
Stateless Deterministic Multi-Party EdDSA Signatures with Low
Communication

Qi Feng ∗ Kang Yang † Kaiyi Zhang ‡ Xiao Wang §

Yu Yu ¶ Xiang Xie ‖ Debiao He ∗∗

Abstract

EdDSA, standardized by both IRTF and NIST, is a variant of the well-known Schnorr sig-
nature scheme based on Edwards curves, benefitting from stateless and deterministic derivation
of nonces (i.e., it does not require a reliable source of randomness or state continuity). Re-
cently, NIST called for multi-party threshold EdDSA signatures in one mode of verifying such
nonce derivation via zero-knowledge (ZK) proofs. However, it is challenging to translate the
stateless and deterministic benefits of EdDSA to the multi-party threshold setting, as no fresh
randomness is available for signing the same message.

In this paper, we present a new stateless and deterministic multi-party EdDSA proto-
col in the full-threshold setting, tolerating all-but-one malicious corruptions. Compared to
the state-of-the-art multi-party EdDSA protocol by Garillot et al. (Crypto’21), we improve
the communication cost by a factor of 56× and have the same three rounds, at the cost of
increasing the computational cost by about 2.25×. We adopt information-theoretic message
authenticated codes (IT-MACs) in the multi-verifier setting to authenticate values, and con-
vert them from a Boolean domain to an arithmetic domain by refining multi-verifier extended
doubly-authenticated bits (mv-edaBits). We adopt pseudorandom correlation function (PCF)
to generate IT-MACs statelessly and deterministically. Together, we design a multi-verifier
zero-knowledge (MVZK) protocol to derive nonces statelessly and deterministically.

1 Introduction

Threshold signature allows a user to share its secret key to multiple parties, and then a quorum of
parties larger than some threshold can sign a message in a distributed way. It has been studied in
the early phase (see, e.g., [Des88, GJKR96, SG98, Sho00, MR01, MOR01]), and recently gained
a lot of attentions due to the applications of key protection (e.g., protecting the security of users’
wallets in blockchain-based systems). A series of recent works designed concretely efficient threshold
signature protocols for ECDSA (e.g., [Lin17, LN18, GG18, DKLs18, DKLs19, CCL+19, CGG+20,
XAX+21, DKLS24]) or
Schnorr (e.g., [KG20, RRJ+22, BHK+24, CKM23, CGRS23, BLSW24]).

Edwards-curve digital signature algorithm (EdDSA) [BDL+11] is a widely used variant of the
Schnorr signature scheme [Sch91] over twisted Edwards curves. It has been standardized by both

∗Wuhan University, fengqi.whu@whu.edu.cn
†State Key Laboratory of Cryptology, yangk@sklc.org
‡Shanghai Jiao Tong University, kzoacn@cs.sjtu.edu.cn
§Northwestern University, wangxiao@northwestern.edu
¶Shanghai Jiao Tong University & Shanghai Qi Zhi Institute, yuyu@yuyu.hk
‖PADO Labs & Shanghai Qi Zhi Institute, xiexiangiscas@gmail.com

∗∗Wuhan University, hedebiao@163.com

1

fengqi.whu@whu.edu.cn
yangk@sklc.org
kzoacn@cs.sjtu.edu.cn
wangxiao@northwestern.edu
yuyu@yuyu.hk
xiexiangiscas@gmail.com
hedebiao@163.com

NIST [Nat19] and IRTF [JL17]. EdDSA is a stateless and deterministic signature scheme, i.e., the
nonce on each message msg is derived via r = PRFdk(msg) ∈ {0, 1}ℓ for a pseudorandom function
PRF, where dk is the right half of hash output H(sk) for a secret key sk. Informally, a signature on
the message msg consists of a pair (R, σ) such that R = r ·G and σ = r + s · H(R, pk,msg), where
r =

∑ℓ
i=1 r[i] · 2i−1, s is the left half of H(sk) and pk = s ·G is a public key. The signature can be

verified by checking σ ·G = R+pk ·H(R, pk,msg), where a public constant term is omitted. EdDSA
benefits from the deterministic nonce derivation, as a reliable source of randomness for signing is
particularly difficult for some applications, e.g., in the context of public cloud [GKMN21]. Another
benefit of EdDSA is stateless, i.e., it does not need to reliably maintain a continuous state of
counters, where these counters along with PRF can be used to produce fresh randomness. As
pointed out in [PLD+11, BHH+15, GKMN21], it is hard to keep the state reliably updated in
practice and a reused counter would lead to a reused randomness (breaking the security). For
example, an attacker or even natural circumstances (e.g., software errors or power interruptions)
may induce a device to turn off and roll back to a “last known safe” state upon restart [GKMN21].

In this work, we aim to translate the benefits of deterministic and stateless EdDSA signing to
the setting of threshold signatures. Recently, NIST has recently announced an intent to standardize
multi-party threshold EdDSA signatures in one mode of deriving nonce statelessly and determin-
istically, which motivates the design of concretely efficient threshold EdDSA protocols. We focus
on the full-threshold setting 1 (i.e., all shares of a secret key need to be used for signing messages)
that covers the two-party case, and aim to guarantee the security in the malicious setting tolerating
any number of corruptions. It is a challenging task to thresholdize EdDSA in the malicious set-
ting [MPSW19, GKMN21], as the randomness used by honest parties is identical for two protocol
executions to sign the same message and a malicious adversary may use inconsistent randomness
for two executions. Therefore, the key challenge is to guarantee the correctness of nonce deriva-
tion, i.e., r = PRFdk(msg) in the presence of malicious adversaries for a non-linear function PRF.
Without such guarantee, a malicious adversary can launch a forking attack to reveal the secret
key [MPSW19].

Two approaches can be used to guarantee the correctness of nonce derivation: one is to adopt
secure multi-party computation (MPC) and the other is to utilize zero-knowledge (ZK) proofs.
The MPC approach lets all parties jointly compute r = PRFdk(msg) in a secure way, which brings
about a large cost in terms of communication, computation and rounds. This is the case for the
previous work by Bonte et al. [BST21], which adopts the MPC approach to realize nonce derivation
in the incomparable honest-majority setting. The ZK approach makes every party Pi compute
ri = PRFdki(msg) with its share dki and prove its correctness with a ZK proof, and then combines
these shares {ri}i∈[n] into a group element R = r ·G, where

⊕
i∈[n] ri = r and

⊕
i∈[n] dki = dk. The

ZK approach is more efficient than the MPC approach. The NIST call [BP23] supports multi-party
threshold EdDSA protocols in one mode of “pseudorandom per quorum” (i.e., nonce derivation is
proved with ZK proofs). The recent work by Garillot et al. [GKMN21] adopts the zero-knowledge
from the garbled circuit (ZKGC) [JKO13] paradigm to prove correctness of nonce derivation, and
takes significantly less communication and rounds compared to the MPC-based protocol [BST21].
While the multi-party EdDSA protocol [GKMN21] enjoys fast computation and three rounds in
total, their protocol still requires a large communication cost.

The recent work [KOR23] (resp., [CGG+20]) proposed an efficient approach to design a stateless
and deterministic Schnorr signature protocol in the two-party (resp., multi-party) setting. How-
ever, their approaches adopt customized functions to derive nonce, and thus are not applicable
for the EdDSA standard, where EdDSA instantiates PRF with either SHA512 or SHAKE256. The

1A full-threshold signature protocol is also called a multi-party signature protocol.

2

Table 1: Comparison of stateless and deterministic nonce derivation protocols with malicious
security in the two-party setting. |C| denotes the size of a PRF circuit, κ is the computational security
parameter, s is the statistical security parameter, |q| represents the bit-length of an element in Zq, ℓ is the bit
length of PRF outputs and m is a large parameter used in [KOR23]. Concrete costs are given for |C| = 58K,
κ = 128, s = 60, |q| = 256, ℓ = 512 and m = 3597 when thresholdizing HashEdDSA [Nat19] over the
Edwards curve Ed25519, where PRF is instantiated by SHA512. SRSA denotes the strong RSA assumption,
DL represents the discrete-logarithm assumption and CRHF denotes collision-resistant hash function.

Protocols PRF in EdDSA Asymptotic Comm. Concrete Comm. Rounds Assumptions

[NRSW20] no O(|q|) 1.1 KB 2 DDH

[KOR23] no O(m+ |q|+ κ) 0.88 KB 1 DCR+SRSA

[GKMN21] yes O(|C|κ+ |q|κ) 1.01 MB 3 PRF+CRHF

This work yes O(|C|+ log(|C|)κ+ ℓκ) 32.47 KB 2 LPN

concurrent work by Komlo and Goldberg [KG24] presented an approach of verifiable pseudorandom
secret sharings to realize stateless and deterministic nonce derivation. Their approach achieves very
small communication and two rounds, but only works in the honest-majority setting (i.e., strictly
less than a half of parties can be corrupted).

1.1 Our Contributions

In this paper, we present a new stateless and deterministic multi-party EdDSA protocol, which is
secure in the presence of malicious adversaries who could corrupt any number of parties. Our main
technical contribution is a low-communication approach to design a multi-verifier zero-knowledge
(MVZK) protocol for stateless and deterministic derivation of EdDSA nonces.

Specifically, we adopt the notion of pseudorandom correlation function (PCF) with a natural
programmability property [BCG+20, BCG+22, CD23, BCE+23] to generate information-theoretic
message authenticated codes (IT-MACs) in a stateless and deterministic way. Based on IT-MACs
over F2, we generalize the VOLE-based ZK protocol [BMRS21] from the single-verifier setting to
the multi-verifier setting, and then use it to let every party Pi prove ri = PRFdki(msg). The MVZK
protocol for proving nonce derivation can be made non-interactive, stateless and deterministic
using the Fiat-Shamir (FS) transformation. Then, we convert IT-MACs over F2 into that over Zq

with a prime q by generalizing and refining the edaBits technique [EGK+20]. In particular, we
generalize edaBits from the MPC setting to the MVZK setting, and then improve the underlying
check protocol using a “sacrificing” technique in the case that our protocol needs only one correct
edaBits for each signing. Next, we locally convert IT-MACs over Zq into that over an elliptic-curve
group G without communication, following the observation in [STA19, KOR23]. As a result, we let
all parties obtain an IT-MAC on each group element Ri = ri ·G, and then open these IT-MACs to
obtain a correct group element R =

∑
i∈[n]Ri = r ·G, where ri ∈ Zq is the arithmetic representation

about ri, r =
∑

i∈[n] ri and n is the number of parties. We refer the reader to Section 3 for more
technical details.

Comparison of two-party protocols for stateless and deterministic nonce derivation. For
the case of two parties, Table 1 compares our protocol with the existing protocols for deterministic,
stateless verifiable nonce derivation in the malicious setting. The concrete communication cost
is calculated for statelessly and deterministically producing R = r · G such that r ∈ Zq is the
arithmetic representation of PRFdk(msg).

3

Table 2: Comparison between our protocol and the state-of-the-art protocol for generating
multi-party EdDSA signatures statelessly and deterministically. n denotes the total number of
parties. Concrete communication costs are given for |C| = 58K, κ = 128, |q| = 256 and ℓ = 512, when
thresholdizing HashEdDSA [Nat19] over the Edwards curve Ed25519 among three parties and five parties.

Protocols
Asymptotic Communication Cost Communication Cost

Rounds
Communication (n = 3) (n = 5)

[GKMN21] O(n2(|C|κ+ |q|κ)) 10.76 MB 35.89 MB 3

This work O(n2(|C|+ log |C|κ+ ℓκ)) 0.19 MB 0.63 MB 3

Both works by Nick et al. [NRSW20] and Kondi et al. [KOR23] achieve significantly less com-
munication cost than other two works. The protocol by Kondi et al. [KOR23] achieves the optimal
one round. However, the approaches in [NRSW20, KOR23] require the customized functions to
derive nonces rather than the PRF function used in the EdDSA standard. The prior work by Gar-
illot et al. [GKMN21] is closest to ours, and adopts the ZKGC approach to prove r = PRFdk(msg).
Our nonce-derivation protocol builds upon the recent LPN-based PCF construction [BCG+22], and
achieves roughly 31.9× improvements in terms of communication cost, compared to the protocol
by Garillot et al. [GKMN21] in the two-party setting.

Comparison of multi-party EdDSA signature protocols with malicious security. In
Table 2, we compare our multi-party EdDSA signature protocol with the state-of-the-art proto-
col [GKMN21], where both protocols are stateless and deterministic. We only compare the signing
phase, as the key generation phase is executed only once. The main cost of multi-party EdDSA
signature protocols is to generate R = r · G. The comparison of communication costs and rounds
in the two-party case between our protocol and [GKMN21] has been summarized in Table 1. Thus,
Table 2 focuses on the case beyond two parties, and considers the number of parties n = 3 or n = 5.
Both of our protocol and [GKMN21] are secure in the dishonest-majority setting (i.e., corruption
threshold t = n− 1), and we do not compare the protocols [BST21, KG24] in the honest-majority
setting (i.e., t = ⌊(n− 1)/2⌋).

Compared to the state-of-the-art protocol [GKMN21], our protocol improves the communication
cost by a factor of 56× for both n = 3 and n = 5, while having the same rounds. As a trade-
off, our protocol increases the computational cost by about 2.25×. The communication cost is
calculated for HashEdDSA over the Edwards curve Ed25519. Our protocol would achieve a similar
communication improvement, when considering HashEdDSA over the Edwards curve Ed448. While
msg is the hash digest of the original message in HashEdDSA, another EdDSA variant computes
PRFdk(msg) with an original message msg. For the EdDSA variant, the circuit size to compute
PRFdk(msg) is significantly larger, especially for a long message. In this case, our protocol will
obtain a larger communication improvement. While our protocol and [GKMN21] require O(n2)
communication complexity, we also exploit a simple optimization of binary trees in [QYYZ22] to
achieve O(n) communication complexity at the cost of requiring extra O(log n) rounds (see 4.2 for
more details). 2

2We are unclear how to apply the tree-communication optimization in the previous protocol [GKMN21] based on
ZKGC.

4

2 Preliminaries

This section presents the preliminaries used in the multi-party EdDSA signing protocol. Specifically,
We review the commitment functionality FCom, committed NIZK functionality for DLP FRDL

com-zk,
the EdDSA schemes, and definitions of PCF.

Notation. Let κ be the security parameter and n be the number of parties. We denote by [n] the
set {1, . . . , n} and [a, b] the set {a, . . . , b}. Bold lower-case letters, e.g., x, denote the vectors, and
x[i] is the i-th element of x with x[1] as the first entry and x[a : b] as the sub-vector {x[a], . . . ,x[b]}.
Let G be an additive cycle group of generator G and order q, and upper-case letters, e.g., X, denote
the group element. For a circuit C, we use |C| to denote the number of multiplication gates. We use
[[x]]2 denote the multi-verifier authenticated share of x over F2κ and [[x]]q denotes the multi-verifier
authenticated share of x over Zq. We use P1, . . . , Pn to denote n parties, P to denote the prover
and V1, . . . ,VN to denote N verifiers. For multi-party signature, we let N = n− 1.

