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Abstract. Motivated by secure database search, we present secure com-
putation protocols for a function f in the client-servers setting, where a
client can obtain f(x) on a private input x by communicating with mul-
tiple servers each holding f . Specifically, we propose generic compilers
from passively secure protocols, which only keep security against servers
following the protocols, to actively secure protocols, which guarantee pri-
vacy and correctness even against malicious servers. Our compilers are
applied to protocols computing any class of functions, and are efficient
in that the overheads in communication and computational complexity
are only polynomial in the number of servers, independent of the com-
plexity of functions. We then apply our compilers to obtain concrete
actively secure protocols for various functions including private infor-
mation retrieval (PIR), bounded-degree multivariate polynomials and
constant-depth circuits. For example, our actively secure PIR protocols
achieve exponentially better computational complexity in the number of
servers than the currently best-known protocols. Furthermore, our pro-
tocols for polynomials and constant-depth circuits reduce the required
number of servers compared to the previous actively secure protocols.
In particular, our protocol instantiated from the sparse Learning Par-
ity with Noise (LPN) assumption is the first actively secure protocol
for multivariate polynomials which has the minimum number of servers,
without assuming fully homomorphic encryption.

1 Introduction

Client-server outsourcing is a central problem in secure computation. In par-
ticular, there are a wide variety of deployed systems which allow a client to
search a database stored in one or more servers for desired contents. Since a
client’s query may contain sensitive information, it is important to realize secure
database search, enabling a client to search a database without revealing his or
her query to the servers. A trivial solution is downloading the whole database and



searching it locally. However, since the database size is typically very large, we
need to construct protocols whose communication and client-side computational
complexity is sublinear in the database size.

Traditionally, the problem of secure database search has been considered in
two types of setting. In the single-server setting, there is only one server storing a
database who may be corrupted; In the multi-server setting, there are m servers
storing copies of a database and any t of them are corrupted. In this work, we
focus on the multi-server setting since it is known to be impossible to efficiently
achieve information-theoretic security in the single-server setting [24] and even in
computational settings, the bounded collusion of servers allows better efficiency
and weaker cryptographic assumptions than single-server protocols [30, 14, 15].

Private information retrieval (PIR) is a fundamental cryptographic primitive
to realize the most basic database search. The goal of PIR is to enable an honest
client to retrieve a data item ai from a database a = (a1, . . . , aN ) hiding the
index i from the servers4. To allow more complex queries such as partial match
search, Barkol and Ishai [5] considered a more general setting in which a client
has a private input x and servers share a function f , and the goal of the client
is to obtain f(x) by communicating with the servers. A rich line of works pro-
posed secure protocols computing various classes of functions f including PIR [9,
8, 32, 10, 31, 16, 19], bounded-degree multivariate polynomials [50, 6, 41, 28], and
bounded-depth circuits [5, 18, 44, 46]. Note that the communication complexity
of these protocols is much smaller than the size of circuits computing f , which
is the main advantages over usual multiparty computation protocols [27, 39, 40,
17].

We note that the above-mentioned protocols are passively secure, i.e., the
privacy and correctness are guaranteed only if servers follow the protocol speci-
fications. On the other hand, it is desirable to achieve active security in real-world
scenarios. Namely, protocols should not only protect the privacy of queries but
also guarantee the correctness of results even if some servers deviate from the
protocols arbitrarily. For example, servers may try to let a client accept an incor-
rect result, or compute responses from an out-of-date copy of a database. This
paper concerns a fundamental problem of constructing an efficient compiler from
passively secure protocols to actively secure protocols. Given such a compiler,
existing passively secure protocols can be directly upgraded into actively secure
protocols with small overheads. Prior to our work, however, the only known
passive-to-active compilers are the inefficient ones applied to PIR [11, 34], which
incurs exponentially large computational overheads in the number of servers (see
Section 1.2 for more related works on compilers in different settings including
GMW-style compilers).

1.1 Our Results

In this paper, we study the problem of secure computation in the client-servers
setting, where a client can obtain f(x) on a private input x by communicating

4 Throughout the paper, a client is assumed to be honest.
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with multiple servers each holding f . We demonstrate theoretical feasibility of
compilers that upgrade passively secure k-server protocols into actively secure
m-server protocols with m > k. We present two such compilers: The first one
upgrades a one-round passively secure protocol into a multi-round actively se-
cure protocol. It increases the number of servers by a corruption threshold t,
which seems the best possible (see Remark 1). The second one upgrades a one-
round passively secure protocol into a one-round actively secure protocol while
increasing the number of servers by a larger factor. More specifically,

– Our first compiler transforms a one-round passively secure k-server protocol
into an O(m2)-round actively secure m-server protocol such that m = k+ t.

– Our second compiler transforms a one-round passively secure k-server pro-
tocol into a one-round actively secure m-server protocol such that m =
O(k log k) + 2t.

Our compilers are generic and efficient in the sense that they are applied to pro-
tocols computing any class of functions f and the overheads in communication
and computational complexity are only polynomial in m, independent of the
complexity of f . Furthermore, our compilers are unconditional, i.e., requires no
additional assumptions, which allows us to obtain actively secure protocols from
various assumptions or even information-theoretically as shown below.

Along the way, we introduce two novel notions, conflict-finding protocols and
locally surjective map families. The former is an intermediate notion between
passively secure and actively secure protocols, which is used in our first compiler.
The latter is a variant of perfect hash families with a stronger property, which
is used in our second compiler. A key observation behind our techniques is that
if a pair of servers return different answers to the same query, then a client finds
that at least one of them is malicious. A difficulty is that we have to carefully
design such a strategy, since just disclosing a query for one server to another
may reveal his private input. See Section 2 for details on our techniques.

Remark 1. Our first compiler increases the number of servers by t but this seems
the best possible. Indeed, the existence of a generic compiler for an actively secure
protocol with m′ < t+ k servers implies a compiler from a k-server protocol to
a k′-server protocol for k′ := m′ − t < k since an actively secure m′-server
protocol implies a passively secure (m′ − t)-server protocol5. Thus, the increase
in the number of servers is optimal unless there is a generic method to reduce
the number of servers. Such a method has not been found up until now.

Instantiations. Based on our compilers, we show concrete actively secure pro-
tocols for PIR, bounded-degree multivariate polynomials and constant-depth cir-
cuits. Remarkably, our protocol instantiated from the sparse LPN assumption
is the first actively secure protocol for multivariate polynomials which has the
minimum number of servers, without assuming fully homomorphic encryption.

5 The active security enables a client to obtain a correct result by interacting with
m′ − t servers and computing the responses of the other t servers arbitrarily.
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PIR. There are compilers from a passively secure k-server PIR protocol to an
actively secure m-server protocol for m = k + 2t [11] and m = k + t [34]. How-
ever, these compilers incur exponentially large multiplicative overheads mO(t)

in client-side computational complexity. On the other hand, our first compiler
gives an actively secure m-server protocol such that m = k+t with a polynomial
computational overhead mO(1). The only cost is that it requires O(m2) rounds of
interaction between a client and servers. Our second compiler gives a one-round
actively secure protocol with a polynomial computational overhead at the cost of
a larger number of servers m = O(k log k) + 2t. A detailed comparison is shown
in Table 1.

In the information-theoretic setting, the currently most communication-efficient
passively secure PIR protocol for t ≥ 2 is the 3t-server protocol in [10], which
has sub-polynomial communication and computational complexity No(1) ·3t+o(t)

in the database size N . (Although the original protocols in [10, 16] assume non-
colluding servers, i.e., t = 1, the corruption threshold t can be amplified by
using the technique in [7] as pointed out in [37].) By applying our compil-
ers, we obtain actively secure 3t+o(t)-server PIR protocols whose computational
complexity is No(1) · 2O(t). It exponentially (in t) improves the complexities

No(1) · 3t+o(t) · mO(t) = No(1) · 2O(t2) of actively secure protocols that are ob-
tained from the previous compilers [11, 34]. In the computational setting, if we
apply our compilers to the protocol assuming one-way functions [16], we can
achieve logarithmic communication and computational complexity in N and re-
duce the number of servers. A detailed description is shown in Table 2.

Table 1. Comparison of passive-to-active compilers for PIR

Multiplicative overhead to

Method client-side computation # servers # rounds

[11] mO(t) k + 2t 1

[34] mO(t)λ k + t 1

Ours (Thm. 3) O(m5λ) k + t O(m2)

Ours (Thm. 5) O(tm2) O(k log k) + 2t 1

k and m denote the numbers of servers in passively secure and actively secure protocols,

respectively, t denotes a corruption threshold, and λ denotes a security parameter.

Bounded-degree Multivariate Polynomials. In the information-theoretic setting,
there is a passively secure protocol for polynomials in [50], which can be made
actively secure by using the technique in [43]. In the computational setting, a
passively secure protocol is given in [28], which can be made actively secure
by the standard error correction algorithm [47] (see Appendix C for details).
Now, by applying our compilers, we can reduce the required number of servers
of these protocols by t. Based on the passively secure protocol in [41], we can
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Table 2. Comparison of PIR protocols with sub-polynomial communication and com-
putational complexity in the database size N for a corruption threshold t ≥ 2

Method Client-side computation # servers # rounds Assumption
P
a
s
s
iv
e

[10] + [7] No(1)2O(t) 3t 1 IT

[16] + [7] logN · 2O(t)λO(1) 2t 1 OWF

A
c
ti
v
e

[11] + [7] + [10] No(1) · 2O(t2) 3t + 2t 1 IT

[11] + [7] + [16] logN · 2O(t2) 2t + 2t 1 OWF

[34] + [7] + [10] No(1) · 2O(t2)λ 3t + t 1 IT

[34] + [7] + [16] logN · 2O(t2)λO(1) 2t + t 1 OWF

Thm. 3 + [7] + [10] No(1) · 2O(t)λ 3t + t O(32t) IT

Thm. 3 + [7] + [16] logN · 2O(t)λO(1) 2t + t O(22t) OWF

Thm. 5 + [7] + [10] No(1) · 2O(t) O(t3t) 1 IT

Thm. 5 + [7] + [16] logN · 2O(t) O(t2t) 1 OWF

λ denotes a security parameter. “IT” stands for “information-theoretic” (i.e., no cryptographic

assumption is necessary) and “OWF” stands for “one-way functions.”

further reduce the number of servers by a factor of d assuming homomorphic
encryption for degree-d polynomials. Notably, our protocol instantiated from
[28] achieves the minimum number of servers 2t + 1.6 A detailed comparison is
shown in Table 3.

Constant-depth Circuits. Barkol and Ishai [5] proposed a passively secure proto-
col for unbounded fan-in constant-depth circuits (i.e., the complexity class AC0).
It can be made actively secure by applying the error correction algorithm [47],
and the resulting protocol needs at least ( 12 (logM+O(1))D−1+2)t servers, where
M and D = O(1) are the size and depth of circuits, respectively. On the other
hand, if we apply our first compiler, we need only ( 12 (logM + O(1))D−1 + 1)t
servers, which decreases the number of servers of [5] by t. For example, for the
partial match problem on anM -sized database (which can be captured by depth-
2 circuits of size M), our protocol requires only (logM + 2.5)t servers while the
protocol obtained from [5] requires (logM + 3.5)t servers.

A beneficial consequence is that our compilers can be directly applied to
future developments in passively secure protocols in the client-servers scenario
and may yield new efficient constructions of actively secure protocols.

6 The active security is impossible if the majority of servers are corrupted, i.e., m ≤ 2t,
since there is an attack for corrupted servers to replace their input f with another
function f ′.
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Table 3. Comparison of actively secure protocols for multivariate polynomials

Method # servers # rounds Assumption

[43] + [50]
(

D
2
+ 2

)

t+ 1 1 IT

Thm. 3 + [50]
(

D
2
+ 1

)

t+ 1 O((Dt)2) IT

Thm. 3 + [41]
(

D
d+1

+ 1
)

t+ 1 O((Dt)2) d-HE

[47] + [28] 3t+ 1 1 sparse LPN

Thm. 3 + [28] 2t+ 1 O(t2) sparse LPN

D denotes the degree of the polynomials and t denotes a corruption threshold. “IT” stands

for “information-theoretic” and “d-HE” stands for homomorphic encryption for polynomials
of degree d.

1.2 Related Work

Passive-to-Active Compilers. Within the context of PIR, there are compilers
from a passively secure k-server protocol to an actively secure m-server protocol
for m = k + 2t [11] and m = k + t [34]. As said above, however, these compilers
are not only less generic in that they are applied only to PIR, but also inefficient
since they incur exponential overhead

(
m
t

)
= mO(t) in computational complexity.

There are also passive-to-active compilers in a more general multi-client setting
where a private input is arbitrarily distributed among multiple clients [27, 39, 40,
17]. However, in actively secure protocols resulting from these compilers, servers
need to interactively evaluate a circuit gate by gate. Consequently, protocols
require communication and computational complexity that is proportional to
the size of a function, and do not work efficiently if the function encodes a large
database.

PIR. There are direct constructions of m-server PIR protocols in a malicious
setting [38, 29, 3, 43, 54]. However, the communication complexities of [38, 29, 3,
43] are all polynomial NO(t/m) in the database size N , while those of ours are
No(1), i.e., smaller than any polynomial function in N . The protocol in [54]
does not guarantee privacy if malicious servers collude, and thus does not satisfy
active t-security for t > 1 in our sense7. There are also constructions of PIR with
a weaker security guarantee [25, 22], which can only tell a client the existence
of malicious servers. Actively secure PIR is also considered in a special setting
where the length of each entry of a database is sufficiently large (e.g., [4, 51] and
references therein). The protocols in [4, 51] assume that the length of each entry
of a database is at least exponential in N and hence result in exponentially large
communication complexity in N .

Protocols in the Single-server Setting. Generally, if we have a passively secure
single-server protocol, then we can obtain an actively secure protocol with the
minimum number of servers 2t + 1 since a client just runs the passively secure

7 We mean by t-security that at most t servers are corrupted.
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protocol with each server and computes the majority of 2t+1 outputs. However,
there is an impossibility result on efficient single-server protocols for PIR in the
information-theoretic setting [24]. Even if we go for computational security, it
seems to be impossible to construct single-server PIR protocols from the minimal
assumption of one-way functions [30], and for a general function, we currently
need to assume fully homomorphic encryption, which is only instantiated from
a narrow class of assumptions [36, 49].

Verifiable Computation. The problem of dealing with malicious servers has also
been considered within the context of verifiable computation in the single-server
setting [35, 23, 2] and in the multi-server setting [1, 52, 53]. However, these verifi-
able computation protocols only detect malicious behavior of servers and cannot
achieve active security in our sense. The protocol in [20] uses a similar idea that
a client compares answers from one server with those from another. However, it
does not consider the setting where a client’s input x should be private and also
assumes that all parties agree on a function f in advance, while in our setting
the client does not know f since it corresponds to an unknown database.

1.3 Publication Note

This paper is the full version of a paper at EUROCRYPT 2024 with the same
title. A preliminary version of the paper has previously appeared in a preprint
by the same authors (ePrint report 2023/210). The current version generalizes
part of the techniques and presents more formal security proofs.

2 Technical Overview

In this section, we provide an overview of our compilers to construct an actively
t-secure m-server protocol Π ′ from any one-round passively t-secure k-server
protocol Π such that k < m. Let V = {S1, . . . , Sm} be the set of m servers of
Π ′. A key observation behind our constructions is that if a pair of servers in
V return different answers to the same query of Π, then at least one of them
is malicious8. We call such two servers a conflicting pair. The client continues
to remove conflicting pairs from V in an appropriate way. Finally, the client
executes a protocol only with remaining honest servers and obtains a correct
result. For ease of exposition, we first explain our non-interactive actively secure
protocol and then explain our interactive protocol with fewer servers.

2.1 Non-interactive Actively Secure Protocols

As a first attempt, we consider the following basic construction.

1. A client C partitions V = {S1, . . . , Sm} into k groups V = G1 ∪ . . . ∪Gk in
such a way that each Gj contains at least one honest server.

8 Here, we assume that the server-side computation is deterministic.
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2. C computes k queries of Π on his private input and sends the j-th query to
all servers in the j-th group Gj .

If every group contains no conflicting pair (i.e., all servers in each Gj return the
same answer), then C can compute the correct result from the k answers of the
k groups. Otherwise, C removes a conflicting pair from V , and repeats the above
process at most t times to remove all malicious servers. This method, however,
requires a large number of servers m = Ω(kt) since the size of each group Gj

needs to be larger than t.
We reduce the number of servers to m ≈ 2t+k by introducing a novel notion

of locally surjective map families. Technically, we consider a family F of maps
from the set V = {S1, . . . , Sm} of m servers to [k] := {1, 2, . . . , k}. Each map
f ∈ F defines a partition V = Gf,1 ∪ · · · ∪Gf,k, where Gf,j = {Si : f(Si) = j}.
For each map f ∈ F , the client C computes k queries of Π on his private input
and sends the j-th query to all servers in the j-th group Gf,j . Our strategy is
that C proceeds in t steps to detect and remove at least one new malicious server
per step. In each step,

– If for every (f, j), all the remaining servers in Gf,j return the same answer
ansf,j , then C computes an output xf of Π from (ansf,1, . . . , ansf,k) for each
f and decides the final output by the majority vote over the xf ’s;

– Otherwise, i.e., if two remaining servers in some Gf,j give different answers,
then C removes this conflicting pair and proceeds to the next step.

