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Abstract

This paper introduces the first adaptively secure streaming functional encryption (sFE)
scheme for P/Poly. sFE stands as an evolved variant of traditional functional encryption (FE),
catering specifically to contexts with vast and/or dynamically evolving data sets. sFE is de-
signed for applications where data arrives in a streaming fashion and is computed on in an
iterative manner as the stream arrives. Unlike standard FE, in sFE: (1) encryption is possible
without knowledge of the full data set, (2) partial decryption is possible given only a prefix of
the input.

Guan, Korb, and Sahai introduced this concept in their recent publication [CRYPTO 2023],
where they constructed an sFE scheme for P/Poly using a compact standard FE scheme for
the same. However, their sFE scheme only achieved semi-adaptive-function-selective security,
which constrains the adversary to obtain all functional keys prior to seeing any ciphertext for
the challenge stream. This limitation severely limits the scenarios where sFE can be applied,
and therefore fails to provide a suitable theoretical basis for sFE.

In contrast, the adaptive security model empowers the adversary to arbitrarily interleave
requests for functional keys with ciphertexts related to the challenge stream. Guan, Korb, and
Sahai identified achieving adaptive security for sFE as the key question left open by their work.

We resolve this open question positively by constructing an adaptively secure sFE construc-
tion from indistinguishability obfuscation for P/Poly and injective PRGs. By combining our
work with that of Jain, Lin, and Sahai [STOC 2021, EUROCRYPT 2022], we obtain the first
adaptively secure sFE scheme for P/Poly based on sub-exponential hardness of well-studied
computational problems.

Don’t panic! One does not need to read all 330 pages of this paper to understand
it. For researchers that want all the details of every hybrid, we include them here.
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1 Introduction

In this work, we resolve the main open question posed by the work of Guan, Korb, and Sa-
hai [GKS23], and show how to construct adaptively secure streaming functional encryption (sFE).
As we argue below, adaptive security is crucial to providing a meaningful theoretical foundation
for almost all applications of sFE. We now elaborate.

A motivating medical research scenario. Imagine that a medical research institute wants
to determine the appropriate vaccine dosage for patients with compromised health. To do this,
the institute needs access to the records of patients held by a major health organization. However,
these records contain highly sensitive private information. Naturally, the health organization would
prefer to share only the necessary details for the study, withholding additional sensitive information.

To meet this objective, the health organization might turn to functional encryption (FE). Func-
tional encryption [SW05, BSW11, O’N10] is an advanced form of encryption that departs from
the traditional “all-or-nothing” encryption model. With FE, an authority can generate function-
specific keys using a master secret key. Given a function key for f and an encrypted piece of data
x, decryption should yield only f(x) and nothing more. Hence, to accomplish this goal, the health
organization can encrypt its medical records with FE and grant the research institute a function
key for some function that is appropriate to their research. This key might allow, for example, the
institute to extract only the results of certain statistical analyses on private patient data.

While FE may already sound too good to be true, after a long series of works [SW05,GGH+13,
SW14,GGHZ16,GKP+13,BGG+14,GVW15,ABSV15,AJ15,BV15,Lin16,Lin17,GPSZ17,GPS16,
LV16,AS17,LT17,AJS18,AJL+19,Agr19,JLMS19], the recent pivotal works of [JLS21,JLS22] suc-
cessfully constructed FE schemes for general polynomial-sized circuits, using well-studied compu-
tational assumptions.

However, while FE offers a promising theoretical framework to enable the aforementioned medi-
cal study and other similar privacy-preserving computational challenges, it is not without its draw-
backs. In terms of both functionality and privacy, FE presents certain limitations when applied to
scenarios like the one described above. For example:

1. FE permits the medical research institute to access information only from the records available
when the function key is initially provided. If new medical records emerge during the study,
the institute would need the health organization to re-encrypt its entire database, inclusive of
the new records. They would then apply the function key to this newly encrypted database.
Thus, for assimilating newly obtained data, the study must essentially begin anew.

2. The institute cannot obtain interim results. They must await the function key’s completion
of the decryption process, a duration proportional to the database’s size. If, due to power or
connectivity issues, the server housing the encrypted records goes offline during decryption,
the process has to start over from scratch.

From a privacy perspective, using FE in the aforementioned scenarios raises even more signif-
icant concerns. Given that the database of medical records is continuously evolving, if the health
organization chooses to encrypt records in batches and then share those ciphertexts with the re-
search institute, the institute could discern the output of the learning function for each batch
individually. Consequently, the research institute might either gain excessive information, or insuf-
ficient insight if the health organization adds substantial noise to each output to preserve privacy.
Therefore, the only viable strategy for the health organization involves periodically encrypting its
ever-expanding database, which incurs asymptotically large computational overhead.
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FE’s primary challenges, especially in applications like medical studies which involve extensive
and evolving data sets, stem from its inherent design. Specifically, FE requires the entire data set
to be present at the time of encryption, and decryption can only be performed on the ciphertext
encrypting the entire data set at once.

Streaming functional encryption. To address these issues, recently Guan, Korb, and Sa-
hai [GKS23] introduced streaming FE (sFE). Essentially, sFE caters to situations where data is
received in a streaming manner and is sequentially processed as it’s received.

In simple terms, a streaming function is a stateful function that takes as input a state sti and a
value xi and outputs the next state sti+1 and a value yi. In an sFE scheme, the input x = x1 . . . xn
is encrypted piece by piece as it arrives in a streaming fashion and the streaming function of the
encrypted input is derived by decrypting the piece-wise ciphertext of the input stream as it arrives.
More precisely, in an sFE scheme, encryption requires the ability to individually generate ciphertexts
cti for the ith input xi given only the master public key, xi, the index i, and an encryption state
(which is generated once for x using only the master public key). The decryption algorithm will
itself be a streaming function that takes as input the ith ciphertext cti, the index i, the function key
skf , and the current decryption state Dec.sti (which roughly speaking encrypts sti), and outputs
the next output value yi where (yi, sti+1) = f(xi, sti) and the next decryption state Dec.sti+1. For
non-triviality, it is required that an sFE scheme be streaming efficient, meaning that the runtime
of the algorithms should not depend on the total length n of the data stream x = x1 . . . xn that
is encrypted. More formally, we require that the size and runtime of all algorithms of sFE with
security parameter λ, function size ℓF , state size ℓS , input size ℓX , and output size ℓY are
poly(λ, ℓF , ℓS , ℓX , ℓY).

Given its design, sFE naturally addresses the issues raised in our medical research example,
avoiding the associated operational/security constraints sketched above. sFE also has potential uses
in other privacy-focused computation scenarios as highlighted in [GKS23]. Applications include
executing privacy-preserving machine learning algorithms on voluminous, evolving private data,
analyzing sensitive live-streamed video content, and outsourcing the assessment of confidential user
data as it becomes available.

In their work, Guan, Korb, and Sahai [GKS23] constructed the first sFE system using standard
FE. They demonstrated that assuming (1) a selectively secure, public-key FE scheme for P/Poly,
and (2) a strongly-compact selectively secure, secret-key FE scheme for P/Poly, then a semi-adaptive
function-selective secure, public-key sFE scheme for P/Poly exists. Here, semi-adaptive function-
selective security for sFE requires that in the security game, adversaries must present all function
key queries immediately after obtaining the master public key. Only after this step can they request
ciphertexts for the challenge stream. Unfortunately, as we now argue, this model of security leaves
a lot to be desired, and indeed, the work of [GKS23] explicitly stated that achieving full (adaptive)
security for sFE is a major open problem.

The insufficiency of function-selective security. The function-selective security guarantee
achieved by [GKS23] not only dampens the sFE’s privacy robustness, rather it is so restrictive
that it does not suffice for various natural applications of sFE. Take, for instance, the medical
research scenario introduced earlier. Here, encrypted medical records of ill patients might have
been accumulated long before the research institute decided to initiate the study. Using a semi-
adaptive-function-selective sFE scheme would necessitate the health organization to re-encrypt
the entire database after the function key is given to the research institute. Furthermore, if two
distinct research institutes request computations on the same database at different times, the
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health organization must ensure that the institute receiving a function key later cannot access the
encrypted database created for the previous institute.

These limitations are so onerous as to render function-selective sFE unsatisfactory as a theo-
retical foundation for the security scenarios that we aim to address.

What we want: adaptive security. The security guarantee which addresses these issues in sFE
applications is adaptive security. Specifically, adaptive security guarantees security against adver-
saries that demand ciphertexts for the challenge stream and function keys for multiple streaming
functions in an arbitrarily intertwined manner. As we just pointed out, such intertwining of func-
tion key requests and the encryption of different parts of the data stream would naturally arise in
almost any scenario where streaming functional encryption would be used.

Traditionally, it has been possible to upgrade from selective to adaptive security for standard
FE via “complexity leveraging” [BB11,SW05] and its more advanced variant, namely “the piecewise
guessing framework” [JW16,KW20, JKK+17]. These approaches involve predicting the challenge
ciphertext in the adaptive security game and halting if the prediction is wrong. As such, these
approaches incur a security loss “super” polynomial in the length of the challenge ciphertext.
However, in streaming FE, the challenge stream’s length is theoretically limitless, preventing the
use of complexity leveraging or the piecewise guessing framework for attaining adaptive security
for sFE. Indeed, this is why Guan, Korb, and Sahai identified achieving adaptive security for sFE
as a particularly intriguing open problem [GKS23].

Our Results. In this paper, we resolve this problem by constructing the first adaptively secure
sFE scheme for P/Poly. Our main result is summarized below.

Theorem 1.1 (Main Result, Informal). Assuming a secure indistinguishability obfuscator (iO)
for P/Poly and injective pseudorandom generators (PRGs), there exists an adaptively secure sFE
scheme for P/Poly.

An obfuscator, as defined in [BGI+01], is a tool that converts a circuit into an equivalent one,
i.e. preserving its input-output behavior, while concealing the original circuit’s confidential data.
An indistinguishability obfuscator iO is a specific type of obfuscator which ensures that any two
equivalent circuits’ obfuscations are indistinguishable. The utility of iO is extensive, enabling a
broad range of applications in both cryptography and complexity theory [GGH+13,SW14,BFM14,
GGG+14,HSW13,KLW15,BPR15,CHN+16,GPS16,HJK+16].

Given the extensive applications of iO in cryptography, it has been extensively researched [GGH12,
GGH+13,BGK+14,BR14,PST14,AGIS14,BMSZ16,CLT13,CLT15,GGH15,CHL+15,BWZ14,CGH+15,
HJ15, BGH+15, Hal15, CFL+16, MSZ16, DGG+18, Lin16, LV16, AS17, Lin17, LT17, GJ18, AJS18,
Agr19, LM18, JLMS19, BIJ+20, AP20, BDGM20], culminating in recent advancements [BSW11,
O’N10] constructing iO from the following well-established computational assumptions.

Theorem 1.2 ( [JLS22], Informal). Assume sub-exponential security of the following assumptions:

• the Learning Parity with Noise (LPN) assumption over general prime fields Fp with polyno-
mially many LPN samples and error rate 1/kδ, where k is the dimension of the LPN secret,
and δ > 0 is any constant (Definition A.2);

• the existence of a Boolean Pseudo-Random Generator (PRG) in NC0 with stretch n1+τ , where
n is the length of the PRG seed, and τ > 0 is any constant (Definition B.1);
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• the Decision Linear (DLIN) assumption on symmetric bilinear groups of prime order (Defini-
tion A.4).

Then, there exists (subexponentially secure) iO for P/Poly.

Theorems 1.1 and 1.2 together imply the following result.

Corollary 1.3 (Informal). Assume injective PRGs and the sub-exponential security of the following
assumptions:

• the Learning Parity with Noise (LPN) assumption over general prime fields Fp with polyno-
mially many LPN samples and error rate 1/kδ, where k is the dimension of the LPN secret,
and δ > 0 is any constant (Definition A.2);

• the existence of a Boolean Pseudo-Random Generator (PRG) in NC0 with stretch n1+τ , where
n is the length of the PRG seed, and τ > 0 is any constant (Definition B.1);

• the Decision Linear (DLIN) assumption on symmetric bilinear groups of prime order (Defini-
tion A.4).

Then, there exists an adaptively secure sFE scheme for P/Poly.

In the next section, we elaborate extensively on our technical approach. Briefly, our adaptive
sFE scheme is developed in two steps.

Step 1: Build Message-Selective sFE. We start by constructing a semi-adaptive message-
selective sFE scheme essentially for P/Poly. More precisely, we prove the following theorem.1

Theorem 1.4. (Message-Selective sFE) Assuming a secure iO for P/Poly and injective PRGs, there
exists a semi-adaptive message-selective sFE scheme for the function class F⊥ = {two-input f ∈
P/Poly : ∀s, f(⊥, s) = ⊥} where ⊥ is a special symbol.

Message-selective security is the dual notion to function-selective security. More precisely, in
the message-selective security model, the adversary must output the entire challenge stream before
querying any function key. Constructing a message-selective sFE scheme is highly non-trivial and
we develop innovative technical ideas to tackle it.

Our approach modifies and adapts iO-friendly “authentication2” techniques pioneered by Kop-
pula et al. [KLW15] in the context of developing iO for Turing Machines. These techniques were
originally devised for managing computations which take the entire input at once, and produce
output only after the entire iterative computation concludes. In contrast, in the context of sFE,
we encounter new inputs at each iterative step of our computation, and we must produce outputs
visible to the adversary after each step of computation. At a high level, instead of authenticating a

1The message-selective sFE scheme we directly build in this paper has a weaker security guarantee than the scheme
promised by Theorem 1.4 in that it is a secret-key scheme which is only secure against adversaries who are given
just one function key and one encrypted challenge stream. As this weaker scheme is sufficient for building our final
adaptive scheme, we do not need to enhance its security. Nevertheless, we can build the standalone message-selective
scheme promised in Theorem 1.4 (which is a semi-adaptive, message-selective, public key sFE scheme) either (1)
directly by bootstrapping our weaker message-selective scheme using the same bootstrapping technique we use for
our adaptive scheme (see Section 7), or (2) as a byproduct of our final adaptive scheme which by definition, is also
semi-adaptive, message-selective secure.

2Very roughly speaking, what we mean by an iO-friendly authentication mechanism is one that only allows a
special circuit to be evaluated on one particular input, and not on any others. We refer the reader to the technical
overview for a much more accurate description.
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single iterative computation path for a single fixed input, as was the case in prior work, we develop
a more flexible authentication system that is able to authenticate a “sliding window” consisting of
the inputs and intermediate states of the computation in two adjacent steps.

Step 2: Combine Message-Selective and Function-Selective Schemes to Achieve Full
Adaptive Security. Having crafted schemes with adaptive security’s two facets (the message-
selective one above, and the function-selective one from [GKS23]), we develop a novel “gluing”
technique to combine the two, resulting in full-fledged adaptive security. Our gluing mechanism is
highly non-black-box and relies on specific properties of the two underlying schemes to merge the
two “halves” of adaptive security.

We also remark that our technique for achieving adaptive security departs from the “dual system
encryption” paradigm invented by Waters [Wat09,LW10,LOS+10] and could potentially pave a new
pathway towards adaptive security for FE in scenarios similar to ours.

Related Work. Perhaps the two variants of FE that are closest to sFE are: FE for Turing ma-
chines [GKP+13,AS16] and multi-input FE [GGG+14,ACF+19,BKS16,GJO16]. However, crucial
distinctions exist between sFE and these FE variants. While Turing machines inherently use iter-
ative operations reminiscent of a streaming function, FE for Turing machines necessitates knowing
the entire input at the time of (the first and only) encryption and doesn’t yield any output until
the Turing machine’s computation concludes. On the other hand, though multi-input FE envisions
segmenting a message into multiple parts and encrypting these segments incrementally, in order
to successfully decrypt, the function key needs to be applied collectively to all these ciphertexts.
Consequently, it lacks the capability to support incremental outputs like sFE.
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2 Technical Overview

Our goal is to build an adaptively secure sFE scheme. Due to a bootstrapping theorem already
present in [GKS23], it suffices to build a weaker primitive: an adaptively secure single-key, single-
ciphertext secret-key sFE scheme, that is only required to be adaptively secure against adversaries
who are given just one function key and one encrypted challenge stream. Thus, we prove our main
theorem using the following two steps:

1. We construct a single-key, single-ciphertext, adaptively secure, secret-key sFE scheme One-sFE.
We prove the following:

Theorem 2.1. Assuming iO for P/Poly and injective PRGs, there exists a single-key, single-
ciphertext, adaptively secure, secret-key sFE scheme for P/Poly.

2. Then, we use the following theorem, which is implied by the work of [GKS23], to bootstrap
One-sFE into a public-key, sFE scheme.3

Theorem 2.2. Assuming (1) a selectively secure, public-key FE scheme for P/Poly, and (2) a
single-key, single-ciphertext, adaptively secure, secret-key sFE scheme for P/Poly, there exists
an adaptively secure, public-key sFE scheme for P/Poly.

For a technical overview of this bootstrapping scheme, we refer the reader to [GKS23].

Since we can build a selectively secure, public-key FE scheme from iO and OWFs [Wat15], and
OWFs are implied by PRGs, then together, these two theorems imply our main theorem.

2.1 Towards Building Single-Key, Single-Ciphertext sFE

Recall that we need to build an adaptively secure secret-key sFE scheme One-sFE which is only
required to be secure against adversaries who are given just one function key and one encrypted
challenge stream. To construct this object, we first observe the challenges present when trying to
apply prior work.

2.1.1 Prior Work

Problems with adapting the function-selective scheme from [GKS23]. The work of
[GKS23] builds a function-selective variant of One-sFE, where security holds only if the function
query is asked first. Let us call this scheme Post-One-sFE since the ciphertext queries must come
after the functional key queries.

We first see whether we can modify Post-One-sFE to make it adaptively secure. Unfortunately,
the proof of security for Post-One-sFE is heavily dependent on the adversary receiving the function
query before the message queries. This is because the security proof of Post-One-sFE works by
embedding each output value yi into the corresponding ith ciphertext. This allows the proof to
later remove all information about the input stream from the ciphertexts. However, this only
works since the challenger can compute yi (which requires knowing the function f) before it needs
to give out the ith ciphertext. Thus, this programming cannot occur if the message queries are
made before the function query.

3Technically, [GKS23] only proves this theorem for function-selective sFE schemes. However, as they remark in
their paper, the same construction and essentially the same proof can be used to show that this bootstrapping step
also applies for adaptively secure sFE schemes. For completeness, we provide a full proof of Theorem 2.2 in Section 7.
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In fact, Post-One-sFE is simulation secure. However, selective simulation secure sFE, where the
ciphertext queries are asked before the functional key queries, is impossible even in the single-key,
single-ciphertext setting. This is because we must first simulate arbitrarily many ciphertexts (one
for each element of the stream) without knowing any of the stream or output values, and then
must simulate an a priori bounded-size function key that somehow provides the correct output
values for all of the ciphertexts (c.f. [BSW11]). Thus, to build an adaptive scheme or even just a
message-selective scheme, it seems likely we will need other techniques apart from the simulation
techniques used in building Post-One-sFE.

