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Abstract. Garbling schemes are one of the most fundamental objects in cryptography and have been
studied extensively due to their broad applicability. The state-of-the-art is a construction in which XOR
gates are free and AND gates require 3κ/2+O(1) bits per gate, due to Rosulek and Roy (CRYPTO’21).
An important technique in their garbling is slicing, which partitions the labels into two equal-length
slices. In this paper, we explore the feasibility of the slicing technique for garbling schemes beyond the
results introduced by Rosulek and Roy, demonstrating both its potential and its limitations.

In particular, we extend this technique to demonstrate the garbling of certain higher fan-in gadgets,
and then use this to show that it is possible to garble 2-input AND gates at a cost of 4κ/3+O(1) bits.
We then give a separation result showing that sliced garbling cannot be used to garble higher fan-in
gadgets of degree ≥ 3 when restricted to making queries that are linear functions of the input labels to
the random oracle. We further demonstrate the usefulness of our techniques in the context of oblivious
garbling, a newly introduced concept for capturing circuit hiding from the garbler. The complexity of
our construction is superior to that of universal circuits, and grows linearly with circuit size.

Note: A bug in Theorem 1 was brought to our attention by Lei Fan, Zenghao Lu, and Hong-Sheng
Zhou. The attack on the scheme that reveals the permute bits when garbled using the scheme shown in
Figure 1. In particular, we have observed that there are linear dependencies in the system of equations
corresponding to the scheme that can be exploited. We are currently exploring whether a workaround
can be found. The sections containing the separation result and oblivious garbling are not affected by
this bug.

1 Introduction

Garbling schemes have been a fundamental object in cryptography since their introduction by Yao [40] in
1986. In addition to being one of the major paradigms in achieving constant round secure computation [8,
15,23,28,30,40], it also has found numerous applications across various areas of cryptography. Computing on
encrypted data [11,36], verifiable computing [5,17], parallel cryptography [3,4], software protection [9,18,20],
obfuscation of code [2, 12], functional encryption [19, 35], and key-dependent message security [1, 7], among
others, are some of the areas where garbling schemes have found applications.

Most garbling techniques are presented in the gate-by-gate paradigm, which involves garbling each gate sep-
arately. Working in this paradigm requires encoding the truth table row-wise, which involves encrypting each
row separately. For that, each wire is associated with two labels (bit-strings), representing the wire’s seman-
tic value as true or false. Then, the appropriate output wire labels are encrypted using the corresponding
input wire labels based on the gate’s truth table. Therefore, the communication complexity of the scheme
is determined by the number of such ciphertexts per gate. Garbling schemes employ efficient symmetric-key
primitives, making them highly practical. Due to their broad applicability, they have been extensively stud-
ied with the aim of reducing their concrete costs where the bulk of the effort has concentrated on reducing
the communication complexity; see [21, 26, 27, 30, 32, 41] for a partial list. In [27], Kolesnikov and Schneider
introduced the free-XOR technique, which removed communication for all XOR gates in a circuit. Due to
⋆ The work was done when the author was a student at Bar-Ilan University, Israel.



this, a standard approach in designing a garbling scheme is considering circuits with 2-input XOR and AND
gates.

The best communication complexity today is achieved by the three-halves garbling scheme [34] that requires
communicating 3

2κ bits for every AND gate, and no communication is needed for XOR gates, for a given
security parameter κ. Three-halves improves upon the half-gates garbling scheme [41] by introducing a
technique called slicing. While the garbling mechanism within all garbling schemes till then involved working
with the label as a whole, with the slicing technique, Rosulek and Roy suggested splitting each label into
two halves and deriving each slice for the output label separately. Continuing the line initiated in [41],
they showed that schemes like half-gates could be represented as a system of linear equations and modified
this abstraction to garble individual slices separately rather than the entire label. To achieve this, they
used the dicing technique, introduced by Kempka, Kikuchi and Suzuki in [24]. Namely, to ensure that
the corresponding linear system of equations has a solution, the dicing technique adds a random linear
combination of the input labels to each equation. In Section 3, we provide a detailed overview of the linear
algebraic representation of garbling schemes as presented by Rosulek and Roy in [34].

Along with the half-gates garbling scheme in [41], Zahur, Rosulek and Evans also showed a matching lower
bound of 2κ bits to garble an AND gate in a model they define as linear garbling. In a nutshell, the model
restricts all operations in the garbling scheme to either making oracle calls or bitwise-XOR of strings, where
the oracle captures the cryptographic object used for encryption. They then demonstrated how the linear
garbling model captures most of the practical garbling techniques known at that time. While the lower bound
of 2κ bits provided in [41] gives a fair idea of the communication complexity of garbling an AND gate, it is
limited to a single two-input AND gate.

Following this, using techniques not captured by the linear garbling model, various works [6, 24, 38] showed
how to construct better garbling schemes for a single AND gate but could not extend these to improve
communication for garbling arbitrary circuits. As discussed earlier, this was overcome by the three-halves
garbling scheme using the Slicing and Dicing techniques. These techniques, too, are not captured by the
linear garbling model and hence provide a way to circumvent the bound.

While the linear garbling model does not capture the slicing and dicing techniques, the resulting garbling
scheme still has linearity with respect to the type of operations performed. To be precise, the only permissible
operation in the linear garbling model is addition over the field GF(2κ). In the three-halves garbling scheme,
the only operation performed is addition over the field GF(2κ

2 ), as a result of working with slices instead
of whole labels. As discussed earlier, through the dicing technique, a random linear combination of labels
unknown to the evaluator is introduced as a part of the system of equations to ensure they are solvable.
It, however, does not alter the kind of mathematical operation the scheme uses and hence still maintains
linearity. In this work, we continue exploring the boundaries of garbled gate compression. Our goal is to
understand the potential of the three-halves slicing technique, and explore the feasibility of garbling gadgets
with higher fan-in using the same. In particular, Is it possible to increase the number of slices or the number
of inputs to take full advantage of the slicing technique?

In this paper, we answer the above question in the affirmative. We show that it is feasible to garble certain
gadgets of higher fan-in by increasing the number of slices, specifically for the 3-input case. We also show
how these gadgets can be used in turn to garble AND gates with 4κ

3 + O(1) bits of communication while
maintaining the free-XOR property. Thus, we provide an asymptotic improvement in the communication
complexity. We state and prove the security of our garbling scheme under (a modified version of) the TCCR
assumption [22] that captures label slicing. However, we show that these methods are not universally ap-
plicable to garbling all higher fan-in gadgets. Specifically, we establish that this approach is unsuitable for
directly garbling a 3-input AND gate and other higher degree gadgets.

Additionally, we show that these extension techniques are useful in the context of a new notion, that we
define as Oblivious Garbling. We believe this cryptographic object is of independent interest, as it captures
instances where a garbler needs to remains oblivious to the actual gates used within the circuit. This notion
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becomes particularly pertinent in situations where one seeks to outsource the garbling task while maintaining
secrecy over the circuit, possibly due to the presence of sensitive states or information.

1.1 Overview and Our Contributions

This paper improves over the state-of-the-art for garbling techniques on the two fronts. Firstly, we show
it’s feasible to extend the slicing technique further to achieve a garbling scheme for Boolean circuits with
better communication complexity with respect to the security parameter. Then, we show the infeasibility
of extending the slicing technique to garble cubic and higher degree gadgets under a reasonable set of
assumptions. In addition to this, we use these techniques to design a garbling scheme that can hide the
functionality of the circuit from the garbler. While previous schemes have addressed gate hiding, typically
defined with respect to the evaluator, none have explicitly catered to scenarios where the garbler remains
unaware of the circuit’s structure. Thus, we formally define “oblivious garbling” as a means to encapsulate this
requirement, and present a garbling scheme to achieve this notion. We give an overview of our contributions:

1. The feasibility of sliced garbling: We show it is possible extend the slicing technique from three halves
to garble 3-input gadgets, while achieving better communication with respect to the security parameter.
The three-halves garbling scheme [34] achieves its efficiency through two optimizations: (a) the half-gates
optimization, which restricts the oracle queries to linear functions on the input labels. Non-linear queries like
H(Ai, Bj) can only be used for the row in the truth table corresponding to the input tuple (i, j), whereas
queries like H(Ai), H(Bj) and H(Ai ⊕ Bj) can be reused for two rows in each truth table. The ability to
reuse oracle responses across multiple equations in a linear system creates linear dependencies that allow for
the compression of the ciphertexts to be communicated (see [34] for a more detailed explanation regarding
this), and (b) slicing, which divides the output labels into two halves and uses a distinct combination of
linear queries to derive each slice separately.

A natural question is whether slicing can be extended further. For example, if we slice a label into three
parts for 2-input gates, we will need to derive each part separately. However, with just one oracle H(.), the
only possible linear queries are H(A), H(B), and H(A + B). This makes it impossible to find a viable set
of combinations of these three queries that can garble three different slices independently and correctly. The
only way to do this would be to introduce another oracle H ′(.), which would increase the communication
cost instead of decreasing it because we will have to send ciphertexts corresponding to two oracles instead
of just one.

We consider a different route by providing a framework to logically extend the garbling equation presented
in [34] to garble a 3-input gadget Gtri(x, y, z) = x ∧ (y ⊕ z). In Section 4.1, we provide a detailed overview
of this generalization and how to garble this gadget. We then extend this approach in Section 4.2 to garble
arbitrary circuits with XOR gates and Gtri gadgets. Finally, we show how such a gadget can be reduced to
a 2-input AND gate while preserving the communication complexity, thus proving Theorem 1.

Any such generalization of the slicing technique to a higher fan-in setting requires simultaneously addressing
the following concerns: (1) finding the right combination of oracle queries, (2) existence of linear combinations
of label slices that ensure the corresponding system is solvable, and (3) concise representation of such linear
combinations, all while maintaining the correctness and privacy of the garbling scheme and optimizing for
the garbled gate size.

In addressing (1), we require that each combination of oracle queries yields a distinct masking value, and one
such combination is used for each slice. While the three-halves scheme addressed (2) and (3) by performing an
exhaustive search, such an approach is infeasible in the higher input setting, where the number of constraints
in the linear combination grows double exponentially in the fan-in size n. We solve (1) and (2) completely,
and (3) partially. Due to the increased dimension, a three-half approach is not readily available to us, so we
leave the search for a better representation via linear algebra techniques to future work.
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Finally, we describe a garbling scheme for Boolean circuits with XOR gates and AND gates, where XOR
gates need no communication, and each AND gate has a garbled gate of size approximately 4κ

3 bits. More
precisely, we prove the following theorem:

Theorem (Informal) 1 There exists a garbling scheme for arbitrary circuits comprised of 2-input XOR
and AND gates, such that the size of the garbled circuit is n ·

(
4κ
3 +O(1)

)
+ κ bits, where n is the number

of AND gates and κ is the security parameter.

Note that the three-halves garbling scheme [34], which is the current state-of-the-art in communication for
garbling such a circuit, would incur a cost of n ·

(
3κ
2 +O(1)

)
bits. Our scheme achieves better communication

complexity per AND gate with respect to κ, by making two extra calls to the oracle. Table 1 summarises
the landscape of garbling schemes for circuits with XOR and AND gates:

Table 1. The landscape of garbling for circuits with XOR and AND gates, up to constants, where κ is the security
parameter, and the numbers mentioned is per gate

Technique Size (in terms of κ) Calls to H
assump.Garbler Evaluator

XOR AND XOR AND XOR AND
Classical [40] 8 8 4 4 2.5 2.5 PRF

Point-and-Permute [8] 4 4 4 4 1 1 PRF
Free-XOR [27] 0 3 0 4 0 1 CCR

GRR3 [30]+ Free-XOR 0 3 0 4 0 1 CCR
GRR2 [32] 2 2 4 4 1 1 PRF

Half-Gates [41] 0 2 0 4 0 2 CCRND
Three-Halves [34] 0 3/2 0 6 0 3 RTCCR
Our Scheme 0 4/3 0 8 0 4 3-TCCR

Security Assumption: Garbling schemes can be instantiated under different security assumptions, as shown
in Table 1. While schemes that do not employ the free-XOR optimization can be instantiated using pseudo-
random functions, this optimization requires a stronger assumption called Circular Correlation Robustness
(CCR), formalized in [13]. In this paper, we prove our scheme under the Tweakable CCR assumption,
which was introduced in [22], that instantiates the oracle with a tweakable block cipher. We note that the
three-halves garbling scheme has been proven secure under the Randomized TCCR (RTCCR) assumption,
which is implied by TCCR. Our scheme can also be proven secure under the RTCCR assumption by slight
modifications to the proof shown in Appendix 4.2.

2. Limitations of linear queries for gadgets: As discussed earlier, we restricted the garbling scheme
to allow only linear queries for the reasons suggested by Rosulek and Roy in [34], i.e., queries on linear
combinations of input labels. When formalizing this notion, we observe that the functions garbled by the
garbler are at most quadratic in the 2-input case, whereas for a 3-input AND gate, the corresponding Boolean
function contains a cubic term. We show that when restricted to making only linear queries, one cannot use
the garbling equation to garble a 3-input AND gate. We later extend this result to show that this applies
to any higher fan-in gadget, with degree greater than 3. The degree of a gadget refers to the multiplicative
depth of the gadget when we represent it in terms of just AND and XOR gates. We prove the following
theorem:

Theorem (Informal) 2 Let g be a Boolean gadget of degree d ≥ 3. Then, no n-sliced extension of the
garbling scheme in [34] can garble g, provided the queries to the oracle are limited to be a linear function of
the input labels.
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To prove Theorem 2, we first show that every gadget of degree d, introduces a multi-linear term of total
degree d in the system of linear equations. Then, we proceed to show that when restricted to linear queries,
for all extensions of [34], the corresponding system of linear equations is solvable only if the total degree
is at most two. As the gadget has a degree higher than 2, the corresponding system of equations remains
unsolvable, hence proving the claim.

In particular, we notice that the motivation behind using linear queries for 2-input gates, as suggested by
Rosulek and Roy in [34], no longer remains valid for degrees higher than 2. The reason behind avoiding
non-linear queries was to be able to reuse oracle responses on queries for encrypting multiple rows of the
corresponding truth table. For instance, for a 3-input AND gate, the query H(A0, B0) can be used for two
rows, namely (a, b, c) = (0, 0, 0) or (0, 0, 1). This no longer holds for gates of higher fan-in. Therefore, we
conclude that linear queries are insufficient for garbling gates with a high degree in this framework. We leave
it as future work to explore the consequences of using non-linear queries.

3. Oblivious Garbling schemes: As we consider the extensions of the slicing technique to garble higher
input gadgets, specifically the Gtri(x, y, z) = x ∧ (y ⊕ z) gadget introduced earlier, we notice that this
gadget exhibits a unique property: it can be programmed to function as either an AND or an XOR gate by
setting specific inputs. For example, setting z=0 turns it into an AND, while setting x=1 creates an XOR.
This versatility allows it to be considered a “universal” gadget. This programmability opens up exciting
possibilities, especially in the context of garbled circuits. Traditionally, garbling a circuit involves encrypting
its truth table, which requires knowledge of the logic implemented by each gate. Consequently, most existing
schemes require the garbler to have complete knowledge of the circuit structure.

