
A Cautionary Note: Side-Channel Leakage
Implications of Deterministic Signature Schemes

Hermann Seuschek1

hermann.seuschek@tum.de
Johann Heyszl2

johann.heyszl@aisec.fraunhofer.de
Fabrizio De Santis1

desantis@tum.de
1Technische Universität München, Institute for Security in Information Technology

Arcisstraße 21, 80333 München, Germany
2Fraunhofer Institute for Applied and Integrated Security

Parkring 4, 85748 Garching b. München, Germany

ABSTRACT
Two recent proposals by Bernstein and Pornin emphasize
the use of deterministic signatures in DSA and its elliptic
curve-based variants. Deterministic signatures derive the re-
quired ephemeral key value in a deterministic manner from
the message to be signed and the secret key instead of using
random number generators. The goal is to prevent severe
security issues, such as the straight-forward secret key recov-
ery from low quality random numbers. Recent developments
have raised skepticism whether e.g. embedded or pervasive
devices are able to generate randomness of sufficient quality.
The main concerns stem from individual implementations
lacking sufficient entropy source and standardized methods
for random number generation with suspected back doors.
While we support the goal of deterministic signatures, we are
concerned about the fact that this has a significant influence
on side-channel security of implementations. Specifically,
attackers will be able to mount differential side-channel at-
tacks on the additional use of the secret key in a crypto-
graphic hash function to derive the deterministic ephemeral
key. Previously, only a simple integer arithmetic function
to generate the second signature parameter had to be pro-
tected, which is rather straight-forward. Hash functions are
significantly more difficult to protect. In this contribution,
we systematically explain how deterministic signatures in-
troduce this new side-channel vulnerability.

Keywords
Elliptic Curve Cryptography; ECDSA; Deterministic Signa-
tures; Side-Channel Attacks

1. INTRODUCTION
In contrast to classical signature schemes, deterministic

signatures omit the requirement for high-quality and fresh
randomness for each new signature generation to simplify
secure implementations. In the area of low cost embedded

This is the accepted version of a publication at CS2 ’16, January 20 2016,
Prague, Czech Republic. Final publication can be found under under DOI:
http://dx.doi.org/10.1145/2858930.2858932

systems such as small Internet of Things (IoT) devices, high-
quality true random number generators are not generally
available. Using deterministic signatures simplifies the im-
plementation of digital signatures on such devices because
high-quality entropy sources are no longer needed. Another
practical advantage is that the deterministic behavior in-
creases testability and verifiability of implementations which
enhances the quality and as a result the security of imple-
mentations.

In this work, we focus on the ECDSA standard [3] as an
example, however, all properties and conclusions also ap-
ply to similar schemes like ECGDSA [18], ECKDSA [18],
and general EC-El-Gamal [16] signatures. The generation
of ECDSA signatures consist of two computations leading
to the two signature components R and S. In the following,
k is the randomly chosen ephemeral secret key, P is the con-
stant elliptic curve base point, with n the base point order,
(xR, yR) are the coordinates of the resulting point after the
Elliptic Curve Scalar Multiplication (ECSM) k ·P , the hash
value of the message m is denoted by H(m), and d is the
long-term secret key. The computation of a signature works
as follows:

randomly select k ∈ {1, . . . n− 1} (1)

(xR, yR) = k · P (2)

R = xR mod n (3)

S = k−1 · (H(m) + d ·R) mod n (4)

Attackers usually either aim to recover the long-term secret
key d or want to forge signatures for arbitrary messages. To
recover the long-term secret key d, an adversary can either
target the secret key d directly or the ephemeral secret k.
Both are of equal value because d can easily be computed
from k for a given signature as

d = R−1 · (S · k −H(m)) mod n. (5)

Using the same ephemeral key for at least two signatures
also causes a major threat. For two signatures (R,S) and
(R,S′) of different messages m, m′, the private key can be
easily extracted. First, the difference of the two signature
values S and S′ is computed:

S − S′ = k−1 · (H(m)−H(m′)) mod n (6)

This difference allows the computation of the ephemeral key

k = (S − S′)−1 · (H(m)−H(m′)) mod n, (7)

which allows the computation of the long term secret d by
using Equation 5. This method was used for breaking the
code signing mechanism of Sony Playstation 3 [13], where a
constant value has been used as the ephemeral key leading
to a recovery of the secret signature key. Nguyen et al.
[25] proposed an even more sophisticated attack based on
lattices which only requires the knowledge of few bits of k
to completely recover k (and as a consequence d).