A source of inspiration: FE for Turing machines from [AS16]. Our main source of inspi-
ration is [AS16] which uses techniques from [KLW15] to build FE for Turing machines from iO and
injective PRGs. Since Turing machines also involve iterative computation, it seems plausible that
some of their techniques may also be applicable to the streaming setting.

Unfortunately, the construction from [AS16] seems incompatible with the streaming setting.
In particular, their function keys depend on the size of the input to the Turing machine. In the
streaming setting, this would mean that the size of our function keys would depend on the total
length of our input stream, breaking our efficiency requirements. Unfortunately, this dependence
seems to be an inherent property of the technique they use to achieve adaptive security, even in
just the single-key, single-ciphertext setting.

Indeed, even if we only want selective security, there are still several problems with the con-
struction. The main issues are

• The input to the Turing machine must be known all at once at encryption time. There is no
way to adaptively add new input as in the streaming setting.

• There is no mechanism for outputting intermediate output values yi. In particular, their
security proof works by hardwiring in the final output value and erasing each of the steps
of computation one by one. This works in the Turing machine setting since intermediate
steps do not provide output. However, it is problematic in the streaming setting as we cannot
hardwire in every output value, so we cannot erase all intermediate states without jeopardizing
our ability to continue the computation.

These issues turn out to be very non-trivial to overcome. However, while we cannot use their
construction or security proof, our final scheme owes a great intellectual debt to [AS16] and [KLW15]
and adapts several of their techniques. We provide a more detailed explanation of the technical
difficulties with adapting their work along with a comparison of our techniques in Section 2.2 of
the Technical Overview.

2.1.2 Building a Selectively Secure One-sFE Scheme

To get started, we begin with a simpler goal: building a (semi-adaptive) selectively secure variant
of One-sFE, where security holds only if the message queries are asked first. We call such a scheme
Pre-One-sFE since the message queries must come before the function queries. Note that since
any adaptively secure scheme must also be selectively secure, this is a natural starting point.
Additionally, achieving even this weaker notion of security was left as an open problem in the prior
work.

Constructing such a scheme turns out to be rather complex. Indeed one of the main technical
contributions of our work is building Pre-One-sFE. We give an overview of the construction and
security proof in Section 2.2 of the technical overview. But for the moment, we will continue this
technical overview assuming that we succeed in building Pre-One-sFE.
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2.1.3 Combining Pre-One-sFE and Post-One-sFE to Build One-sFE

We would now like to get adaptive security. Observe that we have two schemes, each with half of
the security that we want:

• Pre-One-sFE: A (semi-adaptive) selectively secure scheme which we build in this paper.

• Post-One-sFE: A (semi-adaptive) function-selectively secure scheme from [GKS23].

We will attempt to combine these two schemes to somehow get adaptive security.

Composing the two schemes. For our approach, we will treat each scheme as an individual
building block, and then try to combine these building blocks together to create an adaptive scheme.
The main idea is to use the security of Pre-One-sFE to deal with all message queries given before
the function query, and to use the security of Post-One-sFE to deal with all message queries given
after the function query.

Combining the two schemes is highly non-trivial and is in fact one of the main technical con-
tributions of this paper. In particular, there are two major difficulties: (1) determining how to
syntactically compose the two schemes, and (2) bridging the security proof from Pre-One-sFE to
Post-One-sFE after receiving the function query. We will focus on the first issue for now.

Note that we cannot simply give out ciphertexts and function keys for both schemes simulta-
neously. This is because each scheme is only secure for some of the messages (either the ones given
before or after the function query), so using both schemes all the time compromises security.

Our key observation is that the decryption algorithm of an sFE scheme is itself a streaming
function that acts on the stream of sFE ciphertexts. This means we can encrypt the output of an
sFE scheme with another sFE scheme. Thus, in our construction, we will compose the two schemes
by encrypting first with an inner Post-One-sFE scheme and then encrypting again with an outer
Pre-One-sFE scheme.

In more detail, the inner scheme Post-One-sFE will encrypt the actual stream x = x1, x2, x3, . . .
and create a function key for the actual streaming function f . The outer scheme Pre-One-sFE will
encrypt the stream of Post-One-sFE ciphertexts: Post.ct1,Post.ct2,Post.ct3, . . . and create a function
key for Post-One-sFE’s decryption algorithm. The ciphertexts and function keys for One-sFE are
defined to be those output by the outer Pre-One-sFE scheme. To decrypt, we simply decrypt
using Pre-One-sFE which gives us the output of running Post-One-sFE’s decryption algorithm on
Post-One-sFE’s ciphertexts, which by the correctness of Post-One-sFE gives us the output of running
f on the actual stream x. Thus, One-sFE outputs the correct values. The construction is depicted
in Figure 1.
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Figure 1: Construction of One-sFE.

For notational convenience, in Figure 1:

• We denote the algorithms of Pre-One-sFE and Post-One-sFE with the prefixes Pre and Post
respectively.

• We have omitted EncSetup and Enc.st from all algorithms as they are not needed in the
single-key, single-ciphertext sFE scheme.

• We have KeyGen additionally take the starting state as input.

• We have Dec takes in only two inputs: the current decryption state Dec.sti and the current
ciphertext cti. The function key skf is now defined to be Dec.st1. This change is easy to
implement by Remark 3.36.

Bridging the security proofs. To prove security, we need to move from an encryption of stream

x(0) = x
(0)
1 x

(0)
2 x

(0)
3 . . . x

(0)
n to an encryption of stream x(1) = x

(1)
1 x

(1)
2 x

(1)
3 . . . x

(1)
n . Our high-level idea

is the following:

1. First, use the security of Pre-One-sFE to prove indistinguishability for all stream queries given
before the function query.
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2. Then, use the security of Post-One-sFE to prove indistinguishability for all stream queries
given after the function query.

The first step proceeds smoothly. Let t∗ be the number of stream queries given before the

function query, and let Post.ct
(b)
i be a Post-One-sFE encryption of x

(b)
i for b ∈ {0, 1}. The security

of Pre-One-sFE lets us exchange an encryption of the stream Post.ct
(0)
1 ,Post.ct

(0)
2 ,Post.ct

(0)
3 , . . . with

an encryption of the stream Post.ct
(1)
1 ,Post.ct

(1)
2 ,Post.ct

(1)
3 , . . . for all indices i ≤ t∗. Since these

Post-One-sFE ciphertext streams represent encryptions of x(0) and x(1) respectively, then we have
successfully swapped out ciphertexts of x(0) under our scheme for ciphertexts of x(1) for all indices
i ≤ t∗.

The second step is much more difficult. The issue is that we want to start running the security
proof of Post-One-sFE from midway through the stream. To deal with this issue, we will need to
use specific properties of both schemes. This allows us to glue together the two security proofs with
“very non-black-box glue”.

We first observe that in the construction of Post-One-sFE from [GKS23], the security of each
ciphertext only depends on a local portion of the master secret key. Thus, a ciphertext can remain
secure even if we reveal the secret values used to encrypt another ciphertext as long as the two
ciphertexts are encrypted using non-overlapping portions of the master secret key. Our goal is to
use this property to decouple the security of the ciphertexts given after the function query from
the ciphertexts given before the function query. We will also need to use an additional property of
Post-One-sFE which allows us to directly generate ciphertexts for intermediate states using the same
local portions of the master secret key. Together, these properties allow us to start the security
proof of Post-One-sFE from midway through the computation, while ignoring any secret values
contained in ciphertexts we have already given out.

In fact, we are able to show that even if we revealed every value used to encrypt ciphertexts
{Post.cti}i<t∗ , we can still prove security for ciphertexts {Post.cti}i>t∗ as if we had started midway
through the computation at step t∗ + 1. However, this is not true if we reveal the secret values
contained in ciphertext Post.ctt∗ .

This is where our Pre-One-sFE scheme comes in. The security proof for Pre-One-sFE allows us
to hardwire and erase a constant number of stream values. Thus, we will use Pre-One-sFE to erase
the problematic Post-One-sFE ciphertext at the midway step t∗. This allows us to finish the security
proof by using the security of Post-One-sFE to swap ciphertexts for stream x(0) with ciphertexts for
x(1) for all indices i ≥ t∗ + 1.

Note that because we needed to use specific properties of our ingredient schemes, although
we are able to describe the construction of our final scheme modularly in terms of our ingredient
schemes, we give the proof of security for our final scheme in a monolithic manner.

2.2 Building Pre-One-sFE

We now provide an overview of how we build our message-selective, secret-key sFE scheme Pre-One-sFE
which is only required to be secure against adversaries who are given just one function key and one
encrypted challenge stream. We prove the following:

Theorem 2.3. Assuming iO for P/Poly and injective PRGs, there exists a single-key, single-
ciphertext, selectively secure, secret-key sFE scheme for the function class F⊥ = {two-input f ∈
P/Poly : ∀s, f(⊥, s) = ⊥}.

Note that restricting the function class to F⊥ does not hinder the usability of our scheme since
for every (two-input) streaming function f ∈ P/Poly, we can construct a function f ′ ∈ F⊥ with
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essentially the same functionality by defining f ′(z, s) =

{
f(x, s) if z = 1||x for some x

⊥ else
.

Additionally, our adaptive scheme One-sFE is not restricted to F⊥ and works for the function
class P/Poly since the issue which led to this restriction is dealt with by Post-One-sFE.

2.2.1 On the Insufficiency of Directly Using [KLW15]

As mentioned earlier, in constructing our Pre-One-sFE scheme, we owe a great intellectual debt
to techniques developed in [KLW15]. However there are many technical difficulties involved with
trying to adapt their techniques for our uses. Here we elaborate on these difficulties and provide
a comparison of our techniques. As this will require delving into the intricacies of the proof
of [KLW15], we suggest that readers unfamiliar with this work skip this section upon initial reading.

The techniques of [KLW15] were developed to construct a machine-hiding encoding scheme
for Turing machines which was then used to build iO for Turing machines. A machine-hiding
encoding scheme can be interpreted (as in [AS16]) as a selectively-secure secret-key FE scheme for
Turing machines which is only secure against adversaries who are given just one ciphertext and one
function key. Additionally, the scheme is efficient with respect to the total runtime of the Turing
machine in that the encryption and key generation algorithms do not depend on this runtime. Such
a scheme is similar to what we desire for Pre-One-sFE in that it is a single-key, single-ciphertext,
selectively-secure, secret key FE scheme whose encryption and key generation algorithms do not
depend on the total number of computation steps (as defined by either the runtime of the Turing
machine or the length of the stream). However, we want Pre-One-sFE to be an FE scheme for
streaming functions, rather than for Turing machines.

Now, since both streaming functions and Turing machines involve iterative computation, it is
tempting to think that one could use the techniques of [KLW15] to directly build Pre-One-sFE.
However, there are some key differences between the two schemes which cause difficulties. In
particular, an FE scheme for Turing machines takes in the entire input at encryption time and reveals
only the final output value of the Turing machine at decryption. This means that the intermediate
steps of computation should not be visible to the adversary during the security game. In contrast,
in a streaming FE scheme, at each step of computation, we must take in a new stream value xi
and output a value yi. Therefore, during the security game, each step of computation will convey
information to the adversary. This is at the heart of the technical difficulties in using [KLW15] to
build streaming FE. In particular, a crucial element of the security proof of [KLW15] is the fact
that when using Turing machines, the intermediate computation is not revealed to the adversary.

For further insight, we now elaborate on how [KLW15] works. At a high level, the function
key for a Turing machine M consists of the obfuscated “next step” function of M . To hide the
input and the intermediate steps of the computation, the tape values are encrypted whenever they
appear outside of the obfuscated program. This means that the obfuscated program must decrypt
and re-encrypt the tape values before and after performing each computational step. Now, let T
be the runtime of the Turing machine on the input. The general structure of their security proof
is as follows:

1. First, they hardwire the output of the Turing machine into the final step T of the program.
Since the Turing machine does not continue computation after halting, then there is no need
to output any encrypted tape value at step T . This provides a useful endpoint for which to
start their proof.

2. Next, they iteratively hardwire and erase each step of computation (by replacing the encrypted
tape value with an encryption of ⊥) starting from step T − 1 and going backwards to step 1.
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It is crucial in their proof that they erase the steps in the backwards direction. Otherwise,
the encrypted tape value output at some step i may need to be correctly decrypted by the
program at a later step. But this would prevent us from erasing the tape value at the current
step since the keys used to encrypt that tape value would still be needed by the program
at that later step. By erasing the computation from back to front, we remove the need to
correctly decrypt future tape values, enabling the erasure of each tape value at the step it is
first computed.

3. Once the entire computation is erased, there is now no dependence on the input apart from
the final output of the Turing machine. Roughly speaking, this completes their security proof.

Now, several issues immediately arise when trying to use this security proof for streaming FE.
First, and most importantly, in streaming FE, we cannot erase each step of computation during the
security proof. This is because each iteration of the streaming function computation will produce
an output yi in the clear. If we erase the intermediate states of computation, then we can no longer
correctly compute these output values from the input. Thus, we must either neglect to output
these values or hardwire each of these values into the program. The former breaks the security
proof while the latter breaks the efficiency requirements by requiring us to hardwire a number of
steps equal to the stream length.

To solve this issue, we develop a new “sliding window” version of [KLW15]. As an initial change
from [KLW15], we will switch to an indistinguishability-based notion of security rather than the
simulation-based security considered (as an intermediate goal) by [KLW15]. This means that our
goal is to move from an encryption of some stream x(0) to an encryption of a different stream
x(1). This will be a crucial change. Unlike in [KLW15], our proof will proceed in the forward
direction, starting from index 1 and continuing to the final step. At each step i, we will swap the
ith ciphertexts of stream x(0) with those of stream x(1). We can perform this swap by hardwiring
a “window” consisting of Step i − 1 (in which we encrypt the outgoing ith state) and Step i (in
which we decrypt the incoming ith stream value and state). Now, suppose we want to move the
window up one step so that we are instead hardwiring steps i and i+ 1. Hardwiring the new step
i + 1 is done by adapting tools from [KLW15], as we elaborate on below. However, we must also
unhardwire step i− 1. Since the program must continue to output the correct intermediate output
yi at step i− 1, then we can only unhardwire this step if the program is able to correctly compute
yi from its inputs. Note that if we had erased the computation at each step as in [KLW15], then
this would be impossible since we cannot compute an arbitrary value yi from an erased input.
However, because we are instead moving from the encryption of one stream to that of another, we
are essentially able to restore the computation behind us by computing using the newly added x(1)

stream. In particular, when we need to unhardwire step i−1, our input at this step will corresponds
to stream x(1) which can be used to compute the correct output value yi. This is possible since
the security definition of sFE requires that computing the streaming function on the two challenge
streams results in the same output yi values. Therefore, we are able to move the sliding window up
a step, which means we never need to hardwire more than a constant number of steps at a time!
By sliding the window through the entire computation, we are able to entirely swap the encryption
of stream x(0) for that of stream x(1), proving security.

Our main technical contributions here are our sliding window technique, the idea of restoring
the computation behind us by switching to a different stream, and the methods of adapting mech-
anisms from [KLW15] to our new purposes. Thus, we use tools from [KLW15], especially splittable
signatures and iterators, within our new proof structure. We also must make several other changes
to the lower-level proof strategies employed by [KLW15] as we detail below.
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In addition to this main issue, there are also several other technical difficulties. For one, our
streaming FE scheme must allow for new stream values at each step of computation. To solve
this, we deal with the stream and state values of the input separately. We handle the state values
similarly to how tape values are handled in [KLW15], and we separately handle the input values by
creating additional instances of some of the mechanisms from [KLW15]. In contrast, in [KLW15],
both the input and intermediate states were encapsulated within the tape which could not be later
added to by an outside entity, unlike our input stream values.

As a final issue, although we require our scheme to only be message-selectively secure, we still
need it to be adaptively correct in that it should work no matter which order the stream and
function queries arrive. In particular, even if the adversary only queries a stream of length n
before the function query, it does not make syntactic sense to have the output of the obfuscated
program at step n indicate that it is the final step and prevent future computation. This means
that like all previous steps, step n should output an encrypted next state. In contrast, when using
Turing machines, it does make sense to treat the final step of the Turing machine computation
as an endpoint since a Turing machine does not continue computation after halting. This meant
that [KLW15] could neglect to output an encrypted tape value at their final step which provided a
useful endpoint to their chain of computation. Unfortunately, we are unable do the same. Instead,
we must handle the additional encrypted state output at step n. If we are using Pre-One-sFE
as a standalone scheme, we deal with this by adding a “dummy” stream value to the end of the
stream which produces empty output states. If we are using Pre-One-sFE as a building block of our
adaptive scheme, we deal with the additional encrypted state using our function-selective scheme
Post-One-sFE, as was touched upon in a previous section.

We further remark that [KLW15] is a notoriously complex and intricate proof which makes
modifying any aspect of it quite challenging. Indeed, to our knowledge, all prior works [AS16,
AJS17a,AJS17b, BFK+19, CCC+16,DKW16,AJS15, CCHR16,CCC+16] that employed the tech-
niques of [KLW15] essentially utilized it as a black box in that they made only minor modfications
which did not alter the structure of the security proof. Our work is the first to really get inside the
inner mechanisms of [KLW15] and modify it to work for other advanced functionalities.

Note that the complexity of [KLW15] and our scheme partly arises due to the difficulty of using
iO-based “punctured programming” techniques [SW14] with any iterative computation that creates
a chain of dependencies between steps of computation. In particular, the punctured programming
paradigm involves modifying the obfuscated program one input at a time by hardwiring the program
at all places which depend upon that particular input. However, in a streaming function or Turing
machine computation, each step depends on the next, which means that any particular input may
be related to every step of computation. As we cannot hardwire all of these steps at once, we must
use more complex methods to prove security, which involve “authenticating” one computation path
in a way that deactivates other computation paths.

2.2.2 First Attempt: A Simple iO-based Construction

Consider the following natural iO-based candidate construction of Pre-One-sFE:

First Attempt at Building Pre-One-sFE

Let iO be an indistinguishability obfuscation scheme, SKE be a secret key encryption
scheme, and PRF be a (puncturable) pseudorandom function.

• We use a PRF key K to generate SKE keys ki for i ∈ [2λ].
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• To encrypt stream values xi, we output an SKE encryption ctinp,i of xi under key ki.

• To create a function key for f , we first create an SKE encryption ctst,1 of the starting
state st1 under key k1. We then output ctst,1 along with an obfuscation of the following
program:

Program1(i, ctinp,i, ctst,i)
Hardwired values: function f , PRF key K

1. Compute SKE keys ki, ki+1 from PRF key K.

2. Decrypt (ctinp,i, ctst,i) with ki to get (xi, sti).

3. Compute (yi, sti+1) = f(xi, sti).

4. Encrypt sti+1 with ki+1 to get ctst,i+1.

5. Output (yi, ctst,i+1).

• To decrypt, we iteratively run the obfuscated program on (i, ctinp,i, ctst,i) to get (yi, ctsti+1).
It is easy to see that the output values yi will be correct.