This programmability is interesting because it can be used to hide the gate that the gadget implements, if
one could hide the inputs to the gate. This could be particularly useful in instances when dealing with circuits
embedded with secrets, like those used in laconic function evaluation [14,33]. It also applies to scenarios where
garbling is outsourced to cloud computing or specialized hardware accelerators, while keeping the circuit itself
hidden. Traditionally, garbling a circuit involves encrypting its truth table, which requires knowing the logic
implemented by each gate. For this reason, most schemes so far require the garbler to know the circuit
structure. In this paper, we show how to use our garbling scheme for Gtri gadgets to achieve a scheme that
can hide the implemented circuit from the garbler, even if the topology of the circuit is revealed. To achieve
this, we use the fact that the Gtri gadget can be reduced to either an XOR or an AND gate based on fixing
certain values to the wire x or z respectively. We then show how to use the soldering techniques to connect
independently garbled Gtri gadgets to realise an oblivious garbling scheme for any arbitrary boolean circuit.
In particular, we prove the following theorem:

Theorem (Informal) 3 There exists an oblivious garbling scheme for arbitrary circuits comprised of 2-
input AND and XOR gates, such that the size of the garbled gate is O(n) bits, where n is the size of the
circuit.

While it appears that the same can be achieved using universal gates, such as NAND gates, the functionality
it implements is revealed when the garbler knows the topology. Our scheme manages to hide the circuit
from the garbler even while leaking the topology. Another possible approach to oblivious garbling is to use
universal circuits [25, 29, 37, 42]. A universal circuit, UC, refers to a circuit that can be programmed to
simulate any Boolean circuit C up to a given size n. That is, a UC takes as input program bits pC (which
encode C) in addition to an input x, and produces as output UC(x, pC) = C(x). While this approach
works, it was shown in [39] that to simulate arbitrary circuits of size n, one would need the size of UC
to be Ω(n log n). Our scheme represents a significant advance over this, since it incurs computational and
communication complexity linear in the circuit size |f |. Moreover, our scheme ensures that each gate of the
circuit is garbled independently, making it highly parallelizable. To achieve this, we replace all the gates with
the Gtri gadget and show how can we let the evaluator program each gadget during evaluation to privately
evaluate the circuit. We discuss this in detail in Section 6.
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2 Preliminaries

2.1 Notations

For the rest of the paper, we use X⃗ to denote any array [X1, · · · , Xn]. When a vector X⃗ is used inside a
matrix, we mean to include all its elements as a part of the column it is used in. For example, for X⃗ = [X1, X2]

and Y⃗ = [Y1, Y2], and a matrix A:

A

[
X⃗

Y⃗

]
= A


X1

X2

Y1

Y2


For any matrix M , we denote by colspace(M), the vector space generated by the columns of the matrix M .
By In, we denote an identity matrix of dimensions n×n, and by 0m×n, we denote a zero matrix of dimensions
m × n. For discussing 2-input gates, we model the gate g as having a, b as input wires and c as the output
wire. For 3-input gates similarly, we have a, b, c as input wires and d as the output wire. We designate two
labels for a wire x, a 0-label X0, and a 1-label X1. So, for wire a, we have labels {A0, A1}. We stick to
the free-XOR setting of [27] and denote by ∆ the global free-XOR offset. For schemes that use slicing, we
denote by Xi

0, the i’th slice of label X0. We denote sliced wire labels as a vector for concise representations
in equations. For schemes that require k-slices of the wire labels, we represent wire label A0 = A1

0|| · · · ||Ak
0

as A⃗0 = [A1
0, · · · , Ak

0 ]. As we use ∆, the global free-XOR offset, we will also represent that as a sliced vector
∆⃗ = [∆1, · · · , ∆k].

We next define computationally indistinguishablity.

Definition 1 Let {Xn} , {Yn} be sequences of distributions with Xn, Yn ranging over {0, 1}ℓ(n) for some
ℓ(n) = nO(1). Then, {Xn} and {Yn} are computationally indistinguishable (notation: Xn

c
≈ Yn ) if for every

polynomial-time A and polynomially-bounded ϵ, and sufficiently large n

|Pr [A (Xn) = 1]− Pr [A (Yn) = 1]| ≤ ϵ(n)

2.2 Definition for Garbling Schemes

We use and state the definition in [34], a slightly modified definition of garbling schemes to that of [10]. We
rewrite it here for the sake of completeness.

Definition 2 A garbling scheme consists of four algorithms:

1. Garble(1κ, f)→ (F, e, d) which takes in as input the security parameter κ, and the functionality f in the
form of a circuit and returns the garbled circuit F , encoding information e for the wire labels and the
decoding information d for the output wire labels.

2. X := Encode(e, x) which takes in as input the encoding information e, input x and gives the Garbled
input X.

3. Y := Eval(F,X) which takes in as input the garbled circuit F , the garbled input X, and returns the
garbled evaluation of f on x, as Y .

4. y := Decode(d, Y ) which takes in as input the decoding information d, garbled output Y and gives the
output y.

We want the following properties from a garbling scheme:

Correctness: For any circuit f and input x, while (F, e, d) ← Garble(1κ, f), we have f(x) = Decode(d,
Eval(Encode(e, x))) except for negligible probability.

Privacy: There is a simulator Sim such that for any circuit f and input x, the following distributions are
indistinguishable:
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(F, e, d)← Garble(1κ, f)
X := Encode(e, x)
return (F,X, d)

(F,X, d)← Sim(1κ, Φ(f), f(x))
return (F,X, d)

Obliviousness: There is a simulator Sim such that for any circuit f and input x, the following distributions
are indistinguishable:

(F, e, d)← Garble(1κ, f)
X := Encode(e, x)
return (F,X)

(F,X)← Sim(1κ, Φ(f))
return (F,X)

Authenticity: For any circuit f and input x, no PPT adversary Adv can make the following distribution
output TRUE except with negligible probability:

(F, e, d)← Garble(1κ, f)
X := Encode(e, x)
Y ← Adv(F, d,X)
return Decode(d, Y ) /∈ {f(x),⊥}

2.3 Tweakable Circular Correlation Robust Hash Functions

We use the TCCR assumption as stated in [22] by making modifications to the input parameters and
incorporating the fact that the hash output is κ/3 bits long, and we can now XOR the three-slices of ∆,
namely ∆1,∆2 and ∆3 to the hash output.

Definition 3 3-Sliced Tweakable Circular Correlation Robustness (3-TCCR): Let H = {H : {0, 1}κ × T →
{0, 1}κ/3} be a set of functions for a defined set of tweaks T , and let R be a distribution on {0, 1}κ. Let Fm,n

be the set of all functions mapping m bit strings to n bit strings. For a uniformly sampled ∆ = (∆1||∆2||∆3)
from R such that |∆i| = κ

3 and i ∈ T , let

O3−tccr
∆ (x, i, (b1, b2, b3)) := H(x⊕∆, i)⊕ b1 ·∆1 ⊕ b2 ·∆2 ⊕ b3 ·∆3

For a distinguisher D, define:

Adv3−tccrH,R (D) := | Pr
∆←R

[DO
3−tccr
∆ (.) = 1]− Pr

f←F2κ+3, κ
3

[Df(.) = 1]|

where we require that D never queries (x, i, L = (b1, b2, b3)) for any x such that it can trivially find ∆. We
say that H is (t, q, ρ, ϵ)− 3-tweakable circular correlation robust if for all D running in time at most t, and
making at most q queries to O3−tccr

∆ (.), and all R with min-entropy at least ρ, it holds that Adv3−tccrH,R ≤ ϵ.

3 Linear Garbling as a System of Equations Revisited

Zahur, Rosulek and Evans in [41] introduced the linear garbling model. The model encompassed most of
the practical garbling constructions known at that time. They also proved a lower bound on the concrete
communication complexity of a garbled gate for a 2-input AND gate. We now discuss how some existing
schemes in the linear garbling model can be seen as a system of linear equations, as shown in [34]. We only
discuss garbling AND gates as XOR is free.
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Notations: For this section, we consider 2-input AND gates with input wires a, b and output wire c. Each
wire x has two wire labels, a 0-label X0 and a 1-label X1. To comply with the free-XOR framework [27], we
also have a global ∆ such that X1 = X0 ⊕∆ for all wire labels. Therefore we can always consider a pair of
wire labels to be denoted {X0, X0⊕∆}. We denote by Gij the ciphertext for the row 2i+ j in the permuted
table. Therefore, the garbled gate is represented as G = [G00, G01, G10, G11]. We also assume oracle access
of the garbler and evaluator to a hash function H satisfying some security assumption. We also assume the
point and permute optimization suggested by Beaver, Micali and Rogaway in [8].

Yao’s Garbling Scheme: We now describe Yao’s Garbling Scheme, used along with the point and per-
mute technique. The garbler encrypts the labels using a key and generates four ciphertexts G00, G01, G10, G11,
corresponding to each row of the permuted truth table. A key is derived by hashing the input labels corre-
sponding to that particular row. This gives the following four equations, assuming permute bits pa = 1, pb = 0
(the second row encrypts C ⊕∆):

G00 = H(A0, B0)⊕ C

G01 = H(A0, B1)⊕ (C ⊕∆)

G10 = H(A1, B0)⊕ C

G11 = H(A1, B1)⊕ C

GRR3 Row Reduction: Randomly sampling A,B,C and a fixed global offset ∆ fixes the garbled gate G
above for the sampled values. Hence its size is also fixed to 4κ bits. However, as observed by Naor, Pinkas
and Sumner in [30], we need a uniformly sampled C. Since the output of H is already pseudorandom, we
can set C = H(A0, B0), which would imply G00 = 0, hence reducing the size of the garbled gate to 3κ. The
set of equations then reduces to:

0 = H(A0, B0)⊕ C

G01 = H(A0, B1)⊕ (C ⊕∆)

G10 = H(A1, B0)⊕ C

G11 = H(A1, B1)⊕ C

Half-Gates: Zahur, Rosulek and Evans showed in [41] how to further reduce the size of a garbled gate to
2κ bits. This is done by making one of the ciphertexts depend on the other two ciphertexts in the garbled
gate and the active input label A that the evaluator holds. They achieve this by replacing the term H(A,B)
in the previous schemes with H(A)⊕H(B), which results in the following equations:

0 = H(A0)⊕H(B0)⊕ C

G01 = H(A0)⊕H(B1)⊕ (C ⊕∆)⊕A0

G10 = H(A1)⊕H(B0)⊕ C

G11 = H(A1)⊕H(B1)⊕ C ⊕ (A0 ⊕∆)

By adding the first three equations, we can see that G11 is just the sum of G10 and G01. We now restructure
the half-gates equation by shifting everything the garbler can’t control to one side of the equation. The
following are the values that the garbler cannot control:

1. Hash outputs: The hash outputs are pseudorandom, so they cannot be controlled by the garbler.

2. The value of ∆: This value of ∆ is fixed for the entire circuit and hence cannot change for every gate.
Though it is possible for the garbler to control the value of ∆ for one input gate, it cannot be true for
all gates.

3. Input wire labels for a gate: Recall that we stick to gate-by-gate garbling. Also, the GRR3 optimization
dictates that the output label for each gate needs to be derived as a function of the hash outputs of input
labels. So, the garbler has control over the input labels only for the input gates. Beyond this, all other
labels are a function of the hash outputs, hence not something the garbler can control.
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We move these values to the right side of the half-gates equation. On the left are the elements the garbler
has to compute: the output label C and the garbled gate G = {G1, G2}.

C = H(A0)⊕H(B0)

C ⊕G1 = H(A0)⊕H(B1)⊕∆⊕A0

C ⊕G2 = H(A1)⊕H(B0)

C ⊕G1 ⊕G2 = H(A1)⊕H(B1)⊕ (A0 ⊕∆)

The above set of equations can be viewed as a system of equations, Ax = b, with its solution x = [C,G1, G2],
matrix A being the matrix on the left, and everything on the right computing to the vector b. For half-gates,
the following system holds:

1 0 0
1 1 0
1 0 1
1 1 1


 C
G1

G2

 =


1 0 1 0
1 0 0 1
0 1 1 0
0 1 0 1



H(A0)
H(A1)
H(B0)
H(B1)

⊕

0 0 0
1 0 0
0 0 0
1 0 1


A0

B0

∆

⊕

0
1
0
0

∆ (1)

Denoting the matrices by variables V,M,R, and T in Equation (1), we have:

V

 C
G1

G2

 = M


H(A0)
H(A1)
H(B0)
H(B1)

⊕R

A0

B0

∆

⊕ T∆ (2)

Here T represents the output column of the permuted truth table, and R represents the combinations of
output labels added to create a system of equations that have a solution. Multiplying the left inverse of the
matrix V to both sides gives the solution to this system, and the garbler can then send G = [G1, G2] to the
evaluator.

Note that we can rewrite the garbling equations as a system of linear equations, even for Yao’s Garbling
scheme or the GRR3 row reduction technique. Rosulek and Roy made this observation in [34], showing that
most practical garbling schemes could be seen as a system of linear equations, where the solution to this
system is the garbled gate.

Three-Halves: Rosulek and Roy [34] showed how one could improve the communication complexity beyond
the half-gates scheme using a novel technique called slicing. They suggested that one can slice the output
labels into two halves of size κ

2 bits each and then garble each slice separately. Using the half-gates scheme,
garbling each slice separately would generate a garbled gate of size 2× κ

2 = κ bits for each output slice. For
instance, to garble the left slice, one would generate the garbled gate, GL = [GL

1 , G
L
2 ]; and GR = [GR

1 , G
R
2 ]

for the right slice. This scheme will still require 2κ bits of communication as there are two slices. However,
if the two garbled gates could share a ciphertext, say by having GL

2 = GR
2 , then the size of the garbled gate

would be 3κ
2 bits, as the shared ciphertext would only have to be communicated once.

They then showed how one could garble each slice such that they indeed share a ciphertext. They firstly
notice that along with the oracle responses H(A0), H(A1), H(B0), and H(B1) that are used in half-gates,
one could also query the oracle on A0 ⊕ B0 and A0 ⊕ B1. Next, they used these additional oracle queries
to garble the left and the right slices separately while ensuring they share one ciphertext. The three-halves
garbling scheme uses the following combination of the oracle queries to mask each output slice:

CL
k 7→H(Ai)⊕H(Ai ⊕Bj)

CR
k 7→H(Bj)⊕H(Ai ⊕Bj)

where Ai and Bj are the input labels and CL
k , C

R
k are the left and right slices of the output label, representing

the inputs (i, j) and the output k respectively.

