
SILBE: an Updatable Public Key Encryption
Scheme from Lollipop Attacks

Max Duparc, Tako Boris Fouotsa, and Serge Vaudenay

EPFL, Lausanne, Switzerland
{max.duparc,tako.fouotsa,serge.vaudenay}@epfl.ch

Abstract. We present a new post-quantum Public Key Encryption scheme
(PKE) named Supersingular Isogeny Lollipop Based Encryption or SILBE.
SILBE is obtained by leveraging the generalised lollipop attack of Cas-
tryck and Vercauteren on the M-SIDH Key exchange by Fouotsa, Moriya
and Petit. Doing so, we can in fact make SILBE a post-quantum secure
Updatable Public Key Encryption scheme (UPKE). SILBE is in fact the
first isogeny-based UPKE which is not based on group actions. Hence,
SILBE overcomes the limitations highlighted by Eaton, Jao, Komlo and
Mokrani at SAC’21 regarding the design of an SIDH-style UPKE. This
is possible by leveraging both the Deuring Correspondence and Kani’s
Lemma, two central concepts in Isogeny-Based Cryptography.

Keywords: Post-Quantum Cryptography · Supersingular Isogenies · M-
SIDH · generalised Lollipop Attacks · UPKE

1 Introduction

The notion of Updatable Public Key Encryption (UPKE) was initially intro-
duced in [9] as a relaxation of Forward Secure Public Key Encryption (FSPKE),
given the inherent complexity of constructing FSPKE systems and the shared
advantageous properties between the two. In addition to functioning as PKE,
UPKE allows for secure asynchronous key updates. Several UPKE schemes have
been proposed based on discrete logarithm [21], DRC [1], LWE [21,2], and on
isogenies [24,33].

In the later case, an in-depth exploration of the question was performed in
2020 by Eaton, Jao, Komlo, and Mokrani in [24]. They proposed two designs
of isogeny-based UPKE, respectively based on SIDH [27,17] and CSIDH [11].
For the former protocol, the authors suggested that “a viable construction in
practice is hindered by existing mathematical limitations” and only proposed a
relaxed variant of UPKE which they named “online UPKE”. The online UPKE
was then instantiated in this setting. Follow-up developments on isogeny-based
UPKE have been, to the best of our knowledge, focused on CSIDH and more
generally on group actions [33].

In the meantime, SIDH was shown insecure in [10,34,41] by leveraging the
accessible images of torsion points to construct a high-dimensional isogeny using
Kani’s Lemma [29] and extract the secret isogeny from the high-dimensional

2 M. Duparc, T.B. Fouotsa and S. Vaudenay

one. This tool is revolutionary and has enables a breadth of new schemes such
as SQISignHD [14] and its 2D variants [4,23,38], FESTA and QFESTA [6,37],
IS-CUBE [36] or DeuringVRF [32] and spawn many countermeasures such as M-
SIDH [25,26] and binSIDH/terSIDH [5]. Proposed by Fouotsa, Moriya and Petit,
the M-SIDH countermeasure prevents the attacks of [10,34,41], at the cost of a
lesser efficiency.

The idea in this paper is to explore whether Kani’s Lemma could be leveraged
to construct an UPKE not based on isogeny group action, and therefore overcome
the obstacles encountered by Eaton, Jao, Komlo, and Mokrani in [24]. To do so,
we strongly rely on two central tools:

– The first is the generalised lollipop attack, as proposed in [12] by Castryck
and Vercauteren, and especially how it can be used to attack very specific
instances of the M-SIDH.

– The second is the Deuring correspondence, that links isogenies between su-
persingular elliptic curves and ideals between maximal orders of quaternion
algebras, and enables new computations, as detailed in Leroux’s Thesis [31].

Contributions: Our main contribution is to turn the generalised lollipop attack
over M-SIDH into not only a PKE but an UPKE, therefore overcoming the math-
ematical limitations described in [24] when attempting to design a SIDH based
UPKE. Our UPKE, named SILBE1 for Supersingular Isogeny Lollipop Based
Encryption, follows the same principle as SETA [18] where Petit’s torsion point
attacks were used to design a PKE. However, this adaptation is not without its
challenges and necessitates numerous novel technical inputs and optimizations.
The crux of the challenge lies in devising a key update mechanism that safeguards
against information leakage about the secret keys. This is achieved by leveraging
the diverse capabilities offered by various isogeny representations, coupled with
the pseudorandom nature of walks on a supersingular isogeny graph. We also
generate examples of secure primes for SILBE at different security levels.

Technical overview: Let ϕ : E0 → E1 be a secret isogeny in M-SIDH. The
images of torsion points of highly composite order N through the isogeny ϕ are
revealed up to a secret scalar α. Concretely, if E0[N] = ⟨P,Q⟩, then the public
key is (E1, [α]ϕ(P), [α]ϕ(Q)), where α is a secret scalar. Due to the compatibility
between isogenies and pairings, it is sufficient to choose α as a square root of
unity modulo N . The SIDH attacks are avoided by choosing N in such a way
that the number of square roots of unity modulo N is exponential, meaning that
N is highly composite. We refer to [26] for further details.

In [12], Castryck and Vercauteren showed that if the curve E0 is defined
over Fp, then one can use a generalisation of the so called “lollipop attack” to
recover the secret isogeny ϕ when given

(
E1, [α]ϕ(P), [α]ϕ(Q)

)
. One thing to

note here is that among all supersingular curves in characteristic p, very few
are defined over Fp. In fact, a uniformly random supersingular elliptic curve in

1 “syllable” in German.

SILBE: an Updatable Public Key Encryption Scheme from Lollipop Attacks 3

characteristic p is defined over Fp with probability Θ(p−1/2). Moreover, given a
uniformly random supersingular elliptic curve E, finding an isogeny connecting
E to a supersingular curve defined over Fp is known to be hard [19]. If the latter
problem was solved, it would lead to a sub-exponential quantum algorithm for
computing isogenies between supersingular elliptic curves [19], endangering the
security of several isogeny-based protocols on its way, non group action ones
more precisely.

The above observation hints that one could use the generalised lollipop attack
to design a public key encryption scheme by proceeding as follows: the public
key is a uniformly random supersingular elliptic curve EA, and the secret key
is an isogeny connecting E to a supersingular curve defined E0 defined over Fp
and of known endomorphism ring, say ϕA : E0 → EA. To encrypt a message m,
a square root of unity modulo N , one translates this message into an M-SIDH
isogeny ϕB : EA → EB , and the ciphertext is (EB , [m]ϕB(P), [m]ϕB(Q)) where
E[N] = ⟨P,Q⟩. To decrypt a ciphertext, one runs the generalised lollipop attack
on the isogeny ϕB ◦ ϕA : E0 → EB using the masked torsion point information
available in the ciphertext. In practice, for the key generation, one samples EA
by performing a very long walk from E0 (E0 set to j(E0) = 1728), then one
uses the endomorphism ring of E0 to compute a shorter isogeny ϕA : E0 → EA
which is used in the decryption. The fact that N is highly composite implies
computing (higher dimensional) isogenies of relatively large prime degrees (say
few thousands), which makes the resulting scheme not practical (yet). Neverthe-
less, the most interesting fact about this design is that it can be turned into an
UPKE.

In fact, since the public key is solely composed of a uniformly random su-
persingular elliptic curve EA, updating the public key is straightforward: one
simply samples a very long uniformly random walk ρ : EA → E′

A, and sets E′
A

to be the new public key. To update the secret key which consists of a relatively
short isogeny ϕA : E0 → EA with E0 defined over Fp and of known endomor-
phism ring, one translates ρ ◦ ϕA : E0 → E′

A into a relatively short isogeny
ϕ′A : E0 → E′

A (this requires the endomorphism ring of E0), and ϕ
′
A is the new

secret key.
Using this method, we therefore construct an UPKE which we prove to be

OW-PCA-U secure, and we rely on the efficient transform detailed in [3], more
specifically on [3, Theorem 4], to obtain an IND-CCA-U UPKE. This leads
to the very first secure isogeny-based UPKE which is not based on isogeny
group actions. In fact, as mentioned earlier, Eaton, Jao, Komlo and Mokrani [24]
studied the design of isogeny-based UPKEs, but their non group action based
construction had several limitations2 which are overcome by SILBE.

Outline: The remainder of this paper is organised as follows. In Section 2, we
give a quick recall of UPKE, M-SIDH and of the standard algorithms that we
use to define SILBE. In Section 3, we detail how we construct the PKE part

2 These limitations were due to the fact that their secret key update procedure uses
the KLPT [30] algorithm and its output is too long to serve as an SIDH secret key.

4 M. Duparc, T.B. Fouotsa and S. Vaudenay

of SILBE. In Section 4 we explain how we build the key update mechanism
of SILBE and provide security arguments for the resulting UPKE. Finally, in
Section 5, we discuss how we generate public parameters and discuss SILBE’s
efficiency.

2 Preliminaries

Throughout this paper, λ denotes the security parameter. We say f : R → R is a
negligible function and we denote this by denote f(x) ≤ negl(x) if |f(x)| ≤ x−c

for any positive integers c for x big enough. A PPT(x) is a probabilistic algorithm
that is poly(x), meaning that its running time is polynomial in x. Let p be a
prime, Fp be the finite field of characteristic p and Fp be its algebraic closure.
Let E and E′ be elliptic curves over Fp.

2.1 Supersingular isogenies and more

We provide a concise recapitulation of the field and its main ideas. We recom-
mend referring to De Feo’s notes [16] and Silverman’s book [43] for a general
understanding of elliptic curves and isogenies. For insights into the Deuring
Correspondence, Leroux’s thesis [31] is an excellent resource, while [41] provides
invaluable details on Kani’s Lemma.