Now, we want to prove that our scheme is selectively secure. Recall that to prove security, we will

need to move4 from an encryption of stream x(0) = x
(0)
1 x

(0)
2 x

(0)
3 . . . x

(0)
n to an encryption of stream

x(1) = x
(1)
1 x

(1)
2 x

(1)
3 . . . x

(1)
n .

Using iO to hide the SKE keys. Intuitively, we want to use the security of SKE to exchange
ciphertexts of x(0) for ciphertexts of x(1). Unfortunately, we cannot do this since the PRF key K is
embedded into the program, and thus the SKE keys are not hidden. However, since the program is
obfuscated, the hope is that iO techniques can ensure that these keys are “hidden enough” for us
to perform these swaps.

Punctured programming based iO techniques [SW14] work by hardwiring the input and output
to the obfuscated program at every step which depends on the secret values we wish to hide. Then,
since the program does not need to compute these steps by hand, it will not need to know whatever
secret values were needed to compute them and can remove these values from its code.

Therefore, to exchange the ith ciphertext, we need to hardwire the input and output of Program1

at all steps that depend on the SKE key ki. In particular, this requires us to hardwire step i − 1
(which uses ki to encrypt the outgoing state) and step i (which uses ki to decrypt its input). Note
that we will not need to hardwire the other steps even though they depend on the PRF key K,
since standard techniques allow us to use a puncturable PRF to remove the dependency between K
(when evaluated at points j ̸= i) and ki.

Problem: Too many values to hardwire. Unfortunately, hardwiring any step i would require
us to hardwire exponentially many values, since there are exponentially many possible inputs
(i, ctinp,i, ctst,i) to the program at step i. This would break the efficiency requirements of our
algorithms.

4In the paper, we define security as requiring computational indistinguishability between an encryption of x(0)

and an encryption of x(1). However, in our security proof, we define security using an equivalent formulation where
the adversary receives an encryption of x(b) for a random bit b and needs to guess bit b with probability greater than
1
2
+ negl(λ). Thus, in our actual security proof, we will move from an encryption of x(b) for a random bit b to a

(non-standard) encryption of x(0) which is independent of b. To do so, we use the same techniques described here.
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To restrict the number of inputs we need to hardwire, we could try using a different SKE key for
every possible message. Then, to exchange the ith ciphertext for some state sti (which must remain
hidden), rather than needing to hardwire all of steps i− 1 and i, we would only need to hardwire
the specific inputs to the program that require us to encrypt or decrypt sti. However, even with
this change, there could still be exponentially many of these inputs. This is because there could
be exponentially many values (xi−1, sti−1) such that f(xi−1, sti−1) = (yi−1, sti) for some yi−1, and
thus there could be exponentially many inputs (i− 1, ctinp,i−1, ctst,i−1) to the program that would
require us to encrypt sti. Thus, this unfortunately does not work, so we will need to use other
techniques.

Next Steps. Section 2.2.3 will be focused on this key challenge: Determining how to hardwire
a step i without needing to hardwire more than a constant number of inputs and outputs at once.
To prove this, we use techniques inspired by [KLW15]. Finally, Section 2.2.4 will show how to use
this hardwiring technique to complete the proof of security.

2.2.3 Hardwiring a Step of the Program

Using signatures to enforce certain inputs. To hardwire step i in the previous construction,
we needed to hardwire exponentially many values. Let us now look at the intuition for why this
was needed. The main issue is that there is no restriction on which values the adversary can input
to the obfuscated program. Indeed the adversary could run the program on any inputs it generates
itself. And since we don’t know what these inputs might be, the program needs to be prepared to
handle any possible input. Thus, the program must hardwire all of the exponentially many possible
inputs.

But what if we could somehow restrict the program so that it can only run on inputs which are
either (1) directly generated by the challenger, or (2) previously output by the program? Then,
since the challenger only ever gives out ciphertexts for one stream (since we’re in the single-key,
single-ciphertext setting), then the program should only be able to run on inputs which correspond
to the execution of the queried function on the challenge stream. This means that there’d only be
one valid input per step of computation, so we’d only need to hardwire one value at each step.

To implement this restriction, we introduce a signature scheme. The challenger will sign the
stream ciphertexts and the starting state ciphertext during encryption and key generation re-
spectively, and the program will sign its outgoing state ciphertexts. The program will reject (by
immediately outputting ⊥) any inputs that do not come with a valid signature. Intuitively, the
unforgeability of the signature scheme should prevent the adversary from running the program
on any inputs not generated by the challenger or the program itself. This gives us the following
candidate construction:

Second Attempt at Building Pre-One-sFE

Let iO be an indistinguishability obfuscation scheme, SKE be a secret key encryption
scheme, PRF be a (puncturable) pseudorandom function, and Sig be a signature scheme. We
will use different SKE and Sig keys for each step of computation.

• We use PRF keysK,Kinp,Kst to generate SKE keys ki, stream signature keys (sgkinp,i, vkinp,i),

and state signature keys (sgkst,i, vkst,i) respectively for i ∈ [2λ].

• To encrypt stream value xi, we encrypt xi using key ki and sign the resulting ciphertext
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using sgkinp,i to get (ctinp,i, σinp,i), which we output.

• To create a function key for f , we encrypt state st1 using key k1 and sign the resulting
ciphertext using sgkst,1 to get (ctst,1, σst,1). We then output these values along with an
obfuscation of the following program:

Program2(i, ctinp,i, σinp,i, ctst,i, σst,i)
Hardwired values: function f , PRF keys K,Kinp,Kst

1. Compute Sig keys vkinp,i, vkst,i, sgkst,i+1 from PRF keys Kinp,Kst.

2. If Sig.Verify(vkinp,i, ctinp,i, σinp,i) = 0 or Sig.Verify(vkst,i, ctst,i, σst,i) = 0, output
⊥.

3. Compute SKE keys ki, ki+1 from PRF key K.

4. Decrypt (ctinp,i, ctst,i) with ki to get (xi, sti).

5. Compute (yi, sti+1) = f(xi, sti).

6. Encrypt sti+1 with ki+1 to get ctst,i+1.

7. Sign ctst,i+1 with sgkst,i+1 to get σst,i+1.

8. Output (yi, ctst,i+1, σst,i+1).

• To decrypt, we iteratively run the obfuscated program on (i, ctinp,i, σinp,i, ctst,i, σst,i) to
get (yi, ctst,i+1, σst,i+1). It is easy to see that the output values yi will be correct.

Does this work? Now, suppose we want to hardwire some step i. Consider our intuition from
before. We claimed that by the unforgeability of the signature scheme, the adversary should be
unable to obtain any inputs that contain valid signatures apart from those corresponding to the
execution of the challenge function on the challenge stream. We then implied that this means
that to hardwire step i, we only need to hardwire the single input corresponding to the challenge
execution path and can output ⊥ on all other inputs (since the program outputs ⊥ when given
invalid signatures and the adversary is unable to construct valid signatures for other inputs). Thus,
we can hardwire step i without breaking our efficiency requirements, which means the rest of the
security proof will follow.

There are two main issues with this argument:

1. First, unforgeability only holds when the signing keys are hidden. However, the state signing
keys sgkst,i are embedded into the program, and thus are not hidden.5

2. Second, in order to hardwire values into the program, we implicitly relied on the security of
iO. However, when using the security properties of iO, we can only argue indistinguishability
of obfuscated programs that have identical input/output behavior. This means that we must
maintain the same behavior on all inputs, even ones that the adversary cannot efficiently
generate. Indeed, there are exponentially many possible inputs which could contain valid
signatures and thus that could cause the program to output a non-⊥ value. Therefore, even

5Technically, the PRF keys Kinp and Kst are embedded into the program, not the signing keys. However, we can
use a puncturable PRF to remove the dependency between Kinp and Kst (when evaluated at points j ̸= i) and the
ith signing keys sgkinp,i and sgkst,i. Then, the only parts of the program that will depend on the signing keys are the
steps that actually make use of these keys to sign messages. Since the stream signing keys sgkinp,i are never used,
they can be removed entirely.
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though the adversary may be unable to find these inputs and signatures, we cannot use iO
to hardwire the program at step i so that it outputs ⊥ on all but one input as this would
change the behavior of the program.

Fortunately, we can solve the second issue, at least with regards to the stream inputs ctinp,i. (The
first issue provides further complications when dealing with the state inputs ctst,i.) For this, we use
a splittable signature scheme, introduced in [KLW15]. Splittable signatures have the property that
if you only ever sign one message, then you can indistinguishably exchange the verification key for a
one-message verification key that can only verify this one message.6 Thus, for the stream of inputs,
since the challenger only ever signs one stream ciphertext per step, if we want to hardwire step i,
we can first exchange the stream verification key vkinp,i embedded in the program with a restricted
key vk∗inp,i that can only verify this one value. This means that, as desired, our program will indeed
output ⊥ on any stream values that do not correspond to the challenge execution path. Thus, with
respect to the stream values, we can use iO to hardwire the program as originally intended!

Using induction to deal with the state signatures. Unfortunately, due to the first issue,
we cannot do the same for the state signatures. The problem is that the state signing keys sgkst,i
are embedded into the program and thus could be used to sign multiple messages. This means
that at step i, we are unable to change the verification key to one that can only verify a single
message. Thus, we cannot enforce that the program will only accept one state ciphertext at step i,
and therefore cannot hardwire the program in the manner we desire.

Nevertheless, since this is a single-key, single-ciphertext scheme, then intuitively it should be
true that the adversary will only ever be able to obtain one valid state signature per step. This
intuition is motivated by the following inductive reasoning: Suppose that at some step i, the
adversary has only one signed stream ciphertext and one signed state ciphertext. Then, by the
unforgeability of the signature scheme and the hiding properties of iO, the adversary should only
be able to get the program to output a value other than ⊥ on these specific inputs. Thus, the
adversary should only be able to obtain one signed state ciphertext at step i + 1, namely the one
output by the program on the signed values of step i.

We begin by trying to directly implement our inductive reasoning with a splittable signature
scheme SSig.

Notation: For simplicity, in the technical overview, we may refer to directly signing or veri-
fying an input xi or a state sti. However, in our actual proof, we will instead sign and verify
inputs containing the corresponding ciphertexts ctinp,i and ctst,i which encrypt these values.

1. At each step i, the program verifies incoming messages with verification keys (vkinp,i, vkst,i),
and signs the outgoing state using signing key sgkst,i+1 as shown in the diagram below. We
omit the signing keys sgkinp,i for the inputs xi from the diagram as these are handled outside
the program.

Step 1 Step 2 Step 3 Step 4

Verify With (vkinp,1, vkst,1) (vkinp,2, vkst,2) (vkinp,3, vkst,3) (vkinp,4, vkst,4)

Sign Using sgkst,2 sgkst,3 sgkst,4 sgkst,5
6Splittable signatures also have additional properties which we will utilize later. Refer to the paragraph “Splitting

the signature scheme” on page 23 for more details.
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2. Since the program only signs outgoing steps, it will never need to sign st1. Thus, we can
change the program’s signing step so that at step i = 0 (which is unused), if the outgoing
state is equal to st1, we will output a hardwired signature σst,1 for st1 (and will output ⊥
otherwise).

Step 0 Step 1 Step 2 Step 3 Step 4

Verify With (vkinp,1, vkst,1) (vkinp,2, vkst,2) (vkinp,3, vkst,3) (vkinp,4, vkst,4)

Sign Using
σst,1 if st1
⊥ else

sgkst,2 sgkst,3 sgkst,4 sgkst,5

3. Since we will now only output a single input and state signature for stream index 1, we can use
the properties of SSig to swap the verification keys (vkinp,1, vkst,1)

7 for step 1 with hardwired
one-message verification keys (vk∗inp,1, vk

∗
st,1) that will only verify x1 and st1 respectively.8

Step 0 Step 1 Step 2 Step 3 Step 4

Verify With (vk∗inp,1, vk
∗
st,1) (vkinp,2, vkst,2) (vkinp,3, vkst,3) (vkinp,4, vkst,4)

Sign Using
σst,1 if st1
⊥ else

sgkst,2 sgkst,3 sgkst,4 sgkst,5

4. Since x1 and st1 are now the only inputs that can be verified at step 1, we know that if the
obfuscated program does not output ⊥ at step 1, then the output state must be st2 where
(y1, st2) = f(x1, st1). Thus, we can change the program’s signing step at step 1, so that if the
outgoing state is equal to st2, then we will output a hardwired signature σst,2 for st2.

Step 0 Step 1 Step 2 Step 3 Step 4

Verify With (vk∗inp,1, vk
∗
st,1) (vkinp,2, vkst,2) (vkinp,3, vkst,3) (vkinp,4, vkst,4)

Sign Using
σst,1 if st1
⊥ else

σst,2 if st2
⊥ else

sgkst,3 sgkst,4 sgkst,5

5. Since we will now only output a single input and state signature for stream index 2, we can use
SSig again to swap the verification keys (vkinp,2, vkst,2) for step 2 with hardwired one-message
verification keys (vk∗inp,2, vk

∗
st,2) that can only verify x2 and st2 respectively.

Step 0 Step 1 Step 2 Step 3 Step 4

Verify With (vk∗inp,1, vk
∗
st,1) (vk∗inp,2, vk

∗
st,2) (vkinp,3, vkst,3) (vkinp,4, vkst,4)

Sign Using
σst,1 if st1
⊥ else

σst,2 if st2
⊥ else

sgkst,3 sgkst,4 sgkst,5

6. We can repeat steps 4 and 5 until we reach the step i we wish to hardwire.

Step 0 Step 1 Step 2 Step 3 . . . Step i

Verify With (vk∗inp,1, vk
∗
st,1) (vk∗inp,2, vk

∗
st,2) (vk∗inp,3, vk

∗
st,3) . . . (vk∗inp,i, vk

∗
st,i)

Sign Using
σst,1 if st1
⊥ else

σst,2 if st2
⊥ else

σst,3 if st3
⊥ else

σst,4 if st4
⊥ else

. . . sgkst,i

7Technically, the verification keys of SSig are not directly hardwired into the programs, as these are computed
based on puncturable PRFs. However, by appropriately puncturing the PRFs, we can “pretend” that the verification
key of SSig is directly hardwired for the purpose of this technical overview.

8Observe that this is only possible because we are trying to build Pre-One-sFE – where the function key (with
the obfuscated program inside) only gets queried after all the challenge ciphertexts have been issued. Thus, we will
indeed already know the value of x1 before needing to build our obfuscated program.
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This process ensure that, as desired, there is only one set of possible inputs that can be verified at
step i. Thus, to hardwire our final step i, we will only need to hardwire into the program the values
corresponding to this single set of inputs. This fixes our original problem of needing to hardwire
step i for each of the exponentially many inputs that used to be valid.

However, this process also requires hardwiring all of the state signatures and one-message ver-
ification keys up to the step we wish to hardwire. This means we need to hardwire a number of
values that grows with the stream length, which is still too many.

Issues with restoring the computation. To reduce the number of values we need to simulta-
neously hardwire, we will try a sliding window approach in which we un-hardwire some values as
we go. Let us consider how this might work with a first attempt (that will fail and need repair).

1. Suppose that we have both the signature schemes for i and i+1 hardwired and wish to remove
the hardwiring of the ith signature scheme.

Step i− 2 Step i− 1 Step i Step i+ 1

Verify With . . . (vkinp,i−1, vkst,i−1) (vk∗inp,i, vk
∗
st,i) (vk∗inp,i+1, vk

∗
st,i+1)

Sign Using sgkst,i−1
σst,i if sti
⊥ else

σst,i+1 if sti+1

⊥ else
sgkst,i+2

2. We can use the properties of SSig to first change the one-message verification keys (vk∗inp,i, vk
∗
st,i)

at step i back to regular verification keys (vkinp,i, vkst,i).

Step i− 2 Step i− 1 Step i Step i+ 1

Verify With . . . (vkinp,i−1, vkst,i−1) (vkinp,i, vkst,i) (vk∗inp,i+1, vk
∗
st,i+1)

Sign Using sgkst,i−1
σst,i if sti
⊥ else

σst,i+1 if sti+1

⊥ else
sgkst,i+2

3. Now we wish to replace σst,i with the regular signing key sgkst,i. Unfortunately, we are unable
to do this using iO since this would change the behavior of our program. Observe that since
we are using the regular verification keys (vkinp,i−1, vkst,i−1) at step i − 1, then there is no
guarantee that valid incoming messages (and thus valid outgoing states) need to correspond
to those on our chosen computation path. Thus, switching to using sgkst,i would change the
behavior of the program since we would now be able to output valid signatures for multiple
possible output states, rather than outputting ⊥ on all but our chosen output state.

Perhaps if our sliding window started with a different configuration, that could solve the problem
above?

1b. Suppose that in addition to having the signature schemes for i and i+ 1 hardwired, we also
have the verification key for the i− 1th scheme hardwired.

Step i− 2 Step i− 1 Step i Step i+ 1

Verify With . . . (vk∗inp,i−1, vk
∗
st,i−1) (vk∗inp,i, vk

∗
st,i) (vk∗inp,i+1, vk

∗
st,i+1)

Sign Using sgkst,i−1
σst,i if sti
⊥ else

σst,i+1 if sti+1

⊥ else
sgkst,i+2

Unfortunately, in this configuration, we have no way of changing the one-message verifica-
tion keys (vk∗inp,i−1, vk

∗
st,i−1) back to (vkinp,i−1, vkst,i−1) since we can only perform this change

whenever we are not using sgkst,i−1.
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1c. If in addition to the previous change, we supposed that rather than using sgkst,i−1 in step
i− 2, we still had σst,i−1 hardwired into the program as below,

Step i− 2 Step i− 1 Step i Step i+ 1

Verify With . . . (vk∗inp,i−1, vk
∗
st,i−1) (vk∗inp,i, vk

∗
st,i) (vk∗inp,i+1, vk

∗
st,i+1)

Sign Using
σst,i−1 if sti − 1

⊥ else
σst,i if sti
⊥ else

σst,i+1 if sti+1

⊥ else
sgkst,i+2

then in fact we have just changed the inductive statement so that we have the i−1th, ith, and
i+ 1th signature schemes hardwired. Thus, we have not made any progress in removing the
hardwiring.

Our main issue is that by moving from a program where we can sign only one outgoing message to
a program where we can sign arbitrary outgoing messages, we change the behavior of the program
and thus cannot use iO.

Here, we see the heart of our quandary: In order to hardwire our final step, we need to ensure
our hardwired mode can only sign and verify a single computational path. However, in order to
move back to our regular mode using iO, we need our hardwired mode to be able to sign arbitrary
messages.

Splitting the signature scheme. To solve this issue, we will now use additional properties of
splittable signature schemes. Splittable signature schemes allow us to isolate a particular message
m by splitting the signing and verification keys into two parts: one part that deals with the chosen
message m, and another that deals with all other messages. In particular splitting the signature
scheme on a message m will

• split the signing key sgk into a signature σone for m and a signing key sgkabo that can only
sign messages not equal to m,

• and split the verification key vk into a one-message verification key vkone that can only verify
m and an all-but-one verification key vkabo that can only verify messages not equal to m.