Observe that in the latter case, at least one of the two servers is malicious and
hence at least one malicious server is always removed. The requirement for C

to succeed is that in the former case, more than half of the xf ’s are correct. A
sufficient condition is that for more than half of the f ’s, there remains at least
one honest server in each of Gf,1, . . . , Gf,k. Indeed, for such f ’s, C receives the
correct answer from servers in each of Gf,1, . . . , Gf,k, or proceeds to the latter
case and removes a conflicting pair. Since there remains at least m − 2t honest
servers at every step, the condition can be formulated as the family F of maps
satisfying that for any subset H ⊆ V of size m− 2t, there exist more than half
of the f ’s such that f(H) = [k]. We name such a family as a locally surjective
map family.

We can prove by a probabilistic argument the existence of a locally surjec-
tive map family F of size O(m) if k = O((m− 2t)/ log(m− 2t)). Therefore, we
can obtain an actively t-secure m-server protocol Π ′ from a passively t-secure
k-server protocol Π if m = O(k log k) + 2t. Since the client can run all in-
stances of Π in parallel, the resulting protocol Π ′ is one-round and only incurs
a O(tm|F|) = O(tm2) multiplicative overhead to communication and computa-
tional complexity.

2.2 Interactive Actively Secure Protocols

We further reduce the number of servers from m = O(k log k)+ 2t to m = t+ k.
In our first construction, if a client C finds a conflicting pair of servers, then he
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removes both servers from the set V . After eliminating all tmalicious servers, the
number of remaining servers is reduced to m − 2t in the worst case. Therefore,
as long as this approach is used, the number of servers must be m ≥ 2t+k since
it should hold that m− 2t ≥ k.

Our second construction reduces the required number of servers to m = t+k
by introducing a notion of t-conflict-finding protocols, which is an intermedi-
ate notion between passively t-secure protocols and actively t-secure ones. In-
tuitively, in a conflict-finding protocol, a client C obtains a correct result or a
non-trivial partition (G0, G1) of the set V of servers such that all honest servers
are included in G0 or G1 (and hence the other group consists of malicious servers
only)9. A pair of servers crossing the partition (G0, G1) is supposed to be con-
flicting.

More concretely, we consider a graph G with m vertices each of which repre-
sents a server. Our protocol starts with G being a complete graph, and repeats
the following steps:

1. The client C executes a conflict-finding protocol ΠCF with some subset V ′ ⊆
V which forms a connected subgraph of size k = m − t in G (which can be
efficiently found).

2. If all servers in V ′ behave honestly, then C obtains the correct output.
3. Otherwise C can find a partition (G0, G1) of V

′ thanks to the conflict-finding
property of ΠCF. Note that there is always an edge e = (Si, Sj) between G0

and G1 since G0∪G1 = V ′ is connected. Furthermore, since all honest servers
in V ′ are included in G0 or G1, at least one of Si and Sj is malicious. Now, C
removes the edge e from G instead of eliminating the two servers, and goes
back to the first step.

Since all edges among honest servers remain unremoved (and hence the set of
all honest servers remains connected), C can successfully find a set of k = m− t
honest servers within O(m2) rounds. Note that in the above construction, C
chooses a set of servers with which he executes ΠCF, depending on the answers
that are maliciously computed in the previous rounds. Thus servers may learn
some information on the client input x by seeing which servers C removes. To
address this problem, we impose an additional property that the distribution of
the partition (G0, G1) is independent of x regardless of how malicious servers
behave. Then, an edge removed in each round leaks no information on x and
hence the privacy of x is preserved.

Two-round Conflict-finding Protocols. The remaining problem is how to
construct conflict-finding protocols. We show a construction of a two-round t-
conflict-finding k-server protocol ΠCF from a passively t-secure k-server one
Π. For simplicity, let V ′ = (S1, . . . , Sk). In the first round, a client computes
real queries (quei)i∈[k] on his private input x according to Π as usual. He also
computes dummy queries (que′i)i∈[k] on a default input xdef which is independent

9 We say that a partition (G0, G1) is non-trivial if neither of G0 nor G1 is empty.
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of x. He then sends a random permutation of (quei, que
′
i) to each server Si. Note

that the privacy of Π and the random permutation ensure that servers cannot
distinguish which queries are computed on x or xdef . Each server Si returns
answers (ansi, ans

′
i) to the two queries as usual. In the second round, the client

sends all the dummy queries (que′i)i∈[k] on xdef to all servers in V ′, which does
not affect privacy since xdef is independent of x. In response, each server Sj
returns vj := (ans′i(j))i∈[k] to (que′i)i∈[k], where ans′i(j) is the answer which Si
would compute to the dummy query que′i.

For simplicity, suppose that S1 is the only malicious server. If S1 behaved
honestly in the first round, it holds that ans′1 = ans′1(2) = · · · = ans′1(k). If S1 re-
turned an incorrect answer to que′1, it is different from any of ans′1(2), . . . , ans

′
1(k).

From this observation, the client C trusts the answer ans1 of S1 to the main query
que1 in the first round if and only if ans′1 = ans′1(2) = · · · = ans′1(k). Generalizing
this, we let C compute an output based on (ans1, ans2, . . . , ansk) if all the vj ’s
take the same value. Otherwise, he partitions the set of servers into equivalence
classes by placing Si and Sj into the same class if and only if vi = vj , and outputs
a non-trivial partition (G0, G1) in some way. Note that any pair of honest servers
Si, Sj return the same answer in the second round, i.e., vi = vj , and hence they
are placed in the same class. A malicious server successfully submits an incorrect
answer without being detected only if it guesses correctly which query encodes
the client’s true input x. As we said above, it happens with probability 1/2.
More generally, if the client prepares M − 1 sets of dummy queries, the cheat-
ing probability of malicious servers can be reduced to 1/M . This can be made
even negligible by executing sufficiently many (say, κ) instances in parallel. If
a conflict is found in some instance, C outputs a non-trivial partition (G0, G1)
obtained in that instance. Otherwise, he outputs the majority of the κ outputs if
it exists. To let this protocol fail, malicious servers need to let the client output
valid but incorrect outputs in at least κ/2 instances. The cheating probability is
thus O(M−κ/2), which is negligible.

To see that the partition (G0, G1) leaks no information on the client’s input
x, observe that (G0, G1) is determined by answers (vj)j∈[k]. These answers are
independent of x since they can be simulated from dummy queries and t queries
for x that malicious servers see. The former is independent of x in the first place
and the latter leaks no information on x due to the privacy of Π.

To summarize, we obtain an O(m2)-round actively t-secure m-server protocol
from a passively t-secure k-server protocol if k ≤ m− t. The communication and
computational overhead is a multiplicative polynomial factor in m.

3 Preliminaries

Notations. For m ∈ N, define [m] = {1, 2, . . . ,m}. Let X,Y be sets. If X ⊆ Y ,
we define Y \X = {y ∈ Y : y /∈ X} and simply denote it by X if Y is clear from
the context. We write u←$X if u is chosen uniformly at random from X. Define(
X
k

)
as the set of all subsets of X of size k. Define Map(X,Y ) as the set of all

maps from X to Y . If X = [m] and Y = [k], we simply denote it by Map(m, k).
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Let log x denote the base-2 logarithm of x and lnx denote the base-e logarithm
of x, where e is the Napier’s constant. We call a function f : N ∋ λ 7→ f(λ) ∈ R
negligible if for any c > 0, there exists λ0 ∈ N such that 0 ≤ f(λ) < λ−c for any
λ > λ0. We call f polynomial there exists c > 0 such that 0 ≤ f(λ) < λc for all
λ. Throughout the paper, we use the following notations:

– m denotes the total number of servers, which is polynomial in a security
parameter λ.

– t denotes the number of corrupted servers.

– C denotes a client and Si denotes the i-th server.

The notation Õ(·) hides a polylogarithmic factor in a security parameter λ.

3.1 Secure Computation in the Client-Servers Setting

We follow the client-servers model used in [5]. In this model, there is an honest
client C who holds a private input x, and m servers S1, . . . , Sm who all hold the
same input p. The goal is:

Byzantine-robustness. The client learns the value F (p, x) for a publicly known
function F even if t servers behave maliciously;

Privacy. The client keeps his input x hidden from any collusion of t servers.

We do not assume any interaction between servers. We call a message from a
client to servers a query and a message from servers to the client an answer.

In the above setting, we assume that the function F takes a common input p
from servers. Typically, the input p will be a description of a function f applied
to the input x of a client (e.g., a description of a circuit or a polynomial) and F
is the universal function defined by F (p, x) = f(x).

If m ≥ 2t + 1, there is a trivial 1-round protocol achieving the above goal:
C downloads p from all servers, finds the correct p by the majority vote, and
computes F (p, x) by himself. However, this protocol results in large communi-
cation and client-side computational complexity that is linear in the description
length of p. In applications to database search, p encodes a large database and
its size is proportional to the database size. From this point of view, we say
that a protocol is efficient if its communication and client-side computational
complexity is sublinear in the description length of p and linear in that of x.

More formally, we define a secure computation protocol in the client-servers
setting as an abstract primitive. First, we show the syntax and correctness.

Definition 1. Let P = (Pλ)λ∈N, X = (Xλ)λ∈N, and Y = (Yλ)λ∈N be se-
quences of sets with polynomial-size descriptions and F = (Fλ : Pλ × Xλ →
Yλ)λ∈N be sequences of functions with polynomial-size descriptions. An ℓ-round
m-server protocol for F is a tuple of three polynomial-time algorithms Π =
(Query,Answer,Output), where:

11



– Query(1λ, x, st(j−1), (ans
(j−1)
i )i∈[m]) → ((que

(j)
i )i∈[m], st

(j)): Query is a pos-

sibly randomized algorithm that takes x ∈ Xλ, a state st(j−1) and answers

(ans
(j−1)
i )i∈[m] in round j−1 as input, and outputs queries (que

(j)
i )i∈[m] and

a state st(j) in round j, where we define st(0), ans
(0)
i as the empty string;

– Answer(1λ, p, que
(j)
i )→ ans

(j)
i : Answer is a deterministic algorithm that takes

p ∈ Pλ and a query que
(j)
i in round j as input, and outputs an answer ans

(j)
i

in round j;

– Output(1λ, st(ℓ), (ans
(ℓ)
i )i∈[m]) → y: Output is a possibly randomized algo-

rithm that takes a state st(ℓ) and answers (ans
(ℓ)
i )i∈[m] in round ℓ as input,

and outputs y ∈ Yλ;

satisfying the following property:

Correctness. There exists a negligible function negl(λ) such that for any λ ∈ N
and any (p, x) ∈ Pλ ×Xλ,

Pr
[
Output(1λ, st(ℓ), (ans

(ℓ)
i )i∈[m])) = Fλ(p, x)

]
≥ 1− negl(λ) ,

where

((que
(j)
i )i∈[m], st

(j))← Query(1λ, x, st(j−1), (ans
(j−1)
i )i∈[m]),

ans
(j)
i ← Answer(1λ, p, que

(j)
i )

for all j ∈ [ℓ] and i ∈ [m].

We note that an answer algorithm Answer is not always defined to be determin-
istic in the literature but all the instantiations considered in this paper actually
have deterministic answer algorithms. We omit a security parameter 1λ from
inputs if it is clear from the context.

An abstract primitive Π = (Query,Answer,Output) immediately implies an
ℓ-round protocol in the above client-servers setting. Indeed, a client has a private
input x and m servers have a common input p. In each round, the client runs
Query, sends queries to servers and stores a state in his memory. In response,
servers run Answer on the queries that they receive, and send answers back to
the client. In the final round, the client runs Output on his state and servers’
answers, and obtains y = Fλ(p, x). Due to this correspondence, we will use the
terminologies interchangeably for the sake of readability.

The above-mentioned trivial 1-round protocol corresponds to the scheme
in which Query outputs nothing, Answer outputs p and then Output computes
y = Fλ(p, x). To rule out this, we define the efficiency measures of Π as fol-

lows. Let que
(j)
i and ans

(j)
i be queries and answers computed by Π and denote

their bit-lengths by |que(j)i | and |ans
(j)
i |, respectively. Define the communication

complexity Commλ(Π) as

Commλ(Π) = sup
(p,x)∈Pλ×Xλ

∑

i∈[m],j∈[ℓ]

(|que(j)i |+ |ans
(j)
i |).

12



Define the client-side computational complexity c-Compλ(Π) as the sum of the
running time of Query(1λ, x, ·, ·) and Output(1λ, ·, ·) with worst-case inputs (p, x) ∈
Pλ×Xλ. Let Comm(Π) = (Commλ(Π))λ∈N and c-Comp(Π) = (c-Compλ(Π))λ∈N.
We say that Π is efficient if there exists a sublinear function g(ℓ) = o(ℓ) such
that

max{Comm(Π), c-Comp(Π)} ∈ g(|p|) · |x| · poly(m,λ) , (1)

where |p| and |x| are the description lengths of elements of Pλ and Xλ, respec-
tively. One can also define the server-side computational complexity s-Compλ(Π)
as the running time of Answer(1λ, p, ·), and define s-Comp(Π) = (s-Compλ(Π))λ∈N.
We see the communication and client-side complexity as a primary efficiency
measure and the server-side computational complexity as a secondary measure.

Next, we show the security requirements.

Definition 2. Let Π = (Query,Answer,Output) be an ℓ-round m-server protocol
for F = (Fλ : Pλ×Xλ → Yλ)λ∈N. We say that Π is actively t-secure if it satisfies
the following requirements:

Privacy. There exists a negligible function negl(λ) such that for any stateful
algorithm A and any λ ∈ N,

AdvΠ,A(λ) :=
∣∣Pr
[
Priv0Π,A(λ) = 0

]
− Pr

[
Priv1Π,A(λ) = 0

]∣∣ < negl(λ) ,

where for b ∈ {0, 1}, PrivbΠ,A(λ) is the output b′ of A in the following exper-
iment:
1. (x0, x1, p, T )← A(1λ), where x0, x1 ∈ Xλ, p ∈ Pλ and T ⊆ [m] is of size

at most t.
2. For each j = 1, 2, . . . , ℓ,

(a) Let ((que
(j)
i )i∈[m], st

(j)) ← Query(1λ, xb, st
(j−1), (ans

(j−1)
i )i∈[m]) and

give (que
(j)
i )i∈T to A.

(b) If j < ℓ, A outputs (ans
(j)
i )i∈T . If j = ℓ, A outputs a bit b′ ∈ {0, 1}.

Byzantine-robustness. There exists a negligible function negl(λ) such that
for any stateful algorithm A and any λ ∈ N,

Pr[BRΠ,A(λ) = 1] < negl(λ) ,

where BRΠ,A(λ) is the output of the following experiment:
1. (x, p, T )← A(1λ), where x ∈ Xλ, p ∈ Pλ and T ⊆ [m] is of size at most

t.
2. For each j = 1, 2, . . . , ℓ,

(a) Let ((que
(j)
i )i∈[m], st

(j)) ← Query(1λ, xb, st
(j−1), (ans

(j−1)
i )i∈[m]) and

give (que
(j)
i )i∈T to A.

(b) A outputs (ans
(j)
i )i∈T .

3. Return 1 if Output(1λ, st(ℓ), (ans
(ℓ)
i )i∈[m]) 6= Fλ(p, x), and otherwise re-

turn 0.

13



We say that Π is passively t-secure if it satisfies the above requirements for
semi-honest adversaries A, i.e., those following the instructions of Π. Note that
for semi-honest adversaries, the Byzantine-robustness of Π immediately follows
from the correctness of Π. We say that Π is computationally actively t-secure
(resp. computationally passively t-secure) if it satisfies the above requirements
for probabilistic polynomial-time (PPT) adversaries A (resp. semi-honest PPT
adversaries A).

3.2 Existing Passively Secure Protocols

Private Information Retrieval. Let N = N(λ) be a polynomial function.
Define IndexN = (Fλ : {0, 1}N × [N ] → {0, 1})λ∈N as a sequence of functions
such that for each λ ∈ N,

Fλ((a1, . . . , aN ), x) = ax, ∀(a1, . . . , aN ) ∈ {0, 1}N , ∀x ∈ [N ].

An m-server protocol for IndexN is called an m-server private information re-
trieval (PIR) protocol for N -sized databases. In the information-theoretic set-
ting, the most communication-efficient passively secure 3-server PIR protocol
was given by [10] and in the computational setting, the passively secure 2-server
PIR protocol was given by [16] assuming the existence of one-way functions.
Although the original protocols in [10, 16] assume t = 1, the corruption thresh-
old t can be amplified by using the technique in [7] as pointed out in [37] (see
Appendix A for details). More specifically, the following propositions hold.

Proposition 1. There exists a passively t-secure 1-round 3t-server protocol Π
for IndexN such that

– Comm(Π) = exp(O(
√
logN log logN)) · t3t = No(1) · 2O(t);

– c-Comp(Π) = exp(O(
√
logN log logN)) · t3t = No(1) · 2O(t);

– s-Comp(Π) = N2 · exp(O(
√
logN log logN)) · 2t = N2+o(1) · 2t.

Note that the above protocol satisfies the efficiency requirement (1) since Comm(Π)
and c-Comp(Π) are sub-polynomial (i.e., less than any polynomial) in the de-
scription length N of elements of Pλ = {0, 1}N .

Proposition 2. Assume a pseudorandom generator G : {0, 1}λ → {0, 1}2(λ+1).
There exists a computationally passively t-secure 1-round 2t-server protocol Π
for IndexN such that

– Comm(Π) = O(logN · λ · t2t);
– c-Comp(Π) is O(logN · t2t) invocations of G;
– s-Comp(Π) is O(N2 logN · t) invocations of G.