Generalities. An isogeny ϕ : E → E′ is a surjective projective rational map
between E(Fp) and E′(Fp) that preserves the group structure. The degree of this
rational map defines the degree of the isogeny. This induces that the degree of a
composition of isogenies is the product of the degree of the isogenies appearing
in the composition. We will consider isogenies up to isomorphism, where two
isogenies ϕ : E → F and ψ : E′ → F ′ are isomorphic if they are equal up to
pre- and post-composition of isomorphisms. Note that E and E′ are isomorphic
induces that they share the same j-invariant, with both notions being equivalent
when seen in Fp.

For every isogeny ϕ : E → E′, there exists an unique (up to isomorphism)

dual isogeny ϕ̂ : E′ → E such that ϕ ◦ ϕ̂ = [deg(ϕ)] on E′ and ϕ̂ ◦ ϕ = [deg(ϕ)]
on E, with [n] being the scalar multiplication map by n ∈ Z. The n-torsion
group, denoted by E[n] is the kernel of the scalar multiplication by n, E[n] =
ker([n]). We have that E[n] ∼= Z2

n when n is co-prime to p. An isogeny ϕ :
E → E′ is separable if deg(ϕ) = | ker(ϕ)|. Following the fundamental theorem of
isomorphism, we have that any separable isogeny is defined up to isomorphism by
its kernel, meaning that ϕ : E → E′ and ψ : E → E/ker(ϕ) are isomorphic. We
also have that for any isogeny ϕ : E → E′, ker(ϕ) ⊂ E[deg(ϕ)]. Let ϕ : E → F
and ψ : E → F ′ be two isogenies of co-prime degree. The pushforward of ψ by ϕ
is the isogeny ϕ∗ψ : F → E′ whose kernel is defined by ker(ϕ∗ψ) = ϕ

(
ker(ψ)

)
.

SILBE: an Updatable Public Key Encryption Scheme from Lollipop Attacks 5

Deuring Correspondence. Among isogenies, endomorphisms have important
additional properties. First, End(E), the set of all endomorphisms for an elliptic
curve E is an integral ring of characteristic zero, under the operations of point-
wise addition and composition. An elliptic curve is said to be ordinary if End(E)
is isomorphic to an order of an imaginary quadratic field. Otherwise, they are
supersingular and End(E) is isomorphic to a maximal order of Bp,∞ the (unique
up to isomorphism) quaternion algebra ramified exactly at p and ∞. An order O
ofBp,∞ is a subring such thatO⊗ZQ = Bp,∞ withBp,∞ of the formQ+Qi+Qj+
Qij with j2 = −p, i2 depending on p, and ij = −ji. An important example is the
curve E0 with j-invariant 1728. If p = 3 mod 4, then it is supersingular and its
endomorphism ring corresponds to the maximal order O0 = Z+iZ+ i+j

2 Z+ 1+ij
2 Z

where i stands for the endomorphism (x, y) → (−x,
√
−1y) and j stands for the

Frobenius endomorphism π.

Supersingularity is an important property: it is preserved by isogenies, all su-
persingular curves are defined in Fp2 and connected to each other by Fp2 -rational
isogenies. Importantly, Deuring proved in [20] that there is an equivalence be-
tween supersingular curves and maximal orders of Bp,∞ such that an isogeny
ϕ between two curves E0 and E1, with End(E0) ∼= O0 and End(E1) ∼= O1,
can be represented as a integral ideal I connecting O0 and O1. Integral ideals
are fractional ideals such that I ⊆ OL(I), with OL(I) =

{
α ∈ Bp,∞

∣∣αI ⊆ I
}
.

Similarly, there exists OR(I) =
{
α ∈ Bp,∞

∣∣Iα ⊆ I
}
. All ideals can be seen as(

OL(I),OR(I)
)
-ideal with both OL(I) and OR(I) being maximal orders when-

ever I is integral. The norm of an ideal is defined as n(I) = gcd
({
n(α)

∣∣α ∈ I
})

.

Let ϕ : E → E′ be an isogeny between two supersingular curves. Let OE and
OE′ be the maximal orders of Bp,∞ corresponding to End(E) and End(E′). The
kernel ideal of ϕ is defined as Iϕ =

{
α ∈ OE

∣∣ α(ker(ϕ)) = 0
}
. Conversely, given

I an (OE ,OE′)-ideal, it induces an isogeny ϕI : E → F whose kernel is given
by kerϕI = E[I] =

{
P ∈ E

∣∣ α(P) = 0 ∀α ∈ I
}
. The Deuring correspondence

induces the following equivalences:

supersingular j-invariants over Fp2 maximal orders in Bp,∞

j(E) OE

ϕ ◦ ψ IψIϕ
deg(ϕ) n(Iϕ)

ϕ̂ Iϕ
ψ∗ϕ [Iψ]∗Iϕ = 1

n(Iψ)
Iψ(Iψ ∩ Iϕ)

γ ∈ End(E) OEγ

Kani’s Lemma: Finally, a pivotal advancement in the realm of isogenies is
Kani’s Lemma [29], particularly notable for its role in dismantling SIDH, as de-
tailed in [10,34,41], where it was used to embed isogenies between elliptic curves
into higher dimensional isogenies. In this paper, we solely focus on principally
polarized abelian varieties and therefore omit the notion of polarization. We refer
the interested reader to Milne’s book [35]. The only exception is that we denote

6 M. Duparc, T.B. Fouotsa and S. Vaudenay

the dual of a higher dimensional isogeny ϕ as ϕ̃, its polarized dual. We present
Kani’s Lemma as described in [41, Lemma 3.2].

Lemma 1. : Let f : A → B, g : A → A′, f ′ : A′ → B′ and g′ : B → B′, be
polarized separable isogenies such that g′ ◦ f = f ′ ◦ g, with deg(f) = deg(f ′) and
deg(g) = deg(g′) coprime. Then, the map F : B × A′ → A × B′ given by the

matrix

(
f̃ −g̃
g′ f ′

)
is a polarised separable isogeny with deg(F) = deg(f)+deg(g),

ker(F) =
{(
f(P),−g(P)

)∣∣ P ∈ A[D]
}
and ker(F̃) =

{(
f̃(P), g′(P)

)∣∣ P ∈ B[D]
}
.

Furthermore, given deg(F) = d1d2, then we can write F = F2 ◦ F1 with
deg(F1) = d1 and deg(F2) = d2 such that

V

B ×A′ A×B′F

F1 F̃2

ker(F1) =
{(
f(P),−g(P)

)∣∣∣ P ∈ A[d1]
}

& ker(F̃2) =
{(
f̃(P), g′(P)

)∣∣ P ∈ B[d2]
}
.

2.2 UPKE

We base our definition of UPKE on the notion of symmetric UPKE from [24].

Definition 1. Given λ a security parameter, an UPKE scheme is defined by
a setup algorithm Setup(1λ) → pp that outputs the public parameters, together
with a set of 6 PPT(λ):

– KG(pp)
$−→ (sk, pk)

– Enc(pk,m)
$−→ ct

– Dec(sk, ct)−→m

– UG(pp)
$−→ µ

– Upk(pk, µ) −→ pk′

– Usk(sk, µ) −→ sk′

Likewise to PKE, it must ensure correctness: For all i ∈ N, we have that

P

Dec(ski,Enc(pki,m)
)
= m

∣∣∣∣∣ (sk0, pk0)
$←− KG(pp), µi

$←− UG(pp),(
ski, pki

)
$←−

(
Usk(ski−1, µi),Upk(pki−1, µi)

)  = 1

We make a slight abuse of notation, as all algorithms also take pp as input,
but this choice is made to avoid too heavy notations. The desirable security
notion an UPKE should achieve are Forward Security and Post-Compromise
Security. The first notion requires that if the adversary learns ski, then it can
not use this information to retrieve skj for j < i without knowing the update
values µj+1, · · · , µi. Similarly, the second notion requires that the adversary is
not able to retrieve skj for j > i without knowing the update values µi+1, · · · , µj .

More formally, the security of an UPKE is captured by security games that
use the following oracles and lists. We denote by Oracles the set of oracles given
below.

SILBE: an Updatable Public Key Encryption Scheme from Lollipop Attacks 7

– Upd list and Cor list are two lists that respectively store the updates specifi-
cally made by the adversaries and what keys are corrupted.

– Fresh Upd: The Fresh-Update oracle samples a random update µi, computes
the updated keys (ski+1, pki+1) and returns pki+1.

– Given Upd: The Given-Update oracle computes the keys (ski+1, pki+1) cor-
responding to a given update µi and return pki+1. The update (i, i + 1) is
added to Upd list.

– Corrupt: The Corruption oracle receives an index j and returns skj . It marks
j as corrupted together with all others keys of index i such that there is no
fresh update in-between.

– Plaintext Check the plaintext checking oracle that receives a plaintext and a
ciphertext as inputs. It returns true if the ciphertext is a valid encryption of
the plaintext, and false if not.

We use these oracles to define the security notion of One-Wayness under
Plaintext Checking Attack with Updatability (OW-PCA-U). Here, the adversaries
have to decrypt a challenge ciphertext for a chosen uncorrupted key. An UPKE
is OW-PCA-U secure if for any given (A1,A2) poly(λ) adversaries, we have that

AdvOW-PCA-U(A1,A2) = P
[
GOW-PCA-U(A1,A2) = 1

]
⩽ negl(λ)

where GOW-PCA-U is the cryptographic game described in Figure 1.

Similarly to OW-PCA-U security, we also have the notion of INDistinguisha-
bility under Chosen Plaintext Attack with Updatability (IND-CPA-U) and INDis-
tinguishability under Chosen Ciphertext Attack with Updatability (IND-CCA-U).
In both cases, both adversaries have access to the Fresh Upd, Given Upd and
Corrupt oracles, denoted together as Oracles. Additionally, in IND-CCA-U, both
adversaries have access to an additional oracle, ODec that decrypts ciphertexts
ct given by the adversary.

An UPKE is IND-CPA/CCA-U secure if for any given poly(λ) adversaries
(A1,A2), we have that

AdvIND-CPA/CCA-U
(A1,A2) =

∣∣∣∣P [
GIND-CPA/CCA-U
1 (A1,A2) = 1

]
−P

[
GIND-CPA/CCA-U
0 (A1,A2) = 1

] ∣∣∣∣ ≤ negl(λ)

where GIND-CPA/CCA-U is the cryptographic game described in Figure 2.

