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Abstract

Garbled Circuit (GC) is a basic technique for practical secure computation. GC handles Boolean
circuits; it consumes significant network bandwidth to transmit encoded gate truth tables, each of which
scales with the computational security parameter κ. GC optimizations that reduce bandwidth consump-
tion are valuable.

It is natural to consider a generalization of Boolean two-input one-output gates (represented by 4-row
one-column lookup tables, LUTs) to arbitrary N -row m-column LUTs. Known techniques for this do
not scale, with näıve size-O(Nmκ) garbled LUT being the most practical approach in many scenarios.

Our novel garbling scheme – logrow – implements GC LUTs while sending only a logarithmic in N
number of ciphertexts! Specifically, let n = ⌈log2 N⌉. We allow the GC parties to evaluate a LUT for
(n− 1)κ+ nmκ+Nm bits of communication. logrow is compatible with modern GC advances, e.g. half
gates and free XOR.

Our work improves state-of-the-art GC handling of several interesting applications, such as privacy-
preserving machine learning, floating-point arithmetic, and DFA evaluation.
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1 Introduction

Garbled Circuit (GC) allows two parties to jointly evaluate circuits without leaking anything that cannot be
inferred from the output of the computation. In contrast with other secure computation (MPC) techniques,
e.g. GMW, GC requires only a constant number of communication rounds, independent of the circuit’s size
and depth.

In GC, the garbler G steps through the circuit gate by gate. At each gate, G constructs and sends to the
evaluator E an encryption (garbling) of the gate’s truth table. Altogether, these messages consume significant
communication. Indeed, communication is the bottleneck of GC performance, so reducing communication
is a central goal of GC research.

Most prior GC communication improvements have come in the form of new methods for handling fan-
in two gates. While Yao’s original construction [40] required four ciphertexts per gate, subsequent works
improved cost to zero ciphertexts per XOR gate and 1.5 ciphertexts per AND gate [31, 25, 33, 24, 41, 37].
Despite intense interest, progress has slowed and lower bounds began to emerge [41]. [37]’s intricate technique
improves over the previous best [41] by less than 25%.

Seeking significant GC cost improvement, we look at a broader problem: efficient evaluation of general-
purpose multi-input/multi-output gates. No such garbled gates were proposed (but see discussion of related
techniques in Section 2). In contrast, in the non-constant-round GMW setting, multi-input/multi-output
gates are known, e.g. [21, 7].

We bring multi-input/multi-output gates to GC, generalizing from fan-in-two Boolean gates to arbitrary
N -row m-column lookup tables (LUTs).

LUT Applications. In many settings, LUTs are powerful. For instance, SiRnn [36] uses LUTs to acceler-
ate and better approximate non-linear functions needed for machine learning, e.g., sigmoid, tanh, and 1/

√
x.

For instance, SiRnn uses LUTs of size 1020 as part of its implementation of inverse square root. LUTs can
also simplify floating point arithmetic [35, 34]. [35] uses LUTs of size 128 as part of their implementation of
tan and LUTs of size 256 to convert integers to floating points. [34] uses LUTs of size 212 for sigmoid and
tanh over 16-bit floating points. It is also possible to, for instance, use LUTs to implement state transition
tables for Deterministic Finite Automata (DFAs), which is useful in a variety of problems, such as substring
matching and DNA pattern search [38].

More generally, LUTs open opportunities for more efficient secure computation, similar to how LUTs
enable more efficient plaintext computation in Field Programmable Gate Arrays (FPGA). Yet, the above
applications are now only implemented with (GMW-style) interactive primitives [23, 21, 7], meaning that
performance is highly susceptible to network latency.

Until our work the most concretely efficient non-interactive and composable technique for natural LUT
applications (e.g. above) was the straightforward transmission of a full encrypted truth table. This consumes
Θ(Nmκ) bits of communication, linear in the size of the table. The recent one-hot garbling technique [13]
enables highly efficient GC LUTs that consume only O(logN ·κ) bits, but only in a setting where the evaluator
E is allowed to learn which row is looked up from each table. While [13] used these privacy-free GC LUTs
in securely computing highly structured functions with convenient algebraic properties, their technique does
not apply in the less structured settings we consider.

1.1 Contribution

We realize N -row m-column GC LUTs while sending only a logarithmic in N number of ciphertexts per
LUT! Namely, our approach securely executes programs that arbitrarily compose any number of LUTs, each
potentially computing a different function, all in constant rounds.

Our construction is lean: for computational security parameter κ and for n = ⌈log2 N⌉ our garbled LUT
gate uses precisely (n− 1)κ+nmκ+Nm bits of communication. Our computational cost is O((N(1+ m

κ )+
nm)cκ +Nmκ), requiring O(N(1 + m

κ ) + nm) evaluations of a hash function (cκ denotes the computational
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Ours (n− 1)κ+ nmκ+Nm O((N(1 + m
κ ) + nm)cκ +Nmκ)

Linear Scan O(Nmκ) O(Nmcκ)
One-Hot (n− 1)κ O(Nmκ+Ncκ) ✗ ✗
SGC O(n2κ+ nmκ) O(N2.389mcκ) ✗

GPIR Õ(
√
Nmκ) Õ(Nmcκ) ✗

GRAM O!(nmκ+ n3κ) O!(nmcκ + n3cκ) ✗

Table 1: Comparison of various GC techniques for computing JaK 7→ Jf(a)K inside GC where f : {0, 1}n →
{0, 1}m is a table with N = 2n rows. Each ✗ symbol indicates a weakness of the respective approach. Õ
includes polylog(N) factors; O! includes polylog(n) factors. All schemes other than linear scan and GRAM
require that G knows f . We emphasize the low constants in our communication.

cost of evaluating the hash function; see Section 3.1 for the hash function definition). Notably, this is a
concrete and asymptotic computation improvement over linear scan of the LUT (i.e., including each of the
N rows in a garbled table).

At a very high level, our protocol uses the recent One-Hot Garbling (OHG) technique [13] to evaluate a
masked LUT on a masked index. The masks are then efficiently taken off inside GC. Efficient masking and
unmasking are achieved by our new core technique, which allows the parties to efficiently evaluate a random
function inside GC. Our technique hides the random function from the GC evaluator and only requires that
the garbler send a logarithmic number of ciphertexts.

We formalize our construction as a garbling scheme [3] and prove security. Our scheme is compatible
with Free XOR [25] and with Free-XOR based GC improvements, e.g. [41, 37, 13, 15]. As a garbling scheme,
our construction immediately implies 2PC protocols in semi-honest, malicious, covert, and publicly verifiable
covert models.

Our garbling scheme is compatible with the Stacked Garbling technique [14]; it can be used in the context
of conditional branches that are “stacked”.

2 Related Work

We propose a technique for securely evaluating functions inside GC. Given a function f : {0, 1}n → {0, 1}m
and garbled input JaK, we compute the garbled value Jf(a)K (see Section 3 for detail of this notation). We
evaluate f described only by its N = 2n row lookup table. Thus, our technique is suited to settings where
f is arbitrarily complex.

In this review of related work, we focus on other GC approaches that can also be used to evaluate
functions via their truth tables. We summarize our comparison in Table 1, and we give detailed discussion
below.

Basic Boolean Gates and Linear Scans. Classic GC allows to securely compute Boolean circuits with
fan-in two gates. The most recent gate-by-gate construction requires ≈1.5κ bits of communication per AND
gate [37]; XOR gates are communication-free [25].

Boolean gates can implement lookup tables via linear scans. To implement a function f : {0, 1}n →
{0, 1}m, the parties compute gates that touch each entry of the function’s truth table. The truth table is a
string of length 2nm = Nm, so in total O(Nmκ) bits of communication are needed.

While expensive, simply enumerating the truth table remained the best approach to LUTs for many
values N , due to the excellent constants involved in this basic technique.
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Our technique asymptotically improves over basic linear scans by factor κ and is concretely superior for
all values of N ≥ 4 (see Section 6).

One-Hot Garbling (OHG) [13] enables communication-efficient privacy-free LUTs. The technique allows
the parties to compute Jf(x)K while using only (n− 1)κ bits of communication (and is reduced to (n− 1)κ
bits recently [11]), but only when E knows both f and x. [13] demonstrates that this building block can be
used to implement privacy-preserving computations, but only for certain functions with friendly algebraic
properties, such as linearity. The technique improves highly structured functions, including binary vector
outer products, integer multiplication, and more. OHG is poorly suited to general functions f , since arbitrary
functions do not have exploitable algebraic properties.

We build on top of OHG to implement Jf(x)K for arbitrary f . We require additional communication, but
remove the requirement that E knows f and x.

Stacked Garbling (or Stacked GC, SGC) [22, 14, 12] is a GC improvement that allows for efficient
handling of programs with conditional branching. The technique allows the garbler to send a GC proportional
only to one program execution path, not to the full computation.