Remark 2. Dvir and Gopi [31] devised a technique to optimize the 3-server pro-
tocol in [32] and obtained a 2-server PIR protocol with No(1) communication.
However, since the answer length is not constant, the passively t-secure protocol
obtained by applying the amplification technique of [7] has larger communica-
tion complexity exp(O(t

√
logN log logN)) and does not satisfy the efficiency

requirement (1).
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Bounded-Degree Polynomials. Let N = N(λ), D = D(λ) and M = M(λ)
be polynomial functions. We define PolyN,D,M (R) = (Fλ)λ∈N as a sequence of
functions such that Fλ(p,x) = p(x) for any N -variate polynomial p over a ring R
with degree D and number of monomials M , and for any x ∈ RN . The following
is implicit in [50].

Proposition 3. Let N,D,M ∈ poly (λ). Let R be a ring such that for any
a ∈ {1, 2, . . . ,m − 1}, an element a · 1R has an inverse in R, where 1R is the
multiplicative identity of R. Suppose that m > Dt/2. Then, there exists a pas-
sively t-secure 1-round m-server protocol Π for PolyN,D,M (R) such that

– Comm(Π) is O(Nm) ring elements;
– c-Comp(Π) is O(Ntm) ring operations;
– s-Comp(Π) is O(NMD) ring operations.

Since the description length of a polynomial withM monomials is Õ(MD log |R|),
the above protocol satisfies the efficiency requirement (1) if MD = ω(N).

We also have passively secure protocols proposed within the context of ho-
momorphic secret sharing [15]. Roughly speaking, a homomorphic secret sharing
scheme for a function f is an advanced variant of secret sharing, which has an
evaluation algorithm such that shares for a secret x can be locally converted into
shares for a secret f(x). An m-server homomorphic secret sharing scheme for a
function f implies an m-server protocol for F (f, x) = f(x). We formally explain
the relation in Appendix B.

Ishai, Lai and Malavolta [41] showed that assuming homomorphic encryption
for degree-d polynomials, the number of servers in Proposition 3 can be decreased
by a factor of d. See Appendix D for the definition of homomorphic encryption.

Proposition 4. Let d = O(1) and R be a ring such that for any a ∈ {1, 2, . . . ,max{d,m−
1}}, an element a·1R has an inverse in R, where 1R is the multiplicative identity
of R. Assume a homomorphic encryption scheme HE for degree-d polynomials
over R. Let M,N ∈ poly(λ) and D = O(1). Suppose that m > Dt/(d+1). Then
there exists a computationally passively t-secure 1-round m-server protocol Π for
PolyN,D,M (R) such that

– Comm(Π) = O(Nm · ℓct), where ℓct is the description length of ciphertexts
of HE;

– c-Comp(Π) = O((Nt · τEnc + τDec)m), where τEnc and τDec are the running
time of the encryption and decryption algorithms of HE, respectively;

– s-Comp(Π) = O(MN ·τEval), where τEval is the running time of the evaluation
algorithm of HE per operation.

Note that we have max{d,m − 1} = poly(λ) since d = O(1) and m = poly(λ).
On the other hand, homomorphic encryption schemes mentioned in [41] assume
that R is a prime field of size q or a ring of integers modulo n = q1q2 for
exponentially large primes q, q1, q2. In these cases, a · 1R has an inverse in R if
a ∈ {1, 2, . . . ,max{d,m− 1}}.
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Under the sparse Learning Parity with Noise (LPN) assumption over a field
Fq, Dao et al. [28] proposed a passively t-secure (t+1)-server protocol for poly-
nomials of degree D = O(log λ/ log log λ). Although the original protocol does
not have sublinear-size upload cost when evaluating a single polynomial, it can
be seen that the upload cost is amortized if sufficiently many polynomials are
evaluated on the same input. Specifically, let N = N(λ), D = D(λ), M = M(λ),
and L = L(λ) be polynomial functions. We define Poly

L
N,D,M (R) = (Fλ)λ∈N

as a sequence of functions such that Fλ((p1, . . . , pL),x) = (p1(x), . . . , pL(x)) for
any N -variate polynomials p1, . . . , pL over a ring R with degree D and number
of monomials M , and for any x ∈ RN .

Proposition 5. Assume that the (δ, q)-sLPN assumption holds for a constant
0 ≤ δ ≤ 1 and a sequence q = (q(λ))λ∈N of prime powers that are computable in
polynomial time in λ. Let L,M,N ∈ poly(λ) and D = O(log λ/ log log λ). Then,
there exists a computationally passively t-secure 1-round (t + 1)-server protocol
Π for Poly

L
N,D,M (Fq) such that

– Comm(Π) = Õ((M2/δN + L)(log q)mλ);

– c-Comp(Π) = Õ((M2/δN + L)(log q)mλ);

– s-Comp(Π) = Õ(M1/δ+1L(log q)λ).

Note that the description length of L polynomials each with M monomials is
Õ(ML log q) if the degree is D = o(log λ). Thus, if L = ω(M2/δ−1), the above
protocol satisfies the efficiency requirement (1). See [28] or Appendix C for the
details including the definition of the sparse LPN assumption.

Constant-Depth Circuits. We consider Boolean circuits of constant depth
with unbounded fan-in and fan-out. Formally, a Boolean circuit C is a labelled
directed acyclic graph. The nodes with no incoming edges are labelled with input
variables, their negations, or constants. The other nodes are called gates and are
labelled with one of operators in {AND,OR,NOT}. Nodes with no outgoing edges
are called output nodes. We only consider a circuit with a single output node.
The size of a circuit is the number of edges and its depth is the length of the
longest path from an input node to the output node. We define the output of
C on input x, which we denote by C(x), as the value of the output node after
input values proceed through a sequence of gates.

LetN = N(λ),D = D(λ) andM = M(λ) be polynomial functions. We define
CircN,D,M = (Fλ)λ∈N as a sequence of functions such that Fλ(C, x) = C(x) for
any Boolean circuit C with N input variables, depth D and size M , and for any
N -bit string x.

Proposition 6. Let N,M ∈ poly(λ) and D = O(1). Suppose that m ≥ (logM+
3)D−1t/2. Then, there exists a passively t-secure 1-round m-server protocol Π
for CircN,D,M such that

– Comm(Π) = O((logM)D−1N(logN)λm);
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– c-Comp(Π) = O((logM)D−1N(logN)tm+ (logM)2λm);
– s-Comp(Π) = O(M(logM)Nλ).

The protocol is efficient since Comm(Π) and c-Comp(Π) are linear in N and
polylogarithmic in the size M of circuits, omitting factors in λ and m.

4 Interactive Actively Secure Protocols

In this section, we show our compiler from one-round passively t-secure k-server
protocols to O(m2)-round actively t-secure m-server protocols such that m ≥
k + t. To this end, we introduce a notion of conflict-finding protocols, which is
an intermediate notion between passively secure and actively secure protocols.
We show a generic compiler from conflict-finding to actively secure protocols in
Section 4.3 and then show a generic compiler from passively secure to conflict-
finding protocols.

4.1 Graph Theory

To begin with, we recall the standard terminology of graph theory (see [42,
Chapter 2] for instance). A (simple and undirected) graph G is a pair (V,E),
where V is a set of vertices and E is a set of edges (i, j) ∈ V × V . Throughout
the paper, we only consider the cases where V is either [m] or a subset of [m].
Thus we may assume that V is a totally ordered set. The total order on V
naturally induces a lexicographic order on E, which is also a total order on E.
A graph G is called connected if there is a path between each pair of vertices. It
is a standard result that there is a deterministic algorithm D which decomposes
G into connected components in time O(|V | + |E|) [42]. For S ⊆ V , we denote
by G[S] the induced subgraph, i.e., the graph whose vertex set is S and whose
edge set consists of the edges in E that have both endpoints in S.

We show a deterministic algorithm C′k such that for any connected graph
G = (V,E) with at least k vertices, C′k(G) outputs a subset S ⊆ V such that
|S| = k and G[S] is connected. First, C′k chooses the minimum node s of V with
respect to the total order on V . Secondly, C′k runs the “textbook” depth-first
search algorithm [42] starting at the vertex s, except that it stops searching if
it visits k vertices. Finally, C′k outputs the set S of all vertices it visited so far.
By definition, S is of size k. Since any pair of vertices in S are connected via s,
G[S] is connected. The running time of C′k is O(|V |+ |E|).

Next, we show a deterministic algorithm Ck such that for any graph G =
(V,E), if G contains a connected component of size at least k, Ck(G) outputs a
subset S ⊆ V of size k such that G[S] is connected, and otherwise, it outputs the
empty set ∅. First, Ck lists all the connected components of G, (G1, . . . ,Gq) ←
D(G). Secondly, Ck lets qmin be the minimum index q such that Gq has at least
k vertices. If no component has k vertices, Ck outputs ∅. Otherwise, Ck outputs
S ← C′k(Gqmin

). The correctness of Ck immediately follows from those of D and
C′k. The running time of Ck is O(|V |+ |E|).
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Finally, we show a trivial but frequently-used algorithm E , which takes as
input a graph G = (V,E) and a pair of disjoint non-empty subsets G0, G1 ⊆ V ,
and outputs the minimum edge e = (i, j) ∈ E (with respect to the total order
on E) such that i ∈ G0 and j ∈ G1, or j ∈ G0 and i ∈ G1. The running time of
E is O(|E|).

4.2 Formalization of Conflict-finding Protocols

Roughly speaking, in a conflict-finding protocol, a client obtains (y, z), where y
is the main output (supposed to be F (p, x)) and z is an auxiliary string. The
string z is either output, failure, or a non-trivial partition (G0, G1) of the set of
servers10. The security requirements are:

Soundness. The probability that z = output and y 6= F (p, x) is negligible, and
the probability that the protocol outputs z = failure is also negligible;

Conflict-finding. If z is a non-trivial partition (G0, G1) of the set of servers,
then one of G0 or G1 contains all honest servers (and hence the other group
consists of malicious servers only);

Privacy. An adversary should not learn a client’s input x even if she knows z.

Intuitively, the conflict-finding property ensures that a client learns a subset of
malicious servers only, which allows him to find a pair of servers such that at
least one of them is malicious. We require the privacy should hold even if z is
leaked, in order for an adversary not to learn additional information from a set
of servers the client removes. Below, we show formal definitions.

Definition 3. We say that Π = (Query,Answer,Output) is an ℓ-round t-conflict-
finding m-server protocol for F = (Fλ : Pλ × Xλ → Yλ)λ∈N if it satisfies the
following properties:

Syntax. The syntax of Query and Answer is the same as that of Π as an ℓ-
round m-server protocol for F (Definition 1). The algorithm Output takes

a state st(ℓ) and answer (ans
(ℓ)
i )i∈[m] in round ℓ as input, and outputs (y, z)

such that (1) y ∈ Yλ and z = output, (2) y = ⊥ and z = (G0, G1), which
is a non-trivial partition of [m], or (3) y = ⊥ and z = failure. We call the
first (resp. second) component of the output of Output the y-output (resp.
z-output).

Correctness. There exists a negligible function negl(λ) such that for any λ ∈ N
and any (p, x) ∈ Pλ ×Xλ, it holds that

Pr
[
(y, z)← Output(1λ, st(ℓ), (ans

(ℓ)
i )i∈[m])) : y = Fλ(p, x)

]
≥ 1− negl(λ) ,

where

((que
(j)
i )i∈[m], st

(j))← Query(1λ, x, st(j−1), (ans
(j−1)
i )i∈[m]),

ans
(j)
i ← Answer(1λ, p, que

(j)
i )

for all j ∈ [ℓ] and i ∈ [m].

10 We say that a partition (G0, G1) is non-trivial if G0 6= ∅ and G1 6= ∅.

18



Soundness. There exists a negligible function negl(λ) such that for any stateful
algorithm A and any λ ∈ N,

Pr[SoundΠ,A(λ) = 1] < negl(λ) , (2)

where SoundΠ,A(λ) is the output of the following experiment:

1. (x, p, T )← A(1λ), where x ∈ Xλ, p ∈ Pλ and T ⊆ [m] is of size at most
t.

2. For each j = 1, 2, . . . , ℓ,

(a) Let ((que
(j)
i )i∈[m], st

(j)) ← Query(1λ, x, st(j−1), (ans
(j−1)
i )i∈[m]) and

give (que
(j)
i )i∈T to A.

(b) A outputs (ans
(j)
i )i∈T .

3. Let (y, z)← Output(1λ, st(ℓ), (ans
(ℓ)
i )i∈[m]).

4. Return 1 if y ∈ Yλ \{Fλ(p, x)} and z = output, or y = ⊥ and z = failure.
Otherwise return 0.

Conflict-finding. For any stateful algorithm A and any λ ∈ N,

Pr[CFΠ,A(λ) = 1] = 0,

where CFΠ,A(λ) is the output of the following experiment:

1. (x, p, T )← A(1λ), where x ∈ Xλ, p ∈ Pλ and T ⊆ [m] is of size at most
t.

2. For each j = 1, 2, . . . , ℓ,

(a) Let ((que
(j)
i )i∈[m], st

(j)) ← Query(1λ, x, st(j−1), (ans
(j−1)
i )i∈[m]) and

give (que
(j)
i )i∈T to A.

(b) A outputs (ans
(j)
i )i∈T .

3. Let (y, z)← Output(1λ, st(ℓ), (ans
(ℓ)
i )i∈[m]).

4. Return 1 if z = (G0, G1), G0 * T and G1 * T . Otherwise return 0.

Privacy. There exists a negligible function negl(λ) such that for any stateful
algorithm A and any λ ∈ N,

AdvCF
Π,A(λ) :=

∣∣∣Pr
[
Priv

CF,0
Π,A (λ) = 0

]
− Pr

[
Priv

CF,1
Π,A (λ) = 0

]∣∣∣ < negl(λ) ,

where for b ∈ {0, 1}, PrivCF,b
Π,A (λ) is the output b′ of A in the following exper-

iment:

1. (x0, x1, p, T )← A(1λ), where x0, x1 ∈ Xλ, p ∈ Pλ and T ⊆ [m] is of size
at most t.

2. For each j = 1, 2, . . . , ℓ,

(a) Let ((que
(j)
i )i∈[m], st

(j)) ← Query(1λ, xb, st
(j−1), (ans

(j−1)
i )i∈[m]) and

give (que
(j)
i )i∈T to A.

(b) A outputs (ans
(j)
i )i∈T .

3. Let (y, z)← Output(1λ, st(ℓ), (ans
(ℓ)
i )i∈[m]) and give z to A.

4. A outputs a bit b′ ∈ {0, 1}.
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For a (possibly non-negligible) function ǫ(λ), we define a weaker notion of a
ǫ-sound t-conflict-finding protocol Π as the one satisfying the requirements in
Definition 3 except that the condition (2) is replaced with

Pr[SoundΠ,A(λ) = 1] < ǫ.

We say that Π is computationally t-conflict-finding if it satisfies the above re-
quirements for PPT adversaries A.

4.3 Compiler from Conflict-finding to Actively Secure Protocols

We construct an actively t-secure m-server protocol from a t-conflict-finding
(m − t)-server protocol. We give a sketch here and defer the formal proof to
Appendix E.

Theorem 1. Suppose that there exists an ℓ-round (resp. computationally) t-
conflict-finding k-server protocol ΠCF for F = (Fλ : Pλ × Xλ → Yλ)λ∈N. If
m ≥ t + k, there exists an O(ℓm2)-round (resp. computationally) actively t-
secure m-server protocol Π for F such that

– Comm(Π) = O(m2 · Comm(ΠCF));
– c-Comp(Π) = O(m2 · c-Comp(ΠCF) +m4);
– s-Comp(Π) = O(m2 · s-Comp(ΠCF)).

Proof (sketch). Define N :=
(
m
2

)
−
(
m−t
2

)
+ 1 = O(m2). Let V be the set of all

m servers and G(1) be the complete graph on V . Consider the following protocol
Π: For each j = 1, 2, . . . , N ,

1. The client C finds a k-sized subset S(j) of V such that G(j)[S(j)] is connected,
based on the algorithm Ck in Section 4.1.

2. C executes the conflict-finding protocol ΠCF with k servers in S(j), and
obtain an output (y(j), z(j)).

3. If z(j) = output, then C outputs the y-output y(j).
4. If z(j) = failure, then C outputs any default value y0.

5. If z(j) is a non-trivial partition (G
(j)
0 , G

(j)
1 ) of S(j), then C does the following:

(a) Find an edge e(j) of G(j) crossing the partition (G
(j)
0 , G

(j)
1 ) based on

the algorithm E in Section 4.1. Such an edge exists since G(j)[S(j)] is
connected.

(b) Let G(j+1) be a graph obtained by removing e(j) from G(j).
(c) Go back to Step 1.

Privacy. An adversary corrupting a set T of at most t servers cannot learn
a client’s input from interaction at Step 2 due to the fact that |T ∩ S(j)| ≤
|T | ≤ t and the privacy of ΠCF. The adversary can also see a sequence of graphs
G(1),G(2), . . . ,G(N) but as shown at Step 5, the sequence is determined only by
a sequence of z-outputs z(1), z(2), . . . , z(N). Since ΠCF guarantees privacy even
if z-outputs are leaked, she learns no additional information.
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Byzantine-robustness. The client C outputs an incorrect result only if one
of the following events occurs: (1) z(j) = output and y(j) is an incorrect result
for some j ∈ [N ], (2) z(j) = failure for some j ∈ [N ], or (3) z(j) is a non-trivial
partition for all j ∈ [N ]. It follows from the soundness of ΠCF that the first and
second cases occur only with negligible probability.