2.1 Functionality of Commitment FCom

To realize multi-party EdDSA signing, we use an ideal commitment functionality FCom, formally
defined in Fig. 1.

Functionality FCom

This functionality runs with parties P1, . . . , Pn, as follows:

• Upon receiving (commit, sid, i, x) from a party Pi (for i ∈ [n]), record (commit, sid, i, x) and send
(receipt, sid, i) to all the other parties. If some (commit, sid, i, ∗) is already recorded, ignore the
message.

• Upon receiving (decommit, sid, i) from a party Pi (for i ∈ [n]): if (commit, sid, i, x) has been stored
then send (decommit, sid, i, x) to all the other parties.

Figure 1: The Commitment Functionality

In our protocol, all the inputs to be committed have a sufficient high entropy. In this case,
we can securely realize FCom by simply defining Com(x) = H(x) for high-entropy input x, where
H(·) : {0, 1}∗ → {0, 1}κ is a cryptographic hash function with security parameter κ. This has no
impact on security, as the simulation of commitments and the extraction of inputs still work in the
random-oracle model.

2.2 Functionality of Committed NIZK FRDL
com-zk

Fig. 2 overviews the committed non-interactive zero-knowledge proof functionality for discrete
logarithm relation, denoted as FRDL

com-zk.
The NIZK proof of knowledge in the random-oracle model can be achieved following many

multi-party signing protocols such as [Lin17, LN18, DKLs18, DKLs19]. In this paper, we apply
the standard Schnorr proof to prove knowledge of the discrete logarithm of an elliptic-curve point.
Remark that H(·) : {0, 1}∗ → Zq used in Schnorr is cryptographic hash-to-integer function. This
protocol can be transformed into the non-interactive version using the Fiat-Shamir heuristic [FS87].
Combining the above instantiation for FCom with Schnorr proof, we can obtain an efficient instan-
tiation for functionality FRDL

com-zk, which will be used in our key generation phase of the multi-party

5

Functionality FRDL

com-zk

This functionality runs with parties P1, . . . , Pn, as follows:

• Upon receiving (com-prove, sid,Q, x) from a party Pi (for i ∈ [n]), if Q ̸= x · G or sid has been
previously used then ignore the message. Otherwise, store (sid, i,Q) and send (proof-receipt, sid)
to the other parties.

• Upon receiving (decom-proof, sid) from a party Pi (for i ∈ [n]): (sid, i,Q) has been stored then
send (decom-proof, sid,Q) to the other parties.

Figure 2: The Committed NIZK Functionality for DL Relation

EdDSA signing protocol. Note that “high-entropy random source” is available in the key generation
phase of EdDSA, therefore, the above instantiation does not impact our contribution.

2.3 EdDSA Signature Algorithm

This section introduces details of EdDSA. Following the standards of NIST and IRTF [JL17, Nat19],
there are two variants of EdDSA, depending on how the randomness is generated: the first case
is r = PRF(dk,msg) while the second case is r = PRF(dk,H(msg)). This paper focuses on the
second case, as the message length of the PRF circuit is fixed in the second case. For readability,
we write H(msg) as simple msg, which has little impact on a publicly known message. In addition,
there are two versions of EdDSA, based on the Edwards curves Ed25519 and Ed448, respectively.
We only consider the Ed25519, implemented with SHA512 and ℓb = 256, which is a widely used
configuration for EdDSA-based applications. Our multi-party EdDSA signature protocol is also
compatible with Ed448, implemented with SHAKE256 and ℓb = 456. The detailed three algorithms
of EdDSA scheme are presented as follows:

Parameters: EdDSA is parameterized by params = (Ep,G, q, G, ℓb, ℓ,Hsig,PRF), where Ep is the
twisted elliptic curve, G is an additive cycle group of generator G and order q, ℓb is the bit-length
of secret EdDSA scalars, PRF : {0, 1}ℓb+ℓ → {0, 1}ℓ is a pseudorandom function with ℓ-bit output
(satisfying ℓ = 2ℓb) and Hsig : {0, 1}∗ → Zq is a hash-to-integer function.

KeyGen(params):

1. Sample a secret key sk← {0, 1}ℓb of ℓb bit length, and compute a hash value (h[1],h[2], . . . ,h[2ℓb]) :=
PRF(sk).

2. Assign h[1] = h[2] = h[3] = h[ℓb] = 0, h[ℓb− 1] = 1. Then use the updated vector h[1 : ℓb] to
define a secret scalar s ∈ Zq i.e., s =

∑ℓb
i=1 h[i] · 2i−1 mod q, and use the higher second half

h[ℓb + 1 : 2ℓb] as the derived key dk.

3. Compute the public key pk = s ·G.

Sign(dk, s, pk,msg):

1. Derive pseudorandom value as r = PRF(dk,msg) and compute r =
∑ℓ

i=1 2
i−1 · r[i] mod q.

2. Compute R = r ·G, h = Hsig(R, pk,msg) and σ = r + h · s mod q.

3. Output a signature (R, σ).

6

Verify(pk,msg, (R, σ)):

1. Compute h′ = H(R, pk,msg).

2. Output 1 (accept) iff (23 · σ) ·G = 23 ·R+ (23 · h′) · pk holds; otherwise, output 0 (reject).

2.4 Pseudorandom Correlation Function

Pseudorandom correlation function (PCF) was originally presented by Boyle et al. [BCG+20] using
LPN assumption and has been studied since then [BCG+22], [CD23]. It incrementally allows the
local generation of an arbitrary polynomial amount of pseudorandom correlations on demand from
a pair of short correlated keys. Below, we define PCF-based vector oblivious linear evaluation
(VOLE) correlations.

Definition 1. Let 1 ≤ τ0(κ), τ1(κ) ≤ poly(κ) be the output-length functions, and let M ⊆ F be a
set of allowed master keys for verifier. Let (Setup,Y) be probabilistic algorithms such that:

• Setup(1κ,M) sample a master secret key fromM, for example, msk := ∆;

• Y(1κ,msk) return a pair of outputs (y0, y1) ∈ {0, 1}τ0(κ) × {0, 1}τ1(κ), defining a correlation
on the outputs.

We say that (Setup,Y) define a reverse sampleable correlation, if there exists a probabilistic poly-
nomial time (ppt) algorithm RSample such that

• RSample(1κ,msk, b ∈ {0, 1}, yb ∈ {0, 1}τb(κ)) return y1−b ∈ {0, 1}τ1−b(κ), such that for all
msk ∈M and b ∈ {0, 1} the following distributions are statistically close:

– {(y0, y1)|(y0, y1 ← Y(1κ,msk)} and
– {(y0, y1)|(y∗0, y∗1 ← Y(1κ,msk), yb ← y∗b , y1−b ← RSample(1κ,msk, b, y∗b)}

To show how this reverse sampling definition works, we adopt the distribution for vector
oblivious linear evaluation (VOLE) correlations if Y(1κ,∆) samples x ← F, k ← Fp, computes
m = k+ x ·∆ ∈ Fp and outputs ((x,m), k), where F could be F2 (with p = 2κ) or Zq (with p = q).

Definition 2. Let (Setup,Y) fix a reverse-sampleable correlation with setup which has output length
functions τ0(κ), τ1(κ) and sets M of allowed master keys, and let κ ≤ n(κ) ≤ poly(κ) be an input
length function. Let (PCF.Gen,PCF.Eval) be a pair of algorithms with the following syntax:

• PCF.Gen(1κ,msk) is a ppt algorithm that outputs a pair of keys (k0, k1);

• PCF.Eval(b, kb, v) is a deterministic polynomial-time algorithm that on input b ∈ {0, 1}, key
kb and value v ∈ {0, 1}n(κ), outputs a value yb ∈ {0, 1}τb(κ)

The (PCF.Gen,PCF.Eval) (in Definition 2) is a (weak) pseudorandom correlation function (PCF)
for Y, if the following conditions hold:

• Pseudorandom Y-correlated outputs. For every msk ∈M, and non-uniform adversary A
of size poly(κ), and every Q = poly(κ), it holds that

|Pr[exppr0 (κ) = 1| − |Pr[exppr1 (κ) = 1| ≤ negl(κ)

for all sufficiently large κ, where expprb (κ) for b ∈ {0, 1} is defined in Fig. 3 and Fig. 4 (with
Q(κ) samples given access to A).

7

Experiment exppr0 (κ)

for i = 1 to Q(κ):

vi ← {0, 1}n(κ)

(y
(i)
0 , y

(i)
1)← Y(1κ,msk)

b← A(1κ, (vi, y(i)0 , y
(i)
1)i∈[Q(κ)])

return b

Figure 3: Correlated outputs of the Y-function

Experiment exppr1 (κ)

(k0, k1)← PCF.Gen(1κ,msk)
for i = 1 to Q(κ):

vi ← {0, 1}n(κ)

for b← {0, 1}: y(i)b ← PCF.Eval(b, kb, v
(i))

b← A(1κ, (vi, y(i)0 , y
(i)
1)i∈[Q(κ)])

return b

Figure 4: Pseudorandom Y-correlated outputs of a PCF

Experiment expsec0 (κ)

(k0, k1)← PCF.Gen(1κ,msk)
for i = 1 to Q(κ):

vi ← {0, 1}n(κ)

y
(i)
1−b ← PCF.Eval(1− b, k1−b, v

(i))

b← A(1κ, kb, (vi, y(i)1−b)i∈[Q(κ)])
return b

Figure 5: Output distributions of a PCF

• Security. For each b ∈ {0, 1} there is a simulator Sb such that for every msk ∈M, any every
non-uniform adversary A of size B(κ), and every Q = poly(κ), it holds that

|Pr[expsec0 (κ) = 1| − |Pr[expsec1 (κ) = 1| ≤ negl(κ)

for all sufficiently large κ, where expsecb (κ) for b ∈ {0, 1} is defined in Fig. 5 and Fig. 6 (again,
with Q(κ) samples).

8

Experiment expsec1 (κ)

kb ← Sb(1κ,msk)
for i = 1 to Q(κ):

vi ← {0, 1}n(κ)

y
(i)
b ← PCF.Eval(b, kb, v

(i))

y
(i)
1−b ← RSample(1κ,msk, b, y

(i)
b)

b← A(1κ, kb, (vi, y(i)1−b)i∈[Q(κ)])
return b

Figure 6: Output distributions with RSample algorithm as in Definition 1

Macro Multi-verifier PCF

PCF.Genmv (1κ,F) runs N executions of PCF.Gen(1κ,msk) to generate (k0, k1, . . . , kN) such that the size

of every seed ki is at most Oκ(N log2(ℓ)). In particular, PCF.Genmv (1κ) executes as follows:

1. For each i ∈ [N], sample ∆i ← Fp.

2. For each i ∈ [N], run PCF.Gen(1κ,∆i) to generate a pair of seeds (ki0, k
i
1).

3. For each i ∈ [N], output ki := ki1 to Vi and k0 := {ki0}i∈[N] to P.

PCF.Evalmv (i, ki, v) runsN executions of PCF.Eval to generate parties’ shares on a vector of multi-verifier
authenticated sharing [[x]]2. For each i ∈ [N], PCF.Evalmv (i, ki) performs the following:

1. For each i ∈ [N], run PCF.Eval(1, ki1, v) to generate yi1 = {k(i),∆i}.

2. For each i ∈ [N], run PCF.Eval(0, ki0, v) to generate yi0 = {x,m(i)} such that m(i) = k(i) +x ·∆i.

Figure 7: Multi-verifier PCF scheme

2.5 Multi-Verifier Programmable PCF

Fig. 7 presents a multi-party extension from two-party PCF (as described in Section 2.4. In the
multi-verifier setting, P would generate a VOLE correlation with every verifier Vi, for i ∈ [N] such
that P obtains the same x ∈ Fℓ and Vi obtains the same ∆i ∈ F among all VOLE correlations.
Note that the existing PCF schemes satisfy programmability defined in [BCG+22], i.e., PCF.Gen
takes additional inputs (x,∆i) and outputs a pair of seeds that are expanded to a VOLE correlation
with fixed x, ∆i. Based on the programmability, we can construct PCF for VOLE in the multi-
verifier setting (see [BCG+22] for details). Building upon multi-verifier PCF for VOLE, we show
the construction of a PCF scheme (PCF.Genmv, PCF.Evalmv) of multi-verifier authenticated sharing
as defined in Section 3.1, while guaranteeing the security.

9

Figure 8: Technique Outline

3 Technical Overview

This section provides a technical overview of our work. The full descriptions and security proofs are
left in the later section. Fig. 8 gives a technique outline about our designed protocols. Specifically,
we define the IT-MACs over group and adopt them to design a non-interactive. stateless and
deterministic multi-verifier zero-knowledge proof (MVZK) for nonce derivation. Finally, we provide
a multi-party EdDSA signing protocol with optimal communication performance.

3.1 Multi-Verifier IT-MACs over Groups

We first define the concept of multi-verifier information-theoretic message authenticated codes (IT-
MACs), generalized from the single-verifier VOLE-based ZK protocol [BMRS21]. We authenticate
values in F2, and the authentication is done over the binary extension field F2κ . Specifically, let
V1, . . . ,VN be N verifiers and ∆i ∈ F2κ be a uniform global key known only to Vi. A value x ∈ F2

known by the prover P is authenticated by

[[x]]2 = {(x,m1, . . . ,mN), k1, . . . , kN},

satisfying mi = ki+x ·∆i ∈ F2κ with the same x. Each Vi holds a local MAC key ki, i ∈ [N], and P
holds the secret value and corresponding MAC tags (x,m1, . . . ,mN). Besides, we extend the above
notation to vectors, arithmetic, and group of authenticated values as well. In this case:

• [[x]]2 = {(x,m1, . . . ,mN),k1, . . . ,kN} means that P holds x ∈ Fℓ
2,m1, . . . ,

mN ∈ Fℓ
2κ while Vi holds global key ∆i ∈ F2κ and local MAC key ki ∈ Fℓ

2κ with mi =
ki +∆i · x ∈ F2κ .

• [[x]]q = {(x,m1, . . . ,mN), k1, . . . , kN} means that P holds x,m1, . . . ,mN ∈ Zq and Vi holds
glocal key Λi ∈ Zq and local MAC key ki ∈ Zq with mi = ki + Λi · x mod q.

• [[X]]q = {(X,M1, . . . ,MN),K1, . . . ,KN} means that P holds X,M1, . . . ,MN ∈ G while Vi
holds glocal key Λi ∈ Zq and local MAC key Ki ∈ G with Mi = Ki + Λi ·X.

All authenticated values are additively homomorphic. For example, given authenticated bits
over F2, i.e., [[x1]]2, . . . , [[xℓ]]2 and public coefficients c1, . . . , cℓ, c ∈ F2κ , the parties can calculate
[[y]]2 =

∑ℓ
i=1 ci · [[xi]]2 + c locally. Here, we define four macros used in this paper.

10

Random. Generate an authenticated value [[r]]2, where r ∈ F2 is a uniformly random value. This
can be achieved in a stateless and deterministic way by P and Vs invoke PCF.Evalmv (c.f. Fig. 7
in Section 2.5) with prepared k0 and ki for i ∈ [N], respectively. We use Random to denote this
macro.

