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Abstract. In this work we consider the task of designing information-
theoretic MPC protocols for which the state of a given party can be
recovered from a small amount of parties, a property we refer to as local
repairability. This is useful when considering MPC over dynamic settings
where parties leave and join a computation, a scenario that has gained
notable attention in recent literature. Thanks to the results of (Cramer et
al. EUROCRYPT’00), designing such protocols boils down to constructing
a linear secret-sharing scheme (LSSS) with good locality, that is, each
share is determined by only a small amount of other shares, that also
satisfies the so-called multiplicativity property. Previous constructions
that achieve locality (e.g. using locally recoverable codes—LRCs) do not
enjoy multiplicativity, and LSSS that are multiplicative (e.g. Shamir’s
secret-sharing) do not satisfy locality. Our construction bridges this
literature gap by showing the existence of an LSSS that achieves both
properties simultaneously.

Our results are obtained by making use of well known connection between
error correcting codes and LSSS, in order to adapt the LRC construction
by (Tamo & Barg, IEEE Transactions on Information Theory 2014) to
turn it into a LSSS. With enough care, such coding-theoretic construction
yields our desired locality property, but it falls short at satisfying mul-
tiplicativity. In order to address this, we perform an extensive analysis
of the privacy properties of our scheme in order to identify parameter
regimes where our construction satisfies multiplicativity.

Finally, since our LSSS satisfies locality, every share is determined by a
small amount of shares. However, in an MPC context it is not enough
to let the (small set of) parties to send their shares to the repaired
party, since this may leak more information than the regenerated share.
To obtain our final result regarding MPC with local repairability, we
construct a lightweight MPC protocol that performs such repairing process
without any leakage. We provide both a passively secure construction (for
the plain multiplicative regime) and an actively secure one (for strong
multiplicativity).
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1 Introduction

Secure multiparty computation (MPC) is a set of techniques that enables a
set of n mutually distrustful parties P1, . . . , Pn to securely compute a function
on secret data, while revealing only its output, even if some unknown subset
t of the parties is corrupted by an adversary. Let us represent the function
to be computed securely as an arithmetic circuit comprised of addition and
multiplication gates over a finite field F. A popular and successful approach
to building MPC protocols consists of letting the parties obtain secret-shared
versions of the inputs, that is, each party holds a share of each input to the
computation in such a way that the shares of the corrupted parties collectively leak
nothing about the inputs, and yet, certain allowed sets of shares can reconstruct
the underlying secret. Then, the parties engage in some interactions in order
to securely compute shares of each intermediate wire in the circuit until they
reach shares of the output, at which point they use the reconstruction procedure
to learn the result. Many notable protocols follow this paradigm, both in the
honest majority setting [32,33,20,9,34] (where the adversary corrupts at most a
minority of the parties) and also with dishonest majority [6,24,23,43,44,4] (where,
in contrast, the adversary may control all but one of the parties). Furthermore,
MPC protocols are also categorized by the level of security they achieve (e.g.
computational or information-theoretic), or by the type of adversary they tolerate
(e.g. passive/semi-honest or active/malicious).

In this work we focus specifically in the context of passive security with
t < n/2 and active security with t < n/3, both with perfect security. In this case,
a common template is to use Shamir’s secret-sharing [8,65], where the shares of
a secret s ∈ F are given by (f(1), . . . , f(n)), where f(X) is a random polynomial
over F of degree ≤ t, subject to f(0) = s. This scheme satisfies t-privacy (meaning
any t shares do not leak any information about the secret, which ensures the
adversary does not learn any sensitive information) and (t+ 1)-reconstruction
(meaning that any t+ 1 shares together can reconstruct the secret). Furthermore,
this scheme is linear, which means that the parties can locally add their shares
of two secrets to obtain shares of the sum; this property enables the parties to
process addition gates non-interactively. Finally, another important property is
that the parties can locally multiply their shares of two secrets to obtain degree-2t
sharings of their product; in particular, if t < n/2, so 2t < n, all the parties
together can still reconstruct the product of the secrets, and if t < n/3 the n− t
honest parties on their own can do this, without the help of the t corrupt parties.
These properties are accordingly called multiplicativity and strong multiplicativity,
and they are key in obtaining MPC for t < n/2 with passive security and t < n/3
with active security, respectively, and in fact there is a long series of works that
relies specifically on this construction (e.g. [5,16], to cite a few). Even more, it
was shown in [18] that MPC is in general possible from any linear secret-sharing
scheme (LSSS) that satisfies multiplicativity (for t < n/2 with passive security)
and strong multiplicativity (for t < n/3 with active security) and in fact, it is
currently unknown whether we can obtain this type of MPC without using these
properties.
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MPC with repairing parties. In protocols that follow the secret-sharing
paradigm, the “state” of a party during a protocol execution is typically given
by the set of shares it holds. Depending on the secret-sharing scheme used and
the adversarial setting, this “state” is usually determined by the shares held by
the other parties. For example, in Shamir’s secret-sharing any t + 1 sharings
together determine the polynomial f(X) and hence determine the secret s = f(0),
but even more interestingly, they also determine any other share f(i). This way,
if a party Pi needs to learn its “state” f(i), the other parties can engage in a
lightweight MPC protocol where each party Pj for j 6= i inputs its share f(j),
and Pi learns precisely f(i). We will refer to the task of reconstructing Pi’s share
as repairing or regenerating this share.

The ability to restore a party’s state from the other parties’ information is
useful once we factor in the fact that, depending on the setting and the function
being computed, the execution of an MPC protocol can take a considerable
amount of resources and time. During such period of time it is not unreasonable
for a party to have the need to learn its state: perhaps the party crashed and lost
its state, or it had network issues and got disconnected, or possibly a new party
is joining the computation (which is useful for example to add diversity to the
computation, preventing collusions). However, the simple idea sketched above
suffers from a massive drawback: the party joining must receive messages from
all of the other computing parties in order to obtain its share. This is a huge
blocker, especially in large-scale scenarios. Compare this to, for example, other
large-scale distributed scenarios such as permissionless blockchains: consensus
is maintained by letting multiple parties hold the same view of the underlying
ledger, and whenever a new participant wishes to join the network, he or she
only needs to contact a small subset of nodes in order to receive the current
state, at which point the new node can become an active member. In fact, one
can argue that part of the scalability of such systems comes from the fact that
their underlying networks are comprised of “local” committees, where each party
connects to a subset of the nodes, and messages are propagated via network
flooding and echoing.

The above discussion sets the stage for the following question:

Is it possible to design MPC protocols with repairing ability, in such a
way that regenerating the state of a party does not require communication
from all of the other computing parties?

1.1 Our Contribution

Our work makes substantial progress in addressing the question above by intro-
ducing a linear secret-sharing scheme that simultaneously (1) allows for efficient
share repairing and (2) is suitable for the design of honest majority MPC pro-
tocols. Shamir’s secret-sharing as described previously is a good example of a
scheme that satisfies (2)—and in fact is one of the most widely used building
blocks in honest majority MPC—but it does not satisfy (1) as repairing requires
communication from a large amount of parties. In contrast, the literature of

3



secure distributed storage (see for example [28,45,70]), where multiple parties
hold shares of a secret but only for the purpose of storing it (in contrast to
computing on it as in MPC), already considers secret-sharing schemes that satisfy
(1). Efficient regeneration of shares is crucial in this context in order to preserve
data availability and to achieve this, multiple works make use of locally recoverable
codes (LRC), which enable shares to be regenerated only from a small subset of
shares. Unfortunately, such works did not consider multiplicativity—needed for
item (2)—when using the efficient LRC constructions from [66,69,53,52].

We reconcile the state of affairs from above by considering a linear secret
sharing scheme that satisfies the two items required, which makes it suitable
in the context of MPC where parties leave (e.g. due to crashing) and rejoin a
given computation. We achieve this by proposing an efficient and secure share
repairing lightweight protocol, and we also investigate the multiplicativity and
strong multiplicativity properties of our lsss, for certain corruption regimes. Our
scheme, unlike Shamir’s secret-sharing, is not a threshold scheme, meaning that
while its privacy threshold is t, its reconstruction threshold r is strictly larger
than t+ 1. Such schemes are called ramp. Given the context above, we state the
following result pertaining the properties of our LSSS:

Corollary 1 (Simplification of Theorems 1 and 2) For any prime power
q and positive integers v, n such that v | n, there exists a secure repairable linear
ramp secret-sharing Σ for n players over Fq with reconstruction threshold r and
privacy threshold t, where the gap is r − t = O

(
n
v

)
, and such that any share can

be recovered by contacting v other players. Furthermore

– There exists a family of instantiations of Σ with t < r ≤ n
2 that is multiplica-

tive where t = n
(
1
2 −O

(
1
v

))
+O(1).

– There exists a family of instantiations of Σ with t < r ≤ n
3 that is strongly

multiplicative where t = n
(
1
3 −O

(
1
v

))
+O(1).

By setting v ≈ n we obtain parameters comparable to Shamir’s: multiplicativ-
ity for t ≈ n/2 and strong multiplicativity for t ≈ n/3, but we do not save in terms
of repairing since essentially all shares are needed to regenerate an additional
share. Interesting regimes occur when we take v � n. For example, by taking
v ≈ n/c we obtain multiplicativity with t ≈ n/2− c, and strong multiplicativity
with t ≈ n/3 − c. This shows we can save a multiplicative factor of c in terms
of locality, while only sacrificing the corruption tolerance by an additive term
of c. We remark that our actual construction involves several parameters, and
Corollary 1 is a concrete instantiation of the family of LSSSs we construct. For
details, we refer the reader to Section 3 where we present our construction and
present its parameters more thoroughly.

On share privacy and static adversaries. In our LSSS, each share is determined
by at most v other shares, where v can be chosen to be much smaller than n.
More precisely, the set of n parties will be partitioned in a series of groups of size
v + 1, where v shares within a group can be used to reconstruct the remaining
share of the group. However, this means that if an adversary corrupts v parties
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of a single group, then via locality the adversary can learn the share of the
remaining uncorrupted party. This may not affect privacy of the secret since
even with these extra shares the adversary may not have enough information to
reconstruct the secret, but still violates the privacy of the honest party, whose
share has been revealed. We consider the notion of share privacy, where the share
of each honest party must also be kept secret from the adversary, and similar to
committee-based approaches in MPC (e.g. [22]), we achieve it by assuming that
the adversary is static, meaning that he chooses which parties to corrupt before
the actual protocol execution starts, and that the assignment of parties into
groups is done uniformly at random. From this, via a careful choice of parameters
and a non-trivial analysis of probabilities, we are able to show our repairing
protocol and hence the whole secret sharing scheme is statistically secure, when
the group size (and hence the number of parties) is sufficiently large. We remark
that the restriction of the adversary being static is required for any repairable
secret sharing scheme that provides share privacy. In fact, the same assumption
of a static adversary can also be found in other works on repairable secret sharing
(see, for example [46,1,42,60,48]).