2.3 Used Algorithms

SILBE often alternates between different representations of isogenies, more specif-
ically its kernel, ideal and higher dimensional representations. To do so, we use
the following standard algorithms in Isogeny Based Cryptography:

– KernelToIsogeny: Takes as input E and K ∈ E[d] where E is a supersin-
gular curve, and returns ϕ, the isogeny of degree d whose kernel is generated
by K together with its codomain E′. To do so, it factorises ϕ as a compo-
sition of prime degree isogenies and uses Vélu’s Formulas [44] to compute
each of these prime degree isogenies. To be efficient, this requires for d to be
smooth.

8 M. Duparc, T.B. Fouotsa and S. Vaudenay

GOW-PCA-U(A1,A2)

1 : i = 0

2 : Upd list = Cor list = ∅

3 : sk0, pk0
$←− KG(1λ)

4 : j, st←− AOracles
1 (pk0)

5 : if j > i do

6 : return ⊥

7 : m
$←−M

8 : ct
$←− Enc(pkj,m)

9 : n←− AOracles
2 (ct, st)

10 : if IsFresh(j) do

11 : return m
?
= n

12 : return ⊥

Plaintext Check(m, c, i)→ b

1 : if m /∈M do

2 : return ⊥
3 : else do

4 : return m
?
= Dec(ski, c)

IsFresh(j)

1 : return not j
?
∈ Cor list

Fresh Upd()→ pki

1 : µ
$←− UG(1λ)

2 : ski+1 ←− Usk(ski, µ)

3 : pki+1 ←− Upk(pki, µ)

4 : i← i+ 1

5 : return pki

Given Upd(µ)→ pki

1 : ski+1 ←− Usk(ski, µ)

2 : pki+1 ←− Upk(pki, µ)

3 : Upd list←− Upd list ∪ {(i, i+ 1)}
4 : i← i+ 1

5 : return pki

Corrupt(j)→ skj

1 : Cor list = Cor list ∪ {j}
2 : i, k ← j

3 : while (i− 1, i) ∈ Upd list do :

4 : Cor list = Cor list ∪ {i− 1}
5 : i← i− 1

6 : while (k, k + 1) ∈ Upd list do :

7 : Cor list = Cor list ∪ {k + 1}
8 : k ← k + 1

9 : return skj

Fig. 1. OW-PCA-U Game

– CanonicalTorsionBasis: Takes as input E a supersingular curve and N an
integer such that N |(p2 − 1) and returns ⟨P,Q⟩ = E[N]. To do so, one can,
for example, sample points at random in E(Fp2) or its quadratic twist and
multiplies them by the right co-factor, although more efficient method such
as [45] exists. To ensure that this method is deterministic, the sampling is
performed deterministically using the Elligator algorithm [8].

– PushEndRing [14, Algorithm 8]: Takes as input OE an evaluation basis
of End(E), φ : E → F an isogeny of degree d that is efficiently computable
together with its ideal Iφ. It outputs OF a d-evaluation basis of End(F). An
evaluation basis [14, Definition A.4.1] consists in an isomorphism between

SILBE: an Updatable Public Key Encryption Scheme from Lollipop Attacks 9

GIND-CPA/CCA-U
b (A1,A2)

1 : i = 0

2 : Upd list = Cor list = ∅

3 : sk0, pk0
$←− KG(1λ)

4 : m0,m1, j, st←− AOracles,ODec
1 (pk0)

5 : if j > i do

6 : return ⊥
7 : if m0 = m1 do

8 : return ⊥
9 : ctb ←− Enc(pkj,mb)

10 : d←− AOracles,ODec
2 (ctb, st)

11 : if IsFresh(j) do :

12 : return b
?
= d

13 : return ⊥

ODec(k, c)→ m

1 : if k = j and c = ctb do

2 : return ⊥
3 : if k > i do return ⊥
4 : return Dec(skk, c)

IsFresh(j)

1 : return not j
?
∈ Cor list

Fresh Upd()→ pki

1 : µ
$←− UG(1λ)

2 : ski+1 ←− Usk(ski, µ)

3 : pki+1 ←− Upk(pki, µ)

4 : i← i+ 1

5 : return pki

Given Upd(µ)→ pki

1 : ski+1 ←− Usk(ski, µ)

2 : pki+1 ←− Upk(pki, µ)

3 : Upd list←− Upd list ∪ {(i, i+ 1)}
4 : i← i+ 1

5 : return pki

Corrupt(j)→ skj

1 : Cor list = Cor list ∪ {j}
2 : i, k ← j

3 : while (i− 1, i) ∈ Upd list do :

4 : Cor list = Cor list ∪ {i− 1}
5 : i← i− 1

6 : while (k, k + 1) ∈ Upd list do :

7 : Cor list = Cor list ∪ {k + 1}
8 : k ← k + 1

9 : return skj

Fig. 2. IND-CPA/CCA-U Game

the endomorphism ring and a maximal order such that every element of the
basis is efficiently computable [14, Definition 1.1.1].

– KernelToIdeal [14, Algorithm 9]: Takes as input OE a N -evaluation basis
of End(E) and K a generator of the kernel of an isogeny ϕ of smooth degree
d co-prime to N and return Iϕ.

– EvalTorsion [14, Algorithm 11]: Takes as input OF an evaluation basis of
End(F), ρ1 : F → E of degree d1, ρ2 : F → E′ of degree d2, both efficiently
computable isogenies together with their respective ideals I1 and I2. It also
takes as input J an (OE ,OE′)-ideal of norm N co-prime to d1 and d2. It
outputs ϕJ(P), with P any point whose order is co-prime to d1d2.

10 M. Duparc, T.B. Fouotsa and S. Vaudenay

– RandomEquivalentIdeal [31, Algorithm 6]: Takes as input a (OE ,OF)-
ideal I and returns J another (OE ,OF)-ideal such that n(J) is a “relatively
small” prime, meaning that n(J) ∈ [

√
p log(p)−1,

√
p log(p)] with extremely

high probability, as shown by [31, Lemma 3.2.3 & Lemma 3.2.4].
– ConstructKani [40]: Takes as input d the degree of an isogeny ϕ : E → E′

together with N1 and N2 two divisors of N such that N1N2 ≥ d. It also takes
as input P,Q, ϕ(P), ϕ(Q) with the first two points a basis of E[N]. It returns
F an isogeny of dimension 2g with g = 1, 2 or 4 depending on N1N2 − d.
F is in fact the higher dimensional isogeny induced by the following (Kani)
diagram:

Eg F g

Eg F g

ϕg

α

ϕg

α

with Eg =

g times︷ ︸︸ ︷
E × · · · × E, ϕg =

(g times︷ ︸︸ ︷
ϕ, · · · , ϕ

)
and with α an endomorphism of

Eg of dimension 1, 2 or 4 depending on N1N2−d. We also denote by EvalKani
the algorithm that uses this higher dimensional isogeny to evaluate ϕ(R) for any
R ∈ E.

2.4 M-SIDH

Following the breaking of SIDH in [10,34,41], some countermeasures were pro-
posed among which Masked SIDH or M-SIDH [25,26]. The central idea comes
from the fact that masking the torsion point images in SIDH still enables to
compute the pushforwards while protecting against EvalKani, as the received
torsion points describe the isogeny [m]ϕ whose degree is greater than N . Nev-
ertheless, given [m]ϕ

(
P
Q

)
with P,Q a basis of E[A], we can retrieve m2 mod A.

Finding the mask m is therefore equivalent to finding the right square root of m2

in ZA. Thus, to be secure, we need A to be such that ZA has exponentially many
roots of the unity, i.e. that A =

∏n
i=1 pi with n large and pi distinct odd primes.

This is the general idea behind M-SIDH that we now describe as presented in
[26]. The M-SIDH is given in Figure 3 and its public parameters are as follows:

– p = ABf − 1 a prime number such that with A =
∏nA
i=1 pi and B =

∏nB
j=1 qj

co-prime such that A ≃ B and nA ≃ nB .
– E a starting supersingular curve with ⟨PA, QA⟩ a basis of E[A] and ⟨PB , QB⟩

a basis of E[B].
– Both Alice and Bob can efficiently sample at random over the set µ2(A) ={

x ∈ ZA
∣∣x2 = 1

}
and µ2(B).

It was shown in [26] that the key security of M-SIDH reduces, mutatis mutandis,
to the following problem:

SILBE: an Updatable Public Key Encryption Scheme from Lollipop Attacks 11

M-SIDH

Alice(pp) Bob(pp)

sA ←$ ZA, α←$ µ2(B) sB ←$ ZB , β ←$ µ2(A)

RA ← PA + [sA]QA RB ← PB + [sB]QB

ϕA, EA ← KernelToIsogeny(E,RA) ϕB , EB ← KernelToIsogeny(E,RB)

SA ← [α]ϕA(PB) SB ← [β]ϕB(PA)

TA ← [α]ϕA(QB) TB ← [β]ϕB(QA)

EA, SA, TA

EB , SB , TB

UA ← SB + [sA]TB UB ← SA + [sB]TA

ψA, EK ← KernelToIsogeny(EB , UA) ψB , EK ← KernelToIsogeny(EA, UB)

K ← KDF
(
j(EK)

)
K ← KDF

(
j(EK)

)

Fig. 3. M-SIDH protocol

Problem 1. Supersingular isogeny problem with masked torsion point informa-
tion: Let ϕ : E → E′ be an isogeny of degree d, let ⟨P,Q⟩ be a basis of E[N]
with N =

∏n
i=1 pi co-prime to d and let m ∈ µ2(N) be a random element. Given

P,Q, [m]ϕ(P), [m]ϕ(Q), compute ϕ.