Assign. On input x ∈ F2 from P, P and Vs execute [[r]]2 ← Random. Then P sends y = r−x ∈ F2

to Vs and all parties compute [[x]]2 = [[r]]2+ y. We denote this assigning procedure using Assign(x).

Shr. On input x ∈ Fℓ
2 from P, it simply invokes Assign(x) for ℓ times in parallel to generate [[x]]2.

We denote this sharing procedure using Shr(x). Remark that Shr macro is only used in the key
generation with a reliable source of randomness.

Checking Zero. An authenticated value [[x]]2 can be checked if x = 0 by having P send mi to
corresponding verifier Vi, who verifies if mi = ki holds. We use CheckZero([[x]]2) to denote this
checking macro.

Here we do not need broadcast, which means malicious P might send correct (mi) to Vi and send
incorrect (mj) to Vj , that is mi = ki, but mj ̸= kj , causing Vi continues but Vj aborts. All verifiers
could fix this by announcing their response and checking consistency. As long as one verifier is
honest, this inconsistency will be found. Since the signature scheme is verifiable, we retrench the
broadcast channels here, and the communication rounds could be saved to O(1). Therefore, the
security is following the two-party IT-MACs and PCF.

3.2 Multi-Verifier Stateless Deterministic Nonce Derivation

The previous section introduces why the stateless and deterministic manner is essential. Re-
cent works [NRSW20, GKMN21, KOR23] have contributed to zero-knowledge proof-based pattern.
These works all follow the same paradigm below.

1. The prover P commits to the same nonce derivation key dk in the key generation phase,
which is in the form of verifiable commitments. Specifically, P commits to each bit of dk,
while verifier V (i.e., the other party who checks the correctness of nonce derivation) keeps
authentication keys.

2. Subsequently, P proves an unbounded number of statements (i.e., correctly PRF and expo-
nentiation evaluation circuit) in the signing phase. Specifically, P and V jointly evaluate the
target circuit while masking the inputs with committed nonce derivation keys. If P uses the
correct dk, they must open to the same nonce R = PRFdk(msg) ·G for each message msg.

Unlike prior works, we want to simultaneously prove the nonce derivation against multiple veri-
fiers. Parties firstly evaluate the PRF circuit gate-by-gate. As all the wire values are authenticated
by the defined multi-verifier IT-MACs, the ADD gates can be calculated locally, and MULT gates
are jointly processed by invoking the Assign(ωα ·ωβ) macro. Next, all parties prove the correctness
of t multiplication triples {ωα,j , ωβ,j , ωγ,j}j∈[t]. Here, we follow the polynomial-based batch verifi-
cation technique [BMRS21] and extend their work to the multi-verifier setting. Let’s first arrange
these multiplication triples into a 2× t

2 matrix, i.e.,

ωα,1 ωα,2 ωα,3 . . . ωα, t
2

ωα, t
2
+1 ωα, t

2
+2 ωα, t

2
+3 . . . ωα,t

Now, each column could define a 2-degree polynomial. In particular, if P is honest, it will define
t
2 polynomials for all α-wires as f1, . . . , f t

2
and another t

2 polynomials for all β-wires as g1, . . . , g t
2
.

11

Consider the following crucial equation:∑
i∈[t

2
]

∑
j∈[2]

fi(j) · gi(j) =
∑
i∈[t]

(ωα,i · ωβ,i) =
∑
i∈[t]

ωγ,i

Let’s generalize a product polynomial as h =
∑

i∈[t
2
] fi · gi ∈ F2κ [X]. If all multiplication triples

are correct, the aggregation of outputs must be a point of h. At this time, all parties could
jointly check if

∑
j∈[2][[h(j)]]2 − [[z]]2 is [[0]]2. This is achieved by invoking CheckZero subroutine.

To complete the proof, P also needs to demonstrate that the commitment on polynomial h is
exactly the inter-product of f1, . . . , f t

2
and g1, . . . , g t

2
The key insight is that all parties can use

the IT-MACs {[[ωα,i]]2, [[ωβ,i]]2}i∈[t] to homomorphically derive the authenticated sharing of those
t
2 polynomials, i.e., [[f1]]2, . . . , [[f t

2
]]2 and [[g1]]2, . . . , [[g t

2
]]2, a further check on these commitments is

performed as
∑

i∈[t
2
][[fi]]2 · [[gi]]2 − [[h]]2 = [[0̃]]2, where 0̃ denotes a zero-polynomial that is always

evaluated to 0. By Schwartz-Zippel, this can be checked by∑
i∈[t

2
]

[[fi(η)]]2 · [[gi(η)]]2 − [[h(η)]]2 = [[0]]2

with a random η ∈ F2κ . To make this procedure non-interactive. stateless and deterministic,
we generate η using Fiet-Shamir heuristic, i.e., by hashing all the transcripts. Observe that the
equivalent verification of [[f1(η)]]2, . . . , [[f t

2
(η)]]2, [[g1(η)]]2, . . . , [[g t

2
(η)]]2 and [[h(η)]]2 evaluated on a

public value η boils down to another t
2 -batched verification on multiplication triples. Thus, parties

can recursively execute as above until one or two triples are left. The last multiplication triples
could be efficiently verified using the sacrifice technique [KOS16]. If any check fails, the party’s
output is false. Otherwise, all parties get a correct authenticated vector [[r]]2 that is the securely
evaluation output of PRF[[dk]]2(msg).

Then we covert IT-MACs over F2 into that over G with a prime order q. Previously, Smart et
al. [STA19] and Kondi et al. [KOR23] observed an IT-MACs over group where for a group element
R ∈ G with R = r · G, it will be secretly shared by the correlations {Ri,Mi}i∈[n] such as R =∑

i∈[n]Ri and
∑

i∈[n]Mi = Λ·R, Λ ∈ Zq is the same global key as that used in [[r]]q. We extend their

works by converting [[r]]2 to [[R]]q. The core challenge is that r ∈ Fℓ
2, secretly-shared over F2κ , cannot

be directly aggregated to a [[r]]q or [[R]]q, which are secretly-shared over Zq or group. Inspired by prior
work [BST21], we adopt the notion of extended doubly-authenticated bits (edaBits) [EGK+20].
In particular, we generate original edaBits from the MPC setting to an MVZK-friendly form,
i.e., mv-edaBits:= {([[ρ]]q, [[ρ[1]]]2, . . . , [[ρ[ℓ]]]2)} such that the random value ρ ∈ Zq is secret-shared
over the arithmetic field Zq in the multi-verifier setting and its binary representations (i.e., ρ =∑ℓ

j=1 2
j−1ρ[j] mod q) are secret-shared over the boolean field F2 also in the multi-verifier setting.

An important observation is that we need ρs in both fields to keep identical. Prior work [EGK+20]
applied heavy cut-and-choose technique. This method is uneconomic to design multi-party EdDSA
as just one mv-edaBits is used for a signature. Therefore, we improve the check protocol using a
“sacrificing” technique. In particular, parties generate two edaBits, with ([[a]]q, [[a]]2) and ([[ρ]]q, [[ρ]]2)
respectively. Incorporated with an affine circuit Caff , P and Vs can securely evaluate to b = a+χ ·ρ
mod q in clear, where χ ∈ Zq is an unpredictable random value. Suppose a cheating P does not
use a consistent a and ρ, all parties can check by invoking CheckZero([[a]]q + χ · [[ρ]]q − b). This
is workable because if the equation holds, we can obtain a + χ · ρ − (a + χ · ρ) (the red ρ, a are
aggregated by binary representations of mv-edaBits and the blue ρ, a are generated from integer
part of mv-edaBits). If Λ is uniformly random and χ ∈ Zq is computationally unpredictable, the
advantage of A to forge an inconsistent mv-edaBits will be negl(κ).

12

After the consistency of mv-edaBits, they can correctly convert the vector [[r]]2 into the IT-MACs
over group by [[R]]q = (c− [[ρ]]q) ·G where c = r+ ρ mod q is evaluated by an addition circuit Cadd,
with inputs of [[r]]2 and [[ρ]]2.

3.3 Multi-Party EdDSA Signing

We concentrate on the Ed25519 version of EdDSA signature, with the case of Ed448 being virtually
identical (except using the different PRF and elliptic curve). Parameterized by the EdDSA standard
parameters, the multi-party EdDSA signing could be achieved in two phases. In the key generation
phase, each party generates all the keys, i.e., secret key ski, signing key si, random seed k∗, derived
key dki, global keys ∆

i and Λi. Furthermore, the public key of signature is easy to construct based
on the additive cycle group.

Given the message msg, a core step is to non-interactively, stateless, and deterministically derive
mv-edaBits by PCF evaluation, session identifier by sid = msg and all the common randomness
needed by H(k∗, sid,mvnd). Next, the verifiable nonce derivation could be performed as follows:

1. Each Pi proves its Ri acting as the prover P while all other Pj , j ∈ [n]\{i}, acting as the N
verifiers Vs.

2. Pi aborts if it finds any false in the multi-verifier nonce derivation process. Otherwise, Pi

obtains R =
∑

i∈[n]Ri.

The remaining steps are easy. Each Pi computes h = Hsig(R, pk,msg) and σi = ri+h·si mod q. All
parties open σ =

∑n
i=1 σi mod q. Finally, each party checks if verify(pk,msg, (R, σ)) = false, then

it aborts. Otherwise, the parties output (R, σ). As a result, the computation and communication
costs heavily depend on the multi-verifier nonce derivation.

4 The Designed Multi-Party EdDSA Signing Protocol

Recall that we have defined multi-party IT-MACs over groups in Section 3.1. Thus, this section
directly shows the detailed multi-verifier nonce derivation protocol and its application in multi-party
EdDSA signatures.

4.1 Extended Doubly-Authenticated Bits for MVZK Proof

The extended doubly-authenticated bits for multi-verifier zero-knowledge proof mv-edaBits is a
key tool in this work to efficiently convert [[r]]2 to an authenticated sharing [[R]]q over group. The
mv-edaBits is defined as a tuple ([[ρ]]q, {[[ρ[1]]]2, . . . , [[ρ[ℓ]]]2}) where the identical random value ρ ∈ Zq

is secret-shared in the arithmetic domain Zq and its binary representation bits are secret-shared

in the binary domain F2κ , i.e., ρ =
∑ℓ

i=1 2
i−1 · ρ[i] mod q. We provide the ideal functionality

for mv-edaBits in Fig. 9.
Before going into the achievement of FMV-edaBits, we must present a core check subroutine. It

works in the multi-verifier setting and adopts a polynomial-based batch verification technique. We
define a macro in Fig. 10. Its secure instantiation protocol CheckMuls is presented in Appendix B
and Fig. 18, which is a generalization in the multi-verifier setting from AssertMultVec protocol
of [BMRS21]. Therefore, the security of CheckMuls is similar to one-verifier protocol, except that we
allow an adversary to control which honest verifier aborts while other verifiers output results. This
could be fixed by all verifiers broadcasting their results and checking consistency. As long as one
verifier is honest, this inconsistency will be found. Since the simulator can simulate the input round

13

Functionality FMV-edaBits

Let C be the set of corrupted parties. This functionality runs with two types of parties, i.e., multiple
verifiers V1, . . . ,VN and the prover P. We use the symbols {[[·]]q, [[·]]2} to distinguish the authenticated
fields in the Zq and F2κ respectively.

Initialize: For each Vi, i ∈ [N], upon receiving (init, i) from Vi and P, sample ∆i ← F2κ ,Λ
i ← Zq. If Vi

is corrupted then receive (∆i ∈ F2κ ,Λ
i ∈ Zq) from the adversary. Here, ∆i is global key for [[·]]2-sharing

and Λi is global key for [[·]]q-sharing. Store (∆i,Λi) and send them to Vi, and ignore all subsequent
(init, i) commands.

Create edaBits: Upon receiving (edaBits, str) from Vs and P, if (∆i,Λi) for i ∈ [N] have been stored:

• If sid has never been received before, generates ([[ρ]]q, {[[ρ[1]]]2, . . . , [[ρ[ℓ]]]2}) satisfying ρ =∑
i∈[ℓ] 2

i−1 · ρ[i] mod q, sends them to all parties and stores (sid, ([[ρ]]q, {[[ρ[1]]]2, . . . , [[ρ[ℓ]]]2}));

• Otherwise, it finds the record as (sid, ∗) and sends ([[ρ]]q, {[[ρ[1]]]2, . . . , [[ρ[ℓ]]]2}) to all parties.

Figure 9: The Ideal Functionality for mv-edaBits

Macro CheckMuls

This macro is executed with P and N verifiers V1, . . . ,VN , and inherit all the features of PCF (shown in
Fig. 7) and FMV-ND (shown in Fig. 12). Furthermore, this macro is invoked by the following commands.

Check Multiplications: Upon receiving t multiplication triples {([[ωα,j]]2, [[ωβ,j]]2, [[ωγ,j)]]2}j∈[t] from
P and Vs, where t multiplication tuples are equipped with IT-MACs. The details of this macro are
provided in Appendix B and Fig. 16. Finally, if for any j ∈ [t] s.t. ωγ,j ̸= ωα,j ·ωβ,j , then set res = false.
Otherwise, set res = true.

Figure 10: The Multi-Verifier Check Multiplications Macro

of any subprotocol following the description, it is sufficient even if the adversary is inconsistent.
Additionally, consistency is guaranteed in the protocol

∏
MV-edaBits. Thus, the malicious behavior

where a corrupted prover sends different values to different honest verifiers would be detected.
The prover P and N verifiers V1, . . . ,VN can generate faulty mv-edaBits by simply invoking

PCF macro. Observed we need to check the consistency of bits {ρ[1], . . . ,ρ[ℓ]} and random value ρ
shared in two fields. It can be further achieved by cut-and-choose verification phase of [EGK+20].
In this paper, we observe that these values can be economically checked by the sacrifice of another
edaBits. See the proof given in Theorethm. 1), if red ρis (the Boolean parts) are not consistent
with the blue ρ (the arithmetic part), the check subroutine will fail except with probability at most
1
q + negl(κ).

The transcripts sent from P to Vs are mainly caused during the gate-by-gate paradigm and
polynomial-based batch verification process. The former consumes t2 bits, where t2 is the number
of AND gates in Caff ; the latter consumes log(t2)·4κ+9κ bits. Thus, the communication complexity
of

∏
MV-edaBits is roughly O(t2 + log(t2) · κ) in a non-interactive setting.

Theorem 1.
∏

MV-edaBits UC-realizes FMV-edaBits in the presence of an adversary statically corrupt-
ing up to n− 1 parties, in the (FMV-CheckMULs)-hybrid random oracle model and PCF assumption.

Proof. We consider the case that n − 1 parties are corrupted. First, we analyze its correctness as
follows: The correctness of

∏
MV-edaBits protocol as described in Fig. 11 relies on the gate-by-gate

14

Protocol
∏

MV-edaBits

This protocol runs with two types of parties, i.e., multiple verifiers V1, . . . ,VN and the prover P. We
use the symbols {[[·]]q, [[·]]2} to distinguish the authenticated fields in the Zq and F2κ respectively. Pa-
rameterized by the security parameter κ. All parties hold an affline circuit Caff : {x + χ · y = z}, with
t2 = |Caff | is number of multiplication gates. Let H : {0, 1}∗ → Zq.