SGC can implement a function f by representing f as a conditional:

f(x) =


f(0) if x = 0

...

f(N − 1) if x = N − 1

This requires care. SGC uses extra gadgets to enter/exit conditionals, and these gadgets require com-
munication. For a conditional with n input wires, m output wires, and b branches, the parties consume
O(b2(n +m)κ) bits of communication. Thus, using SGC to implement a switch statement over the b = N
branches of f leads to cost O(Nmκ), no better than a linear scan. Indeed, evaluating a large number of very
small branches is not SGC’s intended application [12].

A more effective approach is to use SGC recursively, encoding the function as a binary tree of nested
IF statements. Indeed, if G and E agree on f , they can securely compute Jf(x)K this way while using only
O(n2κ + nmκ) bits of communication. Each recursive call to SGC requires encoding/decoding gadgets of
size (only) O((n+m)κ). This is because we only need to “pass through” O(n) choice bits to the lower levels
of recursion. In total, n SGC gadgets are executed, resulting in overall quadratic in n complexity. This
communication performance is surprisingly good for an unintended application of SGC.

The problem is computation. SGC achieves communication improvement at the cost of computation,
and in this case the increase is significant. Nested execution of SGC over N branches consumes unacceptably
high computation, scaling with O(N2.389mκ) [10]. We emphasize the limits of scaling using this technique.
Consider a size N = 216 LUT, a case suitable for 16-bit operations and easily handled by our approach.
Here, SGC will require a clearly unacceptable > 238 CCRH evaluations for m = 1 (approximately a day of
computation on a modern laptop). This is less attractive than a simple O(Nmκ) linear scan.

Our technique evaluates arbitrary LUT gates, while matching computation scaling of linear scans. As a
bonus, our approach allows us to hide f from E.

Garbled Private Information Retrieval. [9] recently proposed a GC extension called Garbled Private
Information Retrieval (GPIR). In GPIR, G and E agree on a public database. Then, the GC may privately
and non-interactively query one index of the database and pass the result as input to subsequent GC gates.
The technique is similar to PIR in the sense that G and E jointly play a server and the GC plays a client.
[9] implements GPIR for a database with N entries each of size m while using only Õ(

√
Nmκ) bits of

communication (Õ includes concretely significant polylog(N) factors). We note that [9] does not include
concrete evaluation or estimates of their cost.

In GPIR, G and E must agree on the database. [9] point out that this requirement can be relaxed by
instead agreeing on an encrypted database and requiring the GC to decrypt the query result. While this
works, it requires non-black-box evaluation of cryptographic primitives, which is extremely expensive.
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Our approach allows G to secretly choose the LUT. More importantly, for many sizes of database N ,
our approach has superior communication. We achieve low concrete constants and avoid the need for extra
polylog(N) factors.

Garbled RAM. Garbled RAM (GRAM) [29] is a powerful GC extension that enables garbling of RAM
programs. The technique allows G and E to repeatedly, securely, and non-interactively access an array, and it
is possible to use GRAM to implement a function LUT. Recent works [15, 32] dramatically improved GRAM.
For an array of N = 2n elements each of size m, GRAM now requires only O!(nmκ+ n3κ) communication
and computation per access, where O! includes polylog(n) factors.

Our approach is better suited to evaluating LUTs than GRAM in three ways.
First, GRAM’s cost is amortized over O(N) accesses. Hence, if a function f is needed o(N) times in

the execution of a program, then GRAM is the wrong approach. The first time a function table is used,
the parties must immediately consume Õ(Nmκ) communication (where Õ includes polylog(N) factors),
significantly worse than even a linear scan. This required amortization means that GRAM is particularly
poorly applicable when using a variety of different LUTs fi in a program – players would have to initialize
a separate GRAM for each fi.

Second, GRAM’s constants remain relatively high. [15]’s technique is the best GRAM for small sizes,
and for m = 128 it only begins to outperform trivial linear-scan-based GRAM at around N = 512. For
smaller m, GRAM will perform far worse.

Third, known (non-trivial) GRAMs are incompatible with Stacked Garbling, and hence so is a GRAM-
based LUT implementation. Resolving GRAM-SGC incompatibility requires hiding from the GC evaluator
ORAM access patterns, likely requiring a costly solution.

Our technique has lean constants and can flexibly implement an arbitrary number of different functions in
a single program. Atm = 8 andN = 512, our approach outperforms linear scan communication by more than
30×. Finally, our garbled LUT is compatible with Stacked Garbling (SGC) in the sense that it can appear
safely in an SGC conditional branch; formally, our garbling scheme is strongly stackable (cf. Theorem 6).

Of course, GRAM is a powerful technology – it simply is not well suited to the LUT setting. We view
GRAM and our approach as complimentary technologies.

Non-GC-based LUTs. Lookup-table-based MPC has been considered outside of GC [30, 21, 7, 5] in
the multi-round setting. Our work brings efficient lookup tables to the important constant-round GC-based
MPC.

We stress that solutions in our compositional non-interactive setting are inherently different, and harder
to achieve. Indeed, in the non-interactive setting, one party’s (garbler’s) actions inherently cannot depend
in any way on intermediate values (even on the masked intermediate values!) of the computation.

To practically motivate our interest in GC (vs interactive) LUT, we highlight the high cost of latency.
Unless the program is highly parallelizable (e.g. matrix multiplication and other operations), multiplicative
depth of the program circuit would incur significant costs due to latency. For example, recent experiments
reported in [39] show ≈ 1600× improvement by switching from a GMW-based multi-round solution to a
constant-round GC-based protocol, with the primary factor behind the speed up being network latency. Of
course, this is just an example, and the costs depend on network properties and the program itself.

Interestingly, the interactive techniques of [21, 7] are similar to ours in that their cost comprises two
components, one proportional to κ (a 1-out-of-N random OT) and one proportional to the size of a truth
table. While costs are similar, the constructions themselves are completely different from ours, which is in
the much harder setting.

[5] is the latest work addressing interactive lookup-tabled-based 2PC. Their total communication cost (in
bits) is as follows: (MT+ 4)(2n − n− 1) + 2m, where MT denotes the cost of preprocessing a multiplication
triple. In terms of computation, the technique executes O(2n) OTs in the preprocessing phase. Using
communication-efficient OT [4], the total cost is O(2n +m) bits, which does not scale with the total truth
table size 2nm. Our communication scales with the full truth table, but our technique is non-interactive.
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Private simultaneous messaging (PSM) is an MPC special case that considers several senders, each with
private input, and a single referee who receives a function f of these inputs [8, 18, 19, 2]. The original PSM
construction [8] showed how to evaluate arbitrary LUTs in this setting. In their construction, which works
for two senders and the referee, the senders randomize (mask) the LUT and shuffle its rows. One sender
then sends to the referee a message proportional to the LUT size; the other sends a pointer to a row in the
LUT and a mask. This allows the referee to decrypt (only) the single selected row, obliviously yielding the
function output. [2] extends this technique to generalize to multiple senders: each sender applies a random
mask to the LUT and then reveals a portion of its mask, depending on its plaintext input. This similarly
allows the referee to learn (only) the right LUT row.

We have a related step in our construction: We mask the LUT and then unmask portions of it based on
each (encrypted) bit of the LUT’s input. We approach and solve the problem in a much more complex non-
interactive composable (GC) setting. [2] works with plaintext input and output, complicating composition.
Further, each [2]’s party communicates proportionally to LUT size. It is unclear how to port the [8] and [2]
approach to the non-interactive GC setting without incurring factor-κ blow-up, resulting in performance
similar to classical Yao (Linear Scan in Table 1).

[41]’s Lower Bound. [41] proved a lower bound on the communication needed per GC AND gate. They
define linear garbling schemes and show that any linear scheme must use at least 2κ bits per AND gate.
While [37] recently circumvented this lower bound by working outside the linear definition and achieved
≈ 1.5κ bits per AND gate, the [41] lower bound still seems to imply intense difficulty in substantially
improving GC gates.

Our work circumvents the [41] lower bound in two ways. First, we work with larger gates, not just
two-input one-output AND gates. Second, we leverage the ability of G to send to E a cleartext truth table;
this sending of a truth table is outside [41]’s definition of linearity. We believe that our work demonstrates
that while basic GC Boolean gates are hard to improve, opportunities may remain to significantly improve
GC overall.

3 Preliminaries

3.1 Notation and Assumptions

• κ denotes the computational security parameter (e.g., 128).

• G is the GC garbler. We refer to G by he/him.

• E is the GC evaluator. We refer to E by she/her.

• We denote by ⟨⟨x, y⟩⟩ a pair of values where G holds x and E holds y.

• We work with extensively with bit vectors interpreted as arrays:

– If a ∈ {0, 1}n is a vector, we denote the ith entry of a by a[i].

– We use zero-based indexing. An array a ∈ {0, 1}n is the sequence of elements (a[0], ..., a[n− 1]).

– a[i : j] denotes the sub-array of elements (a[i], ..., a[j − 1]).

– For an array a ∈ {0, 1}n, a[0] is the least significant bit and a[n− 1] is the most significant bit.

• [x] (without any prefix) denotes the set {0, 1, . . . , x− 1}.

• N is the number of rows in the lookup table.

• n is the number of bits needed to index a LUT, i.e., n = ⌈log2 N⌉.

