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Abstract. We present a framework for building efficient folding-based SNARKs. First we develop a
new “uniformizing” compiler for NP statements that converts any poly-time computation to a sequence
of identical simple steps. The resulting uniform computation is especially well-suited to be processed
by a folding-based IVC scheme. Second, we develop two optimizations to folding-based IVC. The first
reduces the recursive overhead of the IVC by restructuring the relation to which folding is applied.
The second employs a “commit-and-fold” strategy to further simplify the relation. Together, these
optimizations result in a folding-based SNARK that has a number of attractive features. First, the
scheme uses a constant-size transparent common reference string (CRS). Second, the prover has (i) low
memory footprint, (ii) makes only two passes over the data, (iii) is highly parallelizable, and (iv) is
concretely efficient. Microbenchmarks indicate that proving time is competitive with leading monolithic
SNARKs, and significantly faster than other streaming SNARKs. For 224 (232) gates, the Mangrove
prover is estimated to take 2 minutes (8 hours) with peak memory usage approximately 390 MB (800
MB) on a laptop.
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1 Introduction

Succinct non-interactive arguments of knowledge (SNARKs) [BCCT12] enable efficient verification of NP

statements. While early research focused on reducing argument size and verification time, the focus in recent

years has shifted to reducing the running time and memory requirements of the proving algorithm. This is

essential for scaling SNARK proof systems to support large statements.

Scalability limitations in existing SNARKs. Most existing SNARK constructions require that the

prover write down the full computation trace. For example, when proving satisfaction of an arithmetic

circuit C, the prover needs access to the values of all the wires in C, and performs a global computation over

the entire trace. We will refer collectively to SNARKs that fall into this category as monolithic SNARKs.

In modern monolithic SNARKs [AHIV17, BBHR18, XZZ+19, BCR+19, GWC19, Set20, BFS20, Lee20,

CHM+20, CBBZ23, GLS+23, ZCF23] this often amounts to producing commitments to polynomials of

degree on the order of the computation trace and providing opening proofs for certain evaluation points.

With our existing techniques, this translates to global computations that include some combination of fast

Fourier transforms (FFTs), multi-scalar multi-exponentiations (MSMs), and/or proofs of proximity for linear

error-correcting codes.

While the computations are global, in that they operate over the full trace, strategies for reducing memory

costs for the prover exist. One approach is to chunk global computations into smaller components [WZC+18]

storing intermediate results, rerunning the computation trace (or reading from disk) to reproduce the next

chunk, and merge intermediate results at the end. Another approach, proposed in recent work [BHR+20,

BHR+21, BCHO22], is to design polynomial commitment schemes and tailor the associated proving protocol

to be suitable for streaming. Both of these approaches reduce prover space complexity but incur overhead

on the prover’s time complexity.

Improving prover scalability via IVC. Instead of chunking the prover computation needed for the proof

system, an alternate approach for proving large statements is to chunk the statement itself into smaller more

manageable pieces, prove each piece individually, and then combine the piecewise proofs in some manner;

we will refer to SNARKs falling under this overarching strategy as piecewise SNARKs. A classic example

of a piecewise SNARK would be SNARKs implementing incrementally-verifiable computation (IVC) [Val08]

through recursive proof composition [BCCT13, BCTV14a] or proof aggregation [BMM+21, TFZ+22]. IVC

enables proving a long sequence of small computation steps, by having step i recursively verify the proof for

step i− 1. The final proof is as short as verifying a single computation step, plus some overhead.

IVC has been proposed for proving generic NP statements. To do this, the statement must first be

represented as a computation that is repeatedly applied; we call this representation uniform computation.

Previous works have explored using a universal circuit or CPU for this purpose, representing the NP statement

as a program to be executed [BCG+13, BCTV14b, BCTV14a]. This approach is memory-efficient — the

SNARK prover only needs memory on the order of the universal circuit size and program state — however

overheads in (1) encoding the NP statement as a program, (2) running a universal circuit for each step

(partially addressed in recent work [KS22]), and (3) verifying program state, have limited the prover time

efficiency of such an approach. In addition to the overhead incurred by the universal circuit, the predominant

strategy for IVC of using recursive proof composition [BCTV14a] incurs its own set of expensive overheads.

Folding schemes for IVC. The state of affairs has changed with a line of recent work on designing fold-

ing schemes (or accumulation schemes) to build IVC [BGH19, BCMS20b, BCL+21, KST22, KS22, BC23,
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EG23, KS23, NBS23, BC24] with greatly improved efficiency over preexisting constructions based on re-

cursive proof composition. A folding scheme enables a prover to reduce the task of checking two (or more)

instances of a relation into the task of checking one folded instance for that same relation with a succinct

proof of folding [KST22]. Intuitively, folding is used to build IVC by, at each step, folding instances for

a relation encoding (1) one step of repeated computation, and (2) verification of the folding proof for the

previous step [BCL+21, KST22]. This approach has led to vast improvements in the efficiency of IVC be-

cause verification of folding proofs is inexpensive (compared to verification of monolithic SNARKs) and

because generating folding proofs is inexpensive (compared to generation of monolithic SNARKs). In fact,

even without considering the memory-efficiency benefits, folding-based IVC proofs for repeated computation

are competitive in prover time with monolithic SNARKs for repeated computation.

Our contributions. We propose a new framework for scalable SNARKs for NP that allows for constant-size

prover memory-efficiency without compromising on concretely efficient linear prover computation. At a high

level, we will be following the same classic strategy of applying IVC to a uniform computation representing

the NP statement. However, we make improvements to both parts of this strategy:

– Uniform compiler for NP : As discussed, previous works use universal circuits to encode NP statements

as the uniform computation for IVC. This encoding is inefficient and results in large overhead. Instead,

by looking closely at arithmetizations of NP statements used in monolithic SNARKs, we find existing

uniform structure that we can take advantage of. We propose a new randomized uniform compiler for

NP that takes NP statements in the Plonk arithmetization [GWC19] and produces chunks of uniform

computation to use with IVC. Thus, we eliminate the need for universal circuits or virtual machines

when using folding to prove a general NP statement.

– Optimizations to folding-based IVC : Folding has emerged as a prover efficient route to construct IVC.

We propose two improvements to folding-based IVC constructions to push prover efficiency even further.

More precisely, we consider improvements for folding-based proof-carrying data constructions [BCL+21],

a generalization of IVC [CT10, BCCT13]. Our first optimization decouples the core uniform computation

from the recursive computation of verifying folding proofs, greatly reducing recursive overhead. Reducing

recursive overhead is especially important when considering memory-constrained settings, allowing a

larger percentage of memory to be used on useful work. Our second optimization is a generalization of

folding schemes to allow folding a relation over committed values, i.e., “commit-and-fold” following the

notion of commit-and-prove SNARKs [CFQ19]. We estimate by removing the constraints for commitment

opening in the IVC relation (e.g., scalar multiplication for Pedersen commitments), we achieve about

a 100 times improvement to prover time over applying folding directly to the output of the uniform

compiler. This is essential to bring our concrete prover time in line with monolithic SNARKs.

Following our uniform compiler for NP and applying our optimized folding-based PCD scheme, we end

up with an extremely efficient SNARK for NP. As motivated, the resulting SNARK has a number of nice

properties, mostly stemming from our use of tree-based PCD (in which the uniform computation is organized

at the leaves of a tree and merged together), summarized in Figure 1:

– Streaming/memory-efficiency : Our SNARK requires only two passes over the prover witness and supports

a tunable memory and parallelism parameters, denoted m and k respectively . The memory usage of the

streaming SNARK is O(k(m+ k) logk(n/m)) where n/m is the number of chunks for an NP statement

of size n. By setting parameters m = Oλ(1) (a constant that is independent of n) and k = O(λ) (linear

in the security parameter), we achieve a prover with constant memory complexity Oλ(1) with only 2
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Protocol Prover Time Verifier Time Prover Memory Input passes CRS

Spartan [Set20] w/ Hyrax-PC [WTs+18] Oλ(n) Oλ(
√
n) Oλ(n) - Oλ(

√
n)

DARK-variant [BHR+21, BFS20] Oλ(npolylogn) Oλ(log(n)) Oλ(polylogn) O(log(n)) Oλ(1)

Gemini [BCHO22] Oλ(n log
2 n) Oλ(log(n)) Oλ(log(n)) O(log(n)) Oλ(n)

Nova w/ UC [KST22] Oλ(n) Oλ(C) Oλ(C log(n)) 1 Oλ(C)

Mangrove (this work) Oλ(n) Oλ(1) Oλ(1) 2 Oλ(1)

Fig. 1: Comparison table of prover characteristics for SNARK constructions supporting memory-efficiency where n
is the length of the NP statement. Spartan [Set20] is provided as a baseline comparison as a monolithic SNARK
without memory-efficiency, yet Mangrove achieves comparable concrete prover time. Among memory-efficient proof
systems, Mangrove compares favorably in every category: linear prover, constant memory, constant input passes,
and constant-sized common reference string (CRS). Nova with a universal circuit (UC), where C is the constraint
size of the universal circuit (including the implementation of linear-sized memory), is only secure for constant-length
computation and incurs poor concrete constants due to the use of a universal circuit.

passes over the input. In comparison, other streaming SNARKs [BHR+21, BCHO22] use Oλ(polylog(n))

memory and require O(log n) passes over the input, where the logarithm base is a constant independent

of the security parameter.

– Parallelism: The PCD proof is built up as a tree where each node is only dependent on its children. This

admits a natural highly-parallel proving strategy that can be distributed across machines.

– Constant-size transparent CRS : Monolithic SNARKs typically require a common reference string (CRS)

roughly the size of the NP statement. A large CRS, even if transparent, is a deployment hurdle as it

needs to be stored and accessed (or recomputed on-the-fly) repeatedly during the proving protocol. Our

SNARK uses a transparent CRS with size linear in the memory and arity parameter, which are constants

m = Oλ(1) (independent of n) and k = O(λ). Thus, the CRS is constant sized Oλ(1).

– Commit-and-prove: A key efficiency contribution of our SNARK is the use of folding over committed

elements that represent the NP statement and the prover witness. A side effect of this approach is that

our SNARK is also a commit-and-prove SNARK in which commitments to prover witness components

can be reused and connected across proofs for different statements.

– Concrete prover efficiency : We estimate the concrete efficiency of our construction in Section 6.4 and

find that it is competitive with popular monolithic SNARKs like Spartan [Set20] and significantly faster

than other streaming SNARKs like Gemini [BCHO22]. On a laptop, for 224 (232) gates, we estimate the

Mangrove prover takes approximately 2 minutes (8 hours) with peak memory usage approximately 390

MB (800 MB).

In this work, we present our results as a SNARK and do not explicitly encode the common zero-knowledge

property to obtain a zkSNARK. However, we stress that the constructions can be easily adapted to provide

zero knowledge using existing techniques without much impact on prover characteristics.

As a last note, we want to highlight the generality of our approach as a “commit-and-prove” PCD

paradigm. We provide a uniform compiler for a SNARK arithmetization, but other uniform compilers for

different computations can be slotted in as well.

Practical SNARK configurations. The techniques we introduce (summarized above) result in a couple

SNARK configurations for NP worth exploring — all of which derive from folding-based IVC. Prior to this
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work, the only approach for proving NP statements using IVC was to go through a universal circuit.1 Using a

state-of-the-art folding-based IVC protocol [KST22], we might refer to such a construction as Nova-UC (see

Table 1). Nova-UC is only secure for constant length computation and suffers from high concrete overhead

incurred by the use of a universal circuit. Our uniform compiler allows us to do better.

The immediate construction that follows from the uniform compiler is to directly apply a folding-based

IVC scheme like Nova. However, as noted above, naively applying IVC to the output of the uniform compiler

also incurs high overhead in the form of constraints for commitment opening. Thus, the first practical

construction worth considering is a folding IVC scheme supporting our commit-and-fold optimization with

the uniform compiler; call this Mangrove-Basic. Here, we consider the folding IVC to be done in a straight

line, as described by Nova and depicted for Mangrove-Basic in Figure 2 (left). Mangrove-Basic avoids the

cost incurred by the universal circuit, but is similarly limited to constant-length computation.

Alternatively, we can consider a tree-based folding construction (from PCD) that we term Mangrove-Tree

(depicted in Figure 2 (right)). As part of Mangrove-Tree, we introduce a decoupling technique to further

improve the prover efficiency. Here, the statement proved within each tree PCD node is a verification of

the folding of chunk computations rather than the chunk computation itself, reducing recursive overhead.

Even with this optimization, Mangrove-Tree will always incur greater total prover cost than Mangrove-Basic

due to the additional nodes of the tree over a line; high tree arity somewhat alleviates this overhead as the

number of internal nodes of the tree are dominated by the number of leaves. However, Mangrove-Tree has

two other benefits over Mangrove-Basic. First, Mangrove-Tree has a better approach to parallelism than

Mangrove-Basic. Mangrove-Basic can parallelize the work of a single chunk, but must work sequentially

in the line. Mangrove-Basic is limited then by the parallelism of a single chunk. In practice, this strategy

for Mangrove-Basic amounts to the computation of a large MSM which can be chunked and computed in

parallel but with an overall efficiency loss as MSM algorithms require large chunks [Pip80, Boo]. In contrast,

Mangrove-Tree admits a natural parallel strategy in which PCD nodes can be computed independently

blocked only by the computation of its children. Second, a tree organization has theoretical benefits in that

it supports a more efficient extraction procedure, enabling soundness for computations with a polynomial (in

the security parameter) number of chunks; straight-line approaches are only sound for a constant. As such,

our formal proofs and construction description are with respect to the tree-based construction, giving us a

SNARK for polynomial length computation.

Additional related work. In addition to the recent work on accumulation and folding schemes discussed

earlier, several recent works build VOLE-based designated-verifier non-interactive zero-knowledge proof sys-

tems that have a linear-time and low-memory prover [WYKW21, DIO20, YSWW21, BMRS21, DILO22] as

surveyed in [BDSW23]. Some even provide sublinear proof size by observing uniformity in NP statement

arithmetization. Several monolithic SNARKs provide a linear-time prover [GLS+23, XZS22], but the prover

is not low-memory or streaming.

Several SNARKs systems, such as DIZK [WZC+18] and Pianist [LXZ+23], scale to large size statements

by distributing the prover’s work across many servers. In addition to the time savings, these systems also

1Supernova [KS22] and Protostar [BC23] provide methods to prove virtual machine (VM) executions. Using these
methods, the cost of each proving step scales only with the cost of the executed instruction rather than scaling with
the full set of instructions. These works are not directly comparable to ours as we target a different computational
model (i.e. circuits for NP vs virtual machines). With a naive approach, adapting Supernova and Protostar to prove
an evaluation of an NP circuit would require representing the universal circuit as a VM instruction set; hence, paying
the encoding overhead of a universal circuit.
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(x,w) ∈ R

NP statement

uniform chunks

Randomized uniform compiler

$

π

Mangrove-Basic

k k k

V V V Vk

V

k

V

V π

Mangrove-Tree

Fig. 2: Depiction of Mangrove SNARK configurations for NP that apply folding to uniform chunks produced by a
randomized uniform compiler. The uniform chunk computation is represented by the purple horizontally-hatched
boxes. The IVC/PCD recursive computation is represented by the black cross-hatched boxes. (Left) Mangrove-Basic
employs straight-line folding IVC in which each recursive step proves one chunk computation. (Right) Mangrove-
Tree employs a folding k-arity PCD tree in which chunk computation is performed at the leaves. Also depicted is
our decoupling optimization in which chunk computation is folded separately from the recursive computation. The
recursive computation includes a verifier for the chunk folding, depicted with the purple V box.

greatly reduce the memory footprint on each of the proving servers. The proof system in this paper, Mangrove,

exhibits a low memory footprint even when the entire proving job runs on a single server. The Mangrove

prover can also be distributed across several servers.

Several post-quantummonolithic SNARKs are built from hash-based Merkle commitments: Stark [BBHR18],

Ligero [AHIV17], Aurora [BCR+19], Brakedown [GLS+23], BaseFold [ZCF23] and Fractal [COS20]. Their

proof sizes scale sublinearly with the witness size. In practice they require a significant amount of memory

when proving a large statement. Several elegant post-quantum lattice-based proof systems offer sublinear

proof size [BBC+18, BLNS20, ACK21, ACL+22, BCS23], however the resulting proofs are larger than the

hash-based schemes. One exception is LaBRADOR [BS23] that produces relatively short proofs, but has

a linear time verifier. Other lattice-based proof systems, such as [ENS20, LNP22], perform well for small

statements, but their proof size is linear in the size of the witness. We also mention LatticeFold [BC24] which

is an efficient lattice-based folding scheme.

In a forum post, [Sou23] sketches a technique for loading arbitrary data per IVC step. This enables

folding executions of different circuits efficiently, leading to a way to efficiently prove VM executions, as in

Supernova [KS22] and Protostar [BC23]. By applying appropriate changes and our uniform compiler, this

loading data technique from [Sou23] also leads to a SNARK similar to our Mangrove-Basic construction.

However, they do not provide a formal construction or security analysis.

Several recent works study the question of constructing succinct proof systems in the standard model,

without relying on random oracles [CJJ21, CJJ22, WW22, KLVW22]. The resulting proof systems are for

polynomial-time computation (not NP). While some of these works also compose proofs along a tree, as we

do here, the resulting proof systems are very different from the ones presented in this paper. We also mention

the tree folding scheme due to Ràfols and Zacharakis [RZ22], which we discuss in more detail in the next

section.

2 Technical Overview

Our strategy for succinct proving of any statement in NP follows from two high level steps which we will

explain in order. First, we introduce a general compiler for representing any statement in NP by “chunking”
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it into a sequence of statements for a smaller uniform indexed relation, which we will refer to as the chunk

relation. By doing this, we can take advantage of existing techniques to more efficiently prove statements

with this repeated uniform structure, sometimes referred to as data parallel or “single instruction, multiple

data” (SIMD) computations [Tha13, WHG+16, TKPS22]. Recently, a promising set of techniques for this

structure has emerged, collectively referred to as folding (or accumulation) schemes [BCL+21, KST22, BC23,

EG23, KS23, NBS23]. These schemes allow a succinct verification step to reduce the task of checking two

statements for a relation to checking only a single folded statement for that relation. Generally speaking,

one can only fold statements for the same relation (with some exceptions [KS22]).

After this compilation, in our second step, we use folding to build new efficient proof systems for state-

ments with the compiled uniform structure. Our approach goes through the more powerful intermediate

abstraction of proof-carrying data (PCD) [CT10, BCCT13] which will bring our efficiency improvements to

other settings that PCD can be applied to as well (e.g., for machine computation [BFR+13, BCTV14b]).

Folding techniques have been previously proposed for constructing PCD [BCL+21, BC23]; in these works, a

PCD tree is constructed in which each node represents a recursive relation folding together its children, and

the root of the tree represents a proof for the computation in the full tree (see Section 2.2 for description

of PCD tree). Looking forward, all of our new techniques aim to optimize the size of this recursive relation,

reducing recursive overhead and greatly improving proving efficiency.

Lastly, we apply our new compiler and efficient PCD scheme to build a new family of scalable SNARKs

that are well-suited for streaming (memory-efficiency) and distributed computing (parallelism efficiency).

2.1 A Uniform Compiler for NP Statements

Introduced in [GWC19], the “Plonk” arithmetization is a natural encoding of computation in NP that

possesses a close to uniform structure. For concreteness, let us review the specific arithmetization of Plonk to

capture arithmetic circuits. Consider an arithmetic circuit with n gates indexed from 1 to n. The computation

trace of this circuit can be encoded as a vector of wire values v ∈ F3n:

v =
(
(v

(1)
l , v(1)r , v(1)o ), (v

(2)
l , v(2)r , v(2)o ), . . . , (v

(n)
l , v(n)r , v(n)o )

)
The wire values are indexed such that the left, right, and output wires of gate i are v

(i)
l , v

(i)
r , and v

(i)
o ,

respectively. In this encoding of arithmetic circuits, we consider binary gates, but the Plonk arithmetization

can be extended to include gates with more inputs and outputs. The arithmetization further consists of two

vectors, a selector vector s ∈ Fn and a copy vector σ ∈ F3n such that {σi | i ∈ [3n]} = [3n], and a gate

polynomial G. Together, these encode essential constraints on the wire values. Informally, the selector vector,

s, specifies the type of gate at each index. The copy vector σ specifies how wires are connected within the

circuit. The gate polynomial G checks if the wire values satisfy the gates specified by s. More precisely, a

computation trace satisfies the constraints if and only if the following conditions hold:

– Local gate constraints: For all i ∈ [n], G
(
s(i), v

(i)
l , v

(i)
r , v

(i)
o

)
= 0. An arithmetic circuit consisting of only

addition and multiplication gates can be encoded with the following gate polynomial,

G
(
s(i), v

(i)
l , v(i)r , v(i)o

)
= s(i) ·

(
v
(i)
ℓ + v(i)r

)
+
(
1− s(i)

)
· v(i)ℓ · v

(i)
r − v(i)o .

where s(i) = 1 indicates gate i is an addition gate and s(i) = 0 indicates gate i is a multiplication gate.

– Global copy constraints: For all i ∈ [3n], v(i) = v(σ
(i)). These constraints enforce that the wire values are

invariant under the permutation induced by σ. Thus, the wire value v(i) is identical to the wire value

v(σ
(i)). In this way, the copy vector σ encodes the connectivity of the circuit.
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Natural uniform chunking of local gate constraints. Recall our goal is to come up with a uniform

chunking of the above constraints. We first observe the local gate constraints admit a natural chunking

strategy of simply chunking by gate. In particular, we can partition the selector vector and wire values

into T chunks of equal size (m = n/T and 3m respectively), and check the gate constraints for the indices

[m(j − 1) + 1,mj] for each chunk j ∈ [T ] independently.

Barriers to uniformity in global copy constraints. Uniformly chunking the gate constraints has been

performed in prior work [WYY+22, BCC+23] to reduce communication complexity of proof systems. Unfor-

tunately, chunking by gate does not carry over as a valid chunking strategy for the global copy constraints.

It is a global constraint: a gate in one chunk can be connected to a gate in another chunk. To see where this

difficulty arises more concretely, a chunk j ∈ [T ] would contain indices [3m(j−1)+1, 3mj] of v and σ. Then,

for i ∈ [3m(j − 1) + 1, 3mj], it may not be possible to check the copy constraint v(i) = v(σ
(i)), as v(σ

(i)) may

belong to a different chunk, i.e., σ(i) ̸∈ [3m(j − 1) + 1, 3m].