Secure protocols for regenerating shares. In the context of repairing a given share,
sending the v needed shares for regeneration in the clear may leak more than
the intended share to regenerate, and in fact it may violate share privacy as
considered above. To address this, instead of the v parties sending their shares
directly to the party being repaired, these parties run a lightweight MPC protocol
in which the v parties input their shares and the receiving party receives only its
own regenerated share. We refer to such procedure as a repairing protocol with
locality v. In this work we also present explicit and efficient repairing protocols
for our secret-sharing scheme, which enables a party to learn its share while
communicating with only v parties, and without leaking anything beyond this
share. As above, our repairing protocols only tolerate static adversaries, where
the set of corrupt parties is fixed before any protocol execution.

MPC results. Coupling the properties of our LSSS together with our repairing
protocols and the results in [18], we obtain the following as corollaries:

Corollary 2 (MPC with efficient repairing) Let q be a prime power, and

let v, n be positive integers such that v | n and v = ln(1+ε) n for some ε > 0.
Assume that n = Ω(κ), where κ is the statistical security parameter. Then there
exist statistically secure MPC protocols for general arithmetic circuits, protecting
against a static adversary corrupting t parties, and having repairing protocols
with locality v, with either one of the following properties:

– Passive security with t = n
(
1
2 −O

(
1
v

))
+O(1).

– Active security with t = n
(
1
3 −O

(
1
v

))
+O(1).

1.2 Related Work

Repairable secret-sharing. The notion of locally repairable codes, which implicitly
lies at the core of our construction, is used in a wide variety of scenarios such as
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distributed storage systems, or DSS, for short. In this context, a piece of data is
encoded and stored in several nodes with the goal of ensuring its availability even
if some nodes fail/crash, and at the same time, possibly, providing some notion
of privacy. Among the desired properties for such system we find repairability
(see, for example, [14,15,49,73]), which, intuitively, allows any entry of a given
codeword to be determined by partial information obtained from some of the other
entries of the codeword. When translating these notions to the secret-sharing
setting, we arrive at the concept of repairable secret sharing.

The study of secure repairable secret sharing was firstly proposed by Herzberg
et al. [39].4 In that work, the authors proposed a reparing mechanism to enroll
new parties based on Shamir’s secret sharing. Since then, there have been studies
that follow a similar direction with the help of error correcting codes, publicly-
verifiable secret sharing schemes, bivariate polynomial secret sharing scheme and
vector space secret sharing schemes (see, for example, [71,74,62]). A survey on
the study of repairable secret sharing schemes can be found in [46].

Repairable error-correcting codes. The concept of repairability has been well-
studied in the field of error correcting codes, in particular in its relation with
distributed storage systems. Regenerating codes constitute a family of error
correcting codes that was proposed by Dimakis et al. [26] where, given any
codeword of the code, any of its entries can be recovered from some partial
information from some of the other entries. Such property enables regenerating
codes to be used to encode data in several nodes where failure in a node can
be repaired by downloading some information from some other nodes. A bit
more precisely, we may encode a piece of data D in N nodes where each node
stores δ bits of data in such a way that D can be recovered by downloading the
information stored in any K ≤ N nodes, with K ideally being much smaller
than N . The regenerating capability ensures that if a node fails, it can contact
K ≤ D < N nodes and download κ bits from each of the contacted node to
regenerate the data to be stored in the failed node. Here the repair bandwidth is
the total amount of bits needed to perform a repair process, which is D · κ in the
case above.

Some families of regenerating codes that are constructed with the objective
of minimizing either storage or bandwidth are called Minimum Storage Regen-
erating (MSR for short) codes and Minimum Bandwidth Regenerating (MBR
for short) codes, respectively. There have been numerous studies investigating
both MSR and MBR codes. It was shown that we can construct codes from
both families using product-matrix constructions [57]. There have also been some
studies on regenerating codes in various other directions such as impossibility
results (e.g. [64]), existential bounds (e.g. [10,68,3,61]) and explicit constructions
(e.g. [31,58,72]).

4 More precisely, [39] studies proactive secret-sharing schemes in which shares of a
given secret must be “refreshed”. However, in Section 4 of their paper, the authors
argue that share recovery is essential to have a secure proactive SS. In addition, in
several other references on repairable secret-sharing schemes, [39] is credited to be
the first to propose the concept of repairing shares (which is either corrupt or lost).
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Note that in practice, the nodes may be spread around the world, and in such
a case the distance between nodes may become very large. Hence, instead of just
focusing on the repair bandwidth, we may also be interested in keeping the amount
of contacted nodes small. This is captured by the metric of locality. The study of
this concept, together with the construction of codes with small locality, were
first pioneered in [30,38,40]. There have then been many studies on both bounds
and constructions of locally repairable codes; see for example [69,41,50,37,11,51].

Securely repairing shares in repairable secret-sharing. Despite the numerous
studies on the concept of repairable error correcting codes, such studies only focus
on repairing failing nodes without considering the privacy of either the original
data being encoded, or the data stored in different nodes. Furthermore, since
these studies are typically set in the domain of distributed storage systems, they
consider static data that is not manipulated to perform arbitrary computations,5

which is the case in the field of secure MPC.

Due to the close relation between error correcting codes and secret sharing
schemes, the concept of repairability has also been considered in the latter. To
enable this, some notion of security has been added to the concept of regenerating
codes, (e.g. [1,42,60]) This study was first initialized by Pawar et al. [54]. Secure
repairable secret sharing schemes have subsequently been proposed based on
various techniques such as enrollment protocols [35,67], combinatorial design [67],
linearized polynomials [63] and regenerating codes [63,57,59]. However, in all
these studies, the adversary model that is considered is that of a passive adversary
who can learn the data stored in a set of players and the messages received by a
different set of players, without the ability to arbitrarily modify the behaviour of
those players.

To the best of our knowledge, there has only been one work on the construction
of regenerating codes having security against somewhat “active” adversaries [48].
In this work, Li et al. constructed a repairable secret sharing scheme by first
masking the message with the output stream of a linear feedback shift register
(LFSR) before encoding the masked message with an MSR encoding. In their
work, they show that the resulting regenerating code is secure against a passive
eavesdropper, but enhanced so that any malicious modification of any message can
be detected and corrected with probability of at least 1− 1

q , where q is the order
of the underlying finite field. However, in that work, the privacy of the shares
is not considered during the repairing process, while the privacy of the secret is
obtained via the security guarantee of the underlying block cipher. Furthermore,
the authors do not consider the multiplicative property of the scheme, which is
an essential property for the application of secret sharing scheme in the design of
actively secure MPC schemes. Such property is most likely not satisfied due to
the encryption step before the share generation. In other words, to the best of our

5 If the encoding process is linear then computation represented by simple linear
operations is possible. However, the calculation of the product of two encoded values
is not easy to achieve, which is where the concepts of multiplicativity and strong
multiplicativity become useful.
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knowledge, our construction from Section 5 constitutes the first repairable secret
sharing scheme suitable for secure multiparty computation, satisfying security
against an active adversary.

Enabling parties to join a secure computation. The problem of handling invol-
untary crashes in MPC has received quite some attention recently, and several
works are dedicated to the study of such protocols [27,2,36,17,29,21]. However,
among those, to the best of our knowledge, only [17,29,21] enable parties to rejoin
the computation, and moreover, only [21] allows parties to rejoin while possibly
missing all the intermediate messages sent to them while being offline. Our work
enables parties to join a computation not only if they miss messages while being
offline, but even if they were never a previous participant in the protocol to begin
with. However, we do not achieve optimal privacy and reconstruction parameters
(in fact, our scheme is a ramp scheme, which has a gap between the privacy and
reconstruction thresholds), while the works mentioned above show and achieve
lower bounds. Furthermore, these works build on top of “standard” Shamir’s
secret-sharing and hence require communication from essentially all the parties,
while our work considers a substantial modification to this scheme that enables
local repairability.

Remark 1 (On “YOSO-fying” or “Fluidifying” our protocols). Interestingly, both
YOSO and Fluid MPC [17,29] and their follow-ups [7,55,25,12] consider MPC in a
setting where the set of parties change dynamically in every round. Furthermore,
YOSO focuses on removing the static-corruption assumption from committee-
based MPC protocols, and an interesting research direction involves using YOSO-
like protocols to remove the static-adversary assumption from our work. Another
interesting direction consists of using our secret-sharing scheme to improve the
efficiency of YOSO/Fluid protocols, in particular, reducing the communication
overhead of the re-sharing step (whereby a committee passes a shared secret to
the next committee), which is typically the bottleneck in these protocols. Our
scheme allows for each share to be determined from a small amount of shares,
which may indeed improve efficiency. We leave this for future work.

1.3 Organization

This paper is organized as follows. In Section 2, we briefly define some basic
notations and discuss some basic concepts that will be useful in our discussion.
Section 3 contains our main LSSS Σ as Algorithm 1, together with the analysis
of its main properties. Next, we consider how to securely repair shares for the
multiplicative variant of our construction with passive security in Section 4. This
is then extended to active adversaries for the strongly multiplicative variant of
our scheme in Section 5. Finally, we provide some discussion on related work in
Section 1.2.
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q Prime power, number of field elements

Fq The finite field with q elements

n Number of players

τ Number of corrupted players

Pi The i-th player, 1 ≤ i ≤ n
v Number of involved parties in secure repairing scheme (size of each

local group: v + 1, which divides q + 1)

H Multiplicative subgroup of F∗q of size v + 1

m Number of cosets of H considered, or number of local groups, where
m ≤ q−1

v+1
, n = m(v + 1)

β1, . . . , βm Coset leaders of H

`(x) `(x) =
∏
α∈H(x− α)

ρ ρ ∈ Fq \ `(Fq)
g(x) g(x) = `(x) + ρ

γ0, γ1, . . . , γn Evaluation points belonging to {0} ∪
(⋃m

i=1 βiH
)
, where γ0 = 0.

f(x) Polynomial used to share s, s =
∑w
j=0 a0jg(0)j . It holds that f(x) =∑d−1

i=0

(∑w
j=0 ai,jg(x)j

)
xi ∈ Fq[x]

d Degree of f(x) (plus one) when g(x) is fixed to be a constant, upper
bound on corrupted parties in each local group, d ≤ v

w w + 1 is the minimum number of local groups required to recover
the secret, w < m

s ∈ Fq Secret

t Privacy level

r Reconstruction level

h(x) Polynomial mask for repairing process

hi(x) Share of polynomial mask generated by Pi

Table 1. Table of Notations

2 Preliminaries

In this section, we briefly discuss some notations that are used throughout the
manuscript. As a useful reference, a complete table of notations can be found in
Table 1

For a prime power q, we denote by Fq the finite field with q elements. We
also define Fq[X] to be the set of polynomials over Fq. For any positive integer N,
define FNq the set of vectors of length N over Fq. Also, for any positive integer
n, we denote by [n] = {1, . . . , n}. Let v ≥ 2 be a positive integer such that
(v+ 1)|(q− 1). This implies that there exists a unique multiplicative subgroup H
of F∗q of size v + 1. Observe that H partitions F∗q to q−1

v+1 disjoint cosets. Let such
cosets be β1H,β2H, . . . , β q−1

v+1
H.
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In the following, we define a function that is a constant in each coset, which
will be used as an ingredient in our secret sharing construction.