• m is the number of the LUT’s columns, equal to the number of output bits.
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• H(a) is the one-hot vector encoding of a (cf. Definition 4).

• T (f) is the truth table of a function f (cf. Definition 5).

• H is a circular correlation robust hash function (CCRH, Definition 1).

• v denotes a nonce, usually an argument to H. G and E publicly agree on the value of each nonce.

• cκ denotes the computational cost of evaluating H.

We assume a circular correlation robust hash function H [6]. We use the following definition, given by
[41]:

Definition 1 (Circular Correlation Robustness). Let H be a function. We define two oracles:

• circ∆(i, x, b) ≜ H(x⊕∆, i)⊕ b∆ where ∆ ∈ 1{0, 1}κ−1.

• R(i, x, b) is a random function with κ-bit output.

A sequence of oracle queries (i, x, b) is legal when the same value (x, i) is never queried with different values
of b. H is circular correlation robust if for all poly-time adversaries A:∣∣∣Pr

∆

[
Acirc∆(1κ) = 1

]
− Pr

R

[
AR(1κ) = 1

]∣∣∣ is negligible.

3.2 Garbled Sharing

We build on Free XOR garbling [25]. For each bit that appears on a GC wire, we arrange that G and E
hold a kind of sharing called a garbled sharing, a notation introduced in [13]. G’s share contains a pair of
length-κ labels. One label corresponds to a logical zero, the other to a logical one. Meanwhile, E’s share
contains a specific label from G’s pair. Thus, the two shares together specify the value on the wire. More
precisely:

Definition 2 (Garbled Sharing [13]). Let a ∈ {0, 1} be a bit. Let A ∈ {0, 1}κ be a bitstring. We say that
the pair ⟨⟨A,A ⊕ a∆⟩⟩ is a garbled sharing of a over (usually implicit) ∆ ∈ 1{0, 1}κ−1. I.e., ∆ is uniform
except that its least significant bit is 1. We denote a garbled sharing of a by writing JaK:

JaK ≜ ⟨⟨A,A⊕ a∆⟩⟩

Note that in our definition, the zero label is the bitstring A, whereas the one label is the bitstring A⊕∆
where ∆ is global to the circuit. As defined and used in this work, garbled sharing JaK is Free XOR-specific.

Garbled Arrays. We generalize from sharings of bits to sharings of arrays. Let a ∈ {0, 1}n be an array.
We use JaK to denote the bit-by-bit encoding of a:

JaK ≜ (Ja[0]K, ..., Ja[n− 1]K)

Free XOR. Garbled sharings are XOR-homomorphic [25]:

JaK⊕ JbK = Ja⊕ bK Definition 2

Injecting G’s secrets. Garbled sharings allow G to easily inject bits into the circuit. Namely, let a ∈ {0, 1}
be a bit chosen by G. To inject his input, the parties simply use the following pair:

⟨⟨a∆, 0⟩⟩ = JaK Definition 2

This capability is used not only for G’s top-level input, but also to provide auxiliary bits needed for our
construction.
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Revealing bits to E. At times, it is useful for the GC to reveal particular wire values to E (while
taking care to preserve input privacy). It is easy to decrypt a particular wire value to E. Note that
Definition 2 enforces that the least significant bit of ∆ is a one. To reveal the cleartext value of a sharing
JaK = ⟨⟨A,A⊕a∆⟩⟩, G can send to E the least significant bit of his garbled share lsb(A). Then, E computes:

lsb(A)⊕ lsb(A⊕ a∆) = lsb(A)⊕ lsb(A)⊕ a · lsb(∆) = a

Revealing a bit to E requires only one bit of communication.

3.3 Garbling Schemes

We formalize our approach as a garbling scheme [3].

Definition 3 (Garbling Scheme [3]). A garbling scheme is a tuple of algorithms (Gb,Ev ,En,De) that specify
how to garble/evaluate a circuit:

• Gb(1κ, C) → (M, e, d) garbles circuits. It takes as input the security parameter κ and a circuit de-
scription C. The procedure outputs garbled circuit material M as well as two strings e and d that
respectively contain information needed to encode inputs and decode outputs.

• En(e, x) → X encodes the party inputs. It takes as input the encoding string e and a cleartext input
x ∈ {0, 1}n and outputs E’s input wire labels X.

• Ev(M, X)→ Y evaluates GCs. It takes as input materialM and wire labels X and outputs wire labels
Y .

• De(d, Y )→ y decodes circuit outputs. It takes as input the output decoding string d and E’s output wire
labels Y . The procedure outputs cleartext y ∈ {0, 1}m. The procedure may also output ⊥ to indicate
failure.

A garbling scheme factors circuit evaluation C(x) into multiple steps. Namely, for all C and x, [3] insist
that the following correctness condition holds:

De(d,Ev(M,En(e, x))) = C(x) where (M, e, d)← Gb(1κ, C)

The crucial [3] security property is obliviousness, which states that the pair of material and input labels
(M, X) can be simulated. Obliviousness is the basis1 for GC-based protocols, because it implies that an
evaluator who views the GC cannot deduce anything about the garbler’s input.

We formalize our garbling scheme in Section 5. We provide definitions for garbling scheme properties
and prove that our scheme satisfies them in Section 7.

Projectivity. [3]’s framework allows for a variety of schemes that support non-Boolean encoded values,
but our scheme only handles Boolean wires. Formally, our scheme is projective [3], which means that each
circuit wire is associated with two labels that respectively encode logical 0/logical 1. Projective schemes
have standard and simple definitions for En and De.

From schemes to protocols. Garbling schemes have been used as the basis for protocols in the semi-
honest, malicious, covert, and PVC models [3, 26, 17, 28, 16]. Hence, our construction implies 2PC protocols
in these models.
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• Parameters: Parties agree on input size n

• Input:

– Parties input a sharing JxK where x ∈ {0, 1}n.
– E inputs x.

• Output:

– Parties output a sharing ⟨⟨XG, XE⟩⟩ = JH(x)K such that for each index i:

XE [i] =

{
XG[i] if i ̸= x

XG[i]⊕∆ otherwise

• Communication: G sends to E (2n− 1)κ bits.

• Computation: Each party uses O(2ncκ) computation.

Figure 1: The interface to the key One-Hot Garbling [13] operation. The operation enables the parties to
efficiently compute JxK 7→ JH(x)K. Note that E must know x in the clear. Our construction builds on this
operation.

3.4 One-Hot Garbling

One-Hot Garbling [13] is a recent GC improvement that goes beyond Boolean gate evaluation. The technique
allows privacy-free (i.e. with E learning the accessed index) GC LUTs where communication is logarithmic
in the number of LUT rows N . The technique reduces communication consumption via so-called garbled
one-hot encodings. We build on top of one-hot garbling to achieve efficient privacy-preserving GC LUT.

[13] Review. It is useful to construct one-hot encodings inside the GC:

Definition 4 (One-Hot Encoding). Let x ∈ {0, 1}n be a bitstring. The one-hot encoding of x is a length-2n

bitstring denoted H(x) that is zero everywhere, except at index x, where it is one:

H(x)[i] ≜

{
1 if i = x

0 otherwise

Consider the case where the parties hold an n-bit share JxK and where E knows x in the clear. [13]’s
construction allows E to efficiently compute a length-2n garbled vector JH(x)K. We list the interface to [13]’s
procedure in Figure 1.

[13] leverage their new procedure in conjunction with the fact that one-hot encodings are, in a sense,
fully homomorphic. Given a one-hot encoding H(x), we can compute f(x) via a sequence of XORs alone.
More precisely, we can multiply the one-hot vector with f ’s truth table:

Definition 5 (Truth Table). Let f : {0, 1}n → {0, 1}m be an arbitrary function. The truth table for f ,
denoted T (f), is a 2n ×m matrix where:

T (f)[i][j] = f(i)[j]

[13] exploits the following simple but crucial fact:

1[3] also defines privacy and authenticity. While these security properties are technically incomparable with obliviousness, for
most GC schemes (including ours) they follow easily from obliviousness. We prove that our scheme satisfies all three properties
in Section 7.

10



Lemma 1. Let f : {0, 1}n → {0, 1}m be an arbitrary function and let x ∈ {0, 1}n be a bitstring:

T (f)⊺ · H(x) = f(x)

Proof. Intuitively, the one-hot encoding H(x) “selects” row x of the truth table.
More precisely, consider the i-th bit of T (f)⊺ · H(x):

(T (f)⊺ · H(x))[i]

=
⊕

j T (f)⊺[i][j] · H(x)[j] Definition Matrix Mult.

=
⊕

j T (f)[j][i] · H(x)[j] Definition Matrix Transpose

= T (f)[x][i] Definition 4

= f(x)[i] Definition 5

Since this holds for each output bit i, we have T (f)⊺ · H(x) = f(x)

The upshot of Lemma 1 is that if the parties hold JxK and if E knows x, then the parties can compute
JH(x)K via Figure 1, then compute:

T (f)⊺ · JH(x)K = Jf(x)K

This matrix multiplication is well-defined thanks to Free XOR (see Section 3.2). In other words, if the
parties can afford to write out the long encoding JH(x)K, then they can efficiently compute Jf(x)K for any
function f and without using any additional communication. However, the technique only works if E knows
the one-hot active location x.

