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Abstract. In this paper, we construct the first password authenticated
key exchange (PAKE) scheme from isogenies with Universal Composable
(UC) security in the random oracle model (ROM). We also construct
the first two PAKE schemes with UC security in the quantum random
oracle model (QROM), one is based on the learning with error (LWE)
assumption, and the other is based on the group-action decisional Diffie-
Hellman (GA-DDH) assumption in the isogeny setting.

To obtain our UC-secure PAKE scheme in ROM, we propose a generic
construction of PAKE from basic lossy public key encryption (LPKE)
and CCA-secure PKE. We also introduce a new variant of LPKE, named
extractable LPKE (eLPKE). By replacing the basic LPKE with eLPKE,
our generic construction of PAKE achieves UC security in QROM. The
LPKE and eLPKE have instantiations not only from LWE but also from
GA-DDH, which admit four specific PAKE schemes with UC security in
ROM or QROM, based on LWE or GA-DDH.

1 Introduction

Password Authenticated Key Exchange (PAKE) enables two parties (say, a client
and a server) who possess a low-entropy password pw to securely establish ses-
sion keys over public networks. These session keys subsequently facilitate the
establishment of secure communication channels. Unlike authenticated key ex-
change (AKE), which necessitates a Public Key Infrastructure (PKI) to verify
the authenticity of public keys, PAKE runs with easily memorable passwords
and offers enhanced convenience for deployments and applications.
Security Notions for PAKE: IND vs. UC. There are two primary security
notions for PAKE, the game-based security in the Indistinguishability model
(IND security) [9] and the simulation-based security under the Universally Com-
posable framework (UC security) [18]. As shown in [18], the UC security in the
UC framework implies the IND security. In contrast to the IND model which
assumes passwords uniformly distributed over a set, the UC framework permits
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arbitrary correlations and distributions for passwords and guarantees security
amidst composition with arbitrary protocols and hence is a better security model.
PAKE with Post-Quantum Security. There are quite a few IND-secure
PAKE schemes constructed from post-quantum assumptions, including lattice-
based [11,27,38,26,21] and isogeny-based [3] ones.

As for UC security, there exists a generic construction for PAKE from Obliv-
ious Transfer (OT) [17]. However, achieving UC security for PAKE requires the
underlying OT protocol have adaptive UC security even in absence of authenti-
cated channels. As far as we know, up to now such OT only has instantiations
from number-theoretic assumptions like CDH or Factoring, so no instantiation
from post-quantum assumptions via the OT approach is known for PAKE. There
also exist frameworks of constructing PAKE from Hash Proof System (HPS)
(e.g., [2]). To apply the HPS framework, one needs an HPS for language con-
sisting of pairs of messages and commitments/ciphertexts (m, c), but as far as
we know there is no suitable HPS from lattice/isogenies serving for UC-secure
PAKE. For example, in the isogeny setting, the existing commitment/encryption
schemes (e.g., [19], Section 7.1 in [12]) need to hash a set element to mask the
message using XOR, i.e., c = m ⊕ H(set element), which destroys the alge-
braic structures and makes it hard to build HPS for (m, c) of this form. The
group-action/isogeny-based HPS proposed in [5] is for the DDH-type language
(x0, x1, s ⋆ x0, s ⋆ x1), which is inherently different from the one needed in the
HPS framework and can hardly yield PAKE from group actions/isogenies. A
feasible approach to PAKE from post-quantum assumptions is making use of
Encrypted Key Exchange [10] (EKE) and resorting to the Ideal Cipher Model
(ICM) to achieve UC security. This EKE approach results in two UC-secure
PAKE schemes [34,8] both of which are lattice-based. However, the ICM has
two limitations and this leads to two questions.

- It is unclear how to instantiate ideal cipher from isogenies, as highlighted in
[7]. Hence isogeny-based PAKE with UC security is now missing.
Q1: Can we construct UC-secure PAKE from isogeny-based assumptions?

- ICM does not consider quantum access from adversaries and it is unclear
how to exploit quantum ICM (QICM) to achieve security against quantum
algorithms. But quantum random oracle model (QROM) [14] takes into ac-
count quantum-access adversaries, and is better understood than QICM [25].
Q2: Can we construct PAKE protocols with UC security in QROM ?

Our Contribution. We answer the above two questions in this paper with the
following two folds of contributions.

1. We propose a generic construction for UC-secure PAKE in the random oracle
model (ROM) from two building blocks, a basic Lossy Public Key Encryption
(LPKE) and a CCA-secure PKE.
• The pivot of our generic construction is Lossy Public Key Encryption

(LPKE). We identify properties for basic LPKE so that its integration
with hashing function makes UC security possible for PAKE in ROM.
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• The instantiations of the basic LPKE and CCA-secure PKE yield two
UC-secure PAKE schemes in ROM, one is based on the LWE assumption
and the other based on the GA-DDH assumption, which leads to the first
PAKE scheme with UC security from isogenies.

2. We upgrade UC security from ROM to QROM for our generic PAKE con-
struction, by replacing the “basic LPKE + Hash” with an extractable LPKE.
• We define extractable LPKE by equipping it with an extracting algo-

rithm and identify its properties to make UC security possible for PAKE
in QROM. We also present a generic construction for extractable LPKE.

• The instantiations of extractable LPKE lead to the first two UC-secure
PAKE schemes in QROM, one is based on the LWE assumption and the
other based on the GA-DDH assumption in the isogeny setting.

Technique Overview. The design principle of our PAKE is to make the un-
derlying PKE associating with passwords. To this end, we introduce a labeled
lossy public key encryption LPKE, where the passwords pw are used to derive
labels b := H(pw) for LPKE via hash function. The labels are used to generate
public keys pk and secret keys sk, i.e., (pk, sk) ← LPKE.LKeyGen(b = H(pw)),
and the encryptions also involve labels, i.e., c← LPKE.LEnc(pk, b = H(pw),m).
Moreover, LPKE has an algorithm named IsLossy(td, pk, b), which can use the
trapdoor td to tell whether b is a lossy label for pk. If the output is 0, then b
must be a normal label for pk, and hence LPKE works in normal mode, which
has correctness and CPA security. Otherwise b must be a lossy label, and hence
LPKE works in lossy mode. When applying FO-transformation to LPKE, it has
CCA security in normal mode but has pseudo-random ciphertexts in lossy mode.

Together with another CCA-secure PKE scheme PKE, we can design a 3-
round PAKE scheme which is high-level shown in Fig. 2.

If client C and server S share the same password pw, then the label used
to generate pk/sk and that used in the encryption are consistent. Accordingly,
LPKE works in normal mode and the successful decryption of c guarantees C
and S share m = r|σ|k. The ciphertext C = PKE.CEnc(cpk, pw|pk|c; r) can be
considered as a proof of server S’s knowledge of pw and the authentication of
transcript pk|c, so it plays the role of authenticating S. Moreover, client C’s
knowledge of σ from the decryption of c proves that C shares the same password
with S, and hence the third message σ is able to authenticate C.

extractable LPKE
(eLPKE, Def. 6)

CCA-PKE

Basic LPKE (Def. 4)

PAKEQRO

(Fig. 6)
LPKE+

PAKERO

(Fig. 6)

LWE
GA-DDH

LWE
GA-DDH

LWE
GA-DDH

Thm. 2

Thm. 3

Thm. 1

Thm. 4
Thm. 6

Thm. 5
Thm. 6

Fig. 1: Schematic overview of our PAKE constructions, where solid arrows “−→” indi-
cate generic constructions and dashed arrows “99K” indicate instantiations.
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Setup: crs = (pp, cpk) with (pp, td)← LPKE.LSetup, (cpk, csk)← PKE.CKeyGen.

Client C(pw): Server S(pw):

(pk, sk)← LPKE.LKeyGen(pp, H(pw))

m′ = r′|σ′|k′ ← LPKE.LDec(sk, c)
if c ̸= LPKE.LEnc(pk,H(pw),m′;H1(m

′))
or C ̸= PKE.CEnc(cpk, pw|pk|c; r′):

Reject by setting sKey := ⊥
Else: sKey is derived from k′

pk
−−−−−−−−→

c, C
←−−−−−−−−−

σ′
−−−−−−−−→

m = r|σ|k ←$ M
c← LPKE.LEnc(pk,H(pw),m;H1(m))
C := PKE.CEnc(cpk, pw|pk|c; r)

If σ ̸= σ′: Reject by setting sKey := ⊥
Else: sKey is derived from k

Fig. 2: Our PAKE from LPKE and PKE

UC security in ROM. To prove the UC security for our PAKE, we have to
construct a simulator Sim, which has no knowledge of password pw but can sim-
ulate all the interaction transcripts for both passive attacks and active attacks.
The simulations must be indistinguishable to those in the real experiment for an
environment, which uses pw to control C and S, and manipulates adversariesA to
interfere the interactions between C and S. Now we consider how the simulations
are implemented according to the type of attacks, passive or active.

Case I: passive attacks. By requiring pseudo-randomness of public key for
LPKE, simulator Sim can send a random pk as the simulation for the first-
round message. The random pk is independent of the random label H(pw)
(due to random oracle), so H(pw) is hardly the correct label generating pk.
Then c = LPKE.LEnc(pk,H(pw),m;H1(m)) works in lossy mode and c is
pseudo-random due to pseudo-randomness of ciphertext under lossy labels
of LPKE. Therefore, the simulation of c in the second-round message can
be accomplished with a uniformly chosen one. As a result, m = r|σ|k are
random and independent of c. Then the CCA security of PKE implies C ←
PKE.CEnc(cpk, pw|pk|c; r) ≈c C ← PKE.CEnc(cpk, 0; r). So ciphertext C
in the second-round message can be simulated by C ←$ PKE.CEnc(cpk, 0).
Furthermore, the third-round message σ′ can simply be simulated by setting
σ′ := σ to keep consistence to the second-round message.

As for active attacks, a critical problem for Sim is that without any knowledge
of pw, how to determine whether A implements attacks with a correct guess of
pw. To solve this problem, we resort to the trapdoor td of LPKE, the algorithm
IsLossy, random oracle H, and also the secret key of PKE.

Sim will generate the crs of PAKE and hold the trapdoor td of LPKE and the
secret key csk of PKE to extract the possible passwords used in active attacks.

– Password extraction from p̃k. For a first-round message p̃k from A’s ac-
tive attack, if p̃k is associated with some password pw′, then H(pw′) must
have been queried by A. Sim just searches all the hash queries and replies un-
der random oracle H to find (pw′, b = H(pw′)) s.t. IsLossy(td, p̃k,H(pw′)) =
0. If IsLossy(td, p̃k,H(pw′)) = 0 then H(pw′) must be a normal label used
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to generate p̃k. Meanwhile, random oracle H makes sure the uniqueness of
such password. In this way, the password pw′ used by A for generating p̃k,
if any, is successfully extracted by Sim.

– Password extraction from (c̃, C̃). For a second-round message (c̃, C̃) from
A’s active attack, Sim will use the secret key csk (w.r.t. the system public key
cpk) to decrypt C̃ to extract the encrypted password pw′. The correctness
of PKE makes sure that the password pw′ used by A for generating (c̃, C̃),
if any, is successfully extracted by Sim.

Case II: active attacks. With help of the above extractions of password pw′,
Sim can submit Testpw(pw′) to the ideal functionality of Fpake to decide
whether pw′ is the correct one. If pw′ is correct, then Sim uses the correct pw′
to simulate the protocol interactions, just like the real case. If the extracted
password pw′ is not correct, the simulations are implemented as follows.

– For a first-round message p̃k from A’s active attack, if the extracted pw′

is not correct, then the random label H(pw) must be lossy for p̃k. The
simulator can simulate the second-round message (c, C) just like the case
of passive attacks.

– For a second-round message (c̃, C̃) from A’s active attack,
• if the extracted pw′ is not correct, the simulator just aborts the

protocol. In the real case, the correctness of PKE also leads to abort
due to an incorrect password.

• if the extracted pw′ is correct, recall that in this case, pk is a random
one (simulated in the passive attack), the simulator has no knowledge
of sk and cannot decrypt c̃ with LPKE.LDec. To solve this problem,
we resort to random oracle H1(m

′) to extract the message m′ =
r′|σ′|k′ such that c̃ = LPKE.LEnc(pk,H(pw),m′;H1(m

′)), if it exists.

UC security in QROM. Note that random oracle H plays an important role
in simulator’s password extracting from p̃k. However, H fails in QROM, because
the simulating technique of storing and searching queries & hash values in a list
does not apply to QRO due to the no-cloning principle.

To achieve UC security in the QROM, our solution is discarding hash function
H and directly using passwords pw as labels in the generation of p̃k and the
encryption of m. More importantly, we augment an Extract(td, p̃k) algorithm to
LPKE which can use trapdoor td to extract password pw′ from p̃k directly, free of
hash. In this way, LPKE is upgraded to an extractable one, namely eLPKE. The
generic construction of PAKE remains the same except that we replace LPKE
with eLPKE. The simulator can use Extract(td, p̃k) to extract pw′ and the rest
of simulations are almost the same as that in ROM.

We can construct extractable LPKE (eLPKE) from LPKE as follows. Parse
the label bit-wise pw = (pw1, . . . , pwλ). Each bit pwi ∈ {0, 1} corresponds to two
public random tags v0i , v1i . Then λ invocations of (pki, ski)← LPKE.LKeyGen(vpwi

i )
result in public key pk := (pk1, . . . , pkλ) and secret key sk := (sk1, . . . , skλ). In
this way, the password pw can be extracted bit-wisely via testing IsLossy(td, pki, v

0
i )
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?
= 0 and IsLossy(td, pki, v

1
i )

?
= 0. For encryption, the plaintext m is divided into

λ shares m1, ...,mλ such that m = m1 ⊕ ... ⊕mλ via (λ, λ)-secret sharing. The
ciphertext contains sub-ciphertexts {ci := LPKE.LEnc(pki,mi)}i∈[λ].

There remains a subtlety to be addressed. To justify that the real pk can
be replaced by a random one, the security reduction must ensure that the
secret key sk is not needed for the decryption of c to get m. To solve this
problem, the UC security in ROM also uses the hash list of H1, and search
the list to find the right (m,H1(m)) by testing the re-encryption relation c =
LPKE.LEnc(pk, pw,m;H1(m)). In QROM, this trick does not apply either. To
solve the problem in QROM, we resort to the on-line extraction technique [22]
so that the simulator can extract m while simulating H1 in an indistinguishable
way. Moreover, in case of active attack (c̃, C̃), after the simulator extracts a
correct password pw, it also uses the on-line extraction technique to extract m′.

By instantiating LPKE and eLPKE in our genertic construction, we obtain
PAKE schemes PAKERO

lwe , PAKERO
ga , PAKEQRO

lwe , PAKEQRO
ga from LWE in lattice,

from GA-DDH in the isogeny setting, in ROM, and in QROM respectively.
The schematic overview of our PAKE constructions is given in Fig. 1.

Comparison. In Table 1, we compare our PAKE schemes with the available
schemes based on post-quantum assumptions. Up to now, there are only two
PAKE schemes [34,8] with UC security from post-quantum assumptions, both
of which are based on ICM. Note that ICM is equivalent to ROM [20]. Therefore,
our work admits the first UC-secure PAKE schemes from isogenies, both in ROM
and QROM, and the first UC-secure PAKE schemes from LWE in QROM. The
time complexity and communication complexity of our PAKE schemes are given
in the Table 2. Our LWE-based PAKE in QROM is not as practical as the
MLWE-based PAKE [34,8] in RO/IC, but our PAKE allows quantum access to
random oracles from adversaries and avoids the use of IC. Our GA-based PAKE
schemes are practical. In particular, the efficiency of our GA-based UC-secure
PAKE in ROM is comparable to that of the GA-based IND-secure PAKE in
ROM [3].

A recent progress on PAKE [29] shows how to compile PAKE to strong
asymmetric PAKE with CSIDH assumption. Applying their compiler, our PAKE
from GA-DDH can be upgraded to a strong asymmetric PAKE from isogenies.

Remark 1. In [16], a novel primitive called password-authenticated public-key
encryption (PAPKE) was proposed and used to construct UC-secure PAKE.
PAPKE is a PKE associated with passwords just like our LPKE. In fact, the
syntax of our LPKE is similar to PAPKE, but ours is also equipped with IsLossy
algorithm. Moreover, PAPKE and our LPKE have different security require-
ments and different instantiations. Furthermore, our PAKE construction from
extractable LPKE and their PAKE construction from PAPKE are also different.