Importantly, it is not sufficient to ask for nA and nB to be around λ, as
following [26, Theorem 7], it suffices to find m mod Nt, with Nt =

∏n
i=t pi such

that Nt ≥
√
d. This is because we have enough torsion points on Nt to use

EvalKani efficiently and thus retrieve ϕ. Then, as m ∈ µ2(N), we have that
m mod Nt ∈ µ2(Nt) with |µ2(Nt)| = 2n−t, meaning that we have significantly
diminished the numbers of possible masks. To ensure the security of M-SIDH, we
need for A and B to be such that for all At =

∏nA
i=t pi, At ≥

√
B ⇒ nA − t ≥ λ

and similarly for B. This induces that, in the case of M-SIDH, we need around
nA + nB ≃ 4.5λ.

2.5 Generalised lollipop attack

Recently, Castryck and Vercauteren proposed in [12] a new form of attack, named
the generalised lollipop attack. It can be used to attack very specific instances
of FESTA [6] and M-SIDH. In the latter, it applies when the domain3 of the
masked isogeny ϕ is defined over Fp. When this is the case, its constructs a
new unmasked isogeny ψ, uses EvalKani over ψ to retrieve ker(ψ) and extracts

ker(ϕ̂) from ker(ψ).

3 Or co-domain, using duality.

12 M. Duparc, T.B. Fouotsa and S. Vaudenay

To be more specific, let ϕ : E0 → E be an isogeny of degree d, with E0

defined over Fp. Let ⟨P,Q⟩ be a basis of E0[N] and S, T be the masked images

of those points, i.e.
(
S
T

)
= [m]ϕ

(
P
Q

)
. Since E0 is defined over Fp, we have that

the Frobenius π is an endomorphism of E0. We consider the following diagram,
where we denote by ϕ(p) : E0 → E(p) the pushforward π∗ϕ of ϕ through the
Frobenius π. We set ψ = ϕ(p) ◦ ϕ̂ and use the following lemma.

E

E0

E(p)

ϕ

π π

ϕ(p)

ψ

Fig. 4. Diagram of the generalised lollipop over M-SIDH

Lemma 2. [12, Lemma 3]: Using the above notations, let Mπ̂ be the matrix
such that π̂

(
P
Q

)
= Mπ̂

(
P
Q

)
. We can compute ψ(E[N]) as

ψ

(
S

T

)
= dp−1Mπ̂π

(
S

T

)
mod N

As we know the evaluation of ψ over E[N] and because deg(ψ) = d2 ≤ N2,
we can use EvalKani over ψ to evaluate ψ over any points and in particular
over E[d]. We can then extract4 ker(ϕ̂) from ker(ψ)[d] as detailed in [12, Section
3.2].

3 Constructing a PKE from the generalised lollipop
attack

The core concept behind SILBE is to leverage the generalised lollipop attack over
M-SIDH as a deciphering mechanism, akin to how the original lollipop attack
was employed in designing SETA [18]. This endeavor will make usage of all the
different isogeny representations. SILBE is in fact related to [12, Section 4.3]
and the idea of M-SIDH with trapdoor curves, although there are substantial
changes. The PKE part of SILBE works as follows:

– Setup: We find the adequate β and N to construct a base prime p = 3βNf+1
such that p = 3 mod 4 and N =

∏n
i=1 pi with n big enough such that it

is secure. We also compute P0, Q0 a basis of E0[N], U0, V0 a basis of E0[3
β]

and the matrix Mπ that represents the action of π over the basis (P0, Q0).

4 Modulo some minor technical details that are easily manageable.

SILBE: an Updatable Public Key Encryption Scheme from Lollipop Attacks 13

– KG: Alice computes a long isogeny between E0 and EA. Using Kernel-
ToIdeal and EvalKani, it retrieves the representing ideal I and uses the
RandomEquivalentIdeal algorithm to find a short connecting isogeny
ϕA : E0 → EA. EA is then used as the public key while ϕA is the secret
key.

– Enc: Bob computes a random isogeny ϕB : EA → EB . It then sends the
masked images though ϕB of a canonical basis of EA[N], where the mask is
the message m.

– Dec: From its knowledge of ϕA, Alice uses the generalised lollipop attack

over ϕB ◦ ϕA to retrieve ker(ϕ̂B). It retrieves m using discrete logarithm
computations in EB [N].

The public parameters of SILBE are constructed using the SILBE.Setup al-
gorithm. It uses EvalImageMatrix, a small subroutine based on Weil’s pairing
that given P,Q a basis of E[N], with N smooth and X,Y ∈ E[N] computes the
matrix M such that

(
X
Y

)
= M

(
P
Q

)
. We discuss more thoroughly how we construct

p in Section 5. We also denote by O0 the standard efficient evaluation basis of
End(E0), that is detailed in Section 2.1, with E0 the curve with j-invariant 1728
defined over Fp.

Algorithm 1 SILBE.Setup

Input: 1λ

Output: pp =
(
p,N, β, (P0, Q0), (U0, V0),Mπ, t

)
with p = 3βNf +1 prime, ⟨P0, Q0⟩ =

E0[N], ⟨U0, V0⟩ = E0[3
β], Mπ ∈ GL2(N) and t an integer such that 3βt ≥ p2.

1: Take p a prime of the form p = 3βNf +1 such that p = 3 mod 4 and N =
∏n

i=1 pi
with pi distinct odd small prime numbers such that N ⩾ 3βp1/2 log(p)2, N is
co-prime to 3 and n big enough such that for all Nk =

∏n
i=k pi, we have that

Nk ≥
√
3β ⇒ n− k ≥ λ.

2: P0, Q0 ← CanonicalTorsionBasis(E0, N)
3: U0, V0 ← CanonicalTorsionBasis(E0, 3

β)
4: Mπ ← EvalImageMatrix(E0, P0, Q0, π(P0), π(Q0)).

5: t←
⌈

2 log2(p)

β log2(3)

⌉
6: pp←

(
p,N, β, (P0, Q0), (U0, V0),Mπ, t

)
.

7: return pp

3.1 Key generation

As touched earlier, the key generation of SILBE constructs a long isogeny walk
with starting curve E0. This is done making use of the following proposition.

Proposition 1. [14, Proposition B.2.1]: Let ϕ : E → E′ be an ℓh-isogeny ob-
tained from a non-backtracking random ℓ-isogeny walk over Gℓp. Then, for all

ϵ ∈]0, 2], the distribution of E′ has statistical distance Õ(p−ϵ/2) to the uniform
distribution in the supersingular isogeny graph, provided that h ≥ (1+ ϵ) logℓ(p).

14 M. Duparc, T.B. Fouotsa and S. Vaudenay

By constructing a path made of t 3β-isogenies ρ1, · · · , ρt, we get that the
degree of their composition is greater than p2 and the end curve distribution will
be Õ(p−1/2) statistically close from the uniform distribution, which implies that
it is computationally indistinguishable from the uniform distribution. We call
the end curve EA. To compute I1, · · · , It the ideals corresponding to ρ1, · · · , ρt.
we use the following recursive mechanism:

E0 E1 · · · Et−1 EA
ρ1 ρ2 ρt−1 ρt

J1

Jt−1

Jt

IϕA

Fig. 5. Diagram of the Key Generation of SILBE

1. Assume knowledge of κi : E0 → Ei together with its representative ideal Ji
such that n(Ji) is prime and co-prime to 3. Furthermore, assume knowledge
of OEi a T -evaluation basis5 over Ei with T ̸= 3 prime. Finally, assume
knowledge of Ij with 1 ≤ j ≤ i.

2. Using KernelToIsogeny, we can construct ρi+1 and find Ei+1 and using
OEi we can find Ii+1 via the KernelToIdeal.

3. As we have that JiIi+1 is a (O0,OEi+1)-ideal, using RandomEquivalen-
tIdeal, we find an ideal Ji+1 such that n(Ji) ̸= n(Ji+1) and n(Ji+1) ∈
[
√
p log(p)−1,

√
p log(p)] is prime. To speed-up computations, we consider

Ñ =
∏x
i=1 pi with x minimal such that Ñ ≥ p1/4 log(p)1/2 and ask for

Ñ2 − n(Ji) to be prime and equal to 1 mod 4.

E0 Ei

Ei+1

Ji

ρi+1
Ji+1

κi

κi+1
Ii+1

4. Using EvalTorsion over the above triangle, we evaluate κi+1 = ϕJi+1
over

⟨P0, Q0⟩ = E0[N]. We can then construct a high dimension representation
of κi+1.

5 A T -evaluation basis is an evaluation basis that can only evaluate points of order
co-prime to T .

SILBE: an Updatable Public Key Encryption Scheme from Lollipop Attacks 15

5. Using ConstructKani over (P0, Q0, κi+1(P0), κi+1(Q0)) in dimension 4, we
construct Kani’s isogeny Fi+1 and can therefore evaluate κi+1 over any
points. This is then used to apply the PushEndRing over κi+1 and Ji+1

to retrieve OEi+1 a n(Ji+1)-evaluation basis over Ei+1.

Using this mechanism, we compute Ii for i = 1, · · · , t. Additionally, we also
compute OEA a n(Jt)-EvaluationBasis of End(EA). The dual of this process
was independently described by Nakagawa and Onuki [39], who use it to design
a new ideal to isogeny algorithm for SQISign.

As a last step, essential for the decryption part of SILBE, we use once again
RandomEquivalentIdeal over Jt to find another (O0,OEA)-ideal IϕA such
that N ′−n(IϕA)232β = 1 mod 4 and is a prime number, with N ′ = p1 ·

∏n
i=2 p

2
i .

This ensures that the EvalKani in the generalised lollipop is also performed in
dimension 4. The reason behind the choice of N ′ and not N2 comes from the
fact N2 −n(IϕA)

232β = (N −n(IϕA)3
β)(N +n(IϕA)3

β) and can therefore never
be prime. Once found, we use EvalTorsion over ρt ◦ · · · ◦ ρ1 and I1 · · · It to
evaluate ϕA

(
P0

Q0

)
and use EvalImageMatrix, to compute the matrix MϕA

such

that ϕA
(
P0

Q0

)
= MϕA

(
PA
QA

)
.