The splittable signature scheme has several useful properties:

• If instead of using sgk, you only use σone (or respectively sgkabo) then you can indistinguishably
change vk to vkone (or respectively to vkabo). This is the property we were previously relying
on.

• If you sign no messages and do not use sgk at all, you can indistinguishably change vk to an
always-reject verification key vkrej which rejects all signatures.

• You can merge (σone, sgkabo, vkone, vkabo) back into the original signing and verification keys
(sgk, vk). This works even if the (σone, vkone) parts come from one signature scheme and the
(sgkabo, vkabo) parts come from a completely independent signature scheme!

We will use the merging property to enable the unhardwiring of each step. In particular, our
original state signature scheme (which we will now call an A-type signature scheme) will be used
as before. However, in the hardwiring mode, we will divert all other branches of computation to a
new independent B-type signature scheme. The single computation path enforced by the A-type
scheme will enable us to hardwire our step as we desire. However, the alternate B-type branches
will allow us to transition back to the regular computational path by merging the A and B type
schemes together into one scheme. We elaborate on this below.
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Second attempt at our inductive argument. We will now reattempt our inductive argument
using the additional properties of splittable signatures. Our second attempt will nearly work except
for one issue we detail below. Recall that out overall goal is to hardwire some chosen step of the
program.

1. We begin with our original scheme. At each step i, the program verifies incoming messages
with verification keys (vkinp,i, vkA,i), and signs the outgoing state using signing key sgkA,i+1.
Note that we have renamed the state signature keys from (vkst,i, sgkst,i) to (vkA,i, sgkA,i) as
we will sometimes refer to them as A-type signature keys. We omit the signing keys sgkinp,i
for the inputs xi from the diagram as these are handled outside the program.

Step 1 Step 2 . . . Step i

Verify With (vkinp,1, vkA,1) (vkinp,2, vkA,2) . . . (vkinp,i, vkA,i)

Sign Using sgkA,2 sgkA,3 . . . sgkA,4

2. We will now introduce a new B type signature scheme up to and including step i − 1. In
particular, we will change our program so that it will first try verifying the state with the
usual A-type verification key, but if that fails, it will then try to verify with a B-type key. If
it verifies using the A-type key, it will sign the outgoing state with an A-type signature, and
if it verifies with the B-type key, it will sign the outgoing state with a B-type signature.

Step 1 Step 2 . . .

Verify With vkinp,1 &

{
vkA,1 first

vkB,1 second
vkinp,2 &

{
vkA,2 first

vkB,2 second
. . .

Sign Using
sgkA,2 if verified w/ A-type

sgkB,2 if verified w/ B-type

sgkA,3 if verified w/ A-type

sgkB,3 if verified w/ B-type
. . .

We do this by first introducing the B-type branch at all relevant steps into just the signing
phase of the program. We are able to make this initial change using the security of iO since we
only sign using B-type keys if we verified with B-type keys, and we have not yet added in any
B-type verification keys. We are then able to iteratively add in the B-type verification keys
starting from index i− 1 and traveling backwards to index 1. We do this by first introducing
the B-type verification branch at the chosen index using an always-reject verification key
vkB,rej (which cannot verify anything and thus will not change the program’s behavior). We
can then swap this with a real verification key since at that point in time, the corresponding
signing key is never used. This is because the corresponding signing key would only be used
if the previous step verified with B-type, but we are adding in the B-type verification keys
from larger index to smaller index, so we would not yet have added in the B-type verification
key to the previous step. We leave further details to the main proof.

3. Since the program only signs outgoing steps, it will never need to sign st1. Thus, we can
change the program’s signing step so that at step i = 0 (which is unused), if the outgoing
state is equal to st1, we will output a hardwired A-type signature σA,1 for st1. Otherwise, we
will sign with a B-type all-but-one signing key sgk′B,1 that can sign all messages except st1.

Step 0 Step 1 Step 2

Verify With vkinp,1 &

{
vkA,1 first

vkB,1 second
vkinp,2 &

{
vkA,2 first

vkB,2 second

Sign Using
σA,1 if st1
sgk′B,1 else

sgkA,2 if verified w/ A-type

sgkB,2 if verified w/ B-type

sgkA,3 if verified w/ A-type

sgkB,3 if verified w/ B-type
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4. Since we will now only only output one input signature and one A-type state signature for
stream index 1, we can use the properties of SSig to swap (vkinp,1, vkA,1) with one-message
verification keys (vk∗inp,1, vk

∗
A,1) that can only verify x1 and st1 respectively. Additionally, since

we are using the all-but-one signing key sgk′B,1, we can also swap vkB,1 with an all-but-one
verification key vk′B,1 which can only verify messages not equal to st1.

Step 0 Step 1 Step 2

Verify With vk∗inp,1 &

{
vk∗A,1 first

vk′B,1 second
vkinp,2 &

{
vkA,2 first

vkB,2 second

Sign Using
σA,1 if st1
sgk′B,1 else

sgkA,2 if verified w/ A-type

sgkB,2 if verified w/ B-type

sgkA,3 if verified w/ A-type

sgkB,3 if verified w/ B-type

5. Now, we will only sign using sgkA,2 if we verified using the A-type verification key. However,
since (vk∗inp,i, vk

∗
A,i) can only verify (x1, st1), then we will only need to use sgkA,2 if the outgoing

state is st2 where (y1, st2) = f(x1, st1). Thus, we can replace sgkA,2 with a hardwired signature
σA,2 for st2.

Step 0 Step 1 Step 2

Verify With vk∗inp,1 &

{
vk∗A,1 if st1

vk′B,1 else
vkinp,2 &

{
vkA,2 first

vkB,2 second

Sign Using
σA,1 if st1
sgk′B,1 else

σA,2 if st2
sgkB,2 if verified w/ B-type

sgkA,3 if verified w/ A-type

sgkB,3 if verified w/ B-type

6. We would next like to use the properties of SSig to replace sgkB,2 with an all-but-one signing
key sgk′B,2 that can sign every value except st2.

Step 0 Step 1 Step 2

Verify With vk∗inp,1 &

{
vk∗A,1 if st1

vk′B,1 else
vkinp,2 &

{
vkA,2 first

vkB,2 second

Sign Using
σA,1 if st1
sgk′B,1 else

σA,2 if st2
sgk′B,2 else

sgkA,3 if verified w/ A-type

sgkB,3 if verified w/ B-type

Here lies the issue. In order to perform this swap, we need to ensure that sgkB,2 would never
be used to sign st2. Otherwise, the program’s behavior will change. Now, we will only sign
using sgkB,2 if we verified with the B-type verification key vk′B,1. Since vk′B,1 cannot verify
st1, we know that the incoming state cannot be st1. Unfortunately, this is not enough to
guarantee that the outgoing state cannot be st2 (even if we are additionally ensured that
the input value is x1). This is because there could be another state st′ ̸= st1 such that
f(x1, st1) = f(x1, st

′) = (y1, st2) for some y1. Thus, we cannot perform the swap. While this
an important issue we must resolve later, let us suppose for now that this was possible to see
how the proof would progress.

7. We can now clean up the hardwiring of the first signature scheme by using the merging
properties of SSig to merge (σA,1, sgk

′
B,1, vk

∗
A,1, vk

′
B,1) into (sgkA,1, vkA,1). We can additionally

restore vk∗inp,1 to the regular vkinp,1.
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Step 0 Step 1 Step 2

Verify With (vkinp,1, vkA,1) vkinp,2 &

{
vkA,2 first

vkB,2 second

Sign Using sgkA,1
σA,2 if st2
sgk′B,2 else

sgkA,3 if verified w/ A-type

sgkB,3 if verified w/ B-type

We have now finished sliding our window up by one step from the signing step of step 0 to
the signing step of step 1.

8. Continuing in this fashion by repeating steps 3-7 with appropriate indexing, we can reach the
signing phase of step i− 1. Note that since we originally only added in B type signatures up
to and including step i− 1, they are not present at step i and beyond.

. . . Step i− 1 Step i Step i+ 1 . . .

Verify With . . . (vkinp,i−1, vkA,i−1) (vkinp,i, vkA,i) (vkinp,i+1, vkA,i+1) . . .

Sign Using . . .
σA,i if sti
sgk′B,i else

sgkA,i+1 sgkA,i+2 . . .

9. We can then use the properties of the splittable signature to swap (vkinp,i, vkA,i) with one-
message verification keys (vk∗inp,i, vk

∗
A,i) that only verify xi and sti respectively.

. . . Step i− 1 Step i Step i+ 1 . . .

Verify With . . . (vkinp,i−1, vkA,i−1) (vk∗inp,i, vk
∗
A,i) (vkinp,i+1, vkA,i+1) . . .

Sign Using . . .
σA,i if sti
sgk′B,i else

sgkA,i+1 sgkA,i+2 . . .

Now, we have reached the stage we desired in that we have enforced that the only valid inputs at
step i are (xi, sti). Thus, we only need to hardwire one value at step i. Additionally, this process
never required us to hardwire more than a constant number of values at a time.

After completing the hardwiring of step i, we are unfortunately left with a lingering B-type all-
but-one signing key at step i− 1 along with one-message verification keys (vk∗inp,i, vk

∗
A,i). However,

to rid ourselves of these extraneous elements, we can simply do all of the steps up to this point
in reverse. This would then complete the hardwiring process if not for the issue present in step 6,
which is the final issue we must resolve.

Using an iterator to enforce a step of computation. Let us consider the problem present
in step 6. We are trying to replace the B-type signing key sgkB,2 with an all-but-one signing key
sgk′B,2 which can sign every message except st2.

Step 0 Step 1 Step 2

Verify With vk∗inp,1 &

{
vk∗A,1 if st1

vk′B,1 else
vkinp,2 &

{
vkA,2 first

vkB,2 second

Sign Using
σA,1 if st1
sgk′B,1 else

σA,2 if st2
sgkB,2 if verified w/ B-type

sgk′B,2 else

sgkA,3 if verified w/ A-type

sgkB,3 if verified w/ B-type

Now, since we are using vk∗inp,1 and vk′B,1, we know that we will only verify with a B-type verification
key at step 1 (and thus will only sign using a B-type signing key at step 1) if the input is x1 and
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the incoming state is not equal to st1. Unfortunately, this does not tell us much about the outgoing
state to be signed. In particular, since the streaming function need not be injective, there could be
some state st′ ̸= st1 such that f(x1, st

′) = f(x1, st1) = (y1, st2) for some y1. But this means that
we could have a B-type branch where the outgoing state at step 1 could be equal to st2! This is a
problem since we are only able to swap to the all-but-one signing key sgk′B,2 if we are able to ensure
that it will not be used to sign st2. However, as we have just shown, this is not necessarily true.

What we would like to do is to enforce some form of injectivity between the incoming and
outgoing messages. In particular, if we could have somehow ensured that the outgoing state is only
equal to st2 if the incoming message was (x1, st1), then our proof would have worked. Since this is
not true in general, we need to add another method of enforcement.

To solve this issue, we will use a cryptographic iterator. An iterator consists of a small state
that is updated in an iterative fashion as messages are received. The iterator has two important
properties.

1. The iterator remains small regardless of how many messages have been iterated into it.

2. The normal public parameters are computationally indistinguishable from special enforcing
parameters which ensure that one chosen iterator state can only be obtained as the outcome
of an update to precisely one other state-message pair.

In particular, for each i, let itri be an iterator state which has states st1, . . . , sti iterated into it.
Then, the second property means that we can indistinguishably change the iterator parameters to
enforce that for some chosen i, we can only obtain itri as the output of the iterator update operation
if it was performed on the inputs sti and itri−1. In other words, we can enforce that a specified
output itri can only be obtained as a result of a specific input (sti, itri−1). This is precisely what
we need!

To incorporate the iterator into our construction, we will modify our program so that at each
step i, the program additionally takes in iterator state itri−1, incorporates state sti into the iterator,
and then outputs the new iterator state itri. In addition, we will have both our A and B type
signature schemes sign and verify the iterator state in addition to the streaming state.

This gives us the following construction, which is in fact our final construction of Pre-One-sFE.
Note that this construction is similar to our simple iO-based construction, but has been augmented
with splittable signatures and iterators in order to allow us to hardwire (and un-hardwire) steps of
computation into the obfuscated program.

Final Construction of Pre-One-sFE

Let iO be an indistinguishability obfuscation scheme, SKE be a secret key encryption
scheme, PRF be a (puncturable) pseudorandom function, SSig be a splittable signature scheme,
and Itr be a cryptographic iterator.

• We use PRF keysK,Kinp,Kst to generate SKE keys ki, stream signature keys (sgkinp,i, vkinp,i),

and state signature keys (sgkst,i, vkst,i) respectively for i ∈ [2λ].

• To encrypt stream value xi, we encrypt xi using key ki and sign the resulting ciphertext
using sgkinp,i to get (ctinp,i, σinp,i), which we output.

• To create a function key for f , we encrypt state st1 using key k1 to get ctst,1. We run
the iterator setup algorithm to get public parameters pp and initial iterator state itrst,0.
We then sign (1, ctst,1, itrst,0) with sgkst,1 to get σst,1. We output (ctst,1, σst,1, itrst,0) along
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with an obfuscation of the following program:

Program3(i, ctinp,i, σinp,i, ctst,i, σst,i, itrst,i−1)
Hardwired values: function f , PRF keys K,Kinp,Kst, iterator parameters pp

1. Compute Sig keys vkinp,i, vkst,i, sgkst,i+1 from PRF keys Kinp,Kst.

2. If Sig.Verify(vkinp,i, ctinp,i, σinp,i) = 0 or Sig.Verify(vkst,i, (i, ctst,i, itrst,i−1), σst,i) =
0, output ⊥.

3. Compute SKE keys ki, ki+1 from PRF key K.

4. Decrypt (ctinp,i, ctst,i) with ki to get (xi, sti).

5. Compute (yi, sti+1) = f(xi, sti).

6. Encrypt sti+1 with ki+1 to get ctst,i+1.

7. itrst,i = Itr.Iterate(pp, itrst,i−1, (i, ctst,i)).

8. Sign (i+ 1, ctst,i+1, itri) with sgkst,i+1 to get σst,i+1.

9. Output (yi, ctst,i+1, σst,i+1, itrst,i).

• To decrypt, we iteratively run the obfuscated program on (i, ctinp,i, σinp,i, ctst,i, σst,i, itrst,i−1)
to get (yi, ctst,i+1, σst,i+1, itrst,i). It is easy to see that the output values yi will be correct.

Now, let us see how this construction enables us to fix step 6. Since the A and B type signature
schemes additionally sign the iterator, then when we split these schemes, we will split them on a
message containing both the iterator and the current state.

Step 0 Step 1 Step 2

Verify With vk∗inp,1 &

{
vk∗A,1 if (st1, itr0)

vk′B,1 else
vkinp,2 &

{
vkA,2 first

vkB,2 second

Sign Using
σA,1 if (st1, itr0)

sgk′B,1 else

σA,2 if (st2, itr1)
sgkB,2 if verified w/ B-type

sgk′B,2 else

sgkA,3 if verified w/ A-type

sgkB,3 if verified w/ B-type

Now, we wish to replace sgkB,2 with an all-but-one verification key sgk′B,2 that can sign all messages
except (st2, itr1). First, we can use the enforcing properties of the iterator to ensure that itr1 will
only appear in the output if the input contains (st1, itr0). Then, since we are using an all-but-one
verification key vk′B,1, we know that we will only verify with a B-type key at step 1 if the input
does not contain (st1, itr0). But due to the iterator enforcement, this means that the output of the
B-type branch cannot contain itr1! Therefore, sgkB,2 will never need to sign (st2, itr1) which means
we can perform the swap to sgk′B,2 as desired. This completes our fix of step 6, completing the
proof.

2.2.4 Proving Security

Now that we can hardwire steps into the program, we can finally prove security. At a high level,
the benefits of hardwiring a step into the program is that it allows the program to compute the
hardwired step without needing to know any SKE keys. Since the program only uses SKE key ki
in step i − 1 (to encrypt the outgoing state) and step i (to decrypt the input values), then if we
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hardwire both steps i− 1 and i, we can employ punctured programming techniques9 to remove key
ki from the program. This allows us to swap the ith ciphertext from an encryption of stream x(0)

to an encryption of stream x(1).
In more detail, we prove security using the following hybrid argument.

1. Our first hybrid is the security game for the adversary in which we encrypt stream x(0) =

x
(0)
1 x

(0)
2 . . . x

(0)
n . In the diagram below, we have depicted the SKE ciphertexts for stream x(0),

which are produced during encryption. We have also depicted the SKE state ciphertexts
which would be output by the obfuscated program during decryption. These correspond to
the intermediate states produced by computing the streaming function f on x(0). Observe
that for i ∈ [n+ 1], the program only needs to use SKE key ki at steps i− 1 and i.

9In particular, we will need to first hardwire ki into steps i − 1 and i. We can then puncture the PRF key K at
index i to remove the dependency between K (when evaluated at points j ̸= i) and ki. This ensures that the only
steps of the program that depend on ki are steps i − 1 and i. Thus, once the inputs and outputs of these steps are
hardwired, we can remove ki.
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2. We now hardwire step 1 into the program using the techniques from the previous section. To
hardwire step 1, we will need to hardwire both the input at step 1, which includes ciphertexts

of x
(0)
1 and st

(0)
1 , and the output at step 1, which includes a ciphertext of st

(0)
2 .

3. Since step 1 is hardwired, it no longer needs to know k1. But since step 1 was the only step
which used k1, we can use standard techniques to remove k1 from the obfuscated program.

This allows us to swap the SKE ciphertexts of x
(0)
1 and st

(0)
1 for ciphertexts of x

(1)
1 and st

(1)
1

respectively.
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4. We now hardwire step 2 into the program. To hardwire step 2, we will need to hardwire both

the input at step 2, which includes ciphertexts of x
(0)
2 and st

(0)
2 , and the output at step 2,

which includes a ciphertext of st
(0)
3 .

5. Since steps 1 and 2 are hardwired, these steps no longer need to know k2. But since these
steps were the only steps which used k2, we can use standard techniques to remove k2 from

the obfuscated program. This allows us to swap the SKE ciphertexts of x
(0)
2 and st

(0)
2 for

ciphertexts of x
(1)
2 and st

(1)
2 respectively.
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6. We now un-hardwire step 1 using the techniques from the previous section. This works since
the hardwired input at step 1 corresponds to the hardwired output at step 1.

7. Next, we hardwire step 3 into the program. To hardwire step 3, we will need to hardwire

both the input at step 3, which includes ciphertexts of x
(0)
3 and st

(0)
3 , and the output at step

3, which includes a ciphertext of st
(0)
4 .

32



8. Since steps 2 and 3 are hardwired, these steps no longer need to know k3. But since these
steps were the only steps which used k3, we can use standard techniques to remove k3 from

the obfuscated program. This allows us to swap the SKE ciphertexts of x
(0)
3 and st

(0)
3 for

ciphertexts of x
(1)
3 and st

(1)
3 respectively.