We build on top of basic one-hot garbling to evaluate arbitrary functions f even when E does not know
the function’s argument and even when she does not know f .

One bit output special case. In Section 4, we introduce our technique at a high level. There, we
for simplicity specialize to functions with only one bit of output. This allows us to consider the following
corollary of Lemma 1:

Corollary 1. Let f : {0, 1}n → {0, 1} be an arbitrary function and x ∈ {0, 1}n be a bitstring:

⟨T (f) · H(x)⟩ = f(x)

Above, ⟨x · y⟩ denotes the inner product of vectors x and y. By Corollary 1 and Free XOR, the following
holds for any f : {0, 1}n → {0, 1}:

⟨T (f) · JH(x)K⟩ = Jf(x)K

In our formal construction (see Section 5), we consider the general case of functions with m bits of output.

4 Technical Overview

In this section, we present a detailed overview of our construction. We proceed in two steps. First, Section 4.1
demonstrates a reduction from securely computing an arbitrary function f to computing a random function
r. Evaluating random functions often helps with evaluation of general functions (e.g., [1, 8, 20] and many
more). Second, Section 4.2 introduces our main contribution – an efficient procedure for evaluating a
random function inside GC.

For simplicity, in this section we introduce our construction for a function f : {0, 1}n → {0, 1} with only
one bit of output. Our formal construction (see Section 5) generalizes to LUTs with m bits of output.
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4.1 Reducing Lookup Tables to Random Function Evaluation

Our starting point is the one-hot garbling technique [13] (see Section 3.4). Recall that if the parties hold JaK
and if E knows a, then Figure 1 can be leveraged to evaluate an arbitrary function f :

⟨T (f) · JH(a)K⟩ = Jf(a)K

Thus, one-hot garbling directly enables privacy-free LUTs. Our scheme builds on top of these privacy-free
LUTs to implement privacy-preserving garbled LUTs. Namely, the looked up index remains hidden from
E and, as a bonus, the content of the table can be chosen by G and hidden from E. To achieve this, we
carefully introduce a mask on the index and a mask on the table itself. The mask on the table is generated
from seeds in a way that uses low communication.

Masking a. Privacy-free LUTs leak the evaluation point a to E. As a starting point, we add a uniform
mask α to a. (In fact, we use the least significant bit of G’s share of JaK as α; this allows us to cleanly
introduce a mask without sending extra bits). Rather than computing H(a), we instead compute H(a⊕ α)
where α is a uniform mask. However, there remains a problem in the usage of this vector. We cannot directly
multiply H(a⊕α) by a truth table, because our evaluation point a is no longer the distinguished location of
the one-hot vector. As a first attempt, the parties could try agreeing on the following function:

bad(x) ≜ f(x⊕ α)

Then, the parties could compute:

⟨T (bad) · JH(a⊕ α)K⟩ = Jbad(a⊕ α)K = Jf(a)K

While correct, this is insecure. To compute her share, E must know bad, and this leaks α, and thus a.

Masking the LUT. Suppose we can efficiently compute inside the GC a uniformly random function
r : {0, 1}n → {0, 1} whose value is known to G but unknown to E; we will show how to do this shortly. We
define a new function f ′:

f ′(x) ≜ f(x⊕ α)⊕ r(x)

Now, G can safely send T (f ′) to E: this table leaks nothing about f because the table is masked by r. Note,
this transmission scales linearly with N = 2n, but is independent of the computational security parameter
κ: G sends E the full cleartext truth table.

The GC now conveys to E the cleartext value x ≜ a ⊕ α. Again, suppose for now that the parties can
somehow compute Jr(x)K; we discuss this core contribution in Section 4.2. The parties compute:

⟨T (f ′) · JH(x)K⟩ ⊕ Jr(x)K
= ⟨T (f ′) · JH(a⊕ α)K⟩ ⊕ Jr(a⊕ α)K Definition x

= Jf ′(a⊕ α)K⊕ Jr(a⊕ α)K Corollary 1

= Jf((a⊕ α)⊕ α)⊕ r(a⊕ α)K⊕ Jr(a⊕ α)K Definition f ′

= Jf(a)K

This computation hides a. E observes the point a⊕ α, but α masks a. Moreover, the function r masks
the truth table for f and ensures that E cannot use the truth table to deduce a.

Thus, if we can securely evaluate Jr(x)K, then we can securely evaluate Jf(a)K.

4.2 Evaluating a Uniformly Random Function Jr(x)K
Suppose that the parties hold both JxK and JH(x)K; the computation of one-hot encoding JH(x)K was already
discussed in Section 4.1. Our goal is to build a procedure that cheaply implements the following:

JxK, JH(x)K 7→ Jr(x)K

12



where r : {0, 1}n → {0, 1} is uniformly random and hidden from E.
As we will see, we will construct r from a (logarithmic in N) number of “half-hidden” uniform functions.

Half-hidden uniform functions. Our crucial insight is that it is possible to efficiently evaluate a uni-
formly random function Jr0(x)K where r0 : {0, 1}n → {0, 1} such that E learns only half of the truth table
for r0. We later show how to use multiple such functions to account for the leaked half.

Before starting, we establish useful notation. Let ⟨⟨XG, XE⟩⟩ = JH(x)K be G and E’s shares of the garbled
one-hot vector. Define r0’s truth table R0 ≜ T (r0). We will be working extensively with the left and right
halves of vectors, so for convenience, we set the following (recall, A[i : j] = (A[i], ..., A[j − 1])):

Rℓ
0 ≜ R0[0 : N/2] Rr

0 ≜ R0[N/2 : N ]

Xℓ
G ≜ XG[0 : N/2] Xr

G ≜ XG[N/2 : N ]

Xℓ
E ≜ XE [0 : N/2] Xr

E ≜ XE [N/2 : N ]

H(x)ℓ ≜ H(x)[0 : N/2] H(x)r ≜ H(x)[N/2 : N ]

Now, consider Jx[n− 1]K, the most significant bit of JxK, and recall that E’s share of this bit is one of two
possible labels: Y or Y ⊕∆, where Y is G’s share of the bit. G defines the function r0 by applying a hash
function H to each of these labels (appropriately setting length of H’s output):

Rℓ
0 ≜ H(vR, Y ) Rr

0 ≜ H(vR, Y ⊕∆)

Here, vR is a fresh nonce. If x[n−1] = 0, then E holds Y , so she can locally compute the left half of the truth
table H(vR, Y ) = Rℓ

0; else she can compute the right half Rr
0. For sake of example, suppose that x[n− 1] is

zero, so E learns the left half of the table; the one case is symmetric.
Recall that if E knew the entire truth table for r0, then since the parties hold JH(x)K, they could compute:

⟨R0 · JH(x)K⟩ = ⟨T (r0) · JH(x)K⟩ = Jr0(x)K

However, as E only knows the first half of the table, she can only compute (her share of the garbling of) half
of the summands in the above inner-product:

⟨Rℓ
0 ·Xℓ

E⟩

E cannot directly compute the second “half” ⟨Rr
0 · Xr

E⟩, but notice that the corresponding indices of the
one-hot encoding H(x)r all hold zeros; this is guaranteed by the fact that the single one-hot active position
is in the range 0 to N/2 when x[n− 1] = 0. Thus in our example, Xr

G = Xr
E .

G does not know which half of the table E is missing, but he does know the encoding of zero for each
index of the one-hot vector, so he can precompute both possible sums that E could be missing. He encrypts
these halves such that E can decrypt only her missing half:

H(vrow, Y ⊕∆)⊕ ⟨Rℓ
0 ·Xℓ

G⟩ ⊕ Z H(vrow, Y )⊕ ⟨Rr
0 ·Xr

G⟩ ⊕ Z

Above, vrow is a fresh nonce and Z ∈ {0, 1}κ is a uniform string. G sends these two ciphertexts to E. (In
fact, we can remove one of these two ciphertexts via the classic garbled row reduction technique [31].) In
our example, E decrypts the second row and adds the result to the sum she already computed:

⟨Rℓ
0 ·Xℓ

E⟩ ⊕ ⟨Rr
0 ·Xr

G⟩ ⊕ Z

= ⟨Rℓ
0 ·Xℓ

E⟩ ⊕ ⟨Rr
0 ·Xr

E⟩ ⊕ Z x[n− 1] = 0 =⇒ Xr
G = Xr

E

= ⟨R0 ·XE⟩ ⊕ Z

= ⟨T (r0) ·XE⟩ ⊕ Z Definition R0
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Meanwhile, G locally computes ⟨T (r0) ·XG⟩ ⊕ Z, matching E’s share. Thus, the parties hold:

⟨⟨⟨T (r0) ·XG⟩ ⊕ Z, ⟨T (r0) ·XE⟩ ⊕ Z⟩⟩
= J⟨T (r0) · H(x)⟩K ⟨⟨XG, XE⟩⟩ = JH(x)K
= Jr0(x)K Corollary 1

Therefore, G and E can compute Jr0(x)K while leaking only half of r0’s function table to E and while
consuming only κ bits of communication. The key idea was to reveal to E one half of the truth table,
allowing her to apply that half via a linear map, and G accounts for the second hidden half by sending a
ciphertext.