Recall that for the half-gates scheme, we can rewrite the encryption of labels corresponding to each row as
a system of equations after choosing the combination of oracle queries as H(Ai) ⊕ H(Bj) as the masking
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values for each row corresponding to inputs (i, j), where Ai, Bj are the input labels. Consequently, in this
case, where there are two output slices, we can derive the following two systems of equations, one for each
slice:

For the left slice CL
0 we have:


1 0 0
1 0 1
1 1 1
1 1 0


CL

0

GL
1

GL
2

 =


1 0 1 0
1 0 0 1
0 1 0 1
0 1 1 0




H(A0)
H(A1)

H(A0 ⊕B0)
H(A0 ⊕B1)

⊕R1



AL
0

AR
0

BL
0

BR
0

∆L

∆R

⊕ T∆L (3)

and for the right slice CR
0 , we have:


1 0 0
1 1 1
1 0 1
1 1 0


CR

0

GR
1

GR
2

 =


1 0 1 0
0 1 0 1
1 0 0 1
0 1 1 0




H(B0)
H(B1)

H(A0 ⊕B0)
H(A0 ⊕B1)

⊕R2



AL
0

AR
0

BL
0

BR
0

∆L

∆R

⊕ T∆R (4)

Let us denote in the above system of equations with variables V1,M1, V2,M2 like we did for the half-gates
equation. Thus, we have the following system of equations to solve for:

V1

CL
0

GL
1

GL
2

 = M1


H(A0)
H(A1)

H(A0 ⊕B0)
H(A0 ⊕B1)

⊕R1



AL
0

AR
0

BL
0

BR
0

∆L

∆R

⊕ T∆L (5)

V2

CR
0

GR
1

GR
2

 = M2


H(B0)
H(B1)

H(A0 ⊕B0)
H(A0 ⊕B1)

⊕R2



AL
0

AR
0

BL
0

BR
0

∆L

∆R

⊕ T∆R (6)

As one can see, for Equation (5), the garbled gate GL = [GL
1 , G

L
2 ] is a part of its solution. Similarly, the

garbled gate for the second slice GR = [GR
1 , G

R
2 ] is a part of the solution for Equation (6). We now discuss

how to find the solution for both these systems of equations to compute both the garbled gates. Due to the
symmetric nature of these systems, we demonstrate it only for the left slice. All techniques, however, extend
to the right slice, too.

Let us consider the system represented by Equation (5). Consider a left inverse of the matrix V1, denoted by
V −11 . Note that V1 is a full-rank matrix; otherwise, we could reduce the number of ciphertexts required to
compute the equations on the right-hand side of the system. Therefore, at least one left inverse for V1 exists.
On multiplying V −11 on both sides of Equation (5), we get the following solution:

CL
0

GL
1

GL
2

 = V −1
1 M1


H(A0)
H(A1)

H(A0 ⊕B0)
H(A0 ⊕B1)

⊕ V −1
1

R1



AL
0

AR
0

BL
0

BR
0

∆L

∆R

⊕ T∆L

 (7)
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In Equation (7), the solution vector can be divided into two components. The first component corresponds
to the terms derived from the oracle responses, represented by V −11 M1. The second component corresponds
to the slices of the input labels and ∆, represented by V −11 R1 and V −11 T . Based on this understanding, we
can create two subsystems of equations whose solutions will sum up to the solution of Equation (5). Let’s
consider these two subsystems:

Subsystem 1 corresponds to the matrix M1 operating on the vector of oracle responses, with a solution vector
[CL

0,H , GL
1,H , GL

2,H ]:

CL
0,H

GL
1,H

GL
2,H

 = V −1
1 M1


H(A0)
H(A1)

H(A0 ⊕B0)
H(A0 ⊕B1)

 (8)

Subsystem 2 corresponds to only the matrices R1, T operating on the slices of input labels and ∆, with a
solution vector [CL

0,X , GL
1,X , GL

2,X ]:

CL
0,X

GL
1,X

GL
2,X

 = V −1
1

R1



AL
0

AR
0

BL
0

BR
0

∆L

∆R

⊕ T∆L

 (9)

As stated earlier, the sum of solutions obtained in Equations (8) and (9) is a solution to (5). For Equation (8),
by substituting the values of the matrices V1 and M1 from (3), we have a solution of the following form:

CL
0,H = H(A0)⊕H(A0 ⊕B0)

GL
1,H = H(A0)⊕H(A1)

GL
2,H = H(A0 ⊕B0)⊕H(A0 ⊕B1)

Similarly, the system of equations corresponding to the right slice in Equation (6) will also split into the
following two subsystems: Subsystem 1 for the right slice corresponds to the matrix M2 operating on the
vector of oracle responses, with a solution vector [CR

0,H , GR
1,H , GR

2,H ]:

CR
0,H

GR
1,H

GR
2,H

 = V −1
2 M2


H(B0)
H(B1)

H(A0 ⊕B0)
H(A0 ⊕B1)

 (10)

Subsystem 2 for the right slice corresponds to only the matrices R2, T operating on the slices of input labels
and ∆, with a solution vector of [CR

0,X , GR
1,X , GR

2,X ]:

CR
0,X

GR
1,X

GR
2,X

 = V −1
2

R2



AL
0

AR
0

BL
0

BR
0

∆L

∆R

⊕ T∆R

 (11)

Extending the splitting technique used for the left slice, we get the following solution for the subsystem in
Equation (10):

CR
0,H = H(B0)⊕H(A0 ⊕B0)

GR
1,H = H(B0)⊕H(B1)

GR
2,H = H(A0 ⊕B0)⊕H(A0 ⊕B1)
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The above solutions show that GL
2,H = GR

2,H . It is evident that the first subsystems of both slices share a
ciphertext. If a shared ciphertext exists between the second subsystems of both slices, we will have a shared
ciphertext overall. However, for the second subsystem, as opposed to half-gates, no matrices R1, R2 satisfy
this set of equations for all values of T . Nevertheless, given T , there exist matrices R1 and R2 that satisfy
the above equation system. One cannot send them in plain, as they contain information about T , which is
the permuted truth table, and hence can reveal the permute bits. In the three-halves scheme [34], Rosulek
and Roy solve this problem through the idea of dicing, introduced by Kempka, Kikuchi and Suzuki in [24].
They find R1, R2 that work for a chosen T , compute encryptions of these matrices, and send the ciphertexts
to the evaluator such that it can only decrypt the input labels added to the active row. This is called dicing.
In three-halves [34], Rosulek and Roy showed the existence of matrices R1, R2, for any given T , using a
brute-force search from the space of all possible matrices satisfying some given conditions. They combine the
systems in Equations (5)-(6) to a single system of equations:

V


CL

CR

G1

G2

G3

 = M


H(A0)
H(A1)
H(B0)
H(B1)

H(A0 ⊕B0)
H(A0 ⊕B1)

⊕R


AL

AR

BL

BR

∆L

∆R

⊕ T

[
∆L

∆R

]

Which can be rewritten as:

V

[
C⃗0

G⃗

]
= MH⃗ ⊕R

A⃗0

B⃗0

∆⃗

⊕ T∆⃗ (12)

As R in Equation (12) was sampled for a given T , it contains information about the permute bits and
cannot be sent in plain to the evaluator. However, the evaluator only needs the values of the matrix R,
corresponding to the rows of the active inputs. As we already know, the garbling equation is a tool at our
disposal to reveal information to the evaluator only for the active rows. Rosulek and Roy showed how to
encrypt these control matrices using the garbling equation. The matrix R has four columns in this case, and
they showed how to encrypt each column with five additional bits of ciphertext. Hence, with an additional
ciphertext of 20 bits, one could encrypt the chosen control matrix. We discuss more about how to use this
method later in Section 4 when we reuse this technique in our scheme. Rosulek and Roy also showed a series
of optimizations to bring this cost down to 5 bits, hence setting the cost of the garbled gate to 3κ

2 + 5 bits.

4 Our Garbling Scheme

In this section, we present a garbling scheme that can garble any circuit comprised of 2-input AND and
XOR gates with communication complexity n ·

(
4κ
3 + 63

)
+ κ bits, where n is the number of AND gates in

the circuit. To achieve this, we first discuss how to garble a specific 3-input gadget

Gtri = x ∧ (y ⊕ z)

with the size of the garbled gate for the gadget being 4κ
3 + 63 bits. Later, we will show how to extend this

technique to garble circuits that are comprised of 2-input XOR gates and Gtri gadgets. Finally, we will show
how to construct a garbling scheme for a circuit with 2-input XOR gates and 2-input AND gates from a
garbling scheme for a circuit with 2-input XOR gates and Gtri gadgets while preserving the communication
complexity of the scheme. This will allow us to garble any circuit with 2-input XOR and AND gates using
our garbling scheme. All the schemes we present are proven secure, assuming 3TCCR assumption as stated
in Definition 3, while supporting the free-XOR optimization.

4.1 Garbling Scheme for Gtri Gadgets

In this section, we will discuss how to extend the three-halves garbling scheme to garble the 3-input gadget
Gtri. Recall that the previous section discussed how to garble a 2-input AND gate using the three-halves
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scheme and how the scheme corresponds to the system represented in Equation (12). We extend this equation
for directly garbling the 3-input gadget Gtri. For this, we have to account for an additional input label, as
the gadget has three inputs.

Let A0, B0, C0 be the 0-labels of the input wires a, b and c; D0, the 0-label for the output wire d, and ∆ be
the global free-XOR offset. Consequently, we have the following system:

V

[
D⃗0

G⃗

]
= MH⃗ ⊕R


A⃗0

B⃗0

C⃗0

∆⃗

⊕ T∆⃗ (13)

The system of linear equations, represented by Equations (13), provides an abstract representation of a sliced
garbling scheme for a 3-input gadget. To translate this abstract representation into a concrete scheme, it is
necessary to determine the specific values for the involved matrices and vectors. These values play a vital
role for two main reasons. Firstly, they determine the feasibility of a scheme by ensuring that the system
is solvable. Secondly, through careful selection, these values contribute to optimizing the size of the garbled
gate. In the following, we will delve into the key parameters that determine the values of these matrices and
vectors.

1. The number of slices: If each wire label is of size κ bits and we divide it into s equal slices, then by
definition, each slice would be of size κ

s . It is an essential parameter because it also decides the size of each
ciphertext in the garbled gate. We define a ciphertext to be a slice’s encryption, and hence would also be of
size κ

s . In our scheme, we make three slices to the wire labels, and hence each component of G⃗, would be of
size κ

3 . However, we leave it as an open problem to determine if this is the optimal number of slices that can
be made in this setting.

2. Oracle Queries: Another essential parameter that affects the efficiency of a garbling scheme is the
oracle queries made by the garbler and the evaluator. In sliced-garbling schemes, the garbler has to use some
combination of these queries to mask the slices of the output label. For determining this combination, it is
imperative to consider the following two constraints:

(a) Each slice needs to have a distinct combination of oracle queries masking it to ensure that the slice is
derived independently of the others.

(b) For a given slice, the chosen combination of oracle queries must yield distinct masking values for every
pair of inputs. This is to avoid situations where having access to a particular masking value reveals the
corresponding slice for multiple inputs.

Keeping the above constraints in mind, our scheme uses the following combinations:

D1
l 7→H(Ai)⊕H(Bj)⊕H(Ai ⊕Bj ⊕ Ck)

D2
l 7→H(Bj)⊕H(Ck)⊕H(Ai ⊕Bj ⊕ Ck)

D3
l 7→H(Ai)⊕H(Ck)⊕H(Ai ⊕Bj ⊕ Ck)

where Ai, Bj , and Ck are the input labels and Dl is the output label, representing the inputs (i, j, k) and
the output l respectively.

Notice that the above combination already sets the values of the vector H⃗ and the matrices M and V , in
Equation (13). The vector H⃗ should contain all possible queries that can be made to the oracle for the
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scheme. Hence,

H⃗ =



H(A0)
H(A1)
H(B0)
H(B1)
H(C0)
H(C1)

H(A0 ⊕B0 ⊕ C0)
H(A0 ⊕B0 ⊕ C1)


The matrix M , as seen in three-halves, represents which combination of queries from H⃗ are chosen for inputs
(i, j, k) to derive the corresponding output slice. The above combination, hence, completely determines M .
Also recall from the three-halves scheme in [34] that setting M also sets V , as both of them share the same
column space and Dim(V ) = Rank(M). Therefore, we can choose any V that satisfies both these conditions.
We list the matrices V and M that we use for this scheme in Appendix A.

3. The gadget being garbled: Recall that in the three-halves garbling scheme [34] when encrypting a
1-slice, the corresponding slice of ∆ is included in the equation, while the 0-slice does not include ∆. The
decision of whether to include ∆ depends on the specific gadget being used and the chosen permute bits
for a given row. These two factors collectively determine the values in the matrix T . The main purpose of
matrix T is to determine whether a slice of ∆ should be added as a term in a particular equation within the
system. We now will see how to compute the matrix T in our case. Recall that T is a matrix determined by
the output column of the permuted truth table. Let pa, pb and pc be the three chosen permute bits for wires
a, b and c, of the 3-input gadget Gtri. The output of the gadget, for the given permute bits, is

Tout(a, b, c) = (a⊕ pa) ∧ ((b⊕ pb)⊕ (c⊕ pc))

The matrix T can be computed in the following way, given a set of permute bits for each input wire:

T =
[
T0,0,0 T0,0,1 T0,1,0 T0,1,1 T1,0,0 T1,0,1 T1,1,0 T1,1,1

]⊺ (14)

where we have that ∀(i, j, k) ∈ {0, 1}, the sub-matrix Ti,j,k = I3 if Tout(i, j, k) = 1; 03×3 otherwise. For
example, if pa = pb = pc = 0, then T would be the following matrix for Gtri:

T =
[
03×3 03×3 03×3 03×3 03×3 I3 I3 03×3

]⊺
At this point, we know how to compute the matrices V,M, and T and sample vectors A⃗0, B⃗0, C⃗0 and ∆⃗. It
remains is to show how to choose R such that Equation (13) represents a garbling scheme for Gtri.

Choosing Control Matrix R: We will now discuss choosing the matrix R to garble the gadget Gtri. Similar
to the three-halves garbling scheme, we observe that we do not have a single control matrix R that satisfies
the equation for all values of T . So, we will have to reuse their dicing technique, where we find a matrix R
that works, given T , and encrypt it before sending it to the evaluator. We split this discussion into two parts.
We first focus on the constraints for choosing such a matrix R. We then show how to choose it, given T , to
satisfy the constraints. This approach is similar to that discussed in [34] for the three-halves garbling scheme.
In our case, however, we cannot do a brute-force search for the matrices that satisfy these constraints, like in
three-halves. So, we also show a novel algorithm to optimize the time complexity to search for such a matrix
R. In the following, we will discuss the constraints determining the size and structure of R.

1. Size of R: It’s important to note that in Equation (13), each of the vectors A⃗0, B⃗0, C⃗0, ∆⃗ has dimension
3, meaning that R operates on a vector of size 12. The truth table for the 3-input gadget Gtri consists of
eight rows, and since each of the three slices needs to be encrypted separately, each row introduces three
equations. Hence, the system involves 24 equations, and R is a size 24× 12 matrix.
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2. Structure of R: In addition to considering the size of matrix R, there is another important constraint to
consider. The matrix R operates on the slices of the input labels. This means that R determines whether
a particular slice of a wire label is included in an equation. Remember that each equation in the system
describes an encryption of a particular output slice, corresponding to some inputs (i, j, k). The triplet of
active labels associated with these inputs are (Ai, Bj , Ck). Therefore, it cannot be that R chooses to add an
inactive label in any equation corresponding to these inputs (i, j, k), as the evaluator would not be able to
access it. So, we must ensure that R only uses combinations of slices that the evaluator can reproduce for a
given input. Let us try to use this intuition to induce an explicit structure on R, similar to how it was done
for the three-halves garbling scheme in [34].