Setup runs PCF.Genmv to generates keys for each Vi, i ∈ [N] and P.

1. P and Vs run PCF.Genmv(1
κ,Zq) to generate (k

(q)
0) for P and (k

(q)
i) for Vi.

2. P and Vs run PCF.Genmv(1
κ,F2) to generate (k

(2)
0) for P and (k

(2)
i) for Vi.

3. Parties jointly sample common random source k∗ ← F2κ .

Create mv-edaBits runs PCF.Evalmv to derive authenticated mv-edaBits for each Vi, i ∈ [N] and P. Be-
sides, Create needs an input of a common string str. All parties execute as follows:

1. P runs PCF.Evalmv(0, k
(q)
0 ,H(str||1)), while for each i ∈ [N], Vi runs PCF.Evalmv(i, k

(q)
i ,H(str||1))

to generate two [[ρ]]q, [[a]]q.

2. In parallel, P runs PCF.Evalmv(0, k
(2)
0 ,H(str||2)) and for each i ∈ [N], Vi runs

PCF.Evalmv(i, k
(2)
i ,H(str||2)) to generate [[ρ]]2, [[a]]2.

3. Each party generates a common random by H(str||H(str||1)||H(str||2)) = χ ∈ Zq and append
str := str||H(str||1)||H(str||2)||χ.

4. For circuit Caff , they evaluate it with the inputs of [[a]]2, χ and [[ρ]]2. The gate-by-gate circuit
evaluations are executed as follows:

(a) In a topological order, for each gate (α, β, γ, T) ∈ Caff with input wire values of (ωα, ωβ) and
output wire value of ωγ :

- If T = ADD, P and Vs locally compute [[ωγ]]2 = [[ωα]]2 + [[ωβ]]2.

- If T = MULT and this is j-th multiplication gate, P and Vs execute [[ωγ]]2 ← Assign(ωα·ωβ).

- Append str := str||dj where dj is the transcript sent by P.
(b) P and Vs jointly check the correctness of multiplication triples by invoking

CheckMuls({[[ωα,j]]2, [[ωβ,j]]2, [[ωγ,j]]2}j∈[t2])

with seed str := H(str). If any failure happens, the parties output false.

5. Parties now obtain the output wires [[b]]2 that satisfy
∑ℓ

j=1 2
j−1 · b[j] = (

∑ℓ
j=1 2

j−1 · a[j]) + χ ·
(
∑ℓ

j=1 2
j−1 · ρ[j]) mod q.

6. Parties open b. Then, all parties invoke CheckZero([[a]]q + χ · [[ρ]]q − b).

7. If any checking fails, the parties output false and abort. Otherwise, they output
([[ρ]]q, {[[ρ[1]]]2, . . . , [[ρ[ℓ]]]2}).

Figure 11: The Generation Protocol of mv-edaBits

evaluation and consistency check. In the honest case, all the parties obtain b := {b[1], . . . , b[ℓ]}

15

such that
∑ℓ

j=1 2
j−1 · b[j] =

∑ℓ
j=1 2

j−1 · a[j] + χ ·
∑ℓ

j=1 2
j−1 · ρ[j] mod q and therefore

b = (
ℓ∑

j=1

2j−1 · b[j] mod q) = (r + χ · ρ) mod q

0 = r + χ · ρ− b

with r and ρ are boolean parts of mv-edaBits, r and ρ are integer parts of mv-edaBits, for any χ
unpredictably generated by a hash chain as H(str||H(str||1)
||H(str||2)).

In the following, we prove the security of our
∏

MV-edaBits protocol in the multi-party malicious
setting. We always implicitly assume that S passes all communication between adversary A and
environment Z. Besides, S needs to simulate honest prover when P is honest and honest verifier
when V1 is honest (without loss of generality, we let V1 denote the honest verifier and Vi, i ∈ I =
[2, n] denote the corrupted verifiers). First, the simulator S must extract the corrupted prover’s
witness or corrupted verifier’s global key to send to the trusted party. This is possible because in
the (FMV-CheckMULs)-hybrid model and PCF assumption S receives the secret inputs from A.

Malicious Verifiers. Assume that if P is honest and N verifiers are corrupted. S interacts with
A as follows:

1. In the Setup phase, S invokes expsec1 (κ) (In Fig. 5) using the global keys ∆1, . . . ,∆N ∈ F2κ

and Λ1, . . . ,ΛN ∈ Zq sampled uniformly, receiving ki1 for i ∈ [N] from expsec1 (κ). S generates
k∗ honestly.

2. In the Create mv-edaBits phase, for given common string str:

(a) S records all the randomness used by A from the set of queries made by Vi to RO.

(b) S query expsec1 (κ) with input H(str||1) and H(str||2) to learn [[ρ]]q, [[a]]q, [[ρ]]2 and [[a]]2.

(c) S generates χ and evaluate the circuit Caff cooperated with Vs:
i. In the subroutine Assign, S receives the MAC keys for all random values (i.e., kµi ∈

Ft2
2κ) from A by emulating PCF.

ii. S executes Step 4.(a) as an honest prover, except that for j-th multiplication gates,
S samples random dj ← F2 for all j ∈ [t2] and sends them to Vs.

iii. S receives {[[ω∗
α,j]]2, [[ω

∗
β,j]]2, [[ω

∗
γ,j]]2}j∈[t2] fromA on behalf of the functionality FMV-CheckMULs,

if ∃j, s.t. [[ω∗
l,j]]2 ̸= [[ωl,j]]2, l ∈ {α, β, γ} where [[ωl,j]]2 is computed by S following the

protocol, sends false on behalf of FMV-CheckMULs and aborts.

(d) S computes b = a+ χ · ρ and reveals its binary representation b (along with their MAC
tags as m[i]j = k[i]j +∆j · b[i], for j ∈ [N]) to all the verifiers.

(e) S computes zi, the secret shares of [[a]]q + χ · [[ρ]]q − b for each Vi (this is computable as
it knows Λi, ρ, a and their corresponding MAC tags). S sends zi to the corresponding
Vi, i ∈ [N] on behalf of P.

(f) S outputs whatever A outputs.

We use a hybrid argument to prove that the two worlds are computationally indistinguishable.

• Hybrid0. This is the real world.

16

• Hybrid1. This hybrid is identical to the previous one, except that S emulates PCF .
Specifically, in each edaBits creation execution, S has access to the Sσ (c.f. Definition 2)
using the global keys mski := ∆i, i ∈ [N] received from A. The different executions are:

– S firstly computes the MAC keys as ki
ρ := PCF.Eval(σ, kσ,H(str||1) and ki

a := PCF.Eval(σ, kσ,H(str||2)).
Then it queries RSample (in Fig. 6) with (1κ,mski, σ,ki

ρ) and (1κ,mski, σ,ki
a). S will re-

ceives (ρ,mi
ρ) and (a,mi

a).

– For the t2 multiplication triples, i.e., Assign(xj · yj) and Assign(yj · vj) for j ∈ [t2], S
similarly compute

kixy,j := PCF.Eval(σ, kσ,H(str||2j)),
kiyv,j := PCF.Eval(σ, kσ,H(str||2j + 1)).

Then it queries RSample with the following operations:

(µi
xy,j ,m

i
xy,j) := RSample((1κ,mski, σ, kixy,j),

(µi
yv,j ,m

i
yv,j) := RSample((1κ,mski, σ, kiyv,j).

– In the rest of the execution, S uses these oracle responses to transcript the honest P.

The resulting view is equivalently defined as in the previous hybrid under the security defi-
nition of PCF (c.f. Definition 2) with probability negl(κ). Therefore, this hybrid is computa-
tionally indistinguishable from the previous one.

• Hybrid2. This hybrid is identical to the previous one, except that PCF accesses the Y-
function to generate the authenticated secret shares instead of the real-world PCF function.
It follows from the assumption of pseudorandom Y-correlated outputs that this hybrid is
computationally indistinguishable from the previous one.

It is clear that this hybrid is the ideal world.

The above hybrid argument completes the proof.

Malicious Prover. We consider the case that n − 1 parties are corrupted. Without loss of
generality, we let V1 denote the honest verifier and Vi, i ∈ I = [2, n] are corrupted. Also, P is
malicious in this simulation. S interacts with A as follows:

1. In the Setup phase, S receives ∆1 frommv-edaBits and samples other global keys ∆2, . . . ,∆N ∈
F2κ . S sends them to invokes expsec1 (κ) (In Fig. 5) using the global keys and receives ki0 for
i ∈ [N] and ki1 for i ∈ [2, N] from expsec1 (κ). S generates k∗ honestly.

2. In the Create mv-edaBits phase, for given common string str:

(a) S records all the randomness used by A from the set of queries made by P and Vi, i ∈
[2, N] to RO.

(b) S records all the edaBits values (i.e., ρ,a ∈ Fℓ
2, ρ, a ∈ Zq) and corresponding MAC

tags (i.e., mj
ρ,m

j
a ∈ Fℓ

2κ ,m
j
ρ,m

j
a ∈ Zq for j ∈ [1, N]), which are extracted by emulating

PCF for corrupted P. S defines the corresponding MAC keys of edaBits, i.e., kj
ρ,k

j
a ∈

Fℓ
2κ , k

j
ρ, k

j
a ∈ Zq).

(c) S evaluate the circuit Caff cooperated with other parties:

17

• In the subroutine Assign, S records all the values (i.e., µ[1], . . . ,µ[t2] ∈ F2) and their
corresponding MAC tags (i.e., mµ ∈ Ft2

2κ) by emulating PCF for A. Here, S can
define the corresponding MAC keys of these values (i.e., kµ ∈ Ft2

2κ).

• S executes Step 4.(a) as an honest verifier.

• S receives {[[ω∗
α,j]]2, [[ω

∗
β,j]]2, [[ω

∗
γ,j]]2}j∈[t2] fromA on behalf of the functionality FMV-CheckMULs,

if ∀j, s.t. ω∗
α,j · ω∗

β,j = ω∗
γ,j , and ∃i, s.t. [[ω∗

l,i]]2,∈ {α, β, γ} is not a valid IT-
MAC, sends abort to Vi and sends true to all the other Vj , j ∈ [2, N]\{i} on behalf
of FMV-CheckMULs.

(d) Upon opening [[b]]2, if any b[j]’ IT-MACs is invalid, S aborts. Otherwise, S continues.

(e) S aborts if [[0]]q ̸= [[a]]q + χ · [[ρ]]q − b revealed from P, it is computable as S knows all
the a, ρ,ma,mρ and b.

(f) S outputs whatever A outputs.

Indistinguishability of the simulation is argued as follows: the only non-syntactic difference
between the simulation and the real protocol is that when a ̸=

∑ℓ
i=1 2

i−1 · a[i] and ρ ̸=
∑ℓ

i=1 2
i−1 ·

ρ[i]. As the CheckMuls subroutine guarantees that the b = a + χ · ρ is correctly computed from
binary parts of edaBits except with the negligible probability negl(κ). Now we consider when red ρ, a
(aggregated by binary representations ofmv-edaBits) is not consistent with blue ρ, a (generated from
integer part of mv-edaBits). Assume that ρ = ρ+ eρ and a = a+ ea, if CheckZero([[a]]q +χ · [[ρ]]q− b)
successes, we have

0 =a+ χ · ρ− (a+ χ · ρ)
=a+ ea + χ · (ρ+ eρ)− (a+ χ · ρ)
=ea + χ · eρ

Since that H(str||H(str||1)||H(str||2)) = χ ∈ Zq is unpredictable uniformly from RO, this equa-
tion holds with probability at most 1

q . In conclusion, Z cannot distinguish between the real execu-

tion and ideal execution, except with probability negl(κ) + 1
q .

4.2 Multi-Verifier Nonce Derivation

Our multi-verifier zero-knowledge proof (MVZK)-based nonce derivation protocol follows a gate-by-
gate paradigm, where the value on each wire is formally secretly shared as [[x]]2 = {(x,m1, . . . ,mN), k1, . . . , kN}
for N verifiers, such that mi = ki + x ·∆i ∈ F2κ , and each Vi holds (ki,∆

i), i ∈ [N]. It could be
generated by invoking PCF (see Fig. 7). FMV-ND shown in Fig. 12 defines our multi-verifier nonce
derivation functionality.

Given FMV-CheckMULs and FMV-edaBits ideal functionalities, we can design an instance protocol
of multi-verifier zero-knowledge proof for nonce derivation in (FMV-CheckMULs, FMV-edaBits)-hybrid
model and PCF assumption, as shown in Fig. 13. The

∏
MV-ND phase will be deterministic, stateless

to serve the multi-party EdDSA signing setting, where the common random generators are realized
by H(long-term key||transcripts) with a cryptographic hash function H : {0, 1}∗ → {0, 1}∗. In
particular, (1) the gate-by-gate paradigm consumes t̃ bits, where t̃ is the number of multiplication
gates in the combined circuit C̃; (2) the polynomial-based batch verification technique consumes
log(t̃)·4κ+9κ bits and the communication complexity is roughly O(t̃+log(t̃)·κ) in a non-interactive
setting; (3) the generation of a mv-edaBits consumes t2 + log(t2) · 4κ + 9κ + ℓ + 2ℓ · κ per party,
with one rounds. Considering the sizes of PRF and affine circuit, we have t̃ ≫ t2. Therefore, the

18

Functionality FMV-ND

This functionality runs with P and V1, . . . ,VN . This functionality is parameterized by the nonce deriva-
tion circuit C∗ := {R = PRFdk(msg) ·G} where G is a generator of the elliptic curve group G with order
q.

1. Upon receiving (mvzk-input, did, dk) from P and (mvzk-input, i) from all the verifiers V1, . . . ,VN ,
with a fresh identifier sid, store (did, dk).

2. Upon receiving (mvzk-prove, did,msg) from P and (mvzk-verify, did,msg) from V1, . . . ,VN . If
(did, dk) has been stored, set res = true, R := C∗(dk,msg) and res = false otherwise.

3. If res = true, send (mvzk-proof,msg, [[R]]q) to the parties; otherwise, send abort to the parties.

Figure 12: Multi-Verifier Zero-Knowledge Proof Functionality for Nonce Derivation

communication complexity of a
∏

MV-ND protocol is O(n(t̃ + log(t̃) · κ + κ · ℓ)) bits for each party
and one round in total.

Here P just need to send di to all Vs. The amortized communication complexity could be
optimized from O(n2) to O(n) among all n signing parties in a tree-based architecture [QYYZ22],
i.e., a parent node sends the same di to two children nodes and they route iteratively till the
edge nodes. But the round complexity increases from O(1) to O(log n). Compared with Garillot
et al. [GKMN21] where each Vi for i ∈ [N] sends independent garbled circuit to P, our FMV-ND

protocol is more suitable for large scale ZK within a faster network, such as LAN. We prove that
the multi-verifier stateless deterministic nonce derivation protocol is UC-secure in the presence of
an adversary statically corrupting up to n− 1 parties.

Theorem 2.
∏

MV-ND UC-realizes FMV-ND in the presence of an adversary statically corrupting up
to n− 1 parties, in the (FMV-CheckMULs, FMV-edaBits)-hybrid random oracle model and PCF assump-
tion.

