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Abstract—This paper presents SNOW-SCA, the first power
side-channel analysis (SCA) attack of a 5G mobile commu-
nication security standard candidate, SNOW-V, running on a
32-bit ARM Cortex-M4 microcontroller. First, we perform a
generic known-key correlation (KKC) analysis to identify the
leakage points. Next, a correlation power analysis (CPA) attack
is performed, which reduces the attack complexity to two key
guesses for each key byte. The correct secret key is then
uniquely identified utilizing linear discriminant analysis (LDA).
The profiled SCA attack with LDA achieves 100% accuracy after
training with < 200 traces, which means the attack succeeds with
just a single trace. Overall, using the combined CPA and LDA
attack model, the correct secret key byte is recovered with < 50
traces collected using the ChipWhisperer platform. The entire
256-bit secret key of SNOW-V can be recovered incrementally
using the proposed SCA attack. Finally, we suggest low-overhead
countermeasures that can be used to prevent these SCA attacks.

Index Terms—SNOW-V, Side-Channel Analysis (SCA), Cor-
relation Power Attack (CPA), Linear Feedback Shift Registers
(LFSR), Linear Discriminant Analysis (LDA), Countermeasures

I. INTRODUCTION

The evolution of mobile networks, commencing in the late
1970s with the inception of the first Generation (1G) mobile
communication technology, has witnessed substantial progress,
ultimately leading to the prevalent adoption of the fifth Gen-
eration (5G) mobile communication technology. Remarkably,
downlink throughput rates have surpassed 1 gigabit per second
[1]. Each subsequent generation introduced noteworthy ad-
vancements; for instance, 2G brought about the introduction of
text messaging and encryption, while 3G played a pivotal role
in unlocking cyberspace access and enhancing data transfer
rates.

In 2018, the 3rd Generation Partnership Project (3GPP)
tasked the European Telecommunications Standards Institute
(ETSI) Security Algorithms Group of Experts (SAGE) with
developing new 256-bit cryptosystems for 5G networks [2].
These systems must achieve speeds over 20 Gbps on dedicated

This work was supported in part by Pratiksha Trust (India), Horizon 2020
ERC Advanced Grant (101020005 Belfort), CyberSecurity Research Flanders
with reference number VR20192203, BE QCI: Belgian-QCI (3E230370) (see
beqci.eu), and Intel Corporation.

Angshuman Karmakar is funded by FWO (Research Foundation – Flanders)
as a junior post-doctoral fellow (contract number 203056 / 1241722N LV).

Performance values(Gbps)Size of input plaintext 
(in bytes) SNOW – V AES – 256 

9.857.0764

26.378.11256

45.288.421024

50.708.482048

54.608.494096

56.988.508192

58.258.5016384

(b)

Side 

Channel 

Analysis

EM

Timing

Power

Channel A

Channel B

(a)

Fig. 1. (a) Possible Side channel attacks on a Cryptographic device during
encryption (b) Comparison b/w AES-256 and SNOW-V on performance based
on the size of input plaintext [4].

hardware and general-purpose CPUs, be quantum-safe, and
support ultra-reliable low latency communications within a
1ms latency budget. The required key length should also be
compatible with the recommendation of the National Institute
of Standards and Technology (NIST), which recommends a
classical 256-bit security level to provide security against
quantum computers. The initiative of 3GPP eventually led to
the development of SNOW-V [3].

SNOW-V is a stream cipher proposed by Ekdahl et al. [4]
with the specific goal of being deployed as the new encryption
primitive in 5G systems. It is closely based on the current
5G standard SNOW 3G, inheriting certain design principles
but with modifications suitable for the requirements of 5G
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networks. SNOW 3G was originally designed as a 128-bit
algorithm. SNOW-V has been designed with 256-bit security
in mind, addressing potential vulnerabilities and providing
a higher level of cryptographic strength. An ETSI SAGE
report [5] claims that SNOW-V is more resistant to SCA
attacks than SNOW 3G, representing a significant security
improvement.

Fig. 1(b) shows SNOW-V outperforming AES-256 by ∼
6.5×, despite AES-256’s optimized assembly code and AES-
NI. This improvement in both hardware and software ensures
efficient encryption without slowing down high-speed mobile
communication.

A. Motivation

An SCA attack aims to exploit information unintentionally
leaked during the execution of cryptographic algorithms. As
shown in Fig. 1(a), these attacks focus on observing and
analyzing various “side channels” such as power consumption,
electromagnetic emission, timing information, etc., about the
secret key used in a cryptographic algorithm.

Block ciphers, such as Advanced Encryption Standard
(AES) and Data Encryption Standard (DES), have been exten-
sively studied and applied in secure communication and data
storage, while stream ciphers like SNOW-V have not received
as much attention in side-channel analysis.