Importantly, these facts underline that the security of the
long term secret key d directly depends on the quality, re-
spectively entropy, of the chosen random number for the
ephemeral key k. This was the starting point for the idea of
deterministic signature schemes. In order to eliminate the
random number, the ephemeral key is derived from the pri-
vate long term signature key which necessarily has sufficient
entropy, and the message to be signed. Using the private
key in conjunction with the message makes sure that the
ephemeral key cannot be derived from the message and that
it is unique for each message. A hash function is already
required for signature generation. Hence, it is reasonable
to reuse it to derive the ephemeral key in a message au-
thentication code (MAC) construction such as HMAC [1].
The deterministic derivation of the ephemeral key has no
influence on the verification of such signatures. Hence, this
modification of the generation side can easily be used in ex-
isting installations and verifiers have no means of detecting
whether a deterministic method had been used.

While we think that deterministic signatures have a sig-
nificant value, especially in IoT devices, we are concerned
about the side-channel implications, especially in the con-
text of the same IoT devices. The additional usage of the
long-term secret key d in a hash function with a second input
being the plain message, which is varying and known to pos-
sible attackers, enables powerful and hard to prevent Differ-
ential Power Analysis (DPA) attacks. In this contribution,
we would like to explain this introduced side-channel vulner-
ability on the example of two recently proposed schemes by
Bernstein et al. [6] and Pornin [26].

Our paper is structured as follows: in Section 2 we discuss
side-channel vulnerabilities of classical ECDSA signatures.
In the subsequent Section 3 we will give an introduction
to deterministic signatures and discuss the vulnerabilities of
the deterministic derivation of the ephemeral key. Finally,
in Section 4 we conclude findings and give suggestions for
further directions of work.

2. SIDE-CHANNEL ATTACKS ON ECDSA
IMPLEMENTATIONS

In this section we discuss side-channel vulnerabilities for
conventional elliptic curve-based signature schemes, where
the ephemeral keys are selected at random. Attacks gen-
erally either target the ephemeral scalar k, or the secret
key d. (The random number generators are generally not
considered.) Since the ECDSA scheme uses an individual
ephemeral scalar k for each signature, the Elliptic Curve
Scalar Multiplication (ECSM) must only be protected against
single-execution attacks, which generally is a big advantage.
However, several kinds of single-execution attacks like SPA
or profiled template attacks have to be considered. To pro-
tect against SPA [20], a constant processing time and con-
stant sequence of operations, independent of the processed
scalar provides sufficient protection. This can be achieved

through applying the Montgomery powering ladder [19, 22],
the Double-and-add-always algorithm [11], and through uni-
fied formulas for doubling and adding [8]. To protect against
template attacks [24], the required profiling for these attacks
can be defeated through base point blinding [11], scalar ran-
domization [11], random scalar splitting [14], random field
representations [9], or projective coordinate randomization
[11]. Those mechanisms provide a good level for protection
and are straightforward to implement. A drawback is that
randomness is required. However, the required entropy for
this side-channel protection is low compared to what is re-
quired for ephemeral keys because no offline computation
must be considered. Even if profiling can be prevented as
described, more sophisticated non-profiled single-execution
attacks remain. They include the Big-Mac attack by Walter
[28] and recent improvements [10, 15, 12]. Their impact is,
in principal, only limited by the available single-execution
leakage and its signal to noise ratio. Still, such attacks
may only employ single executions at once which limits their
threat. As a summary, the ECSM operation can usually be
protected against side-channel attacks up to a fair security
level with reasonable effort.