9. We now un-hardwire step 2. This works since the hardwired input at step 2 corresponds to
the hardwired output at step 2.
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10. We continue in a similar manner for the remaining steps i ∈ [n]. On each iteration i, we
hardwire step i into the program, exchange the ith ciphertexts, and then un-hardwire step
i − 1 from the program. After iteration i = n, we have swapped every ciphertext of x(0) to
a ciphertext of x(1). We are now in a hybrid where we encrypt stream x(1) for i ≤ n and
have step n hardwired into the program with input corresponding to x(1) and output state
corresponding to x(0).

All that remains is to un-hardwire step n. Unfortunately, we are unable to do this as we can
only un-hardwire steps where the inputs and outputs match. However, the input at step n
corresponds to stream x(1) and the output at step n corresponds to the final output state

st
(0)
n+1 of the original stream x(0). Furthermore, we cannot swap the state ciphertext for step

n+ 1 since this would require hardwiring step n+ 1 (which depends on key kn+1), which we
cannot do since we only have stream inputs up to step n.

We deal with this problem in two separate ways depending on whether we are using Pre-One-sFE
as a standalone construction or as a component in the combined construction of One-sFE.

• Using Pre-One-sFE as a standalone scheme.
When using Pre-One-sFE as a standalone scheme, we are only able to prove security for
function class F⊥. If f ∈ F⊥, we can add an additional dummy value of ⊥ to the end
of both challenge streams which ensures that the final output state of both streams will
be ⊥. Then, we can un-hardwire the last step since the inputs and outputs will match.
We will then be left with the original security game, but where we now encrypt stream
x(1).

• Using Pre-One-sFE as a component of One-sFE.
If t∗ is the length of the challenge stream before the first function query, then at index t∗,
rather than swapping the stream values to those of the other stream, we instead replace
them with (⊥,⊥). This allows us to use Post-One-sFE to deal with the problematic
final state at index t∗ + 1 since setting the midway values to (⊥,⊥) breaks the chain
of dependencies between ciphertexts given before the function query (those at indices
i ≤ t∗) and ciphertexts given after the function query (those at indices i ≥ t∗ + 1).
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However, we can no longer remove the hardwiring at step t∗ since computing on (⊥,⊥)
would result in an incorrect computation. Therefore, in our actual security proof, rather
than moving from an encryption of stream x(0) to an encryption of stream x(1), we
instead move from an encryption of stream x(b) for a random bit b to a hybrid which
is independent of b. For indices i ≤ t∗, this hybrid corresponds to a non-standard
encryption of stream x(0) which maintains the hardwiring of step t∗ and uses (⊥,⊥) for
its stream values at index t∗.
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3 Preliminaries

Throughout, we will use λ to denote the security parameter.

Notation.

• We say that a function f(λ) is negligible in λ if f(λ) = λ−ω(1), and we denote it by f(λ) =
negl(λ).

• We say that a function g(λ) is polynomial in λ if g(λ) = p(λ) for some fixed polynomial p,
and we denote it by g(λ) = poly(λ).

• For n ∈ N, we use [n] to denote {1, . . . , n}.

• If R is a random variable, then r ← R denotes sampling r from R. If T is a set, then i← T
denotes sampling i uniformly at random from T .

Definition 3.1 (Statistical Distance). Let D1 and D2 be two distributions with support in X. The
statistical distance between D1 and D2 is

∆(D1, D2) =
1

2

∑
x∈X

∣∣∣Pr[D1 = x]− Pr[D2 = x]
∣∣∣

Notation. Let A and B be two random variables with support in X. We use ∆(A,B) to denote
the statistical distance ∆(PA, PB) between the underlying distributions of the random variables.

We use the standard definitions of PRGs, PRFs, and symmetric key encryption (SKE) with pseudo-
random ciphertexts. We formally define these notions in Appendix B.1.

3.1 Indistinguishability Obfuscation

The recent work of [JLS22] shows how to construct iO for P/Poly from well-established computa-
tional assumptions (see Theorem 1.2).

Definition 3.2 (Indistinguishability Obfuscation (iO) for Circuits [JLS21]). A uniform PPT al-
gorithm iO is an indistinguishability obfuscator for polynomial-sized circuits if the following holds:

• Completeness: For every λ ∈ N, every circuit C with input length n, and every input
x ∈ {0, 1}n,

Pr[C ′(x) = C(x) : C ′ ← iO(1λ, C)] = 1

• Indistinguishability: For every two ensembles {C0,λ}, {C1,λ} of polynomial-sized circuits
that have the same size, input length, and output length, and are functionally equivalent, that
is, ∀λ ∈ N, C0,λ(x) = C1,λ(x) for every input x, then for all polynomial-time, non-uniform
adversaries A, there exists a negligible function µ, such that for all λ,∣∣∣Pr[A(1λ, iO(1λ, C0,λ))] = 1− Pr[A(1λ, iO(1λ, C1,λ))] = 1

∣∣∣ ≤ µ(λ)
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3.2 Puncturable Pseudorandom Function

A puncturable pseudorandom function (PPRF), first termed by Sahai and Waters [SW14], is a
PRF augmented with additional algorithms that allow the user to puncture the key at a point of
their choice. The punctured key can be used to correctly evaluate the PRF on all points not equal
to the punctured point. Additionally, pseudorandomness holds at the punctured point even if the
punctured key is given out.

As shown in [SW14,BW13,BGI14,KPTZ13], the GGM tree-based construction of PRFs from
OWFs [GGM86] can be readily modified to build a PPRF. Thus, we can build PPRFs from any
OWF.

Definition 3.3 (Puncturable Pseudorandom Function (PPRF)). A puncturable pseudorandom
function family with key space K = {Kλ,n,m}λ,n,m∈N is a tuple of PPT algorithms PPRF = (PPRF.Setup,
PPRF.Eval,PPRF.Punc,PPRF.EvalPunc) where

• PPRF.Setup(1λ, 1n, 1m) is a randomized algorithm that takes as input the security parameter
λ, an input length n, and an output length m, and outputs a key K ∈ Kλ,n,m.

• PPRF.Eval(K,x) is a deterministic algorithm that takes as input a key K ∈ Kλ,n,m and an
input x ∈ {0, 1}n, and outputs a value y ∈ {0, 1}m.

• PPRF.Punc(K,x∗) is a randomized algorithm that takes as input a key K ∈ Kλ,n,m and an
input x∗ ∈ {0, 1}n, and outputs a punctured key K[x∗].

• PPRF.EvalPunc(K[x∗], x) is a deterministic algorithm that takes as input a punctured key
K[x∗] and an input x ∈ {0, 1}n, and outputs either a value y ∈ {0, 1}m or ⊥.

We require the scheme to satisfy correctness under puncturing, and selective pseudorandomness at
punctured points as defined below.

Remark 3.4. For convenience, we will sometimes combine PPRF.Eval and PPRF.EvalPunc into
one algorithm. This can be done by having the combined algorithm run PPRF.Eval if it receives
a regular key K and run PPRF.EvalPunc if it receives a punctured key K[x∗] since the two types
of keys are easily distinguishable in the construction from [SW14]. When using the combined
algorithm, we will overload notation and refer to it simply by PPRF.Eval.

Definition 3.5 (Correctness under Puncturing). For all λ, n,m ∈ N and all x∗ ∈ {0, 1}n, if
K ← PPRF.Setup(1λ, 1n, 1m) and K[x∗]← PPRF.Punc(K,x∗), then

PPRF.EvalPunc(K[x∗], x) =

{
PPRF.Eval(K,x) if x ̸= x∗

⊥ else

Definition 3.6 (Selective Pseudorandomness at Punctured Points). There exists a negligible func-
tion µ such that for all λ ∈ N and all PPT adversaries A,∣∣∣Pr[ExptPPRFA (1λ, 0) = 1]− Pr[ExptPPRFA (1λ, 1) = 1]

∣∣∣ ≤ µ(λ)
where for each b ∈ {0, 1} and λ ∈ N, we define
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ExptPPRFA (1λ, b)

1. Parameters: A takes as input 1λ, and outputs an input size 1n, an output size 1m, and
a message x∗ ∈ {0, 1}n.

2. Compute Values:

(a) K ← PPRF.Setup(1λ, 1n, 1m).

(b) K[x∗]← PPRF.Punc(K,x∗).

(c) If b = 0, send (y,K[x∗]) to A where y = PPRF.Eval(K,x∗).

(d) If b = 1, send (r,K[x∗]) to A where r ← {0, 1}m.

3. Experiment Outcome: A outputs a bit b′ which is the output of the experiment.

3.3 Iterators

The following background is taken from Koppula et al. [KLW15] who construct iterators from
iO for P/Poly and OWFs.10 Informally speaking, a cryptographic iterator consists of a small
state that is updated in an iterative fashion as messages are received. An update to incorporate
a new message given the current state is performed with the help of some public parameters.
Since states will remain relatively small regardless of the number of messages that have been
iteratively incorporated, there will in general be many sequences of messages that lead to the
same state. However, its security properties require that the normal public parameters should be
computationally indistinguishable from specially constructed “enforcing” parameters which ensure
that a particular single state can only be obtained as the outcome of an update to precisely one
other state-message pair. Note that this enforcement is a very localized property to a specific state,
and hence can be achieved information-theoretically when we fix ahead of time where exactly this
enforcement is desired.

Definition 3.7 (Iterator [KLW15]). A cryptographic iterator with state size s(·) is a tuple of PPT
algorithms Itr = (Itr.Setup, Itr.SetupEnforce, Itr.Iterate) where

• Itr.Setup(1λ, 1n, B) is a randomized algorithm that takes as input the security parameter λ, a
message size n, and a bound B (in binary) of the number of iterations, and outputs public
parameters pp and an initial iterator state itr0 ∈ {0, 1}s(λ,n,log(B)).

• Itr.SetupEnforce(1λ, 1n, B, {mi}i∈[k]) is a randomized algorithm that takes as input the security
parameter λ, a message size n, a bound B (in binary) of the number of iterations, and
messages {mi}i∈[k] where k ≤ B and each mi ∈ {0, 1}n. It outputs public parameters pp and

an initial iterator state itr0 ∈ {0, 1}s(λ,n,log(B)).

• Itr.Iterate(pp, itrin,m) is a deterministic algorithm that takes as input public parameters pp,
an iterator state itrin ∈ {0, 1}s(λ,n,log(B)), and a message m ∈ {0, 1}n, and outputs an iterator
state itrout ∈ {0, 1}s(λ,n,log(B)).

Security requires that the iterator satisfies indistinguishability of setup and the enforcing property
defined below.

10The construction of [KLW15] additionally uses puncturable PRFs and a CPA secure PKE, which can be constructed
from iO for P/Poly and OWFs.
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Definition 3.8 (Indistinguishability of Setup). There exists a negligible function µ such that for
all λ ∈ N and all PPT adversaries A,∣∣∣Pr[ExptItr-SetupA (1λ, 0) = 1]− Pr[ExptItr-SetupA (1λ, 1) = 1]

∣∣∣ ≤ µ(λ)
where for each b ∈ {0, 1} and λ ∈ N, we define

ExptItr-SetupA (1λ, b)

1. Parameters: A takes as input 1λ and outputs a message size 1n, a bound B ∈ Θ(2λ),
and messages {mi}i∈[k] for some k ≤ B and where each mi ∈ {0, 1}n.

2. Compute Values:

(a) (pp, itr0)← Itr.Setup(1λ, 1n, B).

(b) (pp′, itr′0)← Itr.SetupEnforce(1λ, 1n, B, {mi}i∈[k]).
(c) If b = 0, send (pp, itr0) to A.
(d) If b = 1, send (pp′, itr′0) to A.

3. Experiment Outcome: A outputs a bit b′ which is the output of the experiment.

Definition 3.9 (Enforcing). Let λ, n ∈ N, B ∈ Θ(2λ), k < B, and {mi}i∈[k] where each mi ∈
{0, 1}n. Define

• (pp, itr0)← Itr.SetupEnforce(1λ, 1n, B, {mi}i∈[k]).

• For i ∈ [k], itri = Itr.Iterate(pp, itri−1,mi).

Then, Itr is enforcing if for all (itr′,m′) ∈ {0, 1}s(λ,n,log(B)) × {0, 1}n,

itrk = Itr.Iterate(pp, itr′,m′) =⇒ (itr′,m′) = (itrk−1,mk)

Note that this is an information-theoretic property.

3.4 Splittable Signatures

The following background is taken from Koppula et al. [KLW15] who construct splittable signatures
from iO for P/Poly and injective PRGs.11 A splittable signature scheme is essentially a normal
signature scheme augmented by some additional algorithms that produce alternative signing and
verification keys with differing capabilities. More precisely, there are “all-but-one” signing and
verification keys which work correctly for all messages except for a specific one, as well as “one”
signing and verification keys which work only for a particular message. Additionally, there are
“reject” verification keys which always reject signatures.

Definition 3.10 (Splittable Signature (SSig) [KLW15]). A splittable signature scheme with signa-
ture size s(·) is a tuple of PPT algorithms SSig = (SSig.Setup,SSig.Sign,SSig.Verify,SSig.Split, SSig.SignAbo)
where

11The construction of [KLW15] additionally uses a puncturable PRF which can be constructed from OWFs (which
are implied by PRGs).
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• SSig.Setup(1λ, 1n) is a randomized algorithm that takes as input the security parameter λ
and a message size n, and outputs a signing key sgk, a verification key vk, and a rejecting
verification key vkrej.

• SSig.Sign(sgk,m) is a deterministic algorithm that takes as input a signing key sgk and a
message m ∈ {0, 1}n and outputs a signature σ ∈ {0, 1}s(λ,n).

• SSig.Verify(vk,m, σ) is a deterministic algorithm that takes as input a verification key vk, a
message m ∈ {0, 1}n, and a signature σ ∈ {0, 1}s(λ,n), and outputs a bit b ∈ {0, 1}.

• SSig.Split(sgk,m∗) is a randomized algoirithm that takes as input a signing key sgk and a
message m∗ ∈ {0, 1}n, and outputs a signature σone = SSig.Sign(sgk,m∗), a one-message
verification key vkone, an all-but-one signing key sgkabo, and an all-but-one verification key
vkabo.

• SSig.SignAbo(sgkabo,m) is a deterministic algorithm that takes as input an all-but-one signing
key sgkabo and a message m ∈ {0, 1}n, and outputs a signature σ ∈ {0, 1}s(λ,n).

SSig must satisfy correctness and security as defined below.

Remark 3.11. For convenience, we will sometimes combine SSig.Sign and SSig.SignAbo into one
algorithm. This can be done by having the combined algorithm run SSig.Sign if it receives a regular
signing key sgk and run SSig.SignAbo if it receives an all-but-one signing key sgkabo since the two
types of signing keys are easily distinguishable in the construction from [KLW15]. When using the
combined algorithm, we will overload notation and refer to it simply by SSig.Sign.

Correctness. For any λ, n ∈ N, let message m∗ ∈ {0, 1}n, (sgk, vk, vkrej) ← SSig.Setup(1λ, 1n),
and (σone, vkone, sgkabo, vkabo) ← SSig.Split(sgk,m∗). Then, we require the following correctness
properties:

1. Regular Correctness: ∀m ∈ {0, 1}n, SSig.Verify(vk,m,SSig.Sign(sgk,m)) = 1.

2. Correctness of Split Keys on Appropriate Values:

(a) σone = SSig.Sign(sgk,m∗).

(b) ∀m ̸= m∗ ∈ {0, 1}n, SSig.SignAbo(sgkabo,m) = SSig.Sign(sgk,m).

(c) ∀σ ∈ {0, 1}s(λ,n), SSig.Verify(vkone,m∗, σ) = SSig.Verify(vk,m∗, σ).

(d) ∀m ̸= m∗ ∈ {0, 1}n, σ ∈ {0, 1}s(λ,n), SSig.Verify(vkabo,m, σ) = SSig.Verify(vk,m, σ).

3. Restrictions on Split Keys:

(a) ∀m ̸= m∗ ∈ {0, 1}n, σ ∈ {0, 1}s(λ,n), SSig.Verify(vkone,m, σ) = 0.

(b) ∀σ ∈ {0, 1}s(λ,n), SSig.Verify(vkabo,m∗, σ) = 0.

4. vkrej Always Rejects: ∀m ∈ {0, 1}n, σ ∈ {0, 1}s(λ,n), SSig.Verify(vkrej,m, σ) = 0.
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Security. SSig must satisfy vkrej indistinguishability, vkone indistintinguishability, vkabo indistin-
guishability, and splitting indistinguishability as defined below:

Definition 3.12 (vkrej Indistinguishability). There exists a negligible function µ such that for all
λ ∈ N and all PPT adversaries A,∣∣∣Pr[ExptSSig-REJA (1λ, 0) = 1]− Pr[ExptSSig-REJA (1λ, 1) = 1]

∣∣∣ ≤ µ(λ)
where for each b ∈ {0, 1} and λ ∈ N, we define

ExptSSig-REJA (1λ, b)

1. Parameters: A takes as input 1λ and outputs a message size 1n.

2. Compute Values:

(a) (sgk, vk, vkrej)← SSig.Setup(1λ, 1n).

(b) If b = 0, send vk to A.
(c) If b = 1, send vkrej to A.

3. Experiment Outcome: A outputs a bit b′ which is the output of the experiment.

Definition 3.13 (vkone Indistinguishability). There exists a negligible function µ such that for all
λ ∈ N and all PPT adversaries A,∣∣∣Pr[ExptSSig-ONE

A (1λ, 0) = 1]− Pr[ExptSSig-ONE
A (1λ, 1) = 1]

∣∣∣ ≤ µ(λ)
where for each b ∈ {0, 1} and λ ∈ N, we define

ExptSSig-ONE
A (1λ, b)

1. Parameters: A takes as input 1λ and outputs a message size 1n and a message m∗ ∈
{0, 1}n.

2. Compute Values:

(a) (sgk, vk, vkrej)← SSig.Setup(1λ, 1n).

(b) (σone, vkone, sgkabo, sgkone)← SSig.Split(sgk,m∗).

(c) If b = 0, send (σone, vk) to A.
(d) If b = 1, send (σone, vkone) to A.

3. Experiment Outcome: A outputs a bit b′ which is the output of the experiment.

Definition 3.14 (vkabo Indistinguishability). There exists a negligible function µ such that for all
λ ∈ N and all PPT adversaries A,∣∣∣Pr[ExptSSig-ABOA (1λ, 0) = 1]− Pr[ExptSSig-ABOA (1λ, 1) = 1]

∣∣∣ ≤ µ(λ)
where for each b ∈ {0, 1} and λ ∈ N, we define
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ExptSSig-ABOA (1λ, b)

1. Parameters: A takes as input 1λ and outputs a message size 1n and a message m∗ ∈
{0, 1}n.

2. Send Values:

(a) (sgk, vk, vkrej)← SSig.Setup(1λ, 1n).

(b) (σone, vkone, sgkabo, sgkone)← SSig.Split(sgk,m∗).

(c) If b = 0, send (sgkabo, vk) to A.
(d) If b = 1, send (sgkabo, vkabo) to A.

