending the message mj→i to Pi, where

mj→i := (exchange, j, i, Qi(x, j), Ri(y, j), Qi(x, j), Ri(j, z), Qi(j,y),Wi(j, z), Ti(x, j)) .

4. For every message A sends in the name of Pi to some honest Pj a message mi→j , check that
mi→j was sent correctly according to the protocol given sharei. Once A delivers the message
to Pj and the message is correct, simulate Pj broadcasting Good(j, i).

5. OnceA delivers the message exchange(j, k) from Pj to Pk (and it already delivered the message
share(k) from the dealer to Pk), then simulate Pk broadcasting Good(k, j).

6. Simulate the honest dealer as in the protocol, running Algorithm 5.10. Since all honest parties
eventually broadcast Good(k, ℓ) for every pair k, ℓ ̸∈ I, eventually (as shown in Claim 5.12)
the dealer will ask to broadcast either (Dense,C) or (BigStar,C,D). Simulate the dealer
broadcasting this message.

7. Simulate each honest party Pj verifying the validity of the broadcasted messages by the dealer.
When the simulated Pj terminates (this occurs when the adversary delivers some message
to Pj , either a message broadcasted by the dealer or some other party), then the simulator
allows the deliver of the output of the functionality (which is OK) to the honest party Pj in
the ideal world.

We now show that the view of the environment Z is the same in both executions. From
inspection, it is easy to see that the view of the adversary A is the same in both executions. In
particular, this is due to the fact that the protocol and the simulation are deterministic, and that
the messages of the honest parties to the corrupted parties can be simulated from the shares of the
corrupted parties. As follows from Claim 5.12, the output of the honest parties in the case of an
honest dealer is always OK (assuming that the external validity predicates that the honest parties
input to the functionality give 1 on the shares provided by the dealer). Therefore, the output of
the honest parties in the real world is always OK, the same as in the ideal world. The scheduling
in which parties receive outputs is determined by the adversary (i.e., the controlling of the router),
and since the view of the adversary is exactly the same in both executions, its control over the
router is exactly the same.

The case of a corrupted dealer.

35

1. The simulator invokes the adversary A.
2. The simulator receives from the functionality the external validity predicates, i.e., ExternalValidityj ,

for every j ̸∈ I.

3. The simulator simulates the honest parties in an execution of the protocol where the input of
each Pj is ExternalValidityj . The simulator also simulates the router of the real world. Note
that the simulation might not terminate.

4. When the first honest party Pj∗ terminates, all honest parties will eventually terminate, see
Claim 5.14. The Claim also shows how to extract a trivariate polynomial S(x,y, z) from the
views of the honest parties. The simulator sends S to the trusted party. For this particular
S, the external validity property holds for at least 2t + 1 honest parties. Moreover, S is of
degree at most t + t/2 in all three variables x,y, z. Thus, the functionality will accept this
polynomial, and it would send OK to all parties.

5. The simulator continues to simulate the protocol with the adversary. Whenever a simulated
honest party Pj obtains an output in the simulated protocol, the simulator S delivers to the
router to allow sending the dummy party Pj in the ideal its output, OK.

6. Eventually, all honest parties will receive output in the simulated execution. The simulator
then terminates.

The view of the adversary is exactly the same in the real and ideal executions, as the simulated
honest parties are deterministic and use the exact same inputs as in the real world. If some honest
party terminates, then as follows from Claim 5.14 all honest parties would eventually terminate
and with their shares lie on the same polynomial S(x,y, z). The environment Z sees the outputs
at the same activation in the real and ideal: Upon the activation in which the first honest party
Pj∗ terminates, the simulator extracts the trivariate polynomial and sends it to the trusted party,
and then deliver the output to Pj∗ . Since the view of the adversary is exactly the same, whenever
a real honest party Pk receives an output, a simulated Pk receives an output in the simulation, and
then the simulator extracts the router to deliver the output of the functionality to Pk in the ideal
world.

6 Rate-1 Asynchronous Weak-Binding Secret Sharing

Protocol 5.9 provides a secret sharing of a trivariate polynomial with O(1) overhead. Along the way,
it also allows some external verification (ExternalValidity) and some computation on the trivariate
shares. This section describes our weak-binding secret-sharing protocol with a shunning reconstruc-
tion. We remark again that we do not use this protocol in the paper. Nevertheless, we provide it as
an independent primitive for completeness and as it might be useful as an independent primitive.

Definition 6.1 (Asynchronous Weak-binding Secret Sharing with Shunning Reconstruction). Let
S be a finite domain, |S| ≥ 2, and let [n] be a set of parties that includes a distinguished dealer.
An asynchronous weak-binding secret sharing with shunning reconstruction consists of two phases,
a sharing phase and a reconstruction phase, with the following syntax.

• Sharing: At the beginning, the dealer holds a secret s ∈ S and each party including the dealer
holds an independent random input ri. The parties may communicate in several time in
sequence. Each time, each party can privately send messages to the other parties and it can
also broadcast a message. Each message sent or broadcasted by Pi is determined by the view

36

of Pi, consists of its input (if any), its random input and messages received from other parties
in previous rounds.

• Reconstruction: At the beginning of the reconstruction, the parties are holding their view
from the sharing phase and in addition the dealer maintains a list L which is initialized to ∅.
The reconstruction phase may involve several interactions, and at each time the parties send
messages based on their view. At the end of the reconstruction, each party either outputs a
value or never terminates. When the parties do not terminate, the dealer will have at least
t/2 + 1 parties in its list L.

We should have the following properties for any adversary A = (As, Ar) corrupting at most t parties:

• Termination: If the dealer is honest then each honest party eventually terminates the sharing
phase. If some honest party terminates the sharing phase, then every honest party must
terminate it eventually. For the reconstruction phase one of these must hold: (a) If some
honest party terminates the reconstruction phase, then all other honest parties will eventually
terminate or (b) the dealer will have at least t/2 + 1 parties in L.

• Privacy: If D is honest then the adversary’s view during the sharing phase reveals almost no
information on s. Formally, let Ds is the view A in the sharing phase on secret s. Then, for
any s ̸= s′, the random variables Ds and Ds′ are identical.

• Weak-binding: At the end of the sharing phase there is a value s∗ ∈ S such that at the end
of the reconstruction phase, if the parties terminate, then the output will be s∗. If the dealer
is honest, then s∗ = s.

Protocol 6.2: Asynchronous Weak-binding Secret Sharing

Input: The input of the dealer is some trivariate polynomial S(x,y, z). Each other party has no
input.
Sharing phase:
1. Each party Pi and the dealer: Run Protocol 5.9 with ExternalValidityi(·) as the predicate that

always returns 1, and each Lj(·) = ⊥ for every sharej .
2. If the protocol terminates with output OK, then:

(a) If (Dense,C) was received as the broadcasted message from the dealer: if i ∈ C then store
X = C and sharei. (excluding the last element – which is ⊥.)