Alternatively, attackers may target the regular long num-
ber multiplication d · R in Equation 4 to recover the secret
key d. An attack targeting this operation on a hardware
implementation of ECDSA was reported in [17]. A possible
countermeasure against this attack is the transformation of
Equation 4 in a way such that the publicly known value R
is not directly multiplied with the private key d to prevent
differential attacks with known inputs:

s = k−1 ·H(m) + r · (k−1 · d) mod n. (8)

Additionally, the multiplications can be protected using mask-
ing.

3. SIDE-CHANNEL ATTACKS ON DETER-
MINISTIC SIGNATURE SCHEMES

The basic idea of deterministic signature schemes is to
compute the ephemeral key by processing the message to be
signed combined with the private key. While the private key
is constant, the message is known to attackers and changes
for each computation of a new ephemeral key. Both, the se-
cret key, and the known message are inputs to a hash func-
tion. Unfortunately, these are the exact circumstances which
enable powerful differential side-channel attacks. Compared
to the conventional case, differential attacks are now possi-
ble on a hash function implementation which, contrary to
the regular multiplication discussed above, is much harder
to protect against such attacks. Before we discuss the side-
channel vulnerabilities of deterministic signature schemes
proposed by Bernstein and Pornin more in detail, we start
with an introduction to attacks on the hash functions SHA-2
and SHA-3, which form the basic components for the deter-
ministic ephemeral key generation.

3.1 Side-Channel Attacks on SHA-2
McEvoy et al. [23] and more recently Beläıd et al. [5] re-

port successful side-channel attacks on a HMAC construc-
tion based on the SHA-2. The HMAC construction in-
vokes the underlying hash function H(·) in a nested way,
with the consequence that the side-channel attack has to
be performed two times, for the inner and outer hash. The

f
IV

f f

Length

Expansion

Input Message Blocks

Padding

S0 S1 S2 Sn−1 Sn

Finali-

sation Hash

Length

Expansion

Length

Expansion

I0 I1 I2

Figure 1: Merkle-Damg̊ard construction is a method to build
a cryptographic hash function from an one-way compression
function f .

HMAC-values for a message M using a key K is computed
as follows, where opad and ipad are standardized padding
values with the same length as the input block size, and |
denotes concatenation:

HMAC(K,M) = H ((K ⊕ opad)|H((K ⊕ ipad)|M)) (9)

One of the proposed deterministic signature schemes uti-
lizes a deterministic random bit generator based on HMAC
where the HMAC-key K is initially known and updated by
an invocation of the HMAC. In this case, the required side-
channel attack can be reduced to an attack of the underlying
hash. Therefore we are discussing the attack methodology
for the hash function only. The attack is based on proper-
ties of the Merkle-Damg̊ard construction and therefore ap-
plicable to all hash functions which are designed according
to Merkle-Damg̊ard (e.g. MD-5, SHA-1, SHA-2, . . .). This
construction technique for hash functions is depicted in Fig-
ure 1. The input message is split into equally sized input
blocks. In order to allow the hashing of arbitrary length
messages, a proper padding of the message has to be ap-
plied. The resulting input blocks are expanded by a length
expansion and compressed by the function f in a chained
way. Therefore, the compression function has one output
and two inputs, one with the size of the expanded message
block and one with the same size as the output. The com-
pression function for the first message block is initialized by
an initialization vector IV , which is the initial internal state
S0 = IV . The output Sn of the final execution of the com-
pression function can be optionally post-processed to form
the final hash value.

The side-channel attack described in [23] and improved
in [5] targets the compression function with the prerequisite
that the input message to the hash function has to be com-
posed of a fixed and eventually padded key value which fits
into the first input block I0 of the hash, and a varying part
such as an arbitrary message. As a consequence the out-
put S1 of the first execution of the compression function f ,
which is the input of the second one, is fixed and unknown.
Taking a closer look on the second execution of the com-
pression function we have a fixed unknown input S1 and a
known varying input block I1. This enables the possibility
to perform differential side-channel attacks which can derive
the internal state S1. It is important to note that this at-
tack does not reveal the first unknown input block (e.g. the

secret key) but an internal value which allows the compu-
tation of the correct hash value of arbitrary messages with
respect to the secret key. For the HMAC setting according
to Equation 9, this value is used as a known input for the
outer hash function which has to be attacked in the same
way. The same attack methodology will be applied to the
actual deterministic signature schemes in Sections 3.3 and
3.4.