Lemma 3. Let `(X) =
∏
α∈H(X− α). Then `(X) is a constant in each coset and

`(0) 6= 0. Furthermore, for any β, γ ∈ Fq, `(β) = `(γ) if and only if either β, γ
belong to the same coset or β = γ = 0.

Proof. Indeed, for any βiα
′ ∈ βiH with α′ ∈ H, we have

`(βiα
′) =

∏
α∈H

(βiα
′ − α) = (α′)v+1

∏
α∈H

(βi − α(α′)−1) =
∏
α∈H

(βi − α) = `(βi).

This proves the first part.
Now suppose that `(β) = `(γ) and at least one of β, γ is a nonzero element.

Then, from the first statement we already proved, `(λ) − `(β) = 0 for all λ ∈
βH ∪ γH. As deg(`(X) − `(β)) = |H|, we must have |βH ∪ γH| 6 |H|. This
implies that both β, γ are nonzero and they belong to the same coset. ut

2.1 Secret Sharing Schemes

Let P = {P1, . . . , Pn} be a finite set of players. A forbidden set F is a family of
subsets of P such that for any A ∈ F and A′ ⊆ A, we must have A′ ∈ F . For any
t < n, we define Ft,n to be the forbidden set containing all subsets of P of size
at most t. On the other hand, a qualified set Γ is a family of subsets of P such
that for any B ∈ Γ and B ⊆ B′, we must have B′ ∈ Γ. For any r ≤ n, we define
Γr,n to be the qualified set containing all subsets of P of size at least r. For any
forbidden set F and a qualified set Γ over P such that F ∩Γ = ∅, the pair (F , Γ )
is called an access structure.

A secret sharing scheme with access structure (F , Γ ) over Fq on P is a pair
of functions (Share,Rec) where Share is a probabilistic function that calculates
the random shares for the n players given the secret. For any secret S ∈ Fq, if
(S1, . . . ,Sn) = Share(S), for any A ⊆ P, we denote by SA = (Si)Pi∈A, the vector
containing the shares of all players Pi ∈ A. On the other hand, Rec accepts shares
from a set of players in P and attempt to recover the original secret that satisfies
the following requirements:

1. For any B ∈ Γ, given the shares of all players Pi ∈ B, Rec returns the original
secret S.

2. For any A ∈ F , the shares of Pi ∈ A does not give any information regarding
the secret. That is, the distribution of the shares SA of players in A is
independent of the original secret S.

A secret sharing scheme with access structure (F , Γ ) such that Ft,n ⊆ F and
Γr,n ⊆ Γ for some 0 < t < r < n is called a ramp secret sharing scheme providing
t-privacy and r-reconstruction. If r = t+ 1, we call it a threshold secret sharing
scheme.

Next we discuss the notions of linearity, multiplicativity and strong multi-
plicativity. We follow the definitions given in [19].
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A linear secret sharing scheme over Fq on n players with secret space and
share space Fq is a pair (Share : Fq → Fnq , Rec : F∗q → Fq ∪ {⊥}) such that
the set {(s,Share(s)) : s ∈ Fq} is an Fq-subspace of Fq × Fnq and for any s ∈
Fq,Rec(Share(s)) = s. A linear secret sharing scheme Σ is said to be multiplicative
if there is a vector r ∈ Fnq such that for any two secrets s, s′ ∈ Fq with their
respective shares Share(s) = (s1, . . . , sn) and Share(s′) = (s′1, . . . , s

′
n) where

si, s
′
i ∈ Fq for any i = 1, . . . , n, r ◦ (s1s

′
1, . . . , sns

′
n) = s · s′ where ◦ represents the

standard inner product.
Lastly, a linear secret sharing Σ is said to be t-strongly multiplicative if

it has t-privacy and for any two secrets s, s′ ∈ Fq such that (s1, . . . , sn) =
Share(s), (s′1, . . . , s

′
n) = Share(s′), ss′ can be recovered from any n− t entries of

(s1s
′
1, . . . , sns

′
n).

A well-known example of a linear threshold secret sharing scheme is Shamir’s
secret sharing scheme. For two positive integers t and n such that t < n < q, a
(t, n)-Shamir’s secret sharing scheme over Fq is a linear secret sharing scheme
for n parties with providing t-privacy and t+ 1 reconstruction with both secrets
and shares being elements of Fq. The share generation is done in the following
way. First, we choose n non-zero pairwise distinct elements of Fq, say α1, . . . , αn,
and assign each element to different players. Given the secret s ∈ Fq, first, we
randomly choose a polynomial f(X) ∈ Fq[X] of degree t such that f(0) = s. Then
the share for the player assigned to the element αi is defined to be f(αi) ∈ Fq.
It can be shown that this secret sharing scheme provides t-privacy and t + 1
reconstruction. Furthermore, such secret sharing scheme is linear, multiplicative
when t < n

2 and strongly multiplicative when t < n
3 .

2.2 Linear Codes

In this section, we briefly discuss the concept of linear codes.

Definition 1 (Linear Codes) Let n, k, d be non-negative integers such that d
and k are at most n. A linear code C over Fq with parameter [n, k, d] is a subspace
C ⊆ Fnq of dimension k such that for any non-zero c ∈ C \{0}, wtH(c) ≥ d where
for any vector x = (x1, . . . , xn), wtH(x) is defined to be the Hamming weight of
x, i.e., wtH(x) = |{i : xi 6= 0}|. It is well known that a code of minimum distance
d can uniquely correct any error of Hamming weight

⌊
d−1
2

⌋
.

Next, we recall the definition of Reed-Solomon codes.

Definition 2 Let q be a prime power and let n and k be positive integers such
that k ≤ n ≤ q. Fix α = (α1, . . . , αn) ∈ Fnq where αi is pairwise distinct. We
define Fq[X]<k to be the set of polynomials over Fq of degree at most k − 1. For
any f(X) ∈ Fq[X], define cf,α = (f(α1), . . . , f(αn)) ∈ Fnq . The Reed-Solomon code
RSn,k,α is defined to be the set of vectors cf,α with f(X) ∈ Fq[X]<k, that is,

RSn,k,α = {(f(α1), . . . , f(αn)) : f(X) ∈ Fq[X]<k} .

It is well known that for any choice of α, the minimum Hamming distance of
RSn,k,α is n−k+1. Hence, it can uniquely correct up to

⌊
n−k
2

⌋
Hamming errors.
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2.3 Security Model

In this work, we consider security against a computationally-unbounded adversary
controlling τ out of the n players. In other words, throughout this work, we
consider constructions in information-theoretical security setting. Here we consider
two types of adversaries depending on the extent of control it has on the players.
Firstly, we focus on a semi-honest adversary which learns all the values stored by
the players it controls. Secondly, we also consider a malicious adversary which
means that the corrupted players do not have to follow the protocol. In either
case we assume the corruption is static, i.e. the adversary chooses the parties to
corrupt at the beginning of the protocol, and no more parties are corrupted once
the execution of the protocol starts.

3 Our Linear Secret-Sharing Scheme with Good Locality

Let q be a prime power, and let v ≥ 2 be a positive integer such that (v+1) | (q−1).

Let n = (v + 1)m for some integer m ∈
{

1, . . . , q−1v+1

}
, and let r = w(v + 1) + d

for some chosen positive integer w ≤ m − 1 and d ≤ v. In this section, we
discuss the construction of a repairable secret sharing scheme with n players and
reconstruction level r. The scheme has t-privacy, where t depends on the value
of w: if w = m − 1 then t = v(w + 1) − 1 = vm − 1, and if w < m − 1 then
t = (v − 1)(w + 1).

Let H be the unique multiplicative subgroup H of F∗q of size v + 1. Observe

that H partitions F∗q to m = q−1
v+1 disjoint cosets β1H,β2H, . . . , βmH. It can

be proven (see Lemma 3 in Section 2) that if `(X) =
∏
α∈H(X − α), then for

any β, γ ∈ Fq, `(β) = `(γ) if and only if either β, γ belong to the same coset
or β = γ = 0; furthermore, `(0) 6= 0. Choose m distinct cosets of H and let
β1, . . . , βm be their coset representatives. We denote the set {0} ∪ (

⋃m
i=1 βiH)

by {γ0 = 0, γ1, . . . , γn}. Let `(X) be the polynomial defined in Lemma 3. Note
that `(Fq) is a subset of Fq of size 1 + q−1

v+1 < q. Hence there exists ρ ∈ Fq such
that −ρ 6∈ `(Fq). Define g(X) = `(X) + ρ. Then 0 6∈ g(Fq), and g(β) = g(γ) if
and only if either they belong to the same coset or β = γ = 0. In our LSSS
construction each party Pi gets assigned a random element γπ(i), for some random
permutation π : [n] → [n] that is sampled before the adversary sets τ of the
parties to be corrupt (recall we only consider static adversaries). Note that such
random assignment is only done once before the sharing of the first secret and
the same assignment will be used for all the subsequent sharings. In an MPC
setting, such randomization can be done in the clear by the n parties as a part
of the initialization phase; for example, the parties can use a publicly available
randomness beacon (see for example [13,47,56]) to generate a random assignment
of the parties to their IDs. For notational simplicity we will assume π is the
identity function, that is, each Pi gets assigned to γi.

Now we are ready to discuss our construction, which can be found in Construc-
tion 1. For simplicity in the description we fix the parities (odd/even) of some of
the parameters involved. This can be easily generalized to remove such restriction.

12



At a high level, our LSSS follows a re-interpretation of the local-repairable codes
proposed by Tamo and Barg [69], in the context of secret-sharing. As we have
already pointed out, the authors in [69] are not concerned with privacy, nor
computation, and hence concepts such as t-privacy, multiplicativity or strong
multiplicativity is not within the scope of their work. We further note that
although the construction of local-repairable codes allows codeword entries to be
repaired by the use of small numbers of other entries, such repairing process is
designed without privacy as a factor. As it turns out, it is highly non-trivial to
perform such analysis, and we do this in Sections 3.1,3.2, and 4 respectively.

Construction 1 Let q and v be chosen such that 3 | (v + 1) and v is odd. Let n
and m be as defined above, with n odd. We also let d be a positive integer such
that d ≤ v. Lastly, we let w ≤ m − 1, r = w(v + 1) + d and we also fix the m
distinct cosets of H as well as their coset leaders β1, . . . , βm. The construction is
presented as Algorithm 1.