Proof. We consider the case that n − 1 parties are corrupted. First, we analyze its correctness as
follows.

Correctness. The correctness of MV-ND protocol
∏

MV-ND as described in Fig. 13 relies on the
gate-by-gate evaluation and conversion. In the honest case, the parties obtain c := {c[1], . . . , c[ℓ]}
such that c =

∑ℓ
j=1 2

j−1 · c[j] =
∑ℓ

j=1 2
j−1 · r[j] +

∑ℓ
j=1 2

j−1 · ρ[j] = r + ρ mod q and therefore

[[R]]q = (c− [[ρ]]q) ·G = (
∑ℓ

j=1 2
j−1 · r[j]) ·G.

In the following, we prove the security of our
∏

MV-edaBits protocol in the multi-party malicious
setting. We always implicitly assume that S passes all communication between adversary A and
environment Z. Besides, S needs to simulate honest prover when P is honest and honest verifier
when V1 is honest (without loss of generality, we let V1 denote the honest verifier and Vi, i ∈ I =
[2, n] denote the corrupted verifiers). First, the simulator S must extract the corrupted prover’s
witness or corrupted verifier’s global key to send to the trusted party. This is possible because
in the (FMV-CheckMULs, FMV-edaBits)-hybrid model and PCF assumption S receives the secret inputs
from A.

Malicious Verifiers. Assume that if P is honest and N verifiers are corrupted. S interacts with
A as follows:

1. In the Setup phase, S emulates FMV-edaBits by invoking expsec1 (κ) (In Fig. 5) using the global

19

Protocol
∏

MV-ND

Parameterized by the security parameter κ, an elliptic curve group G generated by G with order q. n
parties hold a circuit for keyed PRF function C := PRFdk(msg). C consists of t multiplication gates and

inputs of derived key dk ∈ F2κ and message msg ∈ {0, 1}ℓ. Furthermore, all parties consensus on an
addition circuit Cadd : {x + y = z} with t′ = |Cadd| multiplication gates. Let C̃ being a circuit computed
via the C followed by Cadd and t̃ = t + t′. When each party acts as prover P and the other N = n − 1
parties act as verifiers V1, . . . ,VN in turns.

Setup: Run once, with P and Vs invoke the Setup phase of FMV-edaBits (in Fig. 9). Furthermore, it
receives [[dk]]2 from P.

Proof: Each party inputs publicly known message msg:

1. Each party initializes a string as str := H(mvnd||msg||k∗).

2. All parties generates mv-edaBits by sending (edaBits, str) to FMV-edaBits.

// Gate-by-Gate Evaluation of C̃

3. For circuit PRF, they evaluate it with the inputs of [[dk]]2 and msg, while for circuit Cadd, they
evaluate it with the inputs of [[r]]2 and [[ρ]]2. Initializing str as msg. The gate-by-gate circuit
evaluations are executed as follows:

(a) In a topological order, for each gate (α, β, γ, T) ∈ C̃ with input wire values of (ωα, ωβ) and
output wire value of ωγ :

- If T = ADD, P and Vs locally compute [[ωγ]]2 = [[ωα]]2 + [[ωβ]]2.

- If T = MULT and this is j-th multiplication gate, P and Vs execute [[ωγ]]2 ← Assign(ωα·ωβ).
(Append str := str||dj where dj is the transcript sent by P)

(b) P and Vs jointly check the correctness of multiplication triples by invoking

CheckMuls({[[ωα,j]]2, [[ωβ,j]]2, [[ωγ,j]]2}j∈[t̃]).

with seed str := H(str). If any failure happens, the parties output false. Otherwise, they
obtain [[c]]2 satisfying

∑
j∈[ℓ] 2

j−1 · c[j] =
∑

j∈[ℓ] 2
j−1 · r[j] +

∑
j∈[ℓ] 2

j−1 · ρ[j] mod q and

r = PRFdk(msg).

// Conversion between F2κ field and G group

4. All parties opens c and computes c =
∑

j∈[ℓ] 2
j−1 · c[j].

5. If any failure happens, the parties output false. Otherwise, each party outputs the authenticated
nonce as [[R]]q = (c− [[ρ]]q) ·G and [[r]]q = c− [[ρ]]q.

Figure 13: Multi-Verifier Stateless Deterministic Nonce Derivation based on MVZK

keys ∆1, . . . ,∆N ∈ F2κ and Λ1, . . . ,ΛN ∈ Zq sampled uniformly, receiving ki1 for i ∈ [N] from
expsec1 (κ). Note that S knows [[dk]]2 acting as Vs.

2. In the Proof, for given message msg:

(a) S computes str = RO(mvnd||msg||k∗). Furthermore, S records all the randomness used
by A from the set of queries made by Vi, i ∈ [N] to RO.

(b) S samples ρ ∈ {0, 1}ℓ, generates [[ρ]]q, [[ρ]]2 where ρ =
∑ℓ

i=1 2
i−1 · ρ[i]. S emulates

FMV-edaBits by sending [[ρ]]q, [[ρ]]2 to the correspond Vs.

20

(c) S records all the randomness used by A from the set of queries made by Vi to RO.

(d) S generates χ and evaluate the circuit C̃ cooperated with Vs:
i. In the subroutine Assign, S receives the MAC keys for all random values (i.e., kµi ∈

Ft̃
2κ) from A by emulating PCF.

ii. S executes Step 4.(a) as an honest prover, except that for j-th multiplication gates,
S samples random dj ← F2 for all j ∈ [t̃] and sends them to Vs.

iii. S receives {[[ω∗
α,j]]2, [[ω

∗
β,j]]2, [[ω

∗
γ,j]]2}j∈[t̃] fromA on behalf of the functionality FMV-CheckMULs,

if ∃j, s.t. [[ω∗
l,j]]2 ̸= [[ωl,j]]2, l ∈ {α, β, γ} where [[ωl,j]]2 is computed by S following the

protocol, sends false on behalf of FMV-CheckMULs and aborts.

(e) S samples random c and reveals its binary representation c (along with their MAC tags
as c[i]j = k[i]j +∆j · c[i], for j ∈ [N]) to all the verifiers.

(f) S outputs whatever A outputs.

We use a hybrid argument to prove that the two worlds are computationally indistinguishable.

• Hybrid0. This is the real world.

• Hybrid1. This hybrid is identical to the previous one, except that S emulates PCF for
the circuit evaluation. Specifically, for the t̃ multiplication triples, i.e., Assign(xj · yj) and
Assign(yj · vj) for j ∈ [t̃], S computes

kixy,j := PCF.Eval(σ, kσ,H(str||2j)),
kiyv,j := PCF.Eval(σ, kσ,H(str||2j + 1)).

Then it queries RSample with the following operations:

(µi
xy,j ,m

i
xy,j) := RSample((1κ,mski, σ, kixy,j),

(µi
yv,j ,m

i
yv,j) := RSample((1κ,mski, σ, kiyv,j).

In the rest of the execution, S uses these oracle responses to transcript the honest P.
The resulting view is equivalently defined as in the previous hybrid under the security defi-
nition of PCF (c.f. Definition 2) with probability negl(κ). Therefore, this hybrid is computa-
tionally indistinguishable from the previous one.

• Hybrid2. This hybrid is identical to the previous one, except that PCF accesses the Y-
function to generate the authenticated secret shares instead of the real-world PCF function.
It follows from the assumption of pseudorandom Y-correlated outputs that this hybrid is
computationally indistinguishable from the previous one.

It is clear that this hybrid is the ideal world.

The above hybrid argument completes the proof.

Malicious Prover. We consider the case that n − 1 parties are corrupted. Without loss of
generality, we let V1 denote the honest verifier and Vi, i ∈ I = [2, n] are corrupted. Also, P is
malicious in this simulation. S interacts with A as follows:

1. In the Setup phase, S samples ∆1,∆2, . . . ,∆N ∈ F2κ emulating as FMV-edaBits. S sends them
to invokes expsec1 (κ) (In Fig. 5) using the global keys and receives ki0 for i ∈ [N] and ki1 for
i ∈ [2, N] from expsec1 (κ). S generates k∗ honestly.

21

2. In the Proof phase, for given message msg:

(a) S computes str = RO(mvnd||msg||k∗). Furthermore, S records all the randomness used
by A from the set of queries made by P and Vi, i ∈ [2, N] to RO.

(b) S samples ρ ∈ {0, 1}ℓ, generates [[ρ]]q, [[ρ]]2 where ρ =
∑ℓ

i=1 2
i−1 · ρ[i]. S emulates

FMV-edaBits by sending [[ρ]]q, [[ρ]]2 to the correspond P and Vj for j ∈ [2, N].

(c) S evaluate the circuit C̃ cooperated with other parties:

• In the subroutine Assign, S records all the values (i.e., µ[1], . . . ,µ[t̃] ∈ F2) and their
corresponding MAC tags (i.e., mµ ∈ Ft̃

2κ) by emulating PCF for A. Here, S can

define the corresponding MAC keys of these values (i.e., kµ ∈ Ft̃
2κ).

• S executes Step 4.(a) as an honest verifier.

• S receives {[[ω∗
α,j]]2, [[ω

∗
β,j]]2, [[ω

∗
γ,j]]2}j∈[t̃] fromA on behalf of the functionality FMV-CheckMULs,

if ∀j, s.t. ω∗
α,j · ω∗

β,j = ω∗
γ,j , and ∃i, s.t. [[ω∗

l,i]]2,∈ {α, β, γ} is not a valid IT-
MAC, sends abort to Vi and sends true to all the other Vj , j ∈ [2, N]\{i} on behalf
of FMV-CheckMULs.

(d) Upon opening [[c]]2, if any c[j]’ IT-MACs is invalid, S aborts. Otherwise, S continues.

(e) S outputs whatever A outputs.

Indistinguishability of the simulation is obliviously based on the PCF assumption (Definited
in Section 2.5): the only non-syntactic difference between the simulation and the real protocol
is that when c ̸=

∑ℓ
i=1 2

i−1 · r[i] +
∑ℓ

i=1 2
i−1 · ρ[i] with r ̸= PRFdk(msg). As the CheckMuls

subroutine guarantees that the c = r + ρ is correctly computed from binary parts of edaBits and
PRF evaluation except with the negligible probability negl(κ). On the other hand, FMV-edaBits

guarantee red ρ (aggregated by binary representations of mv-edaBits) is consistent with blue ρ
(generated from integer part of mv-edaBits). Therefore, we have [[R]]q = [[r]]q · G except negligible
probability.

4.3 Multi-Party EdDSA Signature Protocol

Based on prior definitions [LN18, BST21], we present an EdDSA ideal functionality as shown in
Fig. 14, where the (KeyGen) command is allowed to be called only once and the (Sign) command
could be called multiple times.

In Fig. 15, we describe the multi-party EdDSA signing protocol details, which enable us to
obtain O(n) communication bandwidth. This protocol works in (FMV-ND, FCom, FRDL

com-zk)-hybrid
model and is executed by n parties. In the key generation phase, each party Pi, i ∈ [n] generates
ski and jointly computes pk =

∑
i∈[n] si · G. Pi also invokes FMV-ND to commit to the PRF key

dki := PRF(ski)[ℓb + 1; 2ℓb], acting as the prover and other n − 1 parties act as all the verifiers.
Remark that in this phase, each party Pi samples all the uniformly random long-term keys, such
as k∗,∆i,Λi and PCF keys for

∏
MV-ND. We can implement the PCF in a client-server model,

where the key management servers escrow the client’s key and the client executes PCF.Genmv

(even the multi-party key generation protocol) for the servers. It is a trending service in the
lightweight internet with the features of availability and elasticity. Benefiting from the stateless
and deterministic advantages, our protocol may be a promising proposal as the deployment costs,
specifically state synchronization and high-entropy random number generator are unnecessary for
the key management servers.

22

Functionality FEdDSA

This functionality is parameterized by a set of EdDSA parameters, i.e., params =
(Ep,G, q, G, ℓb, ℓ,Hsig,PRF) and runs with parties P1, . . . , Pn as follows:

• Upon receiving (KeyGen, params) from all parties, generate a key pair (dk, s, pk) by running
KeyGen(params), and store (pk, dk, s). Then, send pk to P1, . . . , Pn, and ignore all subsequent
(KeyGen) commands.

• Upon receiving (Sign, msg) from all parties, if (KeyGen) has not been called then abort; if msg
has been signed previously, then send (msg, (σ,R)) back; otherwise, generate an EdDSA signature
(σ,R) by running Sign(dk, s, pk,msg) and store (msg, (σ,R)). Then, wait for an input from the
adversary, either abort or continue. If continue, send (σ,R) to all parties.

Figure 14: The EdDSA Functionality

Protocol
∏

MP,Sign

This protocol is run among multiple parties P1, . . . , Pn and is parameterized by the EdDSA parameters
params = (Ep,G, q, G, ℓb, ℓ,Hsig,PRF), with ℓ = 2ℓb, Hsig is hash function for signature and PRF is
instantiated by SHA512. This protocol makes use of the ideal oracle FMV-ND (Fig. 12).

Distributed Key Generation: Upon receiving (KeyGen, params), each party Pi, i ∈ [n] executes as follows:

1. Pi samples private key as ski ← {0, 1}ℓb and computes (hi[1], . . . ,hi[ℓ]) := PRF(ski).

2. Pi sets derived key as dki := {hi[ℓb+1], . . . ,hi[2ℓb])}, sends (mvzk-input, didi, dki) to FMV-ND with
constant identifier didi.

3. Pi sets hi[1] = hi[2] = hi[3] = hi[ℓb] := 0 and hi[ℓb − 1] := 1, then use the updated vector

(hi[1], . . . , hi[ℓb]) to define si =
∑ℓb

j=1 2
j−1 · hi[j] mod q.

4. Pi computes public key share as pki = si ·G.

5. All parties send pki for i ∈ [n] using FRDL

com-zk.

6. After receiving correct pki for all i ∈ [n] from FRDL

com-zk, Pi computes common public key pk =∑
i∈[n] pki and stores {pk, ski, dki, si}.

7. The key generation phase is run only once.

Distributed Signing: With common input (Sign,msg), each party Pi, i ∈ [n] executes as follows:

1. Each party Pi acts as P by sending (mvzk-prove, didi,msg) to FMV-ND while all other Pj , j ̸= i,
send (mvzk-verify, didi,msg) to FMV-ND acting as Vs with N = n− 1.

2. Upon receiving [[R1]]q, . . . , [[Rn]]q and ri from FMV-ND, each Pi computes [[R]]q =
∑

i∈[n][[Ri]]q. All
parties jointly open to R. Pi aborts if any resj = abort for j ̸= i or R is incorrectly opened.

3. Pi locally computes h = Hsig(pk, R,msg) and the signature share σi = si · h+ ri mod q. Then Pi

sends σi to all the parties using commitment FCom.

4. Upon receiving all the σj , j ̸= i from FCom, each party computes σ =
∑

i∈[n] σi mod q. If (σ,R)

is not a valid signature on msg, then Pi aborts. Otherwise, Pi outputs (σ,R).