3.2 Side-Channel Attacks on SHA-3
Taha and Schaumont [27] report different levels of side-

channel vulnerabilities of MAC-Keccak depending on the
selected Keccak parameters and the key length.

We discuss the subset standardized as SHA-3 [2] and give
a brief introduction to it. For a more detailed description
we refer to [7, 2]. The hash operation is based on a so-
called sponge functions and the analogous terminology of
absorbing and squeezing is used. It is performed in three
high-level steps:

1. Like in the SHA-2, the input message is padded and
split into equally sized blocks. The size of the blocks
is called the rate r and equals the bit-length of the
SHA-3 digest. The initial state is set to all zero bits.

2. The 3-dimensional state of size 1600 bits, see Figure 2,
is filled from the bottom to the top starting from po-
sition (x = 0, y = 0, z = 0) in z-direction. When a full
input block with size r bits is absorbed by the state,
the remaining bits are filled with zeros. The number
of zero bits is referred as capacity c. The resulting
state is XORed with the previous state and applied to
the Keccak function to update the state.

3. The final hash digest equals the first o bits in the state
which are squeezed out of the state.

In case of SHA-3, the Keccak function consists of 24 rounds
of five sequential operations. Where each round is defined
as

Output = ι ◦ χ ◦ π ◦ ρ ◦ θ(Input). (10)

For side-channel attacks on SHA-3 we are only interested in
the knowledge of θ, therefore we only present this operation
which is defined as

d[x][y][z] = d[x][y][z]⊕ (⊕4
i=0s[x− 1][i][z])

⊕ (⊕4
i=0s[x+ 1][i][z − 1]).

(11)

The θ operation given in Equation 11 is the binary XOR of
each bit in the state with itself and the bits of two neighbor
columns as depicted in Figure 2. The attack target is the
XOR-operation between the bits in each state-column. For
successful attacks, the constant secret bits and the known
varying bits have to be stored in a certain configuration in
the state. That is at maximum one secret bit per column
and for each secret bit at least one varying bit in the same
column.

3.3 Edwards-curve Digital Signature Scheme
The digital signature scheme proposed by Bernstein et al.

[6] is a variant of ECDSA signatures. It is gaining popu-
larity in embedded applications due to fact that no license
fees are due and that open source implementations are avail-
able which provide all functions required to establish sound
information-secure devices. The scheme is based on twisted

x

y z

z

+ +

Figure 2: SHA-3 state and the θ operation (taken from kec-
cak.noekeon.org and modified in accordance to CC BY 3.0)

Edwards curves and called Edwards-curve Digital Signature
Scheme (EdDSA). The long term secret key d is of the length
of the curve parameter b which is 256 bits. The selection of
the hash function is highly dependent on this parameter b
because of the required output size of 2bbits. The recom-
mended hash function by Bernstein [6] is SHA-512 with the
option to be later replaced by SHA3-512. We restrict our
analysis to vulnerabilities caused by using these particular
hash functions which are explained in the following subsec-
tions.

The long term private signature key d is a randomly cho-
sen b bit integer. In order to compute the corresponding
public key, the private key has to be hashed to obtain the
2b bit value H(d) = (h0, h1, . . . , h2b−1). One half of this hash
value is used to derive a = 2b−2+

∑
3≤i≤b−3

2ihi, which is used

to compute the public key by multiplying it with the base
point of the elliptic curve A = a · P . The remaining part of
the hash value is used to derive the deterministic ephemeral
key k by concatenating it with the message to sign m (de-
noted by |) and hashing the resulting value as follows:

k = H(hb, hb+1, . . . , h2b−1|m). (12)