While the rise of post-quantum cryptography (PQC) is a
response to the threat posed by quantum computing, stream
ciphers, being symmetric-key algorithms, are generally con-
sidered less vulnerable to quantum attacks than their asym-
metric counterparts as the best-known quantum algorithm i.e.
Grover search [6] to break the symmetric-key algorithms gives
a quadratic speed-up compared to the classical algorithm.
Therefore, for symmetric-key cryptography, the threat of quan-
tum computers can be nullified by doubling the key-length.
Nonetheless, the cryptographic community is actively work-
ing to ensure that quantum-safe algorithms are available for
both symmetric and asymmetric cryptography to maintain the
overall security of communication systems in the quantum era.
Consequently, as discussed before, to ensure a high level of
security for the foreseeable future, 3GPP, in collaboration with
ETSI, started a new standardization effort in 2018 for 256-bit
symmetric-key algorithms. SNOW-V is one of the candidates
for the 5G mobile communication security standard. Hence,
it becomes critical to analyze the SCA security of SNOW-V
before it is massively deployed in 5G systems.

B. Contribution

In this work, we present the first power SCA attack of the
stream cipher SNOW-V running on a 32-bit ARM Cortex-
M4 microcontroller. In summary, the key contributions of this
work are:

• We present SNOW-SCA, which is a combined CPA (non-
profiled) and ML-based (profiled) attack model for the
SNOW-V stream cipher by targeting the update function
of the linear feedback shift registers (LFSR). This is

the first SCA attack reported on the SNOW-V algorithm
(Section III).

• We demonstrate and validate successful key recovery us-
ing the proposed Known-Initialization vector (IV)-based
CPA and linear discriminant analysis (LDA) based attack
model on the 32-bit ARM microcontroller (Section IV).

• The LDA is used to uniquely identify the correct key
byte from the ghost peaks obtained in the CPA attack.
The LDA model shows 100% accuracy after training with
< 200 traces. The minimum traces to disclosure (MTD)
for CPA on the measured traces using the Chipwhisperer
platform is < 50 traces. However, the CPA shows two
ghost peaks as the lower significant bit (LSB) could not
be uniquely identified. LDA is then used to uniquely
identify the correct key using a single trace during the
attack phase (Sections III, IV).

• Finally, we propose and evaluate different software coun-
termeasures - Boolean masking on the attack points,
constant-time implementation of a branching operation
to defeat LDA-based profiling, and shuffling. Amongst
these, the Boolean masking showed the highest SCA
resilience, and the correct key could not be uniquely
recovered even after 50, 000 traces, showing > 1000×
MTD improvement (Section V).

C. Paper Organization

The paper is structured as follows: Background on SNOW-
V is provided in Section II, followed by the presentation of
the power SCA attack strategy in Section III. Measurement
results of CPA and LDA-based attacks are demonstrated in
Section IV, while Section V covers various countermeasures
applied to SNOW-V. The paper concludes in Section VI.

II. BACKGROUND AND RELATED WORKS

A. 5G Security & Beyond

The current cryptographic standards, such as SNOW 3G
(designed for 3G mobile networks), encounter new challenges
in 5G systems and need adaptation to the evolving technology.
Therefore, the shift from SNOW 3G to SNOW-V is crucial,
with the increase in demand for security and the establishment
of SNOW-V as a standard choice for 5G communications.

SNOW-V has been designed to be compatible and scalable
to the upcoming 6G mobile networks. Keeping the futuristic
goals in mind, SNOW-V is designed to be PQC-compliant
based on the NIST guidelines of 256-bit security for symmetric
key algorithms. It is expected that 6G networks will conform
to these guidelines to ensure different systems can work
together and use secure legacy algorithms that have already
been carefully reviewed.

B. Why SNOW-V?

The 5G wireless networks on the horizon are anticipated to
deliver high data rates, low latency, and improved Quality of
Service. However, with the advent of 5G wireless networks,
the demand for security and privacy is expected to be even
greater than before.
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Fig. 2. Architecture of SNOW-V, the upper part is the two LFSRs of 512
bits, and the lower part is the FSM consisting of 3 registers and AES round
core [4].

Serving as a solution to security challenges in previous
generations of wireless networks, stream ciphers, such as the
128-bit SNOW 3G, were consistently chosen in 4G and 5G
systems. Nevertheless, as 5G networks emerge, algorithms like
SNOW 3G find themselves facing new challenges and needing
to adapt to the evolving landscape.

To overcome the challenges mentioned earlier, SNOW 3G
has recently undergone a revision, evolving into the SNOW-V
stream cipher. The SNOW-V stream cipher is a recent addi-
tion to the SNOW family of stream ciphers. Its components
resemble to those found in other members of the family. The
algorithm takes a 256-bit key and a 128-bit initialization vector
(IV) as inputs, producing a 128-bit keystream.

C. Architecture of SNOW-V

SNOW-V, a synchronous stream cipher, produces a pseu-
dorandom keystream (zt)t≥0 with an input of key and initial-
ization vector (IV). At each clock cycle t, the message mt is
encrypted by ct = mt⊕zt to obtain the ciphertext ct. Similarly,
the decryption is performed by mt = ct ⊕ zt.