(b) If (BigStar,C,D) was received as the broadcasted message from the dealer: if i ∈ D then
store X = D and sharei. (excluding the last element.)

(c) Otherwise, store X = C if Dense and X = D if BigStar.

Shunning Reconstruction phase:
1. (Broadcasting the Polynomial) The dealer:

(a) Initialise a shunning list Shun = X.

(b) Broadcast a trivariate polynomial S(x,y, z).

2. (Verifying the Dealer’s Polynomial) Each party Pi:

(a) Upon receiving a polynomial S(x,y, z) from the dealer, verify that the polynomial is of
degree at most t+ t/2 in each variable. If not, then discard the dealer and terminate.

37

(b) If i ∈ X, then verify that S(x,y, i) = Qi(x,y), S(x, i, z) = Wi(x, z) and S(i,y, z) = Ri(y, z)
holds. If all the conditions hold, then Pi broadcasts OK.

3. (Output)

(a) Upon receiving the OK from the broadcast of Pi, the dealer updates Shun = Shun \ {i}.
(b) Upon receiving OK from at least 2t+ t/2 + 1 parties in X, party Pi outputs S(x,y, z) and

terminates. Otherwise, it continues to wait for OK messages.

We use the term “shunning” for reconstruction to indicate that the reconstruction phase offers
the following guarantees: either the reconstruction succeeds, or the dealer can identify at least
t/2 + 1 parties thereafter.

Essentially, in an honest dealer case, termination of the sharing phase is guaranteed. However,
since the set X does not necessarily contain 2t + t/2 + 1 honest parties, for reconstruction, we
might need the adversary’s help. This is why the reconstruction is either guaranteed, or the dealer
shuns at least t/2 + 1 parties. In the case of a corrupted dealer, once the sharing terminates,
reconstruction must be to the same polynomial (or discard the dealer, or not terminate, but cannot
be ended successfully with a different polynomial). We formalize and prove the properties of this
protocol below.

Claim 6.3 (Sharing Termination). If the dealer is honest, then each honest party terminates the
sharing phase. If some honest party terminates the sharing phase then every honest party must
terminate it eventually.

Proof. Since for each honest party Pj , we have ExternalValidityj(·) = 1, for an honest dealer, by
Claim 5.12 we have that Protocol 5.9 terminates with the output OK. Hence, sharing phase always
completes successfully. The latter follows immediately from Claim 5.13.

Claim 6.4 (Reconstruction Termination). Either all the honest parties terminate the reconstruc-
tion, or the dealer shuns at least t/2 + 1 parties.

Proof. We have the following two cases to consider:

1. There exists some honest party Pj∗ which terminates: This implies that Pj∗ received
at least 2t+ t/2+1 broadcasts of OK messages from the parties in set X identified during the
sharing phase. These messages will be eventually received by all the honest parties (including
the dealer), ensuring that all the honest parties terminate.

2. No honest party has terminated: This implies that less than 2t+t/2+1 OK messages are
received by the honest parties, which includes the dealer. In that case, the dealer’s shunning
set consists of all the parties from X from whom the dealer has not received a broadcast of
OK. Since |X| ≥ n− t, we have that |Shun| ≥ t/2 + 1.

The following claim follows from Theorem 5.11:

Claim 6.5 (Privacy). If the dealer is honest, then the adversary’s view during the sharing phase
reveals no information on the dealer’s input.

38

Claim 6.6 (Weak Binding). At the termination of the sharing phase, there is a unique trivariate
polynomial S′(x,y, z) with degree 3t/2 that might be reconstructed in the reconstruction phase.
Moreover, if the dealer is honest then S′(x,y, z) = S(x,y, z) where S(x,y, z) is the input of the
dealer.

Proof. If the sharing phase terminates for the honest parties, it implies that Protocol 5.9 terminates
with OK and all the parties hold a set X of size at least n− t. By Claim 5.14, we have that all the
honest parties in X hold shares on some unique trivariate polynomial S′(x,y, z).

Further, if the reconstruction terminates for some honest party, it implies that the dealer broad-
casted a trivariate polynomial, say S∗, with degree 3t/2 in each variable. Moreover, at least
2t+ t/2+ 1 parties from X broadcasted OK after verifying the consistency of their shares with the
dealer’s broadcasted trivariate polynomial. Of these, at least t+ t/2 + 1 parties are guaranteed to
be honest. We have that the two polynomials S∗ and S′ agree in at least (t+ t/2+ 1)3 points, and
hence S∗ = S′. Moreover, an honest dealer always broadcasts S∗ = S and hence parties output the
dealer’s polynomial.

7 Verifiable Triple Sharing

In this section, we build upon packed VSS (Functionality 4.1) and Functionality 5.1 to show how
a dealer can verifiably share O(n2) triples simultaneously.

The functionality for verifiable triple sharing appears below, followed by the protocol. The
Shamir-shares of party Pj for the (t/2 + 1)2 multiplication triples are as follows, following the
invocation of the functionality or the protocol: (Au(−β, j), Bu(−β, j), Cu(−β, j)) for every u, β ∈
{0, . . . , t/2}.

Functionality 7.1: Verifiable Triple Secret Sharing

The functionality is parameterized by a set of corrupted parties I ⊆ [n].

1. The dealer sends to the functionality 3 sets of t/2 + 1 polynomials {Au(x,y)}, {Bu(x,y)}
and {Cu(x,y)} for each u ∈ {0, . . . , t/2}.

2. The functionality verifies that each polynomial is of degree at most t+ t/2 in x and t in y. If
not, it does not terminate.

3. If the dealer is honest, then for each u ∈ {0, . . . , t/2}, give adversary the shares (Au(x, i), Au(i,y)),
(Bu(x, i), Bu(i,y)) and (Cu(x, i), Cu(i,y)) for every i ∈ I.

4. The functionality verifies that for every u, β ∈ {0, . . . , t/2} it holds that

Au(−β, 0) ·Bu(−β, 0) = Cu(−β, 0) .

If yes, then it sends (Au(x, j), Au(j,y)), (Bu(x, j), Bu(j,y)) and (Cu(x, j), Cu(j,y)) for every
u ∈ {0, . . . , t/2} to each party Pj and halts. Otherwise, the functionality never terminates.

Protocol 7.2: Verifiable Triple Secret Sharing Protocol

• Input: The dealer holds the polynomials Au(x,y), Bu(x,y) and Cu(x,y) of degree t + t/2
in x and t in y for every u ∈ {0, . . . , t/2} such that Au(−β, 0) ·Bu(−β, 0) = Cu(−β, 0) holds
for every β ∈ {0, . . . , t/2}.