The signature of the message m is the pair (R,S) where
R = k ·P and S = (k+H(R|A|m)a)mod l; the modulus l is
a prime number between 2b−4 and 2b−3.
The derivation of the ephemeral key according to Equa-

tion 12 bears side-channel risks due to the fact that a suc-
cessful side-channel attack allows the computation of the
corresponding k without knowing the private key d. As a
result valid signatures can be computed. In the following
we will discuss the side-channel vulnerability for the two
recommended hash functions.
Side-Channel Attack on the SHA-512 Variant The most

important parameters to perform a side-channel attack on
Ed25519 using SHA-512 is the size of the input blocks which
is 1024 bit and the size of the unknown key dependent value
(hb, hb+1, . . . , h2b−1) which is 256 bit. This means that only
the first input block of the hash depends on an unknown
value and the attack described in Section 3.1 is possible.
The side-channel attack allows to determine the input value
of the second invocation of the compression function S1

which is the same as the output of the first block compres-

sion. With this result it is possible to compute a corre-
sponding ephemeral key for a message with the restriction
that the first 768 bit of the message have to be constant.
This is because this part of the message is processed by the
first invocation of the compression function together with
the unknown key-dependent value. In practice this can be
exploited when files with constant header information are
signed.

Side-Channel Attack on the SHA3-512 Variant As the
MAC-Keccak construction is exactly the same as the deriva-
tion of the ephemeral key in Ed25519 (i.e. an unknown value
concatenated with a known manipulatable message is hashed),
we can directly apply the results from Taha and Schaumont
[27] to our analysis of the signature scheme. Unlike in the
work of Taha and Schaumont, in our case the parameters
are fixed to the following values:

• The state size is fixed to 1600 for all SHA3 variants

• The plane p is 360 bits long for SHA3-512

• The output length o is 512 bit

• The rate r (size of one input block) is 576 bit

• The length b of the unknown value is 256 bit

According to [27] the side-channel attack can be performed
in the most simplest way if b ≤ p, which is given in our
setting. In this case the internal state of SHA-3 will absorb
the key only in the bottom plane (see Figure 2) the remain-
ing bits of the state are filled with known message bits and
zeros. The resulting state is XORed with the initial state
which is all zeros and thus has no effect on the state. After-
wards the Keccak function is applied to the state beginning
with the θ-operation. While computing this operation every
column of the state consists of at most one unknown key
bit. So the first step of the computation on θ is sufficient to
recover the unknown value. The resulting value is not the
private key itself, but knowing this internal value allows the
computation of ephemeral keys for arbitrary messages.

To understand the attack on θ we give a brief description
of the computations performed in typical implementations.
According to [27], the θ-operation is computed in two steps.
In the first step the XOR of all columns in the state is com-
puted resulting in θplane. The XOR for each column can
be computed in parallel in hardware, or from bottom to top
like in the reference software implementation. Alternative
implementations can also use a top to bottom approach. In
our case all three implementations variants can be attacked
by a side-channel attack because b ≤ p. In the second step,
every bit in the state is XORed with the two neighbor lo-
cations of θplane. By executing several signatures with the
unknown private key and changing known messages a dif-
ferential side-channel attack can be mounted to reveal the
secret bits (hb, hb+1, . . . , h2b−1).

3.4 Signatures According to RFC 6979
In his Request for Comments [26], Pornin describes an

alternative deterministic derivation of the ephemeral k for
ECDSA. The described method is based on HMAC-DRBG
(Deterministic Random Bit Generator) as specified by NIST
[4]. The underlying HMAC is defined in [21, 1] as shown in
Equation 9. Here, the utilized cryptographic hash function
is denoted by H(·) which is the same as used for the signature
itself.

In the HMAC-DRBG construction, the underlying HMAC
is executed for several times. The initial input values are
K0 = 0 for the HMAC-key and V0 = (0x01, 0x01, . . . , 0x01)
with length

⌈
hlen
8

⌉
bytes, where the length of the hash out-

put is denoted by hlen. The initial single byte F0 is set to
zero. The first invocation of the HMAC updates the key Ki

in the following way, where i = 1:

Ki = HMAC(Ki−1, (Vi−1|Fi−1|d|H(m))) (13)

The input message is a concatenation of the initial V0, the
initial F0, the ECDSA private key d and H(m) which is the
hash value of the message to sign. To understand the details
of the initial execution of HMAC according to Equation 13
it can be rewritten as follows, substituting Equation 9 into
Equation 13:

Ki = H((Ki−1 ⊕ opad)|H((Ki−1 ⊕ ipad)|Vi−1|Fi−1|d|H(m)))
(14)