As shown in Fig. 2, SNOW-V comprises of primarily two
components: an LFSR and a Finite State Machine (FSM). The
LFSR part involves two interconnecting shift registers, while
the FSM part incorporates two instances of the AES encryption
round function and three 128-bit registers.

1) LFSR: As shown in Fig. 2, the LFSR part primarily
incorporates two 16-stage LFSRs, LFSR-A and LFSR-B,
where each stage stores a 16-bit word. In the initialization

phase, spanning 16 rounds, the input key and the initialization
vector (IV) are fed into and stored in the two LFSRs at their
designated positions following the algorithm’s specifications.
Subsequently, throughout the execution of the algorithm, the
contents of the two LFSRs are iteratively updated through a
combination of XOR operations and shifts. In each round,
these updates occur eight times.

Each 256-bit LFSR consists of 16-bit cells. We denote by
a0,....,a15 the cells of LFSR-A and analogously b0,....,b15 for
the cells of LFSR-B. Each time the LFSR part updates, LFSR-
A and LFSR-B clock eight times, i.e., 256 bits of the total
512-bit state of the LFSR part will be updated in a single
step, and the two taps T1 and T2 will have fresh values.

2) FSM: The FSM comprises three 128-bit registers,
namely R1, R2, and R3 (see Fig. 2). During each cycle, it
takes two blocks, T1 and T2, from the LFSR part as inputs and
generates a 128-bit keystream block as output. The notation ⊞
denotes parallel addition modulo 232 of four 32-bit subwords.
The update logic of the FSM comprises two AES-128 round
functions, where the two round keys, C1 and C2, are set to
constant values (zero). Furthermore, in Fig. 2, σ represents a
byte-wise permutation of the form:
σ = [0, 4, 8, 12, 1, 5, 9, 13, 2, 6, 10, 14, 3, 7, 11, 15].
3) Initialization Phase: The initialization phase involves 16

rounds, during which the FSM and the LFSR are updated
iteratively. The FSM output z is mixed into LFSR-A in
each iteration. Furthermore, during the last two rounds of
this initialization phase, the state R1 undergoes an additional
update with the key.

4) Keystream Generation Phase: In this phase, the LFSRs
and the FSM work similarly to the initialization phase, except
that the FSM output is not fed into LFSR-A. Thus, the two
LFSRs are updated independently of the FSM, while the FSM
output makes up the keystream output of the whole algorithm.

D. State-of-the-art SNOW-V Implementation

Although there have been publications on specific software
and hardware implementations of SNOW-V, the clarity re-
garding its SCA security remains unexplored. SNOW-V is
optimized for high-speed software performance, leveraging
existing Single Instruction, Multiple Data (SIMD) instruc-
tions. Even without AES-NI, SNOW-V can be efficiently
implemented using 16/32/64-bit registers. Typically, platforms
supporting AES-NI also support other SIMD instructions.
Without AES-NI, SNOW-V outperforms AES-256 and even
SNOW 3G in terms of speed [4]. Overall, for large input data,
SNOW-V is 6.5× faster than optimized AES-256-CBC for
long plaintexts, and even with parallel encryption in AES-
256-CTR (instructions interleaving), SNOW-V remains 66%
faster [4].

Specific hardware implementations of SNOW-V achieve
throughput surpassing 20 Gbps. As mentioned in [1], for vari-
ous libraries like TSMC 90nm and STM 90nm, the throughput
reaches 44.91 Gbps, while the throughput for the hardware
implementation significantly increases to 628.68 Gbps with
NanGate 15nm.
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Fig. 3. Flowchart for the SNOW-SCA attack methodology

E. Side-Channel Analysis on Stream Ciphers

While most published works on practical power/EM SCA
target block ciphers, there are few works on practical results of
power SCA attacks on stream ciphers [7], [8]. To successfully
attack most block ciphers, focusing on the first or last round is
usually enough. However, when analyzing a stream cipher, it is
crucial to look at information leaks across several rounds [9].
Also, when examining hardware implementations of stream
ciphers, especially those using feedback shift registers, we
often combine algebraic attacks with methods from side-
channel analysis.

III. SNOW-SCA: ATTACK METHODOLOGY

In this section, we will describe our SNOW-SCA attack
methodology on SNOW-V.
A. Attack Steps

Fig. 3 highlights the attack steps leading to the full key
recovery in SNOW-V. Our initial investigation focuses on
analyzing the architecture of SNOW-V, revealing that the
LFSR is the most vulnerable point of attack. This is due to
LFSR’s containment of keys and IVs during the initialization
phase (Section III-B). We use Welch’s t-test hypothesis to
check for the time points corresponding to |t|-values > 4.5,
indicating any data-dependent side-channel leakage (Section
III-C).