39

• The protocol:

1. The dealer invokes Functionality 4.1 with its polynomialsAu(x,y), Bu(x,y) and Cu(x,y)
for every u ∈ {0, . . . , t/2} in a batched manner.

2. The dealer invokes Functionality 5.1 with the input Au(−β,y), Bu(−β,y) and Cu(−β,y)
for every u, β ∈ {0, . . . , t/2}.

3. Upon receiving an output (Au(x, j), Au(j,y)), (Bu(x, j), Bu(j,y)) and (Cu(x, j), Cu(j,y))
from the functionality, each Pj invokes the Functionality 5.1 with the inputs (Au(−β, j),
Bu(−β, j), Cu(−β, j)) for every u, β ∈ {0, . . . , t/2}.

4. Upon receiving an output OK from the Functionality 5.1, Pj outputs (A
u(x, j), Au(j,y)),

(Bu(x, j), Bu(j,y)) and (Cu(x, j), Cu(j,y)), where (Au(−β, j), Bu(−β, j), Cu(−β, j)) for
every u, β ∈ {0, . . . , t/2} defines Pj ’s degree-t Shamir-share of the (t/2 + 1)2 multiplica-
tion triples.

Theorem 7.3. Let n ≥ 4t + 1. Protocol 7.2 securely computes Functionality 7.1 in the pres-
ence of a malicious adversary controlling at most t parties. It has a communication complexity of
O(n3 log n) bits over point-to-point channels and O(n2 log n) bits of broadcast for sharing O(n2)
triples simultaneously. Each party broadcasts at most O(n log n) bits.

Proof. We show the case of an honest dealer and of a corrupted dealer separately.

Case I – the case of an honest dealer. The simulator S is as follows:

1. Upon activation, invoke the adversary A.
2. The simulator receives from the functionality the shares (fAu

i (x), gA
u

i (y)), (fBu

i (x), gB
u

i (y))
and (fCu

i (x), gC
u

i (y)) for every u ∈ {0, . . . , t/2} and every i ∈ I.

3. Simulate the invocation of the inner Functionality 4.1 for the adversary: for every i ∈ I,
send to the adversary the shares (fAu

i (x), gA
u

i (y)), (fBu

i (x), gB
u

i (y)) and (fCu

i (x), gC
u

i (y)) for
every u ∈ {0, . . . , t/2}.

4. Simulate the invocation of the inner Functionality 5.1 for the adversary: for every i ∈ I, give
the adversary (fAu

i (−β), fBu

i (−β), fCu

i (−β)) for every u, β ∈ {0, . . . , t/2}.
5. Simulate the Functionality 5.1 returning OK. When the adversary delivers OK to a party Pj

in the simulated protocol, the simulator delivers the output of Functionality 7.1 to Pj in the
ideal world.

Clearly, since the protocol and the simulation are deterministic, the view of the adversary A is
identical in both the real and ideal executions. It thus remains to show that the output of honest
parties is the same in both the executions.

In the ideal world, an honest dealer always invokes the functionality with valid polynomials.
Hence, the functionality delivers the shares on the dealer’s polynomials to each honest party. In
the real world, an honest dealer’s polynomials always satisfy the conditions of Functionality 4.1
and from its guarantees (Claim 4.5) we have that each honest party receives its share. Moreover,
the dealer’s polynomials also satisfy the conditions of Functionality 5.1. Hence the functionality
returns OK to all the honest parties, which in turn output their respective shares on the dealer’s
polynomials. Hence, the output of honest parties is identical in the real and ideal executions.
Moreover, although the scheduling of message delivery is determined by the adversary A, its view
is identical in both the executions. Hence, the scheduling is also identical.

40

Case II – the case of a corrupt dealer. The simulator S is as follows:

1. The simulator invokes the adversary A.
2. Since the protocol is deterministic and the honest parties do not have any input to the

protocol, the simulator can simulate all honest parties in an execution with A. That is, the
simulator knows all the messages A sends to the honest parties and hence can also simulate
the communication among honest parties. This includes simulating Functionalities 4.1, 5.1.
Note that the simulation may not terminate.

3. If there exists some honest party Pj∗ that terminates, then it implies that Pj∗ terminates
in the simulation of Functionality 4.1. By Claim 4.6 we have that all the honest parties
eventually terminate.

4. The simulator interpolates the dealer’s polynomials from the shares of the lexicographically
first t+1 simulated honest parties. It is guaranteed that the polynomials have degree t+ t/2
in x and t in y.

5. Moreover, since Pj∗ terminated in the protocol, it also implies that the simulation of Func-
tionality 5.1 terminated with the output OK.

6. The simulator sends to the functionality the interpolated polynomials ensuring that all the
honest parties will eventually receive the output. When the adversary delivers OK to a party
Pj in the simulated protocol, the simulator delivers the output of Functionality 7.1 to Pj in
the ideal world.

It is easy to see that the since the honest parties do not have inputs and the simulator emulates
the honest parties as in the real world, the view of the adversary in the ideal and real execution
is the same. Moreover, if an honest party Pj∗ terminates in the real execution, then the same
holds true in the simulated execution. The simulator extracts the input polynomials of the dealer
from the view of these simulated honest parties, and sends it to the functionality ensuring that the
output of honest parties is identical in the ideal model.

7.1 Batching for Linear overhead per triple

We note that the overall communication of one instance of verifiable triple sharing protocol is
O(n3 log n) over point-to-point channels and O(n2 log n) using broadcast. Using the broadcast of
[14], the total cost turns out to be O(n4 log n) for sharing O(n2) triples. We make the cost linear
per triple by simply batching n instances of the triple sharing protocol under the same dealer. Since
all the instances have the same dealer, the broadcasts communication can be common for all. For
instance, Pi can send a single broadcast of Good(i, j) after checking consistency with Pj in all the
instances of AVSS and triple sharing. Similarly, the dealer can run the Star algorithm just once
for all the AVSSs and broadcast one common Star. Likewise, Algorithm 5.10 also is run for all the
trivariate sharings together and the output is broadcast once for all.

This batching allows us to keep the broadcast communication the same as before i.e O(n4 log n).
The point-to-point communication increases by a factor of n and now becomes O(n4 log n). How-
ever, we are now able to share n3 triplets, and thus achieve a linear overhead.

41

8 Linear Perfectly Secure AMPC

In this section, we give the details of the building blocks required for the complete MPC protocol
such as reconstruction of degree-t polynomials, and Beaver triple generation. We conclude with the
complete MPC protocol which relies on these building blocks, the packed VSS (Section 4) and the
verifiable triple secret sharing (Section 7) protocol.

