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Abstract. We devise algorithms for finding equivalences of trilinear
forms over finite fields modulo linear group actions. Our focus is on two
problems under this umbrella, Matrix Code Equivalence (MCE) and Al-
ternating Trilinear Form Equivalence (ATFE), since their hardness is the
foundation of the NIST round-1 signature candidates MEDS and ALTEQ
respectively.
We present new algorithms for MCE and ATFE, which are further de-
velopments of the algorithms for polynomial isomorphism and alternat-
ing trilinear form equivalence, in particular by Bouillaguet, Fouque, and
Véber (Eurocrypt 2013), and Beullens (Crypto 2023). Key ingredients
in these algorithms are new easy-to-compute distinguishing invariants
under the respective group actions.
For MCE, we associate new isomorphism invariants to corank-1 points of
matrix codes, which lead to a birthday-type algorithm. We present empir-
ical justifications that these isomorphism invariants are easy-to-compute
and distinguishing, and provide an implementation of this algorithm.
This algorithm has some implications to the security of MEDS.
The invariant function for ATFE is similar, except it is associated with
lower rank points. Modulo certain assumptions on turning the invari-
ant function into canonical forms, our algorithm for ATFE improves on
the runtime of the previously best known algorithm of Beullens (Crypto
2023).
Finally, we present quantum variants of our classical algorithms with
cubic runtime improvements.

1 Introduction

Given two objects A and B of the same type, the equivalence problem asks if
there exists a map π such that π(A) = B. The hardness of the equivalence
problem depends on the objects and how the map is defined. There are objects
in the equivalence problem that were recently proposed to support public-key
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cryptography for quantum-resistant purposes, such as linear or matrix codes
[22,13,8], alternating trilinear form[42], lattice [26,25] etc.

Linear code equivalence. A classical equivalence problem is the Code Equiva-
lence problem, which asks whether two given linear codes are isometric, that is,
whether two linear codes are the same up to permuting, and possibly scalar mul-
tiplications on, the coordinates. One digital signature scheme submitted to the
NIST call for additional signatures, LESS [5], is based on the assumed hardness
of this problem.

Leon [36] initiated the study of this problem and proposed an algorithm
that computes a list of both codes with minimum Hamming weight and then
matches them to recover the isometry. Recently, Beullens [11] improved Leon’s
algorithm by using collision search. Another algorithm of significance is known
as the Support Splitting Algorithm (SSA) by Sendrier [40]. Its running time in-
creases exponentially in the dimension of the hull (the intersection of a code and
its dual), and it works effectively for random linear codes under permutations.
When scalar multiplications are also present, SSA works when q ≤ 4 but not
q ≥ 5. If the hull is trivial and only permutations are used, then this problem
can be reduced to graph isomorphism [7].

Matrix code equivalence. In this work, we are interested in the equivalence prob-
lem of matrix codes, called the Matrix Code Equivalence (MCE) problem. A
matrix code over Fq is a linear subspace of the space of m× n matrices over Fq.
Concerning the MCE problem, it was recently shown to be at least as hard as
the Code Equivalence problem [23,31], and to be equivalent to the homogeneous
version of the Quadratic Maps Linear Equivalence (QMLE) problem [39,31].

Alternating trilinear form equivalence. We are also interested in another problem
namely Alternating Trilinear Form Equivalence (ATFE), recently proposed in
[42] to support a digital signature scheme. Here, the objects are alternating
trilinear forms, namely a function ϕ : Fnq × Fnq × Fnq → Fq that is (1) linear in
each argument, and (2) whenever two arguments are the same, ϕ evaluates to 0.

We now state the MCE and ATFE problems, which would also indicate what
equivalences mean for matrix codes and alternating trilinear forms.

Definition 1 (Matrix Code Equivalence (MCE)). Given two matrix codes
C and D in M(m × n, q), the problem asks whether there exist two invertible
matrices A ∈ GL(m, q) and B ∈ GL(n, q) such that D = ACB := {ACB | C ∈
C}.

Definition 2 (Alternating Trilinear Form Equivalence (ATFE)). Given
two alternating trilinear forms ϕ, ψ : Fnq×Fnq×Fnq → Fq, the problem asks whether
there exists an invertible matrix A ∈ GL(n, q) such that for any u, v, w ∈ Fnq ,
ϕ(Au,Av,Aw) = ψ(u, v, w).
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MCE and ATFE: relations and cryptographic uses. MCE and ATFE are shown to
be polynomial-time equivalent [32] and are Tensor Isomorphism (TI)-complete
[31]. Utilising the MCE and ATFE problems, two signature schemes have recently
been proposed by Tang et al. [42] and Chou et al. [22]. Both schemes are based
on the Goldreich–Micali–Wigderson zero-knowledge protocol for graph isomor-
phism [30] and the Fiat–Shamir transformation [28]. More broadly these fall
into the investigations on identifying and utilising group actions in cryptogra-
phy [19,34,1]. These works lead to submissions to NIST’s current standardization
for post-quantum signatures: MEDS [21] and ALTEQ [15]. Subsequently, vari-
ous applications have been developed, including ring signatures [14,24,22] and
threshold signatures [9]. Hence, it is of significance to investigate the hardness
of these two problems, as it will provide insights into the selection of secure
parameter sets.

1.1 Previous works

In this section, we will briefly review some of state-of-the-art algorithms for MCE
and ATFE. Algorithms for MCE and ATFE have been surveyed in [22] and [42],
respectively. Beullens recently contributed beautiful new algorithms for ATFE in
[12]. Here we explain two algorithms, one for MCE and one for ATFE, that are
most relevant to us.

Leon-like algorithm for MCE. Leon’s algorithm [36] is well-known for solving
code equivalence problems in the Hamming metric. The key observation is that
the equivalence preserves the Hamming weight of the codewords. Consequently,
identifying the set of codewords with minimum Hamming weight within two
codes can aid in revealing the equivalence or isometry between the codes. Re-
cently, Beullens [11] improved upon this algorithm by constructing the set of
codewords with a particular weight and the same multiset of entries as lists 4.
Subsequently, a collision search is conducted between the two lists to recover
equivalence or isometry easily. It is natural to adapt Leon’s algorithm to MCE
[22]. That is, one can first build two lists of low-rank matrices in C1 and C2, and
then do a collision search to find a matched pair of corresponding matrix codes
and so recover the equivalence.

Beullens’ algorithm for ATFE. Beullens [12] currently proposed a graph-theoretic
algorithm to solve ATFE problem. An alternating trilinear form ϕ can be viewed
as a graph Gϕ, where v ∈ Fnq is a vertex and (u,v) be an edge if and only if
ϕu,v = 0. Also, a bilinear form ϕu can be viewed as a matrixMϕ,u, then the rank
of u is the rank of Mϕ,u. The key observation is that the equivalence preserves
the rank of the vertices in Gϕ. Therefore, the algorithm first builds two lists of
low-rank points in ϕ and ψ respectively and then finds a collision to recover the
equivalence.

4 In the monomial setting, Beullens considered building a set of 2-dimension subcodes
with small support. This is because monomial transformation do not preserve any-
thing beyond the hamming weight of a vector.
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Gröbner basis approach. TheMCE and ATFE problem can be solved algebraically
by transforming them into a system of polynomial equations and then solving
this system via Gröbner basis [42,22]. The Gröbner basis method, exhibits insen-
sitivity to the parameter q within the system, with its efficiency contingent solely
upon the valuesm,n and l (or n for the ATFE). Also, this approach demonstrates
the high efficiency when applied to problems characterized by low dimensions.

1.2 Our contributions

In this paper, we propose heuristic algorithms for MCE and ATFE problems. We
summarize our contributions as below.

Algorithm for MCE. We present a new algorithm for MCE. Our algorithm intro-
duces a novel invariant for matrix codes, which we call the “corank-1 associated
invariant”. This innovation allows us to find a collision using the birthday para-
dox, and it avoids the use of Gröbner basis computations. This improvement
leads to an algorithm with a complexity of O(q(n−2)/2 · (q · n3 + n4) · (log(q))2)
as described in Section 4.4. We provide an implementation of this algorithm,
and demonstrate its practical effectiveness for small n and q (such as n = 9 and
q = 31) in Section 4.6.

Regarding the MEDS scheme, its security is based on the hardness of the
MCE problem. Although our algorithm does not yet achieve a practical break
of the parameter sets proposed by MEDS, it serves to underscore that these
parameters have not yet attained the target security level; see Table 1.

parameter set n q Algebraic Leon-like Ours

MEDS-I 14 4093 148.1 170.68 102.59
MEDS-III 22 4093 218.41 246.95 152.55
MEDS-V 30 2039 298.82 297.77 186.57

Table 1. Algorithms for solving the MCE problem. The data for algebraic and Leon-
like algorithms are from the MEDS specification [21].

Importantly, we note that this could be fixed easily by enlarging q. This fix
should not affect the running times, and only increase the signature sizes at
most5 linearly in log(q). Therefore the consequence of our algorithm on MEDS
should be considered as mild.