For the sake of illustration, let us start with a garbling scheme without slicing for 2-input gates. Recall that
we have derived the following equation for this setting when we discussed the half-gates scheme.

V

 C
G1

G2

 = M


H(A0)
H(A1)
H(B0)
H(B1)

⊕R

A0

B0

∆

⊕ T∆ (15)

Here, the matrix R is of size 4 × 3. Let us explicitly rewrite R in terms of its components in the following
way:

R

A0

B0

∆

 =


R0,0,A0 R0,0,B0 R0,0,∆

R0,1,A0 R0,1,B0 R0,1,∆

R1,0,A0 R1,0,B0 R1,0,∆

R1,1,A0 R1,1,B0 R1,1,∆


A0

B0

∆

 (16)

where Ri,j,X ∈ {0, 1} denotes the part of R corresponding to inputs (i, j) operating on X. We now show
that the column corresponding to ∆ in the matrix R is deducible from other columns of R. For example,
consider the inputs (0, 1). For these inputs, {A0, B1 = B0 ⊕ ∆} is the set of active labels. To include the
label A0 to the equation corresponding to these inputs, we set R0,1,A0

= 1. If we do not wish to include the
label A0, then we set R0,1,A0

= 0. Note that including or excluding A0 does not affect the value of R0,1,∆ as
it corresponds to ∆, and the label A0 does not include ∆ term. However, this is not the case for label B1.
If we want to include B1, then we will have to set both R0,1,B0

= 1 and R0,1,∆ = 1. If we choose to exclude
B1, then we set R0,1,B0

= 0, R0,1,∆ = 0. So, in both cases, we have that R0,1,∆ = R0,1,B0
. On deriving this

for equations corresponding to all inputs, one can realise the structure we sought for matrix R in Equation
(16) as follows:

R

A0

B0

∆

 =


R0,0,A0 R0,0,B0 0
R0,1,A0 R0,1,B0 R0,1,B0

R1,0,A0 R1,0,B0 R1,0,A0

R1,1,A0 R1,1,B0 R1,1,A0 ⊕R1,1,B0


A0

B0

∆

 (17)

The XOR term in the last row of R is because both A1 and B1 contribute a ∆ term to the equation. Note
that this logic can now be extended to sliced garbling schemes by imposing the structure for every slice. This
involves viewing the term Ri,j,X acting on single element X as sub-matrices Ri,j,X acting on a vector X⃗.
Here, each row of Ri,j,X corresponds to a slice of the output label. So, for a scheme like three-halves, the
structure of R would look as follows:

R

A⃗0

B⃗0

∆⃗

 =


R0,0,A0

R0,0,B0
0

R0,1,A0 R0,1,B0 R0,1,B0

R1,0,A0 R1,0,B0 R1,0,A0

R1,1,A0
R1,1,B0

R1,1,A0
⊕R1,1,B0


A⃗0

B⃗0

∆⃗

 (18)

where Ri,j,X is a sub-matrix corresponding to inputs (i, j) acting on vector X⃗.

Having established the structure for R for 2-input gadgets in a sliced garbling scheme, it is straightforward
to extend it to the 3-input case by just accounting for additional input. The following is the structure of R
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in the 3-input case:

R =



R0,0,0,A0 R0,0,0,B0 R0,0,0,C0 0
R0,0,1,A0 R0,0,1,B0 R0,0,1,C0 R0,0,1,C0

R0,1,0,A0 R0,1,0,B0 R0,1,0,C0 R0,1,0,B0

R0,1,1,A0 R0,1,1,B0 R0,1,1,C0 R0,1,1,B0 ⊕R0,1,1,C0

R1,0,0,A0 R1,0,0,B0 R1,0,0,C0 R1,0,0,A0

R1,0,1,A0 R1,0,1,B0 R1,0,1,C0 R1,0,1,A0 ⊕R1,0,1,C0

R1,1,0,A0 R1,1,0,B0 R1,1,0,C0 R1,1,0,A0 ⊕R1,1,0,B0

R1,1,1,A0 R1,1,1,B0 R1,1,1,C0 R1,1,1,A0 ⊕R1,1,1,B0 ⊕R1,1,1,C0


(19)

where the subscript (i, j, k,X) for R denotes a sub-matrix of R corresponding to inputs (i, j, k) in the truth
table, operating on the vector X⃗. For our scheme, as we have 3 slices for each wire label, each Ri,j,k,X is a
3× 3 matrix.

Lastly, there is one more constraint on matrix R that arises from the system represented in Equation (13).
Consider a matrix K as a basis for the co-kernel of matrix M. If we multiply K on both sides of Equation
(13), the term KM = 0, by the definition of co-kernel and similarly, the term KV = 0 as V has the same
column space of M . So we have,

0 = K

R


A⃗0

B⃗0

C⃗0

∆⃗

⊕ T∆⃗

 (20)

Consider a matrix T ′ =
[
024×3 024×3 024×3 T

]
. Then, we can rewrite Equation (20) as follows:

0 = K

R


A⃗0

B⃗0

C⃗0

∆⃗

⊕ T ′


A⃗0

B⃗0

C⃗0

∆⃗


 = K(R⊕ T ′)


A⃗0

B⃗0

C⃗0

∆⃗


Notice that T operating on ∆⃗ is the same as T ′ operating on

[
A⃗0 B⃗0 C⃗0 ∆⃗

]⊺
. It is because T ′ is a matrix

with three zero-matrices appended to the left of T . For this reason, from hereon, we stick to T ′, which T
completely determines. Then, from the above equation, we want R such that:

K(R⊕ T ′) = 0 =⇒ KR = KT ′ (21)

Sampling a control matrix R: As we have now established we want to find a control matrix R of size
24 × 12, whose structure resembles that shown in Equation (19) and such that it satisfies Equation (21),
for a given T ′. We now show that finding the set of matrices R that satisfy Equation (21), given T ′, is
equivalent to finding a general solution to a non-homogeneous system of linear equations. Firstly, we observe
that KT ′ ̸= 0 for any given T ′ by computing KT ′ for all possible T ′. As KT ′ is a fixed non-zero matrix, the
system is a non-homogeneous system of linear equations. The list of possible R matrices would hence be the
general solution to this system.

To find the set of possible control matrices R for a given T ′ that satisfies the equation KR = KT ′, we can
employ the standard two-step approach based on solving a non-homogeneous system of equations AX = B.
Firstly, we find the general solution to the homogeneous system of equations AX = 0. This provides a list
of solutions that satisfy the equation without the affine term. Secondly, we find a specific solution to the
non-homogeneous system AX = B. By adding this specific solution to each solution in the list of the general
solution to the homogeneous system, we obtain the general solution to the non-homogeneous system. This
process generates an exhaustive list of possible control matrices R. The garbler can then select one matrix
from this list.
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General Solution for the homogeneous system KR = 0: To obtain the general solution for the homogeneous
system KR = 0, let’s revisit our previous discussion. Since K represents a basis matrix for the co-kernel of
M , the general solution for this system would be all possible matrices R that share the same column space
as M .

However, we encounter a slight complication. We desire a matrix R that satisfies the structure described
in Equation (19), but not all matrices sharing the same column space as M satisfy this condition. Let us
denote by R$ a matrix that satisfies KR$ = 0, and adheres to the structure described in Equation (19).
By determining all possible matrices R$, we can find a comprehensive set of matrices that fulfill the given
requirements.

Let the general solution, the list of all possible solutions, be denoted as a set of matrices, SR$
. We will now

show how to find all these solutions. We know that any R$ should follow the exact structure of R as shown
in Equation (19) and is a 24× 12 matrix. Let C1, · · · ,C12 be its 12 columns. Then, because of this structure,
we see that for a given input of the gadget, the values in column C10 are determined by the values of C1,C4

and C7. This is because C10 is the column operating on the value ∆1 in Equation (13). ∆1 is the first slice
of ∆, and its inclusion only depends on the inclusion of the first slice of each input label(s). The columns
corresponding to these slices are C1,C4, and C7. Similarly, C11 depends only on C2,C5,C8; and C12 depends
only on C3,C6,C9, respectively. Moreover, we observe that this dependency is symmetric. So it is enough to
find a span for the matrix R$,1 = [C1,C4,C7,C10] and reuse it for the other two column sets to construct the
entire matrix R$.

Furthermore, since we aim for KR$ = 0, the columns of R$ can be derived using a span of the basis of the
column space of M . We first compute this basis, which has dimension 7 (i.e., same as that of M). We then
consider all possible 27 linear combinations of this basis for each column C1, C4, and C7 (noting that C10 is
fixed). These combinations should form a valid matrix [C1,C4,C7,C10], adhering to the requisite structure
of R$ and satisfying KR$,1 = 0. Each resulting matrix is added to the set SR$

.

Following this process, we obtain the complete set SR$
of dimension 28. To generate the entire matrix R$,

we randomly select three matrices from SR$
. These matrices are as follows:

R$,1 = [C1,C4,C7,C10]

R$,2 = [C2,C5,C8,C11]

R$,3 = [C3,C6,C9,C12].

Hence, with augmenting and rearranging some columns, we have the matrix

R$ = [C1, · · · ,C12]

Finding a Specific Solution for the homogeneous system KR = KT’: We will now discuss the approach to
search for a matrix R that fulfills Equation (21). To achieve this, we followed a similar process, where we
sought an R$ matrix satisfying the equation KR$ = 0. However, now, our objective is to find a single matrix
R that satisfies the equation KR = KT ′. It is important to note that in this case, instead of identifying a
comprehensive set of matrices, we aim to find just one matrix that meets the requirements. After conducting
the search, we have determined that such matrices do indeed exist for this particular gadget for any value
of T ′.

After finding a general solution for the equation KR$ = 0 and a specific solution for KR = KT ′ using the
method described above, it is possible to find a general solution for KR = KT ′ for some T ′. Let SR$

be the
list of all possible solutions to the equation KR$ = 0, and let RT ′ be a matrix that satisfies KRT ′ = KT ′.
The list of all possible solutions for KR = KT ′ can be expressed as:

ST ′ = {R$ ⊕RT ′ |R$ ∈ SR$
}.
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Encrypting the Control Matrix R Any control matrix R sampled as described above contains informa-
tion about T , and hence the permute bits. Therefore, we need to encrypt it before sending it to the evaluator
so that it can only decrypt the rows of R corresponding to the active inputs (x, y, z). We already noticed
that the garbling equation implements such an encryption mechanism. Namely, Each row in the garbling
equation encrypts a slice of an output label Di corresponding to the active inputs (x, y, z) by masking them
with hash outputs. We can use these to column-wise encrypt R as well. It is important to note that only the
first nine columns of R are needed to be communicated, as the last three columns can be derived from them.
Furthermore, for the first nine columns C1, · · · ,C9, it holds that KCi = 0, indicating that they are within
the column space of M . The column space of M has dimension 7. As we have already seen for our garbling
scheme, this means that there is a 7-bit vector r⃗i such that

V r⃗i = MH⃗ ⊕ Ci

where H⃗ denotes just the additional one bit of the hashes used to encrypt each Ci for all i ∈ {1, · · · , 9}. We
include the vector r⃗ = [r⃗1, · · · , r⃗9] as a constant size ciphertext in addition to the ciphertext for the garbling
equation G⃗. We also now modify the hash function H to map κ bits strings to κ

3 + 9 bit strings instead of
them mapping to κ

3 bit strings.

On the potential compression of R: We now describe a potential optimization to reduce the size of the
ciphertext for the control matrix R using the same technique as described by Rosulek and Roy in [34]. We
currently use the set S = {C1, · · · ,C9} to represent R, and encrypt each component of S individually. If one
can find a smaller span for S, say S′ = {S1, · · · Sd} where d < 9, then we could instead encrypt S′, which
would cost 7d bits. In [34], Rosulek and Roy showed that there exists S′ for their case, with d = 1, which
reduced the constant ciphertext size from 20 bits to 5 bits. If such a d exists for our case, then the constant
ciphertext in our case reduces optimistically to 7 bits, bringing the size of the garbled gate for each gadget
to 4κ

3 + 7 bits. We believe that such a span exists, and leave it for future work.

Decoding information: To authenticate output labels, and determine if they are a 0-label or 1-label,
the garbler provides the hashes of these labels as decoding information. The hash H used to garble is a
function mapping κ bit strings to κ

3 bit strings, and would not be sufficient to provide κ bits of authenticity.
Therefore, we use another hash function H ′ with output length κ bits. A possible instantiation for H ′ is:

H ′(E, k) = [H(E, t(k))]κ
3
∥ [H(E, t(k) + 1)]κ

3
∥ [H(E, t(k) + 2)]κ

3

where t(k) is some appropriate tweak that does not collide with any other hash call in the scheme, and the
notation [X]κ

3
refers to the first κ

3 bits of the string X.

4.2 Garbling a Circuit with XOR Gates and the Gtri Gadget

We formalise the techniques mentioned in Section 4.1 in Figure 1, to describe a garbling scheme for a circuit
comprised of XOR gates and Gtri gadgets.
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procedure Init(κ):
H := H(κ);

procedure Garble(1κ, f):
∆ :=$ {0, 1}κ−1||1;
for i ∈ Inputs(f) do

W 0
i :=$ {0, 1}κ;

W 1
i := W 0

i ⊕∆;
ei := W 0

i ;

for i /∈ Inputs(f){in topo.order} do
if i ∈ XORGates(f) then
{a, b} := GateInputs(f, i);
W 0

i := W 0
a ⊕W 0

b ;
W 1

i := W 0
i ⊕∆;

continue;

{a, b, c} := GateInputs(f, i);
(W 0

i , G⃗i, z⃗i) := Gb3GADGET(W 0
a ,W

0
b ,W

0
c );

W 1
i := W 0

i ⊕∆;
Fi := (G⃗i, z⃗i);

for i ∈ Outputs(f), j ∈ {0, 1} do
Dj

i := H ′(W 0
i ⊕ lsb(Wi)∆, i);

return (F̂ , ê, D̂);

procedure Gb3GADGET(W 0
a ,W

0
b ,W

0
c ):

pa, pb, pc := lsb(W 0
a ), lsb(W

0
b ), lsb(W

0
c );

T ′ := 3GADGET(pa, pb, pc);
R←$ ST , r⃗ := R[1:9];

z⃗ ∥
[
W 0

d

G⃗

]
:= V −1(r⃗ ∥ (R⊕ T ′)


W 0

a

W 0
b

W 0
c

∆

⊕MH⃗);

W := W 0
d ;

return (W, G⃗, z⃗)

procedure Encode(ê, x̂):
for ei ∈ ê do

Xi := ei ⊕ xi∆;

return X̂;

procedure Decode(D̂, Ŷ ):
for Di ∈ D̂ do

if ∃j ∈ {0, 1} s.t. Dj
i = H ′(Yi, i) : then

yi := j ⊕ lsb(Yi);

return Ŷ ;

procedure Eval(F̂ , X̂):
for i ∈ Inputs(F̂ ) do

Wi := Xi;

for i /∈ Inputs(F̂ ){in topo.order} do
if i ∈ XORGates(F̂ ) then
{a, b} := GateInputs(F̂ , i);
Wi := Wa ⊕Wb;
Ei := Wi;
continue;

{a, b, c} := GateInputs(F̂ , i);
Ei := Eval3GADGET(Fi,Wa,Wb,Wc);

Return Ê;

procedure Eval3GADGET(F = (G⃗, z⃗),Wa,Wb,Wc):
sa, sb, sc := lsb(Wa), lsb(Wb), lsb(Wc);

r⃗sa,sb,sc ∥ Xsa,sb,sc := Vsa,sb,sc

(
z⃗||

[
0

G⃗

])
⊕MeH⃗e;

E := Xsa,sb,sc ⊕ r⃗sa,sb,sc

W⃗a

W⃗b

W⃗c

;

Return E;

Figure 1: Garbling scheme

We next prove the following theorem.