Once the potential point of attack is identified, we perform a
Known-Key Correlation (KKC) analysis to verify and validate
our attack model (Section III-D). The objective is to identify
and analyze the leakage patterns associated with the chosen
point of attack. Subsequently, CPA [10] is utilized to perform
the attack targeting one key byte at a time, ultimately lead-
ing to the recovery of the correct key (Section III-E). The
results from the CPA showed the presence of some ghost
peaks associated with incorrect keys. To address this, we
employed a Linear Discriminant Analysis (LDA) model to
predict the Least Significant Bit (LSB) of the targeted key
byte and uniquely identify the correct key byte (Section III-F).
Additionally, we demonstrate how an incremental attack can

be performed to recover all key bytes of SNOW-V (Section
III-G).

B. Analysis of the LFSR

The primary focus of the proposed SNOW-SCA attack
model is the LFSR in the SNOW-V architecture. During the
initialization phase, all key bytes are allocated to the LFSR. In
the FSM part, the values of the two round key constants, C1

and C2, are set to zero. Consequently, there is no rationale for
targeting the AES part, as its purpose was only to randomize
the sequence.

According to the initialization phase mentioned in the
specification [4],

(a15, a14, ......, a8) ← (k7, k6, ......, k0)
(a7, a6, ......, a0) ← (iv7, iv6, ......, iv0)
(b15, b14, ......, b8) ← (k15, k14, ......, k8)
(b7, b6, ......, b0) ← (0, 0, ......, 0)

where the secret key K = (k15, k14, ......., k1, k0), the IV =
(iv7, iv6, ..., iv1, iv0), and each of ki, ivj , 0 ≤ i ≤ 15, 0 ≤
j ≤ 7, is a 16-bit vector.

These equations highlight that the primary target for the
attack can be the LFSR, particularly where the key is used.
The provided C-code in the paper [4] provides the SNOW-V
implementation details and is used for our proposed attack.

1 void lfsr_update(void)
2 {
3 for (int i = 0; i < 8; i++)
4 {
5 u16 u = mul_x(A[0], 0x990f) ˆ A[1] ˆ mul_x_inv(A

[8], 0xcc87) ˆ B[0];
6 u16 v = mul_x(B[0], 0xc963) ˆ B[3] ˆ mul_x_inv(B

[8], 0xe4b1) ˆ A[0];
7 for (int j = 0; j < 15; j++)
8 {
9 A[j] = A[j + 1];

10 B[j] = B[j + 1];
11 }
12 A[15] = u;
13 B[15] = v;
14 }}

Listing 1. lfsr update() function

If we dive more into the C-code (Listing 1) and analyze the
lfsr update() function, the parameter u is defined as:

u = mul x(A[0], 0x990f)⊕A[1]

⊕ mul x inv(A[8], 0xcc87)⊕B[0] (1)

The above equation is a function of A[8], which contains
the first two bytes of the secret key. Therefore, considering the
first iteration (i = 0, refer to Listing 1) for the first key byte,
u can be expressed as a function of f(A[0], A[1], A[8]), where
B[0] can be neglected as it is initialized with all zeros in the
initial iteration. Note that A[8] contains 16 bits of the key,
and we attack 8 bits at a time. Unless otherwise mentioned,
most analysis throughout this paper is shown on the 1st key
byte of SNOW-V, which is A[8][7 : 0] (lower 8 bits of A[8]),
henceforth referred to as A[8] in this paper.

As shown in Fig. 2, LFSR-A contains sixteen 16-bit cells.
By analyzing the equation u for the first iteration (i = 0), the
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Fig. 4. Fixed-vs-random TVLA on the measured SNOW-V traces: (a) TVLA for 1K traces across time samples (b) Incremental TVLA showing that the
|t|-value cross the threshold of 4.5 with < 10 traces.

first key byte A[8][7:0] can be recovered. For the 1st iteration,
u is a function of f(A[0], A[1], A[8]). In general, the equation
for u is shown in Eqn. 1. By analyzing the values of u and v
across the eight iterations, all 32 key bytes can be recovered
progressively (discussed in detail in Section III-G).

1 u16 mul_x_inv(u16 v, u16 d)
2 { if (v & 0x0001) return(v >> 1) ˆ d;
3 else return (v >> 1);
4 }

Listing 2. mul x inv() code

From Listing 1 and Listing 2, it is evident that for u
computation, the information about the LSB of the key byte
under attack A[8] (A[8][0]) is lost. This is due to the 1-bit right
shift within the mul x inv() function. This has consequences
during the CPA attack, resulting in multiple ghost peaks, which
we will discuss in Section III-E.

C. TVLA of SNOW-V

Test Vector Leakage Assessment (TVLA), or the statisti-
cal t-test, determines if any data-dependent variation exists
between the two sets of traces - fixed and random (fixed-vs-
random IV, in the case of SNOW-SCA). TVLA on SNOW-
V was performed for fixed vs random set of 1K traces as
shown in Fig. 4(a), across different time samples. In the case
of fixed traces, the IV remained constant, while for random
traces, the IV varied randomly. The criterion for significant
data-dependent leakage is based on the |t|-value crossing
the threshold of 4.5. The results of the TVLA indicate that
there is substantial side-channel leakage, as it crosses |t|-
values surpassing the 4.5 threshold. Fig. 4(b) illustrates the
execution of TVLA across varying numbers of traces, with
the maximum |t|-value taken for each trace. Notably, the
TVLA plot indicates that even with just ten traces, the |t|-
value surpasses the threshold of 4.5.