Figure 15: The Stateless Deterministic Multi-Party EdDSA Signing Protocol

23

In the signing phase, each party verfiably generates [[Ri]]q = PRF[[dki]]2(msg)·G by calling FMV-ND.
If all the parties see res ̸=⊥ from FMV-ND, they obtain authenticated [[Ri]]q. After opening and
checking R1, . . . , Rn, all parties could correctly compute R =

∑
i∈[n]Ri. The communication over-

heads is |FMV-ND |+2∗ ℓG+q for each party. As discussed in Section 4.2, we instantiate FMV-ND by
the Fiat-Shamir heuristic; the communication rounds of the signing phase are three rounds.

Theorem 3. Assume that PRF is a pseudorandom function. Then,
∏

MP,Sign UC-realizes FEdDSA

in the presence of an adversary statically corrupting up to n − 1 parties, in the (FMV-ND, FCom,
FRDL
com-zk)-hybrid random oracle model.

The security proof is presented in Appendix C

5 Performance and Evaluation

The evaluation is configured in the Ed25519 curve. In particular, it provides κ = 128 security and
SHA512 as PRF nonce derivation function specified by EdDSA standard. According to the estimated
by [AAL+24], SHA-512 has 58k AND gates. The multi-party signing protocol is essentially a thin
wrapper on the top of FMV-ND, and consequently, the cost is dominated by running FMV-ND among
parties. Note that by the structure of our signing protocol

∏
MV-ND, instantiating FMV-ND in both

directions induces little computational overhead on top of a single instantiation: while P evaluates
the circuit Vs sit idle, and while Vs check the circuit P has nothing to do. This means that when
each party Pi acting as P in its nonce verification session, it will be idling in its Vj for j ∈ [N] role
in the other parties’ nonce verification sessions. Therefore, the workload for each party is roughly
the same.

• Gate-by-Gate Evaluation. As discussed in Section 4.2, a single transfer and secret addi-
tion cost one VOLE instance for each AND gate. Therefore, each party requires mainly
58k× VOLEs for the gate-by-gate evaluation phase. The Caff evaluated in the generation of
mv-edaBits and Cadd evaluated after PRF circuit has little impact on the number of VOLEs.

• CheckMuls. For EdDSA, plugging in the Fiet-Shamir heuristic, the parties require hashing
50.9KB messages, followed by log(58k) computation iterations within a single transfer. An
iteration consists of hashing 112B messages, one polynomial inter-product over F2κ [X] with
the degree of 2, 3κ VOLEs, and 2t polynomial evaluation with the degree of 1. The final
iteration consumes four VOLE correlations and hashing 128B messages. Therefore, each
party requires 3κ× log(58k) + 4 ≈ 6.1k VOLEs and some little overhead.

• Consistency Check. Each party additionally generates up to two mv-edaBits (mainly consum-
ing 2|q|+ 2ℓ VOLEs) and n elliptic curve multiplications and additions at little overheads.

In summary, the workload for each party is ≈ 65.6k VOLEs, additionally with little overhead.
Boyle et al. [BCG+22] estimate PCF evaluation times. Specifically, the VOLE can be instantiated
using fixed-key AES, measured by AES-NI instructions of modern CPUs and a 3GHz processor, one
PCF evaluation consumes 3.57×10−3 milliseconds. Concretely, we estimate around 230 ms for one
signature among two parties with one corruption. The number can be scaled up linearly with GPU
as the AES calls in PCF are perfectly independent and, therefore, parallelizable. Unfortunately,
PCF [BCG+22], no open source code released to date, puts a formidable barrier on our evaluation.
Therefore, the timings here are estimated theoretically.

Compare with two existing works on the multi-party EdDSA signing protocol, i.e., Bonte et
al. [BST21] (in the honest majority setting) and Garillot et al. [GKMN21] (in the dishonest majority

24

setting). Bonte et al. [BST21] implemented their experiments using SCALE-MAMBA and tested
in a LAN setting, with each party running on an Intel i7-7700K CPU (4 cores at 4.2GHz with 2
threads per core) with 32GB of RAM over a 10Gb/s network switch. The running time is 1406
ms under the Shamir (3,1) access structure, averaged over 100 experiments. The overall burden
for each party of Garillot et al. [GKMN21] is roughly the same with 132k AES invocations of 128
bit-ciphertext, hashing a 245KB message, three curve multiplications, and 256 additions in Zq.
Garillot et al. also does not empirically measure their πn,Sign protocol. To give a P2P comparison,
we estimate Garillot et al.’ protocol by the measurement of Boyle et al. [BCG+22], where one byte
of fixed-key AES can be computed in 1.3 CPU cycles. Thus, using a 3GHz processor, it consumes
102 ms for a signature. We notice that our computation time is not huge, but achieves one or two
orders of magnitude of communication overheads over what is consumed in prior works.

Acknowledgments

Qi Feng and Debiao He are supported by the National Key Research and Development Program
of China (Grant No. 2021YFA1000600), the National Natural Science Foundation of China (Grant
Nos. 62202339, 62172307, U21A20466), the Science and Technology on Communication Security
Laboratory Foundation (Grant No. 6142103022202). Kang Yang is supported by the National
Natural Science Foundation of China (Grant Nos. 62102037 and 61932019). Xiao Wang is sup-
ported by NSF award #2236819. Yu Yu is supported by the National Natural Science Foundation
of China (Grant Nos. 62125204 and 61872236). Yu Yu’s work has also been supported by the New
Cornerstone Science Foundation through the XPLORER PRIZE.

References

[AAL+24] David Archer, Victor Arribas Abril, Steve Lu, Pieter Maene, Nele Mertens, Danilo
Sijacic, and Nigel Smart. ’Bristol Fashion’ MPC Circuits. https://nigelsmart.

github.io/MPC-Circuits/, Accessed at Jan 2024.

[BBC+19] Dan Boneh, Elette Boyle, Henry Corrigan-Gibbs, Niv Gilboa, and Yuval Ishai. Zero-
knowledge proofs on secret-shared data via fully linear PCPs. In Alexandra Boldyreva
and Daniele Micciancio, editors, CRYPTO 2019, Part III, volume 11694 of LNCS,
pages 67–97, Santa Barbara, CA, USA, August 18–22, 2019. Springer, Heidelberg,
Germany.

[BCE+23] Chris Brzuska, Geoffroy Couteau, Christoph Egger, Pihla Karanko, and Pierre Meyer.
New random oracle instantiations from extremely lossy functions. Cryptology ePrint
Archive, Paper 2023/1145, 2023. https://eprint.iacr.org/2023/1145.

[BCG+20] Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, and Peter Scholl.
Correlated pseudorandom functions from variable-density LPN. In 61st FOCS, pages
1069–1080, Durham, NC, USA, November 16–19, 2020. IEEE Computer Society Press.

[BCG+22] Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, Nicolas Resch,
and Peter Scholl. Correlated pseudorandomness from expand-accumulate codes. In
Yevgeniy Dodis and Thomas Shrimpton, editors, CRYPTO 2022, Part II, volume 13508
of LNCS, pages 603–633, Santa Barbara, CA, USA, August 15–18, 2022. Springer,
Heidelberg, Germany.

25

https://nigelsmart.github.io/MPC-Circuits/
https://nigelsmart.github.io/MPC-Circuits/
https://eprint.iacr.org/2023/1145

[BDL+11] Daniel J. Bernstein, Niels Duif, Tanja Lange, Peter Schwabe, and Bo-Yin Yang.
High-speed high-security signatures. In Bart Preneel and Tsuyoshi Takagi, editors,
CHES 2011, volume 6917 of LNCS, pages 124–142, Nara, Japan, September 28 – Oc-
tober 1, 2011. Springer, Heidelberg, Germany.

[BHH+15] Daniel J. Bernstein, Daira Hopwood, Andreas Hülsing, Tanja Lange, Ruben Niederha-
gen, Louiza Papachristodoulou, Michael Schneider, Peter Schwabe, and Zooko Wilcox-
O’Hearn. SPHINCS: Practical stateless hash-based signatures. In Elisabeth Oswald
and Marc Fischlin, editors, EUROCRYPT 2015, Part I, volume 9056 of LNCS, pages
368–397, Sofia, Bulgaria, April 26–30, 2015. Springer, Heidelberg, Germany.

[BHK+24] Fabrice Benhamouda, Shai Halevi, Hugo Krawczyk, Yiping Ma, and Tal Rabin.
SPRINT: High-throughput robust distributed schnorr signatures. In Marc Joye and
Gregor Leander, editors, Advances in Cryptology – EUROCRYPT 2024, pages 62–91.
Springer Nature Switzerland, 2024.

[BLSW24] Renas Bacho, Julian Loss, Gilad Stern, and Benedikt Wagner. HARTS: High-threshold,
adaptively secure, and robust threshold schnorr signatures. Cryptology ePrint Archive,
Paper 2024/280, 2024. https://eprint.iacr.org/2024/280.

[BMRS21] Carsten Baum, Alex J. Malozemoff, Marc B. Rosen, and Peter Scholl. Mac’n’cheese:
Zero-knowledge proofs for boolean and arithmetic circuits with nested disjunctions. In
Tal Malkin and Chris Peikert, editors, CRYPTO 2021, Part IV, volume 12828 of LNCS,
pages 92–122, Virtual Event, August 16–20, 2021. Springer, Heidelberg, Germany.

[BP23] Lúıs T.A.N. Brandão and René Peralta. NIST first call for multi-party threshold
schemes (initial public draft). Technical report, National Institute of Standards and
Technology, 2023.

[BST21] Charlotte Bonte, Nigel P Smart, and Titouan Tanguy. Thresholdizing HashEdDSA:
MPC to the rescue. International Journal of Information Security, 20(6):879–894, 2021.

[Can01] Ran Canetti. Universally composable security: A new paradigm for cryptographic
protocols. In 42nd FOCS, pages 136–145, Las Vegas, NV, USA, October 14–17, 2001.
IEEE Computer Society Press.

[CCL+19] Guilhem Castagnos, Dario Catalano, Fabien Laguillaumie, Federico Savasta, and Ida
Tucker. Two-party ECDSA from hash proof systems and efficient instantiations. In
Alexandra Boldyreva and Daniele Micciancio, editors, CRYPTO 2019, Part III, vol-
ume 11694 of LNCS, pages 191–221, Santa Barbara, CA, USA, August 18–22, 2019.
Springer, Heidelberg, Germany.

[CD23] Geoffroy Couteau and Clément Ducros. Pseudorandom correlation functions from
variable-density LPN, revisited. In Alexandra Boldyreva and Vladimir Kolesnikov,
editors, PKC 2023, Part II, volume 13941 of LNCS, pages 221–250, Atlanta, GA,
USA, May 7–10, 2023. Springer, Heidelberg, Germany.

[CGG+20] Ran Canetti, Rosario Gennaro, Steven Goldfeder, Nikolaos Makriyannis, and Udi
Peled. UC non-interactive, proactive, threshold ECDSA with identifiable aborts. In
Jay Ligatti, Xinming Ou, Jonathan Katz, and Giovanni Vigna, editors, ACM CCS
2020, pages 1769–1787, Virtual Event, USA, November 9–13, 2020. ACM Press.

26

https://eprint.iacr.org/2024/280

[CGRS23] Hien Chu, Paul Gerhart, Tim Ruffing, and Dominique Schröder. Practical Schnorr
threshold signatures without the algebraic group model. In Helena Handschuh and
Anna Lysyanskaya, editors, CRYPTO 2023, Part I, volume 14081 of LNCS, pages 743–
773, Santa Barbara, CA, USA, August 20–24, 2023. Springer, Heidelberg, Germany.

[CKM23] Elizabeth C. Crites, Chelsea Komlo, and Mary Maller. Fully adaptive Schnorr threshold
signatures. In Helena Handschuh and Anna Lysyanskaya, editors, CRYPTO 2023,
Part I, volume 14081 of LNCS, pages 678–709, Santa Barbara, CA, USA, August 20–
24, 2023. Springer, Heidelberg, Germany.

[Des88] Yvo Desmedt. Society and group oriented cryptography: A new concept. In Carl
Pomerance, editor, CRYPTO’87, volume 293 of LNCS, pages 120–127, Santa Barbara,
CA, USA, August 16–20, 1988. Springer, Heidelberg, Germany.

[DKLs18] Jack Doerner, Yashvanth Kondi, Eysa Lee, and abhi shelat. Secure two-party threshold
ECDSA from ECDSA assumptions. In 2018 IEEE Symposium on Security and Privacy,
pages 980–997, San Francisco, CA, USA, May 21–23, 2018. IEEE Computer Society
Press.

[DKLs19] Jack Doerner, Yashvanth Kondi, Eysa Lee, and abhi shelat. Threshold ECDSA from
ECDSA assumptions: The multiparty case. In 2019 IEEE Symposium on Security and
Privacy, pages 1051–1066, San Francisco, CA, USA, May 19–23, 2019. IEEE Computer
Society Press.

[DKLS24] Jack Doerner, Yashvanth Kondi, Eysa Lee, and Abhi Shelat. Threshold ECDSA in three
rounds. In 2024 IEEE Symposium on Security and Privacy (S&P). IEEE Computer
Society, may 2024.

[EGK+20] Daniel Escudero, Satrajit Ghosh, Marcel Keller, Rahul Rachuri, and Peter Scholl. Im-
proved primitives for MPC over mixed arithmetic-binary circuits. In Daniele Miccian-
cio and Thomas Ristenpart, editors, CRYPTO 2020, Part II, volume 12171 of LNCS,
pages 823–852, Santa Barbara, CA, USA, August 17–21, 2020. Springer, Heidelberg,
Germany.

[FS87] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to identification
and signature problems. In Andrew M. Odlyzko, editor, CRYPTO’86, volume 263 of
LNCS, pages 186–194, Santa Barbara, CA, USA, August 1987. Springer, Heidelberg,
Germany.

[GG18] Rosario Gennaro and Steven Goldfeder. Fast multiparty threshold ECDSA with fast
trustless setup. In David Lie, Mohammad Mannan, Michael Backes, and XiaoFeng
Wang, editors, ACM CCS 2018, pages 1179–1194, Toronto, ON, Canada, October 15–
19, 2018. ACM Press.

[GJKR96] Rosario Gennaro, Stanislaw Jarecki, Hugo Krawczyk, and Tal Rabin. Robust threshold
DSS signatures. In Ueli M. Maurer, editor, EUROCRYPT’96, volume 1070 of LNCS,
pages 354–371, Saragossa, Spain, May 12–16, 1996. Springer, Heidelberg, Germany.

[GKMN21] François Garillot, Yashvanth Kondi, Payman Mohassel, and Valeria Nikolaenko.
Threshold Schnorr with stateless deterministic signing from standard assumptions. In
Tal Malkin and Chris Peikert, editors, CRYPTO 2021, Part I, volume 12825 of LNCS,
pages 127–156, Virtual Event, August 16–20, 2021. Springer, Heidelberg, Germany.

27

[JKO13] Marek Jawurek, Florian Kerschbaum, and Claudio Orlandi. Zero-knowledge using
garbled circuits: how to prove non-algebraic statements efficiently. In Ahmad-Reza
Sadeghi, Virgil D. Gligor, and Moti Yung, editors, ACM CCS 2013, pages 955–966,
Berlin, Germany, November 4–8, 2013. ACM Press.