Randomized compiler for uniform chunking of global copy constraints. An alternate strategy is to

consider an approach taken by many proof systems in proving the global copy constraints [GWC19]. Instead

of proving each copy constraint individually, the full set of global copy constraints is reduced to a set equality

of the following sets:

3n⋃
i=1

{
(v(i), i)

}
=

3n⋃
i=1

{
(v(i), σ(i))

}
.

In prior work, this set equality check (or permutation check) [BG12, GWC19] is performed by computing and

comparing the evaluations of a multiset hash function [CDv+03] which takes the following grand product

form using hash function H:
3n∏
i=1

H(v(i), i) =
3n∏
i=1

H(v(i), σ(i)) ⇒
3n∏
i=1

H(v(i), i)

H(v(i), σ(i))
= 1 .

Once translated into this grand product, the chunking by gate indices strategy can be recovered. For each

chunk j ∈ [T ], a partial product for the indices [3m(j − 1) + 1, 3m] can be computed as part of the uniform

chunk relation; this would only rely on values that are already present in the chunk:

3n∏
i=1

H(v(i), i)

H(v(i), σ(i))
=

3m∏
i=1

H(v(i), i)

H(v(i), σ(i))

6m∏
i=3m+1

H(v(i), i)

H(v(i), σ(i))
. . .

3n∏
i=3n−3m+1

H(v(i), i)

H(v(i), σ(i))

The partial product for an individual chunk would not evaluate to one, but it can be propagated during

PCD and combined with the product of other chunks, such that the product at the root of the PCD tree

should equal one. We will explain our PCD approach shortly.

In practice, for efficiency reasons, a universal hash function Hα,β(x, y) = (x + α · y) + β is used where

challenges α, β ∈ F are sampled by the verifier after the prover has committed to witness inputs v. Looking

forward, this step of the randomized compiler is what results in two passes on the witness for our eventual

SNARK prover. In the first pass, the prover computes a commitment to the witness wire vector v, and,

in the second pass, the prover uses PCD over the chunks. Alternatively, one might use a deterministic

hash function modeled as a random oracle as proposed by Clarke et al. [CDv+03] to produce a single pass

streaming SNARK for NP; however, due to the concrete overheads of such an approach, we do not consider

it further in this work.
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All together, the chunk relation takes as input a chunk of gate wires, selectors, and copy values and (1)

checks the local gate constraints for each gate in the chunk and (2) computes a partial product representing

a piece of the global copy constraints permutation check. Next, we describe how to apply PCD to combine

these uniform chunks.

Extension: Supporting lookup arguments. As a brief aside, we note that our uniform compiler also

easily supports a common extension to the Plonk arithmetization known as lookup arguments. Lookup

arguments allow for encoding that certain wire values are set to values that appear in a precomputed

table [BCG+18, GW20]. They are used to greatly reduce constraint overhead for representing computations

without clean arithmetic structure, e.g., in hash functions like SHA256 or for range checks.

The popular Plookup protocol [GW20] reduces the lookup argument to a grand product check of multiset

equality much like the permutation argument described earlier; this approach can be easily chunked into

partial products in the same way. Unfortunately, Plookup is not amenable to streaming. The prover must

run the full computation and then produce a sorted list of the union of wire values and table values, incurring

a logarithmic number of passes on the list in the memory-constrained streaming setting.

Instead, we propose the use of an alternate lookup protocol recently proposed by Haböck [Hab22] that

does not rely on sorted values, where it is observed that logarithmic derivatives can translate products into

summations of their reciprocals. Haböck’s approach conceptually still relies on computing universal hashes

for a multiset equality check, however, it manifests as a grand summation check (instead of a grand product

check); the grand summation can again be easily chunked into partial summations. By avoiding the required

sorting of Plookup, the chunked Haböck lookup preserves our two-pass SNARK prover. We discuss the precise

lookup details and chunking approach in Section 6.4.

There exist other extensions to the arithmetization and model of computation that can reduce con-

crete constraints for certain computations. For example, these include forwarding constraints for Plonk-

ish [CBBZ23], rank-1 constraint systems (R1CS) or their high-degree generalization [STW23a], random

access memory [BFR+13, SAGL18, YH23], or lookups into large tables [STW23b, AST23]. We leave the

task of constructing uniform compilers for these useful extensions to future work.

2.2 SNARK from Proof-Carrying Data

In this section, we show how to apply PCD to provide a SNARK for the satisfaction of all uniform chunks,

and in turn, satisfaction of the original NP statement. PCD allows for proving satisfaction of a compliance

predicate φ over a computation organized as a directed acyclic graph [CT10, BCCT13]. For example, in

a tree graph with edges pointing from children nodes to parent node, the PCD proof for the root node

represents satisfaction of the compliance predicate for all internal nodes and leaf nodes of the tree. Typically,

the compliance predicate is defined with a base case for leaf nodes and a recursive case for internal nodes.

Our starting point for applying PCD to our uniformly-chunked NP statement is the classic PCD tree

application to incrementally-verifiable computation (IVC) [Val08] by Bitansky et al. [BCCT13] where the

task is to prove correct evaluation of repeated function evaluation. The compliance predicate φivc for this

construction is roughly as follows. For simplicity, we consider a binary PCD tree and discuss higher arity

later:

– The base case for the ith leaf node takes a claimed (i − 1)th repeated evaluation of F , x(i−1), and

computes x(i) ← F (x(i−1)). The leaf node is represented by the range [i − 1, i] and the claimed input-

output evaluations (x(i−1), x(i)).
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– The recursive case for an internal node takes two input-output pairs for claimed ranges of repeated

evaluation of F , [([sb, tb], x
(sb), x(tb))]b∈{0,1}. It merges the ranges by checking that t0 = s1 and x(t0) =

x(s1). If the check succeeds, the internal node is represented by the merged range [s0, t1] and the claimed

input-output evaluations (x(s0), x(t1)).

With φivc, the PCD tree is built up such that the PCD proof at the root attests to a range [0, t] proving that

F t(x(0)) = x(t).

Our application of building a SNARK from uniform chunks shares many similarities with the IVC ap-

plication. In the base case, each leaf node will indeed represent the correct computation of a uniform chunk

function F . However, the recursive case will need to perform different accounting to track the merging of

uniform chunks.

First, the verifier needs to check that the chunks of the copy vector σ and selector vector s used by the

prover do indeed correspond to those of the original NP statement. Similarly, recall that the α, β verifier

challenges for the permutation argument are sampled after the prover commits to the wire values v. The

verifier must also then check that the chunks of the wire vector v used by the prover correspond to what

was previously committed to. Lastly, the partial products for each chunk must be merged appropriately to

check the final grand product permuation argument.

Consider the following T chunks of the selector vector s, the copy vector σ, and the wire value vector v:[
(sj ∈ Fm, σj ∈ F3m, vj = (v

(1)
ℓ,j , v

(1)
r,j , v

(1)
o,j , . . . , v

(m)
ℓ,j , v

(m)
r,j , v

(m)
o,j ) ∈ F3m)

]T
j=1

Let us address the accounting challenges in turn. First, to track the validity of the index components and

wire values used in each chunk, we construct a Merkle tree commitment to each that mirrors the tree format

of PCD. Consider commitments to the index components of each chunk, [plkj ← Commit(j, σj , sj)]
T
j=1, and

commitments to the wire values of each chunk, [vj ← Commit(vj)]
T
j=1. The chunk index commitments and

wire commitments are each combined into a single commitment using a Merkle tree commitment, hplk ←
MT.Commit([plkj ]

T
j=1) and hv ← MT.Commit([vj ]

T
j=1). The index Merkle commitment hplk is computed

during preprocessing and encodes the NP statement. The wire Merkle commitment hv is computed by the

prover on its first pass over the witness, after which the α, β verifier challenges are sampled. Again, we

assume the Merkle tree arity matches that of the PCD tree. The compliance predicate for our SNARK φsnark

checks the Merkle hash of children nodes during merges, thus the validity of the index and wire values can

be confirmed by checking that the Merkle hash computed at the root of the PCD tree matches the Merkle

root of the preprocessed index commitment and the prover-committed wire value commitment, respectively.

To address the challenge of tracking and merging partial products of the permutation argument, each

node is simply associated with a claimed partial product for the subtree of leaves rooted at that node.

During a merge, the merged node sets its own partial product by taking the product of the partial products

of its children. All together, the PCD compliance predicate for producing a SNARK from uniform chunks is

described in Figure 3.

Informally, the syntax for a PCD compliance predicate is φ(Z, loc, [Zb]b∈{0,1}). Here Z represents the

statement of the node and [Zb]b∈{0,1} represent the statements of the children nodes in the recursive case.

There is also some auxiliary local data specific to the node stored in loc. This informal treatment does not

adress higher PCD arity; we defer the full details to the main body of the paper.

Given this PCD predicate for combining uniform chunks, one can apply any construction of PCD to

produce a SNARK for the initial NP statement. Unfortunately, as is, any generic application of PCD would

not result in an efficient protocol. The main inefficiency comes from the need to open the commitment to the
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Predicate φsnark(Z, loc, [Zb]b∈{0,1})

(Case 1) If Z is a leaf (i.e., Z0 = ⊥ ∧ Z1 = ⊥):

(a) Parse (pj , hplkj , hvj) ← Z and
(
sj , σj , vj = (v

(1)
ℓ,j , v

(1)
r,j , v

(1)
o,j , . . . , v

(m)
ℓ,j , v

(m)
r,j , v

(m)
o,j )

)
← loc representing some

chunk j ∈ [T ].

(b) Check uniform chunk computation:

a. Check gate constraints. For i ∈ [m],

s
(i)
j ·

(
v
(i)
ℓ,j + v

(i)
r,j

)
+

(
1− s

(i)
j

)
· v(i)ℓ,j · v

(i)
r,j − v

(i)
o,j = 0 .

b. Check partial product of global copy constraints:

pj =

3m∏
i=1

Hα,β(v
(i)
j , 3m(j − 1) + i)

Hα,β(v
(i)
j , σ

(i)
j )

,

where α, β ∈ F are predetermined verifier challenges.

c. Check commitment to Merkle leaf of index and wire values:

hplkj = MT.H(Commit(j, sj , σj)), hvj = MT.H(Commit(vj)) .

(Case 2) Else Z is an internal node:

(a) Parse [(pb, hplkb, hvb)← Zb]b∈{0,1} representing the node’s two children.

(b) Parse (p, hplk, hv)← Z representing the node’s merged output.

(c) Check consistency of merge:

a. Check consistency of claimed partial product, p = p0 · p1.

b. Check consistency of Merkle hashes,

hplk = MT.H(hplk0, hplk1) , hv = MT.H(hv0, hv1) .

Fig. 3: PCD compliance predicate for producing a SNARK with our proposed uniform compiler.

index values as part of the chunk computation. Commitments require hashing or group operations which are

expensive to represent as algebraic constraints. In the next sections, we will address this inefficiency along

with other sources of overhead in the application of PCD.

2.3 Proof-Carrying Data with Reduced Overhead

We now step through a series of optimizations for reducing the computational overhead of PCD; these

improvements are of general interest for any application of PCD.

In the following, to concretely discuss the prover efficiency gains for each optimization, it will be useful

to consider a specific PCD scheme. We will consider a folding-based PCD scheme similar to that of Bünz

et al. [BCL+21] as it is the most prover-efficient to-date and works well with the further folding-based opti-

mizations that we propose. Bünz et al. cast the PCD scheme using their formalism of “split accumulation”;

we will modify the presentation to a notion of folding following the approach of Kothapalli et al. [KST22].

First, a brief detour to describe the notion of folding that we will use. Put simply, a folding scheme for a

relation R folds two instances of a relation into a single instance for the same relation and provides a proof

of folding. Security dictates that if the proof verifies, then membership of the folded instance in the relation

implies membership of the two original instances in the relation as well. To introduce some useful notation:

Definition 1 (Folding Schemes (informal)). A folding scheme Fold for a relation R is a tuple of algo-

rithms (Fold.P,Fold.V). The proving algorithm Fold.P([(xi,wi)]
k
i=1) takes as input k instance-witness pairs
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claimed to be in R. It outputs a folded instance-witness pair (x,w) along with a folding proof π. The verify

algorithm Fold.V([xi]
k
i=1, x, π) verifies the proof with respect to the initial instances and the folded instance

such that the following properties are satisfied:

– Completeness: If all initial instance-witness pairs are in the relation, [(xi,wi) ∈ R]ki=1, then it holds that

the folding verifier will accept and the folded instance-witness pair also belongs to R, (x,w) ∈ R.

– Knowledge soundness: If an adversary P̃ produces folded instances (xi)
k
i=1, (x,w) and folding proof π

that are accepted by the verifier, Fold.V([xi]
k
i=1, x, π) = 1, and (x,w) ∈ R then with all but negligible

probability, an extractor can find witnesses [wi]
k
i=1 such that [(xi,wi) ∈ R]ki=1.

The above informal definition and syntax omit many details including treatment of indexed relations and

specification of the extractor. We defer the full details to the main body of the paper.

With this notion of folding, we can recast the main recursive relation Rpcd used to construct PCD in

[BCL+21]. Conceptually, the relation Rpcd simply checks the PCD predicate φ and recursively verifies a

folding proof for itself. However, we do not know of folding schemes for directly folding Rpcd; we must encode

an instance-witness pair for Rpcd as an instance-witness pair for a different but related relation Rpcd-poly and

fold instances of Rpcd-poly. Shortly in Section 2.3 we will introduce the family of relations from which Rpcd-poly

comes from as polynomial relations which have a number of useful properties that we will take advantage of.

For now, we need to make clear that there are two classes of instances that can belong to Rpcd-poly, strict

and relaxed. Our treatment and notation for strict and relaxed instances for polynomial relations mirrors

that of Kothapalli et al. [KST22] where in their search for a folding scheme for R1CS (an NP-complete

relation), instead propose a folding scheme for a related superset relation they term “relaxed” R1CS. A

strict instance for (X ,W ) ∈ Rpcd-poly has an efficiently-computable canonical bidirectional mapping to an

instance in (x,w) ∈ Rpcd. We denote the algorithm isStrict(X) as an efficient check if an instance in Rpcd-poly

is strict and denote the algorithm checkMap(X , x) to check if X encodes x. In contrast, a relaxed instance,

(X ′,W ′) ∈ Rpcd-poly, does not have a mapping to instances in Rpcd. Relaxed instances are created as outputs

of folding together instances of Rpcd-poly, strict or relaxed.

All together, using the same notation Z, loc, [Zb]b∈{0,1} as above and where Foldpcd-poly is a folding scheme

for Rpcd-poly:

Rpcd =



h,

 (Z,X ′), loc, π

[(Zb,X
′
b,Xb)]b∈{0,1}

 :

h = H(z,X ′) and φ(Z, loc, [Zb]b∈{0,1}) = 1

If
∧

b∈{0,1}
¬φ.isBase(zb) :

(isStrict(Xb) = 1)b∈{0,1}

(checkMap(Xb,H(Zb,X
′
b)) = 1)b∈{0,1}

Foldpcd-poly.V([X0,X
′
0,X1,X

′
1],X

′, π) = 1


In the non-base case, the PCD relation captures merging two children subtrees. The isBase predicate performs

a check on the children to determine if the PCD predicate is in a base case. For concreteness, a standard base

case check, as is used in φsnark is simply checking if Z0 = ⊥∧Z1 = ⊥. Here, X ′
b is a relaxed instance representing

the folded constraints of all nodes from one child subtree not including the child itself. In contrast, Xb is a

strict instance for Rpcd-poly representing the satisfaction of Rpcd for the child node represented by Zb, as such

the strict mapping is checked for Xb with respect to the instance H(Zb,X
′
b) for Rpcd. Lastly, a new relaxed

instance X ′ folds together Xb,X
′
b for both children, which now represents the folded constraints of all nodes

in the subtree for the parent.
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Protocol Prover work / node # of nodes |Rpcd| |Rleaf |

Baseline [BCL+21, KST22] (k + 1) · |Rpcd| T + T−1
k−1

cchunk + cchunk-com + cchunk-merge + ck-vfold(Rpcd) n/a

w/ decoupling (Sec. 2.3) (k + 1) · |Rpcd|+ k · |Rleaf | T−1
k−1

cchunk-merge + ck-vfold(Rpcd) + ck-vfold(Rleaf) cchunk + cchunk-com

w/ commit-and-prove (Sec. 2.3) (k + 1) · |Rpcd|+ k · |Rleaf | T−1
k−1

cchunk-merge + ck-vfold(Rpcd) + ck-vfold(Rleaf) cchunk

Fig. 4: Summary table of improvements to prover work in building a k-arity PCD tree for T uniform chunks of a
NP statement. The size of the main control PCD relation Rpcd and the computation leaf relation Rleaf are given with
respect to size of constraints for uniform chunk cchunk, for opening commitment to chunk cchunk-com, for merging chunks
cchunk-merge, and for verifying a k-folding proof ck-vfold. The targeted improvement of each optimization is highlighted
in a red box.

To build up each node of the PCD tree, the PCD prover must (1) compute a folding proof π for the

children subtree instances, and (2) compute a strict instance for the parent node. Computing the strict

instance and folding instances take prover work (creation of homomorphic commitments) on the order of the

relation size (and the number of instances folded together). Figure 4 provides a summary of the PCD prover

costs. The costs are with respect to a k-arity PCD tree. In the next sections, we will improve the prover

costs by reducing the size of Rpcd, also summarized in Figure 4.

Decoupling PCD Computation Tree and Control Tree Our first optimization applies to PCD predi-

cates that take the common structure of a base case for leaf nodes where the core computation is performed

and a recursive case for internal nodes where a lightweight merging computation is performed; both φivc for

IVC [BCCT13] and φsnark for our uniformly-chunked NP statement take this structure.

Notice that the prover performs work on the order of the size of the PCD relation Rpcd at every node,

including leaves. In the structured PCD relations described, the merging logic consists of wasted work at the

leaf level. Looking forward, when using a high PCD arity, the dominating majority of the work is performed

at the leaf level so avoiding extra work at the leaf level will result in significant concrete gains. For example,

for arity k = 128 with number of leaves T = 221, the number of internal nodes (T − 1)/(k − 1) = 16513 is

less than 1/100 the number of leaf nodes.

With this motivation in mind, we propose a solution to decouple the core leaf computation from the

control merging computation performed as part of PCD. Instead of having a special-case “leaf” computation

check in the PCD predicate, we will define a new PCD predicate that verifies a folding proof of a leaf

relation. Note that conceptually this means that the prover work for the first level of the tree is switching

from generating a folding proof for the old PCD relation (which includes leaf and control logic) to a folding

proof just for the leaf relation. This ensures that the overhead of the control logic is avoided at the leaves.

The decoupling optimization is depicted in Figure 5.

More specifically, consider the following abstract PCD predicate φcouple where the leaf logic and merge

logic are coupled together within the same predicate, defined as predicates ψleaf and ψrecursive, respectively.

Observe that this abstraction captures φsnark from Section 2.3 where ψleaf would encode (Case 1) and ψrecursive

would encode (Case 2).
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Folding PCD without decoupling [BCL+21]
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Folding PCD with decoupling

Fig. 5: Depiction of decoupling optimization for folding PCD k-arity trees in which the computation folding tree is
decoupled from the recursive folding tree.Core chunk computation is represented by purple horizontally-hatched boxes
and PCD recursive computation is black cross-hatched boxes. (Left) Prior PCD tree approaches incur the cost of the
PCD recursive computation at every node of the tree since the PCD recursive relation includes the core computation
itself. (Right) Our decoupling optimization decouples the core computation and starts PCD recursive computation
after an initial folding round of the core computation. The recursive computation includes a verifier for the chunk
folding, depicted with the purple V box.

Predicate φcouple(Z, loc, [Zb]b∈{0,1})

If (Z0 = ⊥ ∧ Z1 = ⊥) then ψleaf(Z, loc) = 1.

Else ψrecursive(Z, loc, [Zb]b∈{0,1}) = 1.

Predicate φcouple.isBase(Z)

Check Z = ⊥.

Now to decouple the PCD predicate, we will separate out a leaf relation: Rleaf = {(Z, loc) : ψleaf(Z, loc) = 1} .
Similar to before, we will construct a related relation Rleaf-poly that can be folded and for which we have a

bidirectional mapping of instances in Rleaf with strict instances in Rleaf-poly. We construct a new PCD predicate

φdecouple that decouples the leaf logic by only verifying a folding proof for leaf computation. The PCD instance

for φdecouple will consist of Z ← (Z′, X) where Z′ is the PCD instance of φcouple and X is an instance for

Rleaf-poly. Again, here we present the 2-ary case, but recall the true savings of this approach occur for high

arity PCD trees.

Predicate φdecouple(Z, loc, [Zb]b∈{0,1})

1. Parse folding proof, π ← loc, and PCD statements (Z′, X)← Z, [(Z′
b, Xb)← Zb]b∈{0,1}.

2. Verify folding proof, Foldleaf-poly.V([X0, X1], X, π).

3. Check the merging constraints, ψrecursive(Z
′, loc, [Z′

b]b∈{0,1}) = 1.

Predicate φdecouple.isBase(Z)

1. Parse (Z′, X)← Z.

2. Check the instance is strict and maps to the given instance for Rleaf : isStrict(X)∧checkMap(X,Z′).

With this PCD predicate, every PCD node performs the same checks of verifying the leaf folding proof and

checking the merging constraints. Interestingly, now the base case check for the PCD relation is not trivial.

Previously, the check would simply check if the children instances are ⊥. Now, in the base case, the children

correspond to leaf computations. As such, the base case requires checking that the instances of Rleaf-poly

correspond to instances of Rleaf , i.e., that they are strict. This check is only for the base case, as the instances

passed into higher levels of the tree will correspond to relaxed instances of Rleaf-poly—the result of (possibly

many rounds of) folding.
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In summary, using folding to decouple the leaf computation from the merging computation in a PCD tree

reduces the number of PCD nodes for which merging overhead is incurred. As highlighted in Figure 4, the

number of PCD nodes falls from T + T−1
k−1 to T−1

k−1 in a k-arity PCD tree with T leaves. Further, the prover

work per node remains approximately the same (|Rpcd|+ |Rleaf | in decoupling is approximately the same as

|Rpcd| in the baseline). In the next section, we will take a closer look at the structure of the leaf computation.

Folding Polynomial Relations for Commit-and-Prove PCD Now that the leaf computation logic is

separated into its own relation, let us revisit this leaf relation for φsnark that checks local gate constraints and

partial copy constraints for a uniform chunk (following from (Case 1)). Recall α, β ∈ F are verifier challenges

sampled ahead of PCD:

Rleaf-snark =



Z = (p, j, hplk, hv)

loc =
(
s, σ, v=(v

(1)
ℓ , v

(1)
r , v

(1)
o , . . . , v

(m)
ℓ , v

(m)
r , v

(m)
o )

)
 :

m∧
i=1

s(i) ·
(
v
(i)
ℓ + v

(i)
r

)
+

(
1− s(i)

)
· v(i)ℓ · v

(i)
r − v(i)o = 0

p =

3m∏
i=1

Hα,β(v
(i), 3m(j − 1) + i)

Hα,β(v(i), σ(i))

hplk = MT.H(Commit(j, s, σ))

hv = MT.H(Commit(v))



.