Masking the opened half via recursion. We showed how to compute Jr0(x)K where E knows the half
of r0’s truth table containing index x. Recall our goal is to evaluate Jr(x)K where r is fully hidden from
E. Observe that we can construct and evaluate a new hidden uniform function r′ : {0, 1}n−1 → {0, 1} and
define

r(x) ≜ r0(x)⊕ r′(x[0 : n− 1])

If r′ is hidden from E, then so is r: we leaked N/2 bits of r0’s truth table, and the N/2 bits in T (r′)
(literally) cover those revealed bits. Indeed, each index of r is masked either by (1) the hidden parts of r0
or (2) the function r′. Thus, our new task is to evaluate a secret uniform function Jr′(x[0 : n − 1])K, which
would accomplish our goal.

But this task is just a smaller version of the same problem we are already trying to solve! Indeed, we
are designing a procedure to map JxK, JH(x)K → Jr(x)K, and hence we can solve the problem by simply
recursively computing:

Jx[0 : n− 1]K, JH(x[0 : n− 1])K 7→ Jr′(x[0 : n− 1])K

We terminate the recursion when the parties need evaluate a uniform function with 0 bits of input; in this
base case, G simply injects a uniform bit.

The needed one-hot encoding JH(x[0 : n−1])K can be computed from JH(x)K via simple linear operations
alone. Namely, for each index of the output vector, the parties simply XOR two corresponding indices from
the input vector:

JH(x[0 : n− 1])K = JH(x)K[0 : N/2]⊕ JH(x)K[N/2 : N ]

Thus, we can indeed efficiently apply our procedure recursively.

Unwinding the recursion. It is instructive to consider the direct, non-recursive definition of r. Unwind-
ing the recursion, we see:

r(x) ≜
n⊕

i=0

ri(x[0 : n− i])

Each function ri is a uniform function chosen by the hash function H, and E views half of the truth table of
each ri<n. At the base case, the function rn takes no bits of input; as output, G injects a uniform bit which
is trivially hidden from E. Together, the functions ri hide r from E; see Figure 2 for an example.

In sum, our approach allows G and E to efficiently compute a uniform function r from a sequence of
half-hidden uniform functions ri. We use r to hide the function f , which in turn allows the parties to securely
compute Jf(a)K.

5 Approach

In this section, we formalize our approach as a garbling scheme (Definition 3).
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Figure 2: G recursively composes the uniform function r : {0, 1}n → {0, 1} from the XOR of n+ 1 uniform
functions ri : {0, 1}n−i → {0, 1} (see left). We depict an example where n = 3/N = 8. Suppose that the
evaluation point x is 2. Our construction reveals to E the half of each function ri<n that holds index x (see
right; E learns the entries depicted in green and not the entries depicted in white). rn is a function of zero
bits and so G represents the function by injecting a secret uniform bit. Ultimately, E learns nothing about
r because in each row there is at least one uniform bit that is XORed in and that she does not know.

On the function output length m. For readability, we presented our technical overview for function
output length m = 1. There are efficiency gains from batching over m bits of output rather than applying
m separate LUTs. Specifically, we amortize costs associated with constructing one-hot encodings across the
m output bits. Our formal construction is presented for general m. Consequently, one notable change in
this section as compared to Section 4 is that we use matrix products (Lemma 1) rather than inner products
(Corollary 1) to apply truth tables to one-hot encodings.

On garbled sharing notation. We present our construction using the language of garbled sharing (Def-
inition 2), as was first done by [13]. We find this notation simple and clear, as it allows to simultaneously
formally discuss garbling, evaluation, and wire value encoding/sharing. Formally, each of our figures presents
two procedures, one executed by G and one executed by E. Our figures never specify that E sends a message
to G. When we write that G sends a message to E, this formally means that G’s procedure appends the
message to the garbled circuit material and that E reads the message from the material.

Our Construction. We now formalize our garbling scheme. The most important part of our construction
is specified in Figure 3 by reference to Figures 1, 4 and 5. These figures formalize G’s and E’s handling of
LUT gates.

Aside from these figures, our formalism is relatively standard. The following construction plugs LUT gate
handling into a garbling scheme that we later (in Section 7) prove satisfies [3]’s considered security notions.

Construction 1. logrow is a garbling scheme (Definition 3) that supports circuits with three gate types:

• Standard two-input, one-output XOR gates and AND gates.

• LUT gates. A LUT gate is parameterized over function f : {0, 1}n 7→ {0, 1}m with LUT T (f). It takes
as input a bitstring a ∈ {0, 1}n and outputs f(a).

The garbling procedure are defined as follows:

• Gb(1κ, C) proceeds in several steps:
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• Parameters: Parties agree on input size n and output size m.

• Input:

– G inputs a function f : {0, 1}n → {0, 1}m.

– Parties input a shared function input JaK where a ∈ {0, 1}n.

• Output: Parties output a sharing Jf(a)K.

• Communication : G sends to E (2n− 1)κ+ nmκ+ 2nm bits.

• Computation: Parties use O(2ncκ + 2nmκ+ nmcκ + 2nmcκ/κ) computation.

• Procedure:

– Let ⟨⟨A,A⊕ a∆⟩⟩ = JaK.

– G computes α ≜ lsb(A). Let x = a⊕ α. E computes:

lsb(A⊕ a∆) = lsb(A)⊕ a · lsb(∆) = α⊕ a = x

– G injects ⟨⟨α∆, 0⟩⟩ = JαK as input. Parties compute JxK = JaK⊕ JαK.

– Parties use one-hot garbling (Figure 1) to compute JH(x)K.
– Parties use Figure 5 to compute Jr(x)K where r : {0, 1}n → {0, 1}m is a uniformly random

function. As a side-effect, G now holds r.

– Let f ′ be a function that computes the following:

f ′(x) ≜ f(x⊕ α)⊕ r(x)

– G computes the truth table T (f ′) for f ′ and sends T (f ′) to E.

– Parties compute and output:

(T (f ′)
⊺ · JH(x)K)⊕ Jr(x)K

= Jf ′(x)K⊕ Jr(x)K Lemma 1

= Jf ′(a⊕ α)K⊕ Jr(a⊕ α)K Definition x

= Jf((a⊕ α)⊕ α)⊕ r(a⊕ α)K⊕ Jr(a⊕ α)K Definition f ′

= Jf(a)K

Figure 3: Garbled LUT Evaluation. We reduce the evaluation Jf(a)K for arbitrary f to the evaluation
Jr(a⊕ α)K for random r (see Figure 4).

– Uniformly sample ∆ ∈$ 1{0, 1}κ−1.

– For each circuit input x[i], sample uniform zero label X[i] ∈$ {0, 1}κ.
– Assemble the input encoding string e as a vector of pairs of labels:

e[i] = (X[i], X[i]⊕∆)

This choice of e is consistent with projectivity.

– Step through the circuit gate by gate. For each XOR gate, XOR the gate’s input zero labels and
place the result on the output wire [25]. For each AND gate, run the AND gate garbling procedure
formalized by [41]. For each LUT gate, run G’s procedure described in Figure 3. Let M be the
string of material concatenated from all “messages sent to E”.
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• Parameters: Parties agree on input size n and output size m.

• Input:

– Parties input a sharing JxK where x ∈ {0, 1}n.
– Parties input a shared one-hot vector JH(x)K.
– E inputs x.

• Output:

– G outputs a function r : {0, 1}n → {0, 1}m that has a uniform truth table.

– Parties output a sharing Jr(x)K.

• Communication: G sends to E nmκ bits.

• Computation: Each party uses O(2nmκ+ nmcκ + 2nmcκ/κ) computation.

• Procedure:

– If n = 0:

∗ G samples uniform s ∈$ {0, 1}m as the output of r : ∅ → {0, 1}m.

∗ Parties output Jr(x)K = ⟨⟨s∆, 0⟩⟩ and halt.

– Parties evaluate a half-hidden uniform function Jr̂(x)K (Figure 5), where r̂ ∈ {0, 1}n → {0, 1}m.
G learns r̂ during evaluation. As a side effect, E learns “half” of r̂.

– Parties evaluate another uniform function Jr′(x[0 : n− 1])K by recursively invoking this proce-
dure, where r′ ∈ {0, 1}n−1 → {0, 1}m, with the following specification:

∗ Parties agree on input size n− 1 and output size m.

∗ Parties input Jx[0 : n− 1]K.
∗ Parties input JH(x[0 : n− 1])K = JH(x)K[0:2n−1]⊕ JH(x)K[2n−1:2n].

∗ E inputs x[0 : n− 1].

∗ Parties receive Jr′(x[0 : n− 1])K, and G learns r′.

– G computes and outputs:
T (r) ≜ T (r̂)⊕ (T (r′)||T (r′))

The concatenation T (r′)||T (r′) is along the rows.