3. Experiment Outcome: A outputs a bit b′ which is the output of the experiment.

Definition 3.15 (Splitting Indistinguishability). There exists a negligible function µ such that for
all λ ∈ N and all PPT adversaries A,∣∣∣Pr[ExptSSig-SplitA (1λ, 0) = 1]− Pr[ExptSSig-SplitA (1λ, 1) = 1]

∣∣∣ ≤ µ(λ)
where for each b ∈ {0, 1} and λ ∈ N, we define

ExptSSig-SplitA (1λ, b)

1. Parameters: A takes as input 1λ and outputs a message size 1n and a message m∗ ∈
{0, 1}n.

2. Compute Values:

(a) (sgk, vk, vkrej)← SSig.Setup(1λ, 1n).

(b) (σone, vkone, sgkabo, sgkone)← SSig.Split(sgk,m∗).

(c) (sgk′, vk′, vk′rej)← SSig.Setup(1λ, 1n).

(d) (σ′one, vk
′
one, sgk

′
abo, sgk

′
one)← SSig.Split(sgk′,m∗).

(e) If b = 0, send (σone, vkone, sgkabo, vkabo) to A.
(f) If b = 1, send (σ′one, vk

′
one, sgkabo, vkabo) to A.

3. Experiment Outcome: A outputs a bit b′ which is the output of the experiment.

3.5 Functional Encryption

Here we give some fundamental definitions for functional encryption (FE) schemes. First, we define
a class of functions parameterized by function size, input length, and output length.

Definition 3.16 (Function Class). The function class F [ℓF , ℓX , ℓY ] is the set of all functions f
that have a description f̂ ∈ {0, 1}ℓF , take inputs in {0, 1}ℓX , and output values in {0, 1}ℓY .
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3.5.1 Public-Key Functional Encryption

Definition 3.17 (Public-Key Functional Encryption). A public-key functional encryption scheme
for P/Poly is a tuple of PPT algorithms FE = (Setup,Enc,KeyGen,Dec) defined as follows:12

• Setup(1λ, 1ℓF , 1ℓX , 1ℓY ): takes as input the security parameter λ, a function size ℓF , an input
size ℓX , and an output size ℓY , and outputs the master public key mpk and the master secret
key msk.

• Enc(mpk, x): takes as input the master public key mpk and a message x ∈ {0, 1}ℓX , and
outputs an encryption ct of x.

• KeyGen(msk, f): takes as input the master secret key msk and a function f ∈ F [ℓF , ℓX , ℓY ],
and outputs a function key skf .

• Dec(skf , ct): takes as input a function key skf and a ciphertext ct, and outputs a value
y ∈ {0, 1}ℓY .

FE satisfies correctness if for all polynomials p, there exists a negligible function µ such that for
all λ ∈ N, all ℓF , ℓX , ℓY ≤ p(λ), all x ∈ {0, 1}ℓX , and all f ∈ F [ℓF , ℓX , ℓY ],

Pr

Dec(skf , ctx) = f(x) :
(mpk,msk)← Setup(1λ, 1ℓF , 1ℓX , 1ℓY )

ctx ← Enc(mpk, x)
skf ← KeyGen(msk, f)

 ≥ 1− µ(λ).

We now define adaptive security.

Definition 3.18 (Adaptive Security for Public-Key FE). A public-key functional encryption scheme
FE for P/Poly is adaptively secure if there exists a negligible function µ such that for all λ ∈ N and
every PPT adversary A,∣∣∣Pr[ExptFE-AdaptiveA (1λ, 0) = 1]− Pr[ExptFE-AdaptiveA (1λ, 1) = 1]

∣∣∣ ≤ µ(λ)
where for each b ∈ {0, 1} and λ ∈ N, we define

ExptFE-AdaptiveA (1λ, b)

1. Parameters: A takes as input 1λ, and outputs a function size 1ℓF , an input size 1ℓX ,
and an output size 1ℓY .

2. Setup: Compute (mpk,msk)← FE.Setup(1λ, 1ℓF , 1ℓX , 1ℓY ).

3. Public Key: Send mpk to A.

4. Function Queries Phase 1: The following can be repeated any polynomial number of
times:

(a) A outputs a function query f ∈ F [ℓF , ℓX , ℓY ]
(b) skf ← FE.KeyGen(msk, f)

(c) Send skf to A

5. Challenge Message Query:

12We also allow Enc,KeyGen, and Dec to additionally receive parameters 1λ, 1ℓF , 1ℓX , 1ℓY as input, but omit them
from our notation for convenience.
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(a) A outputs a challenge message pair (x0, x1) where x0, x1 ∈ {0, 1}ℓX .
(b) ct← FE.Enc(mpk, xb)

(c) Send ct to A.

6. Function Queries Phase 2: This is identical to Function Queries Phase 1.

7. Experiment Outcome: A outputs a bit b′ which is the output of the experiment.

Additionally, when running the experiment, we immediately halt and output 0 if the adversary
ever aborts or if it at any point f(x0) ̸= f(x1) for some message query (x0, x1) and function
query f submitted by the adversary.

Definition 3.19 (Other Public-Key FE Security Definitions). There are many variations of the
security definition. We list a few below:

• Semi-Adaptive Security: The adversary is required to make the message query before the
function queries. This is identical to adaptive security, except that we remove Function
Queries Phase 1 from the security game.

• Function-Selective Semi-Adaptive Security: The adversary is required to make all func-
tion queries before the message query. This is identical to adaptive security, except that we
remove Function Queries Phase 2 from the security game.

• Selective Security: The adversary is required to make the message query at the beginning
of the experiment before receiving the master public key. This is similar to adaptive security,
except that in the security game, we move the Challenge Message Query step so that it now
lies between the Setup step and the Public Key step. Note that the two function query phases
are now adjacent and can thus be merged into one step.

• Function-Selective Security: The adversary is required to make the function queries at the
beginning of the experiment before receiving the master public key. This is similar to adaptive
security, except that in the security game, we move the two function query steps so that they
now lie between the Setup step and the Public Key step. Note that the two function query
phases are now adjacent and can thus be merged into one step.

3.5.2 Secret-Key Functional Encryption

We can also define FE in the secret-key setting.

Definition 3.20 (Secret-Key Functional Encryption). Secret-key FE is the same as public-key FE
except that Setup only outputs a master secret key and Enc requires the master secret key instead
of the (non-existent) master public key. We formally define this in Appendix B.2.

Remark 3.21. We can analogously define our public-key definitions of security in the secret-
key setting. The only difference is that we do not give the (non-existent) master public key to
the adversary and will therefore allow the adversary to submit multiple challenge message pairs.
Note that in the secret-key setting, semi-adaptive security is equivalent to selective security, and
function-selective semi-adaptive security is equivalent to function-selective security. We formally
define these security definitions in Appendix B.2.

In the secret-key setting, we can also achieve function privacy. We define it now in the selective
security setting.
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Definition 3.22 (Function-Private-Selective-Security). A secret-key functional encryption scheme
FE for P/Poly is function-private-selective-secure if there exists a negligible function µ such that for
all λ ∈ N and every PPT adversary A,∣∣∣Pr[SKExptFE-Func-Priv-SelA (1λ, 0) = 1]− Pr[SKExptFE-Func-Priv-SelA (1λ, 1) = 1]

∣∣∣ ≤ µ(λ)
where for each b ∈ {0, 1} and λ ∈ N, we define

SKExptFE-Func-Priv-SelA (1λ, b)

1. Parameters: A takes as input 1λ, and outputs a function size 1ℓF , an input size 1ℓX ,
and an output size 1ℓY .

2. Setup: msk← FE.Setup(1λ, 1ℓF , 1ℓX , 1ℓY ).

3. Challenge Message Queries:

(a) A outputs challenge message pairs {(x0,i, x1,i)}i∈[T ] for some T chosen by the ad-

versary where x0,i, x1,i ∈ {0, 1}ℓX for all i ∈ [T ].

(b) For i ∈ [T ], compute cti ← FE.Enc(msk, xb,i) and send cti to A.

4. Function Queries: The following can be repeated any polynomial number of times:

(a) A outputs a function query pair (f0, f1) where f0, f1 ∈ F [ℓF , ℓX , ℓY ]
(b) skf ← FE.KeyGen(msk, fb)

(c) Send skf to A

5. Experiment Outcome: A outputs a bit b′ which is the output of the experiment.

Additionally, when running the experiment, we immediately halt and output 0 if the adversary
ever aborts or if it at any point f0(x0) ̸= f1(x1) for some message query (x0, x1) and function
query (f0, f1) submitted by the adversary.

3.5.3 Single-Key, Single-Ciphertext Security

Definition 3.23 (Single-Key, Single-Ciphertext Security). We can add the modifier “single-key.
single-ciphertext” to any of our security definitions. This is a weakening of the security definition
where we only require security against an adversary who is restricted to making only one function
query and submitting only one challenge message pair in the relevant security game.

3.5.4 Strong-Compactness

Additionally, we might also want our FE scheme to be strongly-compact.13 Intuitively, this means
that the sizes and running times of the setup and encryption algorithms are independent of the
sizes of the circuits for which function keys are produced.

Definition 3.24 (Strong-Compactness). An FE scheme FE = (FE.Setup,FE.Enc,FE.KeyGen,FE.Dec)
for P/Poly is said to be strongly-compact if there exist PPT algorithms FE.Setup∗,FE.Enc∗ such

13We call it strong-compactness since the usual notion of compactness found in the literature only requires the
encryption algorithm to not grow with the function size.
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that for all polynomials p, for all large enough λ, ℓX , we have that for all ℓF , ℓY ≤ p(λ + ℓX ), the
following holds:

• FE.Setup(1λ, 1ℓF , 1ℓX , 1ℓY ) is identically distributed to FE.Setup∗(1λ, 1ℓX )

• For all mpk← FE.Setup(1λ, 1ℓF , 1ℓX , 1ℓY ) and all x ∈ {0, 1}ℓX ,
FE.Enc(1λ, 1ℓF , 1ℓX , 1ℓY ,mpk, x) is identically distributed to FE.Enc∗(1λ, 1ℓX ,mpk, x)

We will often abuse notation and write FE.Setup to mean FE.Setup∗ and write FE.Enc to mean
FE.Enc∗.

3.6 Streaming Functional Encryption

Guan, Korb, and Sahai [GKS23] define streaming functional encryption (sFE) as functional cn-
cryption (FE) for a class of streaming functions.

3.6.1 Streaming Functions

Definition 3.25 (Streaming Function [GKS23]). A streaming function with state space S, input
space X , output space Y, and starting state14 st1 ∈ S is a function f : X × S → Y × S.

• The output of f on x = x1 . . . xn ∈ X n (denoted f(x)) is defined to be y = y1 . . . yn ∈ Yn

where

∀i ∈ [n], (yi, sti+1) = f(xi, sti)

Definition 3.26 (Streaming Function Class [GKS23]). The streaming function class F [ℓF , ℓS , ℓX , ℓY ]
is the set of all streaming functions f that have a description f̂ ∈ {0, 1}ℓF , state space S = {0, 1}ℓS ,
input space X = {0, 1}ℓX , output space Y = {0, 1}ℓY , and starting state15 st1 = ⊥.

When constructing Pre-One-sFE, we will work with a specific streaming function class F⊥.

Definition 3.27 (F⊥). F⊥ is the set of all two-input functions in P/Poly such that if the first input
is ⊥, the function always outputs ⊥ regardless of the second input, i.e.

F⊥ = {two-input f ∈ P/Poly : ∀s, f(⊥, s) = ⊥}.

If f is a streaming function, then f ∈ F⊥ means that f(⊥, st) = (⊥,⊥) for any state st.

Remark 3.28. Note that constructing a sFE scheme for the restricted function class F⊥ does not
hinder the usability of the scheme since every one-input function can be interpreted as a two-input
function, and for every two-input function f ∈ P/Poly, we can construct a function f ′ ∈ P/Poly

with essentially the same functionality by defining f ′(z, s) =

{
f(x, s) if z = 1||x for some x

⊥ else
.

14If not specified, we assume st1 to be ⊥ (or the all-zero string) by default.
15F [ℓF , ℓS , ℓX , ℓY ] requires st1 = ⊥. However, all of our results still hold even if we expand our function class to

include functions with arbitrary starting states as we can simply include the starting state in the function description.
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3.6.2 Public Key Streaming Function Encryption

Following the syntax of standard FE, we define public key sFE as follows.

Definition 3.29 (Public-Key Streaming FE [GKS23]). A public-key streaming functional encryp-
tion scheme for P/Poly is a tuple of PPT algorithms sFE = (Setup,EncSetup,Enc,KeyGen,Dec)
defined as follows:16

• Setup(1λ, 1ℓF , 1ℓS , 1ℓX , 1ℓY ): takes as input the security parameter λ, a function size ℓF , a
state size ℓS , an input size ℓX , and an output size ℓY , and outputs the master public key mpk
and the master secret key msk.

• EncSetup(mpk): takes as input the master public key mpk and outputs an encryption state
Enc.st.

• Enc(mpk,Enc.st, i, xi): takes as input the master public key mpk, an encryption state Enc.st,
an index i, and a message xi ∈ {0, 1}ℓX and outputs an encryption cti of xi.

• KeyGen(msk, f): takes as input the master secret key msk, and a function f ∈ F [ℓF , ℓS , ℓX , ℓY ]
and outputs a function key skf .

• Dec(skf ,Dec.sti, i, cti): where for each function key skf , Dec(skf , ·, ·, ·) is a streaming function
that takes as input a state Dec.sti, an index i, and an encryption cti and outputs a new state
Dec.sti+1 and an output yi ∈ {0, 1}ℓY .

sFE must be streaming efficient, meaning that the size and runtime of all algorithms of sFE
on security parameter λ, function size ℓF , state size ℓS , input size ℓX , and output size ℓY are
poly(λ, ℓF , ℓS , ℓX , ℓY).

sFE satisfies correctness if for all polynomials p, there exists a negligible function µ such that for
all λ ∈ N, all ℓF , ℓS , ℓX , ℓY ≤ p(λ), all n ∈ [2λ], all x = x1 . . . xn where each xi ∈ {0, 1}ℓX , and all
f ∈ F [ℓF , ℓS , ℓX , ℓY ],

Pr

Dec(skf , ctx) = f(x) :

(mpk,msk)← Setup(1λ, 1ℓF , 1ℓS , 1ℓX , 1ℓY ),

ctx ← Enc(mpk, x)
skf ← KeyGen(msk,Dec.st1, f)

 ≥ 1− µ(λ)

where we define17

• Enc(mpk, x) outputs ctx = (cti)i∈[n] produced by sampling Enc.st ← EncSetup(mpk) and then
computing cti ← Enc(mpk,Enc.st, i, xi) for i ∈ [n].

• Dec(skf , ctx) outputs y = (yi)i∈[n] where (yi,Dec.sti+1) = Dec(skf ,Dec.sti, i, cti) for i ∈ [n].

We now define adaptive security. Our definition of security is adaptive in a very strong sense,
in that the adversary can not only adaptively pick each of the next values of its challenge streams
based on the ciphertexts and function keys already received, but can also interweave function
queries between the message queries.

16We also allow Enc,EncSetup,KeyGen, and Dec to additionally receive parameters 1λ, 1ℓF , 1ℓS , 1ℓX , 1ℓY as input,
but omit them from our notation for convenience.

17As with all streaming functions, we assume that Dec.st1 = ⊥ if not otherwise specified.
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Definition 3.30 (Adaptive Security for Public-Key sFE). A public-key streaming FE scheme sFE
for P/Poly is adaptively secure if there exists a negligible function µ such that for all λ ∈ N and all
PPT adversaries A,∣∣∣Pr[ExptsFE-AdaptiveA (1λ, 0) = 1]− Pr[ExptsFE-AdaptiveA (1λ, 1) = 1]

∣∣∣ ≤ µ(λ)
where for each b ∈ {0, 1} and λ ∈ N, we define

ExptsFE-AdaptiveA (1λ, b)

1. Parameters: A takes as input 1λ, and outputs a function size 1ℓF , a state size 1ℓS , an
input size 1ℓX , and an output size 1ℓY .

2. Setup: Compute (mpk,msk)← sFE.Setup(1λ, 1ℓF , 1ℓS , 1ℓX , 1ℓY ).

3. Public Key: Send mpk to A.

4. For a polynomial number of rounds, the adversary can do either one of the following in
each round:

(a) Function Query:

i. A outputs a streaming function query f ∈ F [ℓF , ℓS , ℓX , ℓY ].
ii. skf ← sFE.KeyGen(msk, f).

iii. Send skf to A.
(b) Challenge Message Query:

i. If this is the first challenge message query, sample Enc.st← sFE.EncSetup(mpk)
and initialize the index i = 1. Else, increment the index i by 1.

ii. A outputs a challenge message pair (x
(0)
i , x

(1)
i ) where x

(0)
i , x

(1)
i ∈ {0, 1}ℓX .

iii. cti ← sFE.Enc(mpk,Enc.st, i, x
(b)
i ).

iv. Send cti to A.

5. Experiment Outcome: A outputs a bit b′ which is the output of the experiment.

Additionally, when running the experiment, we immediately halt and output 0 if the adversary
ever aborts or if it at any point some function query f submitted by the adversary yields different
outputs on the challenge message streams submitted so far (i.e. if f(x(0)) ̸= f(x(1)) for some

function query f submitted by the adversary where {(x(0)i , x
(1)
i )}i∈[t] are the message queries

submitted so far, x(0) = x
(0)
1 . . . x

(0)
t , and x(1) = x

(1)
1 . . . x

(1)
t ).

Definition 3.31 (Other Public-Key sFE Security Definitions). There are many variations of the
security definition. We list a few below:

• Semi-Adaptive Security: The adversary is required to make all message queries before
any function queries. This is identical to adaptive security, except that we do not allow the
adversary to make a Challenge Message Query after it has made a Function Query.

• Function-Selective Semi-Adaptive Security: The adversary is required to make all func-
tion queries before any message queries. This is identical to adaptive security, except that we
do not allow the adversary to make a Function Query after it has made a Challenge Message
Query.
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• Selective Security: The adversary is required to make the message query at the beginning
of the experiment before receiving the master public key. This is similar to adaptive security,
except that we allow the adversary to take a polynomial number of Challenge Message Query
steps in between the Setup step and the Public Key step, but do not allow the adversary to
take any Challenge Message Query steps afer the Public Key step.

• Function-Selective Security: The adversary is required to make the function queries at the
beginning of the experiment before receiving the master public key. This is similar to adaptive
security, except that we allow the adversary to take a polynomial number of Function Query
steps in between the Setup step and the Public Key step, but do not allow the adversary to
take any Function Query steps afer the Public Key step.

3.6.3 Secret-Key Streaming Functional Encryption

We can also define sFE in the secret-key setting.

Definition 3.32 (Secret-Key Streaming Functional Encryption). Secret-key sFE is the same as
public-key sFE except that Setup only outputs a master secret key and EncSetup and Enc require
the master secret key instead of the (non-existent) master public key. We formally define this in
Appendix B.3.