We argue that the third case never occurs. Assume otherwise, then for all

j, the z-output z(j) of the j-th iteration is a non-trivial partition (G
(j)
0 , G

(j)
1 ) of

S(j). Since the conflict-finding property of ΠCF ensures that either G
(j)
0 or G

(j)
1

includes the set of honest servers H := [m] \ T , the removed edge e(j) = (i1, i2)
satisfies i1 ∈ T or i2 ∈ T and hence the subgraph G(j)[H] is a complete graph for

all j. Since N is larger than the total number N ′ =
(
m
2

)
−
(
m−|T |

2

)
of unordered

pairs (i1, i2) such that i1 ∈ T or i2 ∈ T , G(N ′) has no edge e = (i1, i2) such
that i1 ∈ T or i2 ∈ T . Therefore, a set of servers S(N ′) involved in the N ′-th
iteration is a subset of H since k ≤ m− t ≤ |H|. We have assumed that z(N

′) is

a non-trivial partition (G
(N ′)
0 , G

(N ′)
1 ) of S(N ′) but the conflict-finding property

ensures that H ⊆ G
(N ′)
0 or H ⊆ G

(N ′)
1 , which is contradiction. ⊓⊔

4.4 Compiler from Passively Secure to Conflict-finding Protocols

First, we show a basic construction of ǫ-sound conflict-finding protocols for non-
negligible ǫ. We give a sketch here and defer the formal proof to Appendix F.

Proposition 7. Let Π be a 1-round (resp. computationally) passively t-secure
m-server protocol for F = (Fλ : Pλ × Xλ → Yλ)λ∈N. Let M = poly(λ). Then,
there exists a 2-round (resp. computationally) ǫ-sound t-conflict-finding m-server
protocol Π ′ for F such that

– Comm(Π ′) = O(mM · Comm(Π));
– c-Comp(Π ′) = O(m2M · c-Comp(Π));
– s-Comp(Π ′) = O(mM · s-Comp(Π));

where ǫ = m/M + negl(λ) for some negligible function negl(λ).

Proof (sketch). Consider the following protocol Π ′:

First round.
1. The client C chooses µ∗ uniformly at random from [M ].

2. For all µ ∈ [M ], C computes queries (que
〈µ〉
1 , . . . , que

〈µ〉
m ) of Π on his true

input x if µ = µ∗, and on a default input xdef otherwise.

3. C sends the queries (que
〈µ〉
i )µ∈[M ] to each server Si as usual, who returns

answers (ans
〈µ〉
i )µ∈[M ] to them.

Second round.
1. C sends all the queries (que

〈µ〉
k )k∈[m],µ 6=µ∗

for the default input xdef to
all servers.

2. For all k ∈ [m] and µ ∈ [M ] \ {µ∗}, each server Si returns an answer

ans
〈µ〉
k (i) as Sk would answer to que

〈µ〉
k .
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To obtain an output, C defines vi = (ans
〈µ〉
k (i))k∈[m],µ 6=µ∗

for all i ∈ [m]. For

simplicity, we here assume that ans
〈µ〉
i (i) = ans

〈µ〉
i for all i ∈ [m]. This is because

otherwise, it means that a server Si returns different answers in the first and
second rounds and hence Si is immediately found malicious. The client C parti-
tions the set of servers into equivalence classes G′

0, . . . , G
′
ℓ under the equivalence

relation defined as: i ∼ j
def⇐⇒ vi = vj . If ℓ = 0 (i.e., all servers belong to the

same equivalence class), then he runs the output algorithm of Π on the answers

(ans
〈µ∗〉
1 , . . . , ans

〈µ∗〉
m ) to the queries for his true input. He then outputs the result

y along with z = output. If ℓ ≥ 1, then he outputs y = ⊥ and z = (G0, G1),
where G0 = G′

0 and G1 = G′
1 ∪ · · · ∪G′

ℓ.

Conflict-finding. Let T be a set of corrupted servers. Since honest servers

i, j /∈ T always return the same answer to the same query, we have that ans
〈µ〉
k (i) =

ans
〈µ〉
k (j) for all k ∈ [m] and µ ∈ [M ] \ {µ∗}, and hence vi = vj . Therefore,

the set of honest servers is contained in an equivalence class and it holds that
T ⊆ G0 = G1 or T ⊆ G1 = G0.

Soundness. In the first place, the protocol Π ′ never outputs z = failure.
Assume that Π ′ outputs z = output. Then, all servers belong to the same equiv-
alence class, which implies that vi = vj for any i, j ∈ [m]. To let the client accept
an incorrect result, an adversary needs to let at least one corrupted server Si

submit an incorrect answer exactly to the query que
〈µ∗〉
i for the client’s true

input. (This is because if a corrupted server submits incorrect ans
〈µ〉
i for some

µ 6= µ∗, then it is detected when compared with an answer ans
〈µ〉
i (j) from an

honest server j /∈ T .) However, the adversary cannot learn which query encodes
the client’s true input due to the privacy of Π. Therefore, her best possible strat-
egy is to guess µ∗ uniformly at random, which succeeds only with probability
1/M . The union bound implies that the error probability is at most m/M .

Privacy. Since M queries are generated independently, an adversary learns
no information on the client’s input x in the first round. The queries revealed in
the second round are the ones for a default input xdef , which is independent of
x, and hence the adversary learns no additional information. The privacy holds
even if the z-output z is leaked, since z is determined only by (vi)i∈[m], which
can be simulated from information that the adversary learns up to the second
round. ⊓⊔

Next, we show that the error probability of the basic construction can be
made negligible by parallel execution. The proof is deferred to Appendix G.

Theorem 2. Let Π be a 1-round (resp. computationally) passively t-secure m-
server protocol for F = (Fλ : Pλ × Xλ → Yλ)λ∈N. Then there exists a 2-round
(resp. computationally) t-conflict-finding m-server protocol ΠCF for F such that

– Comm(ΠCF) = O(m2λ · Comm(Π));

– c-Comp(ΠCF) = O(m3λ · c-Comp(Π));

– s-Comp(ΠCF) = O(m2λ · s-Comp(Π)).
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Finally, by combining Theorems 1 and 2, we obtain our generic construc-
tion of an O(m2)-round actively t-secure m-server protocol from any 1-round
passively t-secure k-server protocol for k ≤ m− t.

Theorem 3. Suppose that m > 2t. Let k ≤ m − t and Π be a 1-round (resp.
computationally) passively t-secure k-server protocol for F . Then there exists an
O(m2)-round (resp. computationally) actively t-secure m-server protocol Π ′ for
F such that

– Comm(Π ′) = O(m4λ · Comm(Π));
– c-Comp(Π ′) = O(m5λ · c-Comp(Π));
– s-Comp(Π ′) = O(m4λ · s-Comp(Π)).

4.5 Instantiations

By applying our compiler in Theorem 3 to the passively secure protocols in
Propositions 1 and 2, we obtain actively secure protocols for IndexN .

Corollary 1. Suppose that m ≥ 3t + t. Let N ∈ poly(λ). Then, there exists an
actively t-secure O(m2)-round m-server protocol Π for IndexN such that

– Comm(Π) = exp(O(
√
logN log logN)) · t3tm4λ;

– c-Comp(Π) = exp(O(
√
logN log logN)) · t3tm5λ;

– s-Comp(Π) = N2 · exp(O(
√
logN log logN)) · 2tm4λ.

In particular, max{Comm(Π), c-Comp(Π)} = No(1) · 2O(t)λ.

Corollary 2. Assume a pseudorandom generator G : {0, 1}λ → {0, 1}2(λ+1).
Suppose that m ≥ 2t + t. Let N ∈ poly(λ). Then, there exists a computationally
actively t-secure 1-round m-server protocol Π for IndexN such that

– Comm(Π) = O(logN · λ2 · t2tm4);
– c-Comp(Π) is O(logN · t2tm5) invocations of G;
– s-Comp(Π) is O(N2 logN · tm4) invocations of G.

In particular, max{Comm(Π), c-Comp(Π)} = logN · 2O(t) · poly(λ).

By applying Theorem 3 to Proposition 3, we obtain an actively secure pro-
tocol for multivariate polynomials.

Corollary 3. Let N,D,M ∈ poly(λ). Let R be a ring such that for any a ∈
{1, 2, . . . ,m− 1}, an element a · 1R has an inverse in R. Suppose that

m >

(
D

2
+ 1

)
t.

Then, there exists an actively t-secure 1-round m-server protocol Π for PolyN,D,M (R)
such that

– Comm(Π) = O(Nm4λ) ring elements;
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– c-Comp(Π) = O(Ntm6λ) ring operations;

– s-Comp(Π) = O(NMDm4λ) ring operations.

In particular, max{Comm(Π), c-Comp(Π)} = N · poly(m,λ).

By applying Theorem 3 to Proposition 4, we can reduce the required num-
ber of servers by a factor of d assuming homomorphic encryption for degree-d
polynomials.

Corollary 4. Let d = O(1) and R be a ring such that for any a ∈ {1, 2, . . . ,max{d,m−
1}}, an element a·1R has an inverse in R, where 1R is the multiplicative identity
of R. Assume a homomorphic encryption scheme HE for degree-d polynomials
over R. Suppose that

m >

(
D

d+ 1
+ 1

)
t

Let M,N ∈ poly(λ) and D = O(1). Then there exists a computationally actively
t-secure O(m2)-round m-server protocol Π for PolyN,D,M (R) such that

– Comm(Π) = O(Nm5λ ·ℓct), where ℓct is the description length of ciphertexts
of HE;

– c-Comp(Π) = O((Nt · τEnc+ τDec)m
6λ), where τDec and τEnc are the running

time of the decryption and encryption algorithms of HE, respectively;

– s-Comp(Π) = O(M ·m4λτEval), where τEval is the running time per operation
of the evaluation algorithm of HE.

In particular, max{Comm(Π), c-Comp(Π)} = N · poly(m,λ).

By applying Theorem 3 to Proposition 5, we obtain an actively t-secure
protocol for polynomials achieving the minimum number of servers 2t+ 1.

Corollary 5. Suppose that m = 2t+1. Assume that the (δ, q)-sLPN assumption
holds for a constant 0 ≤ δ ≤ 1 and a sequence q = (q(λ))λ∈N of prime powers
that are computable in polynomial time in λ. Let L,M,N ∈ poly(λ) and D =
O(log λ/ log log λ). Then, there exists a computationally actively t-secure O(m2)-
round m-server protocol Π for Poly

L
N,D,M (Fq) such that

– Comm(Π) = Õ((M2/δN + L)(log q)m5λ2);

– c-Comp(Π) = Õ((M2/δN + L)(log q)m6λ2);

– s-Comp(Π) = Õ(M1/δ+1L(log q)m4λ2).

In particular, max{Comm(Π), c-Comp(Π)} = (M2/δN + L) log q · poly(m,λ).

Finally, by applying Theorem 3 to Proposition 6, we obtain an actively secure
protocol for constant-depth circuits.
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Corollary 6. Let N,M ∈ poly(λ) and D = O(1). Suppose that

m ≥
(
(logM + 3)D−1

2
+ 1

)
t.

Then, there exists an actively t-secure O(m2)-round m-server protocol Π for
CircN,D,M such that

– Comm(Π) = O((logM)D−1N(logN)λ2m5);

– c-Comp(Π) = O((logM)D−1N(logN)λtm6 + (logM)2λ2m6);

– s-Comp(Π) = O(M(logM)Nm4λ2).

In particular, max{Comm(Π), c-Comp(Π)} = N · poly(m,λ).

5 Non-interactive Actively Secure Protocols

In this section, we show our compiler from one-round passively t-secure k-
server protocols to one-round actively t-secure m-server protocols such that
m = O(k log k) + 2t. To this end, we introduce a novel combinatorial object
of locally surjective map families, which is a variant of perfect hash families with
a stronger property. We show a probabilistic construction of such families in
Section 5.1 and then show a generic compiler from passively secure to actively
secure protocols in Section 5.2.

5.1 Locally Surjective Map Family

We show the formal definition of locally surjective map families.

Definition 4. Let m,h, k ∈ N and L be a family of maps from [m] to [k]. We call

L an (m,h, k)-locally surjective map family if |AH | > |L|/2 for any H ∈
(
[m]
h

)
,

where AH = {f ∈ L : f(H) = [k]}.

A locally surjective map family satisfies a stronger property than a nearly perfect
hash family L′ introduced in [11], which assumes that for any H ∈

(
[m]
h

)
, there

exists at least one map f ∈ L′ such that f(H) = [k].

We show a probabilistic construction of an (m,h, k)-locally surjective map
family of size O(m) for k = O(h/ log h). The formal proof is deferred to Ap-
pendix H.

Proposition 8. Let m,h, k ∈ N be such that h ≥ 15, m ≥ 15 and k ≤ h/(γ lnh),
where γ := 1 + (ln 3 − ln ln 15)/(ln 15) < 1.04. Then, there exists an (m,h, k)-
locally surjective map family L such that w := |L| = 14m.
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5.2 Compiler from Passively Secure to Actively Secure Protocols

Based on locally surjective map families, we show our construction of one-round
actively secure protocols from any one-round passively secure protocol. We give
a sketch here and defer the formal proof to Appendix I.

Theorem 4. Suppose that there exists a 1-round (resp. computationally) pas-
sively t-secure k-server protocol Π = (Query,Answer,Output) for F = (Fλ :
Pλ×Xλ → Yλ)λ∈N. If there exists an (m,m−2t, k)-locally surjective map family
L of size w = poly(λ), there exists a 1-round (resp. computationally) actively
t-secure m-server protocol Π ′ = (Query′,Answer′,Output′) for F such that

– Comm(Π ′) = O(twm · Comm(Π));
– c-Comp(Π ′) = O(twm · c-Comp(Π));
– s-Comp(Π ′) = O(tw · s-Comp(Π)).

Proof (sketch). Let L = {f1, . . . , fw} be an (m,h, k)-locally surjective map fam-
ily, where h = m− 2t. For u ∈ [w] and j ∈ [k], define Gu,j = f−1

u (j) = {i ∈ [m] :
fu(i) = j}. Consider the following protocol Π ′: For all u ∈ [w] and ℓ ∈ [t + 1]
(in parallel),

1. The client C computes k queries (que
(u,ℓ)
1 , . . . , que

(u,ℓ)
k ) of Π.

2. C sends que
(u,ℓ)
fu(i)

to each server Si.

3. Each Si returns an answer ans
(u,ℓ)
i as the fu(i)-th server would answer to

que
(u,ℓ)
fu(i)

in Π.

To obtain an output, C sets S ← [m] and L← 1, and does the following:

1. Check whether for all u ∈ [w] and j ∈ [k], the answers ans
(u,L)
i returned by

servers Si in Gu,j are identical with each other.
2. If so, let αu,j be the unique answer by servers in Gu,j and run the output

algorithm of Π on (αu,1, . . . , αu,k) to obtain yu. Then, output the majority
of y1, . . . , yw.

3. Otherwise, find a pair (i1, i2) of servers who are mapped to the same group

Gu,j but returned different answers. That is, fu(i1) = fu(i2) and ans
(u,L)
i1

6=
ans

(u,L)
i2

for some u ∈ [w]. Note that at least one of them are malicious. Then,
update S ← S \ {i1, i2} and L← L+ 1, and go back to Step 1.

Privacy. An adversary corrupting a set T of at most t servers can only learn
queries received by a set fu(T ) of servers in Π. Since |fu(T )| ≤ |T | ≤ t, the
privacy of Π ′ follows from that of Π.

Byzantine-robustness. An adversary succeeds in letting the client accept
an incorrect result only if at least w/2 out of y1, . . . , yw are incorrect in some
iteration (say, L) in the output phase of C. This implies that for at least w/2 u’s,
there exists a remaining corrupted server i ∈ T ∩ S who submits an incorrect

answer ãns
(u,L)
i 6= ans

(u,L)
i . On the other hand, since at most one honest server

is eliminated from S in each iteration, it holds that |H ∩ S| ≥ (m − t) − t =
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m − 2t, where H is the set of all honest servers. Therefore, the property of
locally surjective map families ensures that fu(H ∩ S) = [k] holds for at least
one of the above w/2 u’s. In other words, there exists a remaining honest server

i′ ∈ H∩S such that fu(i
′) = fu(i), and the answer ãns

(u,L)
i is compared with the

correct answer ans
(u,L)
i′ from the honest server i′. Thus, the client can detect the

malicious behavior of the corrupted server i. Therefore, the client can successfully
eliminate at least one malicious server in each iteration and obtain the correct
result after at most t iterations. ⊓⊔

To obtain a concrete compiler from Theorem 4, we plug in the (m,h, k)-
locally surjective map family in Proposition 8 with h = m− 2t.

Theorem 5. Suppose that there exists a 1-round (resp. computationally) pas-
sively t-secure k-server protocol Π for F . If

m ≥ 2t+ 15 and
m− 2t

γ ln(m− 2t)
≥ k,

where 1 < γ < 1.04 is the constant in Proposition 8, then there exists a 1-round
(resp. computationally) actively t-secure m-server protocol Π ′ for F such that

– Comm(Π ′) = O(tm2 · Comm(Π));
– c-Comp(Π ′) = O(tm2 · c-Comp(Π));
– s-Comp(Π ′) = O(tm · s-Comp(Π)).