8.1 Secret Reconstruction

At the termination of our packed VSS, the secrets are available in Shamir-shared format. We discuss
how such sharing can be reconstructed efficiently. We use two standard ways of reconstruction:

Private reconstruction. Here, we describe the private reconstruction of a degree-t shared secret
to a specified party, say P ∗. For this, all the parties disclose their shares to P ∗, who tries to recover
the secret as follows. P ∗ waits for 2t+ 1 shares, all of which lie on the same degree-t polynomial.
This requires P ∗ to apply the Reed Solomon (RS) error correction repeatedly in an “online” manner,
also known as online error correction (OEC) [17]. If P ∗ obtains such a polynomial, it is guaranteed
to be the correct degree-t polynomial since it agrees with the shares of at least t+1 honest parties.
The protocol ΠRec appears below.

Protocol 8.1: Private Reconstruction Protocol – ΠRec

Common input: The description of a field F, n non-zero distinct elements 1, . . . , n, identity of a
party P ∗.
Input: Parties hold the univariate degree-t sharing ⟨v⟩.

1. Each Pi sends its share ⟨v⟩i to P ∗ and terminates.

2. For r = 0, . . . , t:

(a) Upon receiving the first 2t + 1 + r values, P ∗ looks for a codeword of a polynomial of
degree-t with a distance of at most r from the values it received. If there is no such
unique codeword, P ∗ proceeds to the next iteration. Otherwise, it sets pr(x) to be the
unique RS reconstruction.

(b) If pr(i) = ⟨v⟩i holds for at least 2t + 1 parties whose shares were considered during RS
reconstruction, then P ∗ outputs pr(0) and terminates. Otherwise, it proceeds to the
next iteration.

Lemma 8.2. Protocol 8.1, ΠRec, has a communication complexity of O(n log n) bits over point-to-
point channels and no broadcast for privately reconstructing a value (i.e., O(log n) bits) in constant
runtime.

Batched public reconstruction. Näıvely, reconstructing t + 1 secrets that are Shamir-shared
requires (t + 1)n private reconstructions (via ΠRec), resulting in O(n3 log n) communication7. On
the other hand the batch reconstruction protocol, first presented in [24], allows parties to robustly

7Alternatively, (t + 1)n elements of broadcasts. With each party broadcasting (t + 1) elements, this results in a
cost of O(n4 logn) bits of communication.

42

reconstruct t + 1 Shamir-shared values at a cost of communicating O(n2 log n) bits, ensuring an
amortized cost of O(n log n) bits per reconstruction.

In particular, given ⟨v0⟩, . . . , ⟨vt⟩, parties translate them to n sharings non-interactively, say
⟨v′1⟩, . . . , ⟨v′n⟩, using a linear error correcting code, such as Reed-Solomon code which tolerates up
to t errors. To be specific, (v′1, . . . , v

′
n) can be thought of as n points on a t-degree polynomial

p(x) =
∑t

i=0 vix
i. Following this, of the n sharings, one sharing ⟨v′i⟩ is reconstructed towards

each party Pi via private reconstruction protocol ΠRec who obtains v′i. At this stage, the parties
essentially hold ⟨v0⟩. Therefore, n instances of private reconstruction enables every party to recover
p(x), the polynomial used to share v0, whose coefficients are the desired output. This requires a
total communication of O(n2 log n) bits. The protocol ΠbPubRec appears below for completeness.

Protocol 8.3: Batched Public Reconstruction Protocol – ΠbPubRec

Common input: The description of a field F, n non-zero distinct elements 1, . . . , n.
Input: Parties hold the univariate degree-t sharings ⟨v0⟩, . . . , ⟨vt⟩.

1. Let p(x) = v0 + v1x+ v2x
2 + . . .+ vtx

t.

2. For each Pi, parties locally compute ⟨v′i⟩ = ⟨p(i)⟩ = ⟨v0⟩+ ⟨v1⟩ · i+ ⟨v2⟩ · i2 + . . .+ ⟨vt⟩ · it.
3. For each party Pi, parties invoke ΠRec with ⟨v′i⟩ as input to enable Pi to privately reconstruct

v′i = p(i). Note that parties now hold ⟨p(0)⟩.
4. For each party Pi, parties invoke ΠRec with ⟨p(0)⟩ as input to enable Pi to privately reconstruct

the polynomial p(x). Upon reconstructing, each Pi outputs the t+1 coefficients v0, v1, . . . , vt
of p(x).

Lemma 8.4. Protocol 8.3, ΠbPubRec, has a communication complexity of O(n2 log n) bits over
point-to-point channels and no broadcast for publicly reconstructing O(n) values (i.e., O(n log n)
bits) simultaneously and has constant runtime.

8.2 The complete MPC protocol

We now describe our MPC protocol using the packed VSS (Section 4), the verifiable triple sharing
and the building blocks which are taken from [22]. Our MPC protocol relies on Beaver’s circuit
randomization trick [6] and has two phases: (i) Preparing the Beaver triples and input sharing, and
(ii) Evaluation using the batched Beaver multiplication.

8.2.1 Preparing the Beaver Triples and Input Sharing

This phase is further divided into three tasks. First, using the verifiable triple sharing protocol,
each party acting as a dealer is made to Shamir-share the required number of triples (a, b, c) such
that c = ab holds. Each party also uses the packed VSS described in Section 4 to share its inputs.
Note however that due to the asynchronous nature of the network, parties cannot afford to wait
for the triple sharing and input sharing instances of all the parties to terminate. Doing so might
result in an endless wait since the corrupt parties might remain silent and not initiate an instance
of sharing. Given this, the parties are required to agree on a common set, say Core of (at least)
n − t dealers whose triple sharing as well as input sharing instances will eventually terminate
for all the parties. This forms the second task, wherein parties execute an instance of ACS [17]

43

(Functionality 3.3) to agree on a set of parties whose shared triples and inputs will be considered
for subsequent computation. For the parties outside this set, a default sharing of 0 is considered
as the input. Finally, once the common set Core is decided upon and the triple sharing instances
of all the dealers in Core terminate, parties execute the triple extraction protocol which uses the
triples shared by these parties and gives as output random triples, not known to any party.

Verifiable Triple Sharing and Input Sharing. In this phase, each party shares verified multi-
plication triples, which will be used in the subsequent phases for extracting random triples unknown
to any party. The exact number of triples to be shared by each party depends on the size of the
circuit to be computed. We provide the detailed analysis of this in the proof of Theorem 8.11.
Towards that end, each party invokes the triple sharing functionality (Functionality 7.1) in parallel
to share the required number of triples. Each party invokes the Functionality 4.1 in parallel to
share its inputs. However, to ensure termination while accounting for the asynchronous network,
parties cannot afford to wait for the triple sharing and input sharing instances of all the parties to
terminate. Moreover, waiting for at least n − t parties’ instances to terminate before proceeding
to triple extraction does not offer a solution. Honest parties might terminate instances in different
sequence leading to inconsistency in the subsequent phase. This issue is tackled by the second
phase described below.