– In contrast to our (extractable) LPKE, a complex UC security is required
from PAPKE to achieve UC security for PAKE. It is not clear whether our
(extractable) LPKE can achieve such a complex UC security for PAPKE.
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– Our LPKE scheme admits post-quantum instantiations from both LWE
and the GA-DDH assumption. In contrast, existing PAPKE schemes are
only known from Discrete Logarithm (DL-type) assumptions. It is not clear
whether PAPKE (and the according PAKE in [16]) can be constructed from
post-quantum assumptions no matter in ROM or QROM.

– Our PAKE construction in QROM resorts to not only extractable LPKE
but also CCA-secure PKE, whereas the PAKE scheme in [16] relies solely
on PAPKE. Due to the lack of post-quantum PAPKE schemes, it is still
unknown how to construct PAKE from PAPKE in QROM.

Scheme Rounds Security Model Assumption Mutual Authentication CRS
[11,27] 2 IND Standard LWE No Yes
[38] 2 IND RO LWE No Yes
[26] 3 IND Standard LWE Yes Yes
[21] 3 IND RO RLWE Yes No
[3] 2 IND RO SqInv-GA-StCDH No Yes
[17] + [5] 3 IND Standard GA-DDH Yes Yes
[17] + [31] 3 IND Standard LWE Yes Yes
[34,8] 2 UC Ideal Cipher MLWE No No
PAKERO

lwe 3 UC RO LWE Yes Yes
PAKERO

ga 3 UC RO GA-DDH Yes Yes
PAKEQRO

lwe 3 UC QRO LWE Yes Yes
PAKEQRO

ga 3 UC QRO GA-DDH Yes Yes

Table 1: Comparison of PAKE schemes from post-quantum assumptions. In [11,3],
a simultaneous flow of two round-messages is counted as 1-round while we count it
as 2. “Mutual Authentication” indicates whether the scheme supports mutual explicit
authentication. “CRS” means whether the scheme requires a common reference string.

Scheme Security Model Time Complexity Communication Complexity
[34,8] UC Ideal Cipher O(λ2) O(λ log λ)
[3] IND RO O(λ) × GA O(λ2)
PAKERO

lwe UC RO O(λ4 log2 λ) O(λ2 log λ)
PAKERO

ga UC RO O(λ log λ) × GA O(λ2)
PAKEQRO

lwe UC QRO O(λ8) O(λ5)
PAKEQRO

ga UC QRO O(λ log2 λ) × GA O(λ3)
Table 2: Comparison of PAKE schemes from post-quantum assumptions in terms of
time complexity and communication complexity, where GA denotes the time complex-
ity for a single group action operation.
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2 Preliminaries

If x is defined by y or the value of y is assigned to x, we write x := y. For
µ ∈ N, define [µ] := {1, 2, . . . , µ}. Denote by x ←$ X the procedure of sampling
x from set X uniformly at random. We also use “$” to denote a random variable
uniformly chosen from an implicitly known set. Let |X | denote the number of
elements in X . All our algorithms are probabilistic unless stated otherwise. We
use y ← A(x) to define the random variable y obtained by executing algorithm
A on input x. We also use y ← A(x; r) to make explicit the random coins
r used in the probabilistic computation. The notation ≈s represents statistical
indistinguishability, while ≈c denotes computational indistinguishability. We use
bold lower-case letters to denote column vectors. For a vector v, we let ‖v‖ (resp.,
‖v‖∞) denote its ℓ2 (resp., ℓ∞ infinity) norm.

2.1 Hardness Assumptions

Lattice Backgrounds. A q-ary lattice defined with A ∈ Zn×m
q is Λ(A) :=

{AT s | s ∈ Zn
q } + qZm. The Gaussian function on Rn centered at c with pa-

rameter s is defined by ρs,c(x) := e−π∥x−c∥
2/s2 . The discrete Gaussian distri-

bution DΛ,s,c over an n-dimensional lattice Λ ⊆ Rn is defined by DΛ,s,c(x) :=
ρs,c(x)/ρs,c(Λ) for any lattice vector x ∈ Λ, where ρs,c(Λ) :=

∑
z∈Λ ρs,c(z). The

centered vector c is often omitted when c = 0. More specifically, we use the
notion DZm,r to represent discrete Gaussian distribution over lattice Λ := Zm

centered at c := 0 with parameter r.

Definition 1 (LWE Assumption [33]). Let n,m, q ∈ N, and χ be a dis-
tribution over Zq. The LWEn,q,m,χ assumption states that the following distri-
butions are computationally indistinguishable: (A,AT s + e) ≈c (A,u), where
A ←$ Zn×m

q , e← χm, s ←$ Zn
q and u ←$ Zm

q .

Lemma 1 ([4,30]). There exists a PPT algorithm TrapGen that takes as input
positive integers n, q (q ≥ 2) and a sufficiently large m = O(n log q), outputs a
matrix A ∈ Zn×m

q and a trapdoor matrix TA ∈ Zm×m
q such that A is statistically

close to the uniform distribution, A ·TA = 0, and
∥∥∥T̃A

∥∥∥ ≤ O(
√
n log q), where

T̃A denotes the Gram-Schmidt orthogonalization of TA.

Lemma 2 ([30, Theorem 5.4]). There exists a deterministic polynomial-time
algorithm Invert that takes as inputs the trapdoor information TA and a vector
v := AT · s+ e with s ∈ Zn

q and ‖e‖ ≤ q/(10 ·
√
m), and outputs s and e.

Lemma 3 ([23]). Let n and q be positive integers with q prime, and let m ≥
2n log q. Then for all but a 2q−n fraction of all A ∈ Zn×m

q and for any r ≥
ω(
√
logm), the distribution of the syndrome u = Ae mod q is statistically close

to uniform over Zn
q , where e← DZm,r.

Cryptographic Group Actions. We will focus on group actions where G is
abelian and the action is regular (See Appendix A for their definitions). We recall
the notion of restricted effective group actions (REGA) as follows.
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Definition 2 (Restricted Effective Group Action [5]). A group action
(G,X , ⋆) is a restricted effective group action (REGA) if properties 1-5 are sat-
isfied.

1. The group G is generated by a set {g1, . . . , gn}.
2. The group G is finite and n = poly(log |G|).
3. The set X is finite and there exist PPT algorithms for membership testing

and for computing unique representation of set element.
4. There exists a distinguished element x0 ∈ X , called the origin, such that its

representation is known.
5. There exists an efficient algorithm that given gi in the generating set and

any x ∈ X , outputs gi ⋆ x and g−1i ⋆ x where i ∈ [n].

With a REGA, we can use the generating set to approximate the random sam-
pling process of g ←$ G. The regularity of the (G,X , ⋆) enables an efficient al-
gorithm to sample x ←$ X uniformly.

There is a natrual generalization of the DDH assumption in REGA settings.

Definition 3 (GA-DDH Assumptions). Given a restricted effective group
action (G,X , ⋆), the Group Action DDH (GA-DDH) assumption states that the
following distributions are computationally indistinguishable:

{x ←$ X ; s, t ←$ G : (x, s⋆x, t⋆x, (s·t)⋆x)} ≈c {x ←$ X ; s, t, z ←$ G : (x, s⋆x, t⋆x, z⋆x)}.

We can instantiate REGA with isogeny-based group actions, like CSIDH. The
GA-DDH assumption is believed to hold for CSIDH [19].

2.2 UC Framework for PAKE

We present a concise overview of the UC framework for PAKE. Fig. 4 shows
the picture of the “real world” execution of a protocol Π and the “ideal world”
execution with a simulator Sim. The environment Z can be considered as higher-
level protocols utilizing Π as a sub-protocol (Z also includes the adversary that
is attacking those higher-level protocols). The adversary A essentially models
a completely insecure network and it communicates continuously with Z. The
client/server instances send and receive messages via A, and A can do dropping,
injecting, and modifying protocol messages at will.

In the real world, the client/server instances are executed as described in
the protocol Π. They receive their inputs (passwords in PAKE) from Z and
send their outputs (session key in PAKE) to Z. Hash function H is modeled as
a random oracle. Clients, servers and adversary may directly (quantum) access
the random oracle H. However, the environment Z can only access H indirectly
via A.

In the ideal world, clients/servers are “dummy” parties that pass their pass-
words directly from Z to an ideal functionality Fpake, and their outputs directly
from Fpake to Z. We mainly follow the definition of Fpake by Shoup [35], which
is a modified version by Canetti et al. [18]. Simulator Sim can communicate with
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Functionality Fpake

The functionality Fpake is parameterized by a security parameter λ. It interacts with a simulator Sim and a
set of parties via the following queries:
Password Storage

Upon receiving a query (StorePWFile, C(i), S(j), pw) from a client C(i) or a server S(j):
If there exists a record 〈file, C(i), S(j), ·〉, ignore this query. Otherwise, record 〈file, C(i), S(j), pw〉,
and send (StorePWFile, C(i), S(j)) to Sim.

Sessions
Upon receiving a query (NewClient, iid, S(j)) from a client C(i):

Retrieve the record 〈file, C(i), S(j), pw〉. Send (NewClient, C(i), iid, S(j)) to Sim.
Record (C(i), iid, S(j), pw) and mark it as fresh.
In this case, S(j) is called the intended partner of (C(i),iid).

Upon receiving a query (NewServer, iid′, C(i)) from a server S(j):
Retrieve the record 〈file, C(i), S(j), pw〉. Send (NewServer, S(j), iid′, C(i)) to Sim.
Record (S(j), iid′, C(i), pw) and mark it as fresh.
In this case, C(i) is called the intended partner of (S(j),iid′).

Two instances (C(i),iid) and (S(j),iid′) are said to be partnered, if there are two records
(C(i), iid, S(j), pw) and (S(j), iid′, C(i), pw) sharing the same pw.

Active Session Attacks
Upon receiving a query (Testpw, P, iid, pw′) from Sim:

If there is a fresh record (P, iid, ·, pw):
If pw′ = pw, mark the record compromised and reply to Sim with correct guess.
If pw′ 6= pw, mark the record interrupted and reply with wrong guess.

Key Generation
Upon receiving a query (FreshKey, P, iid, sid) from Sim:

If 1) there is a fresh record (P, iid,Q, pw); and 2) sid has never been assigned
to P s any other instance (P, iid′):
Pick a new random key sKey, mark the record (P, iid,Q, pw) as completed, assign it with sid,
send (iid, sid, sKey) to P , and record (P,Q, sid, sKey).

Upon receiving a query (CopyKey, P, iid, sid) from Sim:
If 1) there is a fresh record (P, iid,Q, pw) and a completed record (Q, iid∗, P, pw) s.t. (P, iid)
and (Q, iid∗) are partnered; and 2) sid has never been assigned to P ’s any other instance
(P, iid′); and 3) the partnered (Q, iid∗) is the unique one has been assigned with sid:
Retrieve the record (Q,P, sid, sKey), mark the record (P, iid,Q, pw) as completed, assign it with sid,
and send (iid, sid, sKey) to P .

Upon receiving a query (CorruptKey, P, iid, sid, sKey) from Sim:
If 1) there is a compromised record (P, iid,Q, pw); and 2) sid has never been assigned to P ’s any
other instance (P, iid′):
Mark the record (P, iid,Q, pw) as completed, assign it with sid, and send (iid, sid, sKey) to P .

Upon receiving a query (Abort, P, iid) from Sim:
mark the record (P, iid, ·, pw) as abort, and send (iid,⊥) to P .

Fig. 3: The ideal functionality Fpake for PAKE.

Fig. 4: The real world execution (left) and the ideal world execution (right).
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Z, just as A did in the real world. Besides, Sim can also interact with Fpake. Sim
has two main tasks. Firstly, it must simulate the network transcripts in a way
that is indistinguishable from those generated in the real world. Secondly, Sim
must provide appropriate inputs to Fpake to obtain outputs (session key) that
are indistinguishable from the outputs produced by the client/server instances
in the real world.

The ideal functionality Fpake is shown in Fig. 3. We stress that our ideal func-
tionality Fpake supports mutual authentication, which indicates mutual explicit
authentication. mutual explicit authentication. It is mainly captured by the first
item and the last item of “Key Generation” in our ideal functionality (Fig. 3),
which guarantee that if an adversary makes an unsuccessful password guess on a
protocol instance, then when that instance terminates, the corresponding party
will receive an abort message. Accordingly, this requires that each party can
identify active attacks explicitly in the real-world protocol.

In a nutshell, we say protocol Π securely emulates ideal functionality Fpake if
for any efficient adversary A, there exists an efficient simulator Sim such that no
efficient environment Z can effectively distinguish between the actual execution
in the real world and the hypothetical execution in the ideal world.

2.3 ROM vs. QROM

In the Random Oracle Model (ROM), a cryptographic hash function H : X → Y
is idealized as a truly random function RF : X → Y. And any adversary needs
to query H on inputs x ∈ X to learn the hash values H(x).

In the quantum world, a quantum algorithm A can perform superposition
queries to the random oracle H, and then oracle H behaves as a unitary operation
|x〉|y〉 7→ |x〉|y⊕H(x)〉. In this case, H becomes a quantum random oracle (QRO).
The QRO model supports classical queries x on H, and this can be formalized as
setting query register and output register to be |x〉|0〉, and measuring the output
register after the unitary operation |x〉|0〉 7→ |x〉|0⊕H(x)〉.

3 PAKE from Basic LPKE in ROM

In this section we present the definition of basic LPKE and show how to apply
the FO-transformation to LPKE to obtain a CCA-secure KEM. Then we show
the generic construction of PAKE from basic LPKE and its UC security in ROM.

3.1 Basic Lossy Public Key Encryption (LPKE)

LPKE works in two modes. If label b is a normal one, then LPKE works in
normal mode and has correctness and CPA security. If label b is a lossy one,
then LPKE works in lossy mode, and the ciphertexts are random. With the
trapdoor, algorithm IsLossy can decide whether label b is lossy or normal for pk.
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Definition 4 (Basic LPKE). A basic Lossy Public Key Encryption scheme
LPKE = (LSetup, LKeyGen, LEnc, LDec, IsLossy) consists of five probabilistic algo-
rithms.

- LSetup(1λ) : The setup algorithm takes as input the security parameter 1λ,
and outputs a public parameter pp and a trapdoor td. The parameter pp
specifies a public key space PK, a secret key space SK, a label space T , a
message space M and a ciphertext space CT .
All the remaining algorithms take pp as input, and we omit it for simplicity.

- LKeyGen(b) : The key generation algorithm takes as input a label b and out-
puts a key pair (pk, sk).

- LEnc(pk, b,m) : The encryption algorithm takes as input a public key pk, a
label b and a message m, and outputs a ciphertext c.

- LDec(sk, c) : The decryption algorithm takes as input a secret key sk and a
ciphertext c, and outputs a message m.

- IsLossy(td, pk, b) : The algorithm takes as input a trapdoor td, a public key
pk and a label b, and outputs a bit 0 or 1.

For any pk ∈ PK and b ∈ T , if IsLossy(td, pk, b) = 1, then label b is called a
lossy label of public key pk. Otherwise, label b is called a normal label of pk.
Correctness of Basic LPKE. For all b ∈ T and m ∈M, it holds that

Pr [LDec(sk, LEnc(pk, b,m)) 6= m] ≤ negl(λ),Pr [IsLossy(td, pk, b) = 1] ≤ negl(λ),

where (pp, td)← LSetup(1λ) and (pk, sk)← LKeyGen(b).
A basic LPKE scheme LPKE should satisfy the following properties.

1 Pseudorandomness of Public Key. For all b ∈ T , it holds that{
(pp, td)← LSetup

(pk, sk)← LKeyGen(b)
: (pp, pk)

}
≈c

{
(pp, td)← LSetup

pk ←$ PK : (pp, pk)

}
.

2 Random Ciphertexts under Lossy Labels. For all admissible ad-
versary A which outputs (pk, b) such that IsLossy(td, pk, b) = 1, it holds
that (pp, pk, b,m, c) ≈s (pp, pk, b,m, c′), where (pp, td) ← LSetup, (pk, b) ←
A(pp) s.t. IsLossy(td, pk, b) = 1, m ←$M, c← LEnc(pk, b,m) and c′ ←$ CT .

3 Uniqueness of Normal Labels among Polynomial-Size Set: For
any Q := poly(λ), it holds that

Pr

[
(pp, td)← LSetup
b1, . . . , bQ ←$ T :

∃pk ∈ PK, i ̸= j with i, j ∈ [Q]
IsLossy(td, pk, bi) = 0 ∧ IsLossy(td, pk, bj) = 0

]
≤ negl(λ).