Theorem 1 Assuming the 3-TCCR assumption (Definition 3), the garbling scheme described in Figure 1
meets Definition 2 for any circuit comprised of 2-input XOR gates and Gtri gadgets, where each Gtri gadget
has a garbled gate of size 4κ

3 +O(1) bits and XOR gates are free, where κ is the security parameter.

Proof: We retain correctness from the three-halves garbling scheme, as we logically extend the algebraic
equation to be able to garble any 3-input Gtri gadget. For privacy, we have to simulate the tuple (G⃗, X⃗, D⃗)
for all relevant gates, such that they are indistinguishable from the real execution of the garbling scheme.
We have standard encoding and decoding procedures, and the 3-TCCR oracle in Definition 3 lets us extract
the oracle response for the inactive labels to be able to simulate the garbled gate for each GTri gadget.

More precisely, we define a simulator that does the following in a topological order: (1) the simulator samples
the active labels for the input wires uniformly at random; (2) for each XOR gate, it sets the active output
label to be the XOR of the active input labels, and (3) for the Gtri gadgets, it samples at random, the
corresponding ciphertext and control bits, and uses the evaluation algorithm to get the active output label.
We then show through a series of hybrids, starting from the real execution to the above described simulation,
that the views of these hybrids are indistinguishable. We state all the hybrids and the indistinguishability
arguments in the full proof below. As stated in Definition 2, we need to prove four properties the garbling
scheme needs to satisfy.

Correctness: We show that for every XOR gate or Gtri gadget, the correct output label is extracted.
The correctness for XOR gates follows from the free-XOR optimization. What remains to be shown is the
correctness of the Gtri gadget. Let (xa, xb, xc) be the inputs on the wires (a, b, c), (pa, pb, pc) be the permute
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bits for those wires for a Gtri gadget, and W xa
a ,W xb

b and W xc
c be the active input labels. The evaluator

computes Eval3Gadget with these wire labels, and the garbled gate {G⃗, z⃗} as its input, as described in Figure
1. The output label it receives is

Ek := Xsa,sb,sc ⊕Rsa,sb,sc

W⃗a

W⃗b

W⃗c


where sa = pa⊕xa, sb = pb⊕xb, sc = pc⊕xc are the select bits for this gadget the evaluator obtained. Also,
Xsa,sb,sc denotes the three-rows of

X⃗ = W⃗ 0
d ⊕R


W⃗ 0

a

W⃗ 0
b

W⃗ 0
c

∆⃗

⊕ T∆⃗

that corresponds to the case where inputs are xa, xb, xc. The structure of R in Equation (19) ensures that

R


W⃗ 0

a

W⃗ 0
b

W⃗ 0
c

∆⃗

 = Rsa,sb,sc


W⃗a

W⃗b

W⃗c

∆⃗


for the rows corresponding to the inputs xa, xb, xc. Therefore, from the above equation and the definition of
the encode algorithm, we have

Ek = Xsa,sb,sc ⊕Rsa,sb,sc

W⃗a

W⃗b

W⃗c


= W⃗ 0

d ⊕ Tsa,sb,sc∆⃗

= W 0
d ⊕ (Gtri(xa ⊕ pa, xb ⊕ pb, xc ⊕ pc)⊕ pd)∆.

which by definition is the output label corresponding to the inputs xa, xb, xc. Hence, it is true that the eval-
uator always derives the active output label. Having derived all the output labels, the decoding information
ensures that H ′(Wk⊕(xk⊕pk)∆, k) = H ′(Ek, k), given that Dxk

k ̸= D1⊕xk

k . This ensures the evaluator always
decodes the output label to the correct value except with negligible probability. Therefore, correctness holds.

Privacy: For proof of privacy, we need to write a simulator Sim that can generate an indistinguishable view
of the following output of the Garble,Encode algorithms:

(F̂s, X̂s, D̂s)← Sim(1κ, f, ŷ = f(x̂))

(F̂r, X̂r, D̂r)← Garble(1κ, f),Encode(ê, x̂)

We have the following simulator algorithm:

By the definition of privacy for garbling schemes as in Definition 2, we need the above outputs of Sim and
Garble,Encode to be indistinguishable for any circuit f and input x̂. Let us fix some f, x̂. We now describe
the following sequence of hybrids that will help us show indistinguishability between Sim and Garble,Encode
views as described above, on these fixed f, x̂:
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procedure Sim(1κ, f, ŷ) = Hybrid6(1
κ, f, ŷ):

for i ∈ Inputs(f) do
Wi ←$ {0, 1}κ;
Xi := Wi;

for i /∈ Inputs(f){in topo.order} do
if i ∈ XORGates(f) then
{a, b} := GateInputs(f, i);
Wi := Wa ⊕Wb;
Xi := Wi;
continue;

{a, b, c} := GateInputs(f, i);
Gi ∥ zi ←$ {0, 1}

4κ
3

+63;
Fi := (G⃗i, z⃗i);
Wi := Eval3GADGET(Fi,Wa,Wb,Wc);
Xi := Wi;

for i ∈ Outputs(f), j ∈ {0, 1} do
Dyi

i := H ′(Wi, i);
D1−yi

i ←$ {0, 1}κ;

return (F̂ , X̂, D̂);

Figure 2: Simulator

Hybrid 1: We switch from the garbler’s perspective to the evaluator’s perspective when we garble. That is,
instead of tracking wire labels for wire A as (W 0

a ,W
0
a ⊕∆), we track them as (W xa

a ,W xa
a ⊕∆). Notice that

W 0
a here can be either W xa

a or W xa
a ⊕∆. We also change it this way for all other wire labels. These changes

also introduce other variable name changes throughout the algorithm. Another important change is that the
algorithm Hybrid1 takes as input x̂, which corresponds to the value the active labels represent. Following is
a list of all changes:

1. Replace W 0
a with the active label W xa

a , and the inactive label as W xa
a ⊕∆ for wires A,B,C,D

2. We know that the control matrix R has been written keeping in mind the zero labels. So we do a basis
change for R, and replace the term

R×


W 0

a

W 0
b

W 0
c

∆

→ R′ ×


W xa

a

W xb

b

W xc
c

∆


3. We have H⃗ also have these A0 terms. For this, we split the matrix into two halves, one corresponding to

the active labels and the other to the inactive labels:

H⃗0 :=


H(W xa

a )
H(W xb

b )
H(W xc

c )
H(W xa

a ⊕W xb

b ⊕W xc
c )

 , H⃗∆ :=


H(W xa

a ⊕∆)
H(W xb

b ⊕∆)
H(W xc

c ⊕∆)
H(W xa

a ⊕W xb

b ⊕W xc
c ⊕∆)


Then, we will have to also split up M and rewrite the term MH⃗ as M0H⃗0 ⊕M∆H⃗∆.

4. The matrix V −1 has seven rows, where the first three rows correspond to slices of the output label and
the last 4 to the corresponding ciphertexts (We stress that this is easy to check keeping in mind that the
first three columns of V corresponding to the output label slices and the last four columns correspond
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to the ciphertexts). We divide V −1 based on this, denoting them as V −1label, V
−1
gate. Instead of multiplying

by V −1, we just multiply with V −1gate to solve for the gate-ciphertexts only. We then evaluate those gate
ciphertexts with A and B to learn the active output label Ec. This approach still has the same result using
the fact that the scheme is correct. We also partition the control bit ciphertexts z⃗ to z⃗ = [(z⃗)top, (z⃗)bot],
use V −1gate to compute (z⃗)bot, and then use the evaluator’s computation to solve for (z⃗)top.

5. We now focus on the term
V −1gateMH⃗ = V −1gate(M0H⃗0 ⊕M∆H⃗∆)

We see that

V −1M =



1 0 1 0 0 0 1 0
0 0 1 0 1 0 1 0
1 0 0 0 1 0 1 0
1 1 0 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 0 1 1


Originally, in Garble, we know that odd columns of M corresponded to queries of W 0

a ,W
0
b ,W

0
c ,W

0
a ⊕

W 0
b ⊕W 0

c and even columns of M corresponded to their respective ∆ versions. As described in 3, M
was split into M0 and M∆. It is easy to see that M∆ has exactly one of rows {1, 2},exactly one of rows
{3, 4},exactly one of rows {5, 6} of M and exactly one of rows {7, 8}. Irrespective of which of these rows
it has, V −1gateM∆(defined in 4) will always be the 4× 4 identity matrix for any active label(irrespective of
the input and permute bits). The same applies to V −1gateM0 too. Therefore, we can write

V −1gateMH⃗ = H⃗0 ⊕ H⃗∆

6. Finally, for the sake of readability and convenience, we now rewrite the term:

z⃗bot ∥ G⃗ := V −1gate(

r⃗||(R′ ⊕
[
0 · · · |t

]
)


W xa

a

W xb

b

W xc
c

∆


⊕M0H⃗0 ⊕M∆H⃗∆)

as the following:

z⃗bot ∥ G⃗ := La(W
xa
a )⊕ Lb(W

xb

b )⊕ Lc(W
xc
c )⊕ L∆(∆)⊕ H⃗0 ⊕ H⃗∆

where La, Lb, Lc, L∆ are functions which denotes which linear combination of the slices of labels W xa
a ,W xb

b ,W xc
c

are to be used for garbling, something which is derived from the original equation, say through a proce-
dure DeriveL.

Figure 3 formally describes Hybrid1 to generate the changes mentioned above. We now can discuss indistin-
guishability between the joint distribution of the output of Garble(1κ, f) and the output of Hybrid1(1κ, f, x).
We argue the following for each change listed above:

– For 1, we see that it is a change in the variable name from W 0
a to W xa

a where xa is now the label for the
active value xa. Hence, they are identically distributed.

– For 2, the change we do is a change of basis of R from [A0, B0, C0, ∆] to [A,B,C,∆] which results in R′.
This does not affect the distribution by definition of basis change.

– For 3, 4, 5 and 6, we stress that it is again just a reordering and splitting of already existing matrices,
and this does not affect the distribution of outputs too.

As these changes do not change any value in the outputs of Garble, and are just semantic changes in the way
we write the equations, we have that the outputs of Hybrid1 are identical to that of Garble.
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procedure Hybrid1(1
κ, f, x̂):

∆←$ {0, 1}κ−1||1;
for i ∈ Inputs(f) do

W xi
i ←$ {0, 1}κ;

W 1−xi
i := W xi

i ⊕∆;
Xi := W xi

i ;

for i /∈ Inputs(f){in topo.order} do
if i ∈ XORGates(f) then
{a, b} := GateInputs(f, i);
W xi

i := W xa
a ⊕W

xb
b ;

W 1−xi
i := W xi

i ⊕∆;
xi := xa ⊕ xb ⊕ xc;
Xi := W xi

i ;
continue;

{a, b, c} := GateInputs(f, i);
xi := xa ∧ xb ∧ xc;
(W xi

i , G⃗i, z⃗i) := Hyb3GADGET1(W
xa
a ,W

xb
b ,W xc

c );
W 1−xi

i := W xi
i ⊕∆;

Fi := (G⃗i, z⃗i);
Xi := W xi

i ;

for i ∈ Outputs(f) do
Dxi

i := H ′(W xi
i , i);

D1−xi
i := H ′(W xi

i ⊕∆, i)

return (F̂ , X̂, D̂);

procedure Hyb3GADGET1(W
xa
a ,W

xb
b ,W xc

c ):
sa := lsb(W xa

a ), pa := xa ⊕ sa;
sb := lsb(W

xb
b ), pb := xb ⊕ sb;

sc := lsb(W xc
c ), pc := xc ⊕ sc;

T ′ ← 3GADGET(pa, pb, pc), R←$ ST ′ ;
L⃗a, L⃗b, L⃗c, L⃗∆, r⃗ := DeriveL(R, sa, sb, sc);
z⃗bot ∥ G⃗ := L⃗a(W

xa
a )⊕ L⃗b(W

xb
b )⊕ L⃗c(W

xc
c )⊕ L⃗∆(∆)⊕ H⃗0 ⊕ H⃗∆;

W := Vsa,sb,sc

[
0

G⃗

]
⊕Memsbκ

3
(H⃗0)⊕Rsa,sb,sc

W xa
a

W
xb
b

W xc
c

;

z⃗top := Vsa,sb,sc

[
0

z⃗bot

]
⊕Melsb63(H⃗0)⊕ r⃗sa,sb,sc ;

return (W, G⃗, z⃗)

procedure DeriveL(R, sa, sb, sc):
R′ = ChangeBasis(R, sa, sb, sc), r⃗ := R′

[1:9];

L⃗a, L⃗b, L⃗c, L⃗∆ := V −1
gate

r⃗||(R′ ⊕ T ′)


W xa

a

W
xb
b

W xc
c

∆


;

return (L⃗a, L⃗b, L⃗c, L⃗∆, r⃗);

Figure 3: Hybrid 1

Hybrid 2: We now do the following changes to Hybrid1 to obtain Hybrid2. We give Hybrid2 access to an oracle
O3−tccr

∆ and remove all terms corresponding to ∆. For the labels, the ∆ term was in the inactive wire labels,
something to which the evaluator does not have access. For the terms having ∆ that are inputs to the hash,
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we use the oracle Otccr
∆ . We formally describe the array O⃗ as the array of values corresponding to oracle calls

on W xa
a ,W xb

b ,W xc
c respectively as needed.