Algorithm for ATFE. We present an algorithm for the ATFE problem by intro-
ducing a new isomorphism invariant. For an alternating trilinear form ϕ and a
low-rank point v, the equivalence preserves the kernel space K of v. Based on

5 It is ‘at most’, because of the use of the seed tree techniques; see [22] for more details.
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this observation, we define an isomorphism invariant as the isomorphism type
of the trilinear form ϕ̂ restricted to K in the first argument, under the action
of GL(K)×GL(n, q). We provide preliminary evidence suggesting that this iso-
morphism invariant can be computed efficiently, and is distinguishing. Assuming
that canonical forms for such restricted trilinear forms could also be computed
efficiently, this leads to a birthday-type algorithm, with a complexity with the
dominating factor being O(qk/2), where O(qk) is the expected number of points
with the target low rank. This could be compared with the algorithms in [12]
with the dominating factors being O(qk) or O(qn/2).

It must be noted that to utilise this invariant in a birthday-type algorithm,
we need canonical forms rather than merely isomorphism testing. We were not
able to derive such a canonical form algorithm, though we note that while to
transform an isomorphism invariant algorithm to a canonical form may not be
an easy process, it is generally regarded as doable, at least from the experience
from graph isomorphism [3]. Therefore, protocol designers need to take the con-
servative approach, namely assuming a canonical form algorithm matching the
isomorphism testing algorithm running time. This was the consideration when
determining the parameters of ALTEQ [15].

Quantum speed-up. We accelerate our algorithms for both MCE and ATFE on
quantum computers by using Szegedy’s quantum random walks to find colli-
sions [41]. The runtime exponent is reduced by a factor of 2/3, resulting in
qk/3poly(n, log q) time quantum algorithms.

Our algorithms as a further development of [17,12]. Our algorithms forMCE and
ATFE follow the previous works on polynomial isomorphism and alternating tri-
linear form equivalence. In particular, our algorithms are a further development
of the works of Bouillaguet, Fouque, and Véber [17], and Beullens [12].

In [17], algorithms for testing isomorphism of systems of quadratic forms were
presented. Both algorithms rely on certain graphs associated with quadratic form
systems. The first algorithm in [17] samples a list of low-rank points for each
of the two input polynomial systems, and find a collision which can be used
in conjunction of the hybrid Gröbner basis method [27] to recover the secret
transformation. The second algorithm in [17] works for q = 2; it is based on
birthday paradox with an isomorphism invariant obtained by examining the
radius-k neighbourhood of the points in the graph.

In [12], algorithms for ATFE were presented. Two of the algorithms that are
most relevant to us are as follows. (We refer the reader to [12] for a beautiful algo-
rithm for n = 9.) The first algorithm follows the sampling and collision approach,
with the main innovation being that for the sampling step, where Beullens uses
a random walk on the graph associated with an alternating trilinear form. The
second algorithm is based on the birthday paradox with isomorphism invariants.
As q is large for the use of ATFE in [42], Beullens used radius-1 or -2 neighbour-
hoods and observed that such neighbourhood information is distinguishing.

Our algorithms for MCE and ATFE are based on the birthday paradox with
isomorphism invariants (see Section 3). As seen from the above, previous works
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use isomorphism invariants that are local (small radius neighbourhood) on graphs
associated with polynomial systems or trilinear forms. Our main technical con-
tribution is to discover new isomorphism invariants that can be viewed as trans-
forming the information from graphs to global constraints.

For example, the isomorphism invariants forMCE are obtained by associating
some graphs with matrix codes. We also perform a walk on the graph (starting
from a corank-1 point), but we then use the path information to transform the
matrix code as a whole to obtain an isomorphism invariant. Similarly, for ATFE,
the isomorphism invariants are obtained by first taking the kernel of a low-
rank point. We then apply this kernel to the alternating trilinear form to obtain
another (smaller) trilinear form, and use this trilinear form as an isomorphism
invariant.

Paper structure. After presenting preliminaries in Section 2, we present the
generic algorithm framework we use in Section 3. We then describe the algorithm
forMCE in Section 4, and the algorithm for ATFE in Section 5. Finally we present
the quantum speed-ups for these algorithms in Section 6.

2 Preliminaries

Notations. For n ∈ N, [n] := {1, 2, . . . , n}. Let Fq be the finite field of q elements.
We view Fnq as the linear space of length-n column vectors over Fq. Let P = P(Fnq )
be the projective space associated with the vector space Fnq . For a non-zero
u ∈ Fnq , we use û ∈ P to denote the projective line represented by u. Let GL(n, q)
denote the general linear group of degree n over Fq. We use M(m×n, q) to denote
the space of m× n matrices over Fq, and ATF(n, q) for the space of alternating
trilinear forms over Fnq . For a finite set S, we use s ←R S to denote that s is
uniformly randomly sampled from S.

Matrix codes and trilinear forms. A trilinear form is a function ϕ : Fmq ×Fnq×Flq →
Fq that is linear in each of its three arguments.

Definition 3 (Trilinear Form Equivalence Problem). Given two trilinear
forms ϕ, ψ : Fmq × Fnq × Flq → Fq, the problem asks whether there exists three
matrices (A,B,C) ∈ GL(m, q)×GL(n, q)×GL(l, q), such that for any (u, v, w) ∈
Fmq × Fnq × Flq, ϕ(u, v, w) = ψ(A(u), B(v), C(w)).

A [m× n, l]-matrix code C is an l-dimensional subspace of M(m× n, q). We
defined matrix code equivalence in Definition 1. Matrix code equivalence reduces
to trilinear form equivalence in polynomial time. This is because of the following.
Let a matrix code C be given by an ordered linear basis (C1, C2, . . . , Cl), Ck ∈
M(m×n, q), and ci,j,k denotes the (i, j)-entry of Ck. This gives rise to a trilinear
form ϕC : Fmq × Fnq × Flq → Fq, that is, ϕC =

∑
i,j,k ci,j,kuivjwk where u =

(u1, . . . , um)t ∈ Fmq , v = (v1, . . . , vn)
t ∈ Fnq , and w = (w1, . . . , wl)

t ∈ Flq. It
is straightforward to verify that two matrix codes C and D are equivalent if
and only if ϕC and ϕD are equivalent. Furthermore, if (A,B,C) ∈ GL(m, q) ×
GL(n, q)×GL(l, q) sends ϕC ot ϕD, then (A,B) sends C to D.
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Alternating trilinear forms. A trilinear form ϕ : Fnq×Fnq×Fnq → Fq is alternating,
if ϕ evaluates to 0 whenever two arguments are the same, e.g., ϕ(u,u,v) =
ϕ(u,v,u) = ϕ(v,u,u) = 0 for all u,v ∈ Fnq . Let ei be the ith standard basis
vector and e∗i be the corresponding dual basis which sends u = (u1, . . . , un)

t ∈ Fnq
to ui. ϕ can be represented as

∑
1≤i≤j≤k≤n ci,j,ke

∗
i ∧ e∗j ∧ e∗k where ∧ denotes the

exterior product. And e∗i ∧ e∗j ∧ e∗k is an alternating trilinear form which can be
defined as follows:

(e∗i ∧ e∗j ∧ e∗k)(u,v,w) = det

ui vi wiuj vj wj
uk vk wk

 ,
where u = (u1, . . . , un),v = (v1, . . . , vn),w = (w1, . . . , wn). This also implies
that storing an alternating trilinear form requires

(
n
3

)
field elements.

We note that the trilinear form equivalence problem differs from the alter-
nating trilinear form equivalence problem, in that three invertible matrices are
used in the former, while only one is used in the latter.

Instantiated arguments of trilinear forms. Let ϕ : Fnq×Fnq×Fnq → Fq be a trilinear
form and u,v ∈ Fnq . We use ϕ(u, ⋆, ⋆) to denote the bilinear form obtained by
instantiating the first argument of ϕ with u. Let ϕ(u, ⋆, ⋆) =

∑
j,k cj,kyjzk then it

has matrix representation Mu = (cj,k) with respect to standard basis e1, . . . , en.
We use ϕ(u,v, ⋆) to denote the linear form obtained by instantiating the first
two arguments of ϕ with u and v, respectively.

Tripartite graphs associated with trilinear forms. Let ϕ ∈ TF(Fnq ) be a trilinear
form, then we can associate ϕ with a tripartite graph Gϕ = (U ⊎V ⊎W,E) where
U = V = W = P(Fnq ). To define the edge set E, let û ∈ U , v̂ ∈ V , and ŵ ∈ W .
Then {û, v̂} ∈ E, if ϕ(u,v, ⋆) is the zero linear form. Similarly, {û, ŵ} ∈ E, if
ϕ(u, ⋆,w) is the zero linear form. And {v̂, ŵ} ∈ E, if ϕ(⋆,v,w) is the zero linear
form.