We then set EA as the public key and OEA , IϕA ,MϕA
as the secret key. Note

that we need to construct ρi in such a way that our walk does not backtrack.
To do so, we use Ui, Vi a canonical basis of Ei[3

β] such that ρi(Ei−1[3
β]) = ⟨Vi⟩.

As we set ker(ρi+1) = ⟨Ui + [ηi+1]Vi⟩, we have that its kernel foes not intersect
that of ρ̂i.

3.2 Encryption & Decryption

The underlying architecture behind the PKE part of SILBE is given in Figure
6.

EA EB

E0

E
(p)
A E

(p)
B

[π]∗IϕA

IϕA

π π

ϕB

ϕ
(p)
B

π ψ

Fig. 6. Diagram of the encryption/decryption of SILBE, Alice in red and Bob in blue

16 M. Duparc, T.B. Fouotsa and S. Vaudenay

Algorithm 2 SILBE.KG

Input: pp =
(
p,N, β, (P0, Q0), (U0, V0),Mπ, t

)
Output: pk, sk a public/secret key pair.

1: J0 ← O0

2: for 1 ⩽ i ⩽ t do
3: Sample ηi ∈$ Z3β .
4: Ei, ρi ←− KernelToIsogeny

(
Ei−1, (Ui−1 + [ηi]Vi−1)

)
▷ In pp if i = 1.

5: Ii ←− KernelToIdeal
(
OEi−1 , (Ui−1 + [ηi]Vi−1)

)
6: Deterministically compute Ui, Vi a basis of Ei[3

β] with ⟨Vi⟩ = ρi(Ei−1[3
β]).

7: Ji ←− RandomEquivalentIdeal(Ji−1Ii)

8: if n(Ji) = n(Ji−1) or Ñ
2 − n(Ji) ̸= 1 mod 4 or is not prime do

9: go back to line 7.
10: Si, Ti ←− EvalTorsion(O0, ρi ◦ κi−1, Ji−1Ii, id, Ji, {P0, Q0})
11: Fi ←− ConstructKani

(
n(Ji), Ñ , Ñ , (P0, Q0, Si, Ti)

)
12: OEi ←− PushEndRing(O0, κi, Ji) ▷ κi(−)← Fi(0, 0,−, 0)3
13: IϕA ←− RandomEquivalentIdeal

(
Jt
)

14: if N ′ − n(IϕA)
232β ̸= 1 mod 4 or is not prime do go back to line 13.

15: K,L←− EvalTorsion(O0, ρt ◦ · · · ◦ ρ1, I1 · · · It, 1, IϕA , P0, Q0)
16: MϕA ←− EvalImageMatrix(Et, N, Pt, Qt,K, L)
17: pk←−

(
Et = EA

)
18: sk ←−

(
OEt , IϕA ,MϕA

)
19: return pk, sk.

Encryption As explained earlier, the message space of SILBE is µ2(N) ={
x ∈ ZN

∣∣x2 = 1
}
. As N =

∏n
i=1 pi, we have that |µ2(N)| = 2n and we can

construct an efficient mapping between {0, 1}n and µ2(N) using the Chinese re-
mainder theorem. To encrypt m, Bob computes a random isogeny ϕB : EA → EB
of degree 3β . Then, similarly to M-SIDH, it computes the images of a canonical
N -torsion basis (PA, QA) through this isogeny and masks those images using the
message m. The ciphertext is therefore ct = (EB , R1, R2) where R1 = [m]ϕB(PA)
and R2 = [m]ϕB(QA).

Algorithm 3 SILBE.Enc

Input: pp =
(
p,N, β, (P0, Q0), (U0, V0),Mπ, t

)
, pk = EA and a message m ∈ µ2(N)

Output: ct = (EB , R1, R2) with R1, R2 ∈ EB [N].

1: PA, QA ←− CanonicalTorsionBasis(EA, N)
2: UA, VA ←− CanonicalTorsionBasis(EA, 3

β)
3: Sample rB ∈$ Z3β

4: EB , ϕB ←− KernelToIsogeny
(
EA, (UA + [rB]VA)

)
5:

(
R1
R2

)
←− [m]ϕB

(
PA
QA

)
6: ct←− (EB , R1, R2)
7: return ct

SILBE: an Updatable Public Key Encryption Scheme from Lollipop Attacks 17

Decryption As previously stated, we use the generalised lollipop over ϕB ◦ ϕA
to decipher our message. Indeed, using the torsion points in ct, we can define(
S
T

)
= [m]ϕB ◦ ϕA

(
P0

Q0

)
. Theses points are easily computable using sk as

[m]ϕB ◦ ϕA
(
P0

Q0

)
= [m]MϕA

ϕB

(
PA
QA

)
= MϕA

(
R1

R2

)
We modify the generalised lollipop attack of [12, Section 4] such that it

just computes ker(ϕ̂B) and not the whole ker(̂ϕB ◦ ϕA). This speeds up the

decryption. We consider the isogeny ψ : EB −→ E
(p)
B given by

ψ = (ϕB ◦ ϕA)(p) ◦ ̂ϕB ◦ ϕA = ϕ
(p)
B ◦ ϕ(p)A ◦ ϕ̂A ◦ ϕ̂B .

Using Lemma 2, we can evaluate ψ over EB [N] as

ψ

(
S

T

)
= n(IϕA)3

βM−1
π π

(
S

T

)
= n(IϕA)3

βM−1
π MϕA

π

(
R1

R2

)
.

We then use EvalKani over ψ to evaluate ψ̂ over E
(p)
B [3β]. Due to the nature

of N ′ − n(IϕA)
232β , this is done in dimension 4. Following [12, Section 3.2],

we have that ψ̂(E
(p)
B [3β]) = ker(ψ)[3β] = ker(ϕ̂B). The reason comes from our

good choice of public parameters, as p − 1 = 0 mod 3 and thus
(−p

3

)
= −1,

meaning that 3 is inert in Z[
√
−p] and in Z[√χ] with χ ∈ End(EA) the lollipop

endomorphism defined as χ = π̂ ◦ ϕ(p)A ◦ ϕ̂A = [−1]ϕA ◦ π ◦ ϕ̂A such that χ2 =

[−p(deg ϕA)2]. We know ker(ϕ̂B), so we can thus use KernelToIsogeny to

compute ϕ̂B(R1) = [m3β]PA and retrieve m using the discrete logarithm over
E[N].

Algorithm 4 SILBE.Dec

Input: pp =
(
p,N, β, (P0, Q0), (U0, V0),Mπ, t

)
, sk = (OEA , IϕA ,MϕA) and ct =

(EB ,R1,R2)
Output: m.

1: PA, QA ←− CanonicalTorsionBasis(EA, N)

2: UB , VB ←− CanonicalTorsionBasis(E
(p)
B , 3β)

3:
(
S
T

)
←−MϕA

(
R1
R2

)
4:

(
K
L

)
←− [n(IϕA)3

β]M−1
π π

(
S
T

)
5: G,H ←− EvalKani

(
n(IϕA)

232β , N,N/p1, S, T,K,L, UB , VB

)
▷ ψ̂ = F (−, 0, 0, 0)1

6: ϕ̂B ←− KernelToIsogeny(EB , G+H) ▷ if G = H, just take G

7: return (3β)−1 ·
(
discretelog(PA, ϕ̂B(R1), N)

)
mod N

3.3 Security

First and foremost, we stress that SILBE is not IND-CPA secure. Indeed, to dis-
tinguish between an encryption ofm0 and that ofm1, we simply have to multiply

18 M. Duparc, T.B. Fouotsa and S. Vaudenay

R1 and R2 by m0 and use EvalKani in dimension 8. If we are able to retrieve
ϕB , then this means that the encrypted message was m0, as that would induce
that [m0]R1 = [m2

0]ϕB(PA) = ϕB(PA) and [m0]R2 = [m2
0]ϕB(QA) = ϕB(QA).

Otherwise, this means that the encrypted message was m1 with overwhelming
probability. This mechanism can be used to know if a ciphertext ct is that of
a plaintext m or not. This induces that any adversary can simulate the oracle
Plaintext Check. This will be useful in the following proposition.

Proposition 2. The security of SILBE as an OW-PCA PKE reduces to Prob-
lem 1 over random curves.

Proof. Using the previously explained method to simulate the Plaintext Check
oracle, we have that

SILBE is OW-PCA secure ⇐⇒ SILBE is OW-CPA secure

Following Proposition 1, we have that the distribution of the public key EA is
Õ(p−1/2) statistically close to the uniform distribution over supersingular curves.
Let AOW−CPA be any adversary for SILBE. We can construct an algorithm B that
solve Problem 1 over random curves with the same advantage as AOW−CPA. B is
defined as such:

1. B receives as input (P,Q, S, T) with P,Q the canonical basis of E[N] and(
S
T

)
= [m]φ

(
P
Q

)
with φ : E → E′ an isogeny of degree 3β .

2. It then calls AOW-CPA
(
E, (E′, S, T)

)
and receive n ∈ µ2(N).

3. It then computes [n]S, [n]T and uses EvalKani in dimension 8 over theses
points to retrieve ker(φ). As 3β is smooth, using KernelToIsogeny, it can
compute φ.

We see that if AOW−CPA succeeds, then so does B, meaning that

P[B solve Problem 1] ≥ AdvOW-CPA(AOW-CPA)

⊓⊔

Thus, under the assumption that Problem 1 over random curves is hard,
SILBE is OW-PCA secure.

4 Extending this PKE into an UPKE

4.1 Design

The idea behind SILBE’s key update mechanism comes from the fact that our
key generation mechanism has two excellent properties, namely that it can be
adapted to start over any curve E, provided that we know an isogeny ϕ : E0 → E
and that finding the public key can be done by just using KernelToIsogeny,
without knowledge of ϕ : E0 → E. Our key update mechanism is therefore an
adaptation of the key generation. Its architecture is given in Figure 7 and it is
performed as follows:

SILBE: an Updatable Public Key Encryption Scheme from Lollipop Attacks 19

E0

EA E1 · · · Et−1 EA
′

IϕA

I1, ρ1

Iϕ′
A

It, ρt

J1
Jt−1

I2, ρ2 It−1, ρt−1

Jt

Fig. 7. Diagram of the key update mechanism of SILBE, Alice in red and Bob in blue.
Black isogenies are used for the construction of SILBE.Usk.