Remark 3. The computational complexity of the construction in Theorem 5 does
not take into account that of finding a locally surjective map family L. We note
that the choice of L does not affect the security of a protocol. Hence we can
construct it before the protocol starts and the family is reusable any number of
times.

5.3 Instantiations

By applying our compiler in Theorem 5 to the protocols in Propositions 1 and 2,
we obtain the following corollaries. The formal proof appears in Appendix J.

Corollary 7. Suppose that m ≥ max{2t3t+2t, 2t+15}. Let N ∈ poly(λ). Then,
there exists a computationally actively t-secure 1-round m-server protocol Π for
IndexN such that

– Comm(Π) = exp(O(
√
logN log logN)) · t23tm2;

– c-Comp(Π) = exp(O(
√
logN log logN)) · t23tm2;

– s-Comp(Π) = N2 · exp(O(
√
logN log logN)) · t2tm.

In particular, max{Comm(Π), c-Comp(Π)} = No(1) · 2O(t).

Corollary 8. Assume a pseudorandom function G : {0, 1}λ → {0, 1}2(λ+1).
Suppose that m ≥ max{t2t+1 +2t, 2t+15}. Let N ∈ poly(λ). Then, there exists
an actively t-secure 1-round m-server protocol Π for IndexN such that
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– Comm(Π) = O(logN · λ · t22tm2);
– c-Comp(Π) is O(logN · t22tm2) invocations of G;
– s-Comp(Π) is O(N2 logN · t2tm) invocations of G.

In particular, max{Comm(Π), c-Comp(Π)} = logN · 2O(t) · poly(λ).

Note that it is possible to apply the compiler in Theorem 5 to the passively
secure k-server protocols in Propositions 3, 4, 5, and 6. Since k > t, the number
of servers of the resulting protocols is Ω(k log k) + 2t = Ω(t log t). On the other
hand, these protocols can also be made actively secure by using the standard
error correction algorithm [47] or the technique of [43], and one can then obtain
actively secure protocols that has a smaller number of servers O(t). We thus do
not show instantiations based on these protocols.
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A Passively Secure Protocols from [10] and [16]

There is a 3-server protocol for IndexN with sub-polynomial complexity in N .

Proposition 9 ([10]). There exists a passively 1-secure 1-round 3-server pro-
tocol Π for IndexN such that

– The query length is cque = exp(O(
√
logN log logN)) = No(1);

– The answer length is cans = 2;
– c-Comp(Π) = exp(O(

√
logN log logN)) = No(1);

– s-Comp(Π) = N · exp(O(
√
logN log logN)) = N1+o(1).

There is a technique to amplify the privacy threshold in [7]. Let Π be a
passively t0-secure m0-server protocol for IndexN whose query length is cque and
answer length is cans. Then, Π can be generically transformed into a passively
t0t-secure m

t
0-server protocol for IndexN whose query length is O(cquetm

t
0) and

answer length is O(ctans). In particular, by applying this transformation to the
passively 1-secure 3-server protocol in Proposition 9, we obtain the passively
t-secure 3t-server protocol in Proposition 1.

Under the assumption of one-way functions, there is a passively 1-secure 2-
server protocol for IndexN with logarithmic communication complexity in N
[16].

Proposition 10 ([16]). Assume a pseudorandom generator G : {0, 1}λ →
{0, 1}2(λ+1). There exists a passively 1-secure 1-round 2-server protocol Π for
IndexN such that

– Comm(Π) = O(logN · λ);
– c-Comp(Π) is O(logN) invocations of G;
– s-Comp(Π) is O(N logN) invocations of G.

Again, by applying the privacy amplification technique in [7], we obtain a pas-
sively t-secure 2t-server protocol in Proposition 2.

B Homomorphic Secret Sharing

Let P = (Pλ)λ∈N be a sequence of families of functions. We recall the notion of
a homomorphic secret sharing (HSS) scheme for P.

Definition 5. Let X = (Xλ)λ∈N and Y = (Yλ)λ∈N be sequences of sets with
polynomial-size descriptions and P = (Pλ)λ∈N be a sequence of sets of functions
such that each Pλ consists of functions p : Xλ → Yλ with polynomial-size descrip-
tions. A passively t-secure (resp. computationally passively t-secure) m-server
homomorphic secret sharing scheme for P (with public-key setup) is a tuple of
four polynomial-time algorithms Π = (KeyGen, Share,Eval,Dec), where:

– KeyGen(1λ) → (pk, sk): An algorithm KeyGen takes a security parameter λ
as input and outputs a public key pk and a secret key sk;
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– Share(pk, x) → (shi)i∈[m]: An algorithm Share takes a public key pk and
x ∈ Xλ as input, and outputs shares (shi)i∈[m];

– Eval(pk, p, shi) → outi: An algorithm Eval takes a public key pk, a function
p ∈ Pλ and a share shi as input, and outputs an output share outi;

– Dec(sk, (outi)i∈[m])→ y: An algorithm Dec takes a secret key sk and output
shares (outi)i∈[m] as input, and outputs y ∈ Yλ;

satisfying the following properties:

Correctness. There exists a negligible function negl(λ) such that for any λ ∈ N
and any (p, x) ∈ Pλ ×Xλ,

Pr
[
Dec(sk, (outi)i∈[m]) = p(x)

]
≥ 1− negl(λ) ,

where (pk, sk)← KeyGen(1λ), (shi)i∈[m] ← Share(pk, x), and outi ← Eval(pk, p, shi)
for all i ∈ [m].

Privacy. There exists a negligible function negl(λ) such that for any stateful
(resp. PPT stateful) algorithm A and any λ ∈ N,

∣∣Pr
[
Priv0Π,A(λ) = 0

]
− Pr

[
Priv1Π,A(λ) = 0

]∣∣ < negl(λ) ,

where for b ∈ {0, 1}, PrivbΠ,A(λ) is the output of A in the following experi-
ment:
1. Let (pk, sk)← KeyGen(1λ).
2. Let (x0, x1, p, T )← A(pk), where x0, x1 ∈ Xλ, p ∈ Pλ and T ⊆ [m] is of

size at most t.
3. Let (shi)i∈[m] ← Share(pk, xb) and give (shi)i∈T to A.
4. A outputs a bit b′ ∈ {0, 1}.

Let Π = (KeyGen, Share,Eval,Dec) be a passively t-secure m-server homo-
morphic secret sharing scheme for P. Define F = (Fλ : Pλ × Xλ → Yλ)λ∈N

as Fλ(p, x) = p(x). We can view Π as a passively t-secure 1-round m-server
protocol Π ′ = (Query,Answer,Output) for F in the following manner: Query
is defined as the algorithm that takes 1λ and x as input, runs (pk, sk) ←
KeyGen(1λ), (shi)i∈[m] ← Share(pk, x), and outputs quei := (pk, shi) for i ∈ [m]
and st := (pk, sk); Answer(p, quei = (pk, shi)) just runs outi ← Eval(pk, p, shi)
and outputs ansi := outi; and finally Output((ansi)i∈[m], st = (pk, sk)) outputs
y ← Dec(sk, (shi)i∈[m]).

The evaluation algorithm Eval of a homomorphic secret sharing scheme is not
always defined to be deterministic in the literature. We notice that all instan-
tiations considered in this paper actually have deterministic Eval and thus, the
induced protocols have deterministic answer algorithms Answer, which complies
with the syntax in Definition 1.

In the literature, there is a notion of homomorphic secret sharing in the plain
model, where there is no key generation algorithm KeyGen and public and secret
keys are the empty string. Note that this notion is also captured by Definition 1
in the same manner as above except that pk and sk are omitted.
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To be used for specific applications, HSS schemes in the plain model are often
required to have linear reconstruction, i.e., Dec((outi)i∈[m]) is a linear function
on (outi)i∈[m]. On the other hand, this paper targets applications where a single
client can do arbitrary computation as long as the complexity is sufficiently
lower than that of computing Fλ(p, x) by himself. Therefore, we may allow HSS
schemes to have non-linear reconstruction.

C Passively Secure Protocol from [28]

Let n = n(λ) be the dimension, N = N(λ) the number of samples, k = k(λ) ≤ n
the sparsity parameter, q = q(λ) the field size, ǫ = ǫ(λ) the noise rate with
0 ≤ ǫ ≤ 1. Define the sparse LPN distribution DsLPN,n,N,k,ǫ,q as the distribution
of an output of the following process:

1. Sample s uniformly at random from F1×n
q .

2. Sample A uniformly at random from Fn×N
q conditioned on every column of

A has exactly k non-zero elements.
3. Sample e according to (Ber(Fq, ǫ)

1×N , where Ber(Fq, ǫ) returns 0 with prob-
ability 1− ǫ and a uniformly random non-zero element of Fq otherwise.

4. Compute b = s ·A+ e and output (A,b)

Similarly, defineDrand,n,N,k,ǫ,q as the distribution that is identical toDsLPN,n,N,k,ǫ,q

except that b is chosen uniformly at random from F1×m
q .

Let 0 ≤ δ ≤ 1 be a constant and q = (q(λ))λ∈N be a sequence of prime
powers that is computable in polynomial time in λ. We say that the (δ, q)-
sLPN assumption holds if for all parameters n, N , k, ǫ that are computable in
polynomial time in λ such that k = ω(1) and ǫ = O(n−δ), the distributions
DsLPN,n,N,k,ǫ,q and Drand,n,N,k,ǫ,q are computationally indistinguishable.

Let D = O(log λ/ log log λ) and N,M ∈ poly(λ). Similarly to [28], we choose
the sparsity parameter k = (log λ)c for a sufficiently small constant c and the
dimension n = M1/δλ1/2. Assume the (δ, q)-sLPN assumption holds. Then there
exists a computationally passively t-secure 1-round (t+1)-server protocol Π for
PolyN,D,M (Fq) such that

– Comm(Π) = O(n2N(log q)m) = Õ(M2/δN(log q)mλ);

– c-Comp(Π) = Õ(n2N(log q)m) = Õ(M2/δN(log q)mλ);

– s-Comp(Π) = Õ(nM(log q)) = Õ(M1/δ+1(log q)λ).

Note that the original scheme for evaluating a single polynomial does not satisfy
our efficiency requirements since Comm(Π) and c-Comp(Π) are not less than

the description length Õ(M) of N -variate polynomials of degree D with M
monomials. Let L = poly(λ). We observe that a slightly modified version of the
original scheme can support a function class Poly

L
N,D,M (Fq). Indeed, a client

computes a query based on his input x as in the original scheme but now servers
evaluate L polynomials on the query and return L answers to the client. We
then obtain Proposition 5.
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The passively secure protocol [28] can be made actively t-secure by using the
Berlekamp-Welch algorithm, which is a standard error correction algorithm for
the Reed-Solomon code (see, e.g., [47]). Technically, if φ is a polynomial of degree
at most m − 2t, the algorithm can recover φ from any vector whose Hamming
distance from (φ(1), . . . , φ(m)) is at most t. In the protocol [28], answers from
servers have the form of (φ(1), . . . , φ(m)) for a polynomial φ of degree t+1 such
that φ(0) = p(x). Therefore, if m ≥ 3t+ 1, then one can correct errors with the
Berlekamp-Welch algorithm and achieve active security. A similar technique can
be applied to the passively secure protocol in [5] or Proposition 6 at the cost of
increasing the number of servers by 2t, although these facts were not explicitly
stated in [5, 28].

D Passively Secure Protocol from [41]

First, we recall the definition of homomorphic encryption.

Definition 6. An IND-CPA secure homomorphic encryption scheme HE =
(KGen,Enc,Eval,Dec) for degree-d polynomials over a ring R consists of the fol-
lowing PPT algorithms:

– KGen(1λ) → (pk, sk): Given the security parameter 1λ, the key generation
algorithm outputs a public key pk and a secret key sk;

– Enc(pk,x)→ c: Given the public key pk and a vector of n messages x ∈ Rn,
the encryption algorithm outputs a vector of n ciphertexts c ∈ Cn in some
ciphertext space C;

– Eval(pk, p, c): Given the public key pk, a degree-d polynomial p ∈ R[X1, . . . , Xn],
and a vector of n ciphertexts c ∈ Cn, the evaluation algorithm outputs a ci-
phertext c′ ∈ C;

– Dec(sk, c): Given the secret key sk and a vector of n ciphertexts c ∈ Cn, the
decryption algorithm outputs a vector of n plaintexts x ∈ Rn;

satisfying the following properties:

Correctness. There exists a negligible function negl(·) such that for any λ ∈
N, any (pk, sk) ← KGen(1λ), any n ∈ poly (λ), any degree-d polynomial
p ∈ R[X1, . . . , Xn], and any vector of n messages x = (x1, . . . , xn) ∈ Rn, it
holds that

Pr[Dec(sk,Enc(pk,x)) = x ] ≥ 1− negl(λ) and

Pr

[
Dec(sk, c′) = p(x1, . . . , xn) :

c← Enc(pk,x)
c′ ← Eval(pk, p, c)

]
≥ 1− negl(λ) ,

where the probability is taken over the random coins of Enc and Eval.
IND-CPA Security. There exists a negligible function negl(·) such that for

any PPT stateful adversary A, it holds that

|Pr
[
IND-CPA0

HE,A = 1
]
− Pr

[
IND-CPA1

HE,A = 1
]
| < negl(λ) ,

where IND-CPAb
HE,A is defined in Fig. 1 for b ∈ {0, 1}.
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IND-CPAb
HE,A(1λ):

(pk, sk)← KGen(1λ)

(x0, x1)← A(pk)

c← Enc(pk, xb)

b′ ← A(c)

return b′

Fig. 1. IND-CPA experiment for public-key encryption

Let d,D ∈ O(1) such that d < D, and N,M ∈ poly(λ). It is shown in [41]
that assuming an IND-CPA secure homomorphic encryption scheme for degree-d
polynomials over a ring R and

m >
Dt

d+ 1
,

then there exists a computationally passively t-secure 1-round m-server protocol
Π for PolyN,D,M (R) such that

– Comm(Π) = O(Nm · ℓct), where ℓct is the description length of ciphertexts
of HE;

– c-Comp(Π) = O((τDec + N · τEnc)m2), where τDec and τEnc are the running
time of Dec and Enc, respectively;

– s-Comp(Π) = O(M · τEval), where τEval is the running time of Eval per oper-
ation.

Note that the original construction assumes that R is a field. We observe that
their construction still works as long as for any a ∈ {1, 2, . . . ,max{d,m−1}}, an
element a · 1R has an inverse in R, where 1R is the multiplicative identity of R.
Indeed, one needs to compute multiplicative inverses only when reconstructing
the value of a polynomial from output shares in the output algorithm of the
protocol (one performs only addition and multiplication in the query and answer
algorithms, which can be done in a ring). Concretely, if a client wants to compute
p(x), he decodes ciphertexts of the homomorphic encryption scheme to obtain
ring elements (φ(i), φ(1)(i), . . . , φ(d)(i))i∈[m] for a polynomial φ ∈ R[X] such that

φ(0) = p(x), where φ(e) is the e-th derivative of φ, and then the client recovers
φ(0) by Hermite interpolation. According to the interpolation formula in [48],
φ(0) can be recovered if (i−j)·1R and a·1R have inverses in R for any i 6= j ∈ [m]
and a ∈ {1, 2, . . . , d}.

To ensure that the protocol in Proposition 4 has a deterministic answer
algorithm Answer, the underlying homomorphic encryption scheme must have a
deterministic evaluation algorithm Eval. This is the case for the instantiations
[33, 12, 45, 26, 21] mentioned in [41]. We notice that some evaluation algorithms
in these works inject randomness when evaluating functions, but this is only for
the scheme to satisfy circuit privacy, i.e., to keep information on functions hidden
from evaluated ciphertexts. In particular, our required security notion (i.e., IND-
CPA security) is satisfied even if evaluation algorithms are made deterministic.

36



E Proof of Theorem 1

Consider a protocol Π described in Fig. 2. We denote the query, answer and
output algorithms of ΠCF by (Query0,Answer0,Output0). We call the execution
of ΠCF in the j-th iteration at Step 3 of Π the j-th instance of ΠCF.

Correctness. Assume that all servers are honest. The correctness of ΠCF

ensures that in the first instance of ΠCF, it holds with overwhelming probability
that (y(1), z(1)) = (Fλ(p, x), output). Then y(1) = Fλ(p, x) is added to Y at
Step 3(c) of Π. After that, Y is never updated since Y 6= ∅. Therefore, C outputs
Fλ(p, x) at Step 4.

Privacy. Let A be a stateful adversary against the privacy of Π. For b ∈
{0, 1}, let PrivbΠ,A(λ) be a random variable defined in Definition 2. We will show
that

AdvΠ,A(λ) =
∣∣Pr
[
Priv0Π,A(λ) = 0

]
− Pr

[
Priv1Π,A(λ) = 0

]∣∣ .

is negligible.

To simplify notations, we denote the following experiment by EXPTΠCF,A,p,T (S, x),
where T is a subset of [m] of size at most t, S = {i1, i2, . . . , ik} (i1 < i2 < · · · <
ik) is a subset of [m] of size k, p ∈ Pλ, and x ∈ Xλ:

EXPTΠCF,A,p,T (S, x)✓ ✏
1. Execute ΠCF with k servers in S on a client input x and a common

server input p, in which answers of servers in T are computed by A.
Formally, for each j = 1, . . . , ℓ,

((que(j)v )v∈[k], st
(j))← Query0(1

λ, x, st(j−1), (ans(j−1)
v )v∈[k]),

ans(j)v ← Answer0(1
λ, p, que(h)v )

except that for any v with iv ∈ T , ans
(j)
v is computed by A.