The input value of the inner hash is a concatenation of sev-
eral known variable and constant values with the constant
and unknown private key d. This is the basic requirement
to perform differential side-channel attacks. After updat-
ing the key value Ki, the value Vi is updated which can be
computed with known values:

Vi = HMAC(Ki, Vi−1) (15)

In the next iteration, the values Ki and Vi are updated again
to finally get K2 and V2. The update to K2 is the same as
given in Equation 13 with the difference that byte F1 =
1. The update of value Vi is the same as in Equation 15.
The computation of the ephemeral key is done based on
the resulting K2 and V2 with the message m and private
key d not involved in the computation. This means, that
retrieving K2 and V2 from a side-channel attack allows the
computation of the ephemeral key k. In this case the private
key d is disclosed and an attacker is able to sign arbitrary
messages. In the following we will discuss the side-channel
vulnerability dependent on the selection of the underlying
hash function and the elliptic curve parameters. Thereby we
will concentrate on attacking the inner hash of the HMAC
as the outer hash can simply be computed because of the
knowledge of Ki. Nevertheless the side-channel attack has
to be performed twice because of the differing values of Ki,
Vi, and Fi, where i ∈ {0, 1}:

H((Ki ⊕ ipad)|Vi|Fi|d|H(m)) (16)

The value Ki⊕ipad is known and has exactly the size of one
input block of the hash function. Hence, the internal state
after processing the first block can be derived from known
values. This means that the first block does not have to be
considered for side-channel analysis.

Next we have to consider which values are processed for
the second block depending on different combinations of
hash functions and curve parameters.

Side-Channel Attack on the SHA-2 Variant Analyzing the
use of SHA-2 variants while using the attack methods pro-
posed in Section 3.1 we have to make sure that the input
data composed of Vi, Fi, and d exactly fits into the sec-
ond input block. Then the side-channel attack according to
[5] can be performed on the input of the third compression
function which is the same as the output of the second com-
pression function S2. When the three values Vi, Fi, and d
get larger than the second block, the private key d spreads

Table 1: Comparison of the input block length blen and the
size of the concatenation of Vi, Fi, and d.

blen P-192 P-224 P-256 P-384 P-521

SHA-224 512 424 456 488 616 753
SHA-256 512 456 488 520 648 785
SHA-384 1024 584 616 648 776 913
SHA-512 1024 712 744 776 904 1041

to the third block which prevents the side-channel attack.
When it is to small, the input value of the second compres-
sion cannot be constant because the output bits of the hash
H(m) cannot be controlled.

Table 1 compares the block sizes and the length of the con-
catenation of Vi, Fi, and d for different hash and ECC NIST
curve combinations, regardless of whether the combinations
are recommendable. As it can be seen, the requirement for
matching block length blen and input sizes is not met for all
combinations which essentially prevents side-channel attacks
on this construction.

Side-Channel Attack on the SHA-3 Variant For SHA-3
the analysis is more complex because of the characteristics
of the sponge construction. Therefore we discuss the possi-
ble vulnerabilities on an exemplary hash/curve combination
with a P-256 curve and the SHA2-256 hash function.

We have to analyze whether the values Vi, Fi, d, and
H(m) are stored in the SHA-3 state, such that the side-
channel attack sketched in Section 3.2 is applicable. For the
given sizes of the values, all bits fit into one hash input block.
The private key is shorter than the size of one plane (256 bit
vs. 320 bit) and therefore only one secret bit is stored per
column. The hash value of the message H(m) is of the same
length as the secret. This means that for attacking all bits
of the secret, both values have to be aligned in a way that
each column with a secret key bit also stores a hash values
of the message. This is not possible with the given setting
which prevents a side-channel attack targeting all secret bits.
Nevertheless, there is an overlap which allows the recovery
of some bits of the key d.

4. CONCLUSION
In this paper we discussed side-channel vulnerabilities aris-

ing from the introduction of deterministic signatures. The
key novelty for this kind of signature generation is the fact
that the secret key and the message are processed in a hash
function. This enables differential side-channel attacks. Un-
fortunately, hash functions are difficult to protect against
differential side-channel attacks. Hence, the advantages of
deterministic ephemeral keys not requiring a true random
number generator come with significant drawbacks for im-
plementations in IoT and similar applications, where side-
channel attacks are possible.