– UG: Generate a random seed µ ∈ {0, 1}4 log(p). The fact that µ ∈ {0, 1}4 log(p)

will ensure that the distribution of the updated public key is statistically
close to the uniform distribution, as it is the case for a newly generated
public key.

– Upk: Use a hash function H over µ to generate a sequence of t elements in
Z3β . Use this sequence to create kernels of an isogeny walk starting at the
public key EA. Thanks to KernelToIsogeny, we compute the end curve
E′
A of that walk and set is as the updated public key.

– Usk: Use the hash function H over µ to generate a sequence of elements in
Z3β . Use this sequence to create kernels of an isogeny walk starting at the
public key EA. Thanks to KernelToIsogeny, we compute the end curve of
that walk, defined as E′

A. Using the knowledge of ϕA : E0 → EA, we follow
the mechanism described in the key generation (Section 3.1) to construct a
new relatively short isogeny ϕ′A : E0 → E′

A, the updated secret key.

Algorithm 5 SILBE.UG

Input: pp =
(
p,N, β, (P0, Q0), (U0, V0),Mπ, t

)
Output: µ an update.

1: Sample µ ∈$ {0, 1}4 log(p)

2: return µ

20 M. Duparc, T.B. Fouotsa and S. Vaudenay

Algorithm 6 SILBE.Upk

Input: pp =
(
p,N, β, (P0, Q0), (U0, V0),Mπ, t

)
, pk = EA and µ.

Output: pk′ the updated public key.

1: E0 ← EA U0, V 0 ←− CanonicalTorsionBasis(E0, 3β)
2: (η1, · · · , ηt)← H(µ) ▷ ηi ∈ Z3β

3: for 1 ⩽ i ⩽ t do
4: Ei, ρi ←− KernelToIsogeny

(
Ei−1, (U i−1 + [ηi]V

i−1)
)

5: Deterministically compute U i, V i a basis of Ei[3β] with ⟨V i⟩ = ρi(E
i−1[3β]).

6: pk′ ← E′
A = Et

7: return pk′

Algorithm 7 SILBE.Usk

Input: pp = (p,N, β, (P0, Q0), (U0, V0),Mπ, t
)
, sk = (OEA , IϕA ,MϕA) and µ.

Output: sk′ the updated secret key.

1: E0 ← EA J0 ← Iϕ U0, V 0 ← CanonicalTorsionBasis(E0, 3β)
2: (η1, · · · , ηt)← H(µ) ▷ ηi ∈ Z3β

3: for 1 ⩽ i ⩽ t do
4: Ei, ρi ←− KernelToIsogeny

(
Ei−1, (U i−1 + [ηi]V

i−1)
)

5: Ii ←− KernelToIdeal
(
OEi−1 , (U i + [ηi]V

i)
)

6: Deterministically compute U i, V i a basis of Ei[3β] with ⟨V i⟩ = ρi(E
i−1[3β]).

7: Ji ←− RandomEquivalentIdeal(Ji−1Ii)

8: if n(Ji) = n(Ji−1) or Ñ
2 − n(Ji) ̸= 1 mod 4 or is not prime do

9: go back to line 7.
10: Si, T i ←− EvalTorsion(O0, ρi ◦κi−1, Ji−1Ii, 1, Ji, P0, Q0) ▷ Use MϕA if i = 1

11: Fi ←− ConstructKani(n(Ji), Ñ , Ñ , P0, Q0, S
i, T i)

12: OEi ←− PushEndRing(O0, κi, Ji) ▷ κi(−) = Fi(0, 0,−, 0)3
13: Iϕ′

A
←− RandomEquivalentIdeal

(
Jt
)

14: if N ′ − n(Iϕ′
A
)232β ̸= 1 mod 4 or is not prime do go back to line 12.

15: K,L←− EvalTorsion(O0, κt, Jt, 1, Iϕ′
A
, P0, Q0)

16: Mϕ′
A
←− EvalImageMatrix(Et, N, Pt, Qt,K, L)

17: sk′ ←−
(
OEt , Iϕ′

A
,Mϕ′

A

)
18: return sk′

4.2 Security

SILBE is OW-PCA-U secure. This comes from the fact that, in the Random
Oracle Model (ROM), we have that SILBE.Upk is a one way mechanism such
that the distribution of the updated public key E′

A is statistically close to the
uniform distribution and thus, E′

A has the same distribution as a public key
EA returned by SILBE.KG. Therefore, any adversaries capable of breaking
SILBE in the OW-PCA-U scenario are also inherently capable of breaking a
fresh instance of SILBE in a OW-PCA scenario6. This leads us to the following
proposition.

6 More precisely, it is able to break a fresh instance of SILBE chosen among poly(λ)
many of them.

SILBE: an Updatable Public Key Encryption Scheme from Lollipop Attacks 21

Proposition 3. In the ROM,

SILBE is OW-PCA secure ⇐⇒ SILBE is OW-PCA-U secure

In fact, we can see that our update mechanism is very similar to the CGL
hash function [13], as the problem of finding µ such that SILBE.Upk(E,µ) = E′

reduces to the isogeny walk problem [16, Problem 3], meaning that our key update
mechanism is one-way.

In conclusion, under the assumption that the Problem 1 is hard over random
curves, we have that SILBE is a OW-PCA-U secure UPKE.

Transforming SILBE into an IND-CCA-U UPKE. SILBE is thus an
OW-PCA-U UPKE. This is a nice result, but it would be far preferable to have
an IND-CPA or an IND-CCA UPKE, a security requirement that we already
showed in Section 3.3 SILBE can not reach alone. To remedy this problem, we
transform SILBE using an adaptation of the Fujisaki-Okamoto (FO) transform
[28] to UPKE. More specifically, we use the transformation detailed in [3, Section
4]. For that transformation, we will need the notion of λ-speadness, as defined
in [3, Definition 7], and of One Time Chosen Plaintext Attack Symmetric Key
Encryption (OT-CPA SKE), as given in [3, Definition 3].

Theorem 1. [3, Theorem 4, simplified form] Let Π be an OW-CPA-U UPKE
scheme that is λ-spread and let Γ be an OT-CPA SKE scheme. Then, given 4
random oracles, we can derive an UPKE Σ that is IND-CCA-U secure in the
ROM.

Applying this theorem to SILBE, we can derive SILBE*, an IND-CCA-U
secure version of SILBE. To so so, we have to show that SILBE is λ-spread, but
this is a direct consequence of Proposition 1 and of the fact that 3β ≫ 2λ, as we
will show in Section 5.1.

It is essential to highlight that this transformation results in an UPKE where
UG and Upk are amalgamated. This amalgamation introduces the possibility for
the update token to depend on certain information from the public keys, a change
from our initial definition. This unified model of UPKE is well-established in
the literature (see, for example, [22,3]). Additionally, it’s worth noting that this
transformation yields an IND-CCA-CU secure UPKE, a stronger security notion
compared to our original IND-CCA-U, which corresponds to an IND-CCA-CR
secure UPKE, if we follow [22] naming convention. For a detailed exposition of
the construction, please refer to Figure 8 in Appendix A.

5 Parameters & Efficiency

5.1 Finding “SILBE friendly” primes

As we previously explained when detailing SILBE’s public parameters, we have
that the cross relation between β and N forces N to have many prime factors.
To compute N and β, we proceed as follows.

22 M. Duparc, T.B. Fouotsa and S. Vaudenay

– Initiate β and N .
– If N ≤ 3β

√
p log(p) ≃ 33β/2N1/2

(
log(N) + β log(3)

)
, we increase the size of

N .
– If Nt ≥ 3β/2 and n− t < λ, we increase the size of β.

Once we have found adequate N and β, we find the smallest co-factor f such
that p = 3βNf +1 is prime. Using this method, we found the following ”SILBE
friendly” primes, detailed in Table 1.

λ β N f n log2(p)

128 2043 5× 7× 11× · · · × 6863 1298 881 13013

192 3229 5× 7× 11× · · · × 10789 1790 1312 20538

256 4461 5× 7× 11× · · · × 14879 16706 1741 28346

Table 1. Parameters for SILBE

We see that in SILBE, we need N to have slightly less than 7λ distinct prime
divisors.

5.2 Efficiency of SILBE

We perform a high level theoretical analysis of the efficiency of SILBE. The
efficiency of SILBE mostly depends on the size of the parameters and on the
cost of performing Kani’s Lemma in dimension 4 over relatively large primes.
Using the approximation

∑
p≤x p

i ≃ π(xi+1), we have that the use of Kani’s
lemma in SILBE requires around:

– 2335λ5 log(λ)4 field operations for either SILBE.KG and SILBE.Usk.
– 75λ5 log(λ)4 field operations for SILBE.Dec.

Those values, although perfectly polynomial in λ, are not yet practical. This
essentially comes from the size of the parameters, together with performing
Kani’s Lemma in dimension 4 with relatively large primes. Nevertheless, we
could improve the efficiency of some subroutines of SILBE as follows:

– SILBE.KG: We could speed up the key generation by adapting the Ran-
dIsogImages algorithm of QFESTA [37] to construct an isogeny ϕA : E0 →
EA directly. With this, we could efficiently perform SILBE.KG using high
dimensional isogenies of dimension 2, thus requiring only 73λ3 log(λ)2 field
computations.

– SILBE.Usk: We can extend the previous idea to also speed up SILBE.Usk.
More specifically, to efficiently compute the isogenies given by the ideals Ji
linking E0 with the Ei curves, we first compute an endomorphism γi ∈
End(E0) of norm n(Ji)

(
N − n(Ji)

)
> p, with N >

√
p a divisor of N .