Agreement on a Core Set (ACS). Here, parties execute an instance of ACS [17] (Functional-
ity 3.3) to agree on a common set of at least n − t parties whose triple sharing and input sharing
instances are guaranteed to terminate eventually for all the parties. Having agreed on the set,
parties proceed to the final task which consumes the triples shared by each party in this set for
extracting random triples unknown to any party.

Triple Extraction. Our last component is a triple extraction protocol that consumes one (verified)
multiplication triple, say (⟨ai⟩, ⟨bi⟩, ⟨ci⟩), shared by each party Pi ∈ Core in the prior stage and

extracts h+ 1− t random triples not known to any party, where h = ⌊ |Core|−1
2 ⌋. For simplicity, let

m = |Core| and without loss of generality, we assume Core = {P1, . . . , Pm}. The protocol incurs
a cost of O(n2) point to point communication and at a high level, proceeds as follows. First, the
parties “transform” the m random shared triples (⟨ai⟩, ⟨bi⟩, ⟨ci⟩) for each i ∈ [m] into m correlated
triples (⟨xi⟩, ⟨yi⟩, ⟨zi⟩) for every i ∈ [m] such that the values {xi, yi, zi}i∈[m] lie on the polynomials
X(·), Y (·) and Z(·) of degree h, h and 2h respectively where X(·) ·Y (·) = Z(·). Specifically, for each
i ∈ [m], it holds that X(i) = xi, Y (i) = yi and Z(i) = zi where 1, . . . ,m are publicly known distinct
elements from F. Furthermore, the transformation ensures that the adversary knows {xi, yi, zi}
only if Pi is corrupt. This implies that the adversary may know (at most) t points on each of the
polynomials X(·), Y (·) and Z(·) of degree h, h and 2h respectively, thus guaranteeing a degree of
freedom of h+1−t in X(·), Y (·) (and thus Z(·)). Parties thus output the shared evaluation of these
polynomials at h+1−t publicly known points β1, . . . , βh+1−t as the extracted shared multiplication
triples.

The transformation itself works as follows. The parties simply set xi = ai, yi = bi, zi = ci
for i ∈ {1, . . . , h + 1}. Next, ⟨xi⟩ and ⟨yi⟩ for every i ∈ {h + 2, . . . ,m} can be computed non-
interactively by taking linear combination of {xi, yi}i∈[h+1]. Following this, ⟨zi⟩ for every i ∈
{h + 2, . . . ,m} is computed using Beaver’s trick where the inputs are ⟨xi⟩ and ⟨yi⟩ and the triple
(⟨ai⟩, ⟨bi⟩, ⟨ci⟩). Clearly, if Pi is corrupt then xi, yi, zi is known to the adversary as claimed. To
conclude, we note that triple extraction reduces to running a batch of O(h) Beaver multiplications
which requires O((nh + n2) log n) bits communication using ΠbPubRec. The formal description

44

appears in Protocol 8.5.

Protocol 8.5: Triple Extraction – ΠtripleExt

Common input: The description of a field F, a set Core ⊆ P such that m = |Core|, m = 2h + 1
non-zero distinct elements 1, . . . ,m and h+1−t non-zero distinct elements β1, . . . , βh+1−t. Without
loss of generality, assume Core = {P1, . . . , Pm}.
Input: Parties hold the degree-t shared triples (⟨ai⟩, ⟨bi⟩, ⟨ci⟩) for every i ∈ [m] such that (ai, bi, ci)
is known to party Pi.

1. For each i ∈ [h+ 1], parties locally set ⟨xi⟩ = ⟨ai⟩, ⟨yi⟩ = ⟨bi⟩ and ⟨zi⟩ = ⟨ci⟩.
2. LetX(·) and Y (·) be the degree-h polynomials defined by the points {xi}i∈[h+1] and {yi}i∈[h+1]

respectively such that X(i) = xi and Y (i) = yi for all i ∈ [h+ 1].

3. For each i ∈ {h+ 2, . . . ,m}, parties locally compute ⟨xi⟩ = ⟨X(i)⟩ and ⟨yi⟩ = ⟨Y (i)⟩.
4. Parties invoke ΠbBeaver with {⟨xi⟩, ⟨yi⟩, ⟨ai⟩, ⟨bi⟩, ⟨ci⟩}i∈{h+2,...,m} and obtain {⟨zi⟩}i∈{h+2,...,m}

where zi = xiyi for every i ∈ {h+ 2, . . . ,m}.
5. Let Z(·) be the degree-2h polynomial defined by the points {zi}i∈[m] such that Z(i) = zi for

all i ∈ [m].

6. Parties locally compute ⟨ai⟩ = ⟨X(βi)⟩, ⟨bi⟩ = ⟨Y (βi)⟩ and ⟨ci⟩ = ⟨Z(βi)⟩ for every i ∈
[h+ 1− t].

Lemma 8.6. Protocol 8.5, ΠtripleExt, has a communication complexity of O((nh + n2) log n) bits
over point-to-point channels and no broadcast for sharing h+1− t random multiplication triples in
constant runtime.

8.2.2 Batched Beaver Multiplication

This corresponds to the second phase of our MPC protocol, which uses the degree-t shared mul-
tiplication triples computed in the prior phase to evaluate the multiplication gates in the circuit
via Beaver multiplication in a batched manner. This protocol relies on the well known technique
of Beaver’s circuit randomization [6], which, given a pre-computed t-shared random and private
multiplication triple (⟨a⟩, ⟨b⟩, ⟨c⟩), reduces the computation of ⟨xy⟩ from ⟨x⟩ and ⟨y⟩ to two public
reconstructions. Towards this, parties first locally compute ⟨d⟩ = ⟨x⟩ − ⟨a⟩ and ⟨e⟩ = ⟨y⟩ − ⟨b⟩,
followed by public reconstruction of d and e. Since z = xy = ((x − a) + a)((y − b) + b) =
(d+ a)(e+ b) = de+ db+ ea+ ab, parties can locally compute ⟨z⟩ = ⟨xy⟩ using the shared multi-
plication triple and the publicly reconstructed values d and e. Specifically, parties locally compute
⟨xy⟩ = de+ d⟨b⟩+ e⟨a⟩+ ⟨c⟩.