4 Lossiness of Random Labels. For all adversary A, it holds that

Pr
[
(pp, td)← LSetup; pk ← A(pp); b ←$ T : IsLossy(td, pk, b) = 0

]
≤ negl(λ).

5 Ciphertext Unpredictability under Normal Labels: For all but a
negligible fraction of pp from (pp, td) ← LSetup(1λ), for all b ∈ T , all
(pk, sk) ← LKeyGen(b), all messages m ∈ M and all ciphertexts c ∈ CT ,
it holds that Pr [r ←$ R : LEnc(pk, b,m; r) = c] ≤ negl(λ).



13

6 CPA Security under Normal Labels: For all PPTA, we have (pp, pk, b, c0)
≈c (pp, pk, b, c1), where (pp, td) ← LSetup, (b, st) ← A(pp), (pk, sk) ←
LKeyGen(b), (m0,m1)← A(st, pk), c0 ← LEnc(pk, b,m0), c1 ← LEnc(pk, b,m1).

Remark 2. The concept of R-lossy PKE (R-LPKE) was introduced by Boyle et
al. [15]. Our basic LPKE can be considered as a special R-LPKE with relation
R simply defined as R(K, t) := (K

?
= t), but our basic LPKE is augmented with

IsLossy algorithm and equipped with a different set of properties.

By leveraging the FO-transformation, LPKE under normal label b can be
transformed to a labeled KEM scheme, whose encapsulation algorithm is im-
plemented as c ← LEnc(pk, b,m;H1(m)) with m ←$M and K := H2(m). The
formal description of the KEM construction is shown in Appendix B. Conse-
quently, the CPA-security of LPKE is upgraded to CCA-security of the KEM,
according to [22]. This is shown in Lemma 4. Meanwhile, the property of random
ciphertexts under lossy labels for LPKE is inherited by that of KEM but degrades
to a pseudo-random one, as shown in Lemma 5 with proof in Appendix C.1.

Lemma 4 (CCA Security of KEM [22]). Suppose that LPKE = (LSetup,
LKeyGen, IsLossy, LEnc, LDec) is a basic lossy public key encryption scheme and
H1 and H2 are two (quantum-accessible) random oracles. For any PPT adver-
sary A against CCA security of the KEM scheme, it holds that

AdvCCA-FO
KEM (A) :=

∣∣∣Pr [ExpCCA-FO-0
KEM ⇒ 1

]
− Pr

[
ExpCCA-FO-1

KEM ⇒ 1
]∣∣∣ ≤ negl(λ),

where ExpCCA-FO-β
KEM is defined in Fig 5.

ExpCCA-FO-β
KEM : �β ∈ {0, 1}

(pp, td)← LSetup ;(b, st)← A(pp)
(pk, sk)← LKeyGen(b)
m ←$ M, c∗ ← LEnc(pk, b,m;H1(m))
K∗

0 := H2(m), K∗
1 ←$ Kkem

β′ ← AODec(·)(st, pk, c∗,K∗
β)

Return β′

ODec(c):
If c = c∗: Return ⊥
K ← LDec(sk, c)
Return K

Fig. 5: CCA-security of KEM from LPKE via FO

Lemma 5 (Ciphertext Pseudo-Randomness under Lossy Labels). Sup-
pose that LPKE = (LSetup, LKeyGen, IsLossy, LEnc, LDec) is a basic lossy pub-
lic key encryption scheme and H1 and H2 are two (quantum-accessible) ran-
dom oracles. For all admissible adversary A which outputs (pk, b) such that
IsLossy(td, pk, b) = 1, it holds that (pp, pk, b, c,K) ≈c (pp, pk, b, c

′ ←$ CT ,K ′ ←$ K),
where (pp, td) ← LSetup, (pk, b) ← A(pp) s.t. IsLossy(td, pk, b) = 1, m ←$M,
c← LEnc(pk, b,m;H1(m)), and K := H2(m).
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3.2 Construction of PAKE from Basic LPKE in ROM

We propose a generic construction of 3-round PAKE scheme PAKERO from LPKE
and PKE. The underlying building blocks are as follows.

- a basic lossy public key encryption scheme LPKE = (LSetup, LKeyGen, LEnc, LDec,
IsLossy) with message space {0, 1}λ, label space T and randomness space R;

- a CCA-secure public key encryption scheme PKE = (CKeyGen,CEnc,CDec);
- four hash functions: H : PW → T , H1 : {0, 1}λ → R, H2 : {0, 1}λ →
{0, 1}3λ, H3 : {0, 1}∗ → {0, 1}λ.

Our generic construction of PAKE from LPKE and PKE is given in Fig. 6.

Setup:
(pp, td)← eLSetup; (cpk, csk)← CKeyGen

Choose hash functions: H : PW → T , H1 : {0, 1}λ →R,
H2 : {0, 1}λ → {0, 1}3λ, H3 : {0, 1}∗ → {0, 1}λ

Output crs = (pp, cpk,H,H1, H2, H3)

Client C(i)(pw): Server S(j)(pw):
(pk, sk)← LKeyGen(pp, H(pw))

(pk, sk)← eLKeyGen(pp, pw)

m′ ← eLDec(sk, c)
if c ̸= LEnc(pk,H(pw),m′;H1(m

′)):
if c ̸= eLEnc(pk, pw,m′;H1(m

′)):
Reject by setting sKey := ⊥

Parse H2(m
′) = r′|σ′|k′

if C ̸= CEnc(cpk, pw|pk|c; r′):
Reject by setting sKey := ⊥

sid := C(i)|S(j)|pk|c|C|σ′

sKey := H3(k
′|sid)

pk
−−−−−−−−→

c, C
←−−−−−−−−−

σ′
−−−−−−−−→

m ←$ M
c← LEnc(pk,H(pw),m;H1(m))

c← eLEnc(pk, pw,m;H1(m))
Parse H2(m) = r|σ|k
C := CEnc(cpk, pw|pk|c; r)

Reject if σ ̸= σ′ by setting sKey := ⊥
sid := C(i)|S(j)|pk|c|C|σ
sKey := H3(k|sid)

Fig. 6: Construction of PAKERO (resp. PAKEQRO) from LPKE (resp. eLPKE). text only

appears in PAKERO from LPKE and text only appears in PAKEQRO from eLPKE.

The UC security for PAKERO constructed from LPKE in ROM is shown in
Theorem 1. To facilitate the proof, we define the concept of linked to like [35].
Definition 5 (Linked To). In a protocol execution, a client (resp. server) in-
stance is “linked to” a server (resp. client) instance at a specific time being if
the transcript of the client (resp. server) is consistent to that of the server (resp.
client), i.e., the messages received and sent by a party are exactly those messages
sent and received by another party.

Theorem 1. If LPKE is a basic LPKE scheme, PKE is a CCA-secure PKE
scheme, and H,H1,H2,H3 work as random oracles, then the PAKE scheme
PAKERO in Fig. 6 securely emulates Fpake, hence achieving UC security in ROM.
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Proof. The main objective of the proof is to construct a PPT simulator Sim. Sim
is designed to have access to the ideal functionality Fpake and interact with the
environment Z, thereby emulating the real-world PAKE protocol interactions
involving the adversary A, the parties, and the environment Z. It is important
to note that Sim does not possess any password.

The complete description of the simulator Sim is provided in Fig. 7.
Let RealZ,A represent the real-world experiment where the environment Z

interacts with the actual parties and adversary A, while IdealZ,Sim represents
the ideal experiment where Z interacts with the simulator Sim.

Our goal is to demonstrate that |Pr [RealZ,A ⇒ 1]− Pr [IdealZ,Sim ⇒ 1]| is
negligible by employing a series of games, denoted as Game G0-G11. In this
sequence, G0 corresponds to RealZ,A, while G11 corresponds to IdealZ,Sim. We
aim to show that these adjacent games are indistinguishable from the view of Z.
Game G0. This is the real experiment RealZ,A. In this experiment, Z initial-
izes a password for each client-server pair, sees the interactions among clients,
servers and adversary A, and also obtains the corresponding session keys of pro-
tocol instances. Here A may implement attacks like view, modify, insert, or drop
messages over the network. We have Pr [RealZ,A ⇒ 1] = Pr [G0 ⇒ 1].
Game G1(simulations for clients and servers with pw).

In this game, we introduce a simulator Sim who receives passwords from Z.
Then it simulates the clients and servers to generate transcripts for instances
of the PAKE protocol. With the knowledge of passwords, the simulations of the
behaviors of all clients and servers are perfect.

Moreover, Sim also simulates random oracles H,H1,H2,H3 by maintaining
four separate lists, namely LH ,LH1 ,LH2 ,LH3 . For example, for a query x on
H(·), if (x, y) ∈ LH , then Sim will return y as the reply. Otherwise, Sim will
choose a random element y, record (x, y) in LH , and return y as the reply. By the
ideal functionality of random oracles, Sim’s simulations for oracles H,H1,H2,H3

are also perfect. So we have Pr [G1 ⇒ 1] = Pr [G0 ⇒ 1].
The following games will change the simulations of Sim step by step in an

indistinguishable way so that Sim can arrive at Fig. 7 and accomplish the simu-
lations in IdealZ,Sim without passwords pw.
Game G2(simulation for crs). In G2, Sim simulates the generation of crs =
(pp, cpk, . . .) with (pp, td) ← LSetup and (cpk, csk) ← CKeyGen, and it also
records the trapdoor td of LPKE and the secret key csk of PKE. Clearly, the
simulation of crs is perfect, so we have Pr [G2 ⇒ 1] = Pr [G1 ⇒ 1].
Game G3(simulation of r|σ|k for server instances and simulation of the
third-round message σ′ for client instances in case of passive attacks).
In G3, simulator Sim is the same as in G2, except for the simulation of generating
r|σ|k for server instances and the corresponding simulation for client instances
in case of passive attacks.

– For a server instance (S(j), iid′) that is linked to (C(i), iid) when receiv-
ing a first-round message pk, simulator Sim will randomly sample r|σ|k ←
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{0, 1}3λ, rather than computing r|σ|k := H2(m) as did in G2. Note that pk

must have been generated for the client instance (C(i), iid) by Sim.
– For a client instance (C(i), iid) that is linked to server instance (S(j), iid′)

when receiving a second-round message (c, C), we know that (c, C) and the
corresponding r|σ|k must have been generated for (S(j), iid′) by Sim. In this
case, Sim directly sets sKey := H3(k|sid) and outputs σ′ := σ.

According to Lemma 4, (pk, c = LEnc(pk,H(pw),m;H1(m)), r|σ|k := H2(m))
works as a CCA-secure KEM, where pk is the public key, H(pw) is the normal
lablel of pk, c is the ciphertext, m ←$M and H2(m) = r|σ|k is the encapsulated
key. Then by the CCA-security of KEM we have

(pk, c← LEnc(pk,m;H1(m)), r|σ|k := H2(m)) ≈c (pk, c← LEnc(pk,m;H1(m)), $)

for PPT adversaries access to decryption oracle. There are at most ℓ sessions,
so hybrid arguments across the ℓ sessions yield.

|Pr [G3 ⇒ 1]− Pr [G2 ⇒ 1]| ≤ ℓ · AdvCCA-FO
KEM (BKEM) ≤ negl(λ).

Game G4(simulation of sKey in case of passive attacks). In G4, Sim is
the same as in G3, except for the generation of sKey for client instances and its
corresponding sever instances in case of passive attacks.

– For a client instance (C(i), iid) that is linked to server instance (S(j), iid′),
when client C(i) receives a second-round message (c, C), simulator Sim changes
the simulation of generating session key sKey for C(i). More precisely, Sim will
not set sKey := H3(k|sid) as did in G3, but sample sKey ←$ {0, 1}λ instead.
Sim stores sKey for (C(i), iid). Note that (c, C) must have been generated by
Sim and r|σ|k sampled uniformly by Sim for server instance (S(j), iid′).
For the simulation of C(i) outputting σ′, Sim still outputs σ′ := σ by retriev-
ing σ from r|σ|k, just like G3.

– For a server instance (S(j), iid′) that is linked to (C(i), iid), when S(j) receives
a third-round message σ′, Sim will compare σ′ with σ in the transcription
(pk, c, C, σ) of instance (S(j), iid′). If σ′ = σ, Sim will retrieve sKey stored
for (C(i), iid) and set the same session key sKey for (S(j), iid′).

Note that in the above two cases, (C(i), iid) and (S(j), iid′) share the same r|σ|k,
where r|σ|k is uniformly chosen and independent of the view ofA. The uniformity
of k makes sure that A ever queries H3(k|sid) for some sid with negligible
probability. As long as no query on H3(k|·) is made by A, the session key sKey :=
H3(k|·) is uniform and independent of other variables in G3. In G4, the session
key sKey is sampled in a random and independent way. Consequently, G4 and
G3 are the same to Z, except that A ever queries H3(k|·) which happens with
negligible probability. So we have |Pr [G4 ⇒ 1]− Pr [G3 ⇒ 1]| ≤ negl(λ).
Game G5(simulation for client instances in case of active attacks). In
G5, simulator Sim is the same as in G4, except that Sim will add a rejection rule
in the simulations for client instances in case of active attacks. More precisely,
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– For a client instance (C(i), iid) that is not linked to any server instance
(S(j), iid′) when receiving the second-round message (c̃, C̃), we know that
(c̃, C̃) is NOT generated from any server instance, so it must be forged by ad-
versary A (with active attacks). Let pw be the password shared between C(i)

and S(j) and pk be the public key generated by Sim for instance (C(i), iid).
Rejection rule: Upon receiving the second-round message (c̃, C̃), Sim first
extracts password pw′ by invoking pw′|pk′|c′ ← CDec(csk, C̃). If

pw 6= pw′ or pk′|c′ 6= pk|c̃, (⋆)

then Sim rejects (c̃, C̃) by setting sKey := ⊥.

G5 and G4 differ only when a message (c̃, C̃) satisfying (⋆) leads to rejection
in G5 but not in G4. However, if (c̃, C̃) satisfies (⋆) then either pw′ 6= pw or
pk′|c′ 6= pk|c̃. If such (c̃, C̃) does not lead to rejection in G4, then we have C̃ =
CEnc(cpk, pw|pk|c̃; r) and pw′|pk′|c′ = CDec(csk, C̃), but pw′|pk′|c′ 6= pw|pk|c̃,
which contradicts to the correctness of PKE. Therefore, (c̃, C̃) satisfying (⋆) must
lead to rejection in G4 except with negligible probability, and hence we have

|Pr [G5 ⇒ 1]− Pr [G4 ⇒ 1]| ≤ negl(λ).

Game G6(get rid of sk in simulation for client instances in case of
active attacks). In G6, Sim is the same as in G5, except for the generation of
m′ during Sim’s simulations for client instances in case of active attacks.

– For any client instance (C(i), iid) that is not linked to any server instance
(S(j), iid′) when receiving the second-round message (c̃, C̃), we know that
(c̃, C̃) is NOT generated from any server instance, so it must be forged by ad-
versary A. When generating m′ during the simulation for instance (C(i), iid),
Sim will not use the decryption algorithm to obtain m′ ← LDec(sk, c̃)
as did in G5. Instead, it will check whether ∃(m′, rH) ∈ LH1

such that
c̃ = LEnc(pk,H(pw),m′; rH), where pw is the password of C(i) and pk is the
first-round message generated by Sim for (C(i), iid). If there exists such pair
(m′, rH) ∈ LH1

, then Sim retrieves m′ as the decrypted plaintext. Otherwise
Sim rejects (c̃, C̃) by setting sKey := ⊥.

We consider two cases.

Case I. ∃(m′, rH) ∈ LH1 s.t. c̃ = LEnc(pk,H(pw),m′; rH). By the correctness
of LPKE, we have LDec(sk, c̃) = m′. Therefore, G6 results in the same m′ as
that in G5, and thus G6 and G5 are indistinguishable to Z in this case.

Case II. ∄(m′, rH) ∈ LH1
s.t. c̃ = LEnc(pk,H(pw),m′; rH). This suggests that

adversary A does not ever query H1(m
′) and hence H1(m

′) is random. Recall
that pk was generated from LKeyGen(H(pw)), so H(pw) is the normal label of
pk. Then by the property of ciphertext unpredictability under normal labels,
c̃ = LEnc(pk,H(pw),m′;H1(m

′)) hardly holds. Accordingly, Sim’s simulation
of C(i) will reject with sKey := ⊥ in G5, except with negligible probability.
In G6, Sim will terminate the simulation by setting sKey := ⊥. Obviously,
G6 and G5 are identical to Z except with negligible probability in this case.
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Therefore, we have |Pr [G6 ⇒ 1]− Pr [G5 ⇒ 1]| ≤ negl(λ).
We stress that now in G6 (and hereafter), Sim’s simulation for client instances

does not need the secret key sk of LPKE any more, no matter dealing with active
attacks or passive attacks. This helps us to proceed to the next game.
Game G7(simulation of generating first-round message pk without pw).
In G7, Sim is the same as in G6, except for Sim’s simulation of generating the
first-round message pk for client instances.