D. Known-Key Correlation (KKC) analysis

In SCA, KKC analysis correlates variations in side-channel
information with a known key, facilitating the detection of pat-

terns or leakage that can be exploited to uncover information
about the secret key employed in a cryptographic algorithm.

The correlation plot in Fig. 5(b) illustrates that the peak
corresponds to the leakage point of the u operation for the
1st key byte. Similarly, when we repeat for multiple keys,
distinct peaks are observable at different time samples. KKC
is just an intermediate step to determine the leakage point of
the model. For the KKC analysis, we fixed the key and varied
the IV to determine the Hamming Weight (HW) of all 16 bits
of u. Subsequently, we transitioned from a 16-bit to an 8-bit
model to deduce the initial byte of the key. The rationale for
opting for the 8-bit model lies in its ability to reduce the attack
complexity from 216 to 28. While a 2-bit or 4-bit model could
have been employed, these would have suffered from a lower
signal-to-noise ratio (SNR). Hence, we chose the 8-bit model
for its optimal attack complexity (Fig. 5(a)).

While employing the 8-bit model to compute the u hy-
pothesis, it is noteworthy that the HW for the hypothesis is
specifically calculated for the 7 bits of the u hypothesis. This
stems from the fact that the LSB of the key byte is excluded
throughout the entire analysis. Upon closer examination of the
equation for u as outlined in Section III-B, it becomes evident
that the key situated in A[8] of the mul x inv() function
undergoes a right shift by one bit (refer to Listing 2).

E. CPA on SNOW-V

Following the KKC analysis, we perform CPA targeting the
u and v operations in the lfsr update() function to extract the
secret key byte. Before we move to the measurement results
with CPA, we first perform CPA on simulated traces, which
makes the analysis faster.

For the simulated CPA (Fig. 6(a)), we first compute the 16-
bit u using the LFSR update function and determine its HW.
The HW of u serves as the representation for the simulated
traces. Now, for our 8-bit key hypothesis, the key byte under
attack A[8] is varied from 0 to 255, and the corresponding
hypothetical 8-bit u is computed. As discussed in the previous
sub-section, although our key guess is 8-bit, we applied the
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Fig. 6. (a) Simulated CPA on SNOW-V (b) MTD plot showing the correct key separates after ∼ 30 traces.

HW to the 7-bit of u (8-bit key hypothesis, but 7-bit attack
model) due to the shift in the LSB of A[8] (refer to Fig. 7).

As shown in Fig. 6(a), the CPA attack reveals four key
guesses having the highest correlation - two positive peaks
(A, B) and two negative peaks (C, D). Now, out of these four
peaks, one is the correct key, and the other three are ghost
peaks. For the 32-bit ARM Cortex-M4 microcontroller, the
data bus is pre-charged to zero, and hence, the CPA should
show positive peaks for the correct key byte. Hence, we can
discard the two negative ghost peaks (C, D). However, we still
cannot distinguish the correct key byte between A and B.

Fig. 7 shows a case study to analyze the ghost peaks
observed with CPA. As shown in Fig. 7, the four possibilities

for the top key guess are attributed to the shift in the LSB of
the key byte under attack due to the mul x inv() function
(refer to Listing 2). Hence, the remaining 7 bits of the key
byte contribute to the power SCA leakage correlated to the
HW. Since the u and v operations are fully linear (part of
LFSR), the complement of the 7-bit value also correlates
negatively, showing the ghost peaks. In this case study (Fig. 7),
the original key byte under attack (A[8]) is 0x16 (A). Now,
for this key byte value, the LSB is 0, which is thrown out
due to the mul x inv() function. The other possibility that
correlates to the 7-bit attack model is the case when LSB is 1.
In that case, the ghost key byte will be the 7-bit XOR of the
0x16 >> 1 (0x0B) and 0x07. The LSB being one would result
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Fig. 7. A Case Study demonstration to analyze and understand the ghost peaks
and how the correct key byte can be uniquely recovered using the proposed
combined CPA+LDA attack model.

in the ghost key byte as 0x19 (B). Similarly, we would obtain
negative correlation peaks for the complement of the upper 7
bits of A and B (LSB remaining the same), resulting in 0xE8
(C) and 0xE7 (D) as two other ghost peaks. In summary, the
LSB bit being 0 or 1, and the complement of the remaining 7
bits create the four combinations (A, B, C, D) as observed in
Fig. 6(a, b).

The MTD plot in Fig. 6(b) shows that the correct key
byte (along with the ghost peaks) can be recovered in ∼ 30
traces for the simulated CPA. The measured CPA results are
discussed in Section IV-B.