We then use Kani’s Lemma once to split this endomorphism and retrieve

SILBE: an Updatable Public Key Encryption Scheme from Lollipop Attacks 23

an auxiliary isogeny of domain E0 and degree N − n(Ji). This isogeny can
then be used to evaluate the isogeny described by Ji by applying Kani’s
Lemma one more time. Using this method, we can perform SILBE.Usk
using 2453λ3 log(λ)2 field operations.

The potential improvements above would nevertheless require additional as-
sumptions to ensure that the distribution is computationally indistinguishable
from uniform.

When it comes to performing SILBE.Dec using dimension 2 isogenies, it
is far more challenging. This comes from the fact that the isogeny ψ is of de-
gree 32βn(IϕA)

2 ≫ N . This implies that evaluating ψ requires splitting our
high-dimensional isogeny into two parts, since we don’t have enough torsion to
compute our higher dimensional isogeny in one go. In dimension 4, the isogeny
computed is an endomorphism, which facilitates its splitting. In dimension 2,
the isogeny computed is not an endomorphism anymore, which makes the split-
ting method does not extend naturally. It is unclear whether one could split
the dimension 2 isogeny (in the context of SILBE) without incurring a huge
overhead.

A robust implementation of SILBE necessitates efficient implementations of
isogenies of dimension 2 and/or 4 of prime degree in the order of λ. However, to
the best of our knowledge, no such comprehensive work exists for either dimen-
sions. Currently, the only efficient implementations are for isogenies of degree 2
[15,14] in dimension 2 and 4 and of degree 3 [42] in dimension 2.

In brief, there some obstacles preventing SILBE from being practically effi-
cient and being implemented today, but with the ongoing effort in improving the
computation of high-dimensional isogenies it in very likely that these obstacles
are overcome in the nearest future. Eventually, follow-up works will potentially
lead to a more efficient scheme. For example, in Section 6, we discuss a possible
variant where FESTA is used as the underlying building block and identify some
roadblocks in instantiating this variant.

6 Conclusion and further work

We have thus constructed SILBE, the first isogeny-based UPKE not relying on
group actions. In addition to solving the issues highlighted in [24, Section 5],
it makes an adequate demonstration of how to combine the multiple isogeny
representations to construct new cryptographic schemes.

Further work on SILBE should be directed to improving its efficiency. A
pivotal question for exploration is the refinement of computing HD-isogenies, as
the construction of a higher dimensional analog to

√
élu [7] would demonstrably

improve SILBE, together with shedding light on novel possibilities to use high
dimension isogenies in Isogeny Based Cryptography.

One way to gain in efficiency is to make sure that during decryption, the
degree of the higher dimension isogeny computed is a power of two. This is not
possible in M-SIDH since the order of the points in the public keys need to be

24 M. Duparc, T.B. Fouotsa and S. Vaudenay

highly composite. A plausible candidate here is FESTA [6] where the torsion
points in the public key have order a power of two, hence the higher dimension
isogeny computed during decryption will have order a power of two. The obstacle
with FESTA is the fact that E0 being defined over Fp and the endomorphism
ring of E0 being known to the owner of the secret key are not sufficient for
the lollipop attack. In fact, with FESTA, one needs to know a relatively small
endomorphism θ of E0 that fixes one or both cyclic groups generated by points
in a particular basis which is dependant on the secret isogeny ϕA : E0 → EA.
This can be assured during the key generation, but it is unclear how to assure
this during the key update process, since the key update process leads to a brand
new public key E′

A, together with its corresponding secret key ϕ′A. In fact, the
endomorphism θ used in the previous secret key is useless, and in some cases,
there may not exists any θ′ ∈ End(E) that matches the constraints with respect
to the new secret key ϕ′A. We leave further investigations of instantiating SILBE
with FESTA for future work.

Acknowledgment

We would like to thank SAC 2024 anonymous reviewers for their valuable and
insightful suggestions.

References

1. Abou Haidar, C., Libert, B., Passelègue, A.: Updatable public key encryption from
DCR: Efficient Constructions With Stronger Security. In: Proceedings of the 2022
ACM SIGSAC Conference on Computer and Communications Security. pp. 11–22
(2022)

2. Abou Haidar, C., Passelègue, A., Stehlé, D.: Efficient Updatable Public-Key En-
cryption from Lattices. In: International Conference on the Theory and Application
of Cryptology and Information Security. pp. 342–373. Springer (2023)

3. Asano, K., Watanabe, Y.: Updatable Public Key Encryption with Strong CCA
Security: Security Analysis and Efficient Generic Construction. Cryptology ePrint
Archive, Paper 2023/976 (2023), https://eprint.iacr.org/2023/976, https://eprint.
iacr.org/2023/976

4. Basso, A., Feo, L.D., Dartois, P., Leroux, A., Maino, L., Pope, G., Robert, D.,
Wesolowski, B.: SQIsign2D-west: The fast, the small, and the safer. Cryptology
ePrint Archive, Paper 2024/760 (2024), https://eprint.iacr.org/2024/760, https:
//eprint.iacr.org/2024/760

5. Basso, A., Fouotsa, T.B.: New SIDH Countermeasures for a More Efficient Key
Exchange. In: Guo, J., Steinfeld, R. (eds.) Advances in Cryptology – ASIACRYPT
2023. pp. 208–233. Springer Nature Singapore, Singapore (2023)

6. Basso, A., Maino, L., Pope, G.: FESTA: Fast Encryption from a Supersingular
Torsion Attacks. In: Guo, J., Steinfeld, R. (eds.) Advances in Cryptology – ASI-
ACRYPT 2023. pp. 98–126. Springer Nature Singapore, Singapore (2023)

7. Bernstein, D.J., De Feo, L., Leroux, A., Smith, B.: Faster computation of isogenies
of large prime degree. Open Book Series 4(1), 39–55 (2020)

https://eprint.iacr.org/2023/976
https://eprint.iacr.org/2023/976
https://eprint.iacr.org/2023/976
https://eprint.iacr.org/2024/760
https://eprint.iacr.org/2024/760
https://eprint.iacr.org/2024/760

SILBE: an Updatable Public Key Encryption Scheme from Lollipop Attacks 25

8. Bernstein, D.J., Hamburg, M., Krasnova, A., Lange, T.: Elligator: elliptic-curve
points indistinguishable from uniform random strings. In: Proceedings of the 2013
ACM SIGSAC conference on Computer & communications security. pp. 967–980
(2013)

9. Boneh, D., Lewi, K., Montgomery, H., Raghunathan, A.: Key Homomorphic PRFs
and Their Applications. In: Annual Cryptology Conference. pp. 410–428. Springer
(2013)

10. Castryck, W., Decru, T.: An efficient key recovery attack on SIDH. In: Annual
International Conference on the Theory and Applications of Cryptographic Tech-
niques. pp. 423–447. Springer (2023)

11. Castryck, W., Lange, T., Martindale, C., Panny, L., Renes, J.: CSIDH: an ef-
ficient post-quantum commutative group action. In: Advances in Cryptology–
ASIACRYPT 2018: 24th International Conference on the Theory and Application
of Cryptology and Information Security, Brisbane, QLD, Australia, December 2–6,
2018, Proceedings, Part III 24. pp. 395–427. Springer (2018)

12. Castryck, W., Vercauteren, F.: A polynomial time attack on instances of M-SIDH
and FESTA. In: International Conference on the Theory and Application of Cryp-
tology and Information Security. pp. 127–156. Springer (2023)

13. Charles, D.X., Lauter, K.E., Goren, E.Z.: Cryptographic hash functions from ex-
pander graphs. Journal of CRYPTOLOGY 22(1), 93–113 (2009)

14. Dartois, P., Leroux, A., Robert, D., Wesolowski, B.: SQISignHD: new dimensions in
cryptography. In: Annual International Conference on the Theory and Applications
of Cryptographic Techniques. pp. 3–32. Springer (2024)

15. Dartois, P., Maino, L., Pope, G., Robert, D.: An algorithmic approach to (2, 2)-
isogenies in the theta model and applications to isogeny-based cryptography. Cryp-
tology ePrint Archive, Paper 2023/1747 (2023), https://eprint.iacr.org/2023/1747,
https://eprint.iacr.org/2023/1747

16. De Feo, L.: Mathematics of isogeny based cryptography. arXiv preprint
arXiv:1711.04062 (2017)

17. De Feo, L., Jao, D., Plût, J.: Towards quantum-resistant cryptosystems from super-
singular elliptic curve isogenies. Journal of Mathematical Cryptology 8(3), 209–247
(2014)

18. De Feo, L., Delpech de Saint Guilhem, C., Fouotsa, T.B., Kutas, P., Leroux, A.,
Petit, C., Silva, J., Wesolowski, B.: SÉTA: Supersingular encryption from torsion
attacks. In: Advances in Cryptology–ASIACRYPT 2021: 27th International Con-
ference on the Theory and Application of Cryptology and Information Security,
Singapore, December 6–10, 2021, Proceedings, Part IV 27. pp. 249–278. Springer
(2021)

19. Delfs, C., Galbraith, S.D.: Computing isogenies between supersingular elliptic
curves over Fp. Designs, Codes and Cryptography 78, 425–440 (2016)

20. Deuring, M.: Die typen der multiplikatorenringe elliptischer funktionenkörper.
In: Abhandlungen aus dem mathematischen Seminar der Universität Hamburg.
vol. 14, pp. 197–272. Springer Berlin/Heidelberg (1941)

21. Dodis, Y., Karthikeyan, H., Wichs, D.: Updatable public key encryption in the
standard model. In: Theory of Cryptography: 19th International Conference, TCC
2021, Raleigh, NC, USA, November 8–11, 2021, Proceedings, Part III 19. pp. 254–
285. Springer (2021)