The precise extent of the vulnerability depends on the
selected signature scheme, elliptic curve, and hash function.
The scheme proposed by Bernstein seems to be more vulner-
able to side-channel attacks caused by using the full message
to derive the ephemeral key. In contrast, the HMAC-DRBG
construction used by Pornin’s proposal offers more security
by higher attack complexity and only using a hash value of
the message.

A possible direction for future work is to perform exper-

iments which support our results and help to quantify the
vulnerability for different configurations. Additionally, ap-
propriate countermeasures have to be developed.

Acknowledgments
This work was partly funded by the German Federal Min-
istry of Education and Research in the project SIBASE
through grant number 01IS13020.

5. REFERENCES
[1] FIPS PUB 198-1: The Keyed-Hash Message Authentication

Code (HMAC). Technical report, Information Technology
Laboratory, National Institute of Standards and
Technology, July 2008.

[2] FIPS PUB 202: SHA-3 Standard, Permutation-Based Hash
and Extendable-Output Functions. Technical report,
Information Technology Laboratory National Institute of
Standards and Technology, Aug. 2015.

[3] ANSI. ANS X9.62-2005. Public Key Cryptography for the
Financial Services Industry. The Elliptic Curve Digital
Signature Algorithm (ECDSA). American National
Standards Institute, 2005.

[4] E. Barker, J. Kelsey, et al. Nist special publication 800-90a:
Recommendation for random number generation using
deterministic random bit generators, 2012.

[5] S. Belaid, L. Bettale, E. Dottax, L. Genelle, and
F. Rondepierre. Differential power analysis of HMAC
SHA-2 in the Hamming weight model. In Security and
Cryptography (SECRYPT), 2013 International Conference
on, pages 1–12. IEEE, July 2013.

[6] D. J. Bernstein, N. Duif, T. Lange, P. Schwabe, and B.-Y.
Yang. High-speed high-security signatures. Journal of
Cryptographic Engineering, 2(2):77–89, 2012.

[7] G. Bertoni, J. Daemen, M. Peeters, and G. V. Assche. The
Keccak SHA-3 submission, January 2011.
http://keccak.noekeon.org/.

[8] E. Brier and M. Joye. Weierstraß Elliptic Curves and
Side-Channel Attacks. In D. Naccache and P. Paillier,
editors, Public Key Cryptography, volume 2274 of Lecture
Notes in Computer Science, pages 335–345. Springer Berlin
Heidelberg, 2002.

[9] M. Ciet and M. Joye. (virtually) free randomization
techniques for elliptic curve cryptography. In Information
and Communications Security, volume 2836 of Lecture
Notes in Computer Science, pages 348–359. Springer Berlin
/ Heidelberg, 2003.

[10] C. Clavier, B. Feix, G. Gagnerot, M. Roussellet, and
V. Verneuil. Horizontal Correlation Analysis on
Exponentiation. In M. Soriano, S. Qing, and J. López,
editors, Information and Communications Security, volume
6476 of Lecture Notes in Computer Science, pages 46–61.
Springer Berlin Heidelberg, 2010.

[11] J.-S. Coron. Resistance against differential power analysis
for elliptic curve cryptosystems. In CHES ’99: Proceedings
of the First International Workshop on Cryptographic
Hardware and Embedded Systems, pages 292–302, London,
UK, 1999. Springer-Verlag.

[12] J.-L. Danger, S. Guilley, P. Hoogvorst, C. Murdica, and
D. Naccache. Improving the Big Mac Attack on Elliptic
Curve Cryptography. Cryptology ePrint Archive, Report
2015/819, Aug. 2015.

[13] Fail0verflow. Console Hacking 2010 – PS3 Epic Fail.
https://events.ccc.de/congress/2010/Fahrplan/events/4087.
en.html, Dec. 2010.