[JL17] Simon Josefsson and Ilari Liusvaara. Edwards-curve digital signature algorithm (Ed-
DSA). In Internet Research Task Force, Crypto Forum Research Group, RFC, volume
8032, 2017.

[KG20] Chelsea Komlo and Ian Goldberg. FROST: Flexible round-optimized Schnorr threshold
signatures. In Orr Dunkelman, Michael J. Jacobson Jr., and Colin O’Flynn, editors,
SAC 2020, volume 12804 of LNCS, pages 34–65, Halifax, NS, Canada (Virtual Event),
October 21-23, 2020. Springer, Heidelberg, Germany.

[KG24] Chelsea Komlo and Ian Goldberg. Arctic: Lightweight and stateless threshold schnorr
signatures. Cryptology ePrint Archive, Paper 2024/466, 2024. https://eprint.iacr.
org/2024/466.

[KOR23] Yashvanth Kondi, Claudio Orlandi, and Lawrence Roy. Two-round stateless determin-
istic two-party Schnorr signatures from pseudorandom correlation functions. In Helena
Handschuh and Anna Lysyanskaya, editors, CRYPTO 2023, Part I, volume 14081 of
LNCS, pages 646–677, Santa Barbara, CA, USA, August 20–24, 2023. Springer, Hei-
delberg, Germany.

[KOS16] Marcel Keller, Emmanuela Orsini, and Peter Scholl. MASCOT: Faster malicious arith-
metic secure computation with oblivious transfer. In Edgar R. Weippl, Stefan Katzen-
beisser, Christopher Kruegel, Andrew C. Myers, and Shai Halevi, editors, ACM CCS
2016, pages 830–842, Vienna, Austria, October 24–28, 2016. ACM Press.

[Lin17] Yehuda Lindell. Fast secure two-party ECDSA signing. In Jonathan Katz and Hovav
Shacham, editors, CRYPTO 2017, Part II, volume 10402 of LNCS, pages 613–644,
Santa Barbara, CA, USA, August 20–24, 2017. Springer, Heidelberg, Germany.

[LN18] Yehuda Lindell and Ariel Nof. Fast secure multiparty ECDSA with practical distributed
key generation and applications to cryptocurrency custody. In David Lie, Mohammad
Mannan, Michael Backes, and XiaoFeng Wang, editors, ACM CCS 2018, pages 1837–
1854, Toronto, ON, Canada, October 15–19, 2018. ACM Press.

[MOR01] Silvio Micali, Kazuo Ohta, and Leonid Reyzin. Accountable-subgroup multisignatures:
Extended abstract. In Michael K. Reiter and Pierangela Samarati, editors, ACM CCS
2001, pages 245–254, Philadelphia, PA, USA, November 5–8, 2001. ACM Press.

[MPSW19] Gregory Maxwell, Andrew Poelstra, Yannick Seurin, and Pieter Wuille. Simple schnorr
multi-signatures with applications to bitcoin. DCC, 87(9):2139–2164, 2019.

[MR01] Philip D. MacKenzie and Michael K. Reiter. Two-party generation of DSA signatures.
In Joe Kilian, editor, CRYPTO 2001, volume 2139 of LNCS, pages 137–154, Santa
Barbara, CA, USA, August 19–23, 2001. Springer, Heidelberg, Germany.

[Nat19] National Institute of Standards and Technology (NIST). FIPS PUB 186-5 (Draft): Dig-
ital Signature Standard (DSS). https://doi.org/10.6028/NIST.FIPS.186-5, 2019.

28

https://eprint.iacr.org/2024/466
https://eprint.iacr.org/2024/466
 https://doi.org/10.6028/NIST.FIPS.186-5

[NRSW20] Jonas Nick, Tim Ruffing, Yannick Seurin, and Pieter Wuille. MuSig-DN: Schnorr multi-
signatures with verifiably deterministic nonces. In Jay Ligatti, Xinming Ou, Jonathan
Katz, and Giovanni Vigna, editors, ACM CCS 2020, pages 1717–1731, Virtual Event,
USA, November 9–13, 2020. ACM Press.

[PLD+11] Bryan Parno, Jacob R. Lorch, John R. Douceur, James W. Mickens, and Jonathan M.
McCune. Memoir: Practical state continuity for protected modules. In 2011 IEEE
Symposium on Security and Privacy, pages 379–394, Berkeley, CA, USA, May 22–25,
2011. IEEE Computer Society Press.

[QYYZ22] Zhi Qiu, Kang Yang, Yu Yu, and Lijing Zhou. Maliciously secure multi-party PSI with
lower bandwidth and faster computation. In Cristina Alcaraz, Liqun Chen, Shujun
Li, and Pierangela Samarati, editors, ICICS 22, volume 13407 of LNCS, pages 69–88,
Canterbury, UK, September 5–8, 2022. Springer, Heidelberg, Germany.

[RRJ+22] Tim Ruffing, Viktoria Ronge, Elliott Jin, Jonas Schneider-Bensch, and Dominique
Schröder. ROAST: Robust asynchronous schnorr threshold signatures. In Heng Yin,
Angelos Stavrou, Cas Cremers, and Elaine Shi, editors, ACM CCS 2022, pages 2551–
2564, Los Angeles, CA, USA, November 7–11, 2022. ACM Press.

[Sch91] Claus-Peter Schnorr. Efficient signature generation by smart cards. Journal of Cryp-
tology, 4(3):161–174, January 1991.

[SG98] Victor Shoup and Rosario Gennaro. Securing threshold cryptosystems against chosen
ciphertext attack. In Kaisa Nyberg, editor, EUROCRYPT’98, volume 1403 of LNCS,
pages 1–16, Espoo, Finland, May 31 – June 4, 1998. Springer, Heidelberg, Germany.

[Sho00] Victor Shoup. Practical threshold signatures. In Bart Preneel, editor, EURO-
CRYPT 2000, volume 1807 of LNCS, pages 207–220, Bruges, Belgium, May 14–18,
2000. Springer, Heidelberg, Germany.

[STA19] Nigel P Smart and Younes Talibi Alaoui. Distributing any elliptic curve based pro-
tocol. In IMA International Conference on Cryptography and Coding, pages 342–366.
Springer, 2019.

[XAX+21] Haiyang Xue, Man Ho Au, Xiang Xie, Tsz Hon Yuen, and Handong Cui. Efficient
online-friendly two-party ECDSA signature. In Giovanni Vigna and Elaine Shi, editors,
ACM CCS 2021, pages 558–573, Virtual Event, Republic of Korea, November 15–19,
2021. ACM Press.

A Universal Composability

We prove the security of our protocols in the universal composability (UC) framework [Can01]
against a static, malicious adversary who corrupts up to n−1 out of n parties. We say that a protocol
Π UC-realizes an ideal functionality F if for any probabilistic polynomial time (PPT) adversary
A, there exists a PPT adversary (called the simulator) S such that for any PPT environment Z
with arbitrary auxiliary input z, the output distribution of Z in the real-world execution where
the parties interact with A and execute Π is computationally indistinguishable from the output
distribution of Z in the ideal-world execution where the parties interact with S and F. Environment

29

Functionality FMV-CheckMULs

This functionality runs with P and N verifiers V1, . . . ,VN , and inherit all the features of PCF (shown
in Fig. 7) and FMV-ND (shown in Fig. 12). Let H ⊂ [n] be the set of honest verifiers. Furthermore, this
functionality is invoked by the following commands.

Check Multiplications: Upon receiving t multiplication triples (CheckMuls, sid,
{[[ωα,j]]2, [[ωβ,j]]2, [[ωγ,j]]2}j∈[t]) from P and Vs, where t multiplication tuples are defined in multi-
verifier IT-MACs. If for any j ∈ [t] s.t. ωγ,j ̸= ωα,j ·ωβ,j , then set res = false. Otherwise, set res = true.
Send the set of {resi} to the adversary where i ∈ [N] − H and Vi’s authenticated shares cause failure.
For each i ∈ H, wait for an input from the adversary and perform as follows:

• If it is continuei, send res to Vi.

• If it is aborti, send abort to Vi.

Figure 16: The Multi-Verifier Check Multiplications Functionality

Z is a powerful entity with total control over adversary A and can choose the inputs and see the
outputs of all parties.

We use P1, . . . , Pn to denote n parties and I to denote the set of corrupted parties. In this
paper, we consider security with abort, meaning that a corrupted party can obtain output while
the honest party does not. In this case, the ideal-world adversary receives output first and then
sends either (deliver, i) or (abort, i) to the ideal functionality, for i /∈ I to instruct the functionality
either to deliver the output to Pi or to send abort to Pi. We always assume that output is sent this
way and omit it hereafter for the sake of simplicity.

B Multi-Verifier Check Multiplication Subprotocol

Fig. 18 presents a secure instantiation protocol CheckMuls for the multi-verifier check multiplications
macro in Section 4.2 and Fig. 10. We follow the paradigm of AssertMultVec protocol of [BMRS21]
and design a multi-verifier protocol. The security of ideal functionality FMV-CheckMULs is similar
to one-verifier protocol, except that we allow an adversary to control which honest verifier aborts
while other verifiers output results. Fig. 17 gives an example of CheckMuls when t = 24.

Lemma 1. If the one-verifier protocol AssertMultVec passes, then the input commitments have the
required relation except with probability t+4 log t+1

2κ−2 .

Proof. The proof follows from [[BMRS21], Theorem.4] where the case
∑

i∈[t] ωα,i · ωβ,i · χi ̸=∑
i∈[t] ωγ,i · χi has soundness error

t+4 log t+1
2κ−2 .

Based on Lemma 1, we then have the following theorem.

Theorem 4. CheckMuls UC-realizes FMV-CheckMULs in the presence of an adversary statically cor-
rupting up to N − 1 verifiers, in the PCF assumption.

Proof. The security of CheckMuls shown in Fig. 18 in the presence of N malicious parties crucially
depends on the iterative check procedure. As in previous work [BBC+19, BMRS21], we first consider
the case of a malicious prover and N − 1 malicious verifiers, then consider an honest prover and
N malicious verifiers. In each case, we always implicitly assume that S passes all communication

30

t=16

CheckMuls

def CheckMuls
 :

if t == 2 :
return CheckZero

else :

if !CheckZero() :
return 0

else :

CheckMuls

t=16

t=8

def CheckMuls
 :

if t == 2 :
return CheckZero

else :

if !CheckZero() :
return 0

else :

CheckMuls

t=8

def CheckMuls
 :

if t == 2 :
return CheckZero

else :

if !CheckZero() :
return 0

else :

CheckMuls

t=4

t=4

def CheckMuls :

for i = 1 to 2 :

var = Open()

if !CheckZero():

return 0

else :

return CheckZero()

t=2

t=2

Figure 17: An Example of CheckMuls When t = 24 Multiplication Triples Given

between adversary A and environment Z. Besides, S is given access to functionality FMV-CheckMULs,
which runs an adversary A as a subroutine when emulating PCF and RO. In both cases, we show
that no environment Z can distinguish the real-world execution from the ideal-world execution.

Malicious prover. Assume that if P and N − 1 verifiers are corrupted, without loss of generality,
we let V1 denote the honest verifier and other Vi, i ∈ [2, N] denote the corrupted verifiers. S
interacts with A as follows:

1. In the input phase, S sampling “dummy” global key ∆1 ← F2κ and simulates PCF for A by
recording all the values {ωα,i, ωβ,i, ωγ,i}i∈[t] and their corresponding MAC tags received from
the adversary A. Note that these values and MAC tags naturally define corresponding MAC
keys. Furthermore, S sends χ1, . . . , χt ← F2κ to A and computes [[z]]2, {[[ω̂α,i]]2}i∈[t] honestly.

2. While t > 2:

(a) S executes Step 4.(a)-(f) honestly as an honest verifier, except that S checks the zero-
sharing using transcripts of corrupted P, i.e., checking whether what it received from A
equal to

∑2
j=1 kh(j)− kz using “dummy” global key and local key kh of the polynomial

h. This equation is checkable as S knows all the secret values {ωα,i, ωβ,i, ωγ,i}i∈[τ] and
µj , j ∈ {0, 1, 2} in the Assign subroutine.

3. For i ∈ [t], S simulates RO by receiving vi,mv,i from A and computes their corresponding
“dummy” local keys.

31

Protocol CheckMuls

The CheckMuls is a subroutine for
∏

MV-ND. The prover P and N verifier V1, . . . ,VN perform the
consistency check on t multiplication triples each of the form ([[ωα,i]]2, [[ωβ,i]]2, [[ωγ,i]]2), for i ∈ [t]. All
the parties execute as follows:

1. Each verifier Vi, i ∈ [N] and P inherit the string as str := H(mvnd||sid||k∗||{dj}j∈[t])
a, run

H(str) to generate common randoms χ1, . . . , χt ∈ F2κ , and append str := str||χ1|| . . . ||χt. The
parties randomize [[z]]2 =

∑
i∈[t] χi · [[ωγ,i]]2 and [[ω̂α,i]]2 = χi · [[ωα,i]]2 for i ∈ [t].

2. While t > 2:

(a) Set t = t
2 . All parties define t polynomial shares as [[f1]]2, . . . , [[ft]]2 ∈ F2κ [X] and another

t polynomial shares [[g1]]2, . . . , [[gt]]2 ∈ F2κ [X] such that [[fi(j)]]2 = [[ω̂α,j×t+i]]2, [[gi(j)]]2 =
[[ωβ,j×t+i]]2 for j ∈ {0, 1}, i ∈ {1, . . . , t}.

(b) P generalizes a polynomial as h =
∑

i∈[t] fi · gi ∈ F2κ [X]. Note that h has a degree ≤ 2.

(c) Let {c0, c1, c2} being the coefficients of h, P and Vs execute Assign(cj) and define [[h]]2 using
[[cj]]2, j ∈ {0, 1, 2}. (Denote the transcripts sent by P here as dc,j , for j ∈ {0, 1, 2})

(d) The parties run CheckZero(
∑2

j=1[[h(j)]]2 − [[z]]2). If this check fails, the parties output false
and abort.

(e) Each verifier Vi and P append str := str||{dc,j}j∈{0,1,2}, runs H(str) to generate a common
random η ∈ F2κ and append str := str||η.

(f) All parties locally evaluate [[f1(η)]]2, . . . , [[ft(η)]]2, [[g1(η)]]2, . . . , [[gt(η)]]2 and [[h(η)]]2. They
recursively back to 2.(a) until t ≤ 2.

3. Now P and Vs have at most two multiplication triples, denoted as ([[xi]]2, [[yi]]2, [[z]]2), for i ∈ [t]
and t ≤ 2. They check the validity as follows:

(a) For i ∈ [t], all parties generate authenticated random using [[vi]]2 ← Random and compute

[[zi]]2 = Assign(xi · yi), [[ẑi]]2 = Assign(yi · vi)

(Denote the transcripts sent by P here as {dz,i, dẑ,i}i∈[t])

(b) Each verifier Vi and P append str := str||{dz,i||dẑ,i}i∈[t], runs H(str) to generate common
random e ∈ F2κ and append str := str||e.