Rank distribution of random trilinear forms. The following rank distribution of
random trilinear forms follows from the well-known fact that the probability of
a random matrix in M(n,Fq) to be of rank n−d tends to q−d

2

as q →∞ [10,29].

Theorem 1 ([10,29]). Let n, d be positive integers such that n − d is a non-
negative number less than n. Then as q →∞, the average number of projective
points with rank n−d of a uniformly random trilinear form ϕ : Fnq×Fnq×Fnq → Fq
tends to q−d

2+n−1.

Rank distribution of alternating trilinear forms. The following result is due to
Beullens [12]; see also [14].

Theorem 2 ([12, Theorem 2]). Let n, d be positive integers such that n − d
is a non-negative even number less than n. Then as q →∞, the average number
of projective points with rank n− d of a uniformly random alternating trilinear
form ϕ ∈ ATF(Fnq ) tends to q(−d

2+3d)/2+n−2.
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3 Finding equivalences of trilinear forms via invariants

We first outline the common framework of our algorithms for ATFE and TFE
at a high level, following Beullens (in Section 5.4 of [12]). But in a departure
from [12] which relies on invariants derived from graphs on projective points, we
design new global invariants. The invariant functions for ATF and TF will be of
the form

F0 : TF(Fnq )× P(Fnq )→ X0,

F1 : ATF(Fnq )× P(Fnq )→ X1

and explicitly constructed in the following sections. The subscript 0 in the func-
tion and the target set indicates that it is associated with TF. Likewise, the
subscript 1 indicates association with ATF.

Invariants. To illustrate the notion of invariants, let us first name the actions
underlying MCE and ATFE in the language of trilinear forms.

Definition 4 (MCE Action). For a trilinear form ϕ : Fnq × Fnq × Fnq −→ Fq
and a triple of matrices (A,B,C) ∈ GL(n, q)3, define the trilinear form

ϕA,B,C : Fnq × Fnq × Fnq −→ Fq

(x, y, z) 7−→ ϕ(Ax,By,Cz).

We design F0 as a pairing of the trilinear form and the projective space that is
invariant under twisting the trilinear form and the projective space. The trilinear
form is twisted by the GL(n, q)3 MCE Action. The projective space is twisted
by the inverse of the matrix acting on the first dimension of the trilinear form.
Formally, the invariant for MCE action needs to satisfy that

∀ϕ ∈ TF(Fnq ),∀v̂ ∈ P(Fnq ),∀(A,B,C) ∈ GL(n, q)3, F0(ϕ, v̂) = F0(ϕA,B,C , A
−1v̂).

Definition 5 (ATFE Action). For a trilinear form ϕ : Fnq × Fnq × Fnq −→ Fq
and a matrix A ∈ GL(n, q), define the trilinear form

ϕA : Fnq × Fnq × Fnq −→ Fq

(x, y, z) 7−→ ϕ(Ax,Ay,Az).

We design the function F1 as a pairing of the trilinear form and the projective
space that is invariant under twisting the trilinear form by the ATFE action
and the projective space by the inverse of the matrix defining the ATFE action.
Formally,

∀ϕ ∈ ATF(Fnq ),∀v̂ ∈ P(Fnq ),∀A ∈ GL(n, q), F1(ϕ, v̂) = F1(ϕA, A
−1v̂).
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Distinguishing invariant. The invariant function F0 is called distinguishing if for
all ϕ ∈ TF(Fnq ),

Pr
(v̂1,v̂2)←RP(Fn

q )
2
(F0(ϕ, v̂1) ̸= F0(ϕ, v̂2)) ≈ 1.

We will specify the meaning of ≈ 1 in the following. Likewise, F1 is called
distinguishing if for all ϕ ∈ ATF(Fnq ),

Pr
(v̂1,v̂2)←RP(Fn

q )
2
(F1(ϕ, v̂1) ̸= F1(ϕ, v̂2)) ≈ 1.

An algorithm template based on distinguishing invariants. With such distin-
guishing invariant functions at hand, we have the following generic algorithm
for MCE and ATFE. The version for ATFE is specified in parentheses.

To start with, recall that for a trilinear form ϕ : Fnq × Fnq × Fnq → Fq and
v ∈ Fnq , the rank of ϕ(v, ⋆, ⋆) (see Section 2) is an invariant, which has been
utilised in [17,12]. Also note that rk(ϕ(v, ⋆, ⋆)) = rk(ϕ(λv, ⋆, ⋆)) for non-zero
λ ∈ Fq, so we can talk about the rank of ϕ(v̂, ⋆, ⋆) for v̂ ∈ P(Fnq ).

This rank invariant cannot be distinguished. Still, the new invariants consid-
ered in this paper are further refinements of the rank invariant, as will be seen
below. In particular, the generic algorithm is parametrised by this rank R, which
would be specified later depending on the specific invariants.

Input: Two equivalent (alternating) trilinear forms ϕ, ψ ∈ TF(Fnq )(or ATF(Fnq )).
Output: A,B,C ∈ GL(n, q) such that ϕA,B,C = ψ (or A ∈ GL(n, q) such that

ϕA = ψ).
Algorithm 1. Pick a positive number R ≤ n. Let

Pϕ,R :=
{
v̂ ∈ P(Fnq ) | rk(ϕ(v̂, ∗, ∗)) = R

}
,

Pψ,R :=
{
v̂ ∈ P(Fnq ) | rk(ψ(v̂, ∗, ∗)) = R

}
denote the respective set of points where the trilinear forms specialize
in the first dimension to give rank R matrices. Independently sample a
set Lϕ,R of

√
|Pϕ,R| points from Pϕ,R and a set Lψ,R of

√
|Pψ,R| points

from Pψ,R. Since ϕ and ψ are isomorphic, Pϕ,R = Pψ,R and we denote
their cardinality as NR := ∥Pϕ,R∥ = ∥Pψ,R∥. Therefore Lϕ,R and Lψ,R
are both

√
NR-sized subsets of the same set of size NR.

2. Apply the invariant function Fi (where i = 0 for MCE and i = 1 for
ATFE) to each element in Lϕ,R and Lψ,R. Find a pair (v̂, v̂′) for which

Fi(ϕ, v̂) = Fi(ψ, v̂′), where v̂ ∈ Lϕ,R and v̂′ ∈ Lψ,R. The existence of
such a pair is likely due to the birthday paradox.

3. For MCE, such a pair reveals the desired output (A,B,C) ∈ GL(n, q)3

through linear algebra, as we describe in Section 4. To solve the ATFE,
feed the matching pair (v̂, v̂′) as the partial information into the Gröbner
basis computation in [42,6]. This Gröbner basis computation is a heuris-
tic that finds in polynomial time an A ∈ GL(n, q) (if it exists) such that
ϕA = ψ and A−1v̂ = v̂′.
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The complexity of the above algorithm parameterized by the target rank R can
be estimated as

O
(√

NR · (samp-cost+ inv-cost) + recover-cost
)
. (1)

The sampling cost samp-cost refers to the cost of sampling a rank-R (projective)
point, that is, a point in Pϕ,R (or equivalently in Pψ,R). And inv-cost denotes
the cost of invariant computation for each point. The cost of recovering the
isomorphism given a collision is denoted by recover-cost. Also note that for the
invariant to be distinguishing enough in the above procedure, we need to have
Pr(v̂1,v̂2)←RP(Fn

q )
2 (F0(ϕ, v̂1) = F0(ϕ, v̂2)) = O(1/NR).

In the following two sections, we describe algorithms in this general frame-
work tailored to MCE and ATFE, by describing the invariant functions and op-
timizing the rank R.

4 An algorithm for Matrix Code Equivalence

In this section, we introduce an algorithm for the matrix code (or trilinear form)
equivalence problem. Specifically, given two trilinear forms ϕ ∈ TF(Fnq ) and ψ ∈
TF(Fnq ) that are equivalent, the algorithm computes an equivalence (A,B,C) ∈
GL(n, q) × GL(n, q) × GL(n, q) between ϕ and ψ. The algorithm runs in time
O(q(n−2)/2 · (q · n3 + n4) · (log(q))2).

4.1 The main idea

To instantiate the algorithm outlined in Section 3, the primary bottleneck is
identifying invariants with sufficient distinguishing power. The main idea of the
algorithm is to associate distinguishing invariants to corank-1 points, specifically
for those û ∈ P(Fnq ) such that the bilinear form ϕ(u, ⋆, ⋆) is of rank n − 1. We
shall occasionally call such projective lines as corank-1 points. Recall there is a
tripartite graph Gϕ = (U ⊎ V ⊎W,E) associated with ϕ where U = V = W =
P(Fnq ). Each corank-1 point û ∈ U has a unique neighbour v̂ ∈ V , namely the
one dimensional left kernel of the bilinear form ϕ(u, ⋆, ⋆). Since ϕ(⋆,v, ⋆) has u
in its left kernel, ϕ(⋆,v, ⋆) has co-rank at least 1. If ϕ(⋆,v, ⋆) is of corank-1, it
has a unique neighbour ŵ ∈ W . Repeating this procedure leads to a path on
Gϕ. We continue building this path until reaching length 3n, collecting n points
each from U , V and W . Such a path is built without ambiguity if and only if at
every iteration we get a point of corank-1.