To leverage the efficiency benefits offered by the batch public reconstruction protocol, the pro-
tocol handles a batch of l multiplications together, each requiring 2 reconstructions. The 2l public
reconstructions are thus batched together in groups of t + 1 to invoke ΠbPubRec and ensure an
amortized communication complexity of O(n log n) bits per reconstruction. The resultant com-
munication complexity of ΠbBeaver for handling l multiplications is O((n2 + nl) log n). The formal
description appears in Protocol 8.7.

Protocol 8.7: Batched Beaver Multiplication – ΠbBeaver

45

Input: Parties hold l degree-t shared triples (⟨ai⟩, ⟨bi⟩, ⟨ci⟩) for every i ∈ [l] and l degree-t shared
pairs of values (⟨xi⟩, ⟨yi⟩) to be multiplied.

1. For each i ∈ [l], parties locally compute ⟨di⟩ = ⟨xi⟩ − ⟨ai⟩ and ⟨ei⟩ = ⟨yi⟩ − ⟨bi⟩.
2. Let 2l = k(t + 1). Parties execute k parallel instances of ΠbPubRec and publicly reconstruct
{di, ei} for every i ∈ [l].

3. For each i ∈ [l], parties locally compute ⟨zi⟩ = ⟨xiyi⟩ = diei + di⟨bi⟩+ ei⟨ai⟩+ ⟨ci⟩.

Lemma 8.8. Protocol 8.7, ΠbBeaver, has a communication complexity of O((ln+n2) log n) bits over
point-to-point channels and no broadcast for the multiplication of l pairs of shared values and has
constant runtime.

8.3 The MPC Protocol

We first describe the MPC functionality, followed by the complete protocol using the building blocks
described above. We subsequently provide the proof of security and the communication complexity
analysis of the protocol.

Functionality 8.9: AMPC – FAMPC

The functionality is parameterized by a set of corrupted parties I ⊆ [n]. Initialize the sets S,H, I ′ =
ϕ. Initialize xi = 0 for every i ∈ I.
Input: Each Pi holds input xi ∈ F ∪ {⊥}.
Common Input: An n-party function f(x1, . . . , xn).

1. Upon receiving (Input, j, xj) from an honest party Pj , if j ̸∈ H then add j to S.

2. Receive from the adversary, the sets H ⊂ [n] \ I and I ′ ⊆ I such that |H| ≤ |I ′| ≤ t. Also
receive a set of inputs {(Input, i, xi)}i∈I′ .

3. If |S| < n − t, then for each Pj with j ∈ H, the functionality sets xj = 0 and updates
S = S \H.

4. If |S ∪ I ′| ≥ n − t, then compute (y1, . . . , yn) = f(x1, . . . , xn) and send yi to Pi for every
i ∈ [n] and terminate.

Protocol 8.10: AMPC – ΠAMPC

Common input: The description of a circuit, the field F, n non-zero distinct elements 1, . . . , n
and a parameter h where n− t = 2h+ 1. Let m = ⌈ C

h+1−t⌉.
Input: Parties hold their inputs (belonging to F ∪ {⊥}) to the circuit.
(Beaver triple generation and Input sharing:)

1. (Beaver Triple generation with a dealer) Each Pi chooses m random multiplication
triples and executes ⌈ m

(t/2+1)2
⌉ instances of Protocol 7.2 (Section 7) in a batched manner each

with (t/2 + 1)2 triples.

2. (Input sharing) Each party Pi holding ki inputs to the circuit executes the VSS protocol
(Functionality 4.1) in a batched manner, packing ⌈ ki

t/2+1⌉ inputs in one instance.

46

3. (ACS Execution) Parties invoke ACS protocol (Functionality 3.3) to agree on a set Core
of at least n − t parties whose instances of triple sharing and input sharing will terminate
eventually all the honest parties. Let (⟨aji ⟩, ⟨b

j
i ⟩, ⟨c

j
i ⟩) for j ∈ [m] denote the triples shared by

Pi ∈ Core. The input sharing for the parties outside Core is take as default sharing of 0.

4. (Beaver Triple Extraction) Parties execute m instances of the triple extraction protocol,
ΠtripleExt (Protocol 8.5), with Core as the common input and additionally (⟨aji ⟩, ⟨b

j
i ⟩, ⟨c

j
i ⟩) for

every Pi ∈ Core as the input for the jth instance. Let (⟨ai⟩, ⟨bi⟩, ⟨ci⟩) for i ∈ [C] denote the
random multiplication triples generated.

(Circuit computation:)

1. (Linear Gates) Parties locally apply the linear operation on their respective shares of the
inputs.

2. (Multiplication Gates) Let (⟨ai⟩, ⟨bi⟩, ⟨ci⟩) be the multiplication triple associated with
the ith multiplication gate with shared inputs (⟨xi⟩, ⟨yi⟩). Parties invoke the batched Beaver
protocol, ΠbBeaver (Protocol 8.7), with {⟨xi⟩, ⟨yi⟩, ⟨ai⟩, ⟨bi⟩, ⟨ci⟩} for all gates i at the same
layer of the circuit and obtain the corresponding ⟨zi⟩ as the output sharing for every gate i.

3. (Output) For each output gate j with the associated sharing ⟨vj⟩, parties execute private
reconstruction protocol, ΠRec (Protocol 8.1), towards every party Pi who is supposed to
receive the output vj .

Theorem 8.11. Let n ≥ 4t + 1. Protocol 8.10 securely computes Functionality 8.9 in the Func-
tionality (4.1,7.1, 3.3)-hybrid in the presence of a malicious adversary controlling at most t parties.
It has a communication complexity of O((Cn +Dn2 + n5) log n) bits over point-to-point channels
and O(n3 log n) bits of broadcast for evaluating a circuit with C gates and depth D. Each party
broadcasts at most O(n2 log n) bits.

Proof. The circuit evaluation requires C random shared multiplication triples. We analyze the cost
of the two phases of the MPC protocol separately.

Beaver triple generation and Input sharing. Note that one instance of the triple extraction
protocol (Protocol 8.5) extracts h+1− t random triples simultaneously, where h = ⌈ |Core|−1

2 . Given
that Core is of size at least n−t, we have that h+1−t = O(n). Hence, we require O(C/n) instances
of the triple extraction, which incurs a cost of O((Cn+ n2) log n) bits of communication. Further,
each instance of the triple extraction protocol consumes one verified triple shared by each party.
Hence, each party is required to share O(C/n) multiplication triples. Since our verifiable triple
sharing protocol packs O(n2) triples in one instance, it requires each party to execute O(C/n3)
instances of the protocol in a batched manner, which results in a cost of O((C + n3) log n) bits
over point-to-point channels and O(n2 log n) bits of broadcast per dealer. That is, the total cost
incurred is O((Cn + n5) log n) using the protocol of [13] to instantiate broadcast. Moreover, the
ACS protocol has a cost of O(n5 log n) (as discussed in Section 2.3), resulting in a communication
complexity of O((Cn+ n5) log n) for this phase.