(c) For i ∈ [t], the parties open εi with [[εi]]2 = e · [[xi]]2 − [[vi]]2 and run CheckZero(e · [[zi]]2 −
[[ẑi]]2 − εi · [[yi]]2).

(d) All parties run CheckZero(
∑

i∈[t][[zi]]2 − [[z]]2). If any checking fails, the parties output false.

Otherwise, they output true and pass the string parameter str to
∏

MV-ND.

aThe keys and transcripts, i.e., sid, k∗, {dj}j∈[t] are defined
∏

MV-ND

Figure 18: Multi-Verifier Check Multiplication Subprotocol

32

4. S simulates RO for A by sampling uniform e← F2κ and sending it to P

5. S plays the role of the honest verifier V1 to perform the CheckZero procedures with A, using
the “dummy” global key and local keys.

6. If the honest V1 (simulated by S) aborts in any CheckZero procedure, then S sends abort to
FMV-CheckMULs and aborts. Otherwise, S sends the multiplication triples {[[ωα,i]]2, [[ωβ,i]]2, [[ωγ,i]]2}i∈[τ]
to functionality FMV-CheckMULs on behalf of corrupted prover P and corrupted verifiers
V2, . . . ,VN .

The simulated view of A has the identical distribution as its view in the real execution. Note
that the “dummy” global key sampled by S has the same distribution as the real global key, S
emulates PCF , and, in each extend execution, the MAC tags sent to A are computed as follows.
S has access to the Sσ (c.f. Definition 2) using its chosen mski := ∆i, i ∈ [N]. At the beginning of

each concurrent execution: S first compute y
(j)
σ := PCF.Eval(σ, kσ, sid). Then it queries RSample

with (1κ,msk, σ, y
(j
σ) and receives y

(j)
1−σ as the local MAC keys. Based on the security definition

of PCF, the simulated view is computationally indistinguishable from that in the real execution.
Furthermore, whenever honest verifier V1 in the real execution aborts, S acts as V1 in the ideal
execution aborts. Thus, it remains to bound the probability that the V1 in the real execution
accepts but the transcripts received by S pass the CheckZero subcheck. In this case, the malicious
P will successfully trick honest V1 into accepting a forged MAC tag. According to Lemma 1, the
probability that the honest V1 in the real execution doesn’t abort is at most t+4 log t+1

2κ−2 . Thus, the
output distribution of the honest verifier in the real-world execution is indistinguishable from that
in the ideal-world execution.

Malicious verifiers. Assume that if P is honest and N verifiers are corrupted. S interacts with
A as follows:

1. In the input phase, S emulates PCF by recording global key ∆1, . . . ,∆N ∈ F2κ and the local
MAC keys for all input values, which are sent by A.

2. Upon receiving {[[ωα,i]]2, [[ωβ,i]]2, [[ωγ,i]]2}i∈[t], S sends them to FMV-CheckMULs and receives
{resi}, where i ∈ B ⊆ [N] denotes Vi’s authenticated share cause the failure result.

3. S emulates RO by sending χ1, . . . , χt ← F2κ to A and computes [[z]]2 and {[[ω̂α,i]]2, [[ωβ,i]]2}i∈[t].

4. While t > 2:

(a) S emulates PCF by recording the local MAC keys for the random value used in the
Assign subroutine, sent by A.

(b) S samples {d0,t, d1,t, d2,t} and sends them to A in the Assign subroutine. Then, it
computes their MAC keys using the keys received from A.

(c) S runs the CheckZero subroutine with A according to the set of {resi}, i ∈ B: If resi, S
sends random m∗ ← F2κ to Vi; Otherwise, S computes and sends

∑2
i=1 kh(j)− kz to Vi

where the local MAC keys kh and kz are computed with the global keys and local keys
recorded by S.

5. For i ∈ [t], S simulates PCF by receiving kv,i from A.

6. S simulates RO for A by sampling uniform e← F2κ and sending it to Vs.

33

7. S plays the role of the honest prover P to perform the remaining CheckZero procedures with
A, using the global keys and local keys received from A. Specifically, if resj , j ∈ B, S sends
random m∗ ← F2κ to Vj ; Otherwise, S computes 0-sharing using kv,i, kx,i, ky,i, kz and global
keys recorded by S, and then sends it to Vj .

We use a hybrid argument to prove that the two worlds are computationally indistinguishable.

• Hybrid0. This is the real world.

• Hybrid1. This hybrid is identical to the previous one, except that S emulates PCF and, in
each Extend execution, the transcripts {di,0, di,1, di,2}i∈[t] sent to A is computed as follows.

S has access to the Sσ (c.f. Definition 2) using the global keys mski := ∆i, i ∈ [N] received
from A. At the beginning of each concurrent execution:

- In the input phase, S first compute ki := PCF.Eval(σ, kσ, sid). Then it queries RSample with
(1κ,mski, σ,ki) and receives (xi,mi) where xi denotes all the input values corresponding
with Vi and mi = ki +∆i · xi.

- For Assign(cj) for j ∈ {0, 1, 2}, S computes kiµ,j := PCF.Eval(σ, kσ, sid+ j). Then it queries

RSample with (1κ,mski, σ, kiµ,j) and receives (µi
j ,m

i
µ,j) where µi

j denotes the authenti-

cated random values used in Assign subroutine and mi
µ,j = kiµ,j +∆i · µi

j .

- For the final t multiplication triples, i.e., Assign(xj · yj) and Assign(yj · vj) for j ∈ [t], S
similarly compute

kixy,j := PCF.Eval(σ, kσ, sid+ log t+ 2j),

kiyv,j := PCF.Eval(σ, kσ, sid+ log t+ 2j+ 1).

Then it queries RSample with the following operations:

(µi
xy,j ,m

i
xy,j) := RSample((1κ,mski, σ, kixy,j),

(µi
yv,j ,m

i
yv,j) := RSample((1κ,mski, σ, kiyv,j).

- In the rest of the execution, S uses these oracle responses to transcript the honest P.

The resulting view is equivalently defined as in the previous hybrid under the security defi-
nition of PCF (c.f. Definition 2) with probability negl(κ). Therefore, this hybrid is computa-
tionally indistinguishable from the previous one.

• Hybrid2. This hybrid is identical to the previous one, except that PCF accesses the Y-
function to generate the authenticated secret shares instead of the real-world PCF function.
It follows from the assumption of pseudorandom Y-correlated outputs that this hybrid is
computationally indistinguishable from the previous one.

• Hybrid3. This hybrid is identical to the previous one, except that in each iteration execution,
i.e., while t > 2, S replaces {d0,t, d1,t, d2,t} and {dxy,i, dyv,i} by random values. Observe that
in each Assign subroutine, the difference d-values are pseudorandomly due to the Y-function
and serve as pseudorandom one-time pad for all the coefficients {c0,t, c1,t, c2,t} and products
{xi · yi, yi · vi}. Therefore, this hybrid is computationally indistinguishable from the previous
one.

34

• Hybrid4. This hybrid is identical to the previous one, except that S emulates PCF and, upon
receiving tmultiplication triples {[[ωα,i]]2, [[ωβ,i]]2, [[ωγ,i]]2}i∈[t], it follows protocol CheckMuls to
run CheckZero and control the output of the corrupted Vi, i ∈ B ⊆ [N] by using the transcripts
received from A, and the responses from FMV-CheckMULs. This hybrid is computationally
indistinguishable from the previous one: (1) if Vi, i ∈ B ⊆ [N], the polynomial points evaluated
by random η ∈ F2κ essentially serve as the one-time pad for MAC tags of

∑2
j=1 h(j)−z, except

with collision probability of 1
q . (2) if Vi, i /∈ B, the output of Vi is exactly as expected.

It is clear that this hybrid is the ideal world.

The above hybrid argument completes the proof.

C Security Proof of Theorem 3

Proof. We begin by showing that
∏

MP,Sign computes FEdDSA (all honest parties running the
protocol generate the correct signature). This holds since when all parties are honest, we have:

R =
∑
i∈[n]

Ri =
∑
i∈[n]

ri ·G =
∑
i∈[n]

PRFdki(msg) ·G

σ =
∑
i∈[n]

σi mod q =
∑
i∈[n]

si · H(pk, R,msg) + ri mod q

= (
∑
i∈[n]

si) · H(pk, R,msg) + (
∑
i∈[n]

ri) mod q

Thus, (R, σ) would be a valid signature with r =
∑

i∈[n] PRFdki(msg) and pk =
∑

i∈[n] si ·G.
We now proceed to prove security and consider the case that n − 1 parties are corrupted.

Similarly, let P1 denote the honest party and Pi, i ∈ I = [2, n] denotes the set of corrupted parties.
First, the simulator S needs to extract the corrupted party’s input in order to send it to the trusted
party. As we will show, this is possible by the fact that in the (FMV-ND, FRDL

com-zk, FCom)-hybrid
model S receives the secret keys si and dki from A. We always implicitly assume that S passes all
communication between adversary A and environment Z. Simulating this protocol for an adversary
corrupting Pi is done as follows:

Key Generation:

1. The simulator S extract ski from the set of queries made by Pi to H.

2. S emulates FMV-ND for A by recording all the values (mvzk-input, i, dki) that are received
by FMV-ND from A.

3. S also emulates the functionality FRDL
com-zk by sending (proof-receipt, sidpk,1) to the adversary

A and recording the values (com-prove, sidpk,i, pki, si) that are received by FRDL
com-zk from A.

4. Upon receiving pk from FEdDSA, S computes pk1 = pk−
∑

i∈[2,n] pki and sends (decom-proof, sidpk,1, pk1)

to A on behalf of FRDL
com-zk.

5. S receives the messages (decom-proof, sidpk,i) that A sends to FRDL
com-zk, if pki ̸= si · G in the

associated com-prove values of Step 2 above, then S sends abort to FEdDSA, outputs whatever
A outputs and halts. Else, S stores all the values {dki, ski, si, pki, pk}i∈[2,n].

35

Signing: Upon receiving the message msg

1. If msg has previously been seen, S reuses the value R1, σ1 stored in the memory from the last
time. Otherwise, S proceeds to the next step.

2. The simulator S receives (nonce,msg, R) from FEdDSA. S computesR1 = R−
∑

i∈[2,n] PRFdki(msg)·
G.

3. Upon receiving (mvzk-verify, did1,msg)) thatA sends to FMV-ND, S sends (mvzk-proof,msg, [[R1]]q)
to A.

4. S receives (mvzk-prove, didi,msg) fromA, ifRi ̸= PRFdki(msg)·G, then sends (mvzk-proof,msg, res)
to A with res =⊥.

5. If no res =⊥ happens, S sends (proceed,msg) to FEdDSA and receives (msg, (σ,R)) in
response.

6. S simulates (receipt, sid, 1) to A on behalf of FCom and receives (commit, sid, i, σ∗
i) from A.

7. S computes the signature share σ1 = σ −
∑

i∈[2,n](si · H(pk, R,msg) + ri) mod q with ri =
PRFdki(msg) mod q and sends (decommit, sid, 1, σ1) to A.

8. Upon receiving (decommit, sid, i) from A sent to FCom, S instructs FEdDSA to send
(R, (

∑
i∈[2,n] σ

∗
i + σ1)) to P1. If σ∗

i ̸= si ·H(pk, R,msg) + ri mod q, S aborts. Otherwise, it
stores the records (msg, σ, R, {σi, Ri}i∈[2,n], σ1, R1) in the memory.

Indistinguishability of simulation. We show that the simulation by S in the ideal model results in
a distribution identical to that of an execution of

∏
MP,Sign in the (FMV-ND, FRDL

com-zk, FCom)-hybrid
random oracle model.

The simulation of the key generation phase is merely syntactically different from the real proto-
col. Note that S successfully extracts si from the query of FRDL

com-zk. In the simulation of the signing
phase, the actual values obtained by the corrupted party Pi during the execution are pk, pk1(in
the key generation), nonce R1 and signature share σ1. The distribution of these values in a real
execution is

R1 = PRFdk1(msg) ·G,R = R1 +
∑

i∈[2,n]

Ri,

σ1 = s1 · h+ r1 ∈ Zq, σ = σ1 +
∑

i∈[2,n]

σi ∈ Zq,

where dk1 are random but fixed in the key generation phase, the same in all signing executions.
The distributions over these values in the simulated execution are

R1 = R−
∑

i∈[2,n]

PRFdki(msg) ·G,R,

σ1 = σ −
∑

i∈[2,n]

(si · h+ ri) mod q, σ,

where dki are fixed in the key generation phase, and R = PRFdk(msg) · G, σ = s · h + r mod q
correctly computed by FEdDSA. Observe that the simulation does not know dk and s, but this is
the distribution since it is derived from the output from FEdDSA.

36

As PRF is a pseudorandom function, the value R1 in the real protocol and the values Ri, R in
both protocols are pseudorandom, under the constraint that is fixed with the same message. In the
simulation, R1 = R −

∑
i∈[2,n]Ri is also pseudorandomly and set with the same message. Thus,

these R1s are computationally indistinguishable except with probability negl(λ).
Finally, in the real protocol, we have the following holds

σ1 ·G = h · pk1 +R1

Similarly, in the simulation, since pk = pk1 +
∑

i∈[2,n] pki, R = R1 +
∑

i∈[2,n]Ri and σ = σ1 +∑
i∈[2,n](si · h+ ri) mod q, and σ,R are correct signature received from FEdDSA, we have

σ1 ·G = σ ·G−
∑

i∈[2,n]

(si · h+ ri) ·G

= h · (pk−
∑

i∈[2,n]

pki) + (R−
∑

i∈[2,n]

ri ·G) = h · pk1 +R1,

Thus, these σjs are identical.
If S does not abort and msg is first called, then we have σ∗ = σ1 +

∑
i∈[2,n] σi where σi is

received from A, which has the same distribution as the output in the real protocol. That is if any
modified σ∗

i ̸= si · h+ ri mod q, the honest party will abort by checking σ∗
i +

∑
j ̸=i σj ̸= h · pk+R

except with probability negl(λ), just as what the S behaves in Step 8.
Thus, the simulator S aborts in the ideal-world execution only if the real-world execution aborts.

Furthermore, this also implies that the outputs of honest parties have the same distribution in
both executions. In conclusion, any unbounded environment Z cannot distinguish between the real
execution and ideal execution, except with probability negl(κ). This completes the proof.

37

	Introduction
	Our Contributions

	Preliminaries
	Functionality of Commitment [Com]
	Functionality of Committed NIZK Fcom-zkRDL
	EdDSA Signature Algorithm
	Pseudorandom Correlation Function
	Multi-Verifier Programmable PCF

	Technical Overview
	Multi-Verifier IT-MACs over Groups
	Multi-Verifier Stateless Deterministic Nonce Derivation
	Multi-Party EdDSA Signing

	The Designed Multi-Party EdDSA Signing Protocol
	Extended Doubly-Authenticated Bits for MVZK Proof
	Multi-Verifier Nonce Derivation
	Multi-Party EdDSA Signature Protocol

	Performance and Evaluation
	Universal Composability
	Multi-Verifier Check Multiplication Subprotocol
	Security Proof of Theorem 3