– For any client instance (C(i), iid), when generating the first-round message
pk, Sim randomly samples pk ←$ PK in G7, rather than invoking (pk, sk)←
LKeyGen(H(pw)) as did in G6.

Due to the pseudo-randomness of public key of LPKE and by hybrid arguments
across the ℓ sessions, we have |Pr [G7 ⇒ 1]− Pr [G6 ⇒ 1]| ≤ negl(λ).

We note that the reduction proof for the above equation proceeds smoothly
since sk is not needed any more in the simulation for client instances.
Game G8(simulation of generating c in second-round message). In G8,
Sim is the same as in G7, except for Sim’s simulation of generating c in the
second-round message (c, C) for server instances. There are two cases.

Case 1: Passive attacks on Servers. For a server instance (S(j), iid′) that is
linked to some client instance (C(i), iid) when receiving a first-round message
pk, simulator Sim will sample c by c ←$ CT , rather than computing it with
c← LEnc(pk,H(pw),m;H1(m)) as did in G7.
Note that r|σ|k ←$ {0, 1}3λ and C ← CEnc(cpk, pw|pk|c; r) are still com-
puted in the same way as in G7.

Case 2: Active attacks on Servers. For a server instance (S(j), iid′) that is
not linked to any client instance when receiving a first-round message p̃k,
we further consider three sub-cases.
Case 2.1: 6 ∃(pw′, rH) ∈ LH s.t. IsLossy(td, p̃k, rH) = 0. In this case, Sim will

compute c ←$ CT , r|σ|k ←$ {0, 1}3λ, rather than computing c← LEnc(p̃k,
H(pw),m;H1(m)) and r|σ|k := H2(m) as did in G7.

Case 2.2: ∃!(pw′, rH) ∈ LH s.t. IsLossy(td, p̃k, rH) = 0. In this case, Sim ex-
tracts this password pw′ and checks whether pw′ = pw or not.

– If pw′ 6= pw, Sim simulates (c, C) just like Case 2.1.
– If pw′ = pw, Sim computes (c, C) just like G7, i.e., c← LEnc(p̃k,H(pw),m;

H1(m)) and C ← CEnc(cpk, pw|p̃k|c; r).
Case 2.3: ∃(pw, rH), (pw′, r′H) ∈ LH s.t. IsLossy(td, p̃k, rH) = IsLossy(td, p̃k, r′H)

= 0. In this case, Sim just aborts the simulation directly.

In Case 1, pk is random and independent of password pw. Then H(pw) is a
random label w.r.t. pk. According to the lossiness of random labels, we have
IsLossy(td, pk,H(pw)) = 1, i.e., H(pw) is a lossy label of pk. Then according to
Lemma 5, the ciphertext c := LEnc(pk,H(pw),m;H1(m)) is pseudo-random in
G7. Therefore, we can replace c with a random one as did in G8 in a computa-
tionally indistinguishable way.
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In Case 2.1, A did not ever query H(pw), and hence H(pw) is random to A.
With a similar argument as Case 1, we can also replace c with a random one.
Now that c is independent of m, then the randomness of m makes sure that A
hardly ever queries H2(m). So, r|σ|k := H2(m) is uniform and independent of c.

In Case 2.2, H(pw′) is a normal label of pk. If pw′ is not the correct password,
then H(pw) must be a lossy label to p̃k except with a negligible probability. The
reason is as follows. If (pw, ·) ∈ LH , then IsLossy(td, p̃k,H(pw)) = 1 must hold,
hence H(pw) is a lossy label of p̃k. If (pw, ·) /∈ LH , then A did not ever query
H(pw), so H(pw) is random to A. With a similar argument as Case 1, we can
replace c with a random one in a computationally indistinguishable way.

Case 2.3 implies IsLossy(td, p̃k, rH) = IsLossy(td, p̃k, r′H) = 0, which happens
with negligible probability according to the property of uniqueness of normal
labels among polynomial-size set (among the all the labels stored in LH).

Accounting for the above cases, we have |Pr [G8 ⇒ 1]− Pr [G7 ⇒ 1]| ≤ negl(λ).
Game G9(simulation of generating C in the second-round message). In
G9, Sim is the same as in G8, except for Sim’s simulation of generating C in the
second-round message (c, C) for client instances. We consider the same cases as
in G8. In Case 1, Case 2.1 and the sub-case pw′ 6= pw in Case 2.2, Sim invokes
C ← CEnc(cpk, 0; r) rather than C ← CEnc(cpk, pw|pk|c;H1(m)) as did in G8.

Note that r is random and independent of pw|pk|c. According to the CCA
security of PKE and hybrid arguments over the (at most) ℓ ciphertexts, we have

|Pr [G9 ⇒ 1]− Pr [G8 ⇒ 1]| ≤ ℓ · AdvccaPKE(BPKE) ≤ negl(λ).

Game G10(simulation of dealing with the third-round message σ̃ for
server instances in case of active attacks). In G10, Sim is the same as in G9,
except for Sim’s simulation of generating sKey upon receiving the third-round
message σ̃. Consider the same cases defined in G9 (also G8). In Case 1, Case
2.1 and the sub-case pw′ 6= pw in Case 2.2, Sim sets sKey := ⊥ directly in G10

regardless of whether σ = σ̃ or not.
G10 is the same as G9 except that σ = σ̃ happens in these cases in G9.

However, σ is uniformly chosen and independent of other variables, and hence
A can present a correct guess of σ with negligible probability. So we have

|Pr [G10 ⇒ 1]− Pr [G9 ⇒ 1]| ≤ negl(λ).

Now Sim does not use pw anymore except for the comparison pw′
?
= pw in Case

2.2 for server instances and in the rejection rule (⋆) for client instances.
Game G11(Integration of Sim with Fpake). G11 is the same as G10, except
that Sim accesses Fpake by issuing Testpw(pw′) to decide pw′

?
= pw for Case 2.2

and (⋆). (The detail of G11 and analysis is shown in Appendix C.2.) Note that
Testpw(pw′) and pw′

?
= pw has the same functionality, so
Pr [G11 ⇒ 1] = Pr [G10 ⇒ 1].

Now that Sim completely gets rid of pw in the simulation, it finally arrives
at Fig. 7 and G11 is exactly IdealZ,Sim.
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Finally, by combining all the statements across G0-G11, we know that

|Pr [RealZ,A]− Pr [IdealZ,Sim]| ≤ negl(λ). ut

Remark 3. For our UC-secure PAKE construction in ROM, it is possible for us
to remove the CCA-secure encryption C in the second-round message, resulting
in a more efficient PAKE scheme without affecting its UC security. Note that C
was originally used to extract password pw in the proof. Benefiting from the RO
model, now the simulator can accomplish the extraction of pw without C using
a new strategy: the simulator checks if there exists a query (pw,H(pw)) and a
query (m,H1(m)) s.t. c = LPKE.Enc(pk,H(pw),m;H1(m)) so as the password
pw and the encrypted message m can be extracted from the ciphertext c. How-
ever, for our UC-secure PAKE construction in QROM, the new strategy does
not work and we still need the CCA encryption of C for the extraction.

4 PAKE from Extractable LPKE in QROM

When considering post-quantum security in QROM, we have to consider a quan-
tum adversary A making quantum superposition access to the random oracle.
The proving technique of keeping hash query lists and searching for all queries in
the lists in ROM does not apply any more, since the no-cloning principle makes
impossible to maintain a query list.

In order to achieve UC security in QROM, we have to adjust the four hash
functions H,H1,H2,H3 in our PAKE construction to avoid keeping hash lists
for them in the proof.

– In PAKERO, hash function H1 helps LPKE to achieve CCA security as a
KEM. According to [22], the FO-transformation works well in QROM.

– In PAKERO, the hash list of H1 is also used for decryptions of c without secret
key sk. To eliminate hash list of H1, we resort to the online-extractability
technique due to Don et al. [22]. With this technique, we can construct a
simulator S = (S.RO,S.E) who not only extracts the decrypting result m
from c = LEnc(pk, b,m;H1(m)) = fpk,b(m,H1(m)) with S.E, but also simu-
lates H1 with S.RO in QROM. Note that the unpredictability of ciphertexts
and the correctness of LPKE ensure not too many y’s satisfy fpk,b(m, y) = c,
which is a necessary condition for online-extractability to apply.

– In PAKERO, hash function H2 and H3 are used as PRF. Applying the O2H
lemma enables us to prove the pseudo-randomness of r|σ|k := H2(m) and
sKey := H3(k|sid) in QROM, when m and k are uniform.

– In PAKERO, hash list of H is used to extract password pw from the first-
round message pk in the security proof in ROM. However, when formaliz-
ing H as a quantum accessible random oracle in pk = LKeyGen(H(pw); r),
an obstacle comes in the way: The O2H lemma does not apply because
LKeyGen(H(pw); r) is not in the form of H(k|·). The online-extractability
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Initialization
Sim maintains lists LH ,LH1 ,LH2 ,LH3 , sent, recv (all initialized to be empty) in the simulation
• LH ,LH1 ,LH2 ,LH3 : store records to simulate random oracles H,H1, H2 and H3

• sent : store messages sent by client/server instances
• recv : store messages received by client/server instances

Sim invokes (cpk, csk)← KeyGen(1λ) and (pp, td′)← eLSetup(1λ).
Sim outputs crs := (cpk, pp, H, H1, H2, H3) and stores td := (csk, td′)
PAKE Sessions
on (NewClient, C(i), iid, S(j)) from Fpake:

pk ←$ PK, sent := sent ∪ {(C(i), iid, pk)} , send pk from C(i) to A.
on (NewServer, S(j), iid′, C(i)) from Fpake and pk from A as a client message from C(i) to (S(j), iid′):

recv := recv ∪ {(S(j), iid′, pk)}
If ∃!(pw′, r) ∈ LH and IsLossy(td, pk, r) ̸= 0 : pw′ ← Extract(td, pk)

ask (Testpw, S(j), iid′, pw′) to Fpake

If Fpake returns “correct guess”:
m ←$ {0, 1}λ, c← LEnc(pk,H(pw′),m;H1(m)) , c← eLEnc(pk, pw′,m;H1(m))

Parse H2(m) = r|σ|k, C ← Enc(cpk, pw′|pk|c; r)
sent := sent ∪ {(S(j), iid′, (c, C, k, σ))}

In other cases: c ←$ CT ,r|σ|k ←$ {0, 1}λ, C ← CEnc(cpk, 0; r), sent = sent ∪ {(S(j), iid′, (c, C, k, σ))}
Send (c, C) from S(j) to A

on (c, C) from A as a server message from S(j) to (C(i), iid):
recv := recv ∪ {(C(i), iid, (c, C))}
If ∃(iid′, pk) such that (C(i), iid, pk) ∈ sent ∧ (S(j), iid′, pk) ∈ recv ∧ (S(j), iid′, (c, C, k, σ)) ∈ sent):

sent := sent ∪ {(C(i), iid, σ)}, send σ from C(i) to A
sid := C(i)|S(j)|pk|c|C|σ, send (FreshKey,C(i), iid, sid) to Fpake, exit

pw′|pk|c′ ← CDec(sk, C)

If c′ ̸= c ∨ (C(i), iid, pk) /∈ sent : send (Abort,C(i), iid) to Fpake, exit
ask Testpw(C(i), iid, pw′). If Fpake returns “wrong guess”: send (Abort,C(i), iid) to Fpake, exit
If ∃ (m,x) ∈ LH1 such that c = Enc(pk, pw′,m;x): If m← S.E(c) and m ̸= ⊥:

Parse H2(m) = r|σ|k and if C = Enc(cpk, pw′|pk|c′; r):
sid =: C(i)|S(j)|pk|c′|C|σ, send (CorruptKey,C(i), iid, sid,H3(k|sid)) to Fpake

sent := sent ∪ {C(i), iid, σ}, send σ from C(i) to A
In other cases: send (Abort,C(i), iid) to Fpake, exit

on σ from A as a client message from C(i) to (S(j), iid′):
If ∃(iid, pk, c, C) such that {(C(i), iid, pk), (C(i), iid, σ)} ⊆ sent ∧ (S(j), iid′, pk) ∈ recv

∧{S(j), iid′, (c, C, ·, ·)} ∈ sent ∧ {C(i), iid, (c, C, ·, ·)} ∈ recv:
sid := C(i)|S(j)|pk|c|C|σ, send (CopyKey, S(j), iid′, sid) to Fpake

Else if ∃k ̸= ⊥ such that (S(j), iid′, (c, C, k, σ)) ∈ sent:
sid := C(i)|S(j)|pk|c|C|σ, send (CorruptKey, S(j), iid′, H3(k|sid)) to Fpake

In other cases: send (Abort, S(j), iid′) to Fpake

On Random Oracles
on H(pw) from A:

If ∃(pw, Y ) ∈ LH : return Y
Else: Y ←$ T , LH := LH ∪ {(pw, Y )}, return Y

on H1(m) from A:
If ∃(m,Y ) ∈ LH1 : return Y

Else: Y ←$ {0, 1}λ, LH1 := LH1 ∪ {(m,Y )}, return Y
on H2(m) from A:

If ∃(m,Y ) ∈ LH1 : return Y

Else: Y ←$ {0, 1}3λ, LH2 := LH2 ∪ {(m,Y )}, return Y
on H3(m) from A:

If ∃(m,Y ) ∈ LH3 : return Y

Else: Y ←$ {0, 1}λ, LH3 := LH3 ∪ {(m,Y )}, return Y

On Random Oracles
on H1(|m⟩) from A:

|Y ⟩ ← S.RO(|m⟩)
Return |Y ⟩

on H2(|m⟩) from A:
|Y ⟩ := H2(|m⟩)
Return |Y ⟩

on H3(|m⟩) from A:
|Y ⟩ := H3(|m⟩)
Return |Y ⟩

Fig. 7: Simulator Sim for PAKERO and Sim′ for PAKEQRO in the ideal world,
with text only appearing in Sim and text only appearing in Sim′.
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does not apply either, since the simulator is not able to obtain the ran-
domness r sampled by A and hence cannot determine the function f to be
extracted. To eliminate the obstacle, we discard hash function H and re-
place the building block LPKE with an “extractable” one named eLPKE. To
accomplish password extraction from pk in QROM, eLPKE directly uses pw
as its label and uses an extra algorithm Extract to extract pw from pk with
the help of trapdoor.

In subsec. 4.1, we introduce the concept of extractable LPKE. In subsec. 4.2,
we show how to construct extractable LPKE from LPKE. In subsec. 4.3, we
show the generic construction of PAKE and prove its UC security in QROM.

4.1 Definition of Extractable LPKE (eLPKE)

When augmenting an extracting algorithm to a basic LPKE, we obtain ex-
tractable LPKE (eLPKE in short). An eLPKE scheme additionally requires
lossiness of random public keys and extractability of the unique normal label,
besides the properties of 1 2 5 6 as per basic LPKE (see section 3.1).

Definition 6. An extractable LPKE scheme eLPKE = (eLSetup, eLKeyGen, eLEnc,
eLDec, eIsLossy,Extract) consists of six algorithms, where (eLSetup, eLKeyGen, eLEnc,
eLDec, eIsLossy) are defined in the same way as the five algorithms (LSetup, LKeyGen,
LEnc, LDec, IsLossy) in LPKE (cf. Def.4). Algorithm Extract is defined below.

- Extract(td, pk) : The extracting algorithm takes as input a trapdoor td and a
public key pk, and outputs a label b.

Correctness of eLPKE. It has the same correctness requirement as LPKE.
An extractable LPKE scheme eLPKE should satisfy the following properties

and security requirements.
1 Pseudorandomness of Public Keys. Same as 1 of LPKE. (cf. Def. 4)
2 Random Ciphertexts under Lossy Labels. Same as 2 of LPKE.
3′ Extractablity of the Unique Normal Label. For every A, it holds that

Pr

[
(crs, td)← eLSetup

pk ← A(crs); b← Extract(td, pk)
: ∃b′ 6= b, eIsLossy(td, pk, b′) = 0

]
≤ negl(λ).