Our experiments show that for most starting points û, we do obtain a path
of length 3n without ambiguity and that the vector n-tuples collected in each of
the sets U, V and W are linearly independent respectively. We use these three
vector tuples to transform ϕ to ϕ̃[u] which depends only on the vectors on this
path.

To make this an isomorphism invariant indexed with û (instead of with u),
we need to remove the ambiguity caused by the scalar multiples, which can be
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done easily by locating non-zero evaluations of ϕ̃[u] on about 3n inputs of the
form (ei, ej , ek). This gives us ϕ̄[û] which is an invariant associated with û. Our
experiments show that this invariant is distinguishing, i.e. different û results in
different ϕ̄[û]. This allows for an application of the birthday algorithm.

It is known from Theorem 1 that for a random ϕ, there exist approximately
qn−2 corank-1 points. Thus we get an algorithm running in time O((q(n/2) +
q(n−2)/2) · poly(n, q)) by instantiating the above invariant.

4.2 From a vector to three vector tuples

Corank-1 points of trilinear forms and paths on Gϕ. Suppose a non-zero u1 ∈ Fnq
satisfies that ϕ(u1, ⋆, ⋆) is of corank-1 as a bilinear form. Consider the following
steps.

1. As ϕ(u1, ⋆, ⋆) is of corank-1, there exists a unique v̂1 ∈ P such that ϕ(u1,v1, ⋆)
is the zero linear form.

2. If ϕ(⋆,v1, ⋆) is of corank-1, then there exists a unique ŵ1 ∈ P, such that
ϕ(⋆,v1,w1) is the zero linear form.

3. If ϕ(⋆, ⋆,w1) is of corank-1, then there exists a unique û2 ∈ P, such that
ϕ(u2, ⋆,w1) is the zero linear form.

If û1 ̸= û2, then the above procedure produces a path (û1, v̂1, ŵ1, û2) in G(ϕ).
We can continue the above procedure as follows.

1. Let LU = (u1), LV = (), and LW = ().
2. For i = 1 to n, do the following:

(a) Compute the unique v̂i ∈ P(Fnq ), such that ϕ(ui,vi, ⋆) = 0.
(b) If the corank of ϕ(⋆,vi, ⋆) is not 1, or if vi ∈ span(LV ), terminate and

report “Fail”. Otherwise, add vi to LV .
(c) Compute the unique ŵi ∈ P(Fnq ), such that ϕ(⋆,vi,wi) = 0.
(d) If the corank of ϕ(⋆, ⋆,wi) is not 1, or if wi ∈ span(LW ), terminate and

report “Fail”. Otherwise, add wi to LW .
(e) If i = n, break.
(f) Compute the unique ˆui+1 ∈ P(Fnq ), such that ϕ(ui+1, ⋆,wi) = 0.
(g) If the corank of ϕ(ui+1, ⋆, ⋆) is not 1, or if ui+1 ∈ span(LU ), terminate

and report “Fail”. Otherwise, add ui+1 to LU .

If the above procedure does not return “Fail”, then we obtain three vector
tuples LU = (u1, . . . ,un), LV = (v1, . . . ,vn), and LW = (w1, . . . ,wn), such
that ui’s (resp, vi’s, wi’s) are linearly independent.

4.3 Corank-1 invariants from three vector tuples

Suppose that starting from a corank-1 u1 ∈ Fnq , we obtain three vector tuples
LU , LV , and LW , which are canonically associated with u1. We then treat LU ,

LV , and LW as invertible matrices, that is, LU =
[
u1 . . . un

]t
. Define a trilinear

form ϕ̃ : Fnq × Fnq × Fnq → Fq by ϕ̃(x, y, z) = ϕ(LU (x), LV (y), LW (z)). This ϕ̃ is
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almost an isomorphism invariant associated with u1 – almost because there is
an ambiguity associated with the representing vectors of ûi, v̂j , and ŵk.

To remove this ambiguity, we need to study the canonical form of ϕ̃ under
the action of D(n, q) × D(n, q) × D(n, q), where D(n, q) denotes the group of
invertible diagonal n×n matrices over Fq. This can be done by carefully selecting

3n non-zero entries in ϕ̃, so that the diagonal entries of the acting matrices
are determined by these entries. In the following we present one choice of non-
zero entries. There could be several other natural selections depending on the
positions of zero entries, but we do not pursue them further as this choice is
already useful enough in our practical implementation.

Consider the following entries. For any i, j, k ≥ 3,

ai := ϕ̃(ei, e2, e1), bj := ϕ̃(e1, ej , e1), ck := ϕ̃(e1, e2, ek), d1 := ϕ̃(e1, e2, e1),

d2 := ϕ̃(e2, e3, e5), d3 := ϕ̃(e1, e3, e2), d4 := ϕ̃(e2, e1, e2) are non-zero.
(2)

In this case, we can use the action of D(n, q) × D(n, q) × D(n, q) to set ai,
bj , ck, d1, d2, d3 and d4 to be 1. More specifically, let (F,G,H) ∈ D(n, q) ×
D(n, q) × D(n, q), where F = diag(f1, . . . , fn), G = diag(g1, . . . , gn), and H =
diag(h1, . . . , hn). Then set fi, gj , and hk to satisfy that, for 3 ≤ i, j, k ≤ n,

f1g2h1 = 1/d1, fi/f1 = d1/ai, gj/g2 = d1/bj , hk/h1 = d1/ck,

f2 = 1/(g3h5d2), h2 = 1/(f1g3d3), g1 = 1/(f2h2d4).
(3)

Let ϕ̄ : Fnq ×Fnq ×Fnq → Fq be defined by ϕ̄(x, y, z) = ϕ̃(F (x), G(y), H(z)). Then

ϕ̄(ei, ej , ek) = figjhkϕ̃(ei, ej , ek). Therefore,

ϕ̄(e1, e2, e1) = f1g2h1ϕ̃(e1, e2, e1) = 1/d1 · d1 = 1.

For i ≥ 3,

ϕ̄(ei, e2, e1)

= fig2h1ϕ̃(ei, e2, e1)

= (fi/f1)f1g2h1ϕ̃(ei, e2, e1)

= (d1/ai) · (1/d1) · ai = 1.

Similarly, it can be verified that ϕ̄(e1, ej , e1) = ϕ̄(e1, e2, ek) = 1 for j, k ≥ 3.
Additionally, we can verify that ϕ̄(e1, e2, e1) = ϕ̄(e2, e3, e5) = ϕ̄(e2, e1, e2) =
ϕ̄(e1, e3, e2) = 1. Furthermore, for any i, j, k ≥ 3,

ϕ̄(ei, ej , ek)

= figjhkϕ̃(ei, ej , ek)

= (fi/f1)(gj/g2)(hk/h1)f1g2h1ϕ̃(ei, ej , ek)

=
d41ϕ̃(ei, ej , ek)

aibjck
;
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for i = 2 and any j, k ≥ 3,

ϕ̄(e2, ej , ek)

= f2gjhkϕ̃(e2, ej , ek)

= (f2/f1)(gj/g2)(hk/h1)f1g2h1ϕ̃(e2, ej , ek)

=
b3b5ϕ̃(e2, ej , ek)

d1d2bjck
;

for k = 2 and any i, j ≥ 3,

ϕ̄(ei, ej , e2)

= figjh2ϕ̃(ei, ej , e2)

= (fi/f1)(gj/g2)(h2/h1)f1g2h1ϕ̃(ei, ej , e2)

=
b3ϕ̃(ei, ej , e2)

d3aibj
;

for j = 1 and any i, k ≥ 3,

ϕ̄(ei, e1, ek)

= fig1hkϕ̃(ei, e1, ek)

= (fi/f1)(g1/g2)(hk/h1)f1g2h1ϕ̃(ei, e1, ek)

=
d71d2d3d4ϕ̃(ei, e1, ek)

b23b5aick
;

So ϕ̄ is completely determined by the conditions in Equation 3.
The above suggests that ϕ̄[û1] := ϕ̄ is an isomorphism invariant associated

with û1 ∈ P(Fnq ), assuming that ϕ̃ satisfies Equation 2.

4.4 Description of the algorithm

Given the above preparations, the algorithm works as follows.

Input. Two equivalent trilinear forms ϕ, ψ : Fnq × Fnq × Fnq → Fq.
Output. An equivalence (A,B,C) ∈ GL(n, q)×GL(n, q)×GL(n, q).
Algorithm. 1. For ϕ, construct a list Sϕ of q(n−2)/2 corank-1 û ∈ P together

with the isomorphism invariant ϕ̄[û] as follows.
(a) Compute one corank-1 û ∈ P by sampling randomly u ∈ Fnq q times.
(b) For û ∈ P, compute three vector tuples LU , LV , and LW as in

Section 4.2.
(c) Use LU , LV and LW to transform ϕ to ϕ̃[u].
(d) Use the method in Section 4.3 to transform ϕ̃[u] to ϕ̄[û].