Remark 3.33. We can analogously define our public-key definitions of security in the secret-key
setting. The only difference is that we do not give the (non-existent) master public key to the
adversary and will therefore allow the adversary to submit multiple pairs of challenge streams.
Note that in the secret-key setting, semi-adaptive security is equivalent to selective security, and
function-selective semi-adaptive security is equivalent to function-selective security. We formally
define these security definitions in Appendix B.3.

3.6.4 Single-Key, Single-Ciphertext Security

Definition 3.34 (Single-Key, Single-Ciphertext Security). We can add the modifier “single-key.
single-ciphertext” to any of our security definitions. This is a weakening of the security definition
where we only require security against an adversary who is restricted to making only one function
query and submitting only one pair of challenge message streams (though each stream may still
consist of many elements) in the relevant security game.

3.6.5 Notational Variations

Remark 3.35 (Providing the starting state st1 as input to KeyGen). When constructing our
intermediate sFE schemes, we will sometimes define the KeyGen algorithm so that it additionally
takes the starting state st1 as input. This does not affect the scheme’s ability to be a standalone
sFE scheme since all functions f ∈ F [ℓF , ℓS , ℓX , ℓY ] have starting state st1 = ⊥, so we can simply
define a new key generation algorithm with the proper amount of inputs by hardwiring st1 = ⊥
into the old KeyGen algorithm.

Remark 3.36 (Modeling sFE decryption as a streaming function.). We can easily change any sFE
scheme sFE′ into a new sFE scheme sFE∗ with the same security but whose decryption algorithm is
a streaming function in the standard format (i.e. takes only two inputs: a state and a value). This
is achieved by modifying the KeyGen and Dec algorithms as below so that the decryption state also
includes the function key for f and the index i.
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Let sFE′ = (sFE′.Enc, sFE′.EncSetup, sFE′.KeyGen, sFE′.Dec) be a sFE scheme. We define sFE
scheme sFE∗ = (sFE′.Enc, sFE′.EncSetup, sFE∗.KeyGen, sFE∗.Dec) where

• sFE∗.KeyGen(msk, f)

1. skf ← sFE′.KeyGen(msk, f).

2. Output Dec.st∗1 = (skf ,Dec.st1, 1).

• sFE∗.Dec(Dec.st∗i , cti)

1. Parse Dec.st∗i = (skf ,Dec.sti, i).

2. (yi,Dec.sti+1) = sFE′.Dec(skf ,Dec.sti, i, cti).

3. Dec.st∗i+1 = (skf ,Dec.sti+1, i+ 1).

4. Output (yi,Dec.st
∗
i+1).

Note that in this case, KeyGen simply outputs the first decryption state Dec.st∗1. It is easy to see
that sFE′ and sFE∗ have the same security.
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4 Pre-One-sFE

We first build a single-key, single-ciphertext, selectively secure sFE scheme which we call Pre-One-sFE.

Theorem 4.1. Assuming iO for P/Poly and injective PRGs, there exists a single-key, single-
ciphertext, selectively secure, secret-key sFE scheme for the function class F⊥ = {two-input f ∈
P/Poly : ∀s, f(⊥, s) = ⊥)}.

Please refer to the technical overview (Section 2) for a high level overview of our construction. To
prove Theorem 4.1, we build an sFE scheme from the following tools, which as we show below, can
each be instantiated using iO for P/Poly and OWFs.

Tools.

• SKE = (SKE.Setup, SKE.Enc,SKE.Dec): A secure symmetric key encryption scheme.

• PPRF = (PPRF.Setup,PPRF.Eval,PPRF.Punc): A secure puncturable pseudorandom function
family.18

• Itr = (Itr.Setup, Itr.SetupEnforce, Itr.Iterate): A cryptographic iterator.

• SSig = (SSig.Setup,SSig.Sign,SSig.Verify, SSig.Split): A secure splittable signature scheme.19

• iO: An indistinguishability obfuscator for P/Poly.

Instantiation of the Tools. Let iO be an indistinguishability obfuscator for P/Poly, and let
PRG be an injective pseudorandom generator.

• We can build SKE and a one-way-function from PRGs using standard cryptographic techniques
(e.g. [Gol01,Gol09]).

• We can build PPRF from any one-way-function as shown in [SW14,BW13,BGI14,KPTZ13].

• We can build SSig and Itr from iO and injective PRGs as shown in [KLW15].

4.1 Parameters

On security parameter λ, function size LF , state size LS , input size LX , and output size LY , we
will instantiate our primitives with the following parameters:

• SKE: We instantiate SKE with message size LSKE.m = max(LS , LX ). This means that we will
use the following setup algorithm: SKE.Setup(1λ, 1LSKE.m). When encrypting or decrypting
messages of size less than this, we assume that we pad the messages accordingly.

Observe that the algorithms and ciphertexts of SKE are of size poly(λ, LS , LX ).

• PPRF: We overload notation and instantiate PPRF in two different ways:

1. With input size λ and output size λ. This means that we will use the following setup
algorithm: PPRF.Setup(1λ, 1λ, 1λ).

18As per Remark 3.4, we have combined PPRF.Eval and PPRF.EvalPunc into one algorithm.
19As per Remark 3.11, we have combined SSig.Sign and SSig.SignAbo into one algorithm.
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2. With input size λ and output size 2λ. This means that we will use the following setup
algorithm: PPRF.Setup(1λ, 1λ, 12λ).

Which instantiation we are using can be determined by context as we will always use output
length λ with keys Kinp,KA,KB and will always use output length 2λ with keys KE .

Observe that the algorithms of both instantiations of PPRF are of size poly(λ).

• Itr: We instantiate Itr with message size LItr.m = λ+LSKE.ct and bound B = 2λ where LSKE.ct

is the size of ciphertexts of SKE. This means that we will use the following setup algorithm:
Itr.Setup(1λ, 1LItr.m , 2λ).

By properties of the iterator, the iterator state itr does not grow in size as we iterate more
values into it. Thus, apart from Itr.SetupEnforce (which is used only in the security proof), the
algorithms of Itr also remain the same size regardless of how many values we have iterated.
Therefore, since LItr.m = poly(λ, LSKE.ct) = poly(λ, LS , LX ), then every occurrence of an
algorithm of Itr in our construction is of size poly(λ, LS , LX ).

• SSig: We instantiate SSig with message size LSSig.m = λ + LSKE.ct + LItr.itr where LSKE.ct is
the size of ciphertexts of SKE and Itr.itr is the size of iterator states of Itr. This means that
we will use the following setup algorithm: SSig.Setup(1λ, 1LSSig.m).

Therefore, since LSSig.m = poly(λ, LSKE.ct, LItr.itr) = poly(λ, LS , LX ), then the algorithms and
signatures of SSig are of size poly(λ, LS , LX ).

• iO: We instantiate iO for the set of all circuits in P/Poly with

– circuit size LProg which is defined to be the maximum size of all programs which are
obfuscated in the construction and security proof;

– input size Lin = λ+ 2LSKE.ct + 2LSSig.σ + LItr.itr;

– output size Lout = LY + LSKE.ct + LSSig.σ + LItr.itr;

where LSKE.ct is the size of ciphertexts of SKE, LSSig.σ is the size of signatures of SSig, and
LItr.itr is the size of iterator states of Itr. When signing or verifying messages of size less than
this, we assume that we pad the messages accordingly.

Observe that this means Lin and Lout are of size poly(λ, LS , LX ).

It is tedious, but straightforward to check that each of the programs that are obfuscated in
our construction and security proof are of size poly(λ, LF , LS , LX , LY) and do not have size
dependent on the length of the stream. Therefore, the obfuscator iO and the obfuscated
program P will be of size poly(LProg) = poly(λ, LF , LS , LX , LY).

Notation. For notational convenience, when the parameters are understood, we will often omit the
security, input size, output size, message size, or state size parameters from each of the algorithms
listed above.

Remark 4.2. We assume without loss of generality that for security parameter λ, all algorithms
only require randomness of length λ. If the original algorithm requires additional randomness, we
can replace it with a new algorithm that first expands the λ bits of randomness using a PRG of
appropriate stretch and then runs the original algorithm. Note that this replacement does not
affect the security of the above schemes (as long as LF , LS , LX , LY are polynomial in λ).
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4.2 Construction

We now construct Pre-One-sFE. Recall that for notational convenience, we may omit the security,
input size, output size, message size, function size, or state size parameters from our algorithms.
For information on these parameters, please see the parameter section above.

For later use, we have defined our KeyGen algorithm so that it additionally takes the starting
state st1 as input. However, as per Remark 3.35, this does not affect the viability of Pre-One-sFE
as a standalone scheme. We now describe our construction.

• Pre-One-sFE.Setup(1λ, 1LF , 1LS , 1LX , 1LY ):

1. Kinp,KA,KE ← PPRF.Setup(1λ).

* Throughout, for i ∈ [2λ], we will define

rinp,i = PPRF.Eval(Kinp, i)

(sgkinp,i, vkinp,i, vkinp,i,rej) = SSig.Setup(1λ; rinp,i)

rA,i = PPRF.Eval(KA, i)

(sgkA,i, vkA,i, vkA,i,rej) = SSig.Setup(1λ; rA,i)

(rE,i, rEnc,i) = PPRF.Eval(KE , i)

kE,i = SKE.Setup(1λ; rE,i)

2. Output MSK = (Kinp,KA,KE).

• Pre-One-sFE.EncSetup(MSK): Output Enc.st = ⊥.

• Pre-One-sFE.Enc(MSK,Enc.st, i, xi):

1. Parse MSK = (Kinp,KA,KE).

2. Compute ctinp,i:

(a) (rE,i, rEnc,i) = PPRF.Eval(KE , i).

(b) kE,i = SKE.Setup(1λ; rE,i).

(c) ctinp,i ← SKE.Enc(kE,i, xi).

3. Compute σinp,i:

(a) (sgkinp,i, vkinp,i, vkinp,i,rej) = SSig.Setup(1λ;PPRF.Eval(Kinp, i)).

(b) σinp,i ← SSig.Sign(sgkinp,i, ctinp,i).

4. Output CTi = (ctinp,i, σinp,i).

• Pre-One-sFE.KeyGen(MSK, f, st1):

1. Parse MSK = (Kinp,KA,KE).

2. Compute ctst,1:

(a) (rE,1, rEnc,1) = PPRF.Eval(KE , 1).

(b) kE,1 = SKE.Setup(1λ; rE,1).

(c) ctst,1 = SKE.Enc(kE,1, st1; rEnc,1).

3. Setup iterator: (ppst, itrst,0)← Itr.Setup(1λ).

4. Compute σst,1:
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(a) m1 = (1, ctst,1, itrst,0).

(b) (sgkA,1, vkA,1, vkA,1,rej) = SSig.Setup(1λ;PPRF.Eval(KA, 1)).

(c) σst,1 ← SSig.Sign(sgkA,1,m1).

5. Compute program: P ← iO(Prog[f,Kinp,KA,KE , ppst]) where Prog is defined in
Figure 2.

6. Output SKf = (P, ctst,1, σst,1, itrst,0).

• Pre-One-sFE.Dec(SKf ,Dec.sti, i,CTi)

1. Parse SKf = (P, ctst,1, σst,1, itrst,0) and CTi = (ctinp,i, σinp,i).

2. If i > 1, parse Dec.sti = (ctst,i, σst,i, itrst,i−1).

3. Compute (yi, ctst,i+1, σst,i+1, itrst,i) = P(i, ctinp,i, σinp,i, ctst,i, σst,i, itrst,i−1).
4. Set Dec.sti+1 = (ctst,i+1, σst,i+1, itrst,i).

5. Output (yi,Dec.sti+1).
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Program Prog[f,Kinp,KA,KE , ppst](i, ctinp,i, σinp,i, ctst,i, σst,i, itrst,i−1)

1. Verification Step:

i. Verify i is positive: If i ≤ 0, output ⊥.
ii. Verify input signature:

i. (sgkinp,i, vkinp,i, vkinp,i,rej) = SSig.Setup(1λ;PPRF.Eval(Kinp, i)).

ii. If SSig.Verify(vkinp,i, ctinp,i, σinp,i) = 0, output ⊥.
iii. mi = (i, ctst,i, itrst,i−1).

iv. Verify state signature:

i. (sgkA,i, vkA,i, vkA,i,rej) = SSig.Setup(1λ;PPRF.Eval(KA, i)).

ii. If SSig.Verify(vkA,i,mi, σst,i) = 0, output ⊥.

2. Computation Step:

i. Decrypt input and state:

i. (rE,i, rEnc,i) = PPRF.Eval(KE , i).

ii. kE,i = SKE.Setup(1λ; rE,i).

iii. xi = SKE.Dec(kE,i, ctinp,i).

iv. sti = SKE.Dec(kE,i, ctst,i).

ii. Compute output value and next state:

i. (yi, sti+1) = f(xi, sti).

iii. Encrypt the new state:

i. (rE,i+1, rEnc,i+1) = PPRF.Eval(KE , i+ 1).

ii. kE,i+1 = SKE.Setup(1λ; rE,i+1).

iii. ctst,i+1 = SKE.Enc(kE,i+1, sti+1; rEnc,i+1).

3. Authentication Step:

i. itrst,i = Itr.Iterate(ppst, itrst,i−1, (i, ctst,i)).

ii. mi+1 = (i+ 1, ctst,i+1, itrst,i).

iii. Sign the new state:

i. (sgkA,i+1, vkA,i+1, vkA,i+1,rej)← SSig.Setup(1λ;PPRF.Eval(KA, i+ 1)).

ii. σst,i+1 = SSig.Sign(sgkA,i+1,mi+1).

4. Output (yi, ctst,i+1, σst,i+1, itrst,i).

Figure 2: Def of Prog.

4.3 Correctness and Efficiency

Efficiency. Using our discussion above on parameters, it is easy to see that the size and runtime
of all algorithms of Pre-One-sFE on security parameter λ, function size LF , state size LS , input size
LX , and output size LY are poly(λ, LF , LS , LX , LY).
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Correctness Intuition. Given an encryption of xi, an encryption of sti, and signatures for both
ciphertexts, then the obfuscated program P outputs yi along with a ciphertext and signature for
sti+1 where (yi, sti+1) = f(xi, sti).

The decryptor obtains the obfuscated program P from SKf , and a ciphertext and signature for
each xi from CTi. To get started, the decryptor also obtains a ciphertext and signature for the first
state st1 from SKf . Decryption works by iteratively running P on the ciphertexts and signatures
for xi and sti to get the output value yi along with the ciphertext and signature of the next state
sti+1, which is needed for the next decryption step.

Correctness. While we can only prove security for functions f ∈ F⊥, we can prove correctness
for all functions f ∈ P/Poly. Furthermore, correctness holds even if we allow the function f to have
an arbitrary starting state st1 (as long as this state is provided as additional input to KeyGen as
described in the construction).

More formally, let p be any polynomial and consider any λ ∈ N and any LF , LS , LX , LY ≤ p(λ).
Let SKf be a function key for some function f ∈ F [LF , LS , LX , LY ] with starting state20 st1, and
let {CTi}i∈[n] be a ciphertext for some x where x = x1 . . . xn for some n ∈ [2λ] and where each

xi ∈ {0, 1}LX .

By correctness of SKE, SSig, and iO, if

• (rE,i, rEnc,i) = PPRF.Eval(KE , i) and kE,i = SKE.Setup(1λ; rE,i),
(sgkinp,i, vkinp,i, vkinp,i,rej) = SSig.Setup(1λ;PPRF.Eval(KE , i)),

(sgkA,i, vkA,i, vkA,i,rej) = SSig.Setup(1λ;PPRF.Eval(KA, i));

• P = iO(Prog[f,Kinp,KA,KE , ppst]);

• ctinp,i is an SKE encryption of xi under key kE,i;

• σinp,i is a signature of ctinp,i signed using sgkinp,i;

• ctst,i is an SKE encryption of sti under key kE,i;

• σst,i is a signature of ctst,i signed using sgkA,i;

• itrst,i−1 is an iterator state associated with ppst;

then

P(i, ctinp,i, σinp,i, ctst,i, σsti) = Prog[f,Kinp,KA,KE , ppst](i, ctinp,i, σinp,i, ctst,i, σsti)

= (yi, ctst,i+1, σst,i+1, itrst,i)

where

• (yi, sti+1) = f(xi, sti);

• ctst,i+1 is an SKE encryption of sti+1 under key kE,i+1;

• σst,i+1 is a signature of ctst,i+1 signed using sgkA,i+1;

• itrst,i is an iterator state associated with ppst.

20By definition, all functions f ∈ F [LF , LS , LX , LY ] have starting state st1 = ⊥. Here, we are using an expanded
definition of F [LF , LS , LX , LY ] which allows f to have an arbitrary starting state st1 ∈ {0, 1}LS .
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Observe that for i ∈ [n],
CTi = (ctinp,i, σinp,i)

where ctinp,i is an SKE encryption of xi under key kE,i and σinp,i is a signature of ctinp,i signed using
sgkinp,i. Additionally,

SKf = (P, ctst,1, σst,1, itrst,0)

where P = iO(Prog[f,Kinp,KA,KE , ppst]), ctst,1 is an SKE encryption of st1 under key kE,1, σst,1
is a signature of ctst,1 signed using sgkA,1, and itrst,0 is an iterator state associated with ppst.

Therefore, for i = 1,

Pre-One-sFE.Dec(SKf ,Dec.st1, 1,CT1)

= P(1, ctinp,1, σinp,1, ctst,1, σst,1, itrst,0)
= (y1, ctst,2, σst,2, itrst,1)

= (y1,Dec.st2) for Dec.st2 = (ctst,2, σst,2, itrst,1)

where (y1, st2) = f(x1, st1), ctst,2 is an SKE encryption of st2 under key kE,2, σst,2 is a signature of
ctst,2 signed using sgkA,2, and itrst,1 is an iterator state associated with ppst.

For i > 1, if Dec.sti = (ctst,i, σst,i, itrst,i−1) where ctst,i is an SKE encryption of sti under key
kE,i, σst,i is a signature of ctst,i signed using sgkA,i, and itrst,i−1 is an iterator state associated with
ppst, then

Pre-One-sFE.Dec(SKf ,Dec.sti, i,CTi)

= P(i, ctinp,i, σinp,i, ctst,i, σst,i, itrst,i−1)
= (yi, ctst,i+1, σst,i+1, itrst,i)

= (yi,Dec.sti+1) for Dec.sti+1 = (ctst,i+1, σst,i+1, itrst,i)

where (yi, sti+1) = f(xi, sti), ctst,i+1 is an SKE encryption of sti+1 under key kE,i+1, σst,i+1 is a
signature of ctst,i+1 signed using sgkA,i+1, and itrst,i−1 is an iterator state associated with ppst.

Thus, by induction on i and the decryption state, the decryption algorithm correctly outputs
y = y1 . . . yn where (yi, sti+1) = f(xi, sti) for i ∈ [n].

4.4 Additional Algorithms

We define the following algorithm which will be used in our security proof. It is similar to KeyGen
except that it hardwires in the output values at steps t−1 and t for some chosen t and some chosen
output values. We have highlighted the differences between this function and Pre-One-sFE.KeyGen.