2. Let (y, z)← Output0(1
λ, st(ℓ), (ans

(ℓ)
v )v∈[k]).

3. Return z.✒ ✑
We define a hybrid distribution Hyb

(h)
Π,A(λ) for 1 ≤ h ≤ N as the output b′

of A in the following experiment HybEXPT
(h)
Π,A(λ):
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Notations.

– Let ΠCF = (Query0,Answer0,Output0) be an ℓ-round t-conflict-finding k-server
protocol.

– Let m ≥ t+ k.
– A client C has an input x ∈ Xλ and every server Si has a common input

p ∈ Pλ.
– Let V := [m] and N :=

(

m

2

)

−
(

m−t

2

)

+ 1.

Sub-algorithms.

Ck(G)→ S. On input a graph G = (V,E), Ck outputs a subset S ⊆ V of size k
such that G[S] is connected if G contains a connected component of size k. The
construction is given in Section 4.1.

E(G, (G0, G1))→ e. On input a graph G = (V,E) and a pair of disjoint non-empty
subsets G0, G1 ⊆ V , E outputs the minimum edge e = (i, j) ∈ E (with respect
to the total order on E) such that i ∈ G0 and j ∈ G1, or j ∈ G0 and i ∈ G1.
The construction is given in Section 4.1.

Nextk(G, S, z)→ (G′, S′). On input a graph G = (V,E), a size-k subset S of V ,
and a z-output z of ΠCF,
– If z = output or z = failure, output (G′, S′)← (G, S).
– If z = (G0, G1), where G0, G1 are disjoint non-empty subsets of S,

1. Compute an edge e← E(G, (G0, G1)).
2. Set E′ ← E \ {e}, G′ ← (V,E′), S′ ← Ck(G

′) and output (G′, S′).

Protocol.

1. C sets Y = ∅.
2. C sets G(1) = (V,E(1)) to the complete graph over V and computes a size-k

subset S(1) ← Ck(G
(1)).

3. For each j = 1, 2, . . . , N , the client and servers do the following:
(a) C executes ΠCF with k servers in S(j) on a client input x and a common

server input p. Formally, if S(j) = {i1, . . . , ik}, where i1 < · · · < ik, then
for each h = 1, 2, . . . , ℓ,
i. C computes

((que(h)v )v∈[k], st
(h))← Query0(1

λ, x, st(h−1), (ans(h−1)
v )v∈[k])

and sends que(h)v to Siv .
ii. In response, Siv computes

ans
(h)
v ← Answer0(1

λ, p, que(h)v )

and sends it back to C.
(b) C obtains (y(j), z(j))← Output0(1

λ, st(ℓ), (ans
(ℓ)
v )v∈[k]).

(c) If z(j) = output and Y = ∅, C adds y(j) to Y. If z(j) = failure and Y = ∅,
C adds a default value y0 ∈ Yλ to Y.

(d) C computes (G(j+1), S(j+1))← Nextk(G
(j), S(j), z(j)).

4. If Y = {y}, C outputs y and otherwise, outputs the default value y0.

Fig. 2. An actively secure protocol Π based on a conflict-finding protocol
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HybEXPT
(h)
Π,A(λ)

✓ ✏
1. (x0, x1, p, T )← A(1λ), where x0, x1 ∈ Xλ, p ∈ Pλ and T ⊆ [m] is of size

at most t.
2. Compute (G(1), S(1)) in the same manner as Step 2 of Π.
3. For each j = 1, 2, . . . , h− 1,

(a) Execute z(j) ← EXPTΠCF,A,p,T (S
(j), x1).

(b) Compute (G(j+1), S(j+1))← Nextk(G(j), S(j), z(j)).
4. For each j = h, h+ 1, . . . , N ,

(a) Execute z(j) ← EXPTΠCF,A,p,T (S
(j), x0).

(b) Compute (G(j+1), S(j+1))← Nextk(G(j), S(j), z(j)).
5. A outputs a guess b′ ∈ {0, 1}.

✒ ✑
Note that Hyb

(1)
Π,A(λ) = Priv0Π,A(λ). We define Hyb

(N+1)
Π,A (λ) = Priv1Π,A(λ)

and

Adv
(h)
Π,A(λ) =

∣∣∣Pr
[
Hyb

(h)
Π,A(λ) = 0

]
− Pr

[
Hyb

(h+1)
Π,A (λ) = 0

]∣∣∣ .

Then we have that AdvΠ,A(λ) ≤
∑N

h=1 Adv
(h)
Π,A(λ).

We show that for any h, there exists an adversary B against the privacy of

ΠCF such that Adv
(h)
Π,A(λ) = AdvCF

ΠCF,B(λ). If this can be shown, sinceN = O(m2)

is polynomial in λ, it follows that AdvΠ,A(λ) ≤ N ·supB AdvCF
ΠCF,B(λ) = negl(λ) .

We construct B as follows:

B✓ ✏
Setup. On input 1λ,

1. Run (x0, x1, p, T )← A(1λ).
2. For each j = 1, 2, . . . , h− 1,

(a) Execute z(j) ← EXPTΠCF,A,p,T (S
(j), x1).

(b) Compute (G(j+1), S(j+1))← Nextk(G(j), S(j), z(j)).
3. Output (x0, x1, p, T

′), where S(h) = {i1, i2, . . . , ik} (i1 < i2 < · · · <
ik), and T ′ = {v ∈ [k] : iv ∈ T}.

Protocol. During the execution of ΠCF, B emulates the behavior of A in
the h-th instance of ΠCF. More precisely, to compute an answer of the
v-th server such that iv ∈ T for v ∈ [k], B lets A compute an answer of
Siv in the h-th instance of ΠCF.

Output. To output a guess b′, B receives a z-output z of ΠCF and does
the following:
1. Compute (G(h+1), S(h+1))← Nextk(G(h), S(h), z).
2. For each j = h+ 1, h+ 2, . . . , N ,

(a) Execute z(j) ← EXPTΠCF,A,p,T (S
(j), x0).

(b) Compute (G(j+1), S(j+1))← Nextk(G(j), S(j), z(j)).
3. Let A output a guess b′ ∈ {0, 1}.

✒ ✑
Consider the experiment EXPTCF,0

ΠCF,B
defining PrivCF,0

ΠCF,B
(λ) (see Definition 3):
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EXPTCF,0
ΠCF,B

✓ ✏
1. (x0, x1, p, T

′)← B(1λ).
2. Execute ΠCF with k servers on a client input x0 and a common server

input p, in which answers of servers in T ′ are computed by B. Formally,
for each j = 1, . . . , ℓ,

((que(j)v )v∈[k], st
(j))← Query0(1

λ, x0, st
(j−1), (ans(j−1)

v )v∈[k]),

ans(j)v ← Answer0(1
λ, p, que(h)v )

except that for v with iv ∈ T , ans
(j)
v is computed by B.

3. Let (y, z)← Output0(1
λ, st(ℓ), (ans

(ℓ)
v )v∈[k]).

4. B is given z and outputs a bit b′ ∈ {0, 1}.
✒ ✑

We have that Hyb
(h)
Π,A(λ) = Priv

CF,0
ΠCF,B

(λ) from the following observations:

– From the definition of Setup of B and the fact that a client input is set

to x1, Setup corresponds to Steps 1–3 in HybEXPT
(h)
Π,A(λ) and hence the

distributions of (z(1),G(2),S(2)), . . . , (z(h−1),G(h), S(h)) are the same in both

experiments EXPTCF,0
ΠCF,B

and HybEXPT
(h)
Π,A(λ).

– From the definition of Protocol of B and the fact that a client input is set
to x0, the distribution of z in the experiment EXPTCF,0

ΠCF,B
is the same as

that of z(h) in the experiment HybEXPT
(h)
Π,A(λ).

– Since (G(h+1), S(h+1)) is a function of (G(h), S(h), z(h)), the distributions of
(G(h+1), S(h+1)) are the same in both experiments.

– From the definition of Output of B and the fact that a client input is set
to x0, the distributions of (z

(h+1),G(h+2),S(h+2)), . . . , (z(N),G(N+1), S(N+1))
are the same in both experiments.

– The distributions of b′ outputted by A are the same in both experiments.

In a similar way, we have that Hyb
(h+1)
Π,A (λ) = Priv

CF,1
ΠCF,B

(λ). Therefore, we obtain

that Adv
(h)
Π,A(λ) = AdvCF

ΠCF,B(λ).
Byzantine-robustness. LetA be a stateful adversary against the Byzantine-

robustness ofΠ. Let BRΠ,A(λ) be a random variable defined in Definition 2. That
is, BRΠ,A(λ) is the output of the following experiment:

EXPTBR
Π,A

✓ ✏
1. (x, p, T )← A(1λ).
2. Execute Π on a client input x and a common server input p, in which

answers of servers in T are computed by A.
3. Return 1 if the output of C is different from Fλ(p, x), and otherwise

return 0.✒ ✑
We show the probability that BRΠ,A(λ) = 1 is negligible. The event that

BRΠ,A(λ) = 1 happens only if after N iterations of Step 3 of Π, one of the
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following three conditions holds: (1) Y = ∅, (2) Y = {y0}, where y0 is the
default value, or (3) Y = {y} and y 6= Fλ(p, x).

We show that the first case never occurs. Assume otherwise, then for all j,
the z-output z(j) of the j-th instance of ΠCF computed at Step 3(b) of Π is

a non-trivial partition (G
(j)
0 , G

(j)
1 ) of a set of servers S(j) involved in the j-th

instance of ΠCF. From the construction of Nextk, for all j, G(j+1) is a graph
obtained by removing one edge e(j), which has one endpoint in each subset of

(G
(j)
0 , G

(j)
1 ), from G(j). Since the conflict-finding property of ΠCF ensures that

either G
(j)
0 or G

(j)
1 includes H := [m]\T , the removed edge e(j) = (i1, i2) satisfies

i1 ∈ T or i2 ∈ T and hence for all j, the subgraph G(j)[H] is a complete graph.

Since N is larger than the total number N ′ =
(
m
2

)
−
(
m−|T |

2

)
of unordered pairs

(i1, i2) such that i1 ∈ T or i2 ∈ T , G(N ′) has no edge e = (i1, i2) such that i1 ∈ T
or i2 ∈ T . Therefore, a set of servers S(N ′) ← Ck(G(N

′)) involved in the N ′-th
instance of ΠCF is a subset of H since k ≤ m− t ≤ |H|. We have assumed that

z(N
′) is a non-trivial partition (G

(N ′)
0 , G

(N ′)
1 ) of S(N ′) but the conflict-finding

property ensures that H ⊆ G
(N ′)
0 or H ⊆ G

(N ′)
1 , which is contradiction.

If the second or third case occurs, then there exists h ∈ [N ] for which the
following event E(h) occurs: The outputs (y(h), z(h)) of the h-th instance of ΠCF

satisfy

y(h) 6= Fλ(p, x) and z(h) = output, or y(h) = ⊥ and z(h) = failure. (3)

We show that for all h, there exists an adversary B against the soundness of
ΠCF such that

Pr
[
E(h)

]
= Pr[SoundΠCF,B(λ) = 1] , (4)

where SoundΠCF,B(λ) is defined in Definition 3.
We construct B as follows:
B✓ ✏
Setup. On input 1λ,

1. Run (x, p, T )← A(1λ).
2. For each j = 1, 2, . . . , h− 1,

(a) Execute z(j) ← EXPTΠCF,A,p,T (S
(j), x).

(b) Compute (G(j+1), S(j+1))← Nextk(G(j), S(j), z(j)).
3. Output (x, p, T ′), where S(h) = {i1, i2, . . . , ik} (i1 < i2 < · · · < ik),

and T ′ = {v ∈ [k] : iv ∈ T}.
Protocol. During the execution of ΠCF, B emulates the behavior of A in

the h-th instance of ΠCF. More precisely, to compute an answer of the
v-th server such that iv ∈ T for v ∈ [k], B lets A compute an answer of
Siv in the h-th instance of ΠCF.

✒ ✑
Then the experiment defining SoundΠCF,B(λ) corresponds to the first-to-h-th

iterations of Step 3 of Π in the experiment EXPTBR
Π,A. Hence the distribution
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of (y(h), z(h)) is the same in both experiments. Since the condition (3) that E(h)

happens is the same as the condition that SoundΠCF,B(λ) = 1 (see Definition 3),
we obtain the equality (4).

Therefore, we conclude that

Pr[BRΠ,A(λ) = 1] ≤
N∑

h=1

Pr
[
E(h)

]
≤ N · sup

B
Pr[SoundΠCF,B(λ) = 1] ≤ negl(λ) .

Complexity. The round complexity is ℓ′ = ℓN = O(ℓm2). Since the run-
ning time of Ck and E is O(m2) (see Section 4.1), the running time of Nextk
is also O(m2). Since N = O(m2), the client-side computational complexity is
O(N(c-Comp(ΠCF) +m2)) = O(m2 · c-Comp(ΠCF) +m4) and communication
complexity is O(m2 · Comm(ΠCF)). Also, the server-side computational com-
plexity is O(N · c-Comp(ΠCF)) = O(m2 · c-Comp(ΠCF)).

F Proof of Proposition 7

Consider a protocol Π described in Fig. 3.
Correctness. Assume that all servers are honest. For any i ∈ [m], it holds

that

ans
〈µ〉
i = ans

〈µ〉
i (i) = Answer(p, que

〈i〉
i ) (∀µ ∈ [M ] \ {µ∗}).

Also, for any i, j ∈ [m], it holds that

ans
〈µ〉
k (i) = ans

〈µ〉
k (j) = Answer(p, que

〈µ〉
k ) (∀k ∈ [m], µ ∈ [M ] \ {µ∗}).

Hence, any pair (i, j) are equivalent under the equivalence relation defined at
Step (c)ii of Z. Therefore, Z outputs z = output. Then C outputs

Output(st〈µ∗〉, ans
〈µ∗〉
1 , . . . , ans〈µ∗〉

m ) = Fλ(p, x)

since ((que
〈µ∗〉
i )i∈[m], st

〈µ∗〉)← Query(x) and ans
〈µ∗〉
1 = Answer(p, que

〈µ∗〉
i ).

Privacy. LetA be a stateful adversary against the privacy ofΠ ′. Let PrivbΠ′,A(λ)

be a random variable defined in Definition 3. That is, PrivbΠ′,A(λ) is the output

of A in the following experiment EXPTPriv,b
Π′,A :

EXPTPriv,b
Π′,A

✓ ✏
1. (x0, x1, p, T )← A(1λ).
2. Execute Π ′ on a client input xb and a common server input p, in which

answers of servers in T are computed by A.
3. Let (y, z) be the output of C.
4. Return b′ ← A(z).

✒ ✑
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Notations.

– Let Π = (Query,Answer,Output) be a 1-round m-server protocol.
– Let M ∈ N.
– Let xdef ∈ Xλ be a default value.
– A client C has an input x ∈ Xλ and every server Si has a common input

p ∈ Pλ.

First round.

1. C chooses µ∗ ←$ [M ] and computes

((que
〈µ〉
i )i∈[m], st

〈µ〉)←

{

Query(1λ, x), if µ = µ∗,

Query(1λ, xdef), otherwise,

for all µ ∈ [M ]. C sends (que
〈µ〉
i )µ∈[M ] to each server Si.

2. In response, Si computes

ans
〈µ〉
i = Answer(1λ, p, que

〈µ〉
i ), ∀µ ∈ [M ]

and sends (ans
〈µ〉
i )µ∈[M ] to C.

Second round.

1. C sends (que
〈µ〉
k )k∈[m],µ6=µ∗

to all servers.
2. In response, each server Si computes

ans
〈µ〉
k (i) = Answer(1λ, p, que

〈µ〉
k ), ∀k ∈ [m], ∀µ ∈ [M ] \ {µ∗}

and sends (ans
〈µ〉
k (i))k∈[m],µ6=µ∗

to C.

Output.

1. C runs the following algorithm Z to obtain z:
Z((ans

〈µ〉
i )i∈[m],µ6=µ∗

, (ans
〈µ〉
k (i))i∈[m],k∈[m],µ6=µ∗

)→ z.
(a) Let G0 ← ∅.

(b) If there exist i ∈ [m] and µ ∈ [M ] \ {µ∗} such that ans
〈µ〉
i 6= ans

〈µ〉
i (i),

then output z = (G0, G1), where G0 = {i} and G1 = [m] \ {i}.
(c) Otherwise,

i. Define vi = (ans
〈µ〉
k (i))k∈[m],µ6=µ∗

for all i ∈ [m].
ii. Partition [m] into equivalence classes G′

0, G
′
1, . . . , G

′
ℓ under the fol-

lowing equivalence relation: i ∼ j
def
⇐⇒ vi = vj .

iii. If ℓ = 0 (i.e., all servers belong to the same equivalence class), then
output z = output. Otherwise, output z = (G0, G1), where G0 = G′

0

and G1 = G′
1 ∪ · · · ∪G′

ℓ.
2. If z = output, C computes

y ← Output(1λ, st〈µ∗〉, ans
〈µ∗〉
1 , . . . , ans〈µ∗〉

m ).

and outputs (y, z). Otherwise, C outputs (⊥, z).