We formally describe the hybrid 2 in Figure 4 to generate the changes mentioned above. The outputs of
Hybrid1 and Hybrid

O3−tccr
∆

2 is identical, as all we did was replace each term of the form H(X ⊕∆, i)⊕ b1∆
1 ⊕

b2∆
2 ⊕ b3∆

3 with the term Otccr
∆ (X, i, L⃗ = {b1, b2, b3}). They are the same by the definition of Otccr

∆ .

procedure Hybrid
O3−tccr

∆
2 (1κ, f, x̂):

for i ∈ Inputs(f) do
W xi

i ←$ {0, 1}κ;
Xi := W xi

i ;

for i /∈ Inputs(f){in topo.order} do
{a, b, c} := GateInputs(f, i);
if i ∈ XORGates(f) then

W xi
i := W xa

a ⊕W
xb
b ⊕W xc

c ;
xi := xa ⊕ xb ⊕ xc;
Xi := W xi

i ;
continue;

xi := xa ∧ xb ∧ xc;

(W xi
i , G⃗i, z⃗i) := Hyb3GADGET

O3−tccr
∆

2 (W xa
a ,W

xb
b ,W xc

c , i);
Fi := (G⃗i, z⃗i);
Xi := W xi

i ;

for i ∈ Outputs(f) do
Dxi

i := H ′(W xi
i , i);

D1−xi
i := O(W xi

i , i)

return (F̂ , X̂, D̂);

procedure Hyb3GADGET
O3−tccr

∆
2 (W xa

a ,W
xb
b , i):

sa := lsb(W xa
a ), pa := xa ⊕ sa;

sb := lsb(W
xb
b ), pb := xb ⊕ sb;

sc := lsb(W xc
c ), pc := xc ⊕ sc;

T ′ ← 3GADGET(pa, pb, pc), R←$ ST ′ ;
L⃗a, L⃗b, L⃗c, L⃗∆, r⃗ := DeriveL(R, sa, sb, sc);
z⃗bot ∥ G⃗ := L⃗a(W

xa
a )⊕ L⃗b(W

xb
b )⊕ L⃗c(W

xc
c )⊕ H⃗0 ⊕ O⃗(W xa

a ,W
xb
b ,W xc

c , i);

W := Vsa,sb,sc

[
0

G⃗

]
⊕Memsbκ

3
(H⃗0)⊕Rsa,sb,sc

W xa
a

W
xb
b

W xc
c

;

z⃗top := Vsa,sb,sc

[
0

z⃗bot

]
⊕Melsb63(H⃗0)⊕ r⃗sa,sb,sc ;

return (W, G⃗, z⃗)

Figure 4: Hybrid 2

Hybrid 3: We now do the following changes to Hybrid2 to obtain Hybrid3. We give Hybrid3 access to an
oracle Rand instead of Otccr

∆ . We keep everything else the same. We formally describe the array O⃗ as the
array of values corresponding to oracle calls on W xa

a ,W xb

b ,W xc
c respectively as needed. We formally describe

the hybrid 3 in Figure 5 to generate the changes mentioned above.

To show the indistinguishability of these hybrids, we show a reduction to the definition of 3− TCCR for
O3−tccr

∆ .
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procedure HybridRand3 (1κ, f, x̂):
for i ∈ Inputs(f) do

W xi
i ←$ {0, 1}κ;

Xi := W xi
i ;

for i /∈ Inputs(f){in topo.order} do
{a, b, c} := GateInputs(f, i);
if i ∈ XORGates(f) then

W xi
i := W xa

a ⊕W
xb
b ⊕W xc

c ;
xi := xa ⊕ xb ⊕ xc;
Xi := W xi

i ;
continue;

xi := xa ∧ xb ∧ xc;
(W xi

i , G⃗i, z⃗i) := Hyb3GADGETRand
3 (W xa

a ,W
xb
b ,W xc

c , i);
Fi := (G⃗i, z⃗i);
Xi := W xi

i ;

for i ∈ Outputs(f) do
Dxi

i := H ′(W xi
i , i);

D1−xi
i := O(W xi

i , i)

return (F̂ , X̂, D̂);

procedure Hyb3GADGETRand
3 (W xa

a ,W
xb
b , i):

sa := lsb(W xa
a ), pa := xa ⊕ sa;

sb := lsb(W
xb
b ), pb := xb ⊕ sb;

sc := lsb(W xc
c ), pc := xc ⊕ sc;

T ′ ← 3GADGET(pa, pb, pc), R←$ ST ′ ;
L⃗a, L⃗b, L⃗c, L⃗∆, r⃗ := DeriveL(R, sa, sb, sc);
z⃗bot ∥ G⃗ := L⃗a(W

xa
a )⊕ L⃗b(W

xb
b )⊕ L⃗c(W

xc
c )⊕ H⃗0 ⊕ O⃗(W xa

a ,W
xb
b ,W xc

c , i);

W := Vsa,sb,sc

[
0

G⃗

]
⊕Memsbκ

3
(H⃗0)⊕Rsa,sb,sc

W xa
a

W
xb
b

W xc
c

;

z⃗top := Vsa,sb,sc

[
0

z⃗bot

]
⊕Melsb63(H⃗0)⊕ r⃗sa,sb,sc ;

return (W, G⃗, z⃗)

Figure 5: Hybrid 3

Lemma 1 Assuming the 3-TCCR assumption in Definition 3, then:

Hybrid
Otccr

∆
2 (1κ, f, x̂)

c
≈ HybridRand3 (1κ, f, x̂)

Proof: For the sake of contradiction, let us assume that there exists a PPT distinguisher DHybrid which can
distinguish between Hybrid2 and Hybrid3 for the given f, x̂ with a non-negligible probability ϵ. Then, we show
that there exists a PPT distinguisher DTCCR that can distinguish between the outputs of a 3−TCCR oracle
and a Rand oracle with non-negligible advantage ϵ′, by making a black box call to DHybrid. The distinguisher
DO(.)

TCCR with an oracle access to O(.) can be described as follows:

– For every input gate, DTCCR samples strings W xi
i for all i ∈ Inputs(f), and sets them to be the active

input labels for the garbling scheme.

– To derive the rest of the active labels, it does the following:
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• If the gate i is an XOR gate with input wires a, b and active inputs xa, xb, it sets the active output
label Wi to be the XOR of the two input labels, ie.. W xi

i = W xa
a ⊕W xb

b and active output to be
xi = xa ⊕ xb.

• If the gate i is a Gtri gadget, with input wires a, b, c and active inputs xa, xb, xc, then it sets the active
output to be xi = xa ∧ (xb ⊕ xc), and computes the active output label W xi

i and the garbled gate
Fi = G⃗i, z⃗i to be Hyb3GadgetO(W xa

a ,W xb

b ,W xc
c , i) where O is the oracle DTCCR has access to in the

3-TCCR distinguishing game.

– For every output gate i, it computes the decoding Dxi
i by computing H on W xi

i , and computes D1−xi
i

by calling O(.) on W 1−xi
i .

– After generating, it sets (F̂ = {Fi}i∈f\Inputs(f), X̂ = {Xi}i∈f , D̂ = {Di}i∈Outputs(f)) in the way described
above.

– DTCCR invokes the distinguisher DHybrid on the inputs (F̂ , X̂, D̂).

– If DHybrid outputs 0 (meaning Hybrid2), then DTCCR outputs 0 (meaning O3−tccr
∆ (.)). If DHybrid outputs 1

(meaning Hybrid3), then DTCCR outputs 1 (meaning Rand(.))

We see that DTCCR is a PPT algorithm, as it just emulates the garbling scheme on randomly sampled
active labels, and makes only polynomial many calls to the oracle O(.). We now show that the distinguisher
DTCCR has the distinguishing advantage ϵ′ ≥ ϵ in the 3 − TCCR game as that of DHybrid in the hybrid
indistinguishability game. If the oracle in the 3 − TCCR game was O3−tccr

∆ (.), then the output of DTCCR

would look exactly as in Hybrid2, and if the oracle in the 3− TCCR game was Rand(.), then the output of
DTCCR would look exactly as the output in Hybrid3. Therefore, DTCCR wins the 3 − TCCR game if DHybrid

wins the hybrid indistinguishability game. Therefore we have that

Adv3−tccr
H,R (DTCCR) ≥ ϵ(κ).

By assumption ϵ was a non-negligble function. However, as H was 3-tweakable circular correlation robust, this
contradicts the 3− TCCR assumption. ⊓⊔

Hybrid 4: In this hybrid, we aim to replace the value zbot ∥ G and D1−xi
i in HybridRand3 with ran-

dom values. It is straightforward for the term D1−xi
i . For zbot ∥ G, we notice that it is of the form

[linear combination of labels] ⊕ Rand. Therefore, the Rand output acts like a one-time pad, enabling us to
replace the entire string with a random value. By the above arguments, it is clear that HybridRand3

c
≈ Hybrid4.

We formally describe the hybrid 4 in Figure 6 to generate the changes mentioned above.

Hybrid 5: Here we aim to replace the values of R, r⃗ with random values. We know that R was specifically
chosen such that marginal view Rsa,sb,sc was uniform for all t and all sa, sb, sc. So one can uniformly sample
r⃗sa,sb,sc , use DecodeR on this chosen r⃗sa,sb,sc to reconstruct the marginal view Rsa,sb,sc . We also stress that
this is the only thing needed, not the entire R, per the evaluator’s view. So, we make these changes, and as a
result of these changes, the (z⃗)top term also becomes uniform due to r⃗sa,sb,sc acting as a one time pad on it.
We also notice that the inputs xa, xb, xc were only needed for the values (pa, pb, sc), which was only needed
for SampleR. In this step, as we eliminated the need for SampleR, we can change the inputs to the hybrid
from x̂ to ŷ, where now it needs the output only for decoding. We formally describe the hybrid 5 in Figure
7 to generate the changes mentioned above. It is straightforward to show that Hybrid5 is indistinguishable
from the output of Hybrid5 as the marginal view was chosen uniformly at random, and these two outputs
will hence be identically distributed.

Simulator: The last step of the hybrid is to observe that the last three lines of Hyb3GADGET4 depict the
Eval3GADGET algorithm that the evaluator uses to evaluate AND gates. Therefore, we can replace this part
as necessary, which gives us Hybrid6, which is nothing but the Sim algorithm described in Figure 2. These
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procedure Hybrid4(1
κ, f, x̂):

for i ∈ Inputs(f) do
W xi

i ←$ {0, 1}κ;
Xi := W xi

i ;

for i /∈ Inputs(f){in topo.order} do
{a, b, c} := GateInputs(f, i);
if i ∈ XORGates(f) then

W xi
i := W xa

a ⊕W
xb
b ⊕W xc

c ;
xi := xa ⊕ xb ⊕ xc;
Xi := W xi

i ;
continue;

xi := xa ∧ xb ∧ xc;
(W xi

i , G⃗i, z⃗i) := Hyb3GADGET4(W
xa
a ,W

xb
b ,W xc

c );
Fi := (G⃗i, z⃗i), Xi := W xi

i ;

for i ∈ Outputs(f) do
Dxi

i := H ′(W xi
i , i);

D1−xi
i ←$ {0, 1}κ;

return (F̂ , X̂, D̂);

procedure Hyb3GADGET4(W
xa
a ,W

xb
b ,W xc

c , i):
sa := lsb(W xa

a ), pa := xa ⊕ sa;
sb := lsb(W

xb
b ), pb := xb ⊕ sb;

sc := lsb(W xc
c ), pc := xc ⊕ sc;

T ′ ← 3GADGET(pa, pb, pc), R←$ ST ′ , r⃗ := R[1:9] ;
z⃗bot ∥ G⃗←$ {0, 1}

4κ
3

+42;

W := Vsa,sb,sc

[
0

G⃗

]
⊕Memsbκ

3
(H⃗0)⊕Rsa,sb,sc

W xa
a

W
xb
b

W xc
c

;

z⃗top := Vsa,sb,sc

[
0

z⃗bot

]
⊕Melsb63(H⃗0)⊕ r⃗sa,sb,sc ;

return (W, G⃗, z⃗)

Figure 6: Hybrid 4

views are identical as replacing three lines with a function that does the exact computation. Hence, we have
shown through a sequence of hybrids that for any given circuit f and inputs x̂, we have that:

(F̂s, X̂s, D̂s)
c
≈ (F̂r, X̂r, D̂r)

Obliviousness: The only difference between achieving obliviousness and privacy is that the simulator is
not given y = f(x) and is not expected to output the decoding information. Our simulator can be easily
modified for this case, by only returning the fake garbled gates without the decoding information. This
requires the simulator to not use y for creating the fake garbling, which is the case anyway.

Authenticity: For authenticity, we need to show that any PPT adversaryA that receives as input (F̂ , X̂, D̂)
computed as in the real execution, cannot produce an inactive output label. That is, the adversary succeeds
if it can get Decode to output 1⊕ xk for any output gate k with active value xk. Decode will output 1⊕ xk

iff it receives Y ′ such that Y ′ = D1⊕xk

k = H ′(Yk, k). In the simulator for privacy (cf. Figure 2), we show that
this is indistinguishable from a freshly sampled random κ bit string, and hence the probability that A finds
this is 1

2κ

This concludes that the garbling scheme in Figure 1 satisfies Definition 2. ⊓⊔
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procedure Hybrid5(1
κ, f, ŷ):

for i ∈ Inputs(f) do
Wi ←$ {0, 1}κ;
Xi := Wi;

for i /∈ Inputs(f){in topo.order} do
{a, b, c} := GateInputs(f, i);
if i ∈ XORGates(f) then

Wi := Wa ⊕Wb ⊕Wc;
Xi := Wi;
continue;

(Wi, G⃗i, z⃗i) := Hyb3GADGET5(Wa,Wb,Wc);
Fi := (G⃗i, z⃗i), Xi := Wi;

for i ∈ Outputs(f) do
Dyi

i := H ′(Wi, i);
D1−yi

i ←$ {0, 1}κ;

return (F̂ , X̂, D̂);

procedure Hyb3GADGET5(Wa,Wb,Wc, i):
sa := lsb(Wa), sb := lsb(Wb), sc := lsb(Wc);
z⃗ ←$ {0, 1}63, r⃗sa,sb,sc ←$ {0, 1}27, G⃗←$ {0, 1}

4κ
3 ;

Rsa,sb,sc := DecodeR(r⃗sa,sb,sc , sa, sb, sc);

W := Vsa,sb,sc

[
0

G⃗

]
⊕Memsbκ

3
(H⃗0)⊕Rsa,sb,sc

Wa

Wb

Wc

;

return (W, G⃗, z⃗)

Figure 7: Hybrid 5

4.3 Garbling Circuits with Free-XOR and 2-Input AND Gates

We now describe how the garbling scheme described in Figure 1, can be used to garble a circuit with 2-input
XOR and AND gates while maintaining the free-XOR optimization. Notice that the gadget Gtri = x∧ (y⊕z)
can be reduced to a 2-input AND gate x∧ y by setting z = 0. Therefore, it should be possible to convert any
circuit with just AND and XOR gates to a circuit with XOR gates and the Gtri gadgets by just replacing all
the AND gates with Gtri gadgets and hard-coding the value of the wire z = 0 corresponding to each gadget.
This implies additional κ bits. We hence have the following corollary,

Corollary 2 Assuming the 3-TCCR assumption (Definition 3), the garbling scheme described in Figure 1
meets Definition 2 for any circuit comprised of 2-input XOR and AND gates, where the garbled circuit is of
size n ·

(
4κ
3 + 63

)
+ κ bits, where κ is the security parameter and n is the number of AND gates.

Let us describe the above transformation formally. Let there be n 2-input AND gates in the original circuit.
Let us denote these gates by

gi = xi ∧ yi, i ∈ [n]

where xi and yi are the inputs to the ith 2-input AND gate. The above attempt translates to having n Gtri
gadgets replacing the n 2-input AND gates by introducing n additional inputs zi and computing

g′i = xi ∧ (yi ⊕ zi), i ∈ [n]

by hardcoding the value for each zi = 0. This introduces n additional wire labels; hence, the communication
cost increases by nκ bits. However, we notice that there is no need to introduce an additional input wire for
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every gadget since we can reuse the same wire label for all the gadgets. This would imply that the garbled
circuit would still have n Gtri gadgets:

g′i = xi ∧ (yi ⊕ z), i ∈ [n].