Algorithm 1 Repairable Secret Sharing Scheme

Require: S ∈ Fq : the secret to be secretly shared;
1: Randomly select ai,j ∈ Fq for i = 0, 1, . . . , w and j = 0, 1, . . . , d − 1 subject to
S =

∑w
j=0 a0jg(0)j ;

2: Define f(X) =
∑d−1
i=0

(∑w
j=0 ai,jg(X)j

)
Xi;

3: Secret and shares: Calculate and distribute the shares to the n players where
the share for the player assigned γi is Si = f(γi) for i = 1, . . . , n;

Remark 2 (On two-level Shamir’s secret-sharing). A related and simpler con-
struction is to split the parties into groups, use Shamir’s secret-sharing to obtain
one sharing per group, and secret-share each of these shares, again using Shamir’s
secret-sharing, among the members of the corresponding group. This scheme
has good locality since each “two-level share” is determined by the shares of
the parties in the given group. However, it turns out that our scheme can be
regarded a refined version of this simple and naive construction, and by our more
elaborate analysis we are able to obtain much better parameters. We expand on
this discussion in Section A in the Appendix.

3.1 Reconstruction, Multiplicativity and Strong Multiplicativity

Now we consider the reconstruction, multiplicative and strong multiplicative
properties of our LSSS. We analyze privacy in Section 3.2. The repairing process
for different adversary settings are analyzed in Section 4.

Theorem 1. Let Fq be a finite field of q elements, v,m,w, d be positive integers
such that v + 1 divides q − 1,m ≤ q−1

v+1 , w ≤ m − 1 and d ≤ v. Then the secret
sharing scheme Σ for n = (v+1)m players over Fq constructed in Construction 1
using the parameters q, v, n,m, d, w has the following properties:

13



(i) Reconstruction: It has r-reconstruction with r = w(v + 1) + d,
(ii) Multiplicativity: The product of two secrets can be recovered as a linear

combination of the product of the corresponding shares if 2w(v+1)+2d−1 ≤ n
(iii) Strong Multiplicativity: Σ is t′-strongly multiplicative if and only if Σ is

t′-private and t′ ≤ n− (2w(v + 1) + 2d− 1).

Proof. (i) As the degree of g is v, the total degree of f(X) is w(v + 1) + d− 1.
Hence, the secret can be reconstructed by any w(v + 1) + d shares.

(ii) The product of the corresponding shares forms a Reed-Solomon code with
length n and dimension 2(w(v + 1) + d− 1) + 1 = 2w(v + 1) + 2d− 1. It is only
well defined if 2w(v + 1) + 2d− 1 ≤ n. Hence Σ is multiplicative if and only if
2w(v + 1) + 2d− 1 ≤ n.

(iii) By definition, Σ is t′ strongly multiplicative if and only if Σ is t′-private
and for any two secrets s, s′ ∈ Fq such that (s1, . . . , sn) = Share(s) = (s1, . . . , sn)
and (s′1, . . . , s

′
n) = Share(s′), ss′ can be recovered from any n − t′ entries of

(s1s
′
1, . . . , sns

′
n). As discussed above, (s1s

′
1, . . . , sns

′
n) is a codeword of a Reed-

Solomon code with length n and dimension 2w(v + 1) + 2d − 1. Hence it has
2w(v + 1) + 2d− 1-reconstruction. So Σ is t′-strongly multiplicative if and only
if Σ is t′-private and t′ ≤ n− 2w(v + 1)− 2d+ 1, concluding the proof. ut

Parameters for Multiplicativity. To understand better what parameter regimes
are attainable with our construction, we discuss some concrete parameter choices
that lead to our scheme being multiplicative. We also discuss below the strongly
multiplicative case. From Theorem 1, for Σ to be multiplicative, we require
2w(v + 1) + 2d− 1 ≤ n. Since d ≥ 1, we have 2w(v + 1) + 2d− 1 > 2w(v + 1).
Hence, using n = m(v + 1), we must have w ≤ m

2 < m, which implies that (a
lower bound on) the privacy threshold is t = (d− 1)(w + 1). For any choice of
δ > 0, assuming that v + 1 ≥ 3

2δ , we may set d ≈ (1 − δ)(v + 1) + 1
2 ≤ v and

w ≈ m
2 − (1− δ). For such choice of d and w, when both v and m are sufficiently

large, we have t
n = 1

2 (1−δ)+O
(
max

(
1
m ,

1
v

))
, which approaches 1/2, the optimal

fraction of players a passive adversary can corrupt for a multiplicative secret
sharing scheme. Alternatively, we may also set w = m

2 − 1 and d = v. Then if
v + 1 ≥ 1

δ , we may also have t
n ≥

1
2 − δ, providing an asymptotically optimal

multiplicative instance of Σ.

Parameters for Strong-Multiplicativity. For Σ to be t-strongly multiplicative, we
need t ≤ (m−2w)(v+1)+2d−1. Note that if w ≥ m

2 +1, for a sufficiently large v,
the upper bound (m− 2w)(v+ 1) + 2d− 1 is negative. Hence, for a positive value
of t, we need w ≤ m

2 + 1 < m for a sufficiently large m. Hence, as before, for Σ to
be t-strongly multiplicative, we have t = (d− 1)(w + 1). For any choice of δ > 0,

we may set d ≈ 1+ (1−δ)w(v+1)−1
w+3 < 1+(1−δ)(v+1) which is at most v assuming

v ≥ 2−δ
δ . Furthermore, we may set w ≈ m

3−δ . For such choice of d and w, when v

and m are sufficiently large, we have t
n = 1

3 (1− δ) +O
(

1
mv

)
, which approaches

1/3, the optimal number of corrupted players for a strongly-multiplicative secret
sharing scheme.
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3.2 Privacy Analysis

We have already determined under which choice of parameters our LSSS satisfies
r-reconstruction, multiplicativity and strong multiplicativity. Another crucial
aspect of an LSSS is its privacy threshold, that is, how many shares can an
adversary know in such a way that they do not leak anything about the underlying
secret. As we have mentioned, our scheme is a secret-sharing-based interpretation
of the codes from [69], but in that work the authors did not consider privacy,
and hence did not analyze this property. As it turns out, determining the privacy
level of this scheme is not an easy task.

To better understand the complications of analyzing the privacy of our
LSSS, we first perform a simple analysis that turns out to be far from what
we can actually achieve. Consider an adversary that sees shares associated
with a subset A of

⋃m
i=1 βiH = {γ1, . . . , γn}, and let us denote by Ai the in-

tersection A ∩ βiH. Consider sharings (s1, . . . , sn) of a secret s ∈ Fq, that is,

s` = h(γ`) =
∑d−1
i=0

(∑w
j=0 bi,jg(γ`)

j
)
γi`. For every γ` ∈ A the adversary learns

s`, but suppose temporarily that the adversary actually learns the “inner sum-
mands” {

∑w
j=0 bi,jg(γ`)

j}d−1i=0 , which is more information than what is actually
leaked to the adversary. Since g(X) is constant in all of A`, we have that for
every γ ∈ A`:

∑w
j=0 bi,jg(γ)j =

∑w
j=0 bi,jg(β`)

j , which is a random polynomial
of degree ≤ w in g(β`).

If we denote by Anon the set {i ∈ [m] : Ai 6= ∅} (which corresponds to
the amount of “groups” {βiH}i for which the adversary has at least one share)
we see that the only information the adversary sees is |Anon| evaluations of
each of the random degree-w polynomials

∑w
j=0 bi,jX

j , for i = 0, . . . , d − 1.
If it happens to be the case that |Anon| ≤ w, each of these evaluations leak
nothing about

∑w
j=0 bi,jg(0)j , so in particular they leak nothing about the secret

s =
∑w
j=0 b0,jg(0)j . One way in which it can happen that |Anon| ≤ w is if |A| ≤ w

to begin with, which shows that, if the adversary corrupts at most w parties,
then the shares of the corrupted parties leak nothing about the underlying secret.
In other words, our LSSS has w-privacy, or equivalently, its privacy level is at
least w.

The lower bound of w on the privacy level of our scheme obtained above
is relatively easy to derive, but it is unfortunately too pessimistic. One way
to see why this should be the case is by noticing that |A| ≤ w is a sufficient
condition for |Anon| ≤ w, but it is far from being necessary. It could be the
case that |Anon| ≤ w in spite of |A| being much larger than w, for example,
if the adversary gets unlucky and all of his corrupted parties happen to be
randomly assigned to the same coset (recall the adversary is static and the
random assigments are done after the corrupted parties are set). Furthermore, in
our analysis above we assumed that the adversary got {

∑w
j=0 bi,jg(γ`)

j}d−1i=0 for
every γ` ∈ A, while in reality he does not get these individual terms but rather
the sum s` =

∑d−1
i=0

∑w
j=0 bi,jg(γ`)

jγi`.
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In what follows we perform a more extensive and accurate analysis that
takes into account the observations above, together with several other extra
considerations. As we will see, we are able to obtain the following theorem.

Theorem 2. Let Fq be a finite field of q elements, v,m,w, d be positive integers
such that v + 1 divides q − 1,m ≤ q−1

v+1 , w ≤ m− 1 and d ≤ v. The secret sharing
scheme Σ constructed in Construction 1 using the parameters q, v, n,m, d, w has
t-privacy where

t =

{
md− 1, if w = m− 1

(d− 1)(w + 1), otherwise
.

We see then that the privacy threshold can be actually lower bounded by
≈ w · d, which is around d times better than the pessimistic lower bound of w
we obtained previously. In fact, as we will see later in Proposition 7, the privacy
level of our construction can also be upper bounded by ≈ w · d, which shows
that our improved analysis is closer to being optimal (however, there is still a
constant gap between the lower and the upper bounds).

We will prove Theorem 2 in multiple steps. First, we provide a supporting
proposition that is essential in the analysis of the privacy level for our LSSS.

Proposition 4 Let A ⊆
⋃m
i=1 βiH of size at most d(w+1)−1 and Ai = A∩βiH.

Without loss of generality, we assume |A1| ≥ |A2| ≥ · · · ≥ |Am|. Then there

exists a non-negative integer M ≤ w, a vector u ∈ Fd(w−M+1)
q and a matrix

A ∈ F(
∑m

i=M+1 |Ai|)×(d(w−M+1))
q satisfying the following: in order to show that the

shares of A contain no information on the secret, it is sufficient to show that u
does not belong to the row span of A. More specifically, if u does not belong to
the row span of A, the distribution of the shares of A is independent of the secret.

Proof. Each α ∈ Ai provides one evaluation point to the polynomial f(X)|βiH

which has degree d− 1. Hence if |Ai| ≥ d, the shares in Ai can be used to recover
the values of

∑w
j=0 ak,jg(βk)j for k = 0, . . . , d− 1. Assuming that there are M

different values of i such that |Ai| ≥ d, this information provides M different
evaluation points to the polynomial fk(Y) ,

∑w
j=0 ak,jY

j for k = 0, . . . , d− 1. By
assumption, we have |A| ≤ (w + 1)d− 1. Hence we must have M ≤ w.