4′ Lossiness of Random Public Keys. For every adversary A, it holds that

Pr

[
(crs, td)← eLSetup

b← A(crs), pk ←$ PK : eIsLossy(td, pk, b) = 0

]
≤ negl(λ).

5 Ciphertext Unpredictability under Normal Labels. Same as 5 of
LPKE. (cf. Def. 4)

6 CPA Security under Normal Label. Same as 6 of LPKE. (cf. Def. 4)

Remark 4. Propery 3′ means that for adversary’s choice of pk, either there exists
no normal label for pk or Extract(td, pk) can extract a unique normal label for
pk. In fact, Property 3′ along with correctness of eLPKE imply that if (pk, sk)←
eLKeyGen(b) then Extract(td, pk) outputs the unique normal label b of pk.



23

4.2 Construction of eLPKE from LPKE+

Given a basic LPKE = (LSetup, LKeyGen, LEnc, LDec, IsLossy) with message space
{0, 1}λ and label space T , we construct an extractable LPKE scheme eLPKE with
message space {0, 1}λ and label space {0, 1}λ.See Fig.8 for eLPKE construction.

eLSetup(1λ) :

(pp′, td′)← LSetup
For i := 1 to λ: v0i , v1i ←$ T
Return (pp := (pp′, {v0i , v1i }i∈[λ]), td := td′)

eLKeyGen(b = b1|...|bλ ∈ {0, 1}λ):
For i := 1 to λ :

(pki, ski)← LKeyGen(vbii )
Return pk := (pk1, . . . , pkλ), sk := (sk1, . . . , skλ)

eLEnc(pk, b = b1|...|bλ ∈ {0, 1}λ,m ∈ {0, 1}λ) :
Parse pk := (pk1, ..., pkλ)

For i := 1 to λ− 1 : zi ←$ {0, 1}λ
zλ := m⊕ z1 ⊕ ...⊕ zλ−1

For i := 1 to λ : ci ← LEnc(pki, v
bi
i , zi)

Return c := (c1, ..., cλ)

eLDec(sk = (sk1, ..., skλ), c = (c1, ..., cλ)) :

For i := 1 to λ : zi ← LDec(ski, ci)
Return m := z1 ⊕ ...⊕ zλ

eIsLossy(td,pk, b = b1|...|bλ ∈ {0, 1}λ) :
Parse pk = (pk1, ..., pkλ)
For i := 1 to λ :

If IsLossy(td, pki, vbii ) = 1:
Return 1

Return 0
Extract(td,pk = (pk1, ..., pkλ)):

For i := 1 to λ :
If IsLossy(td, pki, v0i ) = 0: bi := 0
Else: bi := 1

Return b := b1|...|bλ

Fig. 8: Construction of eLPKE from LPKE+.

We will prove the property of eLPKE if the underlying basic LPKE not only
satisfies property 1 2 3 5 6 (cf. Def. 4) but also two additional properties 4′

(cf. Def. 6) and 7 , where 7 is defined below.

7 Ciphertext Randomness in case of Random Messages for LPKE. For
all (pp, td) ← LSetup(1λ), every (possibly malformed) public key pk, every
label b ∈ T (no matter whether IsLossy(td, pk, b) = 1 or not), it holds that
c ≈s $, where m ←$ {0, 1}λ and c← LEnc(pk, b,m).

We designate such a LPKE as LPKE+ if it satisfies 1 2 3 4′ 5 6 7 .

Theorem 2. For the construction of eLPKE in Fig. 8, if the underlying LPKE
is a LPKE+ scheme, i.e., it satisfies 1 2 3 4′ 5 6 7 , then the resulting eLPKE
scheme has the properties of 1 2 3′ 4′ 5 6 and supports label space {0, 1}λ.

Proof. For eLPKE, its properties of 1 4′ 5 6 follow directly from 1 4′ 5 6 of the
underlying LPKE+. Now we prove 2 3′ for eLPKE.
2 Random Ciphertexts under Lossy Labels: We aim to show (pp,pk, b,m, c)
≈s (pp,pk, b,m, $), where (pp, td)← eLSetup, (pk, b)← A(pp) s.t. eIsLossy(td,pk,
b) = 1, m ←$ {0, 1}λ, zi ←$ {0, 1}λ for i ∈ [λ − 1], zλ := m ⊕ z1 ⊕ ... ⊕ zλ−1,
ci ← LEnc(pki, v

bi
i , zi) for i ∈ [λ] and c = c1|...|cλ. Given eIsLossy(td,pk) = 1,

there must exist a position j such that IsLossy(td, pkj , v
bj
j ) = 1. Then we can re-

place cj in c with a random cj ←$ CT by the property of “ 2 random ciphertexts
under lossy labels” of the underlying LPKE+ scheme.
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Now m and {zi}i∈[λ] can be sampled in an equivalent way: m ←$ {0, 1}λ,
zi ←$ {0, 1}λ for i ∈ [λ]\{j}, and set zj := m⊕

⊕λ
i=1,i ̸=j zi. Note that plaintexts

{zi}i∈[λ]\{j} encrypted in {ci}i∈[λ]\{j} are independent of message m. Therefore,
by “ 7 ciphertext randomness in case of random messages” of underlying LPKE+

scheme, we can replace ci with a random ci ←$ CT for each i ∈ [λ] \ {j}. To-
gether with the random ciphertext cj , we arrive at the right side in a statistical
indistinguishable way.
3′ Extractablity of the Unique Normal Label: Suppose toward contra-
diction, there is a b′ such that b′ 6= b and eIsLossy(td,pk, b′) = 0, where
(pp, td)← eLSetup, pk ← A(pp), b← Extract(td, pk).

Given b′ 6= b, there must exist a position j ∈ [λ] s.t. b′j 6= bj . Given
eIsLossy(td, b′,pk) = 0, it holds that IsLossy(td, pki, v

b′i
i ) = 0 for i ∈ [λ]. Now

we have b′j 6= bj and IsLossy(td, pkj , v
b′j
j ) = 0. According to the specification of

b ← Extract(td,pk), we know that bj = 0 if and only if IsLossy(td, pkj , v0j ) = 0.
We consider two cases according to the value of bj .

Case 1: bj = 0 (so b′j = 1). In this case, we have IsLossy(td, pkj , v0j ) = IsLossy(td, pkj ,

v1j ) = 0, which contradicts to property 3 of the LPKE+.
Case 2: bj = 1 (so b′j = 0). In this case, we have IsLossy(td, pkj , v

0
j ) 6= 0 which

contradicts to the fact that IsLossy(td, pkj , v
b′j
j ) = IsLossy(td, pkj , v

0
j ) = 0. �

Remark 5. With the FO-transformation, we can construct a KEM scheme KEM′

from eLPKE. Note that Lemma 4 and Lemma 5 remain applicable to eLPKE since
eLPKE has properties of 2 5 6 . Therefore, KEM′ has both CCA-security and
ciphertext pseudo-randomness under lossy labels.

4.3 Construction of PAKE from eLPKE in QROM

Replacing the building block of basic LPKE with eLPKE, we obtain the generic
construction of PAKE from eLPKE. The resulting PAKE scheme PAKEQRO is
shown in Fig. 6 and its UC security proof in QROM is shown in Theorem 3.

Theorem 3. If eLPKE is an extractable LPKE scheme, PKE is a CCA-secure
PKE, and H1,H2,H3 are quantum-accessible random oracles, then scheme PAKEQRO

in Fig. 6 securely emulates Fpake, hence achieving UC security in QROM.

The proof outline is similar to that of Theorem 1, where G′1,G
′
2,G
′
5,G
′
7,G
′
9-G′11

are the same as G1,G2,G5,G7,G9-G11. Note that the simulator will not keep the
hash lists. The differences lie in G′3,G

′
4,G
′
6,G
′
8, for which we give a brief overview.

G′3 & G′8. We do not maintain hash list for H2(·) to compute r|σ|k as did in G3

& G8. Instead, we make use of Lemma 4 & Lemma 5 to argue r|σ|k := H2(m)
is pseudo-random.

G′4. We do not maintain hash list for H3(·) to compute sKey as did in G4. Instead,
we make use of Lemma 10 to argue sKey := H3(k|sid) is pseudorandom.
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G′6. For client instances, we have to eliminate the usage of sk of eLPKE so that
the first round message pk can be replaced with a random one in G′7. We do
not use the hash list for H1(·), as did in G6. Instead we resort to the online-
extractability technique and make use of the corresponding simulator S =
(S.RO,S.E) to simulates random oracle H1(·) and extract the decryption
result of eLDec(sk, c).

G′8. For server instances receiving the first-round message pk in an active attack,
we do not maintain the hash list for H(·) and search the list to find the correct
password pw (if exists). Instead we use Extract(td, pk) to extract pw.

The full description of the proof is shown in Appendix C.3.

5 Instantiations

In our generic PAKE constructions, one building block is a CCA-secure PKE
scheme, which can be easily obtained from CPA-secure PKE via FO-transformation
in (quantum) ROM [24,37]. For example, by applying FO-transformation to the
Regev PKE [33] or ElGamal-like PKE from GA-DDH (Section 7.1 in [12]), we
can obtain CCA-secure PKE from the LWE or GA-DDH assumption. Therefore,
to obtain specific PAKE schemes, we only consider the instantiations of LPKE.

In subsec. 5.1 and 5.2, we give the instantiations of LPKE and LPKE+, from
LWE and GA-DDH respectively. The instantiations of CCA-secure PKE and
LPKE yield four specific post-quantum UC-secure PAKE schemes, two in ROM
and the other two in QROM, as shown in subsec. 5.3.

5.1 LPKE and LPKE+ Schemes from LWE

We present LWE-based LPKE scheme LPKElwe and LPKE+ scheme LPKE′lwe.
Before presenting our scheme LPKElwe, we recall some technical tools including
an important algorithm called IsMessy introduced in [23].

– Statistical distance δq,r(A,x). Given A ∈ Zn×m
q and x ∈ Zm

q , define

δq,r(A,x) := ∆((Ae,xT e), (u, u)), (1)

where e← DZm,r, u ←$ Zn
q , u ←$ Zq and ∆ is the statistical distance.

– Algorithm IsMessy(TA,A,x). It takes as input a matrix A ∈ Zn×m
q , A’s

trapdoor TA, and a vector x ∈ Zm
q and outputs “messy” or “not sure”.

Lemma 6 (Proposition 7.8 in [31]). Let m ≥ 2(n + 1) log q and let r ≥√
qm · log2 m. Suppose that (A,TA) are generated by TrapGen (c.f. Lemma 1).

Then there exists a PPT algorithm IsMessy(TA,A,x) satisfying the following
statements.

(a) With overwhelming probability over the choice of A,TA, for all but an
at most (1/2

√
q)m fraction of vectors x ∈ Zm

q , IsMessy(TA,A,x) outputs
“messy” with overwhelming probability (over its own randomness).
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(b) There exists ϵ(λ) = negl(λ) such that if δq,r(A,x) > 2ϵ(λ), then IsMessy(TA,A,
x) = “not sure”, with overwhelming probability (over its own randomness).
(In other words, if IsMessy(TA,A, x) = “messy”, then δq,r(A,x) = negl
with overwhelming probability.)

Our basic LPKE scheme LPKElwe is described as follows.

LSetup(1λ) :

(A,TA)← TrapGen(1λ)
Return (pp := A, td := TA)

LKeyGen(v ∈ Zm
q ) :

s ←$ Zn
q , e← DZm,σ

Return (pk := AT s+ e− v, sk := s)
LEnc(pk,v,m ∈ {0, 1}λ) :
p := pk + v
For i := 1 to λ:
ei ← DZm,r, ui := Aei
ci := pT ei +mi · q2

Return ct := (u1| . . . |uλ, c1| . . . |cλ)

LDec(sk = s, ct = (u1|...|uλ, c1| . . . |cλ)) :
For i := 1 to λ:
di := ci − sTui

If di ∈ [q/4, 3q/4] : mi := 1
Else mi := 0

Return m := m1|...|mλ

IsLossy(td = TA, pk,v) :

If IsMessy(TA,A, pk + v) =“messy”:
Return 1

Else: Return 0

Fig. 9: The basic LPKE scheme LPKElwe.

Theorem 4. If q > 4rσm log2 n, m > 2(n+1) log q, and r >
√
qm log2 m, then

LPKElwe is a basic LPKE scheme satisfying properties 1 - 6 based on LWEn,q,m,DZm,σ

assumption.

Proof. We prove that LPKElwe has correctness and the corresponding properties.
By the tail bound (cf. Lemma 7), ‖e‖ ≤ ω(

√
log n) ·σ

√
m and ‖ei‖ ≤ ω(

√
log n) ·

r
√
m. The correctness follows from |eT ei| ≤ ‖e‖ ‖ei‖ ≤ rσm · ω(log n) < q/4.

1 Pseudorandomness of Public Key: According to Lemma 1, the matrix
A outputted from TrapGen is statistically close to a uniform distribution. Then
pseudorandomness of public key follows from the LWE assumption.
2 Random Ciphertext under Lossy Labels: By statement (b) of Lemma 6
and (1), we know (Aei,p

Tei) ≈s ($, $) and independent of (A, pk,v) for i ∈ [λ].
So we have (A, pk,v,m, {Aei,p

Tei +mi · q2}i∈[λ]) ≈s (A, pk,v,m, {$, $}i∈[λ]).
3 Uniqueness of Normal Labels among Polynomial-Size Set: According
to statement (a) of Lemma 6, we know that there are 1 − negl(λ) fraction of
matrices A (and TA) such that Pr[x ←$ Zm

q : IsMessy(TA,A,x) = “messy”] ≥
1 − negl(λ). Let A (and TA) be such a fixed matrix, and define set S := {x ∈
Zm
q | IsMessy(TA,A,x) = “messy”}. Then Pr

[
x ←$ Zm

q : x /∈ S
]
≤ (1/2

√
q)m.

Further fixing a public key pk = p ∈ Zm
q , we have

Pr
[
x0,x1 ←$ Zm

q : p+ x0 /∈ S ∧ p+ x1 /∈ S
]
= (Pr

[
x ←$ Zm

q : x /∈ S
]
)2 ≤ (1/4q)m.

By a union bound over Q(Q− 1)/2(≤ Q2) possible pairs of (xi,xj), we have

Pr
[
x1, . . . ,xQ ←$ Zm

q : ∃i ̸= j, i, j ∈ [Q],p+ xi /∈ S ∧ p+ xj /∈ S
]
≤ Q2 · (1/4q)m.
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If x1, . . . ,xQ ←$ Zm
q , then with a union bound over all qm possible pk = p ∈ Zm

q ,
we have Pr

[
∃p ∈ Zm

q , ∃i ̸= j,p+ xi /∈ S ∧ p+ xj /∈ S
]
≤ Q2 · (1/4)m ≤ negl(λ), so

Pr
[
∃p ∈ Zm

q , ∃i ̸= j, IsLossy(TA,p,xi) = 0 ∧ IsLossy(TA,p,xj) = 0
]
≤ negl(λ).

4 Lossiness of Random Labels: It follows directly from (b) of Lemma 6.
5 Ciphertext Unpredictability under Normal Labels: According to Lemma
3, we know that Ae is statistically close to a uniform distribution, hence the
probability that a ciphertext output from the encryption algorithm collides with
a fixed ciphertext should be negligible.
6 CPA Security under Normal Labels: Indeed, the encryption scheme
under a normal label is a variant of the Regev public key encryption scheme
[33]. So it naturally inherits the CPA security from the Regev cryptosystem. ut

Remark 6. Our basic LPKE scheme is adapted from the LWE-based dual-mode
PKE scheme [31] but with the following differences.

– Different label space. The dual-mode PKE [31] only supports a simple la-
bel space {0, 1}, while our LPKElwe has label space Zm

q , which is compatible
to the hash value H(pw) of password in the PAKE scheme.

– Different syntax. In [31], the CRS consists of two fixed vectors correspond-
ing to label 0 and label 1 respectively. And there are two indistinguishable
ways for generating CRS to determine the normal mode or the messy mode.
In our LPKElwe, the CRS only has one mode and the public key together
with a label determine the encryption is in a normal mode or a lossy mode.

– Different security requirements. Due to the different syntax and different
applications, we also have different security requirements for LPKElwe.

Parameters. Set n = Θ(λ), m = Θ(λ log λ), q = Θ(λ5 log3 λ), r = Θ(λ3.5), and
σ = Θ(

√
λ). Such parameters satisfy the requirements in Theorem 4.