The dominant contributor when encoding the above relation as a set of constraints is the commitment

check where the vectors s, σ, and v in the witness are shown to be openings for the commitments idx and

v in the instance. In practice, if using a Pedersen commitment or a hash commitment (e.g., Poseidon),

the constraints for commitment opening amount to 100-200× that of the actual gate and copy constraint

checks (using the latest optimized estimates of high degree constraints for Poseidon hashing and scalar

multiplication [XCZ+22, KMN23]). In this section, we will describe a generalized foldable relation that

supports proving over committed values without explicitly encoding the commitment opening constraints.

Existing formalisms of folding have been specified with respect to a relation that checks some function

directly over the elements in the relation instance, e.g., a rank-1 constraint system in Nova [KST22] and a

polynomial map in Protostar [BC23]. With this formalism, if the relation instance includes a commitment to

elements and the goal is to check some function over the committed elements, then the function must encode

commitment opening as well—an undesirable additional cost. We observe that the techniques used for folding

do not inherently restrict the use of commitments to elements in the instance, instead it is a limitation of the

formalism. We introduce a generalization of folding relations based on polynomial map deciders (building

on Protostar [BC23]) that supports the instance as any linearly-homomorphic commitment to the inputs of

the polynomial map.

Let us first introduce some notation for polynomial maps and the specific polynomial relation that we

will be folding.

Definition 2 (Polynomial Maps). A polynomial map of degree d is a map f : Fm → Fn that can

be expressed as f(X) :=
(
f (1)(X), f (2)(X), . . . , f (n)(X)

)
where for all i ∈ [n], fi(X) is a multivariate

polynomial in m variables with deg(fi) ≤ d.
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Consider a relation decided by a polynomial map R′ = {(x,w) : f(x,w) = 0}. This relation R′ is NP-

complete and generalizes rank-1 constraint systems which can be represented as a polynomial map of degree

two. To capture commitments to instance and witness elements, we extend the relation to map (x,w) using

a collision-resistant linear map Lx to some vector space X; standard linearly-homomorphic commitments

like Pedersen commitments are an example of such a map. This gives us R = {(x ∈ X, (x,w)) | Lx(x,w) =

x ∧ f(x,w) = 0} , representing our goal of avoiding encoding the commitment constraints Lx within the

polynomial relation f .

Unfortunately, we do not have techniques for folding R directly. Recall the discussion at the beginning

of Section 2.3 on building the PCD folding relation in which it was claimed that we can map relation R to

another related relation Rpoly which is foldable; we will explain that now.

Following the techniques of Nova [KST22] and Protostar [BC23], there are two relaxations that can be

made to produce a relation amenable to folding. First, the polynomial map needs to be made homogeneous,

meaning that each polynomial fi for i ∈ [n] of the map is homogeneous (i.e., every monomial in the polynomial

is of the same degree d) and all fi have the same degree d. Luckily, any polynomial map f of degree d for

(x,w) ∈ Fm can be transformed into a homogeneous polynomial map f̂ of same degree d for (x,w, µ) ∈ Fm+1

such that f(x,w) = f̂(x,w, 1):

f(x) =
∑d

j=0fj(x,w) 7→ f̂(x,w, µ) :=
∑d

j=0µ
d−jfj(x)

where fj is the j-th degree homogeneous component of f (i.e. the portion of the map consisting of only

degree j terms).

Second, the polynomial map decider cannot be with respect to a fixed evaluation test, e.g., checking

f̂(x,w, µ) = 0. Instead, an evaluation term e ∈ Fn is added to the instance to represent the check f̂(x,w, µ) =

e. In practice, we would also like the instance to be succinct in e, so we allow for a second linear map

Le : Fn → E to compress the evaluation term. All together, this results in the following foldable relation:

Definition 3 (Relaxed Polynomial Map Relation (informal)). Let f̂ : Fm → Fn be a homogeneous

polynomial map of degree d, Lx : Fm → X and Le : Fm → E be linear maps. We define the following relation

Rpoly =
{
((x ∈ X, e ∈ E, µ), (x,w))

∣∣∣ (x, e) = (Lx(x,w), Le(f̂(x,w, µ)) )
}
.

Recall that for this foldable relation Rpoly, we consider (1) strict instances that are mapped from instances of

R, and (2) relaxed instances that are the result of folding. The mapping of an instance-witness pair (x,w) ∈ R

to a strict instance-witness pair in (X ,W ) ∈ Rpoly is straightforward:

(x = x,w = (x,w)) ∈ R 7→ (X = (x, e = Le(0), µ = 1),W = (x,w)) ∈ Rpoly .

By setting e = Le(0) and µ = 1, we recover the check for f(x,w) = 0 from f̂(x,w, µ) = e. Thus, the

isStrict(X = (x, e, µ)) algorithm checks X .e = Le(0) and X .µ = 1. Similarly, the checkMap(X = (x, e, µ), x =

x) algorithm checks the encoding of x in the strict instance by checking X .x = x.

Now that we have defined the mapping of R to strict instance-witness pairs of Rpoly, we can observe the

necessity of relaxed instances from the folding algorithm Foldpoly for Rpoly. The folding algorithm for folding

k instances proceeds recursively, constructing a folding tree from two-to-one folds. In the first round, k/2

pairwise two-to-one foldings are performed to result in k/2 instances to fold in the next round. The protocol

terminates at a base case when a single instance remains. Note, that for k = 2, the folding algorithm and the

approach for handling cross-terms follows similarly to Protostar [BC23], which is a single round, two-to-one
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folding scheme. When considering k > 2, we generalize the approach to remain knowledge-sound even for

k = poly(λ) by constructing a logarithmic-round special-sound protocol. More discussion on this approach

follows. For ease of presentation, we will present the protocol as an interactive protocol which can be made

non-interactive using the Fiat-Shamir heuristic to match the syntax of folding schemes described earlier.

Foldpoly.P([((xi, ei, µi), (xi, wi))]
k
i=1)

[zi ← (xi, wi, µi)]
k
i=1

For i ∈ [ k
2
], compute (vi,j)

d−1
j=1 such that for indeterminate Y :

f̂(Y · zi + zi+k/2) = Y df̂(zi) +
∑d−1

j=1 Y
j · vi,j + f̂(zi+k/2)[

[vi,j ← Le(vi,j)]
d−1
j=1

]k/2
i=1



x′i = r · xi + xi+k/2

e′i = rd · ei +
∑d−1

i=1 (r
j · vi,j) + ei+k/2

µ′
i = r · µi + µi+k/2

x′i = r · xi + xi+k/2

w′
i = r · wi + wi+k/2



k/2

i=1

If k/2 = 1 then return ((x′1, e
′
1, µ

′
1), (x

′
1, w

′
1))

Else recurse on [((x′i, e
′
i, µ

′
i), (x

′
i, w

′
i))]

k/2
i=1

[
[vi,j ]

d−1
j=1

]k/2
i=1−−−−−−−−−−→

r←−−−−−−−−−−

Foldpoly.V([(xi, ei, µi)]
k
i=1)

r ←$ F


x′i = r · xi + xi+k/2

e′i = rd · ei +
∑d−1

i=1 (r
j · vi,j) + ei+k/2

µ′
i = r · µi + µi+k/2


k/2

i=1

If k/2 = 1 then return (x′1, e
′
1, µ

′
1)

Else recurse on [(x′i, e
′
i, µ

′
i)]

k/2
i=1

Folding proceeds by taking random linear combinations of x,w, µ and reducing the cross-terms from the

computation of f̂ to the evaluation term e. As such, the strictness structure of the instance, i.e. µ = 1 and

e = 0, will be destroyed after folding.

The above folding tree construction is similar to the one proposed recently by Ràfols and Zacharakis [RZ22].

However, there is a key difference that leads to a different security guarantee. [RZ22] constructs an k-to-1

folding scheme for R, by recursively composing a 2-to-1 black-box folding scheme in a tree, where each layer

reduces the number of relation pairs in half by calling the 2-to-1 folding scheme repeatedly. A limitation in the

security proof of Ràfols and Zacharakis is that knowledge soundness only holds for a constant k. This stems

from the fact that recursive extraction with a black-box folding scheme only holds up to a constant number

of iterations (otherwise, the extractor runtime is super-polynomial). To address the limitation, we instead

directly construct k-to-1 folding scheme by the Fiat-Shamir transform of a logarithmic-round, special-sound

protocol. This allows us to leverage a key result from [AFK22], which constructs an efficient extractor for

the Fiat-Shamir transform of a multi-round, special-sound protocol. In this manner, we are able to avoid

this barrier to fold a polynomial number of pairs. For our SNARK application, we will need a folding scheme

capable of handing an arity at least k = O(λ), linear in the security parameter.

In addition to the above folding tree construction, we introduce another multi-instance folding scheme

(Protocol 2 in Section 5.2). This scheme adapts ideas from Protogalaxy [EG23] and offers several advantages

over the folding tree construction. Protocol 2 directly supports arbitrary polynomial maps, requires only

two rounds of communication, and features a folding verifier with half the size. As a tradeoff, the folding

prover in Protocol 2 requires O(k2m) field operations2 and O(km) group operations, whereas the folding

tree construction requires only O(km) field and group operations.

2For an FFT-friendly field, this can be reduced to O(k log(k)m).
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Lastly, backtracking to the original motivation for folding on committed instances, we can recast Rleaf-snark

defining f̂ as the homogeneous map that takes (x,w) = (p, j, s, σ, v) ∈ F7m+2 and outputs 0 if the following

leaf constraints are satisfied:

m∧
i=1

s(i) ·
(
v
(i)
ℓ + v(i)r

)
+

(
1− s(i)

)
· v(i)ℓ · v

(i)
r − v(i)o = 0, p =

3m∏
i=1

Hα,β(v
(i), 3m(j − 1) + i)

Hα,β(v(i), σ(i))

This is not quite complete, as the above constraints are not polynomials; a product of rational fractions is

included. In the main body, we show how to translate this constraint into a polynomial map of low degree.

A naive translation might result in a polynomial of degree 3m, but keeping a low degree is important as the

proof size and prover computation of the folding protocol scales with degree.

We define Lx : F7m+3 → (F2 × G2) that passes the partial product directly and commits to the index

values and wire values using a Pedersen commitment.

Lx : (j, s, σ, v, p, µ) 7→ ( plk = Ped.Commit(j, s, σ), v = Ped.Commit(v), p, µ) .

The partial product is exposed in the instance of the polynomial relation since they will need to be accessed

by the PCD predicate for checking merging constraints. Note, Lx satisfies the collision-resistance property

due to the binding of the Pedersen commitment. The full details for the leaf polynomial relation and PCD

relation are deferred to Section 6.3. Altogether, this gives us a leaf relation represented by a much smaller

number of constraints as the commitment opening constraints have been removed, shown in Figure 4 as a

reduction in |Rleaf |. The cost of folding the leaf relation is incurred at every PCD node, so this reduction in

constraint size leads to prover savings throughout the entire PCD tree construction.

2.4 Overview Summary

Altogether, our techniques result in a piecewise SNARK with tunable memory usage and high parallelism

that does not come at the cost of increased prover time; our cost accounting estimates our SNARK incurs

similar prover computation costs to state-of-the-art monolithic SNARKs [KST22]. We provide an evaluation

of our proposed constructions in Section 6.4.

Section 4 introduces our new generalization of folding to polynomial relations and accompanying fold-

ing construction that underlies the efficiency improvements of the commit-and-prove optimization from

Section 2.3. Section 6 presents our SNARK construction from PCD for a Plonk arithmetization of NP state-

ments. The details on the leaf relation for uniform chunks as part of the leaf decoupling optimization are

discussed in Section 6.3 and Section 6.3.

3 Preliminaries

Notation. For an integer n ∈ N we denote by [n] the set {1, . . . , n}. For a finite set X we denote by x← X

the random variable defined as a uniform random sample from X. For a distribution D we denote by x← D
a random variable sampled from D. We use F to denote a field of prime order, and use F≤d[X1, . . . , Xm] to

denote the set of m-variate polynomials over F of degree at most d, For any vector v ∈ Fn, we index the

elements as {vi}ni=1. Define a range function rn(i, k) := [(i− 1) · k+1, i · k]. For a vector v, we denote vrn(i,k)

as the subvector of v containing the elements in the range rn(i, k). Informally, this is the i chunk (of size k)

of v. PPT refers to the class of probabilistic algorithms that run in polynomial time, while expected PPT

refers to the class of probabilistic algorithms that run in expected polynomial time.
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3.1 Interactive Protocols and Arguments

Interactive Arguments

Definition 4 (Interactive Argument ([AFK22, ACK21, BC23])). Consider µ, k1, . . . , kµ ∈ N and

a challenge space R. An interactive argument for a family of binary relations {Rpp}pp is a tuple of PPT

algorithms Π := (G,P,V) with the following interface:

– G(1λ)→ pp: Given security parameter 1λ, outputs public parameters pp.

– ⟨P(pp, x, w),V(pp, x)⟩ → 0/1: A (2µ+1)-move interactive protocol between two PPT algorithms, a prover

P and a verifier V. Both P and V are given as input public parameters pp and instance x. In addition,

P is given a witness w such that (x,w) ∈ Rpp. At the end of the protocol, the verifier outputs accept or

reject. Accordingly, the corresponding transcript is accepting or rejecting.

A Public Coin Interactive Argument

Prover P(pp, x, w) Verifier V(pp, x)

m1

r1 r1 ←$R

. . .

mµ

rµ rµ ←$R

mµ+1

An interactive argument is public coin if all of the verifier’s random coins are made public. In particular, a

verifier consists of two subroutines–an interactive algorithm which sends the prover random messages ri ←$R
and a decision algorithm which outputs accept or reject given the transcript (m1, r1, . . . , rµ,mµ+1).

A (k1, . . . , kµ)-tree of transcripts for a (2µ+1)-move protocol is a set of K =
∏µ

i=1 ki transcripts arranged

in a tree structure. The nodes in this tree correspond to the prover’s messages and the edges correspond to

the verifier’s messages. Every node at depth i has precisely ki children corresponding to ki pairwise distinct

verifier messages. Every transcript corresponds to exactly one path from the root node to a leaf node.

A interactive argument Π is secure if it satisfies the following properties :

– Completeness: For all pp ∈ G(1λ) and (x,w) ∈ Rpp, Pr[⟨P(pp, x, w),V(pp, x)⟩ = 1] = 1.

– (k1, . . . , kµ)-Special Soundness: An interactive argument Π is (k1, . . . , kµ)-special sound if there

exists an PPT algorithm w ← E(pp, x, tree) that given public parameters pp, an instance x, and a

(k1, . . . , kµ)-tree of accepting transcripts tree, outputs a witness w such that (x,w) ∈ Rpp.

Non-Interactive Arguments
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Random Oracles We denote by O(λ) the set of all functions that map {0, 1}∗ to {0, 1}λ. A random oracle

ro : {0, 1}∗ → {0, 1}λ is a function sampled uniformly at random from O(λ).

Index Relations An index relation R is a set of triples (idx, x, w) where idx is the index, x is the instance,

and w is the witness.

Definition 5 (NARKs ([AFK22, BCL+21, BC23])). A (preprocessing) non-interactive argument in

the random oracle model (ROM) for a family of index relations {Rpp}pp is a tuple of PPT algorithms NARK =

(Gnark, Inark,Pnark,Vnark) with the following interface:

– Gnark(1λ)→ pp: Given security parameter 1λ, outputs public parameters pp.

– Inark(pp, idx)→ (npk, nvk): Given public parameters pp and an index idx, outputs a proving key npk and

verification key nvk.

– P ro
nark(npk, x, w) → π: Given proving key npk and oracle access to a random oracle ro, instance x, and

witness w, outputs a proof π.

– V ro
nark(nvk, x, π) → 0/1: Given verification key nvk and oracle access to a random oracle ro, instance x,

and a proof π, outputs accept or reject.

A non-interactive argument NARK is secure if the following properties hold:

– Completeness: For all pp ∈ Gnark(1λ) and (idx, x, w) ∈ Rpp,

Pr

V ro
nark(nvk, x, π) = 1 :

ro← O(λ)

(npk, nvk)← Inark(pp, idx)

π ← P ro
nark(npk, x, w)

 ≥ 1− negl(λ)

– Knowledge Soundness: With respect to an auxiliary input distribution D, a non-interactive argument

NARK is knowledge sound with knowledge error κ : N×N→ [0, 1] if for every expected PPT adversary

P̃ who makes at most a polynomial number Q queries to ro, there exists a positive polynomial q and an

expected PPT extractor EP̃ such that for every distinguishing predicate ρ,

Pr


ρ
(
pp, ai, ao, idx, x

)
= 1

∧ (idx, x, w) ∈ Rpp

:

ro← O(λ)

pp← Gnark(1λ)

ai← D(pp)

(idx, x, w, ao)

← E roP̃ (pp, ai)


≥ ϵ(P̃)− κ(|x|, Q)

q(|x|)
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where ϵ(P̃) is defined as the probability:

ϵ(P̃) := Pr


ρ
(
pp, ai, ao, idx, x

)
= 1

∧ V ro
nark(nvk, x, π) = 1

:

ro← O(λ)

pp← Gnark(1λ)

ai← D(pp)

(npk, nvk)← Inark(pp, idx)

(idx, x, π, ao)← P̃ ro(pp, ai)


And, the runtime of EP̃ is at most a polynomial in the runtime of P̃.

A NARK can optionally be succinct if the size of the proof π is poly(λ) and the running time of Vnark(nvk, x)
is poly(λ + |x|). These quantities must be independent of size of the index idx used to derive nvk. A NARK

that is succinct is called a SNARK.

Remark 1. The definition of knowledge soundness above captures the fact that for every adversarial prover

P̃ that outputs an index-statement pair (idx, x) and a valid proof π for this pair, there is an extractor EP̃
that extracts a valid witness w from P̃ such that (idx, x, w) ∈ Rpp. The purpose of the distinguisher ρ is

to ensure that the extractor EP̃ extracts a witness on a distribution (idx, x) that is statistically close to the

distribution of (idx, x) for which the prover P̃ generates proofs.

Note that we can convert a special-sound interactive argument (Definition 4) into a non-interactive

argument (with knowledge soundness) via the adaptive Fiat-Shamir transform [AFK22] (where the verifier’s

challenges are derived non-interactively by querying the random oracle successively on the instance and

current transcript).

Lemma 1 (Theorem 4 of [AFK22]). The adaptive Fiat-Shamir transformation FS[Π] of a (k1, . . . , kµ)-

special-sound interactive argument Π, in which all challenges are sampled from a set C of size N , is a NARK

(with the knowledge soundness defined in Definition 5) that has knowledge error (Q + 1)κ where κ is the

knowledge error of the interactive argument Π and Q is the number of RO queries made by the adversary.

3.2 Cryptographic Primitives

Definition 6 (Collision Resistant Hash Functions). Let ℓ(λ) be a polynomial in the security parameter.

A hash function is a pair of PPT algorithms (SetupH,H) with the following interface:

– SetupH(1
λ)→ ppH: Given a security parameter 1λ ∈ 1N, outputs public parameters ppH.

– H(ppH,m)→ {0, 1}λ: Given public parameters ppH and input m ∈ {0, 1}ℓ(λ), outputs a hash h ∈ {0, 1}λ.

With respect to an auxiliary input distribution D, a hash function is collision resistant if for every expected

PPT adversary A,

Pr

H(ppH,m0) = H(ppH,m1) ∧

m0 ̸= m1

:

ppH ← SetupH(1
λ)

ai← D(ppH)

(m0,m1)← A(ppH, ai)

 ≤ negl(λ).
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Definition 7 (Commitment Scheme). A commitment scheme over an input spaceM and commitment

space C is a pair of PPT algorithms (Setupcom,Commit) with the following interface:

– Setupcom(1
λ)→ ck: Given a security parameter 1λ ∈ 1N, outputs public parameters ck.

– Commit(ck,m) → c: A deterministic algorithm that takes as input the public parameters ck and input

m ∈M, outputs a commitment c ∈ C.

With respect to an auxiliary input distribution D, a commitment scheme is binding, if for every expected

PPT adversary A,

Pr

Commit(ck,m0) = Commit(ck,m1) ∧

m0 ̸= m1

:

ck← Setupcom(1
λ)

ai← D(ck)

(m0,m1)← A(ck, ai)

 ≤ negl(λ)

A commitment scheme can optionally satisfy the following property,

– Linearly Homomorphic: Suppose the input spaceM and output space C are vector spaces over a field

F, then the commitment scheme is linearly homomorphic if Commit(ck, · ) :M→ C is a linear map,

for any ck produced by Setupcom(1
λ).

– Succinct: For any m ∈ M, the commitment c← Commit(ck,m) must have size |c| ≤ poly(λ), indepen-

dent of |m|.

The following technical lemma will be used in proving soundness of our NARKs. The lemma says that

an expected PPT adversary cannot find a non-zero polynomial p ∈ F≤d[X1, . . . , Xm] such that the random

oracle applied to a commitment to p gives a root of p.

Lemma 2 (Zero Finding Game [BCL+21, BCMS20b, CCS22]). Let (Setupcom,Commit) be a binding

commitment scheme for a message spaceM. Further, fix a number of variables t ∈ N and degree bound d ∈ N.
Then, for every function f :M→ F≤d[X1, . . . , Xt], and for every expected PPT algorithm A that makes Q

queries to the random oracle, the following probabilistic statement holds,

Pr



p ̸= 0

∧

p(r) = 0

:

ro← O(λ)

ck← Commit(1λ)

m← Aro(ck)

m← Commit(ck,m)

r ← ro(m) ∈ Ft

p← f(m) ∈ F≤d[X1, . . . , Xt]


≤

√
(Q+ 1) · td

|F|
+ negl(λ)

Merkle commitments. The Merkle Commitment Scheme [Mer90] provides a way to commit to a vector

of messages, so that can later provably open a subset of messages in the vector. A Merkle Tree is a tree of

hash values where the leaves are the messages in the vector and every intermediate node is the hash of its

children. The Merkle commitment is the root of the Merkle tree. Here we define the Merkle commitment

scheme with an arbitrary arity parameter k, which defines the arity of the Merkle tree.
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Definition 8 (Merkle Commitment Scheme). Let M ⊆ {0, 1}ℓ(λ) be a message space. Further, let

k ∈ N be an arity parameter. Given a collision resistant hash function (SetupH,H), a Merkle commitment

scheme is a tuple of PPT algorithms (MT.Commit,MT.Open,MT.Verify) with the following interface:

– MT.Commitk(ppH,m) → c: Given public parameters ppH and a vector m ∈ Mn, outputs a merkle com-

mitment h ∈ {0, 1}λ.
– MT.Openk(ppH,Q,m) → πMT: Given public parameters ppH, a subset of indices Q ⊆ [n], a vector m ∈
Mn, outputs a merkle proof πMT.