22. Dodis, Y., Karthikeyan, H., Wichs, D.: Updatable public key encryption in the
standard model. In: Nissim, K., Waters, B. (eds.) Theory of Cryptography. pp.
254–285. Springer International Publishing, Cham (2021)

https://eprint.iacr.org/2023/1747
https://eprint.iacr.org/2023/1747

26 M. Duparc, T.B. Fouotsa and S. Vaudenay

23. Duparc, M., Fouotsa, T.B.: SQIPrime: A dimension 2 variant of SQISignHD
with non-smooth challenge isogenies. Cryptology ePrint Archive, Paper 2024/773
(2024), https://eprint.iacr.org/2024/773, https://eprint.iacr.org/2024/773

24. Eaton, E., Jao, D., Komlo, C., Mokrani, Y.: Towards Post-Quantum Updatable
Public-Key Encryption via Supersingular Isogenies. In: International Conference
on Selected Areas in Cryptography. pp. 461–482. Springer (2021)

25. Fouotsa, T.B.: SIDH with masked torsion point images. Cryptology ePrint Archive,
Paper 2022/1054 (2022), https://eprint.iacr.org/2022/1054, https://eprint.iacr.
org/2022/1054

26. Fouotsa, T.B., Moriya, T., Petit, C.: M-SIDH and MD-SIDH: countering SIDH at-
tacks by masking information. In: Annual International Conference on the Theory
and Applications of Cryptographic Techniques. pp. 282–309. Springer (2023)

27. Jao, D., De Feo, L.: Towards quantum-resistant cryptosystems from supersingular
elliptic curve isogenies. In: Post-Quantum Cryptography: 4th International Work-
shop, PQCrypto 2011, Taipei, Taiwan, November 29–December 2, 2011. Proceed-
ings 4. pp. 19–34. Springer (2011)

28. Jiang, H., Zhang, Z., Chen, L., Wang, H., Ma, Z.: IND-CCA-secure key encapsu-
lation mechanism in the quantum random oracle model, revisited. In: Advances
in Cryptology–CRYPTO 2018: 38th Annual International Cryptology Conference,
Santa Barbara, CA, USA, August 19–23, 2018, Proceedings, Part III 38. pp. 96–
125. Springer (2018)

29. Kani, E.: The number of curves of genus two with elliptic differentials. Walter de
Gruyter, Berlin/New York Berlin, New York (1997)

30. Kohel, D., Lauter, K., Petit, C., Tignol, J.P.: On the quaternion-isogeny path
problem. LMS Journal of Computation and Mathematics 17(A), 418–432 (2014)

31. Leroux, A.: Quaternion Algebra and Isogeny-Based Cryptography. Ph.D. thesis,
Ecole doctorale de l’Institut Polytechnique de Paris (2022)

32. Leroux, A.: Verifiable random function from the Deuring correspondence and
higher dimensional isogenies. Cryptology ePrint Archive, Paper 2023/1251 (2023),
https://eprint.iacr.org/2023/1251, https://eprint.iacr.org/2023/1251

33. Leroux, A., Roméas, M.: Updatable encryption from group actions. In: Interna-
tional Conference on Post-Quantum Cryptography. pp. 20–53. Springer (2024)

34. Maino, L., Martindale, C., Panny, L., Pope, G., Wesolowski, B.: A direct key
recovery attack on SIDH. In: Annual International Conference on the Theory and
Applications of Cryptographic Techniques. pp. 448–471. Springer (2023)

35. Milne, J.S.: Abelian varieties. Arithmetic Geometry pp. 103–150 (1986)
36. Moriya, T.: IS-CUBE: An isogeny-based compact KEM using a boxed SIDH di-

agram. Cryptology ePrint Archive, Paper 2023/1506 (2023), https://eprint.iacr.
org/2023/1506, https://eprint.iacr.org/2023/1506

37. Nakagawa, K., Onuki, H.: QFESTA: Efficient Algorithms and Parameters for
FESTA using Quaternion Algebras. Cryptology ePrint Archive, Paper 2023/1468
(2023), https://eprint.iacr.org/2023/1468, https://eprint.iacr.org/2023/1468

38. Nakagawa, K., Onuki, H.: SQIsign2D-east: A new signature scheme using 2-
dimensional isogenies. Cryptology ePrint Archive, Paper 2024/771 (2024), https:
//eprint.iacr.org/2024/771, https://eprint.iacr.org/2024/771

39. Onuki, H., Nakagawa, K.: Ideal-to-isogeny algorithm using 2-dimensional isogenies
and its application to SQIsign. Cryptology ePrint Archive, Paper 2024/778 (2024),
https://eprint.iacr.org/2024/778, https://eprint.iacr.org/2024/778

40. Robert, D.: Evaluating isogenies in polylogarithmic time. Cryptology ePrint
Archive, Paper 2022/1068 (2022), https://eprint.iacr.org/2022/1068, https://
eprint.iacr.org/2022/1068

https://eprint.iacr.org/2024/773
https://eprint.iacr.org/2024/773
https://eprint.iacr.org/2022/1054
https://eprint.iacr.org/2022/1054
https://eprint.iacr.org/2022/1054
https://eprint.iacr.org/2023/1251
https://eprint.iacr.org/2023/1251
https://eprint.iacr.org/2023/1506
https://eprint.iacr.org/2023/1506
https://eprint.iacr.org/2023/1506
https://eprint.iacr.org/2023/1468
https://eprint.iacr.org/2023/1468
https://eprint.iacr.org/2024/771
https://eprint.iacr.org/2024/771
https://eprint.iacr.org/2024/771
https://eprint.iacr.org/2024/778
https://eprint.iacr.org/2024/778
https://eprint.iacr.org/2022/1068
https://eprint.iacr.org/2022/1068
https://eprint.iacr.org/2022/1068

SILBE: an Updatable Public Key Encryption Scheme from Lollipop Attacks 27

41. Robert, D.: Breaking SIDH in polynomial time. In: Annual International Confer-
ence on the Theory and Applications of Cryptographic Techniques. pp. 472–503.
Springer (2023)

42. Santos, M.C.R., Costello, C., Smith, B.: Efficient (3,3)-isogenies on fast kummer
surfaces. Cryptology ePrint Archive, Paper 2024/144 (2024), https://eprint.iacr.
org/2024/144, https://eprint.iacr.org/2024/144

43. Silverman, J.H.: The arithmetic of elliptic curves, vol. 106. Springer (2009)
44. Vélu, J.: Isogénies entre courbes elliptiques. Comptes-Rendus de l’Académie des

Sciences 273, 238–241 (1971)
45. Zanon, G.H., Simplicio, M.A., Pereira, G.C., Doliskani, J., Barreto, P.S.: Faster key

compression for isogeny-based cryptosystems. IEEE Transactions on Computers
68(5), 688–701 (2018)

A IND-CCA-CU FO transform

Theorem 2. [3, Theorem 4] Let Π := (KG,Enc,Dec,UG,Upk,Usk) be an OW-
CPA-U UPKE scheme that is λ-spread and Γ := (SEnc,SDec) be an OT-CPA
SKE scheme with M,R and SK respectively the spaces of plaintexts of Π, ran-
domness of Π, and secret keys of Γ . Let

– G : {0, 1}∗ → SK
– H : {0, 1}∗ × {0, 1}∗ × {0, 1}∗ → SK
– Ĝ : {0, 1}∗ → SK
– Ĥ : {0, 1}∗ × {0, 1}∗ → M

be 4 random oracles. Then we can construct an UPKE Σ := (KG′,Enc′,Dec′,Upk′,Usk′)
that is IND-CCA-U secure in the ROM.

The proof of this theorem is detailed in [3, Section 4.3 & Section 4.4]. The
construction of Σ is detailed in Figure 8.

https://eprint.iacr.org/2024/144
https://eprint.iacr.org/2024/144
https://eprint.iacr.org/2024/144

28 M. Duparc, T.B. Fouotsa and S. Vaudenay

KG′(pp)

1 : (sk0, pk0)
$← KG(pp)

2 : sk′0 ← sk0

3 : pk′0 ← pk0

4 : return sk′0, pk
′
0

Enc′(pk′i ,m)

1 : σ
$←M

2 : k←G(σ)

3 : ctsym
$← SEnc(k,m)

4 : h← H(i, σ, ctsym)

5 : ctasy ← Enc(pk′i , σ; h)

6 : ct←(ctsym, ctasy)

7 : return ct

Dec′(sk′i , ct)

1 : σ←Dec(sk′i , ctasy)

2 : if σ /∈M do return ⊥
3 : h← H(i, σ, ctsym)

4 : if ctasy ̸= Enc(pk′i , σ; h) do

5 : return ⊥
6 : k← G(σ)

7 : return SDec(k, ctsym)

Upk′(pk′i)

1 : r
$←−M

2 : s← Ĝ(r)

3 : µi+1 ← UG(pp; s)

4 : pki+1←Usk(pk′i , µi+1)

5 : h←Ĥ(r, pk′i+1, µi+1)

6 : ctaux←Enc(pk′i , r; h)

7 : µ′
i+1 ← (µi+1, ctaux)

8 : return pki+1, µ
′
i+1

Usk′(sk′i , µ
′
i+1)

1 : r← Dec(ski, ctaux)

2 : if r /∈M do return ⊥

3 : h← Ĥ(r, pki+1, µi+1)

4 : s← Ĝ(r)

5 : if ctaux ̸= Enc(pk′i , r; h) do

6 : return ⊥
7 : if (pki+1, µ

′
i+1) ̸= Upk(pki; s) do

8 : return ⊥
9 : sk′i+1 ← Usk(ski, µi+1)

10 : return sk′i+1

Fig. 8. [3] UPKE-FO-Transform

	SILBE: an Updatable Public Key Encryption Scheme from Lollipop Attacks
	Introduction
	Preliminaries
	Supersingular isogenies and more
	UPKE
	Used Algorithms
	M-SIDH
	Generalised lollipop attack

	Constructing a PKE from the generalised lollipop attack
	Key generation
	Encryption & Decryption
	Security

	Extending this PKE into an UPKE
	Design
	Security

	Parameters & Efficiency
	Finding ``SILBE friendly'' primes
	Efficiency of SILBE

	Conclusion and further work
	IND-CCA-CU FO transform