F. Linear Discriminant Analysis (LDA) Model

Following the CPA attack, we have two positive correlation
peaks, of which one is the correct key. The ghost peak appears
due to the unknown LSB, as discussed earlier. The LSB gets
thrown out due to the mul x inv() function (refer to Listing
2). However, the LSB affects the timing of the mul x inv().
If the LSB of the key byte A[8] is 1, then a right shift and
an XOR operation are performed; otherwise, if the LSB is 0,
only the shift is performed.

To model this leakage, we utilize the Linear Discriminant
Analysis (LDA) by modeling each trace based on the LSB of
the key byte A[8] under attack. In recent SCA attacks, LDA
has been used successfully in profiled SCA [11], [12]. LDA
is a machine-learning (ML)-based dimensionality reduction

Start

Input is the trace data by varying 

IV and key

Label each traces based on LSB of 

targeted key byte

Split the data for training and 

testing

Start training the data

Is the 

accuracy of 

the model 

more than 

99%

Apply the model on test data

Identify the unique key byte

Finish

No

Yes

Collect

more

traces

Fig. 8. Flowchart for the LDA model used to identify the key bytes uniquely.

technique that maximizes inter-class separation. We utilize
LDA in this work as a binary classifier.

The LDA model is trained to learn the LSB of the key
byte under attack from the power trace. During the training
phase, the goal is to achieve 100% accuracy so that during the
attack/test phase, the correct LSB is identified with a single
trace. This would eliminate the false peak (B) after CPA and
help uniquely identify the correct secret key byte (A) (refer
Fig. 6). The LDA measurement results are demonstrated in
Section IV-B.

G. Incremental Attack to Recover All Key Bytes

Through an incremental attack, we can recover all correct
key guesses. Algorithm 1 demonstrates the steps that allow for
retrieving all potential key guesses. From the algorithm, it’s
clear that, after the fourth iteration, i.e., for i ≥ 5, there will
be XOR-ing between two 16-bit words of the same keys, but
one of the keys will be known to us in the previous attack
steps, i.e., during i ≤ 4. So, XOR-ing between the two 16-bit
words of the same key with one known value will give us
another value.

In the first iteration of the LFSR update function (i = 0)
(refer to Listing 1), the equations for u and v involve per-
forming XOR operations on the IV and the key, located in
A[8] and B[8], respectively. Likewise, for i = 1, 2, 3, 4, the
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Algorithm 1 Algorithm to recover all the key bytes

Input: All the IVs and keys are assigned to LFSR-A and LFSR-B

Output: Recovering of all key bytes from A[8] to A[15] and B[8] to B[15]   

       for i = 0 : 7 do                     // 'i' denotes number of iterations

           if i ≤ 6 then                     

              u = f(IV, key(A[8+i]))  //keys from A[8] to A[14] will be recovered for a given IV

          end if

          if i == 7  then

              u = f(IV, key(A[8]), key(A[15]))  //A[15] will be recovered, by having an idea of 

           end if                                              // IV, and A[8] which we got in previous step

           if i ≤ 4 then                      

               v = f(IV, key(B[8+i])) //Key from B[8] to B[12] will be recovered in this step

           end if                              //for a given IV

           if i == 5 then

               v = f(IV, key(B[8]), key(B[13]))  //For a given IV and a known B[8] from previous    

           end if                                               //step, B[13] can be recovered

           if i == 6 then

               v = f(IV, key(B[9]),key(B[14])) //In this step B[14] will be recovered for given IV,

           end if                                              //and B[9] which we got in previous step

           if i == 7 then

               v = f(IV, key(B[10]), key(B[15]))  //B[15] will be recovered in this step

          end if                                                  

       end for       //Hence all key bytes ((A[8],........A[15]), (B[8],...........B[15])) are recovered

equations for u and v entail XOR operations involving the
IV and keys situated in arrays(A[9], A[10], A[11], A[12]) and
(B[9], B[10], B[11], B[12]), respectively.

Advancing to the subsequent iteration i = 5, the equation
for u involves XOR-ing the IV with the key found in A[13].
Meanwhile, the v equation XORs the IV with two 16-bit words
of the same key, one from B[8] (which is known from the first
iteration at i = 0) and the other from B[13]. The only unknown
key in this iteration is the one in B[13], making it recoverable
during this specific iteration.

Likewise, in the case of i = 6, the equation for u involves
a simple XOR operation between the IV and the key in A[14].
However, the v equation XORs the IV with two 16-bit words
of the same key, one from B[9] (known from the second
iteration, i = 1) and the other from B[14]. So, the unknown
key from B[14] can be recovered.

In the final iteration (i = 7), the equation for u involves
XOR-ing the IV with two 16-bit words of the same key from
A[8] (known from the first iteration, i = 0) and A[15]. Since
A[8] is already known, this iteration allows us to determine the
previously unknown key A[15]. Similarly, for the v equation,
XOR operations are performed between the IV and two 16-
bit words of the same key from B[10] and B[15]. With B[10]
being known from the third iteration (i = 2), we can now
determine the previously unknown key B[15].