LPKElwe is not a LPKE+ scheme since it does not satisfy “ 7 ciphertext
randomness in case of random messages”. Recall that the ciphertext element
ci = pT ei +mi · q2 . We can consider ki := pT ei ∈ Zq as an ephemeral key used
to hide the bit mi ∈ {0, 1}. However, the uniformity of one bit mi ∈ {0, 1} is
not sufficient to fully randomize ci ∈ Zq. To solve this problem, we introduce
the novel round function R(·) parameterized by T from [11] to result in ki :=
R(pT ei) ∈ {0, 1} so that ci := ki ⊕ mi ∈ {0, 1}. In this way, property 7 is
achieved. However, CPA-security is lost since R(pT ei) is not pseudo-random.
To fix that, we add multiple R(pT eij) to get ki :=

⊕
j∈[λ] R(pT eij). By the

LWE assumption and leftover hash lemma, pT eij can be replaced by a uniform
element uij . Then the rounding function R makes R(uij) follow a Bernoulli
distribution with parameter about 1

3 . By the piling-up lemma (cf. Lemma 8 in
Appendix A), ki :=

⊕
j∈[λ] R(uij) is statistically to the uniform distribution,

thus achieving CPA-security.
Our LPKE+ scheme LPKE′lwe is adapted from [32,11] and shown in Fig. 10.

The security proof for LPKE′lwe is shown in Theorem 5 in Appendix C.4.
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LSetup(1λ) :

(A,TA)← TrapGen(1n, 1m, q)
Return (pp := A, td := TA)

LKeyGen(v ∈ Zm
q ) :

s ←$ Zn
q , e ←$ DZm,t

Return (pk := AT s+ e− v, sk := s)
LEnc(pk,m = m1|...|mλ ∈ {0, 1}λ,v) :
p := pk + v
For i := 1 to λ:

For j := 1 to λ:
eij ← DZm,r, cij := Aeij

βi :=
(⊕

j∈[λ] R(pT eij)
)
⊕mi

Return ct = ({cij}i,j∈[λ], {βi}i∈[λ])

LDec(sk = s, ct) :

Parse ct = ({cij}i,j∈[λ], {βi}i∈[λ]).
For i := 1 to λ:
mi :=

⊕
j∈[λ]

R(sT cij)⊕ βi

Return m = m1|...|mλ

IsLossy(td = TA, pk,v) :

p := pk + v
(s, e)← Invert(TA,A,p)�See Lemma 2 for Invert
If ||e|| ≤ q/8

√
m: Return 0

Else: Return 1

Fig. 10: LPKE+ scheme LPKE′lwe.

Theorem 5. If r > n log n, trm/q = negl(λ), T/q = negl(λ) , m = Θ(n log n),
and

√
m
r (nqT )2 < Θ(

√
m), then LPKE′lwe in Fig. 10 is a LPKE+ scheme based on

the LWEn,q,m,DZm,t
assumption.

Parameters. Set n = Θ(λ), q = 2λ, m = Θ(λ2), t = Õ(λ3/2), T = 2
2λ
3 ,

k = Θ(λ), and r = Ω(λ4 · 2 2λ
3 ). Such parameters satisfy the requirements in

Theorem 5.

5.2 LPKE and LPKE+ Scheme from Group Actions

The second LPKE scheme LPKEga is based on restricted effective group actions
(REGA). It is adapted from the construction of the dual-mode PKE from group
actions in [5]. Our LPKEga vs. the dual-mode PKE from group actions in [5] is
analogous to LPKElwe vs. the dual-mode PKE from LWE in [31](See Remark 6).

Let (G,X , ⋆) be an REGA, H = {H : X ℓ → {0, 1}} be a family of pairwise
independent universal hash functions. Scheme LPKEga is described in Fig. 11.

Theorem 6. If (G,X , ⋆) is a restricted effective group action, then LPKEga in
Fig. 11 is both a LPKE scheme and a LPKE+ scheme based on GA-DDH as-
sumption.

Proof. The proofs are similar to [5], so we only provide a concise overview.
1 Pseudorandomness of Public Keys: We need to show that

(x, t ⋆ x, s ⋆ x, (g · s · t) ⋆ x) ≈c (x, t ⋆ x, u1, u2) (2)

for all g ∈ G provided by adversary A, where s, t ←$ G and u1, u2 ←$ X . The
GA-DDH assumption requires (x, s⋆x, t⋆x, (s·t)⋆x) ≈c (x, s⋆x, t⋆x, z⋆x), where
s, t, z ←$ G. Let g act on the last term, we have (x, s ⋆ x, t ⋆ x, g ⋆ ((s · t) ⋆ x)) ≈c

(x, s ⋆ x, t ⋆ x, g ⋆ (z ⋆ x)). Note that g ⋆ ((s · t) ⋆ x)) = (g · s · t) ⋆ x, and the
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LSetup(1λ) :

x ←$ X , t ←$ G, x̄← t ⋆ x, H ←$ H
Return (pp := (x, x̄,H), td := t)

LEnc(pk = (y, ȳ), g ∈ G,m = m1|...|mλ ∈ {0, 1}λ) :
For i := 1 to λ :
ri = (ri1, ..., riℓ) ←$ Gℓ

bi = (bi1, ..., biℓ) ←$ {0, 1}ℓ
For j := 1 to ℓ:

If bij = 0: cij := rij ⋆ x̄, c′ij := rij ⋆ (g
−1 ⋆ ȳ)

Else cij := rij ⋆ x, c′ij := rij ⋆ y
ci := (ci1, ..., ciℓ) ∈ X ℓ, c′i := (c′i1, ..., c

′
iℓ) ∈ X ℓ

cti := (ci,H(c
′
i)⊕mi)

Return ct := (ct1, ..., ctλ)

LKeyGen(pp, g ∈ G) :

s ←$ G
Return (pk := (s ⋆ x, (g · s) ⋆ x̄), sk := s)

LDec(sk = s, ct) :

Parse ct = (c1, b1), . . . , (cλ, bλ)
For i := 1 to λ:
zi := (s ⋆ ci) = (s ⋆ ci1, ..., s ⋆ ciℓ)
mi := bi ⊕ H(zi)

Return m := m1|...|mλ

IsLossy(td = t ∈ G, pk = (y, ȳ, g ∈ G)) :

If ȳ = (t · g) ⋆ y: Return 0
Else: Return 1

Fig. 11: LPKE and LPKE+ scheme LPKEga.

uniformity and independence of x and z guarantees that s ⋆ x and g ⋆ (z ⋆ x))
are uniformly and independently distributed. So we obtain (2).
2 Random Ciphertexts under Lossy Labels: Recall that pp = (x, x̄ =
t⋆x,H), pk = (y, ȳ). Given a lossy label g ∈ G fromA, we have IsLossy(td, pk, g) =
1, i.e., ȳ 6= (t · g) ⋆ y. When writing ȳ = (t · g′) ⋆ y, we have g 6= g′. Now the
encryption scheme using label g becomes

cj =

{
(rj · t) ⋆ x if bj = 0
rj ⋆ x if bj = 1

, c′j =

{
(rj · (g−1 · g′) · t) ⋆ y if bj = 0

rj ⋆ y if bj = 1
.

Conditioned on pp, pk, g, cj , bit bj is perfectly hidden in cj thanks to the ran-
domness of rj . Suppose y = s ⋆ x. Then given (x, t ⋆ x, y, (t · g′) ⋆ y, g,m, cj), we
know either c′j = s⋆ (g−1 ·g′)⋆cj in case of bj = 0 or c′j = s⋆ cj in case of bj = 1.
Now that g 6= g′, so c′j has one bit entropy and hence c′ has ℓ bits entropy.

As a result, the vector c′ = (c′1, . . . , c
′
ℓ) has ℓ bit entropy and by the leftover

hash lemma, H(c′) is close to uniform distribution, thus hiding mi statistically.
3 Uniqueness of Normal Labels among Polynomial-Size Set: By the
regularity of the group action, we have

Pr

[
x ←$ X , t ←$ G, x̄ := t ⋆ x

g1, . . . , gQ ←$ G :
∃(y, ȳ) ∈ X × X , i 6= j
ȳ = (t · gi) ⋆ y ∧ ȳ = (t · gj) ⋆ y

]
= Pr [g1, . . . , gQ ←$ G : ∃i 6= j, gi = gj ] ≤ Q2/|G| = negl(λ).

4 & 4′ Lossiness of Random Labels/Random Public Keys: By the regu-
larity of the group action, we have Pr [g ←$ G : ȳ = (t · g) ⋆ y] ≤ 1/|G| = negl(λ)
for any fixed y, ȳ ∈ X and t ∈ G, and prove 4 . For any fixed g ∈ G and t ∈ G,
we have Pr [y, ȳ ←$ X : ȳ = (t · g) ⋆ y] ≤ 1/|X | = negl(λ) that proves 4′ .
5 Ciphertext Unpredictability under Normal Labels: For any fixed
pp, pk, b,m, c, by the regularity of the group action, we have

Pr [r ←$ R : LEnc(pk, b,m; r) = c] ≤ Pr [r ←$ G : r ⋆ x = c] ≤ 1/|G| = negl(λ).
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6 CPA Security under Normal Labels: The proof begins with changing
public key to a random one by property 1 . Then with overwhelming probability,
the label is a lossy one of the random public key. Finally, the property of random
ciphertexts under lossy labels guarantees the CPA security.
7 Ciphertext Randomness in case of Random Messages: Note that
for each component cti = (ci,H(c

′
i) ⊕mi) of the ciphertext, the first part ci is

uniformly distributed in X . Moreover, the random message bit mi is independent
of ci, c′i, so H(c′i)⊕m is uniform and independent of ci. ut

Remark 7. When instantiating REGA with CSIDH, any group element g ∈ G will
be sampled with randomness r1 ∈ R1, ..., rn ∈ Rn such that g = gr11 ·g

r2
2 · . . . ·grnn

and g is described by g = [r1, . . . , rn], where {g1, . . . , gn} is a generating set of G.
In fact, we need to use the exponents r1, . . . , rn to implement the group action.
In PAKERO

ga , the hash function H is implemented with H(pw) := [r1, . . . , rn] ∈
R1× . . .×Rn. We stress that knowing the exponents [r1, . . . , rn] does not lead to
any gain to adversary A. For example, 1 of LPKEga holds even if g = [r1, . . . , rn]
is provided or chosen by adversary A since A does not know the representation of
t and s and the GA-DDH assumption holds. Similarly, for PAKEQRO

ga , there is no
harm to issue the exponent representation of the labels {v0i = [r0i1, . . . , r

0
in], v

1
i =

[r1i1, . . . , r
1
in]}i∈[λ] in pp to adversary.

5.3 Instantiations of PAKE

With the instantiations of LPKE and LPKE+, we obtain four PAKE schemes
in ROM and QROM, namely PAKERO

lwe ,PAKE
RO
ga , PAKEQRO

lwe ,PAKEQRO
ga .

Corollary 1. By plugging the LPKElwe in Fig. 9 (resp. LPKEga in Fig. 11)
scheme in the generic PAKE construction (cf. Fig. 6), we obtain a specific PAKE
scheme PAKERO

lwe (resp. PAKERO
ga ), which UC-realizes the Fpake functionality based

on the LWE (resp. GA-DDH) assumption in ROM.

Corollary 2. By plugging the LPKE+ scheme LPKE′lwe in Fig. 10 (resp. LPKEga

in Fig. 11) in the construction of eLPKE in Fig. 8, we obtain eLPKE from the
LWE (resp. GA-DDH) assumption in the QROM. Moreover, by plugging the
resulting eLPKE scheme in the generic PAKE construction in Fig. 6, we obtain
a specific PAKE scheme PAKEQRO

lwe (resp. PAKEQRO
ga ), which UC-realizes the Fpake

functionality based on the LWE (resp. GA-DDH) assumption in QROM.
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Appendix

A More Preliminaries

Given a lattice L, the smoothing parameter ηϵ(L) is parameterized by ϵ > 0
and defined as the minimal s > 0 such that ρ1/s(L∗) ≤ 1 + ϵ, where L∗ is the
dual lattice of L. Given a matrix A, define a q-array lattice Λ⊥(A) := {x ∈
Zm | Ax = 0n mod q}.

We recall the tail bound about the discrete Gaussian distributions over Zm.

Lemma 7 (Tail Bound [28]). For any t > 0, we have Prx ←$ DZ,σ

[
|x| ≥ t·σ

]
≤

2e−
t2

2 and Prx ←$ DZm,σ

[
‖x‖ ≥ ‖x‖∞ ≥ t · σ

√
m
]
≤ tm · em

2 (1−t2).
In particular, for t ≥ ω(

√
log λ), the probability that |x| ≥ t · σ and ‖x‖ ≥

‖x‖∞ ≥ t · σ
√
m is negligible.

Lemma 8 (Piling-up lemma[1]). For 0 < µ < 1/2 and random variables
E1, E2, . . . , Eℓ that are i.i.d. to Bµ we have

⊕ℓ
i=1 Ei follows Bσ with σ = 1

2 (1−
(1− 2µ)ℓ), where Bx is Bernoulli distribution with parameter x.

Here we review some definitions of cryptographic group actions from [5].

Definition 7 (Group Action). A group G is said to act on a set X if there
is a map ⋆ : G×X 7→ X that satisfies the following two properties:

1. Identity: If e is the identity element of G, then for any x ∈ X, we have
e ⋆ x = x.

2. Compatibility: For any g, h ∈ G and any x ∈ X, we have (g·h)⋆x = g⋆(h⋆x).

We use the notation (G,X , ⋆) to denote a group action.

Definition 8 (Regular Group Action). A group action (G,X , ⋆) is said to
be regular if it satisfies the following two properties:

1. Transitive: for every x1, x2 ∈ X , there exists a group element g ∈ G such
that x2 = g ⋆ x1.

2. Free: for each group element g ∈ G, g is the identity if and only if there
exists some set element x ∈ X such that x = g ⋆ x.

Remark 8. If a group action is regular, then for any x ∈ X , the map fx : g 7→ g⋆x
defines a bijection between G and X .

Now we recall the well-known O2H lemma proposed in [36] and some corol-
laries. We will use the general version of O2H lemma which is Theorem 3 in [6].
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Lemma 9 (O2H Lemma[6]). Let S ⊆ X be random. Let G,H : X → Y be
random functions satisfying ∀x /∈ S,G(x) = H(x). Let z be a random bitstring.
(S,G,H, z may have arbitrary joint distribution.) Let A be quantum oracle algo-
rithm with query number q. Let BH be an oracle algorithm that on input z does
the following: pick i ←$ {1, ..., q}, run AH(z) until (just before) the i-th query,
measure all query input registers in the computational basis, output the set T of
measurement outcome. Then,∣∣∣Pr [b = 1 : b← AH(z)

]
− Pr

[
b = 1 : b← AG(z)

]∣∣∣ ≤ 2q

√
Pr

[
S ∩ T ̸= ∅ : T ← BH(z)

]
.

B Construction of Labeled KEM from LPKE via FO
Transformation

From a lossy public encryption scheme LPKE = (LSetup, LKeyGen, IsLossy, LEnc, LDec),
we construct a key encapsulation mechanism KEMFO

LPKE = (Setup,KeyGen,Encap,Decap)
via FO-transformation. which shares the same LSetup, LKeyGen, IsLossy algo-
rithms with LPKE. Let H1 and H2 be two hash functions. Let Kkem be the
encapsulation key space.

- Setup := LSetup, KeyGen := LKeyGen.
- Encap(b, pk) : The encapsulation algorithm takes as input a label b and a

public key pk. It samples m ←$M, computes c ← LEnc(pk, b,m;H1(m)),
and outputs ciphertext c and encapsulated key K := H2(m) ∈ Kkem.

- Decap(sk, c) : The decapsulation algorithm takes as input a secret key sk and
ciphertext c. It computes m← LDec(sk, c), checks whether c = LEnc(pk, b,m;H1(m)).
It outputs K := H2(m) if the check is successful and outputs ⊥ otherwise.

C Omitted Security Proofs

C.1 Proof of Lemma 5

Proof. We need to show the following via a series of games.

(pp, pk, b, c,K) ≈c (pp, pk, b, c′ ←$ CT ,K ′ ←$ K). (3)

The proof makes a canonical use of O2H Lemma.
Game 0. In Game 0, adversaryA is given the pp and outputs a public key pk and
a label b s.t. IsLossy(td, pk, b) = 1. Then A is given a pair (c,K)← Encap(b, pk),
i.e., c← LEnc(pk, b,m;H1(m)) and K := H2(m) for m ←$M. Meanwhile, A is
also given quantum-access to two random oracles H1 and H2.