Circuit evaluation. Here, parties evaluate batches of multiplication gates at the same level in
the circuit by invoking the batched Beaver multiplication protocol (Protocol 8.7). Given Ci is
the number of gates per level of the circuit, this stage incurs a cost of O(Ci · n log n + n2 log n)
bits communication over point-to-point channels. Thus we have that this phase requires a total of

47

∑D
i=1O(Ci · n log n + n2 log n) = O(Cn log n +Dn2 log n) bits communication over point-to-point

channels.
We now show the simulation. The simulator S is as follows:

1. Upon activation, invoke the adversary A.
2. Beaver triple generation and Input Sharing

(a) On behalf of each honest party Pj , the simulator chooses m random multiplication
triples and simulates the Functionality 7.1 for the case of an honest dealer by choosing
the appropriate bivariate polynomials.

(b) On behalf of each honest party Pj holding an input to the circuit, the simulator chooses
a value uniformly at random and simulates the Functionality 4.1 for the case of an honest
dealer.

(c) For every i ∈ I, simulate Functionality 7.1 and 4.1 as a functionality would run it. If the
simulation of Functionality 4.1 terminates, then from the shares of the honest parties,
the simulator reconstructs the input xi.

(d) Simulate the Functionality 3.3: When the adversary delivers the shares to an honest
party Pj in the simulation of instance of Functionality 7.1 and Functionality 4.1 (if
any) corresponding to some party Pk, simulate Pj sending (record, j, k). Listen to the
record messages sent by the adversary. Simulate the functionality sending a set S upon
receiving the command receiveS() from the adversary. When S ̸= ⊥, let Core = S.

(e) The simulator has the shares of honest parties corresponding to the triples shared by
each party in S when S ̸= ⊥, and hence can run Protocol 8.5 as honest parties would.
Specifically, it can simulate all the communication from honest parties including that
among honest parties as in the protocol.

3. Circuit evaluation

(a) The simulator holds shares of the honest parties corresponding to the inputs of each
party in Core, as well as the shares corresponding to the default input 0 of the remaining
parties.

(b) On behalf of each honest party, the simulator computes the linear operations on the
shares of honest parties as in the protocol.

(c) For each multiplication gate, the simulator holds the shares of honest parties and can
run Protocol 8.7 as honest parties would run it.

(d) The simulator constructs a set H of all the simulated honest parties not in Core. It also
constructs a set I ′ = Core ∩ I. It invokes Functionality 8.9 with the sets H, I ′ and the
extracted inputs {(Input, i, xi)}i∈I′ .

(e) It receives from the functionality the outputs yi for every i ∈ I.

(f) The simulator computes the shares of the honest parties to be used in the simulation of
Protocol 8.1 using the output yi and the shares of the corrupt parties (which can be com-
puted from the view of the simulated honest parties). The simulator runs Protocol 8.1
as honest parties would using these shares.

(g) When the adversary allows successful reconstruction of the output towards an honest
party Pj in the simulated protocol, the simulator delivers the output of Functionality 8.9
in the ideal protocol.

We now show that the view of the adversary is indistinguishable in both the executions. We do

48

this using a sequence of hybrids.
Hybrid0: Execution of ΠAMPC in the real world.
Hybrid1: In this hybrid, the simulator simulates the execution of the output gates as described.

The only change is that the simulator computes the inputs of the corrupt parties in Core, and the
sets H and I ′ and invokes the Functionality 8.9 with these inputs. Note that for the output yi
towards a corrupt Pi, the shares of honest parties in the reconstruction are completely determined
by the shares of the corrupt parties and the output yi. Hence, the shares computed by S are
identical to the real shares of the honest parties. The distributions of Hybrid0 and Hybrid1 are
identical.

Hybrid2: Here, the simulator simulates the execution of the addition and multiplication gates.
Since S knows the shares held by honest parties, it can simulate the addition and multiplication
gates as honest parties would in the real protocol. The distributions of Hybrid1 and Hybrid2 are
identical.

Hybrid3: In this hybrid, S simulates the execution of triple extraction as described. Since the
shares of honest parties are held by the simulator, the two distributions are identical.

Hybrid4: In this hybrid, the simulator simulates the Functionality 3.3. By the security of
ACS, we have that the two distributions are indistinguishable.

Hybrid5: In this hybrid, S simulates the invocations of Functionality 7.1 and Functionality 4.1
by choosing triples and inputs respectively uniformly at random on behalf of the honest parties. The
two hybrids differ only in the manner that S uses the random triples and inputs of honest parties
in Hybrid4, whereas it samples random values in Hybrid5. The shares of the corrupt parties are
distributed uniformly at random in both the hybrids. Due to Theorem 7.3 and Theorem 4.4, we
have that the distributions in Hybrid4 and Hybrid5 are indistinguishable.

Note thatHybrid5 is the execution between S and A in the ideal world. Therefore, we conclude
that the distributions in Hybrid0 and Hybrid5 corresponding to the executions in the real and
ideal worlds respectively are indistinguishable.

Note that in the simulated execution, the circuit evaluation is performed considering the inputs
shared by parties in Core and with default inputs for the remaining parties. The simulator invokes
the functionality in the ideal world with the sets H and I ′ such that the inputs of the same set of
parties in Core are considered during computation of the function, ensuring that the output of the
honest parties is the same in both the executions.

References

[1] Abraham, I., Asharov, G., Patil, S., Patra, A.: Asymptotically free broadcast in constant
expected time via packed vss. In: Theory of Cryptography: 20th International Conference,
TCC 2022, Chicago, IL, USA, November 7–10, 2022, Proceedings, Part I. pp. 384–414. Springer
(2023) 17

[2] Abraham, I., Asharov, G., Patil, S., Patra, A.: Detect, pack and batch: Perfectly-secure mpc
with linear communication and constant expected time. In: Annual International Conference
on the Theory and Applications of Cryptographic Techniques. pp. 251–281. Springer (2023)
1, 2, 5

49

[3] Abraham, I., Asharov, G., Patra, A., Stern, G.: Perfectly secure asynchronous agreement
on a core set in constant expected time. IACR Cryptol. ePrint Arch. p. 1130 (2023), https:
//eprint.iacr.org/2023/1130 10

[4] Abraham, I., Dolev, D., Stern, G.: Revisiting asynchronous fault tolerant computation with
optimal resilience. Distributed Computing 35(4), 333–355 (2022) 1