– Parties compute and output:

Jr(x)K ≜ Jr̂(x)K⊕ Jr′(x[0 : n− 1])K

Figure 4: The core of our approach allows G and E to efficiently evaluate a uniformly random function r
such that E does not know r. We compose r from n “half-hidden” uniform functions r̂ (see Figure 5). For
each function r̂, E learns half of the corresponding truth table, but these tables are XORed together in such
a way that E learns nothing about r.

– For each output wire y[i], let Y [i] be the output zero label. Assemble the output decoding string d
as a vector of pairs, where for each index i the pair is specified as:

d[i] = (H(ν, Y [i]) || lsb(Y [i]), H(ν, Y [i]⊕∆) || lsb(Y [i]⊕∆))

Here, ν is a fresh nonce. This choice of d ensures that E will be able to compute only one entry
of each pair. (We include the least significant bit of each label to ensure perfect correctness.)
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• Input:

– Parties input a shared one-hot vector JH(x)K and a sharing JxK, where x ∈ {0, 1}n.
– E inputs x.

• Output:

– G outputs function r̂ : {0, 1}n → {0, 1}m with uniform truth table T (r̂).
– E outputs T (r̂)[0 : 2n−1] if x[n− 1] is 1; else T (r̂)[2n−1 : 2n].

– Parties output a sharing Jr̂(x)K.

• Communication: G sends to E mκ bits.

• Computation: Each party uses O(2nmκ+mcκ + 2nmcκ/κ) computation.

• Procedure:

– Let ⟨⟨Y, Y ⊕ x[n− 1]∆⟩⟩ = Jx[n− 1]K.

– Let ⟨⟨XG, XE⟩⟩ = JH(x)K.
– r̂ : {0, 1}n → {0, 1}m is a (not-yet-defined) uniform function and R̂ ≜ T (r̂).
– We define the left and right halves of vectors:

R̂ℓ ≜ R̂[0 : 2n−1] R̂r ≜ R̂[2n−1 : 2n]

Xℓ
G ≜ XG[0 : 2n−1] Xr

G ≜ XG[2
n−1 : 2n]

Xℓ
E ≜ XE [0 : 2n−1] Xr

E ≜ XE [2
n−1 : 2n]

H(x)ℓ ≜ H(x)[0 : 2n−1] H(x)r ≜ H(x)[2n−1 : 2n]

– G defines r̂ by hashing labels Y and Y ⊕∆: R̂ℓ ≜ H(vr̂, Y ), R̂r ≜ H(vr̂, Y ⊕∆)

– G defines the following two length-mκ strings (row reduction):

Z ≜ H(vrow, Y )⊕ ((R̂r)⊺ ·Xr
G) row ≜ H(vrow, Y ⊕∆)⊕ ((R̂ℓ)⊺ ·Xℓ

G)⊕ Z

– G sends row to E and sets his output share (T (r̂))⊺ ·XG ⊕ Z.

– E computes: {
(H(vr̂, Y )⊺ ·Xℓ

E)⊕H(vrow, Y ) if x[n− 1] = 0

(H(vr̂, Y ⊕∆)⊺ ·Xr
E)⊕H(vrow, Y ⊕∆)⊕ row otherwise

=

{
((R̂ℓ)⊺ ·Xℓ

E)⊕ (((R̂r)⊺ ·Xr
G)⊕ Z) if x[n− 1] = 0

((R̂r)⊺ ·Xr
E)⊕ (((R̂ℓ)⊺ ·Xℓ

G)⊕ Z) otherwise

=

{
((R̂ℓ)⊺ ·Xℓ

E)⊕ ((R̂r)⊺ ·Xr
E)⊕ Z if x[n− 1] = 0

((R̂r)⊺ ·Xr
E)⊕ ((R̂ℓ)⊺ ·Xℓ

E)⊕ Z otherwise

= (R̂⊺ ·XE)⊕ Z = (T (r̂)⊺ ·XE)⊕ Z

– Parties output: ⟨⟨(T (r̂)⊺ ·XG)⊕ Z, (T (r̂)⊺ ·XE)⊕ Z⟩⟩ = J(T (r̂)⊺ · H(x))K = Jr̂(x)K

Figure 5: Our low-level primitive allows “half-hidden uniform function evaluation”. The parties output
Jr̂(x)K for input x; G outputs uniform function r̂ ∈ {0, 1}n → {0, 1}m and E outputs “half” of r̂.
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– Output (M, e, d).

• En(e, x) is a standard projective procedure. For each input bit x[i], En outputs a label appropriate for
evaluation:

e[i][x[i]] = X[i]⊕ x[i]∆

• Ev(M, X) steps through the circuit gate by gate, usingM to map gate input labels to gate output labels.
Namely, the procedure proceeds as follows: For each XOR gate, XOR the input labels together [25]. For
each AND gate, run the AND gate evaluation procedure formalized by [41]. For each LUT gate, run
E’s procedure described in Figure 3. The procedure collects each output wire label Y [i] and outputs Y .

• De(d, Y ) is a standard projective procedure. For each of E’s output labels Y [i], the procedure computes:

y[i] =


0 if (H(ν, Y [i]) || lsb(Y [i])) = d[i][0]

1 if (H(ν, Y [i]) || lsb(Y [i])) = d[i][1]

⊥ otherwise

If any label Y [i] fails to decode (i.e., above computes ⊥), then the procedure simply outputs ⊥. Other-
wise, the procedure outputs the decoded string y. Inclusion of lsbs in the output decoding string ensures
perfect correctness. (Namely, ⊥ will never arise, unless malicious E tries to forge an output.)

Compatibility with other garbling techniques. Construction 1 provides the essential interfaces and
functionalities for traditional two-input one-output Boolean gates as well as arbitrary n-input m-output
lookup tables.

logrow is compatible with many modern techniques in GC, including state-of-the-art Boolean gates [37],
GRAM, one-hot accelerated operations, and SGC. Amongst these, compatibility with SGC is by far the
most complex, since it requires proving an additional security property. Strong Stackability enforces that
the garbling of a circuit “look uniform”, which allows SGC to safely stack these garblings together [14].
Theorem 6 proves our scheme is strongly stackable.

Hiding LUTs from E. Formally, [3] require the definition of a side-information function Φ. Given a
particular circuit C, this function specifies what information about C is made available to E. In typical GC
constructions, this side-information function is trivial in the sense that E is allowed to see the entire circuit,
so the side-information function is often omitted from formal discussion.

In our construction, however, we can be stricter and hide from E the specification of each LUT gate
function. Thus we give an explicit definition for Φ:

Definition 6. For a circuit C with XOR gates, AND gates, and LUT gates, we define the side-information
function Φ(C) to be the circuit topology and the type of each gate. Φ(C) explicitly does not include the
function f of each LUT gate.

6 Performance

We argue Construction 1 achieves our claimed performance. Namely, each LUT gate transmits roughly
nmκ +Nm bits and requires O(2ncκ + 2nmκ + nmcκ + 2nmcκ/κ) computation from each party. Figure 6
plots our communication consumption as compared to a basic H-row encrypted truth table.

Theorem 1. In logrow, consider a LUT gate with function f : {0, 1}n → {0, 1}m. Each such gate incurs
the following cost:

• 2nm+ (n− 1)κ+ nmκ bits of communication.

• O(2ncκ + 2nmκ+ nmcκ + 2nmcκ/κ) computation.

Proof. By inspection of Figures 1 and 3 to 5.
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Figure 6: logrow’s communication cost for a single LUT gate. We assume m = 8 column in the LUT and
κ = 128. Our approach consistently outperforms the (standard) Yao’s encrypted truth table approach by
orders of magnitude. For N > 97, our communication is more than 10× lower than that of the standard
approach. For N > 213, our communication is more than 100× lower.

Communication Cost. Recall that we compute JaK 7→ Jf(a)K. There are three steps in our construction
where G must transmit information to E:

• G sends the truth table for f ′(x) ≜ f(x⊕ α)⊕ r(x). Cost: Nm bits.

• G and E compute JH(x)K. Cost: (n− 1)κ bits [13].

• G sends n strings each of length mκ to implement n half-hidden uniform functions (Section 4.2). Cost:
nmκ bits.

In total, G must send Nm + (n − 1)κ + nmκ bits. Figure 6 demonstrates that our protocol significantly
outperforms a standard encrypted truth table.

Computation Cost. Below, we count the computation cost of each component of our construction.

• The parties first compute JH(x)K. Cost: O(2ncκ) computation [13].

• The parties compute a random function Jr(x)K =
⊕

i∈[n+1]Jri(x)K. Each half hidden random function

Jri(x)K incurs the following computation cost:

– Derive the (2n−i−1)-bit strings Rℓ
i / Rr

i by hashing. Cost: O(2n−imcκ/κ) computation.

– Compute JH(x[0 : n− i])K via linear map. Cost: O(2n−iκ) computation.