Since we want to show that shares of A contain no information on the secret,
we want to find the values of bi,j for i = 0, . . . , d− 1 and j = 0, . . . , w such that

the polynomial h(X) =
∑d−1
i=0

(∑w
j=0 bi,jg

j(X)
)
Xi satisfies h(0) = 1 and h(γ) = 0

for any γ ∈ A. For k = 0, . . . , d − 1, we denote by hk(X) ,
∑w
j=0 bk,jX

j . Note
that for the M distinct values of i such that |Ai| ≥ d, we have hk(g(βi)) = 0
for k = 0, . . . , d − 1. Hence we have (Y − g(βi)) | hk(Y) for any of such i and

k = 0, . . . , d − 1. So
∏M
i=1(Y − g(βi)) | hk(Y). For k = 0, . . . , d − 1, we denote

by Hk(Y) , hk(Y)∏M
i=1(Y−g(βi))

. Note that to find the values of bk,j , it is equivalent

to find Hk(Y) ,
∑w−M
j=0 Bk,jY

j for k = 0, . . . , d− 1 such that H0(g(0)) = 1 and∑d−1
k=0Hk(g(γ))γk = 0 for any γ ∈

⋃m
i=M+1Ai.

16



These new requirements can be represented as a problem of finding a solution

of the matrix equation MX = y. Here X ∈ Fd(w−M+1)
q is defined as

x = (B0,0, B0,1, . . . , B0,w−M , . . . , Bd−1,0, . . . , Bd−1,w−M )T

while y is a vector of length 1 +
∑m
i=M+1 |Ai| defined as y = (1, 0, 0, . . . , 0)T .

Lastly, M is a matrix with 1 +
∑m
i=M+1 |Ai| rows and d(w −M + 1) columns

corresponding to the requirements defined by the system of equations where

M =

[
u

A

]
∈ F(1+

∑m
i=M+1 |Ai|)×(d(w−M+1)))

q .

Here u, the first row of M, corresponds to the equation related to the secret,
i.e.

∑w−M
j=0 b0,jg(0)j = 1. The remaining rows of M corresponds to the shares of⋃m

i=M+1Ai. More specifically, for any γ ∈ Ai = A ∩ βiH ⊆
⋃m
i=M+1Ai, the row

of A corresponding to γ is the following vector of length d(w −M + 1) :

Aγ =
(
1 · g(βi)‖γ · g(βi)‖ . . . ‖γd−1 · g(βi)

)
where g(βi) = (1, g(βi), g

2(βi), . . . , g
w−M (βi)).

We claim that if u does not belong to the row span of A, then the required
vector x exists, proving that the shares of A contain no information on the secret.
Indeed, if u does not belong to the row span of A, then there exists z that
belongs to the dual of the row span of A such that u · z 6= 0. Hence by using an
appropriate scalar multiplication, we can find x belonging to the dual of the row
span of A such that u · x = 1 as required. ut

Now we are ready to prove Theorem 2.

Proof (of Theorem 2). Let A ⊆
⋃m
i=1 βiH of size t and Ai = A ∩ βiH. Without

loss of generality, we assume that |A1| ≥ |A2| ≥ · · · ≥ |Am|. By Proposition 4, in
order to show that the shares of A do not provide any information on the secret, it
is sufficient to show that the vector u , (1, g(0), g2(0), . . . , gw−M (0), 0, . . . , 0) ∈
Fd(w−M+1)
q does not belong to the span of the set

Aγ , (1, g(βi), . . . , g
w−M (βi), γ · 1, . . . , γ · gw−M (βi),

. . . , γd−1 · 1, . . . , γd−1 · gw−M (βi)) :

i = M + 1, . . . ,m, γ ∈ Ai

 .

We prove this by contradiction. Suppose that there exist λγ ∈ Fq for γ ∈ A
such that u =

∑
γ∈A λγAγ . Since the first entry of u is 1, we must have λγ to

not all be zero. This shows that the set{(
γ · 1, . . . , γ · gw−M (βi), . . . , γ

d−1 · 1, . . . , γd−1 · gw−M (βi)
)

: i = M + 1, . . . ,m, γ ∈ Ai

}
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is not linearly independent. More specifically, for j = 1, . . . , d− 1, we have

(0, . . . , 0) =

m∑
i=M+1

∑
γ∈Ai

λγγ
j

 · (1, . . . , gw−M (βi)
)
.

For each j, this defines a homogeneous system of linear equation that can
be represented as a matrix equation with the matrix being a Vandermonde-like
matrix with w −M + 1 rows and m−M columns. Now we divide the argument
into two cases based on the value of w.

1. When w = m− 1, each matrix is a square and hence invertible. This implies
that for any j = 1, . . . , d−1 and i = M + 1, . . . ,m, we have

∑
γ∈Ai

λγγ
j = 0.

For each i = M+1, . . . ,m, we have
∑
γ∈Ai

λγγ
j = 0 for j = 1, . . . , d−1. This

again defines a homogeneous system of linear equations with |Ai| unknowns
and d− 1 equations with the corresponding matrix being a Vandermonde-like
matrix. By the argument provided in the proof of Proposition 4, we have
|Ai| ≤ d − 1. Hence for each i = M + 1, . . . ,m, the system is overdefined.
Because of this, we must have λγ = 0 for any γ ∈ Ai for any i = M+1, . . . ,m.
However, this is a contradiction with the earlier observation that λγ cannot
be all zero. This shows that if w = m− 1, for any A ⊆

⋃m
i=1 βiH such that

|A| = md−1, the shares of A do not contain any information about the secret,
proving that Σ provides at least md− 1 privacy when we set w = m− 1.

2. Next, we assume that w < m− 1. Recall that we assumed the existence of
(λγ)γ∈A that are not identically zero such that for any j = 1, . . . , d− 1 and

` = 0, . . . , w−M, we have
∑m
i=M+1

(∑
γ∈Ai

λγγ
j
)
g`(βi) = 0. Note that this

defines a homogeneous system of linear equations with (d− 1) (w −M + 1)

equations and
∑m
i=M+1 |Ai| = t −

∑M
i=1 |Ai| ≤ t −Md unknowns. By the

choice of t, we have (d− 1)(w −M + 1) ≥ t−Md.

We derive a contradiction by showing that this system of linear equations can
only have a zero solution, which is a contradiction to the assumption that
(λγ)γ∈A are not all zero. We define the matrixN over Fq with (d−1)(w−M+1)
rows and

∑m
i=M+1 |Ai| columns, which corresponds to the system of linear

equations discussed above. For the matrix N , we group the rows to w−M +1
distinct groups based on the value of `. This means that each group consists
of d− 1 rows with various values of j ∈ {1, . . . , d− 1} .
We further note that each column of N corresponds to some γ ∈ A. Based
on this correspondence, we further group the columns of N to m − M
column groups based on the cosets βiH that contains the corresponding γ.
By using this grouping method, we can represent N as a block matrix. For

1 ≤ i ≤ w −M + 1 and 1 ≤ j ≤ m−M we denote by N (1)
i,j the block matrix

belonging to the i-th row group and j-th column group. More specifically, for

` = 1, . . . , d− 1, the `-th row of N (1)
i,j is

[(
γ`gi−1(βj+M )

)
γ∈βj+MH

]
. Hence
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N (1)
i,j can be written as

N (1)
i,j = gi−1(βj+M ) ·


(γ)γ∈βj+MH

(γ2)γ∈βj+MH

...(
γd−1

)
γ∈βj+MH

 .

So N (1)
i,j is a non-zero multiple of a Vandermonde-like matrix with d − 1

rows and |Aj+M | ≤ d− 1 columns. Hence any square sub-matrix of N (1)
i,j is

invertible. Our argument is based on the following claim that can be easily
verified.

Claim 5 Suppose that N has an alternative representation as a block matrix
(Ni,j) with more row groups than column groups such that Ni,i is an invertible
square matrix for all i. Then the only solution of Nx = 0 is x = 0.

By Claim 5, to derive the contradiction, it is sufficient to construct such alter-
native representation (Ni,j) of N as a block matrix satisfying the requirement
provided. We will keep the partition of the column as before. However, we
will partition the row following the number of columns in each column group.
More specifically, we define the first row group to be the first |Am+1| rows of
N , the second row group to be the next |Am+2| rows of N and so on while
the (m−M + 1)-st row group to contain the remaining rows. Note that this
can always be done since N has more rows than columns. Furthermore, since
|Ai| ≤ d−1 for any i = M+1, . . . ,m, there exists a value ` = 1, . . . , w−M+1

such that the square submatrix Ni,i has all its rows to belong to N (1)
i,` and

possibly N (1)
i,`+1. So there exists s, u ∈ {1, . . . , d− 1} such that

Ni,i =



(gi−1(βi+M )γs)γ∈βi+MH

(gi−1(βi+M )γs+1)γ∈βi+MH

...

(gi−1(βi+M )γd−1)γ∈βi+MH

(gi(βi+M )γ)γ∈βi+MH

(gi(βi+M )γ2)γ∈βi+MH

...

(gi(βi+M )γu)γ∈βi+MH


.
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Recall that Ni,i is a square matrix. Hence, we can partition βi+MH to two
sets Li, Ri such that |Li| = d− s and |Ri| = u. Hence we can rewrite Ni,i to

Ni,i =



(gi−1(βi+M )γs)γ∈Li
(gi−1(βi+M )γs)γ∈Ri

(gi−1(βi+M )γs+1)γ∈Li (gi−1(βi+M )γs+1)γ∈Ri

...
...

(gi−1(βi+M )γd−1)γ∈Li
(gi−1(βi+M )γd−1)γ∈Ri

(gi(βi+M )γ)γ∈Li (gi(βi+M )γ)γ∈Ri

(gi(βi+M )γ2)γ∈Li (gi(βi+M )γ2)γ∈Ri

...
...

(gi(βi+M )γu)γ∈Li
(gi(βi+M )γu)γ∈Ri


.

It is easy to see that the top left and bottom right sub-matrices of Ni,i are square
matrices that can be rewritten as non-zero constant multiples of a Vandermonde-
like matrix. Hence by Claim 5, Ni,i is also invertible for all i = M + 1, . . . ,m. We
can use Claim 5 again to conclude that we must have (λγ)γ∈A to be identically
zero, contradicting the assumption that it cannot be a zero vector, completing the
proof for the privacy level of the secret sharing scheme defined in Construction 1
when w < m− 1. ut

Remark 6 In general, the privacy threshold that is claimed in Theorem 2 is
not guaranteed to be the largest possible privacy threshold of the scheme. On the
other hand, Proposition 7 below provides an upper bound on the largest possible
privacy threshold of the scheme. So in particular, when w = m− 1, the privacy
threshold provided in Theorem 2 is the largest possible privacy threshold of the
secret sharing scheme Σ proposed in Construction 1, and when w < m− 1, the
lower and upper bounds are off by a constant term.

Proposition 7 If the secret sharing scheme constructed in Construction 1 pro-
vides t-privacy, then t ≤ d(w + 1)− 1.