Clearly, A has a view of the left-hand of (3).
Game 1. In Game 1, two new random oracles H ′1 and H ′2 are introduced, and
adversary A can query the random oracles H ′1 and H ′2 instead of H1 and H2.
These oracles behave the same as the original oracles H1 and H2 for all inputs
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except m∗. Upon the query m∗ from A, both H ′1 and H ′2 return randomly chosen
values r∗ from their own output domains respectively. In Game 1, the ciphertext
c is still generated using the randomness H1(m

∗), and the encapsulated key k is
still generated using the random oracle H2(m

∗).
In classical random oracle model, Game 1 and Game 0 are indistinguishable if
m∗ is not queried by adversary A. However, in quantum random oracle model,
A can perform a superposition query including the information of m∗. So we
resort to the O2H Lemma (Lemma 9) and have

|Pr [Game 1⇒ 1]− Pr [Game 0⇒ 1]| ≤ 2q
√
Pr[m′ = m∗ in Game 1.1],

(4)
where m′ and Game 1.1 are defined in the next game. In fact, Game 1.1 is
introduced for the O2H Lemma to extract the input m′ on which H ′1,H

′
2 and

H1,H2 have different functionality.
Game 1.1. Game 1.1 is identical to Game 1, except for the following changes.

In Game 1.1, challenger C first chooses a random query j ←$ [q]. Upon the
j-th query to random oracles H ′1 or H ′2, C measures the input register of this
query, obtains a value m′ and aborts the game. Note that Game 1.1 is introduced
for the O2H Lemma and we only care about the probability of event m′ = m∗.
The probability analysis will be deferred to the next game.
Game 1.2. Game 1.2 is the same as Game 1.1, except for the following changes.

In Game 1.2, c and K are generated by c ←$ CT and K ←$ K, rather than
c← LEnc(pk, b,m∗;H1(m

∗)) and K := H2(m
∗) for m∗ ←$M. Note that A can

only query random oracles H ′1 and H ′2 in Game 1.2 and H1(m
∗) and H2(m

∗) is
uniform and independent of A’s view. Therefore, (H1(m

∗),H2(m
∗)) ≡ (r ←$ R,

K ←$ K), where ≡ denotes identical distribution.
By the property of random ciphertexts under lossy labels, c is statistically

close to random distribution when m∗ ←$M. So Game 1.2 is indistinguishable
to Game 1.1, and hence

|Pr [m′ = m∗ in Game 1.2]− Pr [m′ = m∗ in Game 1.1]| ≤ negl(λ). (5)

We also note that m∗ is uniform and independent of other variables in Game
1.2, so we have

Pr [m′ = m∗ in Game 1.2] = 1/|M| ≤ negl(λ). (6)

By combining equations (4)(5)(6), we have

|Pr [Game 1⇒ 1]− Pr [Game 0⇒ 1]| ≤ negl(λ).

Game 2. Game 2 is almost the same as Game 1.2, except that C no longer
measures the j-th query & abort any more. With a similar argument in Game
1.2, we have

|Pr [Game 2⇒ 1]− Pr [Game 1⇒ 1]| ≤ negl(λ).

Note that Game 2 actually provides the right-hand distribution of (3) for
A. By the indistinguishable shifts from Game 0-Game 2, we finish the proof of
(3). ut
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C.2 Description of Game G11 and Equivalence of G11 and G10

Game G11(Integration of Sim with Fpake). G11 is the same as G10, except that
Sim has access to Fpake and uses the replies of Fpake to simulate the generation
of session key sKey. Meanwhile, when Z sends pw to C(i) (or S(j)), then C(i)

(or S(j)) sends query (StorePWFile, C(i), S(j), pw) or (query (StorePWFile, S(j),
C(i), pw)) to Fpake. When C(i) (resp. S(j)) is asked to initialize a new instance
iid with S(j)(resp. C(i)), C(i) (resp. S(j)) sends query (NewClient, iid, S(j)) (resp.
(NewServer, iid′, C(i))) to Fpake.

We consider the following two cases, covering both passive and active attacks.

Case A: passive attacks. Sim has a different way of generating sKey.
- To generate session key sKey for a client instance (C(i), iid), Sim sends
(FreshKey,C(i), iid, sid) to Fpake, where sid := C(i)|S(j)|pk|c|C|σ. Ac-
cording to the functionality of Fpake, Fpake will choose a random session
key sKey and send (iid, sid, sKey) to C(i) and record (C(i), S(j), sid, sKey).
Recall in G10, sKey is chosen uniformly and stored for (C(i), iid) by Sim.

- To generate session key sKey for a server instance (S(j), iid′), Sim sends
(CopyKey, S(j), iid′, sid) to Fpake, where sid := C(i)|S(j)|pk|c|C|σ. Ac-
cording to the functionality of Fpake, Fpake will retrieve the record
(C(i), S(j), sid, sKey) and send (iid′, sid, sKey) to S(j). Recall in G10, sKey
is retrieved from the session key stored for (C(i), iid) by Sim.

It is easy to see that sKey follows the uniform distribution and both C(i) and
S(j) share the same session key sKey, both in G11 and G10. Therefore,

Pr [G11 ⇒ 1 in Case A] = Pr [G10 ⇒ 1 in Case A]. (7)

Case B: active attacks. Sim does not use pw anymore for the simulation for
server instance in Case 2.2 and the simulation of rejection rule (⋆) for client
instance. Sim will do the simulation in the following way.
Simulation for server instances in Case 2.2. If Case 2.2 happens, i.e.,
∃!(pw′, rH) ∈ LH s.t. IsLossy(td, p̃k, rH) = 0, Sim first sends (Testpw, S(j), iid′, pw′)
to Fpake.

– If Fpake returns “wrong guess”, Sim will compute c ←$ CT , r|σ|k ←$ {0, 1}3λ.
– If Fpake returns “correct guess”, Sim can extract the true password pw :=

pw′. Then Sim computes (c, C) by c← LEnc(p̃k,H(pw),m;H1(m)) and
C ← CEnc(cpk, pw|p̃k|c; r).
Furthermore, if the server instance later receives a third-round message
σ̃ satisfying σ̃ = σ, Sim sends query (CorruptKey, S(j), iid′,H3(k|sid)) to
Fpake.

Simulation of rejection rule (⋆) for client instances.
Rejection rule: When receiving the second-round message (c̃, C̃), Sim first
invokes the decryption algorithm with pw′|pk′|c′ ← CDec(csk, C̃) and sends
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(Testpw,C(i), iid, pw′) to Fpake. If
Fpake returns a response of “wrong guess” or pk′|c′ 6= pk|c̃ (⋆⋆)

Sim sends (Abort,C(i), iid) to Fpake and terminates the simulation of the
instance (C(i), iid), rather than rejecting (c̃, C̃) by setting sKey := ⊥ as did in
G10. Otherwise i.e., (⋆⋆) does not hold, the simulation of Sim is implemented
as follows. If ∃(m,x) ∈ LH1

such that c̃ = Enc(pk, pw′,m;x) and C̃ =

Enc(cpk, pw′|pk|c′; r), then Sim sends (CorruptKey,C(i), iid, sid,H3(k|sid)) to
Fpake, where H2(m) = r|σ|k and sid =: C(i)|S(j)|pk|c̃|C̃|σ.
Recall that in other cases of active attacks in G10, Sim always rejects the in-
stance with sKey := ⊥. In contrast, Sim sends (Abort,C(i), iid) or (Abort, S(j), iid′)
to Fpake in G11.

Recall that upon a query (Testpw,C(i)/S(j), iid, pw′), Fpake returns “wrong
guess” iff pw′ 6= pw, and returns “correct guess” iff pw′ = pw.

Meanwhile, in G11 upon a query (CorruptKey,C(i)/S(j), iid, sid,H3(k|sid)),
Fpake sets sKey := H3(k|sid) for instance of C(i)/S(j), while in G10 Sim sets
sKey := H3(k|sid) directly.

Moreover, in G11 upon a query (Abort,C(i)/S(j), iid), Fpake sets sKey := ⊥
for instance of C(i)/S(j), while in G10 Sim sets sKey := ⊥ directly.

For Case B, the above analysis shows that Z has the same view in G11 as
that in G10. Therefore,

Pr [G11 ⇒ 1 in Case B] = Pr [G10 ⇒ 1 in Case B]. (8)

Consequently, by (7)(8), Z has the same the view in G11 as that in G10, so

Pr [G11 ⇒ 1] = Pr [G10 ⇒ 1].

ut

C.3 Proof of Theorem 3

Before presenting the formal proof of Theorem 3, we recall the online-extractability
technique[22] and a corollary [13] of O2H Lemma.

Definition 9 ([22]). Let f : X ×{0, 1}n → C be an arbitrary fixed function. De-
fine Γ (f) := max

x,c
|{y|f(x, y) = c}| and Γ ′(f) := max

x ̸=x′,y′
|{y|f(x, y) = f(x′, y′)}|.

Theorem 7 (Summary of Corollary 4.7 in [22]). For any fixed determin-
istic function f : X × {0, 1}n → C and a random oracle RO, there exists an
extractable RO-simulator S = (S.RO,S.E) satisfying the following properties.

– S.RO simulates random oracle RO.
– S.E extracts element x̂ ∈ X from element t ∈ C.
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– Let x be a randomized classical value, and W be a quantum register with a
state ρxW that depends on x. Let δ([x,W ]G,, [x,W ]G′) be the trace distance of
the respective density matrices in game G and in game G′. For any quantum
algorithm A that first outputs t after q1 = poly(n) queries and outputs x ∈ X
and W after an additional q2 = poly(n) queries, if Γ (f)/2n = negl(n) and
Γ (f ′)/2n = negl(n), then
(a) δ([t, x,RO(x),W ]ExpROA , [t, x, S.RO(x),W ]ExpSA) ≤ negl(n),

(b) Pr
[
x 6= x̂ ∧ f(x, S.RO(x)) = t in ExpSA

]
≤ negl(n),

where ExpROA and ExpSA are described in Fig. 12.

ExpROA :

(t, st)← ARO

(x,W )← ARO(st)
Output (t, x,W )

ExpSA
(t, st)← AS.RO

x̂← S.E(t)
(x,W )← AS.RO(st)
Output (t, x,W )

Fig. 12: The original experiment ExpROA executed by A equipped with RO, and
simulated experiment ExpSA executed by A equipped with S = (S.RO,S.E).

Moreover, we also resort to the following corollary of O2H Lemma [36] to
resolve pseudo-randomness of H3(k|sid).

Lemma 10 (PRF from QROM, Corollary 1 from [13]). Let H : K×X →
Y be a quantum-accessible random oracle. The function f(k, x) := H(k|x) can
be used as a quantum-accessible PRF with a key k ←$ K. More precisely, for any
quantum algorithm A making at most Q queries to H and any number of queries
to oracle f(k, ·) such that f(k, x∗) is never queried, its advantage satisfies

AdvpsPRF(A) :=
∣∣∣Pr [k ←$ K, x∗ ← Af(k,·); y := f(k, x∗) : Af(k,·)(x∗, y)⇒ 1

]
−Pr

[
k ←$ K, x∗ ← Af(k,·); y ←$ Y : Af(k,·)(x∗, y)⇒ 1

]∣∣∣ ≤ 2Q√
|K|

.

Now we are ready to show the security proof of Theorem 3.

Theorem 3. If eLPKE is an extractable LPKE scheme, PKE is a CCA-secure
PKE, and H1,H2,H3 work as quantum-accessible random oracles, then the scheme
in Fig. 6 securely emulates Fpake, hence achieving UC security in QROM.

Proof. The proof outline is similiar to that of Theorem 1.
Game G′0. This is the real experiment RealZ,A. We have

Pr [RealZ,A ⇒ 1] = Pr [G′0 ⇒ 1].
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Game G′1(simulations for clients and servers with pw). In this game, we
introduce a simulator Sim receives passwords from Z. Then it simulates the
clients and servers to generate transcripts for instances of the PAKE protocol.
With the knowledge of passwords, the simulations of the behaviors of all clients
and servers are perfect.

Therefore, we have

Pr [G′1 ⇒ 1] = Pr [G′0 ⇒ 1].

Game G′2(simulation for crs). In Game G′2, simulator Sim′ simulates the
generation of crs by invoking the setup algorithm. Clearly, the simulation of crs
is perfect, so we have

Pr [G′2 ⇒ 1] = Pr [G′1 ⇒ 1].

Game G′3(simulation of r|σ|k for server instances and simulation of the
third-round message σ′ for client instances in case of passive attacks).
In Game G′3, simulator Sim′ is the same as in Game G3 in the proof of Theorem 1.
Note that Lemma 4 is proved in QROM, (pk, c = eLEnc(pk, pw,m;H1(m)),H2(m))
works as a CCA-secure KEM where (pk, sk)← eLKeyGen(pk, pw) even if H1,H2

are quantum-accessible random oracles. Therefore,

|Pr [G′3 ⇒ 1]− Pr [G′2 ⇒ 1]| ≤ ℓ · AdvCCA-FO
KEM (BKEM) ≤ negl(λ).

Game G′4(simulation of sKey in case of passive attacks). In Game G′4,
simulator Sim′ is the same as in Game G4 in the proof of Theorem 1. The only
difference here is now we use Lemma 10 to show fk(x) = H(k|x) is a PRF and
then H(k|sid) is uniform distributed by the uniformity of k. Therefore,

|Pr [G′4 ⇒ 1]− Pr [G′3 ⇒ 1]| ≤ ℓ · 2q

2λ/2
≤ negl(λ).

Game G′5(simulation for client instances in case of active attacks). In
Game G′5, simulator Sim′ is the same as in Game G5 in the proof of Theorem 1.

Recall that we introduce a rejection rule in G′5: when receiving the second-
round message (c̃, C̃), Sim′ first invokes the decryption algorithm with pw′|pk′|c′ ←
CEnc(csk, C̃). If

pw 6= pw′ or pk′|c′ 6= pk|c̃, (⋆′)

then Sim′ rejects (c̃, C̃) by setting sKey := ⊥.
By the correctness of PKE, we have

|Pr [G′5 ⇒ 1]− Pr [G′4 ⇒ 1]| ≤ negl(λ).

Game G′5.5 (introduce the online-extractable RO simulator S). In G′5.5,
Sim′ invokes the random oracle simulator S = (S.RO,S.E) as per Theorem
7 to simulate random oracle H1 and extract the corresponding queries. More
precisely, Sim′ invokes S.RO(x) to simulate the random oracle H1. Besides, for
a client instance (C(i), iid) that is not linked to any server instance (S(j), iid′)
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when receiving the second-round message (c̃, C̃), Sim′ will additionally invoke
m̂← S.E(c̃) to obtain the extracted value m̂.

Obviously, the only difference between G′5.5 and G′5 is the simulation of the
random oracle H1. Recall that c̃ = eLEnc(pk, pw,m;H1(m)). We define function
fpk,pw(m; r) := eLEnc(pk, pw,m; r) where r ∈ R. In G′5.5, the invocation of
S.E(c̃) can be regarded as Sim′’s conduction of measurements by interface S.E(c̃)
w.r.t. the function fpk,pw.

According to property “ 5 ciphertext unpredictability under normal labels”
and correctness of eLPKE, Γ (fpk,pw)/|R| and Γ ′(fpk,pw)/|R| (cf. Def. 9) are
negligible. According to Theorem 7 (a), except with negligible probability, S.RO
perfectly simulates random oracle H1, even if S.E performs the measurement to
get m̂. So we have

|Pr [G′5.5 ⇒ 1]− Pr [G′5 ⇒ 1]| ≤ negl(λ).

Game G′6(getting rid of sk in simulation for client instances in case
of active attacks). In Game G′6, simulator Sim′ is the same as in Game G′5.5,
with the exception for the generation of m′ during Sim′’s simulations for client
instances in case of active attacks.

- For any client instance (C(i), iid) that is not linked to any server instance
(S(j), iid′) when receiving the second-round message (c̃, C̃), we know that
(c̃, C̃) is NOT generated from any server instance, so it must be forged by ad-
versary A. When generating m′ during the simulation for instance (C(i), iid),
Sim′ will not use the decryption algorithm to obtain m′ ← eLDec(sk, c̃) as did
in G′5.5. Instead, it will invoke m̂← S.E(c̃) w.r.t. the function fpw,pk(m; r),
where pw is the password of C(i) and pk is the first-round message generated
by Sim′ for (C(i), iid). If m̂ 6= ⊥, then Sim′ sets m′ := m̂ as the decrypted
plaintext. Otherwise Sim′ rejects (c̃, C̃) by setting sKey := ⊥.