Upon concluding all the iterations, we successfully obtained
all the key bytes residing in both LFSR-A (A[8] to A[15]) and
LFSR-B (B[8] to B[15]). Consequently, the incremental attack
is effective in recovering all key bytes.

IV. SNOW-SCA: MEASUREMENT RESULTS

A. Measurement Setup
The entire process of capturing power traces for mea-

surements was conducted using the ChipWhisperer platform.
Specifically, a ChipWhisperer capture board and a 32-bit ARM
STM32F3 target board were employed in this setup, as shown
in Fig 9.

Atmel Capture 
Board

ARM STM32F3 
Target Board

Capturing 
Traces

Fig. 9. Experimental setup to capture traces using the ChipWhisperer capture
board and the target 32-bit ARM Cortex-M4 microcontroller running the
SNOW-V algorithm.

The ChipWhisperer capture board provides a Low-Noise
Amplifier (LNA), offering adjustable gain of up to +60
dB, specifically designed for analog power measurements.
Equipped with a 10-bit Analog-to-Digital Converter (ADC)
capable of reaching up to 105 MS/s, it features an ultra-flexible
clocking mechanism that facilitates synchronous power cap-
ture, whereas the 32-bit ARM Cortex-M4 STM32F3 is
equipped with 40 KB of Static Random-Access Memory
(SRAM) and possesses a flash memory capacity of 256 KB.
The SNOW-V runs at a frequency of 7.37MHz on the ARM
Cortex-M4, and the ChipWhisperer capture board samples the
power traces at 30 Mega-Samples/sec.

Before capturing any power traces, the initial step involves
constructing a custom firmware designed for communication
with the ChipWhisperer. This enables data transmission to and
from the microcontroller, facilitating a seamless exchange of
information. We plan to open-source the custom firmware for
the communication with ChipWhisperer, along with all the

AB

D C

Fig. 10. MTD plot (measured): CPA attack on the first key byte for the
unprotected SNOW-V implementation.
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100% accuracy achieved
with 200 training data

Fig. 11. Training accuracy of the LDA model for identifying the LSB of the
key byte under attack.

captured traces and codes for the CPA and LDA-based attack.

B. SNOW-SCA Attack Results

The suggested architecture of the SNOW-V stream cipher
underwent analysis, and CPA was used to determine the
correct key bytes. The results of the CPA exhibited ghost
peaks for incorrect keys. This occurrence was due to the shift
in the LSB of A[8], as discussed in the previous section. The
MTD for CPA on the measured SNOW-V traces shows that the
correct key is recovered with < 50 traces (Fig. 10). The MTD
plot (Fig. 10) illustrates that in the case of positive correlation,
there is an overlap between one incorrect key (B) and the
correct key(A).

To uniquely identify the correct key byte, we trained an
LDA model, which then correctly predicts the LSB of the key
byte under attack. The LDA model achieves 100% accuracy
after training with 200 traces (Fig. 11).

V. DISCUSSIONS AND POSSIBLE COUNTERMEASURES

In this section, we discuss the possible countermeasures to
the SNOW-V software implementation to prevent both CPA
and LDA-based attacks.

A. Constant-time Implementation of the mul x inv() func-
tion

As discussed in Section III-B, we exploit the leakage from
the last bit of A[8] to train our LDA model as explained in
Section III-F. As shown in the Listing 3, in the reference
implementation [4], this portion is implemented in a non-
constant time.

1 u16 mul_x_inv(u16 v, u16 d)
2 { if (v & 0x0001) return(v >> 1) ˆ d;
3 else return (v >> 1);
4 }

Listing 3. Non-constant-time code mul x inv

However, we observed no reduction in accuracy in our LDA
predictor even if we transformed this code to a constant-time
code as shown in Listing 4. This happens because the LDA

|t|-value < 10 even with 1K traces

4.5

Fig. 12. Fixed-vs-random TVLA shows that the |t|-value remains < 10 for
1K traces (1K for each set - fixed and random IV).

model learns from the differences in the power consumption
information to train our LDA model instead of the timing
information.

1 u16 mul_x_inv(u16 v, u16 d)
2 { u16 i;
3 i = v & 0x0001;
4 return ( i*((v>>1)ˆd) + (1-i)*(v>>1) )
5 }

Listing 4. Constant-time code of mul x inv

B. Boolean masking on the points of attack in lfsr update()

Masking [13] is a provable secure countermeasure that
protects cryptographic implementations against passive side-
channel attacks, including CPA. There are several kinds of
masking techniques, such as Boolean masking [14], mul-
tiplicative masking [14], additive masking [15], etc. These
masking techniques are integrated with cryptographic opera-
tions to construct a secure implementation efficiently, depend-
ing on the type of operations. SNOW-V mainly uses Boolean
operations, so it would be efficient to integrate Boolean
masking to secure SNOW-V implementation against SCA.
In Boolean masking, we divide any sensitive variable x (a
variable that is generated from an interaction with the secret
key) into multiple shares (for first-order SCA protection, we
split x into two shares x1 and x2, such that x1⊕x2 = x) and
then perform all the operations of the cryptographic algorithm
separately on these two shares.