Fig. 3. A conflict-finding protocol Π ′ with non-negligible soundness error
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We show that AdvΠ′,A(λ) := |Pr
[
Priv0Π′,A(λ) = 0

]
− Pr

[
Priv1Π′,A(λ) = 0

]
|

is negligible. To this end, we show that there exists an adversary B against
the privacy of Π such that Priv0Π,B(λ) = Priv0Π′,A(λ), Priv

1
Π,B(λ) = Priv1Π′,A(λ)

and hence AdvΠ′,A(λ) = AdvΠ,B(λ). If this can be shown, we conclude that
AdvΠ′,A(λ) ≤ supB AdvΠ,B(λ) = negl(λ) .

We construct B as follows:
B✓ ✏
Setup. On input 1λ, output (x0, x1, p, T )← A(1λ).
Protocol. Assume that B receives challenge queries (quei)i∈T during the

execution of Π. B does the following:
1. Choose µ∗←$ [M ] and emulate the behavior of A in the first round,

embedding the challenge queries into the µ∗-th query (que
〈µ∗〉
j )j∈T .

More precisely,
(a) Choose µ∗←$ [M ].
(b) Compute

((que
〈µ〉
i )i∈[m], st

〈µ〉)← Query(1λ, xdef), ∀µ ∈ [M ] \ {µ∗}.

(c) Let (que
〈µ∗〉
i )i∈T ← (quei)i∈T .

(d) Let (ans
〈µ〉
i )i∈T,µ∈[M ] ← A((que〈µ〉i )i∈T,µ∈[M ]).

2. Let (ans
〈µ〉
k (i))i∈T,k∈[m],µ∈[M ] ← A((que〈µ〉k )k∈[m],µ 6=µ∗

).
3. For each i /∈ T , let

ans
〈µ〉
k (i)← Answer(1λ, p, que

〈µ〉
k ), ∀k ∈ [m], ∀µ ∈ [M ] \ {µ∗}.

4. Let z ← Z((ans〈µ〉i )i∈[m],µ 6=µ∗
, (ans

〈µ〉
k (i))i∈[m],k∈[m],µ 6=µ∗

), where Z
is the algorithm defined in Fig. 3.

5. Output b′ ← A(z).
✒ ✑

Consider the experiment EXPTPriv,0
Π,B defining Priv0Π,B(λ), where challenge

queries are computed on input x0. Observe that at Step 1, B perfectly simulates
queries that A receives in the first round of Π ′. Also, at Step 2, B perfectly
simulates queries that A receives in the second round of Π ′. This is because

B itself has computed (que
〈µ〉
i )i∈[m] for µ ∈ [M ] \ {µ∗}. B correctly simulates

answers from honest servers in the second round since the computation of the
answers do not involve a client input (see “Second round” in Fig. 3). Thus,

the joint distributions of (ans
〈µ〉
i )i∈[m],µ 6=µ∗

and (ans
〈µ〉
k (i))i∈[m],k∈[m],µ 6=µ∗

are

the same in both experiments EXPTPriv,0
Π,B and EXPTPriv,0

Π′,A . In particular, the
distributions of the output z of Z are also identical. We therefore conclude that
Priv0Π,B(λ) = Priv0Π′,A(λ), and similarly that Priv1Π,B(λ) = Priv1Π′,A(λ).

Conflict-finding. Let A be a stateful adversary against the conflict-finding
property of Π ′. We show that it always hold that CFΠ′,A(λ) = 0. That is, if Π ′

outputs z = (G0, G1) as the z-output, it always hold that T ⊆ G0 or T ⊆ G1,
where T is a set of servers corrupted by A in the experiment defining CFΠ′,A(λ).
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To this end, observe that for any i /∈ T , it holds that

ans
〈µ〉
i = ans

〈µ〉
i (i) = Answer(p, que

〈i〉
i ) (∀µ ∈ [M ] \ {µ∗}).

That is, if Z outputs z = ({i}, [m] \ {i}) for some i at Step (b), then it holds
that T ⊆ [m] \ {i} = G0. Furthermore, for any i, j /∈ T , it holds that

ans
〈µ〉
k (i) = ans

〈µ〉
k (j) = Answer(p, que

〈µ〉
k ) (∀k ∈ [m], µ ∈ [M ] \ {µ∗})

and hence T is contained in one of equivalent classes G′
0, . . . , G

′
ℓ under the equiv-

alence relation defined at Step (c)ii of Z. If T ⊆ G′
0, then T ⊆ G1, and if T ⊆ G′

j

for some j 6= 0, then T ⊆ G0.

Soundness. Let A be a stateful algorithm. Let SoundΠ′,A(λ) be a random
variable defined in Definition 3. That is, SoundΠ′,A(λ) is the output of the fol-

lowing experiment EXPTSound
Π′,A :

EXPTSound
Π′,A

✓ ✏
1. (x, p, T )← A(1λ).
2. Execute Π ′ on a client input x and a common server input p, in which

answers of servers in T are computed by A.
3. Let (y, z) be the output of C.
4. Return 1 if y 6= Fλ(p, x) and z = output, or y = ⊥ and z = failure.

Otherwise return 0.✒ ✑
We will show that

Pr[SoundΠ′,A(λ) = 1] ≤ m

M
+ negl(λ) (5)

for some negligible function negl(λ). Define Good be the event that

ans
〈µ∗〉
i = Answer(p, que

〈µ∗〉
i ), ∀i ∈ [m].

Also, define Verified be the event that

ans
〈µ〉
i = Answer(p, que

〈µ〉
i ), ∀µ ∈ [M ] \ {µ∗}, ∀i ∈ [m].

From the construction of Π ′, it is clear that C never outputs (y, z) such that
y = ⊥ and z = failure. Hence SoundΠ′,A(λ) = 1 if and only if y 6= Fλ(p, x) and
z = output. Furthermore, if z = output, then the algorithm Z must not have

proceeded to Step (b). This means that ans
〈µ〉
i = ans

〈µ〉
i (i) for any i ∈ [m] and

any µ ∈ [M ] \ {µ∗}. Furthermore, the equivalence class computed at Step (c)ii
is G′

0 = [m] and hence any i ∈ [m] is equivalent to any j /∈ T , i.e., vi = vj . Since

vj = (Answer(p, que
〈µ〉
k ))k∈[m],µ 6=µ∗

if j /∈ T , we have that ans
〈µ〉
i = ans

〈µ〉
i (i) =

ans
〈µ〉
i (j) = Answer(p, que

〈µ〉
i ) for all µ ∈ [M ]\{µ∗}, which implies that the event
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Verified occurs. Therefore, we have

Pr[SoundΠ′,A(λ) = 1]

≤ Pr[y 6= Fλ(p, x) ∧ Verified ]

= Pr[y 6= Fλ(p, x) ∧ Verified ∧ Good ] + Pr
[
y 6= Fλ(p, x) ∧ Verified ∧ Good

]

≤ Pr[y 6= Fλ(p, x) ∧ Verified ∧ Good ] + Pr
[
Verified ∧ Good

]

The first term is upper bounded by a negligible function negl′(λ) since the

correctness ofΠ ensures that Output(st〈µ∗〉, (Answer(p, que
〈µ∗〉
i ))i∈[m]) = Fλ(p, x)

except with negligible probability.
We denote the second term by p0, i.e., p0 is the probability that the events

Verified and Good occurs in the experiment EXPTSound
Π′,A . Let HybEXPTSound

Π′,A

be the same experiment as EXPTSound
Π′,A except that Π ′ is executed on the de-

fault value xdef instead of x. We define events HybVerified and HybGood in the
same manner as Verified and Good in EXPTSound

Π′,A , respectively. Also, define

p1 as the probability that HybVerified and HybGood occurs in the experiment
HybEXPTSound

Π′,A . From the privacy of Π, we can see that |p0 − p1| is negligible.
Indeed, we construct an adversary B against the privacy of Π as follows:

B✓ ✏
Setup. On input 1λ,

1. Run (x, p, T )← A(1λ).
2. Output (x, xdef , p, T ).

Protocol. Assume that B receives challenge queries (quej)j∈T during the
execution of Π. B chooses µ∗←$ [M ] and simulates the behavior of A
in the first round, embedding the challenge queries into the µ∗-th query

(que
〈µ∗〉
j )j∈T . Return 1 ifAmodifies the µ-th answers exactly for µ = µ∗.

Otherwise return 0. More precisely,
1. Choose µ∗←$ [M ].

2. Compute ((que
〈µ〉
j )j∈[m], st

〈µ〉) ← Query(1λ, xdef) for all µ ∈ [M ] \
{µ∗}.

3. Let (que
〈µ∗〉
j )j∈T ← (quej)j∈T .

4. Let (ans
〈µ〉
j )j∈T,µ∈[M ] ← A((que〈µ〉j )j∈T,µ∈[M ]).

5. Return 1 if

ans
〈µ∗〉
i 6= Answer(1λ, p, que

〈µ∗〉
i ) (∃i ∈ [m])

and ans
〈µ〉
i = Answer(1λ, p, que

〈µ〉
i ) (∀µ ∈ [M ] \ {µ∗}, ∀i ∈ [m]).

Otherwise, return 0.
✒ ✑

Observe that the experiment defining Priv0Π,B(λ) executes Π on a client input

x0 = x while the experiment defining Priv1Π,B(λ) executes Π on x1 = xdef .

Furthermore, if x0 is inputted, B returns 1 if and only if Verified and Good

occurs. Similarly, if x1 is inputted, B returns 1 if and only if HybVerified and

46



HybGood occurs. Therefore, we have that for b ∈ {0, 1},

Pr
[
PrivbΠ,B(λ) = 1

]
= pb

and hence there is a negligible function negl′′(λ) such that

|p0 − p1| = AdvΠ,B(λ) ≤ sup
B

AdvΠ,B(λ) ≤ negl′′(λ).

Note that µ∗ is perfectly hidden from the adversary A in the first round of Π ′

executed in HybEXPTSound
Π′,A . Furthermore, whether HybVerified and HybGood

occur is determined by the behavior of A in the first round. Since µ∗ is randomly
chosen from [M ], we have that

p1 = Pr
[
HybVerified ∧ HybGood

]

≤
∑

i∈[m]

Pr




In HybEXPTSound
Π′,A , it holds that

ans
〈µ〉
i = Answer(p, que

〈µ〉
i ) for all µ ∈ [M ] \ {µ∗}

and ans
〈µ∗〉
i 6= Answer(p, que

〈µ∗〉
i )




=
m

M

Therefore, we can upper bound the second term as

p0 ≤ p1 + negl′′(λ) ≤ m

M
+ negl′′(λ).

Letting negl(λ) = negl′(λ) + negl′′(λ), we obtain (5).
Complexity. The round complexity is 2. In the first round, the client needs

to compute M queries of Π and then the computational complexity is at most
O(λ·c-Comp(Π)). The computational complexity of Step 1 in the output phase is
at most O(m2M ·Comm(Π)) = O(m2M ·c-Comp(Π)) since the client can verify
the equivalence between each pair of servers in O(M ·Comm(Π)) time. The com-
putational complexity of Step 2 is at most O(c-Comp(Π)). Thus, we have that
c-Comp(Π ′) = O(m2M ·c-Comp(Π)). Every server computes answers to at most
O(mM) queries for Π and hence s-Comp(Π ′) = O(mM ·s-Comp(Π)). The com-
munication complexity is at most O(mM ·Comm(Π))+O(m2M ·Comm(Π)) =
O(m2M · Comm(Π)).

G Proof of Theorem 2

Let M = 16m = poly(λ) and Π ′ be a ǫ-sound t-conflict-finding protocol for
ǫ = m/M + negl(λ) = 1/16 + negl(λ) given by Proposition 7. Let κ = λ.
Consider a protocol ΠCF described in Fig. 4.

Correctness. Assume that all servers are honest. Then the correctness of
Π ′ ensures that z〈j〉 = output and y〈j〉 = Fλ(p, x) for all j ∈ [κ], except with
negligible probability κ · negl(λ). Then, K = ∅ and C outputs (Fλ(p, x), output).
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Notations.

– Let Π ′ be the ǫ-sound t-conflict-finding m-server protocol described in Fig. 3.
– Let κ ∈ N.
– A client C has an input x ∈ Xλ and every server Si has a common input

p ∈ Pλ.

Protocol.

1. C and servers execute κ independent instances of Π ′ in parallel.
2. C lets (y〈1〉, z〈1〉), . . . , (y〈κ〉, z〈κ〉) be the outputs of the κ instances of Π ′.
3. C defines

K = {j ∈ [κ] : z〈j〉 is a non-trivial partition of [m]}.

4. If K 6= ∅, C outputs (y〈j〉, z〈j〉) for the minimum number j of K.
5. If K = ∅ and there exists y ∈ Yλ such that

|{j ∈ [κ] : y〈j〉 = y}| >
κ

2
,

then C outputs (y, output).
6. Otherwise, C outputs (⊥, failure).

Fig. 4. A conflict-finding protocol ΠCF with negligible soundness error

Privacy. Observe that ΠCF just independently runs Π ′ κ times in parallel.
Furthermore, the z-output of ΠCF is determined by the z-outputs z〈1〉, . . . , z〈κ〉

of Π ′. Thus, the privacy of ΠCF follows from that of Π ′.
Conflict-finding. If ΠCF outputs a non-trivial partition z = (G0, G1), it

must be equal to the z-output z〈j〉 of the j-th instance Π ′ for some j ∈ [κ].
Thus, the conflict-finding property of Π ′ ensures that either G0 or G1 includes
the set of all honest servers.

Soundness. Let SoundΠCF,A(λ) be the random variable defined in Defini-
tion 3, where A is a stateful adversary against the soundness of Π. We will show
that

Pr[SoundΠCF,A(λ) = 1] < negl′′(λ) (6)

for some negligible function negl′′(λ). Let Good be the event that there exist
more than κ/2 instances j such that z〈j〉 = output and y〈j〉 = Fλ(p, x). Then

Pr[SoundΠCF,A(λ) = 1]

= Pr[SoundΠCF,A(λ) = 1 ∧ Good ] + Pr
[
SoundΠCF,A(λ) = 1 ∧ Good

]
.

– The first term: If Good happens, then C outputs y = Fλ(p, x) and z = output,
or y = ⊥ and a non-trivial partition z = (G0, G1). Therefore,

Pr[SoundΠCF,A(λ) = 1 ∧ Good ] = 0.
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– The second term: In Π ′, the client never outputs z = failure as shown in
the proof of the soundness of Π ′ (see Proposition 7). That is, for all j ∈ [κ],
z〈j〉 = output or z〈j〉 is a non-trivial partition. Hence, if Good does not
happen, then there exist at least κ/2 instances j such that y〈j〉 6= Fλ(p, x)
and z〈j〉 = output, or y〈j〉 = ⊥ and z〈j〉 is a non-trivial partition. Note that
if z〈j〉 is a non-trivial partition for some j, then the client outputs y = ⊥ and
a non-trivial partition z = (G0, G1), and hence SoundΠCF,A(λ) = 0. Since
Π ′ is an ǫ-sound for ǫ = 1/16 + negl(λ) and we set κ = λ, we have

Pr
[
SoundΠCF,A(λ) = 1 ∧ Good

]

≤ Pr

[
SoundΠCF,A(λ) = 1 and there exist κ/2 instances j

such that y〈j〉 6= Fλ(p, x) and z〈j〉 = output

]

≤ Pr

[
There exist κ/2 instances j

such that y〈j〉 6= Fλ(p, x) and z〈j〉 = output

]

≤ ǫ
κ

2 ·
(

κ

κ/2

)

≤
(

1

16
+ negl(λ)

)κ

2

· 2κ

≤
(
1

4
+ negl′(λ)

)λ

2

≤ negl′′(λ).

Therefore, we obtain (6).
Complexity. Since we set M = 16m and κ = λ, the communication com-

plexity of ΠCF is O(κ · Comm(Π ′)) = O(m2λ · Comm(Π)). It can also be seen
that s-Comp(ΠCF) = O(m2λ · s-Comp(Π)). Observe that the client-side com-
putational complexity of Step 1 is κ · c-Comp(Π ′) = O(m3λ · c-Comp(Π)). The
other steps can be done in time O(κ log |Yλ|) = O(λ ·c-Comp(Π)) since it is pos-
sible to find the majority of a sequence y〈1〉, . . . , y〈κ〉 ∈ Yλ in time O(κ log |Yλ|),
e.g., by [13]. Thus we have that c-Comp(ΠCF) = O(m3λ · c-Comp(Π)).

H Proof of Proposition 8

Fix H ∈
(
[m]
h

)
. We first show that Pr[f ←$Map(m, k) : f(H) 6= [k] ] < 1/3. In-

deed, if f(H) 6= [k], there is j ∈ [k] such that f(s) 6= j for any s ∈ H. Since the
total number of maps f such that f(s) 6= j for any s ∈ H is at most km−h(k−1)h,
we obtain that

Pr[f ←$Map(m, k) : f(H) 6= [k] ] ≤ km−h(k − 1)hk

km
≤ k

(
1− 1

k

)h

.

Since 1 − x ≤ exp(−x) and k ≤ h/(γ lnh), this probability is further upper
bounded by

k · exp
(
−h

k

)
≤ h

γ lnh
exp(−γ lnh) ≤ 1

hγ−1 lnh
≤ 1

15γ−1 ln 15
=

1

3
.
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Let X be a random variable over {0, 1} defined as X = 1 if and only if
f(H) = [k], where f ←$Map(m, k). Let p = Pr[X = 1]. We have that p ≥ 2/3.
Let X1, . . . , Xw be i.i.d. random variables over {0, 1} such that Pr[Xu = 1] = p

for all u. Note that p = E
[
(1/w)

∑
u∈[w] Xu

]
. From the Chernoff bound, we

obtain that

Pr


 ∑

u∈[w]

Xu ≤
w

2


 = Pr


 1

w

∑

u∈[w]

Xu ≤ p−
(
p− 1

2

)


≤
((

p

1/2

)1/2(
1− p

1/2

)1/2
)w

= (4p(1− p))w/2

≤
(
8

9

)w/2

≤ exp
(
− w

18

)
.