Let m′ := eLDec(sk, c̃) and m̂ := S.E(c̃). Define bad events as

bad1 : m′ 6= m̂ ∧ eLEnc(pk, pw,m′;H1(m
′)) = c̃,

bad2 : m′ 6= m̂ ∧ eLEnc(pk, pw, m̂;H1(m̂)) = c̃.

If neither bad1 nor bad2 happens, then Game G′6 is the same as G′5.5. According
to Theorem 7 (b), bad1 happens with negligible probability. According to the
correctness of eLPKE, bad2 happens with negligible probability. So we have

|Pr [G′6 ⇒ 1]− Pr [G′5.5 ⇒ 1]| ≤ negl(λ).

We stress that now in G′6 (and hereafter), Sim′’s simulation for client instances
does not need the secret key sk of eLPKE any more, no matter dealing with active
attacks or passive attacks. This helps us to proceed to the next game.
Game G′7(simulation of generating first-round message pk without pw).
In Game G′7, simulator Sim′ is the same as in Game G′6, except for Sim′’s simu-
lation of generating the first-round message pk for client instances.
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– For any client instance (C(i), iid), when generating the first-round message
pk, Sim′ randomly samples pk ←$ PK in G′7, rather than invoking (pk, sk)←
eLKeyGen(pw) as did in G′6.

Due to the “ 1 pseudorandomness of public keys” of eLPKE and by hybrid argu-
ments across the ℓ sessions, we have

|Pr [G′7 ⇒ 1]− Pr [G′6 ⇒ 1]| ≤ negl(λ).

Game G′8(simulation of generating c in second-round message with
the help of Extract algorithm). In Game G′8, simulator Sim′ is the same as
in Game G′7, except for Sim′’s simulation of generating c in the second-round
message (c, C) for server instances. We consider the following two cases.

Case 1: Passive attacks on Servers. For a server instance (S(j), iid′) that is
linked to some client instance (C(i), iid) when receiving a first-round message
pk, simulator Sim′ will samples c by c ←$ CT , rather than computing it with
c← eLEnc(pk, pw,m;H1(m)) as did in G′7.
Note that r|σ|k ←$ {0, 1}3λ and C ← CEnc(cpk, pw|pk|c; r) are still com-
puted in the same way as in G′7.

Case 2: Active attacks on Servers. For a server instance (S(j), iid′) that is
not linked to any client instance when receiving a first-round message p̃k,
Sim′ invokes pw′ ← Extract(td, p̃k) and checks whether pw′ = pw or not.
Case 2.1: pw′ 6= pw. In this case, Sim′ will compute c ←$ CT , r|σ|k ←$ {0, 1}3λ,

rather than computing c← eLEnc(p̃k, pw,m;H1(m)) and r|σ|k := H2(m)
as did in G′7.

Case 2.2: pw′ = pw. In this case, Sim′ computes (c, C) just like G′7, i.e.,
c← eLEnc(p̃k, pw,m;H1(m)) and C ← CEnc(cpk, pw|p̃k|c; r).

In Case 1, pk is random and independent of password pw. According to
property “ 4′ lossiness of random public keys”, pw is a lossy label under pk. Then
according to Lemma 5, the ciphertext c ← eLEnc(pk, pw,m;H1(m)) and key
r|σ|k := H2(m) are pseudo-random in G′7. Therefore, we can replace c and r|σ|k
with random ones as did in G′8 in a computationally indistinguishable way.

In Case 2.1, pw′ 6= pw implies pw is a lossy label under p̃k according to
“ 3′extractablity of the unique normal label” of eLPKE. With a similar argument
as Case 1, we can replace c and r|σ|k with random ones in a computationally
indistinguishable way.

In Case 2.2, simulator Sim′ is the same as in Game G′7.
By taking into account all the above cases, we have

|Pr [G′8 ⇒ 1]− Pr [G′7 ⇒ 1]| ≤ negl(λ).

Game G′9(simulation of generating C in the second-round message). In
Game G′9, simulator Sim′ is the same as in Game G′8, except for Sim′’s simulation
of generating C in the second-round message (c, C) for client instances. We
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consider the same cases as in G′8. In Case 1 and Case 2.1, Sim′ generates C by
C ← CEnc(cpk, 0; r) rather than C ← CEnc(cpk, pw|pk|c;H1(m)) as did in G′8.

Note that randomness r is random and independent of pw|pk|c. According to
the CCA security of PKE and hybrid arguments over the (at most) ℓ ciphertexts,
we have

|Pr [G′9 ⇒ 1]− Pr [G′8 ⇒ 1]| ≤ ℓ · AdvccaPKE(BPKE) ≤ negl(λ).

Game G′10(simulation of dealing with the third-round message σ̃ for
server instances in case of active attacks). In Game G′10, simulator Sim′ is
the same as in Game G′9, except for Sim′’s simulation of generating sKey upon
receiving the third-round message σ̃. We consider the same cases as in G′9 (and
also G′8). In Case 1 and Case 2.1, Sim′ sets sKey := ⊥ directly no matter whether
σ = σ̃ or not.

G′10 is the same as G′9 except that σ = σ̃ happens in these cases in G′9.
However, σ is uniformly chosen and independent of other variables and hence,
A can present a correct guess of σ with negligible probability. We have

|Pr [G′10 ⇒ 1]− Pr [G′9 ⇒ 1]| ≤ negl(λ).

We stress that Sim does not use pw any more except for the simulation for server
instances in Case 2 and the simulation of rejection rule (⋆′) for client instances.
Game G′11(Integration of Sim′ with Fpake). Game G′11 is the same as Game
G′10, except that Sim′ has access to Fpake and use the replies of Fpake to simulate
the generation of session key sKey. Meanwhile, when Z sends pw to C(i) (or
S(j)), then C(i) (or S(j)) sends query (StorePWFile, C(i), S(j), pw) or (query
(StorePWFile, S(j), C(i), pw)) to Fpake. When C(i) (resp. S(j)) is asked to initialize
a new instance iid with S(j)(resp. C(i)), C(i) (resp. S(j)) sends query (NewServer,
iid, C(i)) (resp. (NewClient, iid, S(j))) to Fpake.

We consider the following two cases, passive attacks and active attacks.

Case A: passive attacks. Sim′ has a different way of generating session keys
sKey.

- To generate session key sKey for a client instance (C(i), iid), Sim′ sends
(FreshKey,C(i), iid, sid) to Fpake, where sid := C(i)|S(j)|pk|c|C|σ. Ac-
cording to the functionality of Fpake, Fpake will choose a random session
key sKey and send (iid, sid, sKey) to C(i) and record (C(i), S(j), sid, sKey).
Recall in G10, sKey is chosen uniformly and stored for (C(i), iid) by Sim′.

- To generate session key sKey for a server instance (S(j), iid′), Sim′ sends
(CopyKey, S(j), iid′, sid) to Fpake, where sid := C(i)|S(j)|pk|c|C|σ. Ac-
cording to the functionality of Fpake, Fpake will retrieve the record
(C(i), S(j), sid, sKey) and send (iid′, sid, sKey) to S(j). Recall in G′10, sKey
is retrieved from the session key stored for (C(i), iid) by Sim′.



44

It is easy to see that sKey follows the uniform distribution and both C(i) and
S(j) share the same session key sKey, both in G′11 and G′10. Therefore,

Pr [G′11 ⇒ 1 in Case A] = Pr [G′10 ⇒ 1 in Case A]. (9)

Case B: active attacks. Sim′ does not use pw anymore for the simulation for
server instance in Case 2 and the simulation of rejection rule (⋆′) for client
instance. Sim′ will do the simulation in the following way.
Simulation for server instances in Case 2. If Case 2 happens, i.e., there
exists a server instance (S(j), iid′) that is not linked to any client instance
when receiving message p̃k, Sim′ first extracts pw′ from p̃k by Extract algo-
rithm of eLPKE, then it sends (Testpw, S(j), iid′, pw′) to Fpake.

– If Fpake returns “wrong guess”, Sim′ will compute c ←$ CT , r|σ|k ←$ {0, 1}3λ.
– If Fpake returns “correct guess”, Sim′ can extract the true password

pw := pw′. Then Sim′ computes (c, C) by c← eLEnc(pk, pw,m;H1(m))
and C ← CEnc(cpk, pw|pk|c; r).
Furthermore, if the server instance later receives a third-round message
σ̃ satisfying σ̃ = σ, Sim′ sends query (CorruptKey, S(j), iid′,H3(k|sid)) to
Fpake.

Simulation of rejection rule (⋆′) for client instances.
Rejection rule: When receiving the second-round message (c̃, C̃), Sim′ first
invokes the decryption algorithm with pw′|pk′|c′ ← CDec(csk, C̃) and sends
(Testpw,C(i), iid, pw′) to Fpake. If

Fpake returns a response of “wrong guess” or pk′|c′ 6= pk|c̃ (⋆⋆′)

Sim′ sends (Abort,C(i), iid) to Fpake and terminates the simulation of the
instance (C(i), iid), rather than rejecting (c̃, C̃) by setting sKey := ⊥ as did in
G′10. Otherwise i.e., (⋆⋆′) does not hold, the simulation of Sim′ is implemented
as follows. It first executes m̂ ← S.E(c̃) w.r.t. function LEncpk,pw′(m; r). If
m̂ 6= ⊥, then Sim′ sends (CorruptKey,C(i), iid, sid,H3(k|sid)) to Fpake, where
H2(m) = r|σ|k and sid =: C(i)|S(j)|pk|c̃|C̃|σ.
Recall that in other cases of active attacks, Sim′ always rejects the in-
stance with sKey := ⊥ in G′10. In contrast, Sim′ sends (Abort,C(i), iid) or
(Abort, S(j), iid′) to Fpake in G′11.

Note that upon a query (Testpw,C(i)/S(j), iid, pw′), Fpake returns “wrong
guess” if and only if pw′ 6= pw, and returns “correct guess” if and only if pw′ =
pw.

Meanwhile, in G′11 upon a query (CorruptKey,C(i)/S(j), iid, sid,H3(k|sid)),
Fpake sets sKey := H3(k|sid) for instance of C(i)/S(j), while in G′10 Sim′ sets
sKey := H3(k|sid) directly.

Moreover, in G′11 upon a query (Abort,C(i)/S(j), iid), Fpake sets sKey := ⊥
for instance of C(i)/S(j), while in G′10 Sim′ sets sKey := ⊥ directly.

Therefore, in Case B, the above analysis shows that Z has same view in G′11
as that in G′10. Therefore,

Pr [G′11 ⇒ 1 in Case B] = Pr [G′10 ⇒ 1 in Case B]. (10)
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Consequently, by (9)(10), Z has the same view in G′11 as that in G′10, and we
have

Pr [G′11 ⇒ 1] = Pr [G′10 ⇒ 1].

Now that Sim′ completely gets rid of pw in the simulation, G′11 is exactly
IdealZ,Sim′ . By combining those equations across G′0-G11, we know that∣∣Pr [RealZ,A]− Pr

[
IdealZ,Sim′

]∣∣ ≤ negl(λ).

See Fig. 7. for the pseudo-code of the final simulator Sim′ in the ideal world. ut

C.4 Proof of Theorem 5

Our LPKE+ scheme is adapted from the dual encryption system in [32], but
integrated with the novel round function from [11].
Round function in [11]. Recall that Regev’s encryption scheme implicitly uses
a round function r♯ which is defined by

r♯(x) :=

{
1 if x ∈ [−q/4, q/4)
0 otherwise.

for x ∈ [−q/2, q/2].

Consider the q-periodic function defined on [−q/2, q/2] by:

rb(x) =

{
1
2T if |x| ≤ T

0 otherwise
for x ∈ [−q/2, q/2].

Define a new (randomized) rounding function R such that for all x ∈ R,

Pr[R(x) = 1] :=
(
r♯ � rb

)
(x) :=

∫ q/2

−q/2
r♯(u) · rb(x− u)du,

where � corresponds to the convolution of q-periodic functions.
By Lemma 4.1 and Theorem 4.5 in [11], the rounding function R satisfies the

following two properties.

Statistical Correctness: Given a fixed A ∈ Zn×m
q , let r ≥ ηϵ(Λ

⊥(A)) for
some ϵ = negl(n). For any p = AT s + e, where ||e|| ≤ B = 2t

√
m, if

trm/q = negl(n), and T/q = negl(n), then

Pr
r←Dm

Z,r

[
R(sTAr) = R(pT r)

]
≥ 1− negl(n).

Here we note that q must be a super-polynomial to make trm/q and T/q
negligible.

Approximate Smoothness: Let A ∈ Zn×m
q with m = Θ(n log q), r ≥ ηϵ(Λ

⊥(A))
for some ϵ = negl(n), and fix c ∈ Zn

q . Let B′ = q/Θ(
√
m). Suppose also that
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parameters T,N, δ, and k satisfy δ > q
√
m

r , N = kq
T , and δN2 < B′. Then for

all p ∈ Zm
q such that dis(p, Λ(A)) ≥ B′, we have∣∣∣∣ Pr

r←Dm
Z,r

[
R(pT r) = 1 | AT r = c

]
− 1/2

∣∣∣∣ ≤ 1

6
+ negl(n),

where dis(p, Λ(A)) := minx∈Λ(A) ‖x− p‖.

The LPKE+ scheme. We present the LPKE+ scheme from LWE in Fig. 10.

Remark 9. Note that the TrapGen and IsLossy algorithms remain efficient even
for super-polynomial LWE modulus q. Additional details are available in Lemma
2.6 and Lemma 3.5 in [32].

Theorem 5. If t > n log n, trm/q = negl(λ), T/q = negl(λ), m = Θ(n log n),√
m
r (nqT )2 < Θ(

√
m) then The LPKE′lwe scheme in Fig. 10 is a LPKE+ scheme

based on the LWEn,q,m,DZm,t
assumption.

Proof. We provide a concise overview proof of these properties.
Correctness: According to [11], if t > n log n, trm/q = negl(λ), T/q = negl(λ),
then the statistical correctness of round function R holds. Then the correctness
of LPKE′lwe follows.
1 Pseudorandomness of Public Key: This property is directly derived from
the LWE assumption.
2 Random Ciphertexts under Lossy Labels: Recall that IsLossy(td, pk =
p,v) = 1 implies that dis(p, Λ(A)) > q/8

√
m. Due to the approximate smooth-

ness of the rounding function R, R(pT eij) is 1/6-close to uniform even given
Aeij = cij . Consequently, given {Aeij = cij}j∈[λ], the bit

⊕
j∈[λ]

R(pT eij) is

statistically close to uniform distribution over {0, 1}, thus hiding the message
mi ∈ {0, 1} almost perfectly.
3 Uniqueness of Normal Labels among Polynomial-Size Set: Sup-
pose there are two random labels, v0 and v1, such that IsLossy(td, pk,v0) =
IsLossy(td, pk,v1) = 0. This implies that both pk + v0 and pk + v1 are close
to the lattice Λ(A) within q/8

√
m. Due to the triangular inequality, the point

v0−v1 is within a distance of q/4
√
m from Λ(A). Importantly, the labels v0 and

v1 are selected uniformly at random, meaning the event that v0 − v1 is close to
the lattice Λ(A) occurs only with negligible probability. Along with the union
bound on Q = poly(n) random labels, the probability that more than one label
satisfy IsLossy(td, pk,v) = 0 is negligible.
4′ Lossiness of Random Public Keys: This fact is proven in Lemma 3.3
of [32]. In summary, the set of points within a distance of q/4 (using the ℓ∞
norm) from Λ(A) has a size of at most qn · (q/2)m. Given that m ≥ 2n log q, the
probability of p ∈ Zm

q falling within this set is at most q−n.
5 Ciphertext Unpredictability under Normal Labels: The argument is
almost the same as the proof in Section 5.1.
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6 CPA Security with Normal Labels: The argument is almost the same
with the proof in Section 5.1.
7 Ciphertext randomness with random message: Recall that the ci-
phertext ct = ({cij}i,j∈[λ], {βi}i∈[λ]). The first part {cij}i,j∈[λ] is uniformly dis-
tributed due to the leftover hash lemma. Moreover, the computation of the first
part does not involve m, and hence is independent of m. Finally, the mi is uni-
formly chosen from {0,1} and independent of p and rij , so βi is also uniform
over {0, 1} and independent of cij . Therefore, the ciphertext is uniform as long
as the plaintext is. ut
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