– Construct (resp. decrypt) a garbled row:

Z ≜ H(vrow, Y )⊕ ((R̂r)⊺ ·Xr
G)

row ≜ H(vrow, Y ⊕∆)⊕ ((R̂ℓ)⊺ ·Xℓ
G)⊕ Z

Cost: O(mcκ).

– Compute the following sum:

Jri(x)K = ((Rℓ
i)

⊺ · JH(x[0 : n− i])ℓK)⊕ ((Rr
i )

⊺ · JH(x[0 : n− i])rK)⊕ Z

Cost: O(2n−imκ) computation.

It takes O(2n−imcκ/κ+mcκ+2n−imκ) computation to compute Jri(x)K. Altogether, the n half hidden
random functions cost: O(2nmcκ/κ+ nmcκ + 2nmκ).

20



• The parties compute Jf ′(x)K = T (f ′)
⊺ · JH(x)K. Both parties use O(2nmκ) bit XORs to compute the

matrix product. In addition, G must compute T (f ′) from T (f) and T (ri). This uses only O(2nm)
computation. Cost: O(2nmκ) computation.

• Finally, the parties compute Jf(x)K = Jf ′(x)K⊕ Jr(x)K. Cost: O(mκ).

In total, both G and E use O(2ncκ + 2nmκ+ nmcκ + 2nmcκ/κ) computation.

7 Security Theorems and Proofs

In this section, we formally state and prove our security claim. Following [3]’s framework for GC, we prove
the correctness, obliviousness, privacy, and authenticity of logrow. These properties ensure that logrow can
instantiate GC-based protocols. logrow is also compatible with Stacked Garbling, which is shown by proving
logrow satisfies strong stackability.

We note that amongst our proofs, correctness and obliviousness are the most crucial. For many typi-
cal schemes, including ours, privacy and authenticity follow from obliviousness without much extra effort.
Indeed, these proofs are mostly boilerplate, and are similar to proofs given in prior work, e.g. [15]. Strong
stackability is also relatively straightforward. The most important requirement of strong stackability is that
the garbling of a circuit (together with active input labels) be simulatable by an appropriately-sized uni-
form string. Our obliviousness proof directly shows that this is the case, so our proof of strong stackability
is mostly an appeal to our proof of obliviousness. We prove logrow’s privacy, obliviousness, and strong
stackability to Appendix A, B and C, respectively.

Definition 7 (Correctness). A garbling scheme is correct if for any circuit C and all inputs x:

De(d,Ev(M, En(e, x))) = C(x) where (M, e, d)← Gb(1κ, C)

Theorem 2. logrow is correct.

Proof. By the correctness of individual gates.
Technically, the correctness of each gate proceeds by case analysis. XOR and AND gates are handled

using known techniques [25, 41], and so they are correct. Thus, we need only show that our new LUT gates
are correct. For the most part, correctness of each LUT gate is argued inline in Figures 3 to 5. In the
following, we focus the non-trivial aspects of correctness.

Figure 3 shows that LUT gates are correct, given that Figure 4 indeed (1) delivers random function r to
G and (2) delivers shares Jr(x)K to G and E.

Correctness of Uniform Function Evaluation (Figure 4). Now, we argue that the recursive uniform
function evaluation is correct; namely, the output share Jr(x)K is indeed a share of r(x), and G’s r agrees on
Jr(x)K. Because Figure 4 proceeds recursively, our proof proceeds by induction on n.

In the base case n = 0, G learns r(⊥) = s, and the parties output ⟨⟨s∆, 0⟩⟩, which is a correct sharing
by construction.

In the inductive case n > 0, we can assume that the recursive evaluation is correct: the parties indeed
hold shares Jr′(x)K that agree with G’s function r′ : {0, 1}n−1 → {0, 1}m. Additionally, Figure 5 indeed
correctly computes a half-hidden uniform function r̂; correctness is argued inline.

To complete the inductive step, we closely examine how G defines r. Recall that he defines the truth
table T (r) as follows:

T (r) ≜ T (r′)⊕ (T (r̂)||T (r̂))

21



Converting this to a function definition, we know that for any a ∈ {0, 1}n

r(a) = T (r)⊺ · H(a)
= (T (r̂)⊕ (T (r′)||T (r′))⊺ · H(a))
= (T (r̂)⊺ · H(a))⊕ (T (r′)⊺ · H(a)[0 : 2n−1])⊕ (T (r′)⊺ · H(a)[2n−1 : 2n])

= (T (r̂)⊺ · H(a))⊕ (T (r′)⊺ · (H(a)[0 : 2n−1]⊕H(a)[2n−1 : 2n]))

= (T (r̂)⊺ · H(a))⊕ (T (r′)⊺ · H(a[0 : n− 1]))

= r̂(a)⊕ r′(a[0 : n− 1])

This matches the parties computed shares Jr(x)K = Jr̂(x)K ⊕ Jr′(x[0 : n − 1])K, so we can conclude that G’s
function r agrees with Jr(x)K. By induction, the recursive uniform function evaluation is correct, and so
LUT gates are correct.

Since each gate type is correct, logrow is correct.

Definition 8 (Obliviousness). A garbling scheme is oblivious if for any circuit C and for all inputs x there
exists a simulator Sobv such that the following computational indistinguishability holds:

(M, X)
c
≈ Sobv(1κ,Φ(C)) where (M, e, d)← Gb(1κ, C) and X ← En(e, x)

Theorem 3. logrow is oblivious.

Proof. By construction of a simulator Sobv.
Obliviousness is arguably the most important GC security notion, as it ensures that the GC alone conveys

no information to the evaluator.
At a high level, Sobv proceeds gate-by-gate through the circuit, at each gate simulating appropriate

GC material. To handle AND/XOR gates, our simulator simply calls out to gate simulators defined by prior
work [41].

The non-standard part of the simulation – and our focus in this proof – is the handling of a single LUT
gate. At a high level, this simulation is straightforward. E receives only three kinds of messages from G:

• A truth table T (f ′) (see Figure 3). T (f ′) is masked by a random function r, and so can by simulated
by a uniform matrix of appropriate dimension.

• n − 1 garbled rows needed to construct the one-hot encoding JH(x)K. [13] demonstrated that each of
these length-κ rows can be simulated by uniform strings of length κ.

• n garbled rows each of length mκ. Each of these rows is encrypted by H, and the definition of circular
correlation robustness (Definition 1) is sufficient to ensure that these can also be simulated by uniform
bits.

In short, each LUT gate is simulated by a uniform string of appropriate length.
In more detail, Sobv proceeds as follows. First, we simulate the label for each input bit x[i] with a

uniform string X̂[i]. This is indistinguishable because the real label X[i] (or X[i] ⊕ ∆) is also sampled
uniformly.
Sobv then proceeds gate-by-gate through C. Note, the topology of C is explicitly contained in Φ(C)

(Definition 6). At each gate, we use the simulated gate input labels to simulate appropriate material and
gate output labels. After simulating each gate, Sobv returns (M̂, Ŷ ) where M̂ is the collection of gate material
and Ŷ is the collection of simulated labels on circuit output wires. The core task of Sobv is to proceed by
case analysis on each gate.

XOR gates are ‘free,’ since no material is required. To simulate the gate, Sobv simply XORs the simulated
input labels, places the result on the output wire, and then continues to the next gate.
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AND gates are implemented by the half-gate technique [41]. [41, p.13] provides an explicit simulator
procedure for AND gates which we call which we call SAND. For each AND gate, Sobv feeds the input labels
to SAND, obtains the output label, and appends the two ciphertexts (for the half gates) to M̂.

LUT gates require G to deliver three kinds of material to E (see high level summary above). We argue
that Sobv can simulate all of this material with uniform bits.

• G sends to E the material for JH(x)K. [13, p.15] provides an explicit simulator for simulating the
one-hot garbling procedure listed in Figure 1. We call this simulator SH. Sobv invokes SH on simulated
input labels, resulting in simulated material and simulated output labels. It appends the resultant
material to M̂.

• G sends one length mκ string to E for each of n half-hidden uniform function evaluations (Figure 5).
To simulate each of these strings, Sobv samples a mκ-bit uniform string Ẑ and appends it to M̂. We
argue that each of these m bits is indistinguishable. Recall that G sends the following to E:

H(vrow, Y ⊕∆)⊕ ((R̂ℓ)⊺ ·Xℓ
G)⊕H(vrow, Y )⊕ ((R̂r)⊺ ·Xr

G)

(Here, we have inlined the definition of Z listed in Figure 5.) Let Ŷ be the simulated input label for
Y and let X̂ be the simulated garbling of the one-hot vector JH(x)K. WLOG, suppose the simulated
value x[n− 1] is 0; the indistinguishability argument for x[n− 1] = 1 is symmetric. We also define the
following:

L ≜ ((R̂ℓ)⊺ ·Xℓ
G) R ≜ ((R̂r)⊺ ·Xr

G)

Note the following indistinguishability (which holds even in the context of appropriate input labels):

Ŷ
c
≈ Ŷ ⊕ L⊕H(vrow, Y )⊕R Ŷ is a one-time pad
c
≈ R(νrow, Y, 0)⊕ L⊕H(vrow, Y )⊕R R is a random function
c
≈ circ∆(νrow, Y, 0)⊕ L⊕H(vrow, Y )⊕R Definition 1
c
≈ H(vrow, Y ⊕∆)⊕ L⊕H(vrow, Y )⊕R Real

In short, the inclusion of the call to H on one label that E does not know ensures that the row appears
uniform.