2. For ψ, construct a list Sψ of q(n−2)/2 corank-1 û ∈ P(Fnq ) together with
the isomorphism invariant ψ̄[û] as above.

3. Find û from Sϕ, and û′ from Sψ, such that ϕ̄[û] and ψ̄[û′] are the same.
4. An equivalence (A,B,C) from ϕ to ψ can be obtained by composing the

transformations from ϕ to ϕ̄[û] and from ψ to ψ̄[û′].
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Time analysis of the above algorithm. We assume that the modular arithmetic
complexity in Fq is in time O((log q)2), and the number of arithmetic operations
for n× n matrix computations (such as matrix multiplication and rank compu-
tation) is O(n3). As in the practical setting, n is small and matrices are dense,
this should be a reasonable estimate (rather than using O(nω) where ω is the
matrix multiplication exponent).

Step 1 is a For-loop contributing a multiplicative factor of q(n−2)/2 to steps (a)
to (d). Step (a) samples vectors in Fnq and computes the ranks of the associated
matrices for q times, so its complexity is O(q · (n · log(q) + n3 · (log q)2)). Step
(b) constructs three n-tuples of vectors. Each vector in this n-tuple is obtained
by solving a system of n linear equations in n variables. So Step (b) costs O(n ·
n3 · (log q)2) = O(n4 · (log q)2). Step (c) requires 3n n×n matrix multiplications,
so its complexity is also O(n4 · (log q)2). For Step (d), the method in Section 4.3
takes O(n3 · (log q)2) time. Taking into account of the For-loop factor, the total
cost for steps 1 and (a) to (d) is O(q(n−2)/2 · (q · n3 + n4) · (log(q))2).

Once the two lists are constructed, finding a collision and using that to con-
struct an isomorphism takes time O(log(q(n−2)/2)) as we can assume that the
lists Sϕ and Sψ are sorted. Therefore steps 2 to 4 contribute to a running time
of lower order, and the running time of the whole algorithm is O(q(n−2)/2 · (q ·
n3 + n4) · (log(q))2).

Correctness analysis of the above algorithm. We assume that ϕ̄[û] is a distin-
guishing invariant of û. Then by birthday paradox, the above algorithm returns
û from Sϕ, and û′ from Sψ, such that ϕ̄[û] and ψ̄[û′] are the same, with constant
probability.

4.5 Heuristic assumptions for the invariant

We now reflect on several assumptions required for using ϕ̄[u1] for u1 ∈ Fnq with
ϕ(u1, ⋆, ⋆) being of corank-1.

1. We assume that we can obtain three vector tuples LU , LV , LW .
2. We assume that ϕ̃, the trilinear form obtained after applying LU , LV , and
LW , satisfies Equation 2.

3. We assume that the corank-1 invariant ϕ̄[u1] is distinguishing.

We next argue in favour of each of these heuristics.

Heuristic 1. To build the vector tuples LU , LV , and LW , it suffices (1) to perform
a walk with corank-1 points for 3n successful steps, and (2) the vectors in LU
(resp. LV , LW ) be linearly independent.

We argue for (1), by making the same assumption as in Beullens’ algorithms
[12], namely those points along such a walk are close to independent randomly
sampled. In particular, the probability of getting a walk with corank-1 points for
3n steps can be estimated as follows. The probability of a corank-1 point having
a corank-2 neighbour is asymptotically O(1/q2); this can be calculated following



Algorithms for Matrix Code and Trilinear Form Equivalences 15

the techniques in [12]. Therefore, the probability of walking for 3n steps with
corank-1 points is lower bounded by 1−O(n/q2), assuming points along such a
walk are close to independent randomly sampled.

We argue for (2) using algebraic-geometry. To this end, consider a generic
starting corank-1 vector u1 and think of its coordinate vector (u1,1,u1,2, . . . ,u1,n)
as n indeterminates. The corank-1 assumption implies that there is a unique
projective v̂1 such that ϕ(u1,v1, ∗) = 0 (that is, the zero dual vector). The coor-
dinates of v1 can be expressed as some vector of polynomials in the coordinate
ring of u1, for instance using the adjugate matrix of ϕ(u1, ∗, ∗). Call this vector
of polynomials as (fϕv1,j

)1≤j≤n ∈ (Fq[u1,1,u1,2, . . . ,u1,n])
n
. The superscript ϕ

signifies that the coefficients of each fϕv1,j
depend only on the tensor ϕ. Repeat-

ing a similar process starting with the coordinate vector (fϕv1,j
)1≤j≤n of v1, we

obtain the coordinates (fϕw1,j
)1≤j≤n ∈ (Fq[u1,1,u1,2, . . . ,u1,n])

n
of w1 ∈ LW .

Note that each coordinate is a polynomial in the coordinate ring of the generic
starting vector u1. Continuing this way, we can express each element of LU , LV ,
and LW as a vector of polynomials in the co-ordinate ring of u1. The vectors in
LU being linearly independent can be expressed as a polynomial condition on the
coordinates of u1, namely the determinant of the matrix (fϕu,j)u∈LU ,1≤j≤n van-
ishing. In particular, the variety of dependent LU has co-dimension at least one,

as long as the symbolic determinant det
(
(fϕu,j)u∈LU ,1≤j≤n

)
is not identically

zero. The matrix (fϕu,j)u∈LU ,1≤j≤n depends only on ϕ. For the random choice of

ϕ induced by key generation, the symbolic determinant det
(
(fϕu,j)u∈LU ,1≤j≤n

)
is almost certainly not identically zero. Therefore, its roots, which constitutes
the pathological variety of dependent LU has co-dimension at least one. There-
fore with probability at least 1 − 1/q, we expect the co-ordinates of a random
starting vector u1 to not be in this variety, implying that the LU vectors are
linearly independent. The probability 1−1/q is only a crude estimate. For a pre-
cise bound taking into account the structure of the polynomial, we can invoke
the Schwartz–Zippel lemma or more generally the Lang–Weil bound. The Lang–
Weil bound subsumes the Schwartz–Zippel lemma and gives stronger bounds
in many cases where more (such as number of irreducible components, degree,

smoothness, etc.) is known about the polynomial det
(
(fϕu,j)u∈LU ,1≤j≤n

)
. In ei-

ther case, to unconditionally prove that a random u1 is not in this variety, it
helps if the degree of the polynomial is not too big. Naively, the polynomial
produced through expansion is of exponential degree, but this is unlikely to be
optimal, as shown in the experiment part. We leave an unconditional proof of
the validity of this heuristic to future work.

Heuristic 2. Here we assume that O(n) entries in the transformed tensor are
non-zero. Therefore, the probability of this assumption failing increases as q
decreases and n increases. Note that this assumption is used only to deal with
diagonal group actions, and more specialized techniques can be done to reduce
the failure probability of this step.
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Heuristic 3. We prove that the invariants generated by our algorithm are distin-
guishing with high probability, under the following well studied conjecture from
[39], which we re-phrase in tensor notation. To this end, define the automor-
phism group of a tensor ϕ ∈ TF (Fq) as the subgroup Aut(ϕ) ⩽ GL(n, q)3 such
that

∀(A,B,C) ∈ Aut(ϕ),∀(x, y, z) ∈ Fnq , ϕ(Ax,By,Cz) = ϕ(x, y, z).

Clearly, scalar matrix triples of the form

{(λIn, µIn, νIn) | λµν = 1, (λ, µ, ν) ∈
(
F×q

)3} ⩽ Aut(ϕ)

form a subgroup of the automorphism group. We say that the automorphism
group Aut(ϕ) is trivial or equivalently that ϕ has trivial automorphism group if
and only if

{(λIn, µIn, νIn) | λµν = 1, (λ, µ, ν) ∈
(
F×q

)3} = Aut(ϕ).

That is, all automorphisms are merely triples of scalar matrices.

Conjecture 1. For uniformly random ϕ ∈ TF (Fnq ), with probability negligibly
close to 1, the automorphism group Aut(ϕ) is trivial.

This conjecture is stated as a “mild assumption” in [39], where the authors
provide convincing theoretic and empirical evidence. In fact, this conjecture is
assumed true in half of the complexity theoretic reductions in the web of prob-
lems centered around MCE ([39, Fig. 1]), that lay as the foundation for MEDS.

Consider the corank-1 invariant ϕ̄[û] constructed at a successful completion
of the first step of the algorithm. We prove in the subsequent Lemma 1 that ϕ̄[û]
is distinguishing if the isomorphism class of ϕ has a trivial automorphism group.

Lemma 1. If ϕ ∈ TF (Fnq ) has the trivial automorphism group, then the iso-

morphism invariant (ϕ, û) 7−→ ϕ̄[û] determined by step 1 of the algorithm is
distinguishing.