Since our attack target here is the u and v variables in the
lfsr update(), which comprises the Boolean operations, we
use a Boolean masking scheme. For the first-order masking,
we utilize a 16-bit random variable to mask the values of u and
v as u⊕ r and v⊕ r, respectively. This will prevent revealing
the hamming weights of the variables u and v to an attacker
with a single probe.

The masked SNOW-V implementation is validated using the
ChipWhisperer measurement framework (Fig. 9). As shown
in Fig. 12, the fixed-vs-random TVLA test on the masked
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Fig. 13. Measured CPA results on the masked SNOW-V implementation
shows that the secret key byte could not be extracted even after 50K
traces. Hence, the proposed boolean masking technique provides an SCA
improvement of > 1000× against our proposed SNOW-SCA attack.

SNOW-V implementation reveals that the |t|-value remains
< 10 even with 1K analyzed traces (1K from each set - random
and fixed IV), compared to ∼ 150 for the unprotected SNOW-
V implementation with the same number of traces (refer to Fig.
4(b)).

Fig. 13 shows the measured CPA results on the masked
SNOW-V implementation. We can clearly see that the correct
key could not be revealed even after 50K traces, showing a
> 1000× SCA security improvement. This highlights the effi-
cacy of the proposed countermeasure using Boolean masking.
However, since the |t|-value crosses the threshold of 4.5, there
exists some data-dependent leakage, which may be exploited
by attacking other points of the SNOW-V implementation.
Hence, we must develop a full-fledged masking scheme for
the entire algorithm (instead of just the u and v attack points
in the lfsr update()). However, it has consequences in terms
of throughput degradation. We discuss this in more detail in
Section V-D.

C. Shuffling of the LFSR Rounds

Alternatively, a low-cost countermeasure on the algorithm
is shuffling [16], where the execution order of the independent
operation gets shuffled (using a permutation function) and
makes the processor non-deterministic. Here, although the
operations generate power leakages depending on the process-
ing data, the time when the operations are performed varies
every execution. Shuffling techniques increase the complexity
of the side-channel trace requirements to perform SCA in
the presence of enough noise in the channel. The attack
complexity increases linearly with the number of independent
operations on which the permutation is applied. In the case of
SNOW-V, the first five iterations within the lfsr update()
function are independent and can be shuffled. However, it
is challenging to apply the shuffling technique on the entire

lfsr update() function, as the last three iterations consist of
dependent operations and conversion of most of the operations
of lfsr update() to a set of independent operations efficiently
is challenging and needs more research. We also want to note
that there is little research on side-channel attacks and their
countermeasures on stream ciphers [17].

D. Future Directions

For masked implementations, we are repeating the op-
erations on different shares independently. It significantly
increases (> 2×) the run time of the whole cryptographic al-
gorithm. We can do this parallelly on hardware platforms with
more area and power consumption. Since the 5G ciphers have
very stringent limits on performance and resource consump-
tion, developing suitable masking schemes is challenging.

On the other hand, recently, various low-overhead circuit-
level countermeasures like switched capacitor current equal-
izer [18], integrated voltage regulators (IVR) [19], and sig-
nature attenuation using STELLAR [20]–[24] have been
presented. While logical countermeasures such as masking
suffer from high overheads and performance degradation
and are algorithm-specific, circuit-level countermeasures are
algorithm-agnostic and typically have the lowest overheads for
the same level of SCA security [22], [25], [26]. Such circuit-
level countermeasures can be used as a generic wrapper around
the microcontroller core, ensuring an almost constant supply
current to an external attacker and thus providing resilience to
any crypto or security-sensitive algorithm running in software.

Finally, it should be worth noting that developing an effi-
cient countermeasure for the full encryption (or decryption) of
a cryptographic algorithm is a non-trivial task that requires a
significant amount of research and experimentation. Through-
out this section, we have laid down some roadmap and possible
directions that could be beneficial in developing a suitable
countermeasure. Our initial first-order masking experiments
also corroborate some of these hypotheses. Developing a full-
fledged SCA-protected implementation of SNOW-V is part of
our future research.

VI. CONCLUSION

In summary, this paper presents SNOW-SCA, the first power
SCA attack on the 5G standard candidate SNOW-V. Utilizing a
combined CPA and LDA attack, the full secret key is recovered
for the software implementation of SNOW-V running on a 32-
bit ARM Cortex-M4 microcontroller. While the CPA narrows
down the hypothesis to two key byte guesses, the LSB for
the byte under attack could not be determined uniquely as it
gets thrown away by an intermediate operation (mul x inv())
within the lfsr update(). Hence, an LDA model is trained
to predict the LSB based on the branching condition in the
mul x inv() function. LDA achieves 100% accuracy with <
200 training traces. Overall, the correct key byte is recovered
in < 50 traces using our proposed attack strategy. Finally,
we demonstrated boolean masking to specifically protect the
points of attack, which shows successful SCA resilience even
with 50K traces.
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