– MT.Verifyk(ppH, c,Q, {mi}i∈Q, πMT)→ {0, 1}: Given public parameters ppH, a subset of indices Q ⊆ [n],

claimed openings {mi ∈M}i∈Q and a merkle proof πMT, outputs accept or reject.

A Merkle commitment scheme satisfies the following properties:

– Correctness: For all ppH ∈ SetupH(1
λ), m ∈Mn, and Q ⊆ [n],

Pr

MT.Verify(ppH, c,Q, {mi}i∈Q, πMT) = 1 :

ppH ← SetupH(1
λ)

c← MT.Commit(ppH,m)

πMT ← MT.Open(ppH,Q,m)

 = 1

– Binding: The pair (SetupH,MT.Commit) is a binding commitment scheme for the message spaceMn.

– Positional Binding: With respect to an auxiliary input distribution D, for every expected PPT A,

Pr


MT.Verify(ppH, c,Q, {mi}i∈Q, πMT) = 1 ∧

MT.Verify(ppH, c,Q′, {m′
i}i∈Q′ , π′

MT) = 1 ∧

∃i ∈ Q ∩Q′, mi ̸= m′
i

:

ppH ← SetupH(1
λ)

ai← D(ppH)

(c,Q,Q′, {mi}i∈Q, {m′
i}i∈Q′ ,

πMT, π
′
MT)← A(ppH, ai)

 ≤ negl(λ).

Folding Schemes We next define a generalization of folding schemes [BCL+21, KST22]. Let n = poly(λ)

be polynomial.

Definition 9 (Folding Scheme). A Folding Scheme in the random oracle model for a family of relations

{Rfpp}fpp is a tuple of PPT algorithms Fold := (GFold,PFold,VFold) with the following interface:

– GFold(1λ)→ fpp: Given security parameter, outputs public parameters fpp := (fpk, fvk), which consists of

a proving key fpk and verification key fvk.

– P ro
Fold(fpk, (xi, wi)

n
i=1)→ (x,w, pf): Given a folding prover key fpk and n instance-witness pairs (xi, wi)

n
i=1,

outputs a new instance-witness pair (xi, wi), and folding proof pf.

– V ro
Fold(fvk, (xi)

n
i=1, x, pf)→ {0, 1}: Given a folding verifier key fvk, n instances [xi]

n
i=1, and a folding proof

pf, outputs accept or reject.

Define the n-composition of {Rfpp}fpp as the family of relations {Rn
fpp}fpp for

Rn
fpp := {((xi)ni=1, (wi)

n
i=1) | ∀i ∈ [n], (xi, wi) ∈ Rfpp}

A folding scheme Fold is secure if the following properties hold:
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– Correctness: For all fpp ∈ GFold(1λ) and (xi, wi)
n
i=1 ∈ Rn

fpp,

Pr

V ro
Fold(fk, (xi)

n
i=1, x, pf) = 1

∧ (x,w) ∈ Rfpp

:
ro← O(λ)

(x,w, pf)← P ro
Fold(fpk, (xi, wi)

n
i=1)

 = 1

– Knowledge Soundness: With respect to an auxiliary input distribution D, a folding scheme Fold is

knowledge sound with knowledge error κ : N × N → [0, 1] if for every expected PPT adversary P̃ who

makes at most a polynomial Q queries to ro, there exists a positive polynomial q and an expected PPT

extractor E such that for every predicate ρ,

Pr


ρ
(
fpp, ai, ao, (xi)

n
i=1

)
= 1

∧ ((xi)
n
i=1, (wi)

n
i=1) ∈ Rn

fpp

:

ro← O(λ)

fpp← GFold(1λ)

ai← D(fpp)

((xi, wi)
n
i=1, ao)← E roP̃ (pp, ai)

 ≥
ϵ(P̃)− κ(|x|, Q)

q(|x|)

where ϵ(P̃) is the following probability:

Pr


ρ
(
fpp, ai, ao, (xi)

n
i=1

)
= 1

∧ V ro
Fold(fk, (xi)

n
i=1, x, pf) = 1

∧ (x,w) ∈ Rfpp

:

ro← O(λ)

fpp← GFold(1λ)

ai← D(fpp)

((xi)
n
i=1, x, w, pf, ao)← P̃ ro(fpp, ai)


And, the runtime of EP̃ is at most a polynomial in the runtime of P̃.

Remark 2. Definition 9 is stated for the random oracle model, but one can obtain the definition for a folding

scheme in the standard model by trivially omitting the random oracle from the definition.

Proof Carrying Data Next, we review the concept of proof carrying data or PCD [BCL+21, BDFG21,

CCG+23, CT10, BCCT13, COS20]. Informally, PCD allows for a potentially distributed set of provers to

jointly prove the outcome of a structured graph of computation (MapReduce, distributed computations,

and more). In particular, every intermediate prover in the graph produces a proof that the output of the

computation at that node is correct. This proof is then used by the next prover in the graph to produce a

proof of correctness for the next node in the graph, and so on.

More specifically, consider a finite directed acyclic graph T where every node v in the graph corresponds

to a prover Pv. Suppose a node v has k incoming edges that are labeled with data z(e1), . . . , z(ek). Every

outgoing edge from node v is labeled with data z(e) and the node itself is labeled with some local data loc.

We say that the output z(e) is φ-compliant at node v if the tuple
(
z(e), loc, z(e1), . . . , z(ek)

)
satisfies some

compliance predicate φ. The prover Pv takes as input k pairs (z(ei), πi) for i = 1, . . . , k along with the

local data loc and the output data z(e). The prover outputs a proof π that shows that (i) for all i ∈ [k],

the incoming proof πi is a valid proof that z(ei) is φ-compliant at the predecessor node, and (ii) z(e) is

φ-compliant at node v. The PCD provers operate one after the other in a topological sort ordering of the
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graph. When this process completes, the output of every sink node in the graph is accompanied with a proof

that shows that at every intermediate node the output is φ-compliant at that node. What follows is a formal

description of Proof Carrying Data (PCD) and a PCD scheme.

Definition 10 (Data Graph). A data graph T is a directed acyclic graph where each vertex u ∈ V (T) is

labeled by local data loc(u) ∈ L and each edge e ∈ E(T) is labeled by a message z(e) ∈ Z. The output of a

data graph T, denoted o(T), is z(e) where e = (u, v) is the lexicographically-first edge such that v is a sink.

Definition 11 (Compliance). We denote by F a class of compliance predicates φ : Z×L×Zm → {0, 1}.
A vertex u ∈ V (T) is φ-compliant for φ ∈ F if for all outgoing edges e = (u, v) ∈ E(T) either:

– (base case) u has no incoming edges;

– (recursive case) u has incoming edges e1, . . . , em such that φ
(
z(e), loc(u), z(e1), . . . , z(ek)

)
accepts.

A data graph T is φ-compliant if all of its vertices are φ-compliant.

Definition 12 (Proof Carrying Data Scheme ([BCL+21, BCMS20b])). Fix a message space Z
with a predicate isBase : Z → {0, 1} and local data space L. A proof-carrying data scheme for a class

of compliance predicates F is a tuple of PPT algorithms pcd := (Gpcd, Ipcd,Ppcd,Vpcd) with the following

interface:

– Gpcd(1λ)→ pppcd: Given security parameter 1λ, outputs public parameters pppcd.

– Ipcd(pppcd, φ)→ (pkpcd, vkpcd): Given public parameters pppcd and compliance predicate φ ∈ F, outputs a

proving key pkpcd and verification key vkpcd.

– Ppcd

(
pkpcd,Z, loc, [(Zi, πi)]

k
i=1

)
→ π: Given a proving key pkpcd, message Z ∈ Z, local data loc ∈ L, a

collection of m message-proof pairs [(Zi, πi)]
k
i=1, outputs a proof π.

– Vpcd(vkpcd,Z, π)→ 0/1: Given a verification key vkpcd, message z ∈ Z, and a proof π, outputs accept or

reject.

A proof-carrying data scheme pcd is secure if the following properties hold:

– Completeness: For every φ ∈ F, pppcd ∈ Gpcd(1λ), and collection of elements (Z, loc, [(Zi, πi)]
k
i=1) such

that φ(Z, loc,Z1, . . . ,Zk) = 1,

Pr



 ∀i ∈ [k], isBase(Zi) = 1 ∨

∀i ∈ [m], Vpcd(vkpcd,Zi, πi) = 1


w�

Vpcd(vkpcd,Z, π) = 1

:
(pkpcd, vkpcd)← Ipcd(pp, φ)

π ← Ppcd(pkpcd,Z, loc, [(Zi, πi)]
k
i=1)

 = 1

– Knowledge soundness: With respect to auxiliary input distribution D, a proof-carrying data scheme

pcd is knowledge sound if for every expected PPT adversary P̃, there exists an expected PPT extractor
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EP̃ such that for every distinguishing predicate ρ,

Pr


φ ∈ F ∧

ρ
(
pppcd, ai, ao, φ, o(T)

)
= 1 ∧

T is φ-compliant

:

pppcd ← Gpcd(1λ)

ai← D(pppcd)

(φ,T, ao)← EP̃(pppcd, ai)



≥ Pr


φ ∈ F ∧

ρ
(
pppcd, ai, ao, φ,Z

)
= 1 ∧

Vpcd(vkpcd,Z, π) = 1

:

pppcd ← Gpcd(1λ)

ai← D(pppcd)

(φ,Z, π, ao)← P̃(pp, ai)

( · , vkpcd)← Ipcd(pppcd, φ)

− negl(λ)

And, the runtime of EP̃ is at most a polynomial in the runtime of P̃.
– Efficiency: Every proof π has size |π| ≤ poly(λ, |φ|). The size must be independent of the number of

applications of Ppcd.

Remark 3 (Differences from PCD in [BCL+21]). The definition of a PCD scheme in [BCL+21] is similar

to the one we have presented here, but there are some key differences to the message space Z and φ-

compliance. [BCL+21] implicitly requires that the message space Z has a special symbol ⊥ that acts as a

base case message. Their definition and construction (Sec 5.1) requires checking if edge values Zi = ⊥ or

Zi ̸= ⊥. We formalize this by introducing a predicate isBase : Z → {0, 1}, which labels whether a message is

a base case value or not. By not requiring Z to have a special symbol ⊥ and replacing Zi = ⊥ and Zi ̸= ⊥
with isBase(Zi) = 1 and isBase(Zi) = 0 respectively, we can directly recover a PCD scheme that satisfies our

definition of PCD from the construction in [BCL+21]. This allows for a more flexible notion of a base case

message.

3.3 Algorithms

Definition 13 (Tree Evaluation Problem). Consider an arbitrary space M and a function J :Mk →
M. Consider a k-ary tree with nodes labeled with values in M such that every parent node with children

(m1, . . . ,mk) is labeled with J(m1, . . . ,mk). The tree evaluation problem is to compute the root value of

the tree given streaming access to the sequence of leaf values.

Theorem 1 (Tree Evaluation Algorithm). Let k ∈ N and n ∈ N be a power of k. Consider an arbitrary

spaceM and a function J :Mk →M. Let us consider the tree evaluation problem Definition 13 for J over

M, where the sequence of n leaves is (mi)
n
i=1. There exists a streaming algorithm TreeEval(J,S(m)), given

streaming access to the sequence, that solves the tree evaluation problem with O(logk(n) · k · |m|+ |J |) space
complexity and makes O(n/k) calls to J , where |m| and |J | are the space complexity of an element m ∈ M
and the function J respectively.

Proof Sketch. This folklore pebbling algorithm [PTC76] can be directly recovered from the binary tree algo-

rithm in Gemini [BCHO22] but now for the k-ary case. ⊓⊔

3.4 Algebra

Lemma 3 ((Set Inclusion) Lemma 5 of [Hab22]). Let F be a field with char(F) > max(ℓ, T ). Suppose

(ai)
ℓ
i=1 and (bi)

T
i=1 are sequences of elements in F. Then, {ai}ℓi=1 ⊆ {bi}Ti=1 if and only if there exists a
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sequence of field elements (mi)
T
i=1 such that

ℓ∑
i=1

1

X − ai
=

T∑
i=1

mi

X − bi

Lemma 4 (Claim A.1 [GWC19]). Consider vectors z, σ ∈ Fn. Then, the following statements are

equivalent:

{(i, zi)}ni=1 = {(σi, zi)}ni=1 if and only if

n∏
i=1

(zi + i · Y +X) =

n∏
i=1

(zi + σi · Y +X)

Definition 14 (Polynomial Maps). Let m,n, d ∈ N and F be a field. A polynomial map of degree d is

a map f : Fm → Fn that can be expressed as

f(X) :=
(
f (1)(X), f (2)(X), . . . , f (n)(X)

)
where for all i ∈ [n], f (i)(X) ∈ F[X1, . . . , Xm] is a multivariate polynomial in m variables with deg(f (i)) ≤ d.

A polynomial map is homogeneous if all the polynomials f (1)(X), . . . , f (n)(X) are homogeneous poly-

nomials of the same degree.

Given an arbitrary polynomial map f : Fm → Fn of degree d, we define the j-th degree homogeneous

component fj(X) as the homogeneous map of degree j consisting exactly of the monomials of degree j in

f(X). In particular, we can express the map f(X) =
∑d

j=0 fj(X).

4 Generalization of Folding Schemes

In this section, we develop a generalization of folding and accumulation schemes [KST22, BC23, BCL+21,

Moh23, KS23, EG23] that not only captures most prior schemes, but allows for a commit-and-prove style of

relation. We begin by defining the notion of a polynomial opening relation, which is a relation that is readily

amenable to folding and sufficient for our SNARK construction. We then show a general transformation

from non-homogeneous to homogeneous polynomial maps, which will enable us to fold relations with non-

homogeneous polynomial maps, by first compiling them into homogeneous polynomial maps. This will be

useful for our first folding scheme (Definition 17), which is restricted to homogeneous polynomial maps.

However, looking ahead, our second folding scheme (Protocol 2) directly handles arbitrary polynomial maps

without the need for this transformation. Next, we introduce the concept of witness testing for polynomial

relations, which lets one test if a witness satisfies certain properties. This will be needed in the SNARK

construction. Next, we introduce our two concrete folding schemes, which fold pairs of the polynomial

opening relation. Finally, we conclude with a discussion on the heuristic security of our folding schemes in

the standard model, when instantiated with a concrete hash function.

4.1 Polynomial Relations

We begin by defining a generalization of the relations used in folding schemes. In Nova [KST22], they fold

a family of relations called relaxed R1CS, which roughly corresponds to opening a witness commitment

to see if a specific degree-2 polynomial map evaluates to an error vector e, which is the opening of a
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so-called error commitment e. In Protostar [BC23], they fold instances as committed transcripts of special-

sound protocols, and the family of relations being folded corresponds to the high-degree polynomial map

checked by the special-sound protocol verifiers. Both of these can be viewed as a special case of the following

polynomial opening relation. Informally, a polynomial opening relation is a relation that allows one to check

if a commitment to a witness x is consistent with a commitment to the output f(x) of a polynomial map

f . Here we choose to define the relation in terms of linear maps Lx and Le that commit to the witness x

and the polynomial map output f(x), respectively. By considering arbitrary linear maps and polynomial

maps, we capture a wide range of relations that are amenable to folding rather than restricting ourselves to

committed special-sound transcripts or relaxed R1CS instances.

Definition 15 (Polynomial Opening Relation). Let m,n, d ∈ N, let F be a field, and let X,E be vector

spaces over F. Further, let f : Fm → Fn be a polynomial map of degree d, Lx : Fm → X and Le : Fn → E be

linear maps. We define the following instance-witness relations Ropen (Lx,Le, f) and Rcollision(Lx):

Ropen (Lx,Le, f) :=
{
((x ∈ X, e ∈ E) ; x ∈ Fm)

∣∣ (x, e) =
(
Lx(x), Le(f(x))

) }
Rcollision (Lx) :=

{
(⊥ ; a, a′ ∈ Fm)

∣∣∣ a ̸= a′ ∧ Lx(a) = Lx(a
′)
}
.

For any ℓ ∈ N, we define Rℓ
open (Lx,Le, f) as the set of tuples

(
(xi, ei); xi

)ℓ
i=1

such that ((xi, ei); xi) is in

Ropen (Lx,Le, f) for all i ∈ [ℓ].

Example 1. In Nova [KST22], Lx(x) is the Pedersen commitment to the witness x, and Le(f(x)) is the

error commitment. Here f is a degree-2 polynomial map related to R1CS. In [BC23], a commitment C

to a special-sound transcript T = (m1, r1,m2, r2, . . . ) consists of individual commitments to each prover

message mii and verifier challenges rii. The verifier receives the message commitment openings and accepts

if these commitment openings are valid and that a polynomial map f(mii, rii) = 0. In our generalization, the

commitment C to the transcript T can be viewed as the output of a linear map Lx (i.e. C = Lx(T )), which

is simply the piece-wise composition of the individual message commitment algorithms. Our polynomial

relation exactly checks that C = Lx(T ) and that f(T ) = 0, when e is a commitment to zero.

The polynomial opening relation Rℓ
open (Lx,Le, f) from Definition 15 requires that the polynomial map f

is homogeneous. To handle non-homogeneous polynomial maps we define a transform that lets us convert

a non-homogeneous polynomial map into a homogeneous one. The transform increases the arity of f by

one by introducing one auxiliary variable. The method is used implicitly in Nova [KST22] to convert R1CS

into relaxed R1CS. Protostar [BC23] avoids the need for this transform by assuming that the verifier of a

special-sound protocol is already homogeneous.

Definition 16 (Homogeneous Transform). Given a polynomial map f : Fm → Fn of degree d, define

the following homogeneous polynomial map f̂ : Fm+1 → Fn of degree d such that f(x) = f̂(x, 1). The

transformation is:

f(x) =

d∑
j=0

fj(x) 7→ f̂(x, µ) :=

d∑
j=0

µd−jfj(x)

where fj(x) is the j-th degree homogeneous component of f(x).
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Fig. 6: Commutative Diagram for Polynomial Witness Testing

4.2 Polynomial Witness Testing

Let f : Fm → Fn be a homogeneous polynomial map. Given an instance (x, e) in the language ofRopen(Lx,Le, f),

it will be useful to test whether there exists a witness x ∈ Fm such that a subset of b elements of x is equal

to some fixed x′ ∈ Fb. This will help us test that part of the extended witness is consistent with the public

input of the SNARK statement. More generally, if ψ : Fm → Fb is a projection map, we would like to test

that ψ(x) = x′.

Since we cannot do direct checks on a witness x given only the instance (x, e) in the language of Ropen,

we must check if certain elements of x = Lx(x) have certain values. For example, if Lx commits to each

element of x seperately, then to test if the last element of x is 1, we could check if the last element of Lx(x)

is a commitment to 1. Looking ahead, in the SNARK context, this will help us check if certain subsets of

the extended witness are consistent with the witness commitment.

To formalize this idea, we introduce projection maps ψ and Ψ and linear map L′
x. Informally, ψ selects

the elements of x we want to check, Ψ selects the corresponding elements of Lx(x), and L′
x computes Lx on

the elements of x selected by ψ. The following lemma describes our problem as an adversarial game.

Lemma 5 (Polynomial Witness Testing). Let ψ : Fn → Fb and Ψ : X→ X′ be a projection maps, Lx :

Fm → X, L′
x : Fb → X′, and Le be linear maps which are binding commitments schemes, and f : Fm → Fn be

a polynomial map. Further, assume Ψ ◦Lx = L′
x ◦ψ. Then, for all expected PPT adversaries A, the following

holds:

Pr



 ((x, e), x) ∈ Ropen(Lx,Le) ∧

Ψ(x) = L′
x(x

′) ∧ e = Le(e)


⇓

(ψ(x) = x′ ∧ f(x) = e)

:
((x, e), x),

x′, e
← A(Lx,L′

x,Le)

 ≥ 1− negl(λ)

Proof Sketch. We construct an adversary B that breaks the binding property of L′
x, or Le. Then, we show

that the success probability of B bounds the success probability of A. We can conclude by union bound that

the probability in (5) is neglibly close to 1. We defer the full proof to Appendix A.1. ⊓⊔

5 Folding Schemes for Polynomial Relations

In this section, we present two folding schemes for polynomial opening relations. The first scheme (Protocol 1)

supports only homogeneous polynomial maps. To support an arbitrary polynomial map, we must first apply

the homogeneous transform from Definition 16 to convert the map into a homogeneous one. In contrast, the

second scheme (Protocol 2) can directly support arbitrary polynomial maps. The two protocols also differ
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in round complexity and efficiency: (i) Protocol 1 requires logarithmic rounds of communication whereas

Protocol 2 has only two rounds. (ii) The folding verifier of Protocol 2 performs half as many operations as

the verifier in Protocol 1. (iii) As a tradeoff, the folding prover of Protocol 2 requires O(k2m) field operations3

and O(km) group operations while Protocol 2 performs only O(km) field and group operations.

5.1 A Folding Scheme for Homogeneous Maps

Next we describe an interactive protocol for the polynomial opening relation Rℓ
open(Lx,Le, f) from Defini-

tion 15, which reduces the relation to a smaller instance of the same relation. We can use this protocol to

construct a folding scheme for the relation Rℓ
open(Lx,Le, f) by recursively applying the protocol. Without

loss of generality we assume that ℓ ∈ N is a power-of-two.

Protocol 1 (Π
(ℓ)
open: Interactive Protocol for Rℓ

open(Lx,Le, f) ∪Rcollision(Lx))

Prover P
(
(xi, ei)

ℓ
i=1; (xi)

ℓ
i=1

)
↔ Verifier V

(
(xi, ei)

ℓ
i=1

)
– P: For j ∈ [ℓ/2], compute (v1,j , . . . , vd−1,j) ∈ Fd−1 such that for indeterminate Y

f(Y · xj + xj+ℓ/2) = Y df(xj) +
∑d−1

i=1 Y
i · vi,j + f(xj+ℓ/2)

Set vi,j ← Le(vi,j) for all j ∈ [ℓ/2] and i ∈ [d− 1]; Send the matrix (vi,j)i,j to V.

– V: Sample random challenge r ←$ F, and send r to P.

– P: For j ∈ [ℓ/2], compute x′j ← r · xj + xj+ℓ/2. Send (x′1, . . . , x
′
ℓ/2) ∈ Fℓ/2 to V.