Notice that if we now hardcode z = 0, we still have the value of g′i to be the same as gi. However, we are not
adding n inputs, but just one input z. This would only increase the communication complexity by κ bits.
The garbling scheme is oblivious to the fact that the input wire z is used in multiple gadgets, and is hence
correct. We conclude with a garbling scheme for a circuit with an arbitrary number of XOR gates and n
2-input AND gates, with a communication complexity of n ·

(
4κ
3 +O(1)

)
+ κ bits.

5 3-Input AND Gate Impossibility

In section 4.1, we discussed how one can efficiently garble the gadget Gtri with a scheme represented by the
following equation:

V

[
D⃗0

G⃗

]
= MH⃗ ⊕R


A⃗0

B⃗0

C⃗0

∆⃗

⊕ T∆⃗ (22)

A natural direction to pursue is to try extending this equation to garble other gadgets. Can a 3-input AND
gate be garbled by this equation? We now show that the answer is negative. In fact, we show that one cannot
garble a 3-input AND gate using any garbling scheme represented by Equation (22) when the oracle queries
are restricted to linear functions of the input labels. We will later extend it to show that we cannot garble
any higher input gadget, with a degree-3 term in its Boolean expression, when written in terms of XOR and
AND gates.

The rest of the section is as follows: In Section 5.1 we rewrite Equation (22) such that the impossibility
becomes more obvious. Then, in Section 5.2 we formalize what it means to restrict the oracle queries to
linear functions. Finally, in Section 5.3 we prove that no garbling scheme in the form of Equation (22),
when restricted to linear queries to the oracle, can be used to garble a 3-input AND gate. In particular, this
impossibility captures half-gates [41], three-halves [34], our scheme presented in Section 4, as well as some
natural extensions of these schemes.

5.1 Revisiting the Garbling Equation

Let n be the number of slices used by the garbling scheme. We already know that for n slices there are
n equations in the system represented by Equation (22), one for each input (x, y, z). Let us rewrite this
subsystem such the equations are parameterized by the input (x, y, z). Then,

Vx,y,z

[
D⃗0

G⃗

]
= Mx,y,zH⃗ ⊕Rx,y,z


A⃗0

B⃗0

C⃗0

∆⃗

⊕ Tx,y,z∆⃗

where this system is restricted to the part corresponding to inputs (x, y, z). We further rewrite the equation
to also incorporate the following changes:

1. Recall from Section 2, we defined T to be determined by the function

Tout(x, y, z) = (x⊕ px) ∧ ((y ⊕ py)⊕ (z ⊕ pz)).

This function corresponds to the Gtri gadget in particular. Here, we are using a 3-input AND gate.
Therefore, the changed function T ′out corresponding to the 3-input AND gate would be

T ′
out(x, y, z) = (x⊕ px) ∧ (y ⊕ py) ∧ (z ⊕ pz) (23)
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Instead of including a separate matrix T , that is derived using Equation (23) acting on ∆, we replace
the vector D⃗0 with

D⃗ = D⃗0 ⊕ T ′
out(x, y, z)∆⃗.

We now have the following system corresponding to inputs (x, y, z):

Vx,y,z

[
D⃗

G⃗

]
= Mx,y,zH⃗ ⊕Rx,y,z


A⃗0

B⃗0

C⃗0

∆⃗

 .

2. Similarly, recall that we imposed a particular structure on R to ensure that only active labels were
selected by the evaluator. Another way to achieve the same is to rewrite the term corresponding to
Rx,y,z as follows:

Rx,y,z


A⃗0

B⃗0

C⃗0

∆⃗

→ R′
x,y,z

A⃗0 ⊕ (x⊕ px)∆⃗

B⃗0 ⊕ (y ⊕ py)∆⃗

C⃗0 ⊕ (z ⊕ pz)∆⃗

 .

Now, R′x,y,z does not require any explicit constraint as the selected label is based on the active input,
which is already included in the vector. Therefore, R′x,y,z will be the same as Rx,y,z except that it excludes
those columns corresponding to ∆ in Rx,y,z. Summarizing, we reduced Equation (22) to the following:

Vx,y,z

[
D⃗

G⃗

]
= Mx,y,zH⃗ ⊕R′

x,y,z

A⃗0 ⊕ (x⊕ px)∆⃗

B⃗0 ⊕ (y ⊕ py)∆⃗

C⃗0 ⊕ (z ⊕ pz)∆⃗

 . (24)

5.2 Linear Queries

As stated earlier, we restrict ourselves to the setting where the only queries allowed to the oracle are linear
functions of input labels. The half-gates scheme [41], three-halves scheme [34], and our scheme in Section 4.1
all adhere to this restriction. In fact, using linear functions of the labels was a major source of improvement
in communication costs for an AND gate in all these schemes.

Consider the following function Fl : {0, 1}3κ → {0, 1}κ, parameterised by the 3-bit vector l = {lA, lB , lC}:

Fl(A,B,C) = lA ·A⊕ lB ·B ⊕ lC · C

where A,B and C are κ-bit strings. Let FLin3,κ be the family of functions containing all such functions Fl.
Therefore, FLin3,κ can be represented by the set of all possible 3-bit vectors FLin3,κ = {l}, where {l}, l ∈ {0, 1}3
is the mask for the linear combination queried to the oracle.

Recall that we are in the free-XOR setting [27], and if Ax, By and Cz are the wire labels corresponding to
input tuple (x, y, z), then the function

Fl(Ax, By, Cz) = lA ·Ax ⊕ lB ·By ⊕ lC · Cz

is an output label for the gate computing the following linear function (in the plain domain):

fl(x, y, z) = lA · x⊕ lB · y ⊕ lC · z

where fl is also parameterised by the same 3-bit vector l = {lA, lB , lC} as Fl. This is because the free-
XOR setting reduces computing output labels for linear functions to computing the sum of corresponding
input labels. Hence, Fl(Ax, By, Cz) has only two possible values. Let us derive these two values, which are
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essentially the 0-label and the 1-label for the output wire of the gate computing fl. We know that any label
Ax corresponding to the plain input x can be rewritten as Ax = A0 ⊕ x∆. Therefore:

Fl(Ax, By, Cz) = lA ·Ax ⊕ lB ·By ⊕ lC · Cz

= lA · (A0 ⊕ x∆)⊕ lB · (B0 ⊕ y∆)⊕ lC · (C0 ⊕ z∆)

= lA ·A0 ⊕ lB ·B0 ⊕ lC · C0 ⊕∆(lA · x⊕ lB · y ⊕ lC · z)
= Fl(A0, B0, C0)⊕ fl(x, y, z)∆.

Let Xl,fl = Fl(Ax, By, Cz) be the wire label representing the output of the gate computing fl(x, y, z). Then,
without loss of generality, we have Xl,0 = Fl(A0, B0, C0) and Xl,1 = Xl,0 ⊕ fl(x, y, z)∆.

Having determined the structure of the queries made, let us determine the structure of the oracle responses
to linear queries. An oracle query on any label Ax can be written in the following way:

H(Ax) = (1⊕ x) ·H(A0)⊕ x ·H(A1).

Generalizing this description with Xl,fl = Fl(Ax, By, Cz), we have that

H(Fl(Ax, By, Cz)) = (1⊕ fl(x, y, z)) ·H(Xl,0)⊕ fl(x, y, z) ·H(Xl,1), (25)

or alternatively:

H(Fl(Ax, By, Cz)) =
[
1⊕ fl(x, y, z) fl(x, y, z)

] [H(Xl,0)
H(Xl,1)

]
(26)

Equation (26) establishes that when the queries to the RO are restricted to linear combinations on the input
labels, then the coefficients of the oracle responses to these queries must be some linear combination of the
plain input bits (x, y, z).

5.3 The Impossibility Proof

Using Equations (22)-(24), we prove the following theorem statement:

Theorem 3 Let G be an n-sliced garbling scheme represented in the form of Equation (22). Then, G cannot
garble a 3-input AND gate if the queries to the oracle H(.) are restricted to be a linear function of the input
labels A,B,C.

Proof: First, we use the argument in Section 5.1 to rewrite Equation (22) as Equation (24). Then, we use
the argument in Section 5.2 to show that having only linear queries means that the matrix M has values
that are only linear functions of the inputs (x, y, z). Because M,V and R share the same column space, the
values of V and R are also linear functions of the inputs. As a result, we show that to maintain correctness,
such a scheme can only garble gadgets with degree at most 2. Since the 3-input AND gate has degree 3, it
cannot be garbled using such a scheme. We now provide a formal proof.

Let g(x, y, z) = x∧y∧z be a 3-input AND gate and assume towards contradiction that there exists a garbling
scheme G represented by Equation (22) that can garble g correctly. For such a scheme, it is possible to break
down the system of equations into 8 sub-systems having n equations each. Each subsystem corresponds to a
specific input (x, y, z) and is represented by the equation displayed in Equation (24). Each equation in this
subsystem corresponds to the encryption of one slice of the output label, with respect to the input tuple
(x, y, z). A unique linear combination of the oracle responses is used to encrypt this output slice for the sake
of privacy. For any linear query, recall that Flj (Ax, By, Cz) = Xlj ,flj

. Therefore, using Equation (25), we can
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rewrite the oracle responses as:
q⊕

j=1

H(Flj (Ax, By, Cz)) =

q⊕
j=1

[(1⊕ flj (x, y, z)) ·H(Xlj ,0)]⊕ [flj (x, y, z) ·H(Xlj ,1)]

=
[
1⊕ fl1(x, y, z) fl1(x, y, z) · · · 1⊕ flq (x, y, z) flq (x, y, z)

]


H(Xl1,0)
H(Xl1,1)
·
·
·

H(Xlq,0)
H(Xlq,1)


where Fl1 , · · · , Flq ∈ FLin3,κ. Therefore it is clear that when a linear combination of the oracle responses is

viewed as a product of a matrix and a vector, the coefficient of each response in the vector gets translated
to components of the matrix at appropriate indices.

Recall Equation (24):

Vx,y,z

[
D⃗

G⃗

]
= Mx,y,zH⃗ ⊕R′x,y,z

A⃗0 ⊕ (x⊕ px)∆⃗

B⃗0 ⊕ (y ⊕ py)∆⃗

C⃗0 ⊕ (z ⊕ pz)∆⃗

 .

We need to now use the above observations to derive a structure for the term Mx,y,zH⃗. We will then use
this to show that the structure imposes constraints on the matrices Vx,y,z and Rx,y,z creating an isolated
Degree-3 term on the left hand side of the system, which is not present on the right hand side. The only
solution then is when ∆ = 0, violating the correctness of the scheme.

Let Q = {Fl1(Ax, By, Cz), Fl2(Ax, By, Cz), · · · , Flq (Ax, By, Cz)} be the set of oracle queries made by the
garbler. We have showed that for any linear function Fl(Ax, By, Cz) there are only two possible values,
Xl,0 and Xl,1. Therefore, the set Q can be represented as Q = {Xl1,0, Xl1,1, · · · , Xlq,0, Xlq,1}. Let H⃗ =
[H(Xl1,0), H(Xl1,1), · · · , H(Xlq,0), H(Xlq,1)] be the vector containing the oracle responses to the queries in
Q.

Recall that for a given input (x, y, z), there are n output slices, and the subsystem in Equation (24) has
n equations corresponding to the encryption of these output slices. Let M i

x,y,z = {mi
1,m

i
2, · · ·mi

q} be the
i’th row of the matrix Mx,y,z corresponding to the i’th equation of the subsystem. We claim that every
component of the vector M i

x,y,z is either a linear function of (x, y, z) or 0. This is because the term M i
x,y,zH⃗

is the linear combination of the oracle responses that is used to mask the i’th output slice, represented as
a product of a matrix and a vector of queries, as shown in Equation (25). The only difference is that H⃗
might contain responses that are not used in the particular linear combination. For all those responses, the
coefficient would be 0. Therefore, as the coefficient of each query in the vector is a linear function of (x, y, z)
or 0, each component of M i

x,y,z is a linear function of (x, y, z) or 0. This claim is true for all slices of the
output label, and hence for all rows of the matrix Mx,y,z.

Let Mx,y,z be a matrix as described above. Consider, BM
x,y,z = {M1

x,y,z, · · · ,Mr
x,y,z} to be a basis for the

column space of Mx,y,z, where r is the rank of Mx,y,z. Then, for every i, each component of the basis vector
M i

x,y,z is also a linear function of (x, y, z) or 0. Since we know that Vx,y,z needs to also have the same column
space as Mx,y,z and by the structure of the Equation (24)

colspace(R′x,y,z) ⊆ colspace(Mx,y,z) = colspace(Vx,y,z). (27)

So reconsidering Equation(24):

Vx,y,z

[
D⃗

G⃗

]
= Mx,y,zH⃗ ⊕R′x,y,z

A⃗0 ⊕ (x⊕ px)∆⃗

B⃗0 ⊕ (y ⊕ py)∆⃗

C⃗0 ⊕ (z ⊕ pz)∆⃗


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We know that the columns of Vx,y,z, Mx,y,z, and Rx,y,z are linear functions of (x, y, z) or 0.

By rewriting this system as a linear equation in x, y, z, and equating the coefficients of x, y, z and the constant
on both sides of the equation, we can see that ∆ must be 0. Firstly, we stress that no column of Vx,y,z is an
all zeroes because by definition Vx,y,z has linearly independent columns of Mx,y,z. Also, recall that

D⃗ = D⃗0 ⊕ (x⊕ px)(y ⊕ py)(z ⊕ pz)∆⃗

which introduces a cubic term on the left hand side, irrespective of the value of Vx,y,z. The coefficient of this
term is ∆⃗. On the right hand side, MH⃗ generates only linear terms in x, y or z. The part corresponding
to R′x,y,z generates at most a quadratic term, as from Equation (27), R′x,y,z has only linear terms, and the
terms (x⊕px)∆⃗, (y⊕py)∆⃗ and (z⊕pz)∆⃗ introduces another linear term. Irrespective of the values of Mx,y,z

and R′x,y,z, the maximum degree possible on the right hand side of the equation is 2. Therefore, the only
way to balance the degree of the terms on both sides is to set ∆⃗ = 0, which would violate the correctness of
the scheme.

We therefore conclude that G has a cubic term on the left hand side, and a term that is at most quadratic
on the right hand side, resulting in the desired contradiction. ⊓⊔

In the proof for Theorem 3, as stated earlier, we show that to maintain correctness, such a scheme can only
garble gadgets with degree at most 2. Therefore, it is easy to see that this result would extend to any higher
fan-in gadget with a degree greater than 3. Thus, we have the following corollary:

Corollary 4 Let G be an n-sliced garbling scheme represented in the form of Equation (22). Then, G cannot
garble any gadget that has a degree at least 3, if the queries to the oracle H(.) are restricted to be a linear
function of the input labels A,B,C.

6 Oblivious Garbling

In this section, we introduce the notion of oblivious garbling, where the garbler remains oblivious to the
circuit’s functionality, knowing only its topology. We formally define this notion and present a scheme for
arbitrary circuits consisting of 2-input AND and XOR gates with a communication cost of O(|f |) bits, where
|f | is the size of the circuit, and as many OTs.