From the definition of Xu, we have that

Pr
[
f1, . . . , fw←$Map(m, k) : |{u ∈ [w] : fu(H) = [k]}| ≤ w

2

]
≤ exp

(
− w

18

)
.

It follows from the union bound that

Pr

[
f1, . . . , fw←$Map(m, k) : ∃H ∈

(
[m]

h

)
, |{u ∈ [w] : fu(H) = [k]}| ≤ w

2

]

≤
(
m

h

)
exp

(
− w

18

)

≤ 2m exp
(
− w

18

)

= exp
(
m ln 2− w

18

)
.

We can also see that if f1, . . . , fw←$Map(m, k), the probability that there
are i, j ∈ [w] such that fi = fj is at most

(
w

2

)
1

km
<

w2

2
· 1

2m
=

w2

2m+1
.

Therefore, if f1, . . . , fw←$Map(m, k), the probability that the set L = {f1, . . . , fw}
is of size w and |{f ∈ L : f(H) = [k]}| > w/2 for all H ∈

(
[m]
h

)
is at least

1− exp
(
m ln 2− w

18

)
− w2

2m+1
.
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If we set w = 14m, then the above value is

1− exp

(
−
(
7

9
− ln 2

)
m

)
− 142m2

2m+1

≥ 1− exp

(
−
(
7

9
− ln 2

)
· 15
)
− 142 · 152

216

= 1− 0.2809 · · · − 0.6729 · · ·
> 0

since m ≥ 15 and 7/9 − ln 2 > 0. Therefore, an (m,h, k)-locally surjective map
family of size w = 14m indeed exists.

I Proof of Theorem 4

The protocol Π ′ is described in Fig. 5.
Correctness. Assume that correct answers (ansi)i∈[m] are inputted into

Output′. At Step 3 in the first iteration (i.e., L = 1), for all u ∈ [w] and j ∈ [k],
it holds that

ans
(u,1)
i = Answer(1λ, p, que

(u,1)
fu(i)

) = Answer(1λ, p, que
(u,1)
j ), ∀i ∈ Gu,j ,

and hence that α
(u)
j = Answer(1λ, p, que

(u,1)
j ). It follows from the correctness of

Π that y(u) = Fλ(p, x) for all u ∈ [w]. Hence Output′ goes to Step 3(a)-i and
outputs y = Fλ(p, x).

Privacy. Let A be a stateful adversary against the privacy of Π ′. For b ∈
{0, 1}, let PrivbΠ′,A(λ) be a random variable defined in Definition 2. We show

that AdvΠ′,A(λ) =
∣∣Pr
[
Priv0Π′,A(λ) = 0

]
− Pr

[
Priv1Π′,A(λ) = 0

]∣∣ is negligible.
To this end, we suppose that I := {(u, ℓ) : u ∈ [w], ℓ ∈ [t+ 1]} has a total order

induced by the lexicographic order. We define a hybrid distribution Hyb
(u,ℓ)
Π′,A(λ)

for (u, ℓ) ∈ I as the output b′ ofA in the following experiment HybEXPT
(u,ℓ)
Π′,A(λ):

HybEXPT
(u,ℓ)
Π′,A(λ)

✓ ✏
1. (x0, x1, p, T )← A(1λ).
2. For each (u′, ℓ′) < (u, ℓ), compute

(que
(u′,ℓ′)
1 , . . . , que

(u′,ℓ′)
k ; st(u

′,ℓ′))← Query(1λ, x1).

3. For each (u′, ℓ′) ≥ (u, ℓ), compute

(que
(u′,ℓ′)
1 , . . . , que

(u′,ℓ′)
k ; st(u

′,ℓ′))← Query(1λ, x0).

4. Give (quei)i∈T to A, where quei = {que(u
′,ℓ′)

f
u′ (i)

: (u′, ℓ′) ∈ I}.
5. A outputs a guess b′ ∈ {0, 1}.

✒ ✑
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Notations.

– Let Π = (Query,Answer,Output) be a 1-round passively t-secure k-server pro-
tocol.

– Let L = {f1, . . . , fw} be an (m,h, k)-locally surjective map family of size w,
where h = m− 2t.

– For each u ∈ [w] and j ∈ [k], let Gu,j = {i ∈ [m] : fu(i) = j}.

Query′(1λ, x).
1. For each u ∈ [w] and ℓ ∈ [t+ 1], compute

(que
(u,ℓ)
1 , . . . , que

(u,ℓ)
k ; st(u,ℓ))← Query(1λ, x).

2. Output ((quei)i∈[m], st), where

quei = {que
(u,ℓ)

fu(i) : u ∈ [w], ℓ ∈ [t+ 1]},

st = {st(u,ℓ) : u ∈ [w], ℓ ∈ [t+ 1]}.

Answer′(1λ, p, quei).

1. Parse quei = {que
(u,ℓ)

fu(i) : u ∈ [w], ℓ ∈ [t+ 1]}.

2. For each u ∈ [w] and ℓ ∈ [t+ 1], compute

ans
(u,ℓ)
i = Answer(1λ, p, que

(u,ℓ)

fu(i)).

3. Output ansi = {ans
(u,ℓ)
i : u ∈ [w], ℓ ∈ [t+ 1]}.

Output′(1λ, st, (ansi)i∈[m]).
1. Parse

ansi = {ans
(u,ℓ)
i : u ∈ [w], ℓ ∈ [t+ 1]}, st = {st(u,ℓ) : u ∈ [w], ℓ ∈ [t+ 1]}.

2. Set L← 1 and S ← [m].
3. If S = ∅ or L > t + 1, output a default value y0 ∈ Yλ. Otherwise, do the

following:
(a) If for all u ∈ [w] and j ∈ [k], there exists α

(u)
j such that

{ans(u,L)
i : i ∈ Gu,j ∩ S} = {α(u)

j }, (7)

then compute y(u) = Output(1λ, st(u,L), α
(u)
1 , . . . , α

(u)
k ).

i. If there exists y ∈ Yλ such that |{u ∈ [w] : y(u) = y}| > w/2, then
output y.

ii. Otherwise, output a default value y0 ∈ Yλ.
(b) Otherwise, let (u, j) be such that the condition (7) does not hold, and

(i1, i2) be a pair such that i1, i2 ∈ S ∩ Gu,j and ans
(u,L)
i1

6= ans
(u,L)
i2

. Set
L← L+ 1 and S ← S \ {i1, i2}. Repeat Step 3.

Fig. 5. An actively secure protocol Π ′ based on a locally surjective map family
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Note that Hyb
(1,1)
Π′,A(λ) = Priv0Π′,A(λ). We define Hyb

(w,t+2)
Π′,A (λ) = Priv1Π′,A(λ)

and

Adv
(u,ℓ)
Π′,A(λ) =

∣∣∣Pr
[
Hyb

(u,ℓ)
Π′,A(λ) = 0

]
− Pr

[
Hyb

next(u,ℓ)
Π′,A (λ) = 0

]∣∣∣ ,

where next(u, ℓ) is the next element of (u, ℓ) with respect to the total order on
I. Then we have that

AdvΠ′,A(λ) ≤
∑

(u,ℓ)∈I

Adv
(u,ℓ)
Π′,A(λ).

We show that for any (u, ℓ), there exists an adversary B against Π such that

Adv
(u,ℓ)
Π′,A(λ) = AdvΠ,B(λ) for all λ. If this can be shown, since |I| = w(t + 1) is

polynomial in λ, we conclude that

AdvΠ′,A(λ) ≤ w(t+ 1) · sup
B

AdvΠ,B(λ) = negl(λ) .

We construct B as follows.
B✓ ✏
Setup. On input 1λ,

1. Run (x0, x1, p, T )← A(1λ).
2. Output (x0, x1, p, T

′), where T ′ = fu(T ). Note that |T ′| ≤ |T | ≤ t.
Protocol. Receiving queries (que′j)j∈T ′ during the execution of Π, B does

the following:
1. For each (u′, ℓ′) < (u, ℓ), compute

(que
(u′,ℓ′)
1 , . . . , que

(u′,ℓ′)
k ; st(u

′,ℓ′))← Query(1λ, x1).

2. For each (u′, ℓ′) > (u, ℓ), compute

(que
(u′,ℓ′)
1 , . . . , que

(u′,ℓ′)
k ; st(u

′,ℓ′))← Query(1λ, x0).

3. Set que
(u,ℓ)
fu(i)

= que′fu(i) for i ∈ T .

4. Give (quei)i∈T to A, where quei = {que(u
′,ℓ′)

f
u′ (i)

: (u′, ℓ′) ∈ I}.
5. Output a guess b′ outputted by A.

✒ ✑
In the experiment defining Priv0Π,B(λ), if (u

′, ℓ′) < (u, ℓ), the (u′, ℓ′)-th compo-
nent of each quei is a query of Π on input x1 and otherwise, it is a query on

input x0. Therefore, we have that Priv0Π,B(λ) = Hyb
(u,ℓ)
Π′,A(λ). Similarly, we have

that Priv1Π,B(λ) = Hyb
next(u,ℓ)
Π′,A (λ). We conclude that Adv

(u,ℓ)
Π′,A(λ) = AdvΠ,B(λ).

Byzantine-robustness. LetA be a stateful adversary against the Byzantine-
robustness of Π ′. Consider the experiment defining BRΠ′,A(λ) (see Definition 2).
Assume that in the setup, A(1λ) outputs x ∈ Xλ, p ∈ Pλ and a subset T ⊆ [m]
of size at most t. Let (quei)i∈[m] and st be an output of Query′(x), and ansi
be the correct output of Answer′(p, quei) for i ∈ [m]. Suppose that during
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the protocol execution, A outputs possibly incorrect answers (ãnsi)i∈T , where

ãnsi = {ãns(u,ℓ)i : u ∈ [w], ℓ ∈ [t+ 1]}.
First, assume that there exists ℓ ∈ [t+ 1] such that ãns

(u,ℓ)
i = ans

(u,ℓ)
i for all

i ∈ T and all u ∈ [w] (i.e., all malicious servers behave honestly in the (u, ℓ)-th
instance of Π). It then follows from the correctness of Π that Output′ proceeds
to Step 3(a)-i in the ℓ-th iteration, and computes the correct value y = Fλ(p, x).

Next, assume that for all ℓ ∈ [t + 1], there exist i ∈ T and u ∈ [w] such

that ãns
(u,ℓ)
i 6= ans

(u,ℓ)
i (i.e., at least one malicious server submits an incorrect

answer). Let H = [m] \ T . For L = 0, 1, . . . , t + 1, define the number tL as
tL = |S ∩ T |, where S is the set after iterating Step 3 of Output′ L times.
tL denotes the number of malicious servers remaining in S after L iterations.
Observe that t0 = t.

Consider the L-th iteration of Step 3 of Output′ for 1 ≤ L ≤ t + 1. We will
show that either of the following two events occurs: (1) Output′ goes to Step 3(a)-
i and outputs the correct result y = Fλ(p, x); (2) Output

′ goes to Step 3(b) and
removes at least one element i ∈ T from S. In other words, Output′ never goes
to Step 3(a)-ii.

To show the above claim by induction on L, we consider the first iteration,
i.e., L = 1. We have that T = [m] and |H| ≥ m− 2t = h. Let LBad be the set of
maps fu ∈ L such that at least one malicious server submits an incorrect answer
in the instance corresponding to fu, i.e.,

LBad = {fu ∈ L : ∃i ∈ [m], ãns
(u,1)
i 6= ans

(u,1)
i }.

If |LBad| ≥ w/2, there exists fu ∈ LBad such that fu(H) = [k] due to
the property of the locally surjective map family L. Let i ∈ [m] be such that

ãns
(u,1)
i 6= ans

(u,1)
i . If i ∈ Gu,j (i.e., fu(i) = j), ãns

(u,1)
i conflicts with ans

(u,1)
i′

for any i′ ∈ H ∩ Gu,j since ans
(u,1)
i = ans

(u,1)
i′ = Answer(p, que

(u,1)
j ). Note that

H ∩Gu,j 6= ∅ since fu(H) = [k] ∋ j. Then, Output′ goes to Step 3(b). Since for

any i1, i2 ∈ H with fu(i1) = fu(i2), the answers do not conflict, i.e., ans
(u,1)
i1

=

ans
(u,1)
i2

, a pair removed from S necessarily includes i and hence the second
case (2) occurs. In particular, we obtain that t1 ≤ t− 1.

On the other hand, suppose that |LBad| < w/2 and Output′ goes to Step 3(a).
Note that for any u ∈ [w] such that fu /∈ LBad,

y(u) = Output((Answer(p, que
(u,1)
j ))j∈[k]; st

(u,1)) = Fλ(p, x).

It thus holds that |{u ∈ [w] : y(u) = Fλ(p, x)}| > w/2 and Output′ outputs
y = Fλ(p, x), i.e., the first case (1) occurs.

Let L be such that 1 ≤ L ≤ t and consider the situation where the second
case (2) continues to occur and Output′ proceeds to the (L+1)-th iteration. We
have that |S| = m − 2L just before proceeding to the (L + 1)-th iteration. We
also have that h′ := |H ∩ S| ≥ (m − t) − L ≥ m − 2t = h. The property of the
locally surjective map family L implies that

|{f ∈ F : f(H ∩ S) = [k]}| > w

2
.
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Similarly to LBad, let L′
Bad denote the set of maps fu ∈ L such that at least

one remaining malicious server submits an incorrect answer in the instance cor-
responding to fu, i.e.,

L′
Bad = {fu ∈ L : ∃i ∈ S, ãns

(u,L)
i 6= ans

(u,L)
i }.

If |L′
Bad| ≥ w/2, there exists fu ∈ L′

Bad such that fu(H ∩ S) = [k]. Let i ∈ S

be such that ãns
(u,L)
i 6= ans

(u,L)
i for that u ∈ [w]. As in the first iteration, if

i ∈ Gu,j (i.e., fu(i) = j), ãns
(u,L)
i conflicts with ans

(u,L)
i′ for any i′ ∈ H ∩ Gu,j

since ans
(u,L)
i = ans

(u,L)
i′ = Answer(p, que

(u,L)
j ). Then, Output′ goes to Step 3(b).

Since the answers from any i1, i2 ∈ H with fu(i1) = fu(i2) do not conflict, a
pair removed from S necessarily includes i and hence the second case (2) occurs.
In this case, it holds that tL+1 ≤ tL − 1. On the other hand, suppose that
|L′

Bad| < w/2 and Output′ goes to Step 3(a). Note that for any u ∈ [w] such that
fu /∈ LBad,

y(u) = Output((Answer(p, que
(u,L)
j ))j∈[k]; st

(u,L)) = Fλ(p, x).

It thus holds that |{u ∈ [w] : y(u) = Fλ(p, x)}| > w/2 and Output′ outputs
y = Fλ(p, x), i.e., the first case (1) occurs.

Therefore, after the L-th iteration, Output′ outputs y = Fλ(p, x) and ter-
minates; or it holds that tL ≤ t − L and the algorithm proceeds to the next
iteration. In particular, there exists L with L ≤ t such that tL = 0, or Output′

outputs Fλ(p, x) in the L′-th iteration for some L′ ≤ L. In the former case, there
is no remaining malicious server, i.e., S ∩ T = ∅, in the (L + 1)-th iteration.
Then Output′ goes to Step 3(a)-i and outputs the correct value Fλ(p, x) since

ans
(u,L+1)
i is a correct answer for every i ∈ S.

Complexity. Observe that Query′ outputs O(tw) queries {que(u,ℓ)j : u ∈
[w], ℓ ∈ [t+1]} forΠ to all i ∈ Gu,j . Since |Gu,j | ≤ m, we have that Comm(Π ′) =
O(twm · Comm(Π)). As for the computational complexity, Query′ generates
O(tw) queries of Π and to make O(m) copies of each of them. Output′ checks
consistency among O(wm) answers in each of t + 1 iterations and finally runs
the algorithm Output. We note that it is possible to find the majority of a se-
quence x(1), . . . , x(w) ∈ X in time O(w log |X |), e.g., by [13]. Thus, we have that
c-Comp(Π ′) = O(twm · c-Comp(Π)). It can be easily seen that s-Comp(Π ′) =
O(tw · s-Comp(Π)).

J Proof of Corollary 7

If m ≥ 2t3t + 2t, then m− 2t ≥ 2t3t ≥ 6 and

m− 2t

γ ln(m− 2t)
≥ 2t

γ ln(2t3t)
· 3t.

Since

2t− γ ln(2t) ≥ 2t− 1.04 ln t− 1.04 ln 2 ≥ 1.2t ≥ (γ ln 3)t,
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we have that 2t ≥ γ ln(2t3t) and that

m− 2t

γ ln(m− 2t)
≥ 3t.

We can then apply Theorem 5 to the passively t-secure 3t-server protocol in
Proposition 1 and obtain Corollary 7.

Similarly, we can see that if m ≥ t2t+1 + 2t, then it holds that

m− 2t

γ ln(m− 2t)
≥ 2t.

We can then apply Theorem 5 to the protocol in Proposition 1 and obtain
Corollary 8.
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