– V: For j ∈ [ℓ/2], assign

x′j ← r · xj + xj+ℓ/2 and e′j ← rd · ej +
∑d−1

i=1 r
i · vi,j + ej+ℓ/2

Check if
(
(x′j , e

′
j)

ℓ/2
j=1; (x

′
i)

ℓ/2
j=1

)
∈ Rℓ/2

open (Lx,Le, f).

Definition 17 (Homogeneous Opening Protocol). Let ℓ ∈ N be a power-of-two. We define the protocol

ΠH
open := Π

(ℓ)
open ◦ Π(ℓ/2)

open ◦ · · · ◦ Π(2)
open, where ◦ denotes the sequential composition of protocols. In particular,

for k > 2, the protocol Π
k/2
open takes in the instance-witness pair ((x′j , e

′
j)

k/2
j=1; (x′i)

k/2
j=1) derived by the prior

protocol Πk
open.

Theorem 2. Let m,n, d, ℓ ∈ N (where ℓ = poly(λ) is a power-of-two), F be a field whose size is exponential in

the security parameter (i.e. |F| ≈ 2λ), and X,E be vector spaces. Further, let f : Fm → Fn be a homogeneous

polynomial map of degree d (Definition 14), and Lx : Fm → X and Le : Fm → E be linear maps. And, suppose

the linear map Lx : Fm → X is a binding commitment scheme for message space Fm. Then, there exists a

secure folding scheme (Definition 9) for the relation Rℓ
open(Lx,Le, f).

Proof Sketch. Informally, the folding scheme is the adaptive Fiat-Shamir transformation [ACK21] of the

opening protocol ΠH
open (Definition 17). First, we show that ΠH

open is a (d + 1)log(ℓ)-special sound proto-

col for the relation Rℓ
open(Lx,Le, f) ∪ Rcollision(Lx) (Theorem 6). By applying the adaptive Fiat-Shamir

transformation (Lemma 1) and leveraging the fact that Lx is binding, we obtain a secure NARK (Defini-

tion 5) for Rℓ
open(Lx,Le, f). In this NARK, the prover takes as input P

(
(xi, ei)

ℓ
i=1; (xi)

ℓ
i=1

)
and the verifier

V
(
(xi, ei)

ℓ
i=1

)
. We can trivially convert this NARK into a folding scheme by simplying setting the folding

proof pf to be the transcript up until the last message of the prover. The output relation pair of the folding

3For an FFT-friendly field, this can be reduced to O(k log(k)m).
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scheme prover is the same as the output pair ((x′, e′), x′) of the NARK. The folding scheme verifier simply

runs the NARK verifier to derive the output instance x′, and checks if it’s input x = x′. We defer the full

proof to Appendix A.2. ⊓⊔

5.2 A Folding Scheme for Arbitrary Polynomial Maps

In this section, we describe a folding scheme for the relation Rℓ
open(Lx,Le, f) for arbitrary polynomial maps

f . The prior section described a folding scheme restricted to only homogeneous maps, which are a special

case of polynomial maps. This protocol can be viewed as a generalization of recent work that fold instances

of NARKs derived from code-based IOPs [BMNW24] and special-sound protocol transcripts [EG23], where

the algebraic verifier is restricted to a multivariate polynomial. To work around this restriction, Protogalaxy

[EG23] describes a transform from special-sound protocol with algebraic verifiers that can be represented as

polynomial maps f : Fm → Fn to a special-sound protocol where the verifier is a multivariate polynomial

f̂ : Fm+log(n) → F. Similarly to the homogeneous transform (Definition 16), this transformation introduces

additional variables to the polynomial map; in particular, a logarithmic number. Here, instead, we directly

handle the general case of arbitrary polynomial maps f : Fm → Fn; for which the multivariate polynomial is

a special case. As mentioned earlier, by considering arbitrary linear maps and polynomial maps, we capture

a wide range of relations that are amenable to folding rather than restricting ourselves to committed special-

sound transcripts.

Notation Let H := {h1, . . . , hℓ} ⊆ F denote ℓ distinct field elements. Denote vH(Y ) =
∏

h∈H(Y − h) to be

the vanishing polynomial over H. Further, let {LH
1 , . . . , L

H
ℓ } denote the Lagrange basis for H, which have the

form LH
i (Y ) = ci · vH(Y )/(Y − hi) for some ci ∈ F. For all i ∈ [ℓ], LH

i (Y ) is a polynomial of degree ℓ− 1 that

evaluates to 1 at hi and 0 at all other points in H.

The following lemma, Lemma 6, describes how to derive the required cross-terms, whose evaluations

under Le will be sent by the prover in our folding scheme (Πopen).

Lemma 6. Consider a polynomial map f : Fm → Fn of degree d. Further, consider vectors x1, . . . , xℓ ∈ Fm.

There exists vectors q0, . . . , qd(ℓ−1)−ℓ ∈ Fn such that the following expression holds over indeterminate Y :

f

(
ℓ∑

i=1

LH
i (Y ) · xi

)
−

ℓ∑
i=1

LH
i (Y ) · f(xi) = vH(Y ) ·

d(ℓ−1)−ℓ∑
j=0

Y j · qj

 (1)

Proof. Let us refer to the expression on the left hand side of (1) as F (Y ). Observe that F (Y ) is a polynomial

in Y whose coefficients are in Fn and has degree at most d(ℓ − 1) in Y . Furthermore, observe that F (Y )

vanishes (evaluates to 0n) at the ℓ distinct points in H. Therefore, for all i ∈ [n], vH(Y ) must divide F (i)(Y )

(the i-th polynomial of the polynomial map F (Y )). Define, for all i ∈ [n], q(i)(Y ) = F (i)(Y )/vH(Y ) whose

degree is d(ℓ−1)−ℓ; let q(i)j denote the j-th coefficient of q(i)(Y ). Further, define vectors qj = (q
(1)
j , . . . , q

(n)
j ).

Then, by construction, we must have that F (Y ) = vH(Y ) ·
(∑d(ℓ−1)−ℓ

j=0 Y j · qj
)
. ⊓⊔

Protocol 2 (Πopen: Interactive Protocol for Rℓ
open(Lx,Le, f) ∪Rcollision(Lx))

Prover P
(
(xi, ei)

ℓ
i=1; (xi)

ℓ
i=1

)
↔ Verifier V

(
(xi, ei)

ℓ
i=1

)
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– P: As in Lemma 6, compute vectors q0, . . . , qd(ℓ−1)−ℓ ∈ Fn s.t. for indeterminate Y

f

(
ℓ∑

i=1

LH
i (Y ) · xi

)
−

ℓ∑
i=1

LH
i (Y ) · f(xi) = vH(Y ) ·

d(ℓ−1)−ℓ∑
j=0

Y j · qj


Set qj ← Le(qj) for all j ∈ {0, . . . , d(ℓ− 1)− ℓ} and send (qj)j to V.

– V: Sample random challenge r ←$ F, and send r to P.

– P: Compute x =
∑ℓ

i=1 L
H
i (r) · xi. Send x to V.

– V: Assign

x←
ℓ∑

i=1

LH
i (r) · xi and e← vH(r) ·

(∑d(ℓ−1)−ℓ
j=0 rj · qj

)
+
(∑ℓ

i=1L
H
i (r) · ei

)
Check if ((x, e); x) ∈ Ropen (Lx,Le, f).

Theorem 3. Let m,n, d, ℓ ∈ N, F be a field whose size is exponential in the security parameter (i.e. |F| ≈
2λ), and X,E be vector spaces. Further, let f : Fm → Fn be an arbitrary polynomial map of degree d

(Definition 14), and Lx : Fm → X and Le : Fm → E be linear maps. And, suppose the linear map Lx : Fm →
X is a binding commitment scheme for message space Fm. Then, there exists a secure folding scheme

(Definition 9) for the relation Rℓ
open(Lx,Le, f).

Proof Sketch. We follow a similar construction and proof strategy as in Theorem 2. The folding scheme is the

adaptive Fiat-Shamir transformation [ACK21] of the opening protocol Πopen (Protocol 17). First, we show

that Πopen is a d(ℓ−1)+1-special sound protocol for the relation Rℓ
open(Lx,Le, f)∪Rcollision(Lx) (Theorem 7).

By applying the adaptive Fiat-Shamir transformation (Lemma 1) and leveraging the fact that Lx is binding,

we obtain a secure NARK (Definition 5) for Rℓ
open(Lx,Le, f), which can be trivially converted into a folding

scheme, as was done in Theorem 2. We defer the full proof to Appendix A.3. ⊓⊔

Remark 4 (Comparison of Protocols ΠH
open ((Protocol 1)) and Πopen (Protocol 2)). Both ΠH

open and Πopen send

the same number of crossterms. To see this, observe that ΠH
open sends (d − 1)(ℓ/2) + (d − 1)(ℓ/4) + · · · +

(d − 1) = (2(ℓ/2) − 1)(d − 1) = (ℓ − 1)(d − 1) = d(ℓ − 1) − ℓ + 1 cross terms, which is exactly the same

number of cross terms sent in Πopen. The protocols differ beyond supporting homogeneous versus arbitrary

polynomial maps. Their round complexity and concretely their efficiency also differ. The protocol ΠH
open

has logarithmic rounds of communication, while Πopen has only two rounds. Despite both protocols sending

the same number of crossterms, Πopen performs half as many homomorphic operations, since it no longer

produces and manipulates intermediate pairs
(
(x′j , e

′
j); x

′
j

)
j
for every round (for logarithmic rounds).

5.3 Heuristic Security of Folding Schemes

Looking ahead, we will require a folding scheme for the relation Rℓ
open(Lx,Le, f) in the standard model,

in order to encode the folding scheme in a concrete predicate φ for PCD (Definition 12). In prior work

[BCL+21, BCMS20a, COS20], they require a folding scheme (or accumulation scheme) for NARKs in the

standard model to construct PCD. They show the existence of such a folding scheme in the random oracle

model, and then obtain a folding scheme in the standard model with heuristic security by instantiating the

random oracle with an appropriate hash function. The security of the folding scheme in the standard model
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is a conjecture, due to a well-known limitation of the random oracle methodology [CGH04, GK03], but there

is evidence to suggest this limitation may not be inherent [CL19]. We can follow the same approach to obtain

a folding scheme for the relation Rℓ
open(Lx,Le, f) in the standard model. Here, we state this as Conjecture 1.

Conjecture 1. Consider the parameters, maps, and assumptions as in Theorem 3. If there exists a secure

folding scheme for the relation Rℓ
open(Lx,Le, f) in the random oracle model, then there exists a folding

scheme for the relation Rℓ
open(Lx,Le, f) in the standard model.

From Conjecture 1 and Theorem 3, we obtain a folding scheme for the relation Rℓ
open(Lx,Le, f) in the

standard model.

6 SNARKs for Plonkish Arithmetization

In this section we describe our new SNARK construction. The construction implements the outline from

Section 2.2 and implements the optimizations described in Section 2.3. First, in Section 6.1 we describe the

arithmetization that our SNARK targets, a form of Plonkish arithmetization [CBBZ23]. Section 6.2 describes

a simple NARK whose verifier has a nice uniform structure amenable to folding and PCD.Finally, Section 6.3

describes how to use PCD to “outsource” some of the verification work to the prover to enable sublinear

verification time.

6.1 Plonkish Arithmetization

Plonkish arithmetization [GWC19, CBBZ23] is a convenient way to represent a computation trace. We review

this format in the next definition.

Notation Define a range function rn(i, k) := [(i − 1) · k + 1, i · k]. For a vector v, we denote vrn(i,k) as the

subvector of v containing the elements in the range rn(i, k). Informally, this is the i chunk (of size k) of v.

Definition 18 (Plonkish Arithmetization). Let b, c, t > b,m, n ∈ N such that c = n/t ∈ N and F be a

finite field. A plonkish arithmetization is a tuple plk := (σ, s, G) where σ ∈ Fn is a permutation vector

on [n] (i.e. {1, . . . , n} = {σi}i∈[n]), s ∈ Fc·b is a selector vector, and G : Fb × Ft → F is a gate polynomial,

which can represent arbitrary custom gate constraints.

A value vector z ∈ Fn satisfies a Plonkish Arithmetization plk := (σ, s, G) if

– Global Copy Constraints: For all i ∈ [n], zi = zσi
.

– Local Gate Constraints: For all i ∈ [c], G
(
srn(i,b), zrn(i,t)

)
= 0.

We define the following index relation Rplk:

Rplk :=

(plk, x ∈ Fm, w ∈ Fn−m)

∣∣∣∣∣∣∣
For z := (x,w),

z satisfies plk


Construction 1 presents a NARK for Rplk. To prove that some (plk, x, w) ∈ Rplk, the prover must prove

that z = (x,w) satisfies both the global copy constraints and the local gate constraints of plk. To prove

z = (x,w) satisfies global copy constraints, the prover calculates partial products corresponding to the

standard grand product permutation check from past work [CDv+03, GWC19]. To prove z satisfies local

gate constraints, the prover simply provides z to the verifier, who manually checks them.
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6.2 NARK for Plonkish

In this section we describe a somewhat trivial NARK for Rplk. The NARK prover outputs the extended

witness z := (x,w) as part of the proof, along with two other terms L and R that come from the permutation

argument. In the next section we will show how to obtain a SNARK by applying folding to this NARK verifier.

The point is that this NARK verifier has a uniform structure that makes it amenable to folding.

Construction 1 (NARK for Rplk)

– Gnark(1λ): Output ck← Setupcom(1
λ).

– Inark(pp, (σ, s, G)): Output
(
npk := (pp, σ, s, G), nvk := (pp, σ, s, G)

)
.

– P ro
nark(npk, x, w):

1. Parse (ck, σ, s, G)← npk and assign z ← (x,w).

2. Commit plk← Commit (ck, (σ, s)) and z ← Commit (ck, z).

3. Derive challenges α, β ← ro
(
plk, x, z

)
.

4. Compute vectors L,R such that

• L1 = (z1 + α+ β) and R1 = (z1 + σ1 · α+ β).

• For all i ∈ {2, . . . , n}, Li = Li−1 · [(zi + i · α) + β] and Ri = Ri−1 · [(zi + σi · α) + β].

5. Output proof π := (z, L,R).

– V ro
nark(nvk, x, π):

1. Parse (ck, σ, s, G)← nvk and proof (z, L,R)← π.

2. Commit plk← Commit (ck, (σ, s)) and z ← Commit (ck, z).

3. Derive challenges α, β ← ro
(
plk, x, z

)
.

4. Check if x = (z1, . . . , z|x|).

5. Check if

• L1 = (z1 + α+ β) and R1 = (z1 + σ1 · α+ β).

• For all i ∈ {2, . . . , n}, Li = Li−1 · [(zi + i · α) + β] and Ri = Ri−1 · [(zi + σi · α) + β].

6. Check Ln = Rn and for all i ∈ [c], G
(
srn(i,b), zrn(i,t)

)
= 0.

7. Output accept if all checks pass otherwise reject.

Theorem 4. Let F be a field whose size is exponential in the security parameter (i.e. |F| ≈ 2λ). Let

(Setupcom,Commit) be a binding commitment scheme (Definition 7) for vectors over F. Then, Construc-

tion 1 is a secure NARK (Definition 5) for Rplk (Definition 18).

Proof idea. Completeness follows almost immediately from the construction; the gate check is identical to

the relation and the product check follows from Lemma 4. To prove knowledge soundness, we construct the

trivial extractor which output the witness w from parsing z given in the proof. To argue the extractor is

correct, we bound the probability the prover succeeds by constructing an adversary against the Zero Finding

Game (Lemma 2) with respect to commitments hz and hplk. We defer the full proof to Appendix A.5. ⊓⊔

Note that our NARK verifier work can be naturally separated into uniform chunks (see Section 2.1).

In particular, our NARK verifier checks local gate constraints for one chunk of indices at a time. We can

similarly chunk the global permutation product check by computing partial products for one chunk of indices

at a time. The verifier can perform the final product check by multiplying the chunked partial products.
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The verifier can similarly compute the commitments to z, σ, and s in a chunked manner using a Merkle

tree commitment: the verifier commits to chunks of z, σ, and s and then computes the final commitment by

creating a Merkle tree whose leaves are the chunked commitments.

6.3 SNARK for Plonkish

This section describes how to apply PCD to our NARK (Construction 1) from the previous section to create

a SNARK. We expand on the outline from Section 2.2 on how to use PCD to produce a SNARK from

uniform chunks. We can separate the NARK verifier work into core leaf computation and control merging

computation. Core leaf computation consists of the checks whose inputs are contained with one chunk (e.g.,

local gate constraints and local permutation partial product calculations). Control merging computation

consists of the checks that make guarantees across several chunks (e.g., checking that the permutation

partial products from chunks are multiplied together, checking that the Merkle tree hashes from chunks are

properly combined). Section 6.3 describes how to use Section 4 to create a foldable leaf relation that captures

the core leaf computation. Section 6.3 describes our PCD tree predicate and a helper function for our prover.

Section 6.3 describes the construction of our final SNARK. Section 6.4 gives efficiency estimates. We will

denote in blue text parameters or steps necessary when the folding scheme used requires the homogeneous

transformation from Definition 16 to handle arbitary polynomial maps. For example, the folding scheme

constructed in Section 5.1. These can be omitted for folding schemes that handle arbitrary polynomial maps

such as in Section 5.2.

Foldable Leaf Relation Here we describe our foldable leaf relation. We first create a non-homogeneous

polynomial map that is 0 if all leaf constraints are satisfied (i.e., all checks in a chunk pass). Then we directly

apply Section 4, which describes how to transform a non-homogeneous polynomial into a pair of relations

amenable to folding.

In Section 2.3, we gave an informal description of the non-homogeneous map that is 0 if the leaf constraints

are satisfied. Definition 19 gives the formal definition. Recall that each leaf node represents a uniform chunk.

Let i ∈ N denote the starting index of the leaf node (1,m+1, . . . ), and p ∈ F denote the partial product for

the permutation argument for the chunk represented by the leaf node. Let σ, z, L,R ∈ Fm and s ∈ Fb(m/t) be

the corresponding permutation, value, partial product vectors, and selector vectors for the chunk represented

by the leaf node. Let µ denote the parameter introduced by the homogeneous transformation (Definition 16).

Definition 19 (Leaf Polynomial Map). Assume G : Fb × Ft → F is a gate polynomial. Let m ∈ N be
a memory parameter. Here define a non-homogeneous polynomial map fα,β : F4m+b(m/t)+2 → F2m+(m/t)+1,
which represents the core leaf computation.

fG
α,β(i, σ, s, z, L,R, p) :=



L1 − (β + α · i+ z1),

R1 − (β + α · σ1 + z1),

∀j ∈ [m− 1],

Lj+1 = Lj · (β + α · (i+ j) + zj+1),

Rj+1 = Rj · (β + α · σj+1 + zj+1),

Ln − p ·Rn,

∀j ∈ [m/t],

G
(
srn(j,b), zrn(j,t)

)


We define f̂Gα,β(i, σ, s, z, L,R, p, µ) to be the homogeneous polynomial map, obtained by applying the trans-

formation from Definition 16.
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If fα,β evaluates to 0 on σ, s, z, L,R, i, p for a given uniform chunk, then the the gate constraints for

that chunk are satisfied and the partial product p for the permutation argument for that chunk has been

calculated correctly. In the informal definition of f , we express the permutation check in terms of rational

fractions, but here we express it as a polynomial check because we are defining a polynomial map.

We now define a pair of relations amenable to folding that captures the constraints specified by f̂α,β

using the transformations from Section 4. Definition 20 gives concrete instantiations for the linear maps and

projections required for these transformations. More specifically, Section 4.1 describes how to define a pair

of foldable relations Ropen and Rcollision for any homogeneous polynomial map f̂ using some linear maps Lx

and Le. In Definition 20, we define Lx and Le to be binding linear maps constructed from any binding and

linearly homomorphic commitment scheme. Additionally, in Section 4.2, we explained that we can define

projection functions Ψ and ψ and linear map L′
x to test that certain elements of a witness to Ropen have

certain values. In our SNARK, these checks correspond to the control merging logic. In particular, we need

to check that we are multiplying the permutation partial product p into our grand permutation product

check and that the commitments output by Lx are commitments to certain elements. We thus define Ψ and

ψ as projection maps that select the relevant commitments and elements respectively, and we define L′
x as

selecting p and committing to other elements output by ψ.

Definition 20 (Leaf Linear Maps and Projections). Let (Setupcom,Commit) be a binding commitment

scheme that is linearly homomorphic. Let i,m ∈ N and σ, z, L,R ∈ Fm and s ∈ Fb(m/t).

Assume the commitment key ck← Setupcom(1
λ) is outputted by setup.

Lx(i, σ, s, z, L,R, p, µ) :=


plk := Commit(ck, (i, σ, s)),

z := Commit(ck, z),

w := Commit(ck, (L,R))

p, µ

 Le(e) := Commit(ck, e)

Further, we define the following projection functions and linear maps used for the polynomial witness testing

(Lemma 5).

Ψ(plk, z, w, p, µ) := (plk, z, p, µ)

ψ(i, σ, s, z, L,R, p, µ) := (i, σ, s, z, p, µ)
L′

x(i, σ, s, z, p, µ) :=


Commit(ck, (i, σ, s)),

Commit(ck, z),

p, µ


SNARK PCD Predicate and Prover Helper Function Now we describe our PCD predicate. We can

parse each PCD node message Z = (p, hplk, hz, X). p is a permutation partial product, and X is a foldable

leaf relation instance. hplk and hz are Merkle tree commitments to subvectors of the plonkish arithmetization

σ, s vectors and the value vector z respectively.

The PCD predicate enforces the following three checks from our control merging logic over (p, hplk, hz, X)

for a given node. First, the predicate enforces that the hplk (hz) values of a given node are the results of

hashing together the hplk (hz) values from the given node’s children. This ensures that the PCD tree honestly

computes the Merkle tree commitments to the arithmetization and value commitments at the leaf nodes.

At each leaf node, our prover sets hplk to a commitment of a chunk of (σ, s), and our prover sets hz to

a commitment to a chunk of z, so this predicate enforces that the root node of the tree has two Merkle

Tree commitments to two vectors of commitments to chunks of (σ, s) and z respectively. Second, the PCD
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predicate verifies that folding of the leaf computation is done appropriately. In other words, it checks that

each parent X is the result of folding the X values of the given node’s children. Third, the PCD predicate

checks that p is the product of the p values of the given node’s children. This ensures that the root node of

the PCD tree has the final total value for grand product permutation check.

Definition 21 (SNARK PCD Predicate). Consider the maps in Definition 20. Let (SetupH,H) be a

collision-resistant hash function and (GFold,PFold,VFold) be a secure folding scheme in the standard model.