To accomplish this, we first replace all gates in the circuit with the Gtri gadget, as introduced in Section 4.1.
In Section 4.3 we illustrated how this gadget can be adapted into an AND gate by setting z = 0 and utilizing
x and y as input lines. Similarly, the gadget can be reduced to an XOR gate by setting x = 1 and using y
and z as inputs. We use this observation to devise a garbling scheme for circuits containing AND and XOR
gates, without disclosing the gate type during the garbling process.

6.1 Obliviously Garbling a Single Gate

We continue by illustrating the challenges involved in achieving oblivious garbling for an entire circuit,
and explaining how we address them. As suggested above, the goal is to devise a technique that takes
advantage of the fact that inputs to the Gtri gadgets can be programmed to reduce them to either an XOR
or an AND gate. While programming inputs for input gates where the evaluator can control the inputs
is straightforward, programming intermediate gates where the evaluator does not have access to the wire
values is more challenging. Using the Gtri gadget to implement certain gates requires programming its inputs,
effectively turning it into an input gadget itself. However, this reveals information about the type of gate:
the wire used for programming (x for XOR or z for AND) reveals the functionality of the gate. Therefore, we
need a solution that can let an evaluator reduce the gadget to an XOR gate or an AND gate, while hiding
this reduction from the garbler.
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We take a two-step approach to solving this problem. First, we use the garbling scheme from Section 4.2 to
garble each gadget in the circuit independently. This preserves obliviousness during garbling, since the only
leakage is the number of Gtri gadgets. However, it’s incomplete, since the evaluation still requires revealing
the input labels for subsequent gadgets in topological order. To solve this problem, we use the “soldering”
technique of [16,31]. This technique allows the dynamic construction of circuits from independently garbled
gates during evaluation, facilitating the connection of the output wires of each gadget to the corresponding
input wires of the next, effectively constructing the desired circuit without revealing any gate information.
We will first discuss how the soldering technique works, and then illustrate how it can be used to obliviously
garble a non-input gate.

Soldering Technique: The soldering technique, as the name suggests, allows one to connect independently
generated gates. It was introduced in [31] to allow the transformation of the key representing bit b on one
wire into the key representing bit b on another wire. This is done by computing some auxiliary information
called the soldering. More formally, let’s consider a scenario where we need to solder the output wire a of
gate gi to the first input wire b of gate gi+1. To do this, we calculate the soldering value:

Si,i+1 = A0 ⊕B0,

where A0, B0 are the 0-labels for wires a, b, respectively. Given the label representing bit-j for wire a as Aj ,
one can derive the label representing bit-j for wire b (denoted as Bj) using the solder value Si,i+1 through
the following computation:

Aj ⊕ Si,i+1 = A0 ⊕ j∆⊕A0 ⊕B0 = B0 ⊕ j∆ = Bj .

Garbling a single non-input gate: Consider the i-th non-input gate g′i in the original circuit, with input wires
x′, y′. If we convert this to a Gtri gate gi, say with wires x, y, z, the values these wires need to take depend on
what g′i needs to be programmed to do. The following list illustrates the options for AND and XOR gates:

– When g′i is an XOR gate, the inputs of g should be x = 1, y = y′, z = x′.

– When g′i is an AND gate, the inputs of g should be x = x′, y = y′, z = 0.

As discussed earlier, if only one of x, z is set to input in the topology, it becomes obvious which gate the
gadget reduces to. We know that this is not a problem for input gates, since in this case all wires are input
wires. Therefore, even in the case of non-input gates, we garble the gadget as if all wires were input wires,
i.e., we garble each gadget independently, without considering that these wires might be the output wires
of a gadget in the previous layer. The garbling scheme for the Gtri gadget in Section 4.2 accomplishes this.
Let’s assume that the inputs to gate g′i in the original circuit were the outputs p, q of gates g′i−1 and g′i−2,
respectively. Since gi−1 and gi−2 were also garbled independently, evaluating them would only reveal the
output labels Pb1 , Qb2 , where b1, b2 are the values taken by wires p, q and Pb1 , Qb2 are their corresponding
labels. Having obtained these labels, if we wish to evaluate the gadget gi as an AND gate, we need the labels
Xb1 , Yb2 , Z0 for the wires x, y, z respectively. Similarly, to evaluate the gadget as an XOR gate, we will need
the labels X1, Yb2 , Zb1 . To achieve this, we use the soldering technique to transfer the bits b1 and b2 from
Pb1 and Qb2 to the corresponding labels of gi. The garbling algorithm calculates these soldering values for
both AND and XOR scenarios. We then transfer one set of values to the evaluator using a 1-out-of-2 OT
protocol.

6.2 Defining Oblivious Garbling Schemes

We now define the notion of oblivious garbling. We modify the definition stated in Definition 2 to be able
garble an entire circuit while hiding the circuit. In this case, the Garble algorithm no longer receives as input
the circuit f , but rather just a leakage function Φg. We also allow Garble to output some auxiliary information
that might be used by the evaluator to garble based on the choice of the circuit f .

Definition 4 An oblivious garbling scheme consists of five algorithms:
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1. Garble(1κ, Φg(f))→ (F, e, d, auxg) which takes in as input the security parameter κ, and a leakage function
Φg for the functionality f and returns the garbled circuit F , encoding information e for the wire labels
and the decoding information d for the output wire labels, and some auxiliary information auxg.

2. auxe := SelectGate(auxg, f) which takes as input the auxiliary information computed by Garble and outputs
the auxiliary information needed for evaluation for a given circuit f .

3. X := Encode(e, x) which takes in as input the encoding information e, input x and gives the Garbled
input X.

4. Y := Eval(F,X, auxe) which takes in as input the garbled circuit F , the garbled input X, the auxiliary
information auxe computed by SelectGate for f and returns the garbled evaluation of f on x, as Y .

5. y := Decode(d, Y ) which takes in as input the decoding information d, garbled output Y and gives the
output y.

We want the following properties from a garbling scheme:

Correctness: For any circuit f and input x, while (F, e, d, auxg) ← Garble(1κ, Φg(f)), we have f(x) =
Decode(d,Eval(F,Encode(e, x),SelectGate(auxg, f))) except for negligible probability.

Privacy: There is a simulator Sim such that for any circuit f and input x, the following distributions are
indistinguishable:

(F, e, d, auxg)← Garble(1κ, Φg(f))
X := Encode(e, x)
auxe := SelectGate(auxg, f)
return (F,X, d, auxe)

(F,X, d, auxe)← Sim(1κ, f, f(x))
return (F,X, d, auxe)

Obliviousness: There is a simulator Sim such that for any circuit f and input x, the following distributions
are indistinguishable:

(F, e, d, auxg)← Garble(1κ, Φg(f))
X := Encode(e, x)
auxe := SelectGate(auxg, f)
return (F,X, d, auxe)

(F,X, auxe)← Sim(1κ, f)
return (F,X, auxe)

Authenticity: For any circuit f and input x, no PPT adversary Adv can make the following distribution
output TRUE except with negligible probability:

(F, e, d, auxg)← Garble(1κ, Φg(f))
X := Encode(e, x)
auxe := SelectGate(auxg, f)
Y ← Adv(F, d,X, auxe)
return Decode(d, Y ) /∈ {f(x),⊥}

6.3 Obliviously Garbling an Arbitrary Circuit

Formalising the techniques mentioned in Section 6.1, Figure 8 describes an oblivious garbling scheme that
uses the GTri gadget to instantiate every gate in any circuit comprised of 2-input AND and XOR gates.

We next prove the following theorem.

Theorem 5 Assuming the 3-TCCR assumption (Definition 3), the garbling scheme described in Figure 8
meets Definition 4 for any circuit with XOR and AND gates, implemented using Gtri gadgets. Each Gtri
gadget has a garbled gate of size 4κ

3 +O(1) bits, where κ is the security parameter.
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procedure Init(κ):
H := H(κ);

procedure Garble(1κ, Φg(f) = Topology(f)):
∆ :=$ {0, 1}κ−1||1;
for i ∈ GadgetIn(f) do

W 0
i :=$ {0, 1}κ;

W 1
i := W 0

i ⊕∆;
if i ∈ CircuitIn(f) then

ei := W 0
i ;

for i ∈ GadgetOut(f){in topo.order} do
{a, b, c} := GadgetInputs(f, i);
(W 0

i , G⃗i, z⃗i) := Gb3GADGET(W 0
a ,W

0
b ,W

0
c );

W 1
i := W 0

i ⊕∆;
Fi := (G⃗i, z⃗i);

for l ∈ GadgetOut(f) do
{i, j, k} := GadgetInputs(f, l);
if i, k ∈ CircuitIn(f) then

continue;

if j ∈ CircuitIn(f) then
{a} := IncomingWires(f, i, j, k);
auxxor := {W 1

i ,W
0
j ,W

0
a ⊕W 0

k };
auxand := {W 0

a ⊕W 0
i ,W

0
j ,W

0
k };

auxg,l := {auxxor, auxand}
if j /∈ CircuitIn(f) then
{a, b} := IncomingWires(f, i, j, k);
auxxor := {W 1

i ,W
0
b ⊕W 0

j ,W
0
a ⊕W 0

k };
auxand := {W 0

a ⊕W 0
i ,W

0
b ⊕W 0

j ,W
0
k };

auxg,l := {auxxor, auxand}

for i ∈ CircuitOut(f), j ∈ {0, 1} do
Dj

i := H ′(W 0
i ⊕ lsb(Wi)∆, i);

return (F̂ , ê, D̂, ˆauxg);

procedure SelectGate( ˆauxg, f):
for l ∈ GadgetIn(f) \ CircuitIn(f) do

auxg,l := {auxxor, auxand};
if l ∈ XORGates(f) then

auxe,l = auxxor;

else
auxe,l = auxand;

return ˆauxe;

procedure Encode(ê, x̂):
for ei ∈ ê do

Xi := ei ⊕ xi∆;

return X̂;

procedure Decode(D̂, Ŷ ):
for Di ∈ D̂ do

if ∃j ∈ {0, 1} s.t. Dj
i = H ′(Yi, i) : then

yi := j ⊕ lsb(Yi);

return Ŷ ;

procedure Eval(F̂ , X̂, ˆauxe):
for i ∈ GadgetIn(F̂ ) do

Wi := Xi;

for i /∈ GadgetIn(F̂ ){in topo.order} do
{a, b, c} := GadgetInputs(F̂ , i);
if (a, b, c) ∈ CircuitIn(f) then

Ei := Eval3GADGET(Fi,Wa,Wb,Wc);

else
auxe,i = {auxa, auxb, auxc};
if i ∈ XORGates(f) then

if b ∈ CircuitIn(f) then
Ei := Eval3GADGET(Fi, auxa, auxb, auxc ⊕Wc);

else
Ei := Eval3GADGET(Fi, auxa, auxb ⊕Wb, auxc ⊕Wc);

else
if b ∈ CircuitIn(f) then

Ei := Eval3GADGET(Fi, auxa ⊕Wa, auxb, auxc);

else
Ei := Eval3GADGET(Fi, auxa ⊕Wa, auxb ⊕Wb, auxc);

Return Ê;

Figure 8: Our Oblivious Garbling scheme

Proof Outline: As stated in Definition 4, we need to prove four properties the garbling scheme needs to
satisfy.

Correctness: Correctness for the scheme follows from the correctness of the garbling scheme described for
Gtri gadgets in Section 4.2 and the correctness of the soldering technique by [31] that ensures transfer of bit
values from the active output wire labels of a gadget to the input wire labels of the subsequent gadget.

Privacy: We show in Section 4.2 a garbling scheme that can garble Gtri gadgets while satisfying the privacy
definition. In this scheme, we additionally also need to simulate the auxiliary information auxe. We build a
simulator that does the following:

– Simulates the garbling of each Gtri gadget independently by sampling active labels uniformly at random.

– Computes the active output label, and the garbled gate.

– Computes soldering values for each wire connection as the XOR of the active label for the output wire
of a given gadget and the active label for the input wire it is to be connected to in the circuit.
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– Sets the auxiliary information auxe according to the gate we are garbling in the original circuit.

Since each gadget is garbled independently, and the scheme used to garble them achieves privacy, the garbled
gate and the input labels are indistinguishable from the actual garbled gates and input labels.

Obliviousness: The only difference between achieving obliviousness and privacy is that the simulator is
not given y = f(x) and is not expected to output the decoding information. Our simulator can be easily
modified for this case, by only returning the fake garbled gates without the decoding information. This
requires the simulator to not use y for creating the fake garbling, which is the case anyway.

Authenticity: For authenticity, we need to show that any PPT adversary A that receives as input
(F̂ , X̂, D̂, auxe) computed as in the real execution, cannot produce an inactive output label. That is, the
adversary succeeds if it can get Decode to output 1⊕xk for any output gate k with active value xk. We have
already shown in our proof for garbling a circuit with Gtri gadgets that this is negligible.

This concludes that the garbling scheme in Figure 8 satisfies Definition 4. □

Computational Complexity: The garbling scheme makes 8 oracle calls to garble each Gtri gadget. In addition,
we make OT calls linear in the circuit size. Therefore, for a circuit f of size |f |, we have the computational
complexity of the scheme to be O(|f |). We observe that in spite of using the GRR3 optimization to garble the
gadget, we garble each gadget independently and hence the garbling of each gadget can be done in parallel.

Communication Complexity: The garbling scheme generates a garbled gate of size 4κ/3 + O(1) bits for
each Gtri gadget. In addition, we also have OT communication linear in the circuit size to transfer all the
soldering values. Therefore, for a circuit f of size |f |, we have the communication complexity of the scheme to
be O(|f |). We stress that this is not a problem from a practical perspective, as one could use OT extensions
for realising a high number of OTs.
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Additional Supplementary Material

A Matrices used in the scheme

V =



1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

1 0 0 0 0 0 1

0 1 0 0 0 1 1

0 0 1 0 0 1 1

1 0 0 0 1 0 1

0 1 0 0 1 0 1

0 0 1 1 0 0 1

1 0 0 0 1 0 0

0 1 0 0 1 1 0

0 0 1 1 0 1 0

1 0 0 1 0 0 1

0 1 0 0 0 0 1

0 0 1 0 0 0 1

1 0 0 1 0 0 0

0 1 0 0 0 1 0

0 0 1 0 0 1 0

1 0 0 1 1 0 0

0 1 0 0 1 0 0

0 0 1 1 0 0 0

1 0 0 1 1 0 1

0 1 0 0 1 1 1

0 0 1 1 0 1 1



M =



1 0 1 0 0 0 1 0

0 0 1 0 1 0 1 0

1 0 0 0 1 0 1 0

1 0 1 0 0 0 0 1

0 0 1 0 0 1 0 1

1 0 0 0 0 1 0 1

1 0 0 1 0 0 0 1

0 0 0 1 1 0 0 1

1 0 0 0 1 0 0 1

1 0 0 1 0 0 1 0

0 0 0 1 0 1 1 0

1 0 0 0 0 1 1 0

0 1 1 0 0 0 0 1

0 0 1 0 1 0 0 1

0 1 0 0 1 0 0 1

0 1 1 0 0 0 1 0

0 0 1 0 0 1 1 0

0 1 0 0 0 1 1 0

0 1 0 1 0 0 1 0

0 0 0 1 1 0 1 0

0 1 0 0 1 0 1 0

0 1 0 1 0 0 0 1

0 0 0 1 0 1 0 1

0 1 0 0 0 1 0 1


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