Proof. Recall the notation in the description of the algorithm, to aid in the proof
sketch. Let (LU , LV , LW ) and (L′U , L

′
V , L

′
W ) be the two vector tuples produced

starting from different u and u′, respectively. Let ϕ̄[û] and ϕ̄[û] respectively
denote the images of the invariant computed by step 1 of the algorithm. If the
algorithm samples two ϕ̄[û] and ϕ̄[û] that are the same, then the respective vector
tuples (LU , LV , LW ) and (L′U , L

′
V , L

′
W ) can be composed to get a non-trivial

automorphism in Aut(ϕ). But ϕ ∈ TF (Fnq ) has the trivial automorphism group,

therefore ϕ̄[û] and ϕ̄[û] are distinct, implying the invariant is distinguishing.

The MEDS key generation algorithm chooses a ϕ uniformly at random from
TF (Fnq ). Assuming conjecture 1, Aut(ϕ) is trivial with probability negligibly
close to 1. Therefore, lemma 1 applies in our setting (except possibly with neg-
ligibly small probability), implying (ϕ, ū) 7−→ ϕ̄[û] is distinguishing.
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Experimental support. We carry out experiments on Magma [16] for n = 6 to 10
and q = 1021 to verify the assumptions as above.

We examine Assumptions 1, 2, and 3 sequentially as follows. That is, for a
point u, we first verify if assumption 1 holds. If so, then we check if assumption
2 holds for u. If both assumptions 1 and 2 hold, we call u an effective point.
In Table 2, we sample 1000 points, and record the number of points failing
assumption 1, and the number of points satisfying assumption 1 but failing
assumption 2, as well as the number of effective points.

Finally, to verify assumption 3, we do experiments on these effective points.
Our results show that for the instances in the Table 2, the isomorphism invari-
ants corresponding to all points are pairwise distinguishable. This is expected,
because each sample is generated randomly, these points are essentially distinct
from one another.

q
n

6 7 8 9 10 11 12 13 14

509 7/26/967 1/39/960 5/40/955 5/41/954 1/70/929 12/58/930 6/57/937 11/67/922 5/81/914

1021 8/10/982 5/16/979 10/20/970 4/28/968 2/18/980 1/27/972 3/31/966 2/30/968 1/29/970

2039 1/13/986 1/13/986 3/14/983 2/8/990 0/18/982 0/18/982 1/15/984 2/17/981 0/18/982

4093 1/5/994 1/7/992 1/5/994 1/7/992 0/6/994 2/6/992 0/13/987 2/11/987 0/10/990

8191 0/3/997 0/2/998 1/2/997 0/2/998 1/4/995 0/3/997 0/5/995 1/8/991 1/5/994

16381 0/0/1000 0/1/999 0/4/996 0/0/1000 0/4/996 0/1/999 0/3/997 1/4/995 0/3/997

q
n

15 16 17 18 19 20 21 22

509 1/88/911 11/99/890 6/90/904 3/119/878 3/104/893 7/99/894 6/128/866 3/116/881

1021 1/27/972 3/45/952 5/49/946 1/54/945 5/58/937 2/54/944 2/67/931 7/59/934

2039 4/18/978 1/19/980 0/28/972 2/20/978 2/25/973 2/31/967 2/29/969 2/28/970

4093 2/8/990 1/10/989 1/18/981 0/16/984 3/15/982 1/23/976 1/11/988 1/22/977

8191 1/3/996 0/4/996 1/7/992 0/4/996 1/10/989 1/9/990 0/4/996 0/8/992

16381 0/7/993 0/2/998 0/1/999 0/1/999 0/8/992 0/4/996 0/3/997 1/3/996

Table 2. Statistics of effective points. a/b/c in the table are defined as follows: a (resp.
b) is the number of points for which Assumption 1 (resp. Assumption 2) does not hold,
and c is the number of effective points.

Note that it is enough for all but a small fraction of corank-1 u1 to satisfy
the above. Furthermore, if some assumption is not satisfied, this would also con-
stitute as an invariant. That is, if u1, . . . ,ui in LU becomes linearly dependent,
then this number i also becomes an invariant which can be utilised. We do not
attempt to deal with such cases because they rarely happen in experiments.

4.6 Experimental results for the algorithm

We implemented the algorithm in Section 4.4 in Magma [16]. We tested our
implementation on a server (AMD EPYC 7532 CPU at 2.40GHz) to solve some
instances of the MCE problem. The results are given in Table 3. Our experiments
demonstrate that when running ten instances, two to four of them successfully
discover collisions and recover the secret matrices (A,B,C).
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Because we conduct q(n−2)/2 samplings, we cannot set q to be too large for
a practical running. Therefore, we set q to be 61 or 31. As a result, the fraction
of effective points is not as large as for q = 1021 as in Table 2. For example,
in MCE-instance-1, we conducted 3721 samplings and obtained 2702 effective
points. Therefore, when q is large, the success rate should increase with the
number of effective points.

Parameter set n q
Number of Number of Time

effective points sampling times (seconds)

MCE-instance-1 6 61 2702 3721 420
MCE-instance-2 7 61 20053 29062 5638
MCE-instance-3 8 61 149149 226981 100900
MCE-instance-4 9 31 64202 165870 137715

Table 3. Solving MCE instances

Remark 1. Following [12], a possible improvement on the sampling step (Step
(a) of the algorithm in Section 4.4) is as follows.

Recall that in Step (a) of the algorithm in Section 4.4, a corank-1 point is
obtained by sampling a random vector in Fnq for q times. However, note that
starting from a corank-1 vector û, the vectors in the vector tuple LU , if success-
fully built, are all corank-1. So these vectors can be utilised, instead of starting
from a fresh random corank-1 vector. In general, we can walk along the path
in the tripartite graph starting from a corank-1 vector until we hit a vector of
corank larger than 1. This has the potential of reducing the complexity of the
algorithm from O(q(n−2)/2 · (q ·n3+n4) · (log(q))2) to O(q(n−2)/2 ·n4 · (log(q))2),
as we would only need to sample a fresh corank-1 vector very few times during
the execution of the algorithm.

One question for this approach is whether it results in a distribution close
to the uniform one. To test this, we implemented the above approach. In the
case of MCE-instance-1, our preliminary experimental results show that when
running 6 instances, one of them successfully finds a collision and recovers the
secret matrices. We leave a more careful analysis and more experiments to a
future work.

5 An algorithm for alternating trilinear form equivalence

In this section, we present our algorithm for the ATFE problem. That is, given
two alternating trilinear forms ϕ ∈ ATF(Fnq ) and ψ ∈ ATF(Fnq ), the algorithm
computes an equivalence A ∈ GL(n, q) from ϕ to ψ, if such A exists.

As will be explained later, there is a component missing for implementing
this algorithm for ATFE, namely the transformation of isomorphism testing pro-
cedures to canonical forms. (On the contrary, the corresponding component in



Algorithms for Matrix Code and Trilinear Form Equivalences 19

our algorithm for matrix code equivalence is automatically a canonical form al-
gorithm.) Still, as it is usually the case that an isomorphism testing algorithm
can be turned into a canonical form algorithm (such as for graph isomorphism
[4]), the time complexity of this algorithm is used in the parameter setup of
ALTEQ [15].

Before introducing our algorithm, we review the algorithms for ATFE by
Beullens [12], which inspire our algorithm.

5.1 Beullens’ algorithms for ATFE

In [12], Beullens presented some novel algorithms for ATFE. Here we describe
two algorithms there that work for general n.

The first algorithm is a collision algorithm based on low-rank points based on
the graph-walking sampling method. That is, suppose a random ϕ ∈ ATF(n, q)
has approximately qk-many projective points of rank r. Then for ϕ, ψ ∈ ATF(n, q)
that are equivalent via A ∈ GL(n, q), one can sample q1/2·k-many rank-r points
for ϕ, and another q1/2·k-many rank-r points for ψ. Then by the birthday para-
dox, with constant probability there exists a pair of points (u,v) from these two
lists, such that A(u) = v. Combined with a Gröbner basis with partial informa-
tion procedure6, this correspondence enables to recover the whole A. To sample
rank-r points, Beullens invented the graph-walk sampling method, which allows
for sampling e.g. corank-3 points for odd n more efficiently than directly using
min-rank for relatively small q. The major cost of this approach is usually the
collision step, with time complexity qk · poly(n, log q).

The second algorithm is a birthday algorithm based on isomorphism invari-
ants. Such an algorithm was already proposed for the polynomial isomorphism
problem by Bouillaguet, Fouque, and Véber in [17] for q = 2. Beullens observed
that for radius-1 or 2 neighbours of corank-1 (for odd n) or corank-2 (for even n),
the rank information should serve as a distinguishing isomorphism invariants.
The major cost of this approach is the number of corank-1 or corank-2 points,
so Beullens estimated the running time as qn/2+c · poly(n, log q).