Here we define a PCD predicate φppH,fvk, where ppH ← SetupH and ( , fvk)← GFold(1λ) are parameters.

φppH,fvk(Z, loc,Z1, . . . ,Zk):

1. Parse (p, hplk, hz, X)← Z and pf ← loc.

2. Parse ∀i ∈ [k], (pi, hplki, hzi, Xi)← Zi and (xi, ei)← Xi.

3. Assign ∀i ∈ [k], (plki, zi, p
′
i, µi)← Ψ(xi).

4. If ∀i ∈ [k], ei = Le(0) and µi = 1: // isBase

– ∀i ∈ [k], check if pi = p′i.

– Check if hplk = H(ppH, plk1, . . . , plkk).

– Check if hz = H(ppH, z1, . . . , zk).

5. Else:

– Check if hplk = H(ppH, hplk1, . . . , hplkk).

– Check if hz = H(ppH, hz1, . . . , hzk).

6. Check VFold(fvk, (Xi)
k
i=1, X, pf) accepts and p =

∏k
i=1 pi.

7. If all checks pass, output accept, otherwise reject.

Here we describe a helper function J for the SNARK prover that exactly mirrors the PCD predicate. In

particular, it performs the analogous computation to construct a PCD tree that is φppH,fvk compliant, along

with accompanying folding relation witnesess. Informally, we can think of this function as taking in the data

labels of children and producing the data labels of the parent.

This function corresponds exactly to the required function for the Tree Evaluation Problem (Defini-

tion 13). That is, when given streaming access to the sequence of leaf values the prover can calculate

the values at the root node of the PCD tree using the Tree Evaluation Algorithm (Theorem 13) with

O(logk(n) · k · |(Z, π,W )|+ |J |) space complexity and making O(n/k) calls to J .

Definition 22 (Tree Evaluation Function). Consider the parameters and algorithms from Definition 21.

Here we define a helper function J for the prover to compute the data labels for each node of the PCD tree.

Jnpk((Zi, πi,Wi)
k
i=1)→ (Z, π,W ):

1. Parse (ppH, fpk, pkpcd, . . . )← npk.

2. Parse ∀i ∈ [k], (pi, hplki, hzi, Xi)← Zi and (xi, ei)← Xi.

3. Assign ∀i ∈ [k], (plki, zi, p
′
i, µi)← Ψ(xi).

4. If ∀i ∈ [k], ei = Le(0) and µi = 1:

– ∀i ∈ [k], Assign pi ← p′i.

– Assign hplk← H(ppH, plk1, . . . , plkk).

– Assign hz← H(ppH, z1, . . . , zk).

5. Else:

– Assign hplk← H(ppH, hplk1, . . . , hplkk).

– Assign hz← H(ppH, hz1, . . . , hzk).

6. Assign p←
∏k

i=1 pi.

7. Assign (X,W, pf)← PFold(fpk, (Xi,Wi)
k
i=1).

8. Assign Z← (p, hplk, hz, X) and loc← pf.

9. Assign π ← Ppcd(fpk,Z, loc, (Zi, πi)
k
i=1).

10. Output (Z, π,W ).
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SNARK Construction Here we describe the SNARK construction for the Plonk arithmetization. At a

high level, Inark produces PCD parameters specialized to φppH,fvk and Merkle commits to chunks of (σ, s) in

the arithmetization as hplk. These commitments will restrict the P to the appropriate computation in each

leaf. The prover commits to chunks of the extended witness z = (x,w) as hz and uses the random oracle to

calculate α, β for the grand product permutation argument. The prover then computes the instance-witness

pairs (X,W ) for the polynomial relation Ropen(Lx,Le, f̂
G
α,β) (Definition 15) with respect to the leaf map

Definition 19 and linear maps Definition 20. The prover then uses the helper function J to calculate the

PCD tree. To prove z coincides with some vector (x,w), the prover sends the first chunk of z(1) and and

opens the Merkle Tree commitment at its first index. The SNARK verifier checks that the grand product

is 1, checks that the merkle commitment hplk′ is consistent with the commitment hplk to (σ, s) produced in

preprocessing, checks that the PCD verifier accepts, rederives α, β, verifies the final folded leaf relation pair,

and then checks that the instance x belongs to the first index of the Merkle Tree commitment hz to the value

vector. Together, these verify the control merging logic.

Parameters. Let |x| denote the instance size and n the length of the extended witness z := (x,w). We

denote a memory parameter m ∈ N such that |x| ≤ m ≤ n, which determines the memory requirement for

the prover and verifier. Additionally, we denote a parallelism parameter k ∈ N such that k = O(λ) is linear

in the security parameter. The parameter k will also be the arity of the corresponding Merkle commitments

and the PCD tree.

Construction 2 (SNARK for Rplk)

Gnark(1λ):
1. Run the setup algorithms:

– ck← Setupcom(1
λ), ppH ← SetupH(1

λ).

– pppcd ← Gpcd(1λ), fpp← GFold(1λ).
2. Output pp := (ck, pppcd, fpp, ppH)

Inark(pp, (σ, s, G),m, k):
1. Parse parameters (ck, pppcd, fpp, ppH)← pp.

2. Parse (fpk, fvk)← fpp.

3. Compute (pkpcd, vkpcd)← Ipcd
(
pppcd, φppH,fvk

)
.

4. ∀i ∈ [n/m], plki := Commit(ck, (1 +m · (i− 1), σrn(i,m), srn(i,b(m/t)))).

5. Compute hplk := MT.Commitk
(
ppH,

(
plki
)n/m
i=1

)
.

6. Assign npk := (ck, ppH, pkpcd, fpk, hplk, σ, s, G,m, k).

7. Assign nvk := (ck, ppH, vkpcd, hplk, G,m, k).

8. Output (npk, nvk).

P ro
nark(npk, x, w):

1. Parse (ck, ppH, pkpcd, fpk, hplk, σ, s, G,m, k)← npk.

2. Assign z ← (x,w).

3. Compute ∀i ∈ [n/m], zi := Commit(ck, zrn(i,m)).

4. Compute hz := MT.Commitk(ppH, (zi)
n/m
i=1 ).

5. Derive challenges α, β ← ro(hplk, x, hz).

6. Compute vectors L,R such that
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– L1 = (z1 + α+ β) and R1 = (z1 + σ1 · α+ β).

– For all i ∈ {2, . . . , n}, Li = Li−1 · [(zi + i · α) + β] and Ri = Ri−1 · [(zi + σi · α) + β].

7. Assign ∀i ∈ [n/m],

– pi := L
rn(i,m)
n /R

rn(i,m)
n .

– Wi ← (1 +m · (i− 1), σrn(i,m), srn(i,b(m/t)), zrn(i,m), Lrn(i,m), Rrn(i,m), pi, 1).

– Xi := (Lx(Wi), Le(f̂
G
α,β(Wi))).

– Z(i) := (pi,⊥,⊥, Xi).

– mi ← (Z(i),⊥,Wi).

8. Compute (Z, πpcd,W )← TreeEval(Jnpk, (mi)
n/m
i=1 ).

9. Prove πMT ← MT.Openk(ppH, {1}, {zi}
n/m
i=1 ).

10. Output proof π := (hz,Z, πpcd,W, z
rn(1,m), πMT).

V ro
nark(nvk, x, π):

1. Parse (ck, ppH, vkpcd, hplk, G,m, k)← nvk.

2. Parse proof (hz,Z, πpcd,W, z
(1), πMT)← π.

3. Parse (p, hplk′, hz′, X)← Z.

4. Check if (p, hplk′, hz′) = (1, hplk, hz).

5. Check if Vpcd(vkpcd,Z, πpcd) accepts.
6. Derive challenges α, β ← ro(hplk, x, hz).

7. Check if (X,W ) ∈ Ropen(Lx,Le, f̂
G
α,β) accepts.

8. Check if x = (z
(1)
1 , . . . , z

(1)
|x| ).

9. Compute z1 ← Commit(ck, z(1)).

10. Check if MT.Verifyk(ppH, hz, {1}, z1, πMT) accepts.

11. Output accept if all checks pass otherwise reject.

Remark 5 (Optimizations). For simplicity, Construction 2 requires the prover to send a Merkle tree opening

proof πMT for the first vector commitment z1 which corresponds the first chunk of z. With minor changes,

we remark that the Merkle tree opening proof can be omitted from the SNARK proof π; as such, the verifier

will not need to check the corresponding Merkle tree opening proof. Intuitively, the prover already verifies

this Merkle tree opening proof implicitly by recomputing the whole Merkle tree in the PCD computation.

Hence, it suffices to just modify the PCD predicate φppH,fvk (Definition 21) to additionally propogate the first

commitment z1 up the tree by including an additional commitment in the PCD message Z, which now has

the following form: Z := (p, hplk, hz, X, z). Then, the verifier can just check the vector commitment opening

z(1) := zrn(1,m) with respect to the commitment z1 ∈ Z. We expand upon further optimization strategies in

Remark 6, in our discussion of the practical efficiency of the SNARK.

Theorem 5. Let |x| < m = poly(λ) ≪ n, k = O(λ) ∈ N be a memory and arity parameter. Further, let F
be a field such that |F| ≈ 2λ and the algorithms:

– (Setupcom,Commit) be a binding, linearly homomorphic, and succinct commitment scheme (Definition 7)

for vectors over F,
– (SetupH,H) be a collision-resistant hash function (Definition 6),

– (MT.Commit,MT.Open,MT.Verify) be the merkle tree commitment scheme (Definition 8) instantiated

with arity k and the prior hash function,

– (GFold,PFold,VFold) be a secure folding scheme (Definition 9) for polynomial opening relations (Defini-

tion 15) in the standard model,
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– and (Gpcd, Ipcd,Ppcd,Vpcd) be a secure PCD scheme (Definition 12).

Then, Construction 2 is a secure SNARK (Definition 5) for Rplk (Definition 18).

Proof Sketch. Completeness. Observe that the SNARK prover essentially computes the work of the NARK

verifier from Construction 1. In particular, the construction of the PCD predicate Definition 21 recomputes

the commitments to the plonkish arithmetization (σ, s) and the extended witness z = (x,w). The helper

function Definition 22 exactly mirrors the computation required by the PCD predicate. Furthermore, by

folding instances of Definition 19, the SNARK prover essentially proves the gate polynomial checks and the

permutation product checks from the NARK verifier. Thus, completeness follows almost immediately from

the completeness of the NARK (Theorem 4) and the respective sub-algorithms.

Succinctness. The proof consists of a constant number of Merkle commitments (hash values), a Merkle

opening proof (consisting of O(k logk(n/m)) hashes), an instance-witness pair (X,W ) for the leaf map (a

constant number of commitments and O(m) field elements), a chunk opening (z(1) of size m), and a PCD

proof (linear in the predicate complexity). Thus, the proof size is O(m + k logk(n/m)) ≪ O(n), which is

sublinear. Since k = O(λ), if m = Oλ(1), then the proof size is Oλ(1). We give a more explicit estimate in

Section 6.4.

Knowledge soundness. We construct an extractor for the SNARK, by constructing a series of adversaries

and sub-extractors by applying the knowledge soundness of the PCD scheme and folding scheme. In particu-

lar, we construct a PCD adversary from the SNARK adversary. By invoking the knowledge soundness of the

PCD scheme, we are able to extract a full PCD graph T that satisfies the PCD predicate φppH,fvk. From this

PCD extractor, we recursively construct a series of folding adversaries and extractors for every layer of the

PCD graph. Once, we obtain the folding witnesses at the base of the graph, we can parse them to extract

the witness for the SNARK adversary. Correctness of the extractor will follow by knowledge soundness of

the PCD and folding schemes, the binding of the Merkle and commitment schemes, and the advantage of

adversaries for Lemma 5 and the NARK from Construction 1. We defer the full proof to Appendix A.6 ⊓⊔

6.4 SNARK Performance Evaluation

Prover native
Prover native

(per leaf)

Prover native

(per node)

Prover recursive

(per node)
Prover memory Verifier work Proof size

G-ops : O(n)

F-ops : O(n)

Hash : O(n/m)

G-ops : O(m)

F-ops : O(m)

G-ops : O(km)

F-ops : O(km)

Hash : O(k)

G-ops : O(kd)

F-ops : O(k)

Hash : O(k)

O

(
k(m+ k) ·
logk(n/m)

) G-ops : O(m+ k)

F-ops : O(m+ k)

Hash : O(|x|)

O(m+ k)F+
O(1)G

Fig. 7: The asymptotic efficiency of our SNARK construction, when instantiated as in Section 6.4 with the folding
scheme from Section 5.1. The number of leaf instances is n/m and the number of nodes in the PCD tree is (n/m)−1

k−1
.

Native prover costs refers to the number of native operations performed by the prover; Recursive prover costs refers
to the number of operations that each PCD node needs to simulate in the recursive circuit where n is the length of
the extended witness; m is the memory parameter such that |x| ≤ m ≤ n; k = O(λ) is the arity of the PCD tree;
d = 2 is the degree of the gate polynomial. G-ops denotes elliptic curve scalar multiplications; F-ops denotes field
multiplications; Hash is a 2-to-1 hash function, which outputs F elements.
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In this section, we describe both the asymptotic performance and concrete performance estimate of our

SNARK construction, when instantiated with particular choices of PCD and folding schemes, along with

several optimizations.

Instantiation.When estimating the performance of our SNARK, we have to pick a specific instantiation of a

PCD scheme and a folding (accumulation) scheme. For our PCD scheme, we use the generic PCD construction

of [BCL+21], which requires a generic folding scheme to be instantiated. We use our generalization of the

folding (accumulation) scheme (Section 5) of [KST22, BC23, NBS23] to instantiate this generic folding

scheme. We limit our attention to Plonkish circuits with gate degree d = 2 (specifically, only addition and

multiplication gates). We denote the choice of memory parameter by m and PCD tree arity by k.

Remark 6 (Optimizations & Evaluation Strategy). As noted in Remark 5, we can omit the Merkle tree

inclusion proof for the first witness commitment, z(1) from the overall SNARK proof. Furthermore, we can

omit the opening z(1) := zrn(1,m) to this commitment by setting the first chunk of the extended witness

z to a canonical chunk consisting of z(1) := (x, 0) (i.e. padding the first chunk with zeroes). We use the

TreeEval algorithm (Theorem 1) to evaluate the PCD tree in a streaming fashion, which allows us to reduce

the peak memory usage of the prover. For this instantiation along with these optimizations, we describe the

asymptotic efficiency of our SNARK construction in Figure 7.

Evaluation methodology. For concrete performance benchmarks, we bootstrap the existing implemen-

tation of Nova [KST22, Nov22] to estimate the cost of our SNARK construction. Their implementation

instantiates the Nova IVC scheme over a generic 2-cycle of elliptic curves, which is described in [NBS23].

Here, we use the Pallas-Vesta cycle of curves [Pas20]. As a result, we must factor in the cost of the PCD

scheme over this cycle; a similar strategy is used in the implementation of [BCL+21, pcd21].

In particular, we estimate three core circuits: a leaf circuit which constrains the leaf polynomial map

relation (Definition 19), a primary circuit which constrains the PCD predicate (Definition 21) and folds

secondary circuit instances, and a secondary circuit which only folds primary circuit instances. Figure 8

shows an estimate of the number of constraints in each of these circuits for different values of memory

parameter m and arity parameter k. These numbers were obtained by synthesizing the circuits using [Nov22]

and recording number of constraints produced in their respective R1CS shapes.

Using our modified Nova implementation, we benchmark the time to prove and fold instances of each of

these circuits, and compute the memory required to do so. This allows us to estimate the total time and peak

memory required for our SNARK instantiated with a variety of parameters.The experiments are conducted

on a MacBook Pro (Apple M2 Pro Chip, 16 GB).

Evaluation. We aim to evaluate the scalability of the Mangrove prover over increasing instance sizes (the

number of deg-2 constraints). We report the effects of scaling instance size on the proving time, memory

usage, and proof size while tuning the memory parameterm and PCD tree arity parameter k of the Mangrove

prover.

Prover time. Our benchmarks indicate the Mangrove prover is competitive in proving time to leading mono-

lithic SNARKs (that do not target memory-efficiency). For arity parameter k = 4, and instance size 224, the

prover takes approximately 2 minutes (with 390 MB memory). In comparison, to prove the same sized in-

stance, the Spartan SNARK [Set20] prover takes ≈ 10 minutes and the Gemini streaming SNARK [BCHO22]

takes ≈ 19 minutes with logarithmic passes. Next, we consider a larger instance size of 232. Monolithic
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PCD arity
(k)

Primary circuit
(# constraints)

Secondary circuit
(# constraints)

4 94969 38705

8 205047 75817

16 423051 148185

32 856907 292619

Memory parameter
(m)

Leaf circuit
(# constraints)

3072 7174

12288 28678

49152 114694

196608 458758

Fig. 8: Estimates of the number of constraints in the primary and secondary circuits for different values of arity
parameter k (left), and the number of constraints in the leaf circuit for different values of memory parameter m
(right).
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k = 4

k = 8
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Fig. 9: Estimated proving time for prover for different sized Plonkish instances with memory parameter m and PCD
tree arity k.

SNARKs like Spartan incur prohibitive memory usage for instances of this size; indeed, prover running time

is not reported. Streaming provers can handle instances of this size: Mangrove takes ≈ 8 hours with 800 MB

memory usage, while Gemini takes over 80 hours.

Figure 9 provides more comparison points. Notice that the prover time improves significantly with in-

creases to the memory parameter m as larger memory parameter means less leaf proofs and PCD nodes.

Higher PCD arity also improves prover time by reducing PCD nodes, but the savings are not large as the

majority of the work is done at the leaf layer.

Prover memory usage. The prover memory usage is tuned with the memory parameter m. The effect of

which is shown in Figure 10. At a high level, memory usage grows in arity parameter k, as the prover must

store all children when proving a parent PCD node.

Proof size. The size of Mangrove proofs are dominated by the size of folding witnesses for the leaf, primary,

and secondary circuits at the root of the PCD graph, which depend only on the memory parameter m and

arity k. With the optimizations described in Remark 6, the proof size is independent of the original instance

size. For the configurations described above, the Mangrove prover produces a proof of size 34 MB. Figure 11

(left) provides proof sizes for other configurations. We also note that one can further compress proof size by

applying the standard approach of wrapping the proof within a SNARK as done in [KST22, Nov22]. When

compressing with Spartan [Set20], the above proof size drops to 12 KB, shown in Figure 11 (right). The
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Fig. 10: Estimated peak memory usage for prover for different sized Plonkish instances with memory parameter m
and PCD tree arity k.
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Fig. 11: Proof size (left) and compressed proof size with Spartan SNARK (right) for memory parameter m and PCD
tree arity parameter k.

Spartan compression step for all parameters took less than one minute and is insignificant compared to other

proving costs.

7 Extensions: Lookups and Commit & Prove

We can readily extend our SNARK (Construction 2) to support Lookups as described in [Hab22] and Commit

& Prove [CFQ19].

7.1 Lookup Tables in Arithmetization

Here we define an extension of the Plonk arithmetization defined in Section 6 that allows us to additionally

encode lookup tables. The functionality of lookup tables that we are targeting is checking that for a list of

witness-computed elements A ∈ Fn and a fixed table of elements T ∈ Fτ , we have that the set of elements

in A is a subset of the set of elements in T:

{a : a ∈ A} ⊆ {t : t ∈ T} .
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To incorporate the above into our arithmetization, we loosely follow the treatment of Chen et al. [CBBZ23].

Definition 23 (Plonk Arithmetization with Lookup Tables). Let b, c, t,m, n, τ ∈ N such that c =

n/t ∈ N and F be a finite field.4 Define a range function rn(i, k) := [(i− 1) · k+1, i · k]. A plonk arithme-

tization with lookup tables is a tuple plook := (σ, s, G,T, GT) where σ ∈ Fn is a permutation vector on

[n] (i.e. [n] = {σi}i∈[n]), s ∈ Fc·b is a selector vector, G : Fb×Ft → F is a gate polynomial, T ∈ Fτ is a table

vector, and GT : Fb × Ft → F is a table gate polynomial.

A value vector z = (x ∈ Fm, w ∈ Fn−m) and tid ∈ Fc is a table index vector over [τ ] satisfies a plonk

arithmetization with lookup tables (σ, s, G,T, GT) if

– Global Copy Constraints and Local Gate Constraints: The plonk arithmetization from Section 6.1

is satisifed, (plk = (σ, s, G), x, w) ∈ Rplk.

– Lookup Constraints: For all i ∈ [c], GT

(
srn(i,b), zrn(i,t)

)
= Ttidi .

We define the following index relation Rplook:

Rplook :=

(plook, x ∈ Fm, (w ∈ Fn−m, tid ∈ Fc)

∣∣∣∣∣∣∣
For z := (x,w),

(z, tid) satisfies plook


Remark 7. We can further generalize Rplook to support element vector lookups where the table gate poly-

nomial is now a polynomial map GT : Fb × Ft → Fν and the table vector contains rows of ν elements,

T ∈ Fτ×ν .

The basis of our construction is the Haböck [Hab22] lookup argument which we chunk into uniform

components to incorporate into our SNARK. The main technical lemma is Lemma 3 which states that if

(ai)
n
i=1 and (ti)

τ
i=1 are sequences of elements in F, then, {ai}ni=1 ⊆ {ti}τi=1 if and only if there exists a

sequence of field elements (mi)
τ
i=1 (where mi is the multiplicity of ti in the sequence (ai)

n
i=1), such that

n∑
i=1

1

X − ai
=

τ∑
i=1

mi

X − ti
.

As in our NARK for Rplk (Section 6.2) to check the permutation argument of the global copy constraints,

we use a randomized lookup argument in which the prover commits to its witness elements, and a verifier

random challenge α←$ F is used to check the following, where mul ∈ Fτ is a vector encoding the multiplicities

provided by the prover (it can be computed by counting the multiplicities in the table index vector tid):
c∑

i=1

1

α−GT

(
srn(i,b), zrn(i,t)

) =

τ∑
i=1

muli
α− Ti

.

Again analogous to our chunking of the permutation argument grand product, each of these grand

summations can be chunked via the memory parameter as well by computing partial summations. Instead

of rewriting our SNARK construction for Rplk to include the chunks for the lookup argument, we will simply

describe the modifications needed for each component of the pipeline.

Modifications to the NARK. First, consider the NARK construction in Section 6.2 from which the

SNARK is derived from. We describe the changes to build a NARK for Rplook. Notice that for the global

4Informally, c is the number of gates and t is the input arity of each gate.
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copy constraints permutation argument, the prover witness is already committed to, and verifier challenges

α, β are computed. The witness commitment works for the lookup argument as well, and the verifier challenges

can be reused.