[5] Applebaum, B., Kachlon, E.: Conflict checkable and decodable codes and their applications.
IACR Cryptol. ePrint Arch. p. 627 (2023) 2, 3, 8, 9

[6] Beaver, D.: Efficient multiparty protocols using circuit randomization. In: Annual Interna-
tional Cryptology Conference (1991) 9, 43, 45

[7] Beerliová-Trub́ıniová, Z., Hirt, M.: Simple and efficient perfectly-secure asynchronous mpc.
In: Advances in Cryptology – ASIACRYPT 2007. pp. 376–392. Berlin, Heidelberg (2007) 1

[8] Beerliová-Trub́ıniová, Z., Hirt, M.: Perfectly-secure mpc with linear communication complex-
ity. In: Proceedings of the 5th Conference on Theory of Cryptography. p. 213–230. TCC’08,
Springer-Verlag, Berlin, Heidelberg (2008) 1

[9] Beerliová-Trub́ıniová, Z., Hirt, M.: Perfectly-secure mpc with linear communication complex-
ity. In: Theory of Cryptography Conference (2008) 2

[10] Ben-Or, M.: Another advantage of free choice: Completely asynchronous agreement protocols
(extended abstract). In: PODC (1983) 2

[11] Ben-Or, M., Canetti, R., Goldreich, O.: Asynchronous secure computation. In: ACM sympo-
sium on Theory of computing (1993) 1, 3, 4

[12] Ben-Or, M., Kelmer, B., Rabin, T.: Asynchronous secure computations with optimal resilience
(extended abstract). In: Proceedings of the Thirteenth Annual ACM Symposium on Principles
of Distributed Computing. p. 183–192. PODC ’94, Association for Computing Machinery, New
York, NY, USA (1994) 1, 3

[13] Bracha, G.: An asynchronous [(n-1)/3]-resilient consensus protocol. In: PODC. pp. 154–162
(1984) 3, 5, 15, 47

[14] Bracha, G.: Asynchronous byzantine agreement protocols. Inf. Comput. 75(2), 130–143 (1987)
41

[15] Canetti, R.: Asynchronous secure computation. Technion - Computer Science Department -
Technical Report CS0755 (1993) 17

[16] Canetti, R.: Studies in secure multiparty computation and applications (1996), https://www.
wisdom.weizmann.ac.il/∼oded/PSX/ran-phd.pdf 1, 17

[17] Canetti, R.: Studies in secure multiparty computation and applications. Ph.D. thesis, Citeseer
(1996) 4, 5, 10, 16, 42, 43, 44

[18] Canetti, R.: Universally composable security: A new paradigm for cryptographic protocols.
In: FOCS (2001) 13

50

https://eprint.iacr.org/2023/1130
https://eprint.iacr.org/2023/1130
https://www.wisdom.weizmann.ac.il/~oded/PSX/ran-phd.pdf
https://www.wisdom.weizmann.ac.il/~oded/PSX/ran-phd.pdf

[19] Canetti, R., Cohen, A., Lindell, Y.: A simpler variant of universally composable security for
standard multiparty computation. In: Advances in Cryptology–CRYPTO 2015: 35th Annual
Cryptology Conference, Santa Barbara, CA, USA, August 16-20, 2015, Proceedings, Part II
35. pp. 3–22. Springer (2015) 13, 15

[20] Canetti, R., Cohen, A., Lindell, Y.: A simpler variant of universally composable security
for standard multiparty computation. In: Advances in Cryptology–CRYPTO 2015. pp. 3–22
(2015) 14

[21] Choudhury, A., Hirt, M., Patra, A.: Unconditionally secure asynchronous multiparty compu-
tation with linear communication complexity. In: DISC (2013) 3

[22] Choudhury, A., Patra, A.: An efficient framework for unconditionally secure multiparty com-
putation. IEEE Transactions on Information Theory (2016) 3, 6, 9, 10, 18, 43

[23] Damg̊ard, I., Ishai, Y., Krøigaard, M.: Perfectly secure multiparty computation and the com-
putational overhead of cryptography. In: Advances in Cryptology - EUROCRYPT 2010. Lec-
ture Notes in Computer Science, vol. 6110, pp. 445–465. Springer (2010) 1

[24] Damg̊ard, I., Nielsen, J.B.: Scalable and unconditionally secure multiparty computation. In:
Annual International Cryptology Conference (2007) 42

[25] Damg̊ard, I., Schwartzbach, N.I.: Communication lower bounds for perfect maliciously secure
mpc. Cryptology ePrint Archive (2020) 2

[26] Goyal, V., Liu, Y., Song, Y.: Communication-efficient unconditional mpc with guaranteed
output delivery. In: CRYPTO (2019) 2

[27] Patra, A., Choudhary, A., Rangan, C.P.: Communication efficient perfectly secure VSS
and MPC in asynchronous networks with optimal resilience. In: Progress in Cryptology -
AFRICACRYPT 2010. vol. 6055, pp. 184–202. Springer (2010) 1, 2

[28] Patra, A., Choudhury, A., Pandu Rangan, C.: Efficient asynchronous verifiable secret sharing
and multiparty computation. Journal of Cryptology 28(1), 49–109 (2015) 1

[29] Prabhu, B., Srinathan, K., Rangan, C.P.: Asynchronous unconditionally secure computation:
An efficiency improvement. In: Progress in Cryptology — INDOCRYPT 2002. pp. 93–107.
Berlin, Heidelberg (2002) 1

[30] Srinathan, K., Pandu Rangan, C.: Efficient asynchronous secure multiparty distributed com-
putation. In: INDOCRYPT 2000. pp. 117–129 (2000) 1

51

	Introduction
	Related work

	Technical Overview
	Basic Asynchronous Verifiable Secret Sharing
	Our Asynchronous Weak-Binding Secret Sharing
	Our MPC Protocol
	Multiplication Triplets with a Dealer

	Preliminaries
	Asynchronous Secure Computation and SUC
	Hybrid Model and Composition
	Asynchronous Broadcast and Agreement on a Core Set
	Finding a STAR in a Graph
	Bivariate Polynomials
	Trivariate Polynomials

	Verifiable Packed Bivariate Secret Sharing
	Verifying Product Relation
	Trivariate Polynomial Verification – Functionality
	Verifying Product Relation using Trivariate Polynomial
	Trivariate Polynomial Verification – Protocol

	Rate-1 Asynchronous Weak-Binding Secret Sharing
	Verifiable Triple Sharing
	Batching for Linear overhead per triple

	Linear Perfectly Secure AMPC
	Secret Reconstruction
	The complete MPC protocol
	Preparing the Beaver Triples and Input Sharing
	Batched Beaver Multiplication

	The MPC Protocol