• G sends to E the truth table for f ′(x) ≜ f(x⊕α)⊕ r(x). Sobv simulates this truth table by appending
to M̂ an appropriately sized (2nm-bits) uniform string. Since T (f ′) = T (f)⊕T (r), as long as we can
show the uniformity of T (r), T (f ′) is also uniform.

One tricky issue is that r(x) ≜
⊕n

i=0 ri(x[0 : n−i]), and the adversary knows half of each ri<n. Still, we
can show that for any a ∈ {0, 1}n, r(a) is uniformly distributed regardless of the adversary’s knowledge
of ri<n.

We prove this by showing that for any a, r(a) is masked by a uniform value ri(a) that is not known
to the adversary. Importantly, this value is not “reused” to mask any other r(·), so the distribution of
the full string r is uniform. We show this by induction.

In the base case n = 0, r(⊥) = s is a uniform value only known to G, and hence unavailable to the
adversary. I.e., Sobv can simulate s by a uniform string. In the inductive case n′ < n, Sobv can
simulate r′ by a uniform string. Now we show that a uniform string can also simulate r(x) ≜ r̂(x)⊕r′(x).
For a ∈ {0, 1}n, there are two possible cases:

– a[n−1] = x[n−1]. By the uniformity of r′, r′(a[0 : n−1]) is uniform. Thus, r(a) = r̂(a)⊕r′(a[0 :
n− 1]) is uniform.
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– a[n− 1] = x[n− 1]⊕ 1. Since the adversary does not have the label for Jx[n− 1]⊕ 1K, and r(a) is
generated by hashing the label of Jx[n− 1]⊕ 1K that the adversary does not have, r(a) is uniform.

Notice that for each a, r(a) can be independently simulated by a uniform string. Hence, T (r), defined
as the concatenation of these strings, is uniform.

Thus, the full LUT gate can be simulated simply by drawing uniform strings of appropriate length.
From here, the proof of indistinguishability follows a basic hybrid argument, similar to the standard proof

of GC security given by [27].
logrow is oblivious.

Definition 9 (Privacy). A garbling scheme is private if for any circuit C and for all inputs x there exists
a simulator Sprv such that the following computational indistinguishability holds

(M, X, d)
c
≈ Sprv(1κ, y,Φ(C))

where (M, e, d)← Gb(1κ, C), X ← En(e, x), y ← C(x).

Theorem 4. logrow is private.

We refer readers to Appendix A for the proof.

Definition 10 (Authenticity). A garbling scheme is authentic if for all circuits C, all inputs x, and all
probabilistic polynomial time (PPT) adversaries A, the following probability is negligible in κ:

Pr[Ev(M, x) ̸= y′ ∧De(d, y′) ̸= ⊥]

where (M, e, d)← Gb(1κ, c), x← En(e, x), and y′ ← A(C,M, x).

Authenticity ensures that even a malicious evaluator A cannot compute output labels that successfully
decode, except by running the GC as intended.

Notably, A is given the full circuit description C, not just the side-information function ϕ(C). Thus, A
has access to the function of each LUT gate. This captures scenarios where the evaluator may have side
information about each LUT.

Theorem 5. logrow is authentic.

We refer readers to Appendix B for the proof.
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Appendices

A Proof of Privacy (Theorem 4)

Proof. By construction of a simulator Sprv.
At a high level, privacy follows from obliviousness and from the definition of De. The key challenge of

privacy is in demonstrating that our simulation can account for the output value y, which in the real world
is made available to the adversary by the output decoding string d. To handle this, Sprv uses Sobv to simulate

a garbled circuit and then simulates a garbled output decoding string d̂ that causes the simulated garbled
circuit to output the correct value.

In more detail, we construct Sprv as follows. Sprv first invokes Sobv(1κ,Φ(C)) to obtain simulated material

M̂ and simulated input labels X̂. Sprv then evaluates this fake garbled circuit by invoking Ev(M̂, X̂), yielding

output labels Ŷ . Next, Sprv tailors an output decoding string that precisely causes Ŷ to decrypt to y. I.e.,

consider each output label Ŷ [i] with corresponding output y[i]. WLOG, assume y[i] = 0. The 1 case is

symmetric. Sprv constructs d̂ as follows:

d̂[i] = (H(ν, Ŷ ), R) where R ∈$ {0, 1}κ

By inspecting the definition of De (Construction 1), we can see that this ensures that the simulated output
decodes to the correct value:

De(d̂, Ŷ ) = y

At the same time, for each output Ŷ [i], the adversary cannot distinguish d[i][1] from d̂[i][1] (again, WLOG
assuming y[i] = 0). This holds by the properties of the hash function H and by the fact that in the real
world obliviousness prevents the adversary from obtaining Y [i]⊕∆. I.e., H(ν, Y [i]⊕∆) appears uniform.

Sprv outputs (M̂, X̂, d̂).
logrow is private.

B Proof of Authenticity (Theorem 5)

Proof. By the definition of Sprv and of De.
At a high level, authenticity follows almost immediately from the definition of Sprv. Privacy ensures

that no PPT algorithm can distinguish a real garbled circuit from the privacy simulation. But Sprv’s output
decoding string d̂ consists of labels that are chosen uniformly at random. Thus, it cannot possibly be the case
that A can attack the authenticity of the privacy simulator: doing so would require A to guess a uniformly
chosen entry of d̂. Thus, if some adversary A can attack the real-world GC, then A can be used to distinguish
the real-world GC from the privacy simulation – a contradiction.

In more detail, suppose, for the sake of deriving a contradiction, that A can construct Y ′ ̸= Y that
successfully decodes. We use A to construct a privacy distinguisher:

• Distinguisher DC
prv(M, X, d):

– Compute Y = Ev(M, X).

– Compute Y ′ = A(C,M,X).

– Output (Y ′ ̸= Y ) ∧ (De(d, Y ′) ̸= ⊥).

Consider the following:

• Compute (M̂, X̂, d̂)← Sprv(1κ, y,Φ(C).

• Compute and output DC
prv(M̂, X̂, d̂)
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The above output must be 0 with overwhelming probability: Recall that for each output bit y[i], Sprv hashes
the simulated output label H(v, Ŷ [i]) and uses this as an entry of d̂. However, Sprv does not know the other

label, so it appends a uniform string R to d̂. It is infeasible for A find a label Y ′[i] such that H(ν, Y ′[i]) = R.
However, if (M, X, d) is from the real execution, then by our assumption, A must output a valid label

Y ′ ̸= Y such that Y ′ successfully decodes. Therefore, in the real world DC
prv outputs 1 with non-negligible

probability. Hence, DC
prv is indeed a privacy distinguisher.

We have reached a contradiction. logrow is private, and so DC
prv should not exist. Thus, it must be the

case that A does not exist.
logrow is authentic.

C Proof of Strong Stackability

Definition 11 (Strong Stackability). A garbling scheme is strongly stackable [14] if:

1. For all circuits C and all inputs x,

(C,M, En(e, x))
c
≈ (C,M′, x′)

where (M, e, ·)← Gb(1κ, C), X ′ ← {0, 1}|X|, andM′ ← {0, 1}|M|.

2. The scheme is projective.

3. There exists an efficient deterministic procedure Color that maps strings to {0, 1} such that such that
for all C and all projective label pairs A0, A1 ∈ d:

Color(A0) ̸= Color(A1)

where (·, ·, d) = Gb(1κ, C).

4. There exists an efficient deterministic procedure Key that maps strings to {0, 1}κ such that for all C
and all projective labels pairs A0, A1 ∈ d:

Key(A0) || Key(A1)
c
≈ {0, 1}2κ

where (·, ·, d) = Gb(1κ, C).
Theorem 6. logrow is strongly stackable.

Proof. We show that logrow satisfies each property.

• Property 1 requires that the GC material and input labels M, X should be uniform. This follows
immediately from our proof of obliviousness (Theorem 3), where we explicitly simulated the GC with
uniform bits.

• Properties 2−4 require that the scheme be projective (Property 2) and that each pair of labels have
distinct color bits (Property 3). We first note that our scheme is projective by construction.

Recall our definition of d:
d[i] = (H(ν, Y [i]), H(ν, Y [i]⊕∆))

Formally, we slightly modify our definition of d to replace the lsb of the first entry of the pair by a zero;
similarly, we replace the lsb of the second entry of the pair by a one. Thus, the lsb of each entry is an
index into the pair. We define Color to be a function that extracts the lsb. We keep this small change
to d here to avoid cluttering our notation elsewhere. Similarly, Key extracts all bits from d other than
the LSBs. The pair of key pairs is indistinguishable from uniform by the properties of H.

In short, strong stackability holds by definition of the obliviousness simulator and by the definition of
our encodings.

logrow is strongly stackable.
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