– The indexer Inark is updated appropriately to include the additional components of the Rplook index:

npk := (ck, σ, s, G,T, GT) and nvk := (ck, σ, s, G,T, GT).

– The prover Pnark computes the multiplicity vector mul ∈ Fτ from tid ∈ Fc. The prover computes interme-

diate values for the summations L′ ∈ Fc and R′ ∈ Fτ as follows and outputs π := (z, L,R, L′, R′,mul).5

• For i ∈ [c],

L′
i =

1

α−GT

(
srn(i,b), zrn(i,t)

) .
• For i ∈ [τ ],

R′
i =

muli
α− Ti

.

– The verifier Vnark checks that L′ and R′ are constructed as above and then checks the grand summation

equality:

c∑
i=1

L′
i =

τ∑
i=1

R′
i .

Modifications to the leaf relation. Next, we describe changes to the leaf relation from Section 6.3

representing the computation for the uniform chunk as a polynomial map.

– The polynomial map defined in Definition 19 is extended to take chunks of T, L′, R′,mul and p′ ∈ F
representing the partial summation. Note that from our previous presentation, with memory parameter

m and plonk instance size n, we have n/m chunks. However, now the table of size τ is also chunked

into n/m chunks each of size mτ/n. We assume, τ = O(n) so that chunks remain of size O(m). We

add the following constraints to fG,GT

α,β giving us a polynomial map fG,GT

α,β : F4m+(b+1)(m/t)+(3mτ/n)+3 →
F2m+(2m/t)+(mτ/n)+2:

∀j ∈ [m/t], L′
j ·
(
α−GT

(
srn(j,b), zrn(j,t)

))
= 1 ,

∀j ∈ [mτ/n], R′
j · (α− Tj) = mulj ,∑m/t

j=1 L
′
j −

∑mτ/n
j=1 R′

j = p′

– The leaf linear map Lx from Definition 20 includes T in plk, includes L′, R′,mul in w, and passes p′

directly. The projection ψ includes T and p′ and the analogous updates are made to L′
x. The projection

Ψ includes p′.

Remark 8 (Achieving perfect completeness). The above constraints in the polynomial map fG,GT

α,β does not

have perfect completeness. If α = GT

(
srn(j,b), zrn(j,t)

)
for some j ∈ [m/t] or α = Tj for some j ∈ [mτ/n],

the left hand side of the equations will be zeros and the constraints won’t be satisfied anymore. To achieve

perfect completeness, we can set L′
j and R′

j to zeros in the this bad event, and change the constraints to

∀j ∈ [m/t],
(
α−GT

(
srn(j,b), zrn(j,t)

))
·
(
L′
j ·
(
α−GT

(
srn(j,b), zrn(j,t)

))
− 1
)
= 0 ,

∀j ∈ [mτ/n], (α− Tj) ·
(
R′

j · (α− Tj)−mulj
)
= 0 .

5The vectors L,R ∈ Fn are defined in Construction 1.
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This ensures that either the original constraints hold or the bad event described previously happens.

Modifications to the PCD predicate.We only make minimal changes to the PCD predicate in Section 6.3

given the above definitions for the leaf relation.

– In the base case check for strict leaf instances (step 6), in addition to checking the partial product p

matches, the the partial summation p′ is also checked to match.

– The propagation of the partial summation p′ =
∑k

i=1 p
′
i is checked.

Analogous modifications are also made to the prover helper function Jnpk.

Modifications to the final SNARK construction. The changes to the SNARK protocol mirror those

already described for the NARK.

– The indexer Inark includes chunks of Trn(i,mτ/n) in the chunk index commitments plki and includes the

table gate polynomial GT in npk and nvk.

– The prover Pnark computes mul, L′, R′ as before and for each chunk, for i ∈ [n/m],

• Computes the partial summation, p′i =
∑m/t

j=1 L
′rn(i,m/t)
j −

∑mτ/n
j=1 R

′rn(i,mτ/n)
j .

• Includes in Wi, the partial summation and chunked vectors:

(p′i,T
rn(i,mτ/n), L′rn(i,m/t), R′rn(i,mτ/n),mulrn(i,mτ/n)) .

• Includes partial summation p′i in Z(i).

– The verifier Vnark is unchanged aside from using the modified leaf polynomial relation and linear maps.

Implications of modifications. The sketch of knowledge soundness for the above modifications follows ex-

actly the same as for the base SNARK. The partial summations added to the PCD compute exactly the grand

summation check of the NARK of which the soundness follows from the Haböck lookup argument [Hab22]

and Lemma 3.

The prover efficiency remains asymptotically the same as before. As discussed, because the Haböck lookup

argument requires a computation on the order of the table size, we also must chunk the table into our memory.

If the table is very large and the rest of the computation is small, it may be desirable to build a uniform

compiler for a sublinear lookup protocol [EFG22]. The highest degree on the polynomial map incurred by

the new constraints is of degree deg(GT) + 1.

7.2 Commit-and-Prove SNARK

Here we describe how our base SNARK satisifies a notion of commit-and-prove which allows for connecting

and reusing (parts of) witnesses across proofs. We provide a modified definition of commit-and-prove NARKs

(CP-NARKs) as presented by Campanelli et al. [CFQ19].

Definition 24 (CP-NARKs ([CFQ19])). A (preprocessing) commit-and-prove non-interactive argument

(CP-NARK) for a family of index relations {Rpp}pp where the witness space W :=Wu×Wω is split into two

domains, whereWu represents committed elements andWω represents uncommitted elements. The committed

domain Wu can be further split into ℓ arbitrary subdomains, Wu,1, . . . ,Wu,ℓ. Assume a commitment scheme

with commitment space C such that for all i ∈ [ℓ], Wu,i ⊆ C. A CP-NARK is a NARK for the family of

index relations {Rcp
pp}pp where for all Rcp ∈ Rcp

pp:
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– The parameter generation algorithm Gnark(1λ) → pp is such that pp contains a commitment key ck ←
Setupcom(1

λ).

– The relation Rcp over (idx,X ,W ) is defined by a relation R ∈ {Rpp}pp, where if the statement takes the

form X := (x, [ci]
ℓ
i=1), the witness takes the form W := ([ui]

ℓ
i=1, ω), then

Rcp :=




idx,

X := (x, [ci]
ℓ
i=1),

W := ([ui]
ℓ
i=1, ω)

 :
(idx, x,W ) ∈ R
ℓ∧

i=1

ci = Commit(ck, ui)


Modifications to the SNARK. Now recall that our base SNARK already commits to the prover witness

chunk by chunk and combines these commitments within a Merkle hash in Pnark of Construction 2. These

prover witness commitments can simply be pulled out from the proving protocol and passed in as part of the

statement. The witness commitments are combined with the statement commitment as before to produce hz.

Then as part of the proof π, analogous to how the current prover provides a Merkle path opening proof of hz

for the statement x, the prover can also provide Merkle path opening proofs for each witness commitment

in hz.

The implications of this direct extension to CP-SNARKs is that the committed witness space subdomains

must align with a subtree of chunks and the PCD tree must match the witness commitments. This means

that if the committed witness are of very uneven size, the PCD tree would also be unbalanced and prover

parallelism may be reduced.
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A Deferred Proofs

A.1 Deferred Proof of Lemma 5

Proof. First, we construct an adversary B that breaks the binding property of L′
x, or Le.

B(L′
x,Le):

1. Run A(Lx,L′
x,Le) to obtain ((x, e), x), x′, e.

2. If ψ(x) ̸= x′, then output (ψ(x), x′) as a collision pair for L′
x.

3. If f(x) ̸= e, then output (f(x), e) as a collision pair for Le.

Now assume ((x, e), x) ∈ Ropen(Lx,Le), Ψ(x) = L′
x(x

′), and e = Le(e). Then, we have the following:

– Since the pair is in the relation, we must have x = Lx(x) and e = Le(f(x)). Therefore, we immediately

have Le(f(x)) = Le(e).

– Since Ψ ◦ Lx = L′
x ◦ ψ, we have Ψ(Lx(x)) = L′

x(ψ(x)). By substitution, we have L′
x(x

′) = L′
x(ψ(x)).

Therefore, we can conclude that if ψ(x) ̸= x′ or f(x) ̸= e, then B outputs a collision pair for L′
x or Le. Since

the success probability of the binding adversary B bounds the success probability of A, we can conclude by

union bound that the probability in (5) is neglibly close to 1. ⊓⊔

A.2 Deferred Proof of Theorem 2

Completeness: Completeness of ΠH
open follows from the completeness of Π

(k)
open for all k ∈ {ℓ, ℓ/2, . . . , 2}.

Consider an arbitrary k in the set above. Once the prover computes the appropriate (vi,j)’s, the verifier’s

checks will trivially pass by the linear homomorphism property of Lx and Le. The prover can compute the

(vi,j)’s that satisfy the required polynomial equation in indeterminate Y , because the polynomial map f is

a homogeneous polynomial map of degree d.

Theorem 6 (Special Soundness of ΠH
open (Definition 17)). Let m,n, d, ℓ ∈ N (where ℓ is a power-

of-two), F be a field, and X,E be vector spaces. Further, let f : Fm → Fn be a homogeneous polynomial

map of degree d (Definition 14), and Lx : Fm → X and Le : Fm → E be linear maps. Then, ΠH
open is a

(d+ 1)log(ℓ)-special sound protocol for Rℓ
open(Lx,Le, f) ∪Rcollision(Lx).

Proof. To prove ΠH
open is (d + 1)log(ℓ)-special sound, it suffices to show that Π

(k)
open is (d + 1)-special sound

protocol for Rk
open(Lx,Le, f) ∪Rcollision(Lx) for all k ∈ {ℓ, ℓ/2, . . . , 2}.

Assume we are given (d+ 1) accepting transcripts t(1), . . . , t(d+1) of Π
(k)
open,

t(c) =

({
(vi,j)

d−1
i=1

}k/2
j=1

, r(c),
(
x
′(c)
j

)k/2
j=1

)

which each have the same initial message
{
(vi,j)

d−1
i=1

}k/2
j=1

and distinct verifier challenge r(c). Consider an

arbitrary j ∈ [k/2], we will show that we can either

– extract x
′(c)
j and x

′(c)
j+k/2 such that

(
(x′j , e

′
j), (x

′
j+k/2, e

′
j+k/2); x

′
j , x

′
j+k/2

)
∈ R2

open (Lx,Le, f)

– or a, a′ ∈ Fm such that Lx(a) = Lx(a
′).
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For simplicity of notation, we will drop the subscript j and j + k/2 by restricting our attention to the j-th

index of the transcripts: (
(vi)

d−1
i=1 , r

(c), x′(c)
)
:= t

(c)
j

Furthermore, we will replace the subscripts j and j + k/2 with subscripts 1 and 2 respectively.

Single Extraction: Since r(1) ̸= r(2), we can solve for candidate openings x1, x2 in the following linear

system: x′(1)
x′(2)

 =

 r(1) 1

r(2) 1


x1
x2

 (2)

For every c ∈ {3, . . . , d + 1}, we can check if x′(c) = r(c) · x1 + x2. If a single check fails for an index c,

we output a candiate collision a := x′(c) and a′ := r(c) · x1 + x2. Otherwise, we output x1, x2 as candidate

openings.

Single Correctness: By (2) and linearity, we haveLx(x
′(1))

Lx(x
′(2))

 =

Lx(r
(1) · x1 + x2)

Lx(r
(2) · x1 + x2)

 =

 r(1) 1

r(2) 1


 Lx(x1)

Lx(x2)

 (3)

Furthermore, since the transcripts are accepting, we know for all c ∈ [d+ 1],

(r(c) · x1 + x2) = Lx(x
′(c)) (4)

Therefore, by (3) and (4), we must have r(1) 1

r(2) 1


 x1
x2

 =

 r(1) 1

r(2) 1


 Lx(x1)

Lx(x2)

 =⇒

 x1
x2

 =

 Lx(x1)

Lx(x2)

 (5)

Thus, by (4) and (5), we have for all c ∈ [d+ 1],

Lx(x
′(c)) = r(c) · x1 + x2 = r(c) · Lx(x1) + Lx(x2) = Lx(r

(c) · x1 + x2) (6)

Therefore, if there exists a c ∈ {3, . . . , d + 1} such that x′(c) ̸= r(c) · x1 + x2. We output a valid collision

a := x′(c) and a′ := r(c) · x1 + x2.

Otherwise, we must have for all c ∈ [d+1], x′(c) = r(c) ·x1+x2, which, along with the linearity of Le, implies

for some v1, . . . , vd−1 ∈ Fn,

f(x′(c)) = f(r(c) · x1 + x2) = (r(c))d · f(x1) +
∑d−1

i=1 (r
(c))i · vi + f(x2) ,

Le(f(x
′(c))) = (r(c))d · Le(f(x1)) +

∑d−1
i=1 (r

(c))i · Le(vi) + Le(f(x2)) . (7)

Since the transcripts are accepting, we know for all c ∈ [d+ 1],

Le(f(x
′(c))) = (r(c))d · e1 +

∑d−1
i=1 (r

(c))i · v(c)i + e2 (8)
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Therefore, both polynomials (7) and (8) of degree d are equal at d + 1 distinct points r(c) for c ∈ [d + 1],

which implies their coefficients must be equal. Thus, we have

e1 = Le(f(x1)) and e2 = Le(f(x2)) (9)

By (5) and (9), we must have ((x1, e1), (x2, e2); x1, x2) ∈ R2
open(Lx,Le, f).

Full Extraction and Correctness: Since we considered an arbitrary j ∈ [k/2], we can repeat the above

procedure for all j ∈ [k/2]. Furthermore, our correctness argument trivially holds for all j ∈ [k/2]. Thus, we

can extract
(
(xi, ei)

k
i=1 ; (xi)

k
i=1

)
∈ Rk

open (Lx,Le, f) or (⊥ ; a, a′) ∈ Rcollision (Lx). This shows that Π
(k)
open is

a (d+ 1)-special sound protocol for Rk
open(Lx,Le, f) ∪Rcollision(Lx). ⊓⊔

Corollary 1 (FS(ΠH
open) is a folding scheme). Let FS(ΠH

open) denote the adaptive Fiat-Shamir transfor-

mation of the opening protocol ΠH
open (Definition 17), where the setup phase of FS(ΠH

open) is the same as

that of ΠH
open and the prover and verifier further have the access to a random oracle. Suppose the linear map

Lx : Fm → X further satisfies the binding property. Then FS(ΠH
open) is an ℓ-to-1 folding scheme (Definition 9)

for the relation Ropen(Lx,Le, f).

Proof. The correctness follows from the completeness of the interactive argument ΠH
open. Next, we show the

knowledge soundness property. From Theorem 6, ΠH
open is (d+1)log(ℓ)-special sound for relationRℓ

open(Lx,Le, f)∪
Rcollision(Lx), thus by [ACK21] (which shows special-soundness tightly implies knowledge soundness), ΠH

open

has knowledge error

κopen := 1−
(
1− d

|F|

)log ℓ

≤ 1−
(
1− d log ℓ

|F|

)
= negl(λ)

where the inequality holds because (1− x)n ≥ 1− nx for all 0 < x < 1. By Lemma 1, FS(ΠH
open) is a NARK

for the relation Rℓ
open(Lx,Le, f)∪Rcollision(Lx) with knowledge error (Q+1) ·κopen = negl(λ). Finally, by the

binding property of Lx, the extractor will output a witness for Rcollision(Lx) only with negligible probability,

that means if the extractor’s success probability is ϵ, then with probability at least ϵ− negl(λ) the extracted

witness is in the relation Rℓ
open(Lx,Le, f). Therefore, we have that FS(ΠH

open) is a NARK for the relation

Rℓ
open(Lx,Le, f) with knowledge error (Q+ 1) · κopen + negl(λ) = negl(λ). And FS(ΠH

open) satisfies knowledge

soundness as an ℓ-to-1 folding scheme for Ropen(Lx,Le, f), which completes the proof. ⊓⊔

A.3 Deferred Proof of Theorem 3

Completeness: Completeness of Πopen follows immediately from the linear homomorphism property of Lx and

Le and Lemma 6. In particular, the verifier’s checks will trivially pass by linearity. By Lemma 6, the prover

can compute the vectors (qj)j∈{0,...,d(ℓ−1)−ℓ} that satisfy the required polynomial expression in indeterminate

Y .

Theorem 7 (Special Soundness of Πopen (Protocol 2)). Let m,n, d, ℓ ∈ N, F be a field, and X,E be

vector spaces. Further, let f : Fm → Fn be a polynomial map of degree d (Definition 14), and Lx : Fm → X
and Le : Fm → E be linear maps. Then, Πopen is a d(ℓ− 1) + 1-special sound protocol for Rℓ

open(Lx,Le, f) ∪
Rcollision(Lx).

Proof. Assume we are given d(ℓ− 1) + 1 accepting transcripts t(1), . . . , t(d(ℓ−1)+1) of Πopen,

t(c) =
(
(qj)j∈{0,...,d(ℓ−1)−ℓ}, r

(c), x(c)
)
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which each have the same initial message (qj)j and distinct verifier challenge r(c). We will show that we can

either

– extract (xi)
ℓ
i=1 such that ((xi, ei);xi)

ℓ
i=1 ∈ Rℓ

open (Lx,Le, f)

– or a, a′ ∈ Fm such that Lx(a) = Lx(a
′).

Extraction: First, we solve for candidate openings (xi)i in the following linear system of equations:
x(1)

...

x(ℓ)

 =


LH
1 (r

(1)) . . . LH
ℓ (r

(1))

...
. . .

...

LH
1 (r

(ℓ)) . . . LH
ℓ (r

(ℓ))




x1

...

xℓ

 (10)

Correctness: By (10) and linearity, we have that
Lx(x

(1))

...

Lx(x
(ℓ))

 =


LH
1 (r

(1)) . . . LH
ℓ (r

(1))

...
. . .

...

LH
1 (r

(ℓ)) . . . LH
ℓ (r

(ℓ))




Lx(x1)

...

Lx(xℓ)

 (11)

Furthermore, since the transcripts are accepting, we must have that

Lx(x
(c)) =

ℓ∑
i=1

LH
i (r

(c)) · xi (12)

for all c ∈ [d(ℓ− 1) + 1]. Thus, by (11) and (12), we have that
LH
1 (r

(1)) . . . LH
ℓ (r

(1))

...
. . .

...

LH
1 (r

(ℓ)) . . . LH
ℓ (r

(ℓ))




x1

...

xℓ

 =


LH
1 (r

(1)) . . . LH
ℓ (r

(1))

...
. . .

...

LH
1 (r

(ℓ)) . . . LH
ℓ (r

(ℓ))




Lx(x1)

...

Lx(xℓ)


⇓

x1

...

xℓ

 =


Lx(x1)

...

Lx(xℓ)

 (13)

where (13) holds because the lagrange matrix is invertible for distinct values r(1), . . . , r(ℓ). Thus, by (12) and

(13), we have for all c ∈ [d(ℓ− 1) + 1],

Lx(x
(c)) =

ℓ∑
i=1

LH
i (r

(c)) · xi =
ℓ∑

i=1

LH
i (r

(c)) · Lx(xi) = Lx

(
ℓ∑

i=1

LH
i (r

(c)) · xi

)
(14)
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Therefore, if there exists a c ∈ {ℓ+ 1, . . . , d(ℓ− 1) + 1} such that x(c) ̸=
∑ℓ

i=1 L
H
i (r

(c)) · xi, we can output a

valid collision a := x(c) and a′ :=
∑ℓ

i=1 L
H
i (r

(c)) · xi.

Otherwise, we must have for all c ∈ [d(ℓ− 1) + 1], x(c) =
∑ℓ

i=1 L
H
i (r

(c)) · xi. Therefore, by Lemma 6 and the

linearity of Le, this implies for some q0, . . . , qd(ℓ−1)−ℓ ∈ Fn,

f(x(c)) = f

(
ℓ∑

i=1

LH
i (r

(c)) · xi

)
= vH(r

(c)) ·

d(ℓ−1)−ℓ∑
j=0

(r(c))j · qj

+

ℓ∑
i=1

LH
i (r

(c)) · f(xi) ,

Le(f(x
(c))) = vH(r

(c)) ·

d(ℓ−1)−ℓ∑
j=0

(r(c))j · Le(qj)

+

ℓ∑
i=1

LH
i (r

(c)) · Le(f(xi)) . (15)

Since the transcripts are accepting, we know for all c ∈ [d(ℓ− 1) + 1],

Le(f(x
(c))) = vH(r

(c)) ·
(∑d(ℓ−1)−ℓ

j=0 (r(c))j · qj
)
+
(∑ℓ

i=1L
H
i (r

(c)) · ei
)

(16)

Consider the polynomials

vH(Y ) ·

d(ℓ−1)−ℓ∑
j=0

Y j · Le(qj)

+

ℓ∑
i=1

LH
i (Y ) · Le(f(xi))

vH(Y ) ·

d(ℓ−1)−ℓ∑
j=0

Y j · qj

+

ℓ∑
i=1

LH
i (Y ) · ei

of degree d(ℓ− 1). By equations (15) and (16), we know both polynomials are equal at d(ℓ− 1) + 1 distinct

points {r(c)}c, which implies they are equal. Since vH(Y ) is degree ℓ and LH
i (Y ) is degree ℓ− 1 for all i ∈ [ℓ],

the polynomials being equal implies that,

qj = Le(qj) for all j ∈ {0, . . . , d(ℓ− 1)− ℓ} and ei = Le(f(xi)) for all i ∈ [ℓ] (17)

By (13) and (17), we must have ((xi, ei); xi)
ℓ
i=1 ∈ Rℓ

open(Lx,Le, f). ⊓⊔

Corollary 2 (FS(Πopen) is a folding scheme). Let FS(Πopen) denote the adaptive Fiat-Shamir trans-

formation of the opening protocol Πopen (Protocol 2), where the setup phase of FS(Πopen) is the same as

that of Πopen and the prover and verifier further have the access to a random oracle. Suppose the linear map

Lx : Fm → X further satisfies the binding property. Then FS(Πopen) is an ℓ-to-1 folding scheme (Definition 9)

for the relation Ropen(Lx,Le, f).

Proof. The correctness follows from the completeness of the interactive argument Πopen. Next, we show the

knowledge soundness property. From Theorem 7, Πopen is a d(ℓ − 1) + 1-special sound protocol for relation

Rℓ
open(Lx,Le, f) ∪ Rcollision(Lx), thus by [ACK21] (which shows special-soundness tightly implies knowledge

soundness), Πopen has knowledge error

κopen :=
d(ℓ− 1)

|F|
= negl(λ).
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By Lemma 1, FS(Πopen) is a NARK for the relation Rℓ
open(Lx,Le, f) ∪ Rcollision(Lx) with knowledge error

(Q + 1) · κopen = negl(λ). Finally, by the binding property of Lx, the extractor will output a witness for

Rcollision(Lx) only with negligible probability, that means if the extractor’s success probability is ϵ, then with

probability at least ϵ−negl(λ) the extracted witness is in the relationRℓ
open(Lx,Le, f). Therefore, we have that

FS(Πopen) is a NARK for the relation Rℓ
open(Lx,Le, f) with knowledge error (Q+1) ·κopen+negl(λ) = negl(λ).