[14] P.-A. Fouque and F. Valette. The doubling attack - why
upwards is better than downwards. In C. Walter, Ç. Koç,
and C. Paar, editors, Cryptographic Hardware and
Embedded Systems - CHES 2003, volume 2779 of Lecture
Notes in Computer Science, pages 269–280. Springer Berlin
/ Heidelberg, 2003.

[15] J. Heyszl, A. Ibing, S. Mangard, F. De Santis, and G. Sigl.
Clustering Algorithms for Non-profiled Single-Execution
Attacks on Exponentiations. In A. Francillon and
P. Rohatgi, editors, Smart Card Research and Advanced
Applications, volume 8419 of Lecture Notes in Computer
Science, pages 79–93. Springer International Publishing,
2014.

[16] P. Horster, H. Petersen, and M. Michels. Meta-ElGamal
signature schemes. In CCS ’94: Proceedings of the 2nd
ACM Conference on Computer and communications
security, pages 96–107, New York, NY, USA, 1994. ACM.

[17] M. Hutter, M. Medwed, D. Hein, and J. Wolkerstorfer.
Attacking ECDSA-Enabled RFID Devices. In M. Abdalla,
D. Pointcheval, P.-A. Fouque, and D. Vergnaud, editors,
Applied Cryptography and Network Security, volume 5536
of Lecture Notes in Computer Science, pages 519–534.
Springer Berlin Heidelberg, 2009.

[18] ISO. ISO/IEC 15946-2: Information technology – Security
techniques – Cryptographic techniques based on elliptic
curves – Part 1: Digital Signatures. International
Organization for Standardization, 2002.

[19] M. Joye and S.-M. Yen. The montgomery powering ladder.
In B. Kaliski, Ç. Koç, and C. Paar, editors, Cryptographic
Hardware and Embedded Systems - CHES 2002, volume
2523 of Lecture Notes in Computer Science, pages 1–11.
Springer Berlin / Heidelberg, 2003.

[20] P. C. Kocher, J. Jaffe, and B. Jun. Differential power
analysis. In Proceedings of the 19th Annual International
Cryptology Conference on Advances in Cryptology,
CRYPTO ’99, pages 388–397, London, UK, 1999.
Springer-Verlag.

[21] H. Krawczyk, R. Canetti, and M. Bellare. RFC2104 -
HMAC:Keyed-Hashing for Message Authentication, 1997.

[22] J. López and R. Dahab. Fast multiplication on elliptic
curves over GF(2m) without precomputation. In CHES ’99:
Proceedings of the First International Workshop on
Cryptographic Hardware and Embedded Systems, pages
316–327, London, UK, 1999. Springer-Verlag.

[23] R. McEvoy, M. Tunstall, C. C. Murphy, and W. P.
Marnane. Differential power analysis of hmac based on
sha-2, and countermeasures. In Information security
applications, pages 317–332. Springer, 2007.

[24] M. Medwed and M. E. Oswald. Template attacks on
ECDSA. In 9th International Workshop, WISA 2008, Jeju
Island, Korea, September 23-25, 2008, Revised Selected
Papers, Lecture Notes in Computer Science, pages 14 – 27.
Springer, 2009.

[25] P. Q. Nguyen and I. E. Shparlinski. The insecurity of the
elliptic curve digital signature algorithm with partially
known nonces. Designs, codes and cryptography,
30(2):201–217, 2003.

[26] T. Pornin. Deterministic Usage of the Digital Signature
Algorithm (DSA) and Elliptic Curve Digital Signature
Algorithm (ECDSA). RFC 6979 (Informational), Aug.
2013.

[27] M. M. I. Taha and P. Schaumont. Side-Channel Analysis of
MAC-Keccak. In 2013 IEEE International Symposium on
Hardware-Oriented Security and Trust, HOST 2013,
Austin, TX, USA, June 2-3, 2013, pages 125–130, 2013.

[28] C. D. Walter. Sliding Windows Succumbs to Big Mac
Attack. In c. Koç, D. Naccache, and C. Paar, editors,
Cryptographic Hardware and Embedded Systems — CHES
2001, volume 2162 of Lecture Notes in Computer Science,
pages 286–299. Springer Berlin Heidelberg, 2001.