5.2 An algorithm for ATFE based on a new isomorphism invariant

The main innovation of our algorithm for ATFE is to associate distinguishing
isomorphism invariants to low-rank points.

Let ϕ : Fnq × Fnq × Fnq → Fq. Suppose by Theorem 2, it is expected that there

are roughly qk many û ∈ P(Fnq ), such that rkϕ(û) = r. Let us assume that there
is an easy-to-compute, distinguishing, isomorphism invariant7 for those rank-r
û.

6 Beullens discovered that Gröbner basis with partial information still works well given
(1) a correspondence between projective points, and (2) the kernel information of
low-rank points.

7 That is a function f from low-rank points to some set S, such that f(û) ̸= f(v̂) for
û ̸= v̂, and f is unchanged by basis changes.
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Then the algorithm goes as follows: first sample O(qk/2)-many rank-r points
for ϕ, and O(qk/2)-many rank-r points for ψ. For each point, compute this iso-
morphism invariant. Then by the birthday paradox, there exist one point û from
the list of ϕ, and one point v̂ from the list of ψ, such that their isomorphism
invariants are the same. Finally, use Gröbner basis with partial information for
û and v̂ to recover the desired isomorphism.

Following Equation 1, the running time of the above algorithm can then be
estimated as

O(qk/2 · (samp-cost+ inv-cost) + gb-cost),

where samp-cost denotes the sampling cost, the inv-cost denotes the invariant
computing cost, and gb-cost denotes the Gröbner basis with partial information
cost.

The sampling step can be achieved by either the min-rank method (Ap-
pendix A) or Beullens’ graph-walking method [12]. For the min-rank method,
the cost of sampling a low-rank matrix can be estimated for concrete values of n,
k, and r by e.g. [6,35,44]. For the graph-walking method, the sampling cost can
be estimated based on certain statistics of graphs associated with alternating
trilinear forms by Beullens [12, Theorem 1].

The gb-cost can be estimated as O(n6) as in [12]. This is based on the hybrid
Gröbner basis method with the first row known in the variable matrix. The
effectiveness of this hybrid Gröbner basis method was first discovered in [27]
and then utilised in [17,42]. Beullens further improved this method by noting
that (1) knowing the first row up to scalar suffices, and (2) for low-rank points,
the kernel information can be incorporated [12, Section 4].

The main innovation of the above algorithm is a new isomorphism invariant
which we describe next.

5.3 The isomorphism invariant step

Suppose û ∈ P(Fnq ) satisfies that rkϕ(û) = r. Then K := ker(ϕû) ≤ Fnq is a
dimension-(n − r) space, also preserved by any isomorphism. This allows us to
consider the trilinear form ϕ̃û : K × Fnq × Fnq → Fq, and it can be verified easily

that the isomorphism type of ϕ̃û under GL(K) × GL(n, q) is an isomorphism
invariant.

To use the isomorphism type of ϕ̃û in the algorithm, we need the isomorphism
types are (1) easy to compute, and (2) distinguishing; that is, for different û, v̂ ∈
P(Fnq ), ϕ̃û and ϕ̃v̂ are different.

To verify these, we perform the following experiment in Magma [16].

1. Sample a random ϕ ∈ ATF(n, q).
2. Sample a random rank-r point û ∈ P(Fnq ).
3. Sample t random rank-r points v̂ ∈ P(Fnq ). For each such point, do:

(a) Use the Gröbner basis with partial information to decide whether ϕ̃û
and ϕ̃v̂ are isomorphic.

Our experiments give the following.
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– For n = 9, r = 4, and p = 3, 10 experiments (i.e. for 10 û from 10 random
alternating trilinear forms) with t = 100 comparisons (i.e. for 100 different
v̂ to compare with û). On average, 75 out of 100 ϕ̃v̂ are not isomorphic with
ϕ̃û.

– For n = 10, r = 6, and p = 3, 10 experiments (i.e. for 10 û from 10 random
alternating trilinear forms) with t = 100 comparisons (i.e. for 100 different
v̂ to compare with û). On average, 95 out of 100 ϕ̃v̂ are not isomorphic with
ϕ̃û.

For n = 11, our code does not work for n = 11 on a laptop, due to the Gröbner
basis step.

From these experiments we see that (1) the Gröbner basis with partial in-
formation algorithm is effective in practice to test isomorphism between ϕ̃û and
ϕ̃v̂, and (2) as n goes from 9 to 10, the isomorphism type of ϕ̃û becomes more
distinguishing. These give some preliminary support that the isomorphism types
of ϕ̃û do serve as a easy-to-compute, distinguishing, isomorphism invariant.

Note that testing isomorphism here is not enough, and canonical forms are
required to serve as an isomorphism invariant. Even though to transform an
isomorphism invariant algorithm to a canonical form one may not be an easy
process, it is generally regarded as doable, at least from the experience from
graph isomorphism [3].

5.4 Concrete estimations of this algorithm for ALTEQ parameters

We show the improvement of our algorithm over Beullens’ algorithm for a set
of ALTEQ parameters. In [15], n = 13 and q = 232 − 1 are used for the 128-bit
security. In this case, Beullens’ algorithm runs in time O(q(n−5)/2 ·n11+qn−7 ·n6).
As the major factor comes from qn−7, the bit complexity is above 32 · 6 = 192.
For our algorithm, using rank-(n−5) points, the time complexity is estimated as
O(q(n−7)/2 ·(samp-cost+ inv-cost)+gb-cost). The sampling cost can be estimated
as in Appendix A based on [6], which is 32-bit complexity. The inv-cost and gb-
cost are lower than the sampling cost. So the total bit complexity of our algorithm
is 32 · 3 + 32 = 128.

6 Quantum attacks

We lower the run time exponent of our classical algorithms for MCE and ATFE
on a quantum computer by a factor of 2/3. This speed up results from deploy-
ing Szegedy type quantum random walks to find collisions, but comes at the
cost of exponential quantum space requirement. Therefore, there is reason to
only consider the classical algorithms to tune the parameters of the cryptosys-
tems. We describe the quantum algorithms for ATFE in greater detail. The MCE
case is analogous but a little easier, since there is no need for Gröbner basis
computations.
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6.1 Collision detection through quantum random walks

The first collision detection quantum algorithms were due to Brassard, Høyer,
and Tapp [18] and special to two-to-one functions, building on Grover’s search
[33]. Ambanis removed these restrictions and devised improved collision detec-
tion algorithms through quantum random walks, that match lower bounds [2].
Szegedy further improved these algorithms and brought them under a unified
framework of quantum random walks with memory [41]. We will use Szegedy’s
version of quantum random walks for the quantum speedups of classical algo-
rithms to the decision version ATFE.

We first paraphrase theorem 3 in [41], specialized to the oracle function being
the identity. Let X be a finite set and R ⊂ X × X a binary relation with a
membership tester. For a positive real number α and a uniformly random subset
H ⊂ X of size |X|α, let pα denote the probability that R ∩ (H × H) is non
empty. There is a quantum algorithm to differentiate between the cases pα = 0
and pα ≥ ϵ in time O(|X|α + 1000

√
|X|α/ϵ).

Extensions of Szegedy’s algorithm by Magniez, Nayak, Richter, Roland, and
Santha [38,37] may be deployed to tackle the search version ATFE within the
same running time. Another extension of Szegedy’s algorithm is to claw finding,
by Tani [43]. The claw finding formalism is convenient to phrase ATFE in and
infer polynomial speed ups. Let f : X → Z and g : Y → Z be two functions
between finite sets. Given oracle access to f and g, the claw finding problem is to
find an (x, y) ∈ X×Y such that f(x) = g(y), if one exists. The functions may be
presented either as standard oracles or as comparison oracles. We describe the
later in the quantum setting, as they suffice. A comparison oracle maps quantum
states

|x, y, b, w⟩ 7−→ |x, y, b⊕ [f(x) >? g(y)], w⟩.

Here, b is a bit; x and y respectively index quantum states corresponding to
elements in X and Y . Fixing an ordering on Z, [f(x) >? g(y)] is a bit that is one
if and only if f(x) > g(y). The last register indexed by w is an ancilla for work
space. For instances with X and Y of roughly the same size, Tani’s algorithm

finds claws on a quantum computer in time O((|X||Y |)1/3).
In applying these quantum random walk algorithms, we will invoke generic

algorithms applicable to functions on finite sets presented as an oracle. For clarity
of exposition, we focus on speedups to the main exponential term and suppress
incremental polynomial factors.

6.2 Solving ATFE through quantum random walks.

As a warm up, we first describe quantum algorithms for ATFE that do not
exploit our new invariants. Then, we build on these algorithms by incorporating
the invariants to achieve the aforementioned run time exponent.