And FS(Πopen) satisfies knowledge soundness as an ℓ-to-1 folding scheme forRopen(Lx,Le, f), which completes

the proof. ⊓⊔

A.4 Multi-Instance Folding Extraction

As noted in prior work [BCL+21, COS20], the definition of folding scheme knowledge soundness in Definition 9

implies a weaker notion of knowledge soundness called multi-instance extraction. Here is the definition of

multi-instance extraction, we will use in the proof of SNARK knowledge soundness.

Theorem 8 (Multi-Instance Folding Extraction). Given a knowledge sound folding scheme Fold (Def-

inition 9) in the standard model for family of relations Rfpp. With respect to an auxiliary input distribution

D, for every expected PPT adversary P̃, there exists a positive polynomial q and an expected PPT extractor

E such that for every predicate ρ,

Pr

 ρ
(
fpp, ai, ao, [(x

(j)
i )ni=1]

ℓ
j=1

)
= 1

∧ ∀j ∈ [ℓ],
(
(x

(j)
i )ni=1, (w

(j)
i )ni=1

)
∈ Rn

fpp

:

fpp← GFold(1λ)

ai← D(fpp)

([(x
(j)
i , w

(j)
i )ni=1]

ℓ
j=1, ao)← EP̃(pp, ai)

 ≥ ϵ(P̃)− negl(λ)

poly(λ)

where ϵ(P̃) is the following probability:

Pr


ρ
(
fpp, ai, ao, [(x

(j)
i )ni=1]

ℓ
j=1

)
= 1

∧ ∀j ∈ [ℓ], VFold(fk, (x(j)i )ni=1, x
(j), pf(j)) = 1

∧ (x(j), w(j)) ∈ Rfpp

:

fpp← GFold(1λ)

ai← D(fpp)
[(x

(j)
i )ni=1]

ℓ
j=1,

[x(j)]ℓj=1, [w
(j)]ℓj=1,

[pf(j)]ℓj=1, ao

← P̃(fpp, ai)


And, the runtime of EP̃ is at most a polynomial in the runtime of P̃.

A.5 Deferred Proof of Theorem 4

Proof. First, define the following trivial extraction algorithm,

E ro(pp, ai):
1. Run the adversary ((σ, s, G), x, (z, L,R))← P̃ ro(pp, ai).

2. Parse (x′, w)← z.

3. Output w.

As noted in prior work [BCL+21], the definition of knowledge soundness in Definition 5 is implied by the

following stronger notion of knowledge soundness. With respect to an auxillary distribution D, we want to
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show that the following probability is negligible for all expected polynomial time adversaries P̃ ro who make

at most Q queries to the random oracle ro,

Pr



V ro
nark(nvk, x, π) = 1

∧

(i, x, w) ̸∈ R

:

ro← O(λ)

pp← Gnark(1λ)

ai← D(pp)

(i, x, π)← P̃ ro(pp, ai)

w ← E ro(pp, ai)

(npk, nvk)← Inark(pp, i)


≤ negl(λ) (18)

By the construction of Inark and E , we have the probability in (18) is equivalent to the following,

Pr


V ro
nark((ck, σ, s, G), x, (z, L,R)) = 1

∧

((σ, s, G), x, w) ̸∈ Rplk

:

ro← O(λ)

ck← Setupcom(1
λ)

ai← D(ck)

((σ, s, G), x, (z, L,R))← P̃ ro(ck, ai)

(x′, w)← z


(19)

Given the verifier accepts, we must have that, for α, β ←$ ro(σ, s, x, z) as defined in the verifier construction,

the following conditions hold,

1. x = (z1, . . . , z|x|), which implies z = (x,w).

2. L1 = (z1 + α+ β) and R1 = (z1 + σ1 · α+ β).

3. For all i ∈ {2, . . . , n}, Li = Li−1 · [(zi + i · α) + β] and Ri = Ri−1 · [(zi + σi · α) + β].

4. Ln = Rn.

5. For all i ∈ [c], G
(
srn(i,b), zrn(i,t)

)
= 0.

Thus, we must have the probability (19) is bounded by,

Pr



∏n
i=1(zi + i · α+ β) =

∏n
i=1(zi + σi · α+ β)

∧

{(i, zi)}ni=1 ̸= {(σi, zi)}ni=1

:

ro← O(λ)

ck← Setupcom(1
λ)

ai← D(ck)

((σ, s, G), x, (z, L,R))← P̃ ro(ck, ai)

plk← Commit(ck, (σ, s))

z ← Commit(ck, z)

α, β ←$ ro(σ, s, x, z)


(20)

We will bound (20) by using Lemma 2, which bounds the probability an adversary wins the zero-finding

game. To do so, we define the following adversary Aro(ck, ai) and function f(σ, s, x, z) for the zero-finding

game.

63



Aro(ck, ai):

1. Run the prover ((σ, s, G), x, (z, L,R))← P̃ ro(ck, ai).

2. Output (σ, s, x, z).

f(σ, s, x, z) :=
∏n

i=1(zi + i · Y +X)−
∏n

i=1(zi + σi · Y +X)

Notice the mapping from message (σ, s, x, z) to commitments (plk, x, z) is itself a binding commitment scheme.

Thus, by Lemma 2 and Lemma 4, we have that the probability in (20) is bounded by the following,

Pr



p(α, β) = 0

∧

p ̸= 0

:

ro← O(λ)

ck← Setupcom(1
λ)

ai← D(ck)

(σ, s, x, z)← Aro(ck, ai)

plk← Commit(ck, (σ, s))

z ← Commit(ck, z)

α, β ←$ ro(σ, s, x, z)

p← f(σ, s, x, z)



≤

√
(Q+ 1) · 2n

|F|
+ negl(λ)

Since |F| ≈ 2λ and Q is a polynomial number of queries, the bound must be neglible in the security

parameter. This completes our proof. ⊓⊔

A.6 Deferred Proof of Theorem 5

A.7 Proof of Knowledge Soundness

The PCD extractor in [BCL+21] extracts a PCD graph T that is a tree, where every node is labeled with

(Z, loc). Without loss of generality, this tree can be used to construct a PCD graph as in Definition 12. We

use the notation LT(j) to denote the set of nodes at depth j in the tree and o(T) to denote the root node

label of the tree.

Extractor Construction: Given a malicious snark prover P̃, we will construction an extractor Ext that extracts

a witness from a malicious prover.

– First, we construct a malicious PCD prover P̃pcd(fpp, aipcd) (Definition 12) as follows:

P̃pcd(pppcd, (fpp, ppH, ck, ai)):

1. Assign pp← (ck, pppcd, fpp, ppH).

2. Run the malicious NARK prover (idx, x, π, aux)← P̃ ro(pp, ai).

3. Run the folding scheme indexer (fpk, fvk)← IFold(pp).
4. Run the NARK indexer (npk, nvk)← Inark(pp, idx).
5. Parse nvk to obtain hplk.

6. Parse proof (hz,Z, πpcd,W, z
(1), πMT)← π.

7. Assign PCD auxillary output auxpcd := (idx, x,W, z(1), πMT, aux)

8. Output the following tuple (Definition 12), (φppH,fvk, Z, πpcd, auxpcd) where φppH,fvk is the predicate

defined in Definition 21.
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– Let Extpcd be the extractor that corresponds to the PCD prover P̃pcd from the knowledge soundness of

the PCD scheme (Definition 12).

– Next, we construct Ext(0)(pp, ai) as follows:

Ext(0)(pp, ai):

1. Parse (ck, pppcd, fpp, ppH)← pp.

2. Assign aipcd ← (fpp, ppH, ck, ai).

3. Run the PCD extractor (φ,T, auxpcd)← Extpcd(pppcd, aipcd).

4. Parse (idx, x,W, z(1), πMT, aux)← auxpcd.

5. Denote (Z, loc) to be the root label of T. Append the folding relation witness W to the root label

(Z, loc,W ). We refer to this new graph as T′.

6. Output the following tuple, (φ, T′, auxpcd) .

– Next, we construct a malicious folding prover P̃(j)
Fold(fpp, aiFold) (Definition 9) as follows:

P̃(j)
Fold(fpp, (pppcd, ppH, ck, ai)):

1. Assign pp← (ck, pppcd, fpp, ppH).

2. Run the extractor (φ,T, auxpcd)← Ext(j−1)(pp, ai).

3. For every vertex v ∈ LT(j − 1),

• Denote (Z(v), loc(v),W (v)) to be the label of v and (Z
(v)
i , loc

(v)
i ) to be the label of the i-th child.

• Parse (p(v), hplk(v), hz(v), X(v))← Z and pf(v) ← loc.

• For each child, parse (p
(v)
i , hplk

(v)
i , hz

(v)
i , X

(v)
i )← Zi.

4. Assign folding auxillary output auxFold := (φ,T, auxpcd).

5. Output the following tuple (Definition 9),(
((X

(v)
i )ki=1)v, (X(v))v, (W (v))v, (pf(v))v, auxFold

)
.

where index v denotes every v ∈ LT(j).

– Let ExtFold be the extractor that corresponds to the folding prover P̃Fold from the knowledge soundness

of the folding scheme (Definition 9).

– Next, we construct Ext(j)(pp, ai) as follows:

Ext(j)(pp, ai):

1. Parse (ck, pppcd, fpp, ppH)← pp.

2. Assign aiFold ← (pppcd, ppH, ck, ai).

3. Run the folding extractor ExtFold(fpp, aiFold) to obtain the following tuple,(
((X

(v)
i , W

(v)
i )ki=1)v, auxFold

)
. (21)

4. Parse (φ,T, auxpcd)← auxFold.

5. For every vertex v ∈ LT(j − 1),

• Denote by (Z
(v)
i , loc

(v)
i ) to be the label of the i-th child of v.

• For every child, append the corresponding folding relation witness W
(v)
i to it’s label

(Z
(v)
i , loc

(v)
i ,W

(v)
i ).

We refer to this new graph as T′.

6. Output the following tuple, (φ,T′, auxpcd)

– Setting d = logk(n/m), a constant for k = O(λ). We define the SNARK extractor Ext as follows:
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Ext(pp, ai):

1. Run the extractor (φ,T, auxpcd)← Ext(d)(pp, ai).

2. Parse (idx, x,W, z(1), πMT, aux)← auxpcd.

3. For every vertex v ∈ LT (d), denote it’s label as (Z(v), loc(v),W (v)). Parse the folding witness W (v) to

obtain z(v).

4. Assign z to be the concatenation of all (z(v))v∈LT(d).

5. Assign w to be the last |z| − |x| elements of z.

6. Output the following tuple, (idx, x, w, aux)

Distinguishing Predicates: By the knowledge soundness of PCD (Definition 12) and Folding (Definition 9),

we are able to choose arbitrary distinguishing predicates ρpcd and ρFold. We will use these to constrain the

output of our intermediate extractors and adversaries. This will be essential to for the correctness proof of

our SNARK extractor (Definition 5).

– ρpcd(pppcd, aipcd, auxpcd, φ,Z):

1. Parse PCD auxilliary input (fpp, ppH, ck, ai)← aipcd.

2. Parse PCD auxillary output (idx, x,W, z(1), πMT, aux)← auxpcd.

3. Parse PCD output (p, hplk′, hz, X)← Z.

4. Assign folding verifier key ( · , fvk)← IFold(fpp).
5. Assign NARK parameters pp← (ck, pppcd, fpp, ppH).

6. Assign NARK verifier key ( · , nvk)← Inark(pp, idx).
7. Parse nvk to obtain commitment to index hplk.

8. Derive challenges α, β ← ro(hplk, x, hz).

9. Derive commitment z1 ← Commit(ck, z(1)).

10. Output 1 if and only if the following conditions hold:

• NARK predicate agrees ρ(pp, ai, aux, idx, x) = 1 (Definition 5).

• Commitment to index agrees hplk′ = hplk.

• PCD Predicate φ = φppH,fvk (Definition 21).

• Product p = 1.

• Instance x = (z
(1)
1 , . . . , z

(1)

|x| ).

• MT verifier MT.Verifyk(ppH, hz, {1}, z1, πMT) accepts.

• Valid pair (X,W ) ∈ Ropen(Lx,Le, f̂
G
α,β) (Definition 20, Definition 19).

– ρFold(fpp, aiFold, auxFold, (x
(j)
i )i,j∈[k]):

1. Parse folding auxilliary input (pppcd, ppH, ck, ai)← aiFold.

2. Parse folding auxillary output (φ,T, auxpcd)← auxFold.

3. Assign aipcd ← (fpp, ppH, ck, ai).

4. Output 1 if and only if the following conditions hold:

• ρpcd(pppcd, aipcd, auxpcd, φ,Z) = 1.

• T is φ-compliant (Definition 12).
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Correctness of Extractor: We want to show that our SNARK is knowledge sound (Definition 5). Consider

an arbitrary predicate ρ. Define ϵ(P̃) to be the following probability:

ϵ(P̃) := Pr


ρ
(
pp, ai, ao, idx, x

)
= 1

∧ V ro
nark(nvk, x, π) = 1

:

ro← O(λ)

pp← Gnark(1λ)

ai← D(pp)

(npk, nvk)← Inark(pp, idx)

(idx, x, π, ao)← P̃ ro(pp, ai)


Extracting the PCD Tree: We will first argue that the output of P̃pcd satisfies ρpcd with probability at least

ϵ(P̃). By definition of ϵ(P̃), the output of the prover P̃ satisfies the NARK predicate ρ and causes the

NARK verifier Vnark to accept with probability ϵ(P̃). Thus, by construction of Vnark, the conditions of ρpcd

are satisfied with probability at least ϵ(P̃). By knowledge soundness of the PCD scheme (Definition 12), the

PCD extractor Extpcd outputs (φ,T, auxpcd) such that ρpcd accepts (for Z = o(T)) and T is φ-compliant with

probability at least ϵ(P̃)−negl(λ). By induction, for j = 0, . . . , d = logk(n/m), we will now argue that Ext(j)

outputs (φ,T, auxpcd) such that

– ρpcd accepts (with argument Z = o(T)) on the output.

– T is φ-compliant.

– For every vertex v ∈ LT(j − 1), the label ((. . . , X(v)) ← Z(v), loc(v),W (v)) must have (X(v),W (v)) ∈
Ropen(Lx,Le, f̂

G
α,β).

with probability at least (ϵ(P̃)− negl(λ))/poly(λ).

Base Case: Note, by construction, Ext(0) trivially appends a witness value to the output of Extpcd. Thus,

by our argument above, the Ext(0) outputs (φ,T, auxpcd) such that ρpcd accepts and T′ is φ-compliant with

probability at least ϵ(P̃)− negl(λ). By definition of ρpcd, we must have that the root node label ((. . . , X) :=

Z, loc,W ) contains (X,W ) ∈ Ropen(Lx,Le, f̂
G
α,β).

Inductive Step: Assume (φ,T, auxpcd) ← Ext(j−1) satisfies the inductive hypothesis for j − 1. By definition

of ρpcd, we must have that φ = φppH,fvk (Definition 21). Thus, we must have that T is φppH,fvk-compliant. By

definition of φppH,fvk, we must have that for every vertex v ∈ LT(j − 1),

– the label ((. . . , X(v))← Z(v), loc(v),W (v)) must have (X(v),W (v)) ∈ Ropen(Lx,Le, f̂
G
α,β);

– the local data contains a folding proof pf(v) ← loc(v);

– the children node labels contains instance (X
(v)
i )ki=1 such that VFold(fvk, (X(v)

i )ki=1, X
(v), pf(v)) accepts.

Thus, by construction, the output of P̃(j)
Fold satisfies the predicate ρFold, causes the folding verifier to accept, and

for every v ∈ LT(j − 1) (X(v),W (v)) ∈ Ropen(Lx,Le, f̂
G
α,β) with probability at least (ϵ(P̃)− negl(λ))/poly(λ).

Therefore, by knowledge soundness of the folding scheme (Definition 9, Theorem 8), ExtFold outputs (((X
(v)
i ,

W
(v)
i )ki=1)v, auxFold) such that ρFold accepts and ((X

(v)
i , W

(v)
i )ki=1)v ∈ Ropen(Lx,Le, f̂

G
α,β) with probability

(ϵ(P̃) − negl(λ))/poly(λ) − negl(λ) = (ϵ(P̃) − negl(λ))/poly(λ). By construction, (φ,T, auxpcd) ← Ext(j) is a

simple wrapper around Ext
(j)
Fold that appends the folding witnesses to the labels of the children nodes of layer

j − 1. Thus, we must have for every vertex v ∈ LT(j), the label ((. . . , X(v)) ← Z(v), loc(v),W (v)) must have

(X(v),W (v)) ∈ Ropen(Lx,Le, f̂
G
α,β). Furthermore, since the output of Ext

(j)
Fold satisfies ρFold, we must have that

67



ρpcd accepts on Ext(j)’s outputs and that T is φ-compliant. These conditions hold with probability at least

(ϵ(P̃)− negl(λ))/poly(λ), which completes the inductive step.

Therefore, by induction, we have Ext(d) outputs (φ,T, auxpcd) such that

– ρpcd accepts (with argument Z = o(T)) on the output.

– T is φ-compliant.

– For every vertex v ∈ LT(j − 1), the label ((. . . , X(v)) ← Z(v), loc(v),W (v)) must have (X(v),W (v)) ∈
Ropen(Lx,Le, f̂

G
α,β).

with probability at least (ϵ(P̃)− negl(λ))/poly(λ).

Final Extractor: The SNARK extractor Ext is a simple wrapper around Ext(d) that concatenates the folding

witness to obtain the final SNARK witness w. We will now argue that the output of Ext satisfies the knowledge

soundness definition of the SNARK (Definition 5) in particular, the output must satisfy the NARK predicate

ρ and (idx, x, w) ∈ Rplk with probability (ϵ(P̃) − negl(λ))/poly(λ). Assume the conditions we showed above

hold for the output of Ext(d). We will show that the required conditions on Ext hold with only a negl(λ) loss

in probability. The NARK predicate ρ is trivially satisfied, since the output of Ext(d) satisfies ρpcd. Now we

need to show is that (idx, x, w) ∈ Rplk. We show this occurs with only negl(λ) probabilty loss, otherwise we

could construct either adversaries for the Merkle commitment scheme, commitment scheme, an adversary

against the polynomial witness testing game, or finally an adversary against the knowledge soundness of the

NARK from Section 6.2.

Let (φ,T, auxpcd) be the output of Ext(d). For every leaf node v ∈ LT(d),

– denote its label (Z(v), loc(v),W (v)),

– define (. . . , X(v)) := Z(v), (x(v), e(v))← X(v), and (plk
(v)
, z(v), p(v), µ(v))← Ψ(x(v)) (Definition 20).

Assume these conditions hold, we will argue a series of implications that will allow us to show that the

output of Ext satisfies the knowledge soundness definition of the SNARK (Definition 5). Further, denote the

root node label (Z, loc,W (v)) := o(T). Since ρpcd accepts (with argument Z = o(T)) on the output of Extd,

we must have that φ = φppH,fvk, which implies T is φppH,fvk-compliant and Z = (1, hplk′, hz, X). Thus, by the

definition of φppH,fvk and Merkle commitments, we must have

–
∏

v p
(v) = 1.

– e(v) = Le(0) and µ
(v) = 1.

– hplk′ = MT.Commit(ppH, (plk
(v)

)v).

– hz = MT.Commit(ppH, (z
(v))v).

Since ρpcd produces hplk honestly from idx = (σ, s, G) and checks hplk = hplk′, we must have that (plk
(v)

)v =

(Commit(ck, (i, σrn(i,m), srn(i,b(m/t)))))i∈[n/m]; otherwise, we could produce an adversary that breaks the bind-

ing property of the Merkle commitment scheme. Thus, we can change the corresponding indices from v ∈
LT(d) to i ∈ [n/m]. Therefore, we have for all i ∈ [n/m], (Commit(ck, (i, σrn(i,m), srn(i,b(m/t)))), z(i), p(i), 1)←
Ψ(x(i)). By the polynomial witness testing lemma (Lemma 5) with corresponding choice of maps in Defi-

nition 20 and that both (Xi,Wi) ∈ Ropen(Lx,Le, f̂
G
α,β) and ei = Le(0) and µ(v) = 1 for all i ∈ [n/m], we

must have that the polynomial witness Wi = (i, σrn(i,m), srn(i,b(m/t)), zi, pi, 1) and that f̂Gα,β(Wi) = 0 for all

i. Otherwise, we could produce an adversary that beats the polynomial witness testing game. Furthermore,

since ρpcd checks MT.Verifyk(ppH, hz, {1}, z1, πMT) accepts, where z1 = Commit(ck, (x, . . . )) (as defined in the
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ρpcd). By the position binding property of the Merkle commitment scheme and binding of Commit, we must

have that z1 = (x, . . . ). Otherwise, we could construct an adversary that breaks either binding property of

the respective schemes. Define z to be the concatenation of all zi. Therefore, we must have that

– z = (x,w) where w is the last |z| − |x| elements of z.

– By definition of f̂Gα,β (Definition 19), we must have that

• For all i ∈ [c], G
(
srn(i,b), zrn(i,t)

)
= 0.

•
∏n

i=1(zi + i · α+ β)/
∏n

i=1(zi + σi · α+ β) = 1 for α, β ← ro(hplk, x, hz).

Therefore, we must have that (idx, x, w) ∈ Rplk; otherwise, we could construct an adversary that breaks the

knowledge soundness of the NARK from Section 6.2 with respect to index commitment plk = hplk and z

commitment z = hz. Thus, the output of Ext satisfies the knowledge soundness definition of the SNARK

(Definition 5) with probability at least (ϵ(P̃)− negl(λ))/poly(λ)− negl(λ) = (ϵ(P̃)− negl(λ))/poly(λ).

Running Time of Extractor: By the definition of knowledge soundness for the PCD scheme and folding

scheme (Definition 12, Definition 9), the running time of the respective extractors runs in time at most

expected polynomial of the running time of the respective provers. Since we recursively extract over a tree

of depth d = logk(n/m) (a constant, since k = O(λ)), the running time of the SNARK extractor Ext is at

most expected polynomial of the running time of the malicious NARK prover P̃. Since the NARK prover

runs in expected polynomial time, the SNARK extractor Ext runs in expected polynomial time.
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