Proof. Set A ⊆
⋃w+1
i=1 βiH such that for each i = 1, . . . , w + 1, we have |Ai| = d.

Since each γ ∈ Ai provides an evaluation point to the polynomial f(X)|βiH

which has degree d − 1, the shares of Ai can be used to recover the value of∑w
j=0 ak,jg

j(βk) for k = 0, . . . , d − 1. In particular, it provides an evaluation

point of
∑w
j=0 a0,jy

j where the evaluation point is y = g(βi). Note that this
is a polynomial of degree w and we are given the value of the polynomial in
w + 1 evaluation points which are pairwise distinct by Lemma 3. Hence, this
information can be used to recover the polynomial

∑w
j=0 a0,jy

j , which can then

be used to calculate
∑w
j=0 a0,jg

j(0) = S, proving that if we allow A ≥ d(w + 1),
it is possible for such set to not only learn some information about the secret
but also fully recover it. Hence, if the secret sharing scheme provides t-privacy,
we must have t ≤ d(w + 1)− 1. ut
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4 Passively Secure Repairing Protocol for Multiplicative
Variants of Σ

In this section, we discuss the secure repairing capability of multiplicative in-
stances of Σ in the scenario that a set of τ players is corrupted by a semi-honest
adversary. Here we set w − 1 ≤ m

2 so that multiplicativity is achieved, and we
require τ , the number of corrupted parties, to be upper-bounded by the privacy
level of the secret sharing scheme, which, from Theorem 2, equals (d− 1)(w + 1)
(since w < m− 1).

In this section we are interested in different metrics/properties such as privacy
of the secret after some shares have been repaired, the number of players contacted
during the repairing process and the bandwidth required for the repairing process.
First we restate the repairable claim as stated in Theorem 3. We note that for
simplicity of discussion, we consider one of the instantiations where we set d = v
and w = m

2 − 1.

Theorem 3. Consider the secret sharing scheme Σ presented in Construction 1
with d = v, w ≤ m

2 − 1, r = w(v + 1) + v and t = (v − 1)(w + 1). Without
loss of generality, suppose that the player P1 identified by γ1 loses his share
f(γ1). Then he can recover the value of f(γ1) by contacting v other players. The
repairing process requires the v contacted players to send in total 2v log q bits of
data to each other and P1, while P1 needs to send v log q bits of data to the v
contacted players. Furthermore, assuming that v = ln(1+ε) n for some ε > 0, and
that the adversary corrupts only t parties, such repair scheme does not leak any
information about either the secret or the shares of the contacted players except
with negligible probability in n.

Proof. Assume that γ1 = β1α1 for some α1 ∈ H. Consider f(X)|β1H , the restric-

tion of f(X) to β1H. It is easy to see that f(X)|β1H =
∑v−1
i=0

(∑w
j=0 ai,jg(β1)j

)
Xi,

which is a polynomial of degree at most v− 1. Label the other v elements in β1H
by γ2, . . . , γv+1 and the v+ 1 corresponding players by P1, . . . , Pv+1. First, these
v + 1 players execute a simple multiparty computation protocol to generate a
random shared mask, denoted by MaskGen. Its full specification can be found in
Algorithm 2.

Algorithm 2 Random Mask Generation (h(γ1), . . . , h(γv+1))← MaskGen()

1: for i = 1, . . . , v + 1 do
2: Player Pi randomly selects a polynomial hi(X) ∈ Fq[X]<v of degree at most v − 1

and sends hi(γj) to player Pj for j = 1, . . . , v + 1;
3: Upon receiving hj(γi) for j = 1, . . . , v+ 1, player Pi defines h(γi) =

∑v+1
j=1 hj(γi);

4: end for
5: The generated mask is h(x), which is shared as (h(γ1), . . . , h(γv+1));

Note that since h has degree ≤ v−1, if the adversary only corrupts up to v−1
of the v + 1 players, he learns no information about the polynomial h(X). Now
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we define the repairing process conducted by P1, . . . , Pv+1 to repair the share of
P1. We denote such algorithm by Repair, which can be found in Algorithm 3.

Algorithm 3 Share Repair (f(γ1),−, . . . ,−)← Repair(−, f(γ2), . . . , f(γv+1))

1: The v+ 1 players execute MaskGen to generate a random mask (h(γ1), . . . , h(γv+1))
where h(γi) is held by Pi;

2: for i = 2, . . . , v + 1 do
3: Pi calculates f(γi)|β1H + h(γi) and sends it to P1;
4: end for
5: Since f(X)|β1H + h(X) is a polynomial of degree at most v − 1 and P1 obtains v

of its evaluation points, P1 can recover the polynomial and in particular, she can
recover f(γ1)|β1H + h(γ1);

6: Since P1 knows h(γ1), she can then recover f(γ1);

It is easy to see that Algorithm 3 correctly recovers f(γ1) for P1 when the
adversary is semi-honest. Now we analyze in more detail that the privacy of
the secret and the privacy of the shares of honest parties is maintained. Let A1

be the set of corrupted parties in β1H. Note that since P2, . . . , Pv+1 receive no
additional information from the execution of Repair, a possible leak of information
is only possible if P1 ∈ A1. Note that since Repair only involves players in the
same coset, if A1 = β1H, then the amount of information that the adversary
learns will not change after the execution of Repair. Given this, we can assume
that |A1| ≤ v.

First, suppose that |A1| ≤ v − 1. In this case, P1 learns the polynomial
f |β1H + h along with at most v− 1 evaluation points of h(x). Since the degree of
h(X) is v − 1, the adversary learns no information on h(γi) for γi 6∈ A1. So aside
from the information about f(γ1), the adversary learns no further information
about the shares of the other honest parties. This also implies that the repairing
process does not increase the amount of information the adversary has on the
other shares. So as long as the total number of corrupted parties in A1 is at most
v − 1, no information on the secret is leaked from the execution of Repair.

From the above, we see that leakage on either the shares of the honest parties
or the secret, when repairing P1’s share, is possible only if |A1| = v. More
generally, other parties might be repaired during a protocol execution, so leakage
is only possible if there exists i such that |Ai| = v. The rest of this proof is
devoted to showing that this event happens with low probability, taking as a
starting point the fact that the adversary is assumed static and the random
assignments of the n field elements is performed after the corruptions have been
established.

Let E be the event that there exists at least one i such that |Ai| = v, and
let Ec be the event that |Ai| 6= v for every i = 1, . . . ,m. We aim to show that
Pr(E) is negligible. We define Ei to be the event that |Ai| = v. It is easy to

see that P (Ei) =
(t
v)·(n−t)
(m(v+1)

v+1 )
. We assume that as n goes to infinity, we also have
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both m and v to also approach infinity. Then, by union bound, Pr(E) is at most

m(n− t) (t
v)

(m(v+1)
v+1 )

≤ n2 (t
v)

(n
v)
.

Recall that for any integers 0 < b < a, we have the following approximation
by the use of Stirling’s approximation,(

a

b

)
≈
√

a

2πb(a− b)
aa

bb(a− b)a−b
=

1√
2πb

√
a

a− b

(
a

a− b

)a(
a− b
b

)b
.

Then if b = o(a), there exist two positive constants 0 < λ1 < λ2 such that

λ1 <
√

a
2π(a−b) < λ2. Hence we have that if b = o(a), λ1√

b

(
a
a−b

)a (
a−b
b

)b
<
(
a
b

)
<

λ2√
b

(
a
a−b

)a (
a−b
b

)b
.

Assuming that w also approaches infinity as n does, Pr(E) can be upper

bounded by λ2

λ1
n2
(
t−v
n−v

)v (
t
t−v

)t (
n−v
n

)n
Hence ln(Pr(E)) ≤ ln

(
λ2

λ1

)
+ 2 lnn+ v ln t−v

n−v + t ln
(

1 + v
t−v

)
+n ln

(
1− v

n

)
.

Note that for any v > 0, we have t−v
n−v < t

n . We denote θ = t
n , which is a

constant that is smaller than 1. Recall that for |x| < 1, we have ln(1 + x) =∑
i≥1(−1)i+1 xi

i . Since v = o(t) and t < n, we can approximate ln
(

1 + v
t−v

)
=

v
t−v +O

((
v
t−v

)2)
≈ v

t and ln
(
1− v

n

)
= − v

n +O
((

v
n

)2) ≈ − v
n .

Hence we have ln(Pr(E)) ≤ ln
(
λ2

λ1

)
+ 2 lnn + v ln θ. By assumption, since

v = Ω(ln(1+ε) n), we have ln(Pr(E)) = −Ω
(

ln(1+ε) n
)
, which implies that

Pr(E) = e−Ω(ln(1+ε) n) which is negligibly small when n grows sufficiently large.
ut

5 Actively Secure Repairing Protocol for
Strongly-Multiplicative Variants of Σ

In this section, we discuss the repairability of a strongly-multiplicative instance
of Σ in the scenario that a set of τ players is corrupted by an active adversary.
As discussed before, to achieve strong multiplicativity, we must have w < m− 1.
Furthermore, similar to the discussion in Section 4, we require τ to be at most
the privacy threshold, which equals (d − 1)(w + 1). In general, our actively
secure repairing process is very similar to the passively secure process defined in
Section 4. The crucial difference here is the need of the participants to perform
verification process to the generated random mask which is done through the
protocol described in [5]. We restate and prove the repairable claim for Σ, as
stated in Theorem 4.

Theorem 4. Let Σ be the secret sharing scheme constructed in Algorithm 1 with
w ≈ m

3 , r = w(v+ 1) + d and t ≈ 1
3n. Without loss of generality, suppose that the
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player P1 identified by γ1 loses his share f(γ1). Then he can recover the value
of f(γ1) by contacting v other players where each involved player needs to send

O(v log q) bits of data to each other. Furthermore, assuming that v = Ω(ln(1+ε) n)
for some ε > 0, such repair scheme is unconditionally secure with overwhelming
probability with respect to both the secret and the shares of the players against an
active adversary controlling up to t players.

Proof. We first start by defining two algorithms, which are analogues of MaskGen
and Repair described in Theorem 3. We will use the notations described in the
first paragraph of the proof of Theorem 3 except that f(X)|β1H is a polynomial
of degree at most d − 1 instead of v − 1. The full specification of the protocol
ActMaskGen, which is a variant of MaskGen, can be found in Algorithm 4. Here,
we take d = v+1

3 .

Algorithm 4 Actively Secure Random Mask Generation (h(γ1), . . . , h(γv+1))←
ActMaskGen()

1: for i = 1, . . . , v + 1 do
2: Player Pi randomly selects a polynomial hi(X) ∈ Fq[X]

< v+1
3

of degree at most
v+1
3
− 1 and sends hi(γj) to player Pj for j = 1, . . . , v + 1;

3: Player Pi follows the verification process described in [5] to prove to the other
players that hi(γj) is indeed an evaluation of some polynomial of degree at most
v+1
3
− 1;

4: If the verification protocol fails, the protocol aborts;
5: If the verification protocol is successful, having hj(γi) for j = 1, . . . , v + 1, player

Pi defines h(γi) =
∑v+1
j=1 hj(γi);

6: end for
7: The generated mask is h(x), which is shared as (h(γ1), . . . , h(γv+1));

Note that since h has degree v+1
3 − 1, if the adversary only corrupts up to

v+1
3 − 1 of the v+ 1 players, he learns no information about the polynomial h(X).