A classical oracle from the Gröbner basis attack with partial information. First,
consider the decision version of ATFE. That is, given two alternating trilinear
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forms ϕ and ψ, the existence of an A ∈ GL(n, q) such that ψ = ϕ ◦ A is in
question. Central to all our methods is a polynomial time classical algorithm to
test membership in the relation set

Rϕ,ψ := {(û, v̂) ∈ P(Fnq )2 | ∃A ∈ GL(n, q) such that ψ = ϕ ◦A and A−1û = v̂}.

If ϕ and ψ are not isomorphic, Rϕ,ψ is empty. A pair (û, v̂) ∈ P(Fnq )2 satisfying
A−1û = v̂ enforces n Fq-linear constraints on A. The Gröbner basis attack
with partial information in [27], augmented with these linear constraints can
tell in heuristic polynomial time if the pair (û, v̂) is in Rϕ,ψ. We henceforth
make the same assumptions. This polynomial time classical algorithm to test
membership can be converted to a polynomial sized quantum circuit that can
test membership in superposition. Further, incorporate a time out clause into
the membership algorithm to make the Gröbner basis methods stop searching
and declare non existence.

Invoke Szegedy’s algorithm with X as P(Fnq ), R as Rϕ,ψ, α as 1/3 and uni-

formly sampling an H ⊂ P(Fnq ) of size Θ
(
qn/3

)
. We claim that the probability

gap may be taken to be ϵ = Ω
(
q−n/3

)
. To prove the claim, consider two iso-

morphic ϕ and ψ. That is, there exists at least one Aϕ,ψ ∈ GL(n, q) such that
ψ = ϕ ◦Aϕ,ψ. Therefore,

Pr
H

((Rϕ,ψ ∩ (H ×H)) ̸= ∅) ≥ Pr
H

((H ∩Aϕ,ψ(H)) ̸= ∅) ≥ Ω
(
q−n/3

)
,

proving the claim. In summary, we can tell if ϕ and ψ are isomorphic in time
qn/3poly(n, log q) on a quantum computer. This strategy also tackles the promise
search version ATFE within the same running time, thanks to extensions of
Szegedy’s algorithm by Magniez, Nayak, Richter, Roland, and Santha [38,37].
An alternative is to solve ATFE by claw finding. To phrase ATFE as claw finding,
independently draw uniformly random sets X ⊂ P(Fnq ) and Y ⊂ P(Fnq ), each of

size qn/2. Take f : X → P(Fnq ) as the multiplication by A−1 map u 7−→ A−1u
and g : Y → Fnq as the identity. The birthday paradox ensures for isomorphic ϕ
and ψ that there is a solution to claw finding with constant positive probability.
The algorithm for testing membership in Rϕ,ψ from the previous subsection
yields a comparison oracle. Tani’s algorithm for claw finding solves ATFE in
time qn/3poly(n, log q).

6.3 Low-rank birthday attacks on ATFE via quantum random walks

We next describe how our invariant functions can be incorporated into the quan-
tum algorithms. For ϕ ∈ ATF(Fnq ) and v̂ ∈ P(Fnq ), let ϕ/v̂ denote the isomor-
phism class of the restriction of ϕ to ker(ϕv̂)×Fnq ×Fnq under the GL(ker(ϕv̂))×
GL(n, q) action. For a positive number R, let

SR :=
{
(ϕ, v̂) ∈ ATF(Fnq )× P(Fnq ) | rk(ϕv̂) = R

}
.

The invariant function from section 5 then takes the form

(ϕ, v̂)
F17−→ ϕ/v̂.
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Fix the choice of rank R and let k be the exponent such that ∥Pϕ,R∥ = qk.
Assume that F restricted to SR is distinguishing.

Let ϕ and ψ denote the two input trilinear forms with the existence of an
A ∈ GL(n,Fq) such that ψ = ϕ ◦A in question. Consider the relation set

RF1

ϕ,ψ := {(u,v) ∈ P2
ϕ,R | F1(ϕ, û) = F1(ψ, v̂)}.

If ϕ and ψ are not isomorphic, then neither are their restrictions to ker(ϕv̂) ×
Fnq ×Fnq , implying RF1

ϕ,ψ is empty. If ϕ and ψ are isomorphic, by the distinguishing
property of F1, with high probability, F1(ϕ, û) = F1(ψ, v̂) if and only if ∃A ∈
GL(n, q) such that ψ = ϕ ◦A and A−1û = v̂.

The invariance and the distinguishing property of F1 together ensure that
with high probability, a random pair (û, v̂) ∈ RF1

ϕ,ψ is a witness to the iso-
morphism of ϕ and ψ restricted to ker(ϕû) × Fnq × Fnq . That is, there exists an
A ∈ GL(n, q) such that v̂ = A−1û and A moves the restriction of ϕ to the re-
striction of ψ. In particular, A restricted to ker(ϕû) acts in the first dimension.
Therefore, with (û, v̂) as the partial information, the Gröbner basis algorithm
of [20,42] becomes a heuristic polynomial time test of membership in RF1

ϕ,ψ.

Invoke Szegedy’s algorithm with X as Pϕ,R, R as RF1

ϕ,ψ, α as 1/3 and uni-

formly sampling an H ⊂ Pϕ,R of size Θ
(
qk/3

)
. For isomorphic ϕ and ψ, there

exists at least one Aϕ,ψ ∈ GL(n, q) such that ψ = ϕ ◦ Aϕ,ψ. Therefore, by the
invariance and the distinguishing nature of F1,

Pr
(
(RF1

ϕ,ψ ∩ (H ×H)) ̸= ∅
)
≥ Pr ((H ∩Aϕ,ψ(H)) ̸= ∅) ≥ Ω

(
q−k/3

)
,

proving that the probability gap may be taken to be ϵ = Ω
(
q−k/3

)
. Therefore,

for a rank parameter such that the sampling cost samp-cost is in polynomial
time, the decision version of ATFE can be solved in qk/3poly(n, log q) time on
a quantum computer. To tackle the promise search version ATFE within the
same running time, applying the extensions of Szegedy’s algorithm by Magniez,
Nayak, Richter, Roland, and Santha [38,37], the search version ATFE can also
be solved in

qk/3 · poly(n, log q)

time on a quantum computer. Curiously, it is not obvious if the claw finding
formalism in Tani’s algorithm can be adapted to the low-rank birthday attacks.
If we can efficiently derive canonical forms in addition to testing the isomor-
phism class of the restriction, then Tani’s algorithm apply immediately. The
reason being that we can order the canonical form representatives and obtain a
comparison oracle.

6.4 Low-rank birthday attacks on MCE via quantum random walks

Recall the notation from section 4. We next phrase MCE as claw finding. Let
ϕ, ψ be the two input isomorphic trilinear forms. Take X and Y as uniformly
random subsets of co-rank 1 projective points, each of size qn/2. Take f as the
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û 7−→ ϕ̄[û] map and g as the û 7−→ ψ̄[û] map. The birthday paradox ensures that
there is a solution to claw finding with constant positive probability. Invoking
Tani’s algorithm solves MCE in qn/3poly(n, log q) time.
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A Low-rank point sampling via min-rank step

The sampling step can be done by either the min-rank method, or the graph-
walking method. The graph-walking method involves q, so it works best for
relatively small q. When q is large, the min-rank method is more effective. To
use min-rank to do sampling requires a bit of twist, so we record the idea here.

Suppose we wish to sample a rank-r point v̂ ∈ P(Fnq ) for an alternating

trilinear form ϕ, and suppose that there are qk-many rank-r projective points
for a random ϕ. To sample such points, we make a heuristic assumption that
the first k coordinates of these rank-r points are in uniform random. Therefore,
to sample one point, we can randomly choose the first k coordinates and then
resort to the min-rank procedure.

More specifically, for i ∈ [n], let Ai be the alternating matrix representing
the bilinear form ϕei , where ei is the ith standard basis vector. Let xi, i ∈ [n],
be formal variables, and set A =

∑
i∈[n] xiAi. So for i ∈ [1 . . . k], let xi = αix1,

where αi ∈R Fq. This gives us a min-rank instance with n − k matrices of size
n× n.

To estimate the min-rank cost, we use the algorithm from [6]. Consider an
(n,K, r) minrank instance, namely finding a rank-r matrix in a linear span of
K n× n matrices. First, we need to compute the smallest b such that b < r + 2
and(

n

r

)(
K + b− 1

b

)
− 1 ≤

b∑
i=1

(−1)i+1

(
n

r + i

)(
n+ i− 1

i

)(
K + b− i− 1

b− i

)
.

Based on this b, the complexity is estimated as

O
(
K · (r + 1) · (

(
n

r

)
·
(
K + b− 1

b

)
)2
)
.
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For concrete values of n, K = n − k and r, the above formulas allow for the
estimation of the concrete security parameters.

Note that the min-rank instance above has some structural constraints due to
alternating trilinear forms. As pointed out in [12], such structures should impact
the min-rank algorithm from [6] adversely. Still, we use the estimates from [6]
as they should serve as a lower bound. We also compare the estimates from [6]
with the analysis of the Kipnis–Shamir modelling [35] in [44], and found the ones
from [6] are lower.
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