Furthermore, since such sharing can be seen as a codeword of a Reed-Solomon
code of length v + 1 and dimension v+1

3 , it can correct up to v+1
3 errors. So in

particular, it can correct any malicious behavior of an adversary controlling up
to v+1

3 − 1 of the v + 1 players. Now we define the repairing process conducted
by P1, . . . , Pv+1 to repair the share of P1. We denote such algorithm by Repair,
which can be found in Algorithm 3.

It is easy to see that Algorithm 3 correctly recovers f(γ1) for P1 when the
adversary is malicious and controls up to v+1

3 − 1 out of the v + 1 involved
players. Now, we consider the security of the secret and the shares of honest
participating parties against the active adversary. Let A1 be the set of corrupted
parties in β1H. Note that since P2, . . . , Pv+1 learns no additional information
either from the execution of Repair, a possible leak of information is only possible
if P1 ∈ A1. Note that since Repair only involves players in the same coset, if
A1 = β1H, the amount of information that the adversary learns will not change
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Algorithm 5 Share Repair (f(γ1),−,−, . . . ,−) ← ActRepair(−, f(γ2), . . . ,
f(γv+1))

1: The v+1 players executes MaskGen to generate a random mask (h(γ1), . . . , h(γv+1))
where h(γi) is held by Pi;

2: for i = 2, . . . , v + 1 do
3: Pi calculates f(γi)|β1H + h(γi) and sends it to P1;
4: end for
5: Since f(X)|β1H +h(X) is a polynomial of degree at most v+1

3
− 1 and P1 obtains v of

its evaluation points, P1 can recover and correct the polynomial and in particular,
she can recover f(γ1)|β1H + h(γ1) as long as the adversary only controls up to
v+1
3
− 1 out of the v + 1 players.

6: Since P1 knows h(γ1), she can then recover f(γ1);

after the execution of Repair. So we can assume that |A1| ≤ v. Suppose that
|A1| ≤ v+1

3 − 1. In this case, P1 learns the polynomial f |β1H + h along with at
most v+1

3 − 1 evaluation points of h(x). Since the degree of h(x) is v+1
3 − 1,

the adversary learns no information on h(γi) for γi 6∈ A1. So aside from the
information about f(γ1), the adversary learns no further information about the
shares of the other honest parties. This also implies that the repairing process
does not increase the amount of information the adversary has on the other
shares. So as long as the total number of corrupted parties in each coset is at
most v+1

3 , no information on the secret is leaked from the execution of Repair. So
leakage of information of either the share of honest parties or the secret is possible
if there exists i such that |Ai| ≥ v+1

3 . So the probability that the execution of
Repair leaks information about either the secret or the share of honest parties
is at most the probability that during the random assignments of the n field
elements, there exists i ∈ [m] such that v+1

3 ≤ |Ai| ≤ v.

Let F be the event that there exists at least one i such that v+1
3 ≤ |Ai| ≤ v

and Fc be the event that |Ai| < v+1
3 for any i = 1, . . . ,m. We aim to show that

Pr(F) is negligible. We define Fi to be the event that v+1
3 ≤ |Ai| ≤ v. Then we

have

Pr(Fi) =

∑v
κ= v+1

3

(
t
κ

)(
n−t

v+1−κ
)(

n
v+1

)

Claim 8 Let 0 < v < t < n such that t ≤ 1
3n and κ ∈

{
v+1
3 , v+1

3 + 1, . . . , v
}
.

Then
(
t
κ

)(
n−t

v+1−κ
)

achieves its maximum of
(
t

v+1
3

)( n−t
2(v+1)

3

)
when κ = v+1

3 .

Proof. Let κ ≥ v+1
3 . Then
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(
t

κ+1

)(
n−t
v−κ
)(

t
κ

)(
n−t

v+1−κ
) =

(t− κ)(v + 1− κ)

(κ+ 1)(n− t− v + κ)

≤
(
t− v+1

3

) (
2
3 (v + 1)

)(
v+1
3

) (
n− t− (v + 1) + v+1

3

)
≤ 2

(v + 1)
(
1
3m−

1
3

)
(v + 1)

(
2
3m−

2
3

) = 1.

This shows that if t ≤ 1
3n and κ ≥ v+1

3 , the term
(
t
κ

)(
n−t

v+1−κ
)

is decreasing. Hence,

it achieves its maximum of
(
t

v+1
3

)( n−t
2(v+1)

3

)
when κ = v+1

3 . ut

Following the discussion in Section 3.1 regarding the parameter choices, for Σ
to be t′-strongly multiplicative where t′ is sufficiently close to 1

3n, for δ ∈ (0, 1)
and sufficiently large m and v, we may choose d ≈ 1 + (1 − δ)(v + 1) ≤ v and
w ≈ m

3−δ . So we have t ≈ 1
3 (1− δ)n.

Then by union bound, we have the following upper bound

Pr(F) ≤ 2n

3

((v+1)(w+1)
v+1
3

)((m−w+1)(v+1)
2(v+1)

3

)
(
m(v+1)
v+1

) .

Recall that by the discussion in the proof of Theorem 3, if b = o(a), there
exist positive constants 0 < λ1 < λ2 such that

λ1√
b

(
a

a− b

)a(
a− b
b

)b
<

(
a

b

)
<
λ2√
b

(
a

a− b

)a(
a− b
b

)b
.

So we have the following upper bound

Pr(F) ≤ 2

3
n
λ22
λ1

√
v + 1

v+1
3

2(v+1)
3

(w + 1)(v+1)(w+1)3
v+1
3(

w + 2
3

)(v+1)(w+ 2
3 )

·
(

3

2

) 2
3 (v+1)

· (m− w + 1)(m−w+1)(v+1)(
m− w + 1

3

)(v+1)(m−w+ 1
3 )

· (m− 1)(m−1)(v+1)

mm(v+1)

=
√

2
n√
v + 1

λ22
λ1
· 3v+1

2
2
3 (v+1)

·
(
w + 1

w + 2
3

)(w+ 2
3 )(v+1)

·
(
m− 1

m

)(m−1)(v+1)

· (w + 1)
v+1
3 (m− w + 1)

2
3 (v+1)

mv+1

·
(
m− w + 1

m− w + 1
3

)(m−w+ 1
3 )(v+1)
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Then for a sufficiently large m, we have(
w + 1

w + 2
3

)(w+ 2
3 )(v+1)

·
(
m− 1

m

)(m−1)(v+1)

·
(
m− w + 1

m− w + 1
3

)(m−w+ 1
3 )(v+1)

≤ 1+δ.

Furthermore, for a sufficiently large m and v, we have

(w + 1)
v+1
3 (m− w + 1)

2
3 (v+1)

mv+1
≤ (2− δ) 2

3 (v+1)

(3− δ)v+1
.

So the upper bound above can be simplified to the following

Pr(F) ≤
√

2(1 + δ)
n√
v + 1

λ22
λ1

(
3

3− δ
·
(

2− δ
2

) 2
3

)v+1

.

Note that by the choice of δ, 3
3−δ ·

(
2−δ
2

) 2
3 < 1. Hence, there exists C > 0 such

that ln
(

3
3−δ ·

(
2−δ
2

) 2
3

)
< −C. Then we have

ln Pr(F) ≤ 1

2
ln 2 + ln(1 + δ) + lnn− 1

2
ln(v + 1) + ln

(
λ22
λ1

)
− C(v + 1)

By assumption, v + 1 = ln(1+ε) n. Then lnPr(F) = −Ω(ln(1+ε) n). This

implies that Pr(F) = e−Ω(ln(1+ε) n) which is negligibly small when n is sufficiently
large.
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Appendix

A Comparison with a Two-Level Shamir’s Secret Sharing
Scheme

In this section, we will compare our construction presented in Construction 1,
which we will denote by Σ with a more natural two-level Shamir’s secret sharing
scheme, which we denote by Σ′. For completeness, first, we discuss the two-level
Shamir’s secret sharing scheme Σ′. Let n be the number of parties and consider
two integers v and m such that n = (v + 1)m. Split the parties into m groups
of v + 1 parties each. Let q be a prime number, d,w integers with d ≤ v and
w ≤ m− 1. Consider a linear secret-sharing scheme that, to distribute a secret
s ∈ Fq, proceeds as follows.

1. Generate m shares of the secret s using a (w,m)–Shamir’s secret sharing
scheme where the m shares are denoted as s1, . . . , sm. Here for positive
integers a < b, we use the notation (a, b)–Shamir’s secret sharing scheme to
denote the Shamir’s secret sharing scheme providing a privacy where shares
are evaluations of a polynomial of degree a in b distinct evaluation points.
Suppose that this is done by using a degree w polynomial F (X) =

∑w
i=0 FiX

i

with set of evaluation points {α1, . . . , αm}.
2. For each i = 1, . . . ,m, generate v + 1 shares for the local secret si using a

(d − 1, v + 1)− Shamir’s secret sharing scheme where the v + 1 shares are
denoted as si,1, . . . , si,v+1. Suppose that such share generation is done using

a degree d − 1 polynomial F (i)(X) =
∑d−1
j=0 F

(i)
j Xj with {γi,1, . . . , γi,v+1} as

the set of evaluation points.
3. For i = 1, . . . ,m and j = 1, . . . , v + 1, assign the share si,j to the j-th party

in group i.

Note that we have in total m local groups, each with v + 1 players where
the threshold for the local group is d− 1. On the other hand, when we consider
each group as one player, our construction is reduced to a (w,m)- Shamir’s
secret sharing scheme. In order to have a comparable scheme, for the second
construction, which is based on two-steps of Shamir’s secret sharing, we assume
that the first step uses a (w,m)-Shamir’s secret sharing scheme where each of
its share is further secretly shared using a (d− 1, v + 1)-Shamir’s secret sharing
scheme. Furthermore, for the first step of the sharing, we assume that the chosen
evaluation points are α0, . . . , αm where α0 is used as the evaluation point for the
secret. Furthermore, for K = 1, . . . ,M , each such share is further secretly shared

using evaluation points γ
(K)
1 , . . . , γ

(K)
v+1. The complete specification of the secret

sharing scheme Σ′ is specified in Algorithm 6.
Note that in this definition, we assume that the m instantiations of the secret

sharing schemes used to secretly share SK to v + 1 players using the polynomial
f (K) encodes SK as f (K)(0). However, it is easy to see that a simple shifting
operation can be used to have SK to be f (K)(yK) for any choice of yK ∈ Fq
without changing any of the shares S

(K)
i .
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Algorithm 6 Two-Step Shamir’s Secret Sharing Scheme

Require: S ∈ Fq : the secret to be secretly shared.
1: Randomly select F0, . . . , Fw ∈ Fq such that S =

∑w
i=0 Fiα

i
0;

2: for K = 1, . . . ,m do
3: Define SK =

∑w
i=0 Fiα

i
K ;

4: Randomly select f
(K)
0 , . . . , f

(K)
d−1 such that SK = f

(K)
0 ;

5: Define f (K)(X) =
∑d−1
j=0 f

(K)
j Xj ;

6: Secret and shares: Calculate and distribute the shares to the v + 1 players
where the share for the player assigned γ

(K)
i is S

(K)
i = f (K)(γ

(K)
i );

7: end for

First we show that for any secret sharing scheme Σ constructed using Algo-
rithm 1, it is equivalent to Σ′, which is obtained from Algorithm 6 with some
choice of the parameters.

Lemma 9. Let (Si,j : 1 ≤ i ≤ m, 1 ≤ j ≤ v + 1) be the shares for the n
players in a secret sharing scheme Σ constructed using Algorithm 1 with a fixed
secret S ∈ Fq. Then there exists some assignments of the variables such that
the shares generated by a secret sharing scheme Σ′ following Algorithm 6 are
(Si,j : 1 ≤ i ≤ m, 1 ≤ j ≤ v + 1).

Proof. Let α0 = g(0) and for i = 1, . . . ,m, αi = g(βi). For each K = 1, . . . ,M and

j = 1, . . . , v+1, we define γ
(K)
j = γK,j . We aim to show that for any K = 1, . . . ,M

and j = 1, . . . , v + 1, we have S
(K)
i = SK,i. For i = 0, . . . , w, we set Fi = a0i.

Then we have
∑w
i=0 Fiα

i
0 =

∑w
i=0 a0ig(0)i = S as required. Furthermore, we

have SK =
∑w
i=0 Fiα

i
K =

∑w
i=0 a0ig(βK)i. Lastly, we set f

(K)
0 = SK and for

j = 1, . . . , d− 1 and K = 1, . . . ,m, let f
(K)
j =

∑w
i=0 ajig(βK)i.

Then for each group K = 1, . . . ,m, the player assigned to γ
(k)
i receives the

share

S
(K)
i = f (K)(γ

(K)
i ) =

d−1∑
j=0

f
(K)
j

(
γ
(K)
i

)j
=

w∑
i=0

a0ig(βK)i +

d−1∑
j=1

(
w∑
i=0

ajig(βK)i

)(
γ
(K)
i

)j
=

d−1∑
j=0

w∑
i=0

ajig(γ
(K)
i )j

(
γ
(K)
i

)j
= SK,i

completing the proof. ut

Next we show that a secret sharing scheme Σ′ obtained from Algorithm 6 is
also equivalent to a secret sharing scheme Σ obtained from Algorithm 1 with
some possible changes of parameters.
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Lemma 10. Let (S
(K)
i : K = 1, . . . ,m, i = 1, . . . , v + 1) be the shares for the n

players generated by Algorithm 6 with a fixed secret S ∈ Fq and the evaluation

points γ
(K)
i that are pairwise distinct. Then there exists some assignments of the

variables such that (S
(K)
i : K = 1, . . . ,m, i = 1, . . . , v + 1) are generated using

Algorithm 1 with some possibly changed parameters.

Proof. Recall that we have S =
∑w
i=0 Fiα

i
0. Next, for K = 1, . . . ,m, we have

f
(K)
0 = sK =

∑w
i=0 Fiα

i
K . Furthermore, we define f

(K)
1 , . . . , f

(K)
d−1 such that

S
(K)
i =

∑d−1
j=0 f

(K)
j

(
γ
(K)
i

)j
.

Then for K = 1, . . . ,m, we have f (K)(X) =
∑w
i=0 Fiα

i
K +

∑d−1
j=1 f

(K)
j Xj . Now

for j = 1, . . . , d − 1, there exists dj ∈ {0, . . . ,m − 1} and a0,j , . . . , adj ,j ∈ Fq
such that for any K = 1, . . . ,m, f

(K)
j =

∑dj
i=0 ai,jα

i
K . We further define d0 = w

and ai,0 = Fi for i = 0, . . . , w. Lastly, we define D1 = max{d0, . . . , dd−1}. For
any i = 0, . . . , D1 and j = 1, . . . , d− 1, such that ai,j is not yet defined, we set
ai,j = 0.

Then we have f (K)(X) =
∑d−1
j=0

(∑D1

i=0 ai,jα
i
K

)
Xj where for any i = 1, . . . , v+

1, we have S
(K)
i = f (K)(γ

(K)
i ) =

∑d−1
j=0

(∑D1

i=0 ai,jα
i
K

)(
γ
(K)
i

)j
. This shows that

if we want to have one polynomial f∗(X) such that for any K = 1, . . . ,m and

i = 1, . . . , v + 1, f∗(γ
(K)
i ) = S

(K)
i , we need to have some polynomial g∗(X) such

that for any K = 1, . . . ,m and i = 1, . . . , v + 1, g∗(γ
(K)
i ) = αK . Note that such

g∗(X) is guaranteed to exist with degree of at most n. Then with such g∗(X),

we can define f∗(X) =
∑d−1
j=0

(∑D1

i=0 ai,jg ∗ (X)i
)
xj . So letting γi,j = γ

(i)
j for

i = 1, . . . ,M, j = 1, . . . , v + 1, for such specific instances of the secret sharing
schemes obtained by Algorithm 6 it can also be generated using Algorithm 1. ut

Remark 3. We note that based on the form of f∗ which requires the polynomial
g∗(x), for two players belonging to different local groups, they cannot possess
the same evaluation points. Otherwise, they will have exactly the same share. So
this is the reason why we require such restriction in the statement of Lemma 10.

Lemma 10 shows that if all the evaluation points in the second step of
Algorithm 6 are pairwise distinct, then we can transform it to a one-step secret
sharing which follows Algorithm 1 with a possible change in the degree of g(X)
from v + 1 to a positive integer, say D2, and the inner degree from w to D1.
We claim that v + 1 ≤ D2. Indeed, we note that g∗(X) cannot be a constant
since we have at least m distinct evaluation points evaluated to m distinct

values. Furthermore, recall that g∗(γ
(1)
i ) = α1 for i = 1, . . . , v + 1. Consider

ĝ(X) = g∗(X)− α1. It is easy to see that ĝ(X) has the same degree as g∗(X) and

neither is a constant function. However, we have ĝ(γ
(1)
i ) = 0 for i = 1, . . . , v + 1.

Hence we have
∏v+1
i=1 (X−γ(1)i )|ĝ(X), proving that its degree, and hence the degree

of g∗(X), is at least v + 1 as claimed.
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Consider Σ a secret sharing scheme following Algorithm 1. By Theorems 1
and 2, Σ is shown to have t1 privacy and r1 recovery where (d − 1)(w + 1) ≤
t1 ≤ d(w + 1)− 1 and r1 ≤ w(v + 1) + d.

Now suppose that we generate a secret sharing scheme Σ′ following Algorithm
6. First we consider its recovery level r2. Note that by Lemma 10, the degree
of the constructed f∗(X) is D1 · deg(g∗(X)) + d − 1 where deg(g∗(X)) is the
degree of g∗(X). Recall that D1 = max{d0, d1, . . . , dd−1} where d0 = w while

for any j = 1, . . . , d− 1, the polynomial
∑dj
i=0 ai,jX

i maps αiK to f
(K)
j for each

K = 1, . . . ,m. Note that since f
(K)
j is also unknown, each of such dj can be as

large as m− 1. Hence, in general, dj = m− 1 for j = 1, . . . , d− 1, which implies
D1 = m− 1. Furthermore, as we have established, the degree of g∗(X) is at least
v+1, which implies that deg(f∗(X)) ≥ (m−1)(v+1)+(d−1) = m(v+1)−(v+2−d).

Consider a group of players containing v + 1 players from the first w groups
and d− 1 players from the remaining m− w groups. Note that such group has
size (v + 1)w + (d − 1)(m − w) ≤ deg(f∗(X)). We claim that it is possible to
have a share generation such that the original secret s = 1 while all the shares of
these players to be 0. Note that by linearity of Σ′, this means that the shares
from such group of size m(v + 1) + (m− w)(d− v − 2) contains no information
about s, proving that it provides privacy from such group. This would imply that
r2 ≥ (v + 1)w + (d− 1)(m− w) + 1.

First, for the first w groups, since we have the shares of all v+ 1 players from
such group, we would be able to recover the local secret si from the shares of these
players. Since their shares are 0, we can conclude that si = 0 for i = 1, . . . , w.
Next, note that since si is a valid share from a (w,m)-Shamir’s secret sharing
scheme, by the w-privacy guarantee of the (w,m)-Shamir’s secret sharing scheme,
there is a valid share generation of 1 such that si = 0 for i = 1, . . . , w. This will
also fix the values of si for i = w+ 1, . . . ,m. Next, we consider the sharing of the
players in the i-th group for i = w+ 1, . . . ,m. Note that since si,j is a valid secret
share of si using (d−1, v+1)-Shamir’s secret sharing scheme, by its d−1-privacy
guarantee, it is possible to have a valid share generation of si such that si,j = 0
for d− 1 of such j. This shows that it is possible to have a valid share generation
of s = 1 such that the share of all the players belonging to the group described
above to be zero. This proves that r2 ≥ (v+ 1)w+ (d− 1)(m−w) + 1. Combined
with the upper bound established for r1, we obtain r2− r1 ≥ (d− 1)(m−w− 1).

Next, we consider the privacy level of Σ′, which we denote by t2. Consider
the group of players consisting of d players from each of the first w+ 1 groups. It
is easy to see that such group can recover the original secret. This shows that
t2 ≤ d(w + 1)− 1. So combined with the fact that (d− 1)(w + 1) ≤ t1, we have
t2 − t1 ≤ d− 1.

It is easy to see that when w− 1 < m, the increase of recovery level, which is
at least (m− w − 1)(d− 1) is at least the increase in the privacy level, which is
at most d− 1. This gap becomes much larger especially in the scenario where
the secret sharing scheme is (strongly) multiplicative with repairing process
that provides statistical security for the privacy of the shares. Note that in this

case, since w ≤ m
2 and m = O

(
n
v

)
= O

(
n

ln(1+ε) n

)
for some ε > 0, the gap is
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O
(

n
ln(1+ε) n

)
. This shows that in general, a secret sharing scheme generated by

Algorithm 6 comes with a larger gap between the privacy level and recovery level.
So if we maintain the recovery level to be the same, the privacy level provided by
Σ′ is much smaller than what can be guaranteed from the construction following
Algorithm 1. Such limitation of Algorithm 6 provides us with a justification on
considering the one-step construction in Algorithm 1 instead of the more natural
Algorithm 6.
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