• Pre-One-sFE.KeyGenHardwire(MSK, f, st1, t, y
∗
t−1, y

∗
t , stt+1)

1. Parse MSK = (Kinp,KA,KE).

2. Compute ctst,1:

(a) (rE,1, rEnc,1) = PPRF.Eval(KE , 1).

(b) kE,1 = SKE.Setup(1λ; rE,1).

(c) ctst,1 = SKE.Enc(kE,1, st1; rEnc,1).

3. Setup iterator: (ppst, itrst,0)← Itr.Setup(1λ).

4. Compute σst,1:

(a) m1 = (1, ctst,1, itrst,0).
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(b) (sgkA,1, vkA,1, vkA,1,rej) = SSig.Setup(1λ;PPRF.Eval(KA, 1)).

(c) σst,1 ← SSig.Sign(sgkA,1,m1).

5. Compute ct∗st,t and ct∗st,t+1:

(a) For i ∈ {t, t+ 1},
i. (rE,i, rEnc,i) = PPRF.Eval(KE , i).

ii. kE,i = SKE.Setup(1λ; rE,i).

(b) ct∗st,t = SKE.Enc(kE,t,⊥; rEnc,t).
(c) ct∗st,t+1 = SKE.Enc(kE,t+1, stt+1; rEnc,t).

6. Compute program: P ← iO(ProgHardwire[f,Kinp,KA,KE , ppst, t, y
∗
t−1, ct

∗
st,t, y

∗
t , ct

∗
st,t+1]).

7. Output SKf = (P, ctst,1, σst,1, itrst,0).

Program ProgHardwire[f,Kinp,KA,KE , ppst, t, y
∗
t−1, ct

∗
st,t, y

∗
t , ct

∗
st,t+1]

(i, ctinp,i, σinp,i, ctst,i, σst,i, itrst,i−1)

1. Verification Step:

i. Verify i is positive: If i ≤ 0, output ⊥.
ii. Verify input signature:

i. (sgkinp,i, vkinp,i, vkinp,i,rej)← SSig.Setup(1λ;PPRF.Eval(Kinp, i)).

ii. If SSig.Verify(vkinp,i, ctinp,i, σinp,i) = 0, output ⊥.
iii. mi = (i, ctst,i, itrst,i−1).

iv. Verify state signature:

i. (sgkA,i, vkA,i, vkA,i,rej)← SSig.Setup(1λ;PPRF.Eval(KA, i)).

ii. If SSig.Verify(vkA,i,mi, σst,i) = 0, output ⊥.

2. Computation Step:

i. If i = t− 1, (yi, ctst,i+1) = (y∗t−1, ct
∗
st,t).

ii. If i = t, (yi, ctst,i+1) = (y∗t , ct
∗
st,t+1).

iii. If i /∈ {t− 1, t},
i. Decrypt input and state:

i. (rE,i, rEnc,i) = PPRF.Eval(KE , i).

ii. kE,i = SKE.Setup(1λ; rE,i).

iii. xi = SKE.Dec(kE,i, ctinp,i).

iv. sti = SKE.Dec(kE,i, ctst,i).

ii. Compute output value and next state:

A. (yi, sti+1) = f(xi, sti).

iii. Encrypt the new state:

i. (rE,i+1, rEnc,i+1) = PPRF.Eval(KE , i+ 1).

ii. kE,i+1 = SKE.Setup(1λ; rE,i+1).

iii. ctst,i+1 = SKE.Enc(kE,i+1, sti+1; rEnc,i+1).

3. Authentication Step:
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i. itrst,i = Itr.Iterate(ppst, itrst,i−1, (i, ctst,i)).

ii. mi+1 = (i+ 1, ctst,i+1, itrst,i).

iii. Sign the new state:

i. (sgkA,i+1, vkA,i+1, vkA,i+1,rej)← SSig.Setup(1λ;PPRF.Eval(KA, i+ 1)).

ii. σst,i+1 = SSig.Sign(sgkA,i+1,mi+1).

4. Output (yi, ctst,i+1, σst,i+1, itrst,i).

4.5 Security

We now prove that Pre-One-sFE is single-key, single-ciphertext, selectively secure for the function
class F⊥ = {two-input f ∈ P/Poly : ∀s, f(⊥, s) = ⊥)}.

In this proof, we will use an alternate, but equivalent, definition of single-key, single-ciphertext,
selective security where instead of needing to distinguish between an encryption of stream x(0) and
an encryption of stream x(1), the adversary will receive an encryption of stream x(b) for a random
bit b and will win if they correctly guess b.

Definition 4.3 (Single-Key, Single-Ciphertext, Selective Security for Secret-Key sFE, Equivalent
Definition). A secret-key streaming FE scheme sFE for F⊥ is single-key, single-ciphertext, selectively
secure if there exists a negligible function µ such that for all λ ∈ N and all PPT adversaries A,∣∣∣Pr[SKExptGuesssFE-1-Key-1-CT-SelA (1λ) = 1]

∣∣∣ ≤ 1

2
+ µ(λ)

where for λ ∈ N, we define

SKExptGuesssFE-1-Key-1-CT-SelA (1λ)

1. Parameters: A takes as input 1λ, and outputs a function size 1ℓF , a state size 1ℓS , an
input size 1ℓX , and an output size 1ℓY .

2. Setup: Compute msk← sFE.Setup(1λ, 1ℓF , 1ℓS , 1ℓX , 1ℓY ).

3. Challenge Bit: Sample b← {0, 1}.

4. The following can be repeated any polynomial number of times:

(a) Challenge Message Query:

i. If this is the first challenge message query, sample Enc.st← sFE.EncSetup(msk)
and initialize the index i = 1. Else, increment the index i by 1.

ii. A outputs a challenge message pair (x
(0)
i , x

(1)
i ) where x

(0)
i , x

(1)
i ∈ {0, 1}ℓX .

iii. cti ← sFE.Enc(msk,Enc.st, i, x
(b)
i ).

iv. Send cti to A.

5. Function Query:

(a) A outputs a streaming function query f ∈ F⊥ ∩ F [ℓF , ℓS , ℓX , ℓY ].
(b) skf ← sFE.KeyGen(msk, f).

(c) Send skf to A.
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6. Experiment Outcome: A outputs a bit b′. The output of the experiment is set to 1 if
b = b′, and 0 otherwise.

Additionally, when running the experiment, we immediately halt and output 0 if the adversary
ever aborts or if it at any point some function query f submitted by the adversary yields different
outputs on the challenge message streams submitted so far (i.e. if f(x(0)) ̸= f(x(1)) for some

function query f submitted by the adversary where {(x(0)i , x
(1)
i )}i∈[t] are the message queries

submitted so far, x(0) = x
(0)
1 . . . x

(0)
t , and x(1) = x

(1)
1 . . . x

(1)
t ).

Using standard techniques, it is easy to show that this is equivalent to the regular definition of
single-key, single-ciphertext, selective security.

4.5.1 Formal Proof

Proof Overview. The first part of the proof of security of One-sFE in Section 6.4 contains a
near-complete proof of the single-key, single-ciphertext, selective security of Pre-One-sFE. As such,
in this section, we will rely heavily on lemmas proven in Section 6.4, and will only show the small
modifications needed to finish the security proof for Pre-One-sFE. We refer the readers to Section 6.4
for the bulk of the security proof.

In more detail, the proof from Section 6.4 allows us to move from the original security game to
a hybrid that is nearly independent of the challenge bit b. Unfortunately, this hybrid still needs

to know the final output state st
(b)
t∗+1 of challenge stream x(b) = x

(b)
1 . . . x

(b)
t∗ which depends on the

bit b. To deal with this, we will need to weaken our function class from P/Poly to F⊥. This allows
us to add a “dummy” query of ⊥ to the end of both streams, which causes the final state of both
streams to be ⊥ (and thus independent of b). Then the hybrid becomes fully independent of b
which implies security.

Hybrid Argument. We prove security via a hybrid argument starting with HybridAPre,0 which
represents the single-key, single-ciphertext, selective security game.

Remark 4.4. We require all of our unwrapped21 hybrids to immediately halt and output 0 if the
adversary ever aborts or if it at any point some function query f submitted by the adversary yields
different outputs on the challenge message streams submitted so far (i.e. if f(x(0)) ̸= f(x(1)) for

some function query f submitted by the adversary where {(x(0)i , x
(1)
i )}i∈[t] are the message queries

submitted so far, x(0) = x
(0)
1 . . . x

(0)
t , and x(1) = x

(1)
1 . . . x

(1)
t ). For notational simplicity, we omit

this requirement from the description of our hybrids.

21Every hybrid named HybridA
sub for some subscrip sub is considered an “unwrapped” hybrid. See the discussion

before HybridA
Pre,2 for details.
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HybridAPre,0(1
λ): This is identical to SKExptGuesssFE-1-Key-1-CT-SelA (1λ).

1. Parameters: The adversary A receives security parameter 1λ, and outputs a function size
1LF , a state size 1LS , an input size 1LX , and an output size 1LY .

2. Setup: MSK← Pre-One-sFE.Setup(1λ, 1LF , 1LS , 1LX , 1LY ).

3. Challenge Bit: b← {0, 1}.

4. Encryption: For i = 1, 2, . . .

(a) A sends (x
(0)
i , x

(1)
i ) to the challenger.

(b) CTi ← Pre-One-sFE.Enc(MSK, i, x
(b)
i ).

(c) Send CTi to A.

5. KeyGen:

(a) A sends function f with starting state st1 to the challenger.

(b) SKf ← Pre-One-sFE.KeyGen(MSK, f, st1).

(c) Send SKf to A.

6. Output: A sends b′ to the challenger. Output 1 if b = b′, and output 0 else.
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HybridAPre,1(1
λ): We now add a dummy query of ⊥ to the end of both streams. Note that since

f ∈ F⊥, then for all states s, f(⊥, s) = (⊥,⊥). Thus, it will still be the case that f(x(0)) = f(x(1)).
Additionally, this will make the final output states of both streams equal which will prove useful
in a later hybrid.

1. Parameters: The adversary A receives security parameter 1λ, and outputs a function size
1LF , a state size 1LS , an input size 1LX , and an output size 1LY .

2. Setup: MSK← Pre-One-sFE.Setup(1λ, 1LF , 1LS , 1LX , 1LY ).

3. Challenge Bit: b← {0, 1}.

4. Encryption: For i = 1, 2, . . .

(a) A sends (x
(0)
i , x

(1)
i ) to the challenger.

(b) CTi ← Pre-One-sFE.Enc(MSK, i, x
(b)
i ).

(c) Send CTi to A.

5. Dummy Query:

(a) Define (x
(0)
t∗ , x

(1)
t∗ ) = (⊥,⊥) where t∗ is one more than the length of the challenge streams.

(b) CTt∗ ← Pre-One-sFE.Enc(MSK, t∗, x
(b)
t∗ ).

6. KeyGen:

(a) A sends function f with starting state st1 to the challenger.

(b) SKf ← Pre-One-sFE.KeyGen(MSK, f, st1).

(c) Send SKf to A.

7. Output: A sends b′ to the challenger. Output 1 if b = b′, and output 0 else.

Lemma 4.5. For all λ ∈ N and all adversaries A,∣∣∣Pr[(HybridAPre,0(1
λ) = 1]− Pr[Wrap(HybridAPre,1)(1

λ) = 1]
∣∣∣ = 0

Proof. The hybrids are identical.
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Using the security proof from Section 6.4. To move to the next hybrid, we will use a security
proof that is very similar to the first part of the proof of security for One-sFE in Section 6.4. In
this hybrid, we encrypt stream x(0) rather than stream x(b). However, we still compute the final
state stt∗+1 using stream x(b).

We define the following wrapper function Wrap for our hybrids. We will call any hybrid
named HybridAsub for some subscript sub an unwrapped hybrid, and will call any hybrid named
Wrap(HybridAsub) for some subscript sub a wrapped hybrid.

Wrap(HybridAPre,2)(1
λ):

1. For Iteration ∈ [T 3
A,λ] where TA,λ is the maximum runtime of A on security parameter λ:

(a) Run hybrid: v ← HybridAPre,2(1
λ).

(b) Check for correct guess: If v ̸= ⊥, output v and halt.

2. Output 0.

HybridAPre,2(1
λ):

1. Guess Stream Length: t∗ − 1 ← [TA,λ] where TA,λ is the maximum runtime of A on
security parameter λ.

2. Parameters: The adversary A receives security parameter 1λ, and outputs a function size
1LF , a state size 1LS , an input size 1LX , and an output size 1LY .

3. Setup: MSK← Pre-One-sFE.Setup(1λ, 1LF , 1LS , 1LX , 1LY ).

4. Challenge Bit: b← {0, 1}.

5. Encryption: For i = 1, 2, . . . , t∗ − 1:
If the adversary does not make exactly t∗ − 1 queries during this phase, output ⊥ and halt.

(a) A sends (x
(0)
i , x

(1)
i ) to the challenger.

(b) CTi ← Pre-One-sFE.Enc(MSK, i, x
(0)
i ).

(c) Send CTi to A.

6. Dummy Query:

(a) Define (x
(0)
t∗ , x

(1)
t∗ ) = (⊥,⊥).

(b) CTt∗ ← Pre-One-sFE.Enc(MSK, t∗,⊥).

7. KeyGen:

(a) A sends function f with starting state st1 to the challenger.

(b) Compute (yt∗−1, yt∗ , stt∗+1):

i. st
(b)
1 = st1.

ii. For i ∈ [t∗],

A. (yi, st
(b)
i+1) = f(xi, st

(b)
i ).
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iii. stt∗+1 = st
(b)
t∗+1.

(c) SKf ← Pre-One-sFE.KeyGenHardwire(MSK, f, st1, t
∗, yt∗−1, yt∗ , stt∗+1).

(d) Send SKf = Pre.SKf to A.

8. Output: A sends b′ to the challenger. Output 1 if b = b′, and output 0 else.

Lemma 4.6. If iO is a indistinguishability obfuscator, PPRF is a puncturable pseudorandom func-
tion, SSig is a splittable signature scheme, Itr is a cryptographic iterator, and SKE is a symmetric
key encryption scheme, then for all λ ∈ N and all PPT adversaries A,∣∣∣Pr[(HybridAPre,1(1

λ) = 1]− Pr[Wrap(HybridAPre,2)(1
λ) = 1]

∣∣∣ ≤ negl(λ)

Proof. The proof is essentially the same as the proof of indistinguishability from Section 6.4
between HybridA0 (which is similar to HybridAPre,1) and Wrap(HybridA6 ) (which is similar to

Wrap(HybridAPre,2)). The only differences in the hybrids and proofs are the following:

• We have removed Encryption Phase 2 since we are in the selective security game. This
only serves to make the proofs of indistinguishability even easier.

• The last query is a dummy query rather than one chosen by the adversary. The proof can
be easily adapted to account for this change. Note that since f ∈ F⊥, it will still be the case
that f(x(0)) = f(x(1)).

• We encrypt different streams and functions with Pre-One-sFE. In this proof, we use Pre-One-sFE
to encrypt message streams

x(0) = x
(0)
1 , x

(0)
2 , x

(0)
3 , . . .

x(1) = x
(1)
1 , x

(1)
2 , x

(1)
3 , . . .

and to create a function key for f with starting state st1. In the proof of One-sFE, we use
Pre-One-sFE to encrypt message streams

Post.CT(0) = Post.CT
(0)
1 ,Post.CT

(0)
2 ,Post.CT

(0)
3 , . . .

Post.CT(1) = Post.CT
(1)
1 ,Post.CT

(1)
2 ,Post.CT

(1)
3 , . . .

and to create a function key for Post-One-sFE.Dec with starting state Post-One-sFE.Dec.st1
(where Post.CT

(b)
i is a Post-One-sFE encryption of x

(b)
i and Post-One-sFE.Dec.st1 is the Post-One-sFE

function key for f).

Since we do not use any properties of Post-One-sFE until after Wrap(HybridA6 ), exchang-
ing the streams and functions can be considered more of a notational change. Thus, the
correctness of the proof is unaffected.

Therefore, essentially the same proof as in Section 6.4 can be applied to prove this lemma.
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HybridAPre,3(1
λ): We now move to a hybrid that is independent of the bit b by replacing stream

x(b) with stream x(0) when computing (yt∗−1, yt∗ , stt∗+1). This relies on the fact that f ∈ F⊥.

1. Guess Stream Length: t∗ − 1 ← [TA,λ] where TA,λ is the maximum runtime of A on
security parameter λ.

2. Parameters: The adversary A receives security parameter 1λ, and outputs a function size
1LF , a state size 1LS , an input size 1LX , and an output size 1LY .

3. Setup: MSK← Pre-One-sFE.Setup(1λ, 1LF , 1LS , 1LX , 1LY ).

4. Challenge Bit: b← {0, 1}.

5. Encryption: For i = 1, 2, . . . , t∗ − 1:
If the adversary does not make exactly t∗ − 1 queries during this phase, output ⊥ and halt.

(a) A sends (x
(0)
i , x

(1)
i ) to the challenger.

(b) CTi ← Pre-One-sFE.Enc(MSK, i, x
(0)
i ).

(c) Send CTi to A.

6. Dummy Query:

(a) Let (x
(0)
t∗ , x

(1)
t∗ ) = (⊥,⊥).

(b) CTt∗ ← Pre-One-sFE.Enc(MSK, t∗,⊥).

7. KeyGen:

(a) A sends function f with starting state st1 to the challenger.

(b) Compute (yt∗−1, yt∗ , stt∗+1):

i. st
(0)
1 = st1.

ii. For i ∈ [t∗],

A. (yi, st
(0)
i+1) = f(xi, st

(0)
i ).

iii. stt∗+1 = st
(0)
t∗+1.

(c) SKf ← Pre-One-sFE.KeyGenHardwire(MSK, f, st1, t
∗, yt∗−1, yt∗ , stt∗+1)

(d) Send SKf = Pre.SKf to A.

8. Output: A sends b′ to the challenger. Output 1 if b = b′, and output 0 else.

Lemma 4.7. For all λ ∈ N and all adversaries A,∣∣∣Pr[Wrap(HybridAPre,2)(1
λ) = 1]− Pr[Wrap(HybridAPre,3)(1

λ) = 1]
∣∣∣ = 0

Proof. The hybrids are identical. Since the adversary is required to submit queries such that
f(x(0)) = f(x(1)), then the value of yt∗−1 will be the same in both hybrids. Since f ∈ F⊥, then for
all states s, f(⊥, s) = (⊥,⊥). Thus,

f(x
(b)
t∗ , st

(b)
t∗ ) = f(⊥, st(b)t∗ ) = (⊥,⊥) = f(⊥, st(0)t∗ ) = f(x

(0)
t∗ , st

(0)
t∗ )

so the values of yt∗ , stt∗+1 will also be the same in both hybrids. Thus, we will compute identical
values for (yt∗−1, yt∗ , stt∗+1).
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Lemma 4.8. For all λ ∈ N and all adversaries A,

Pr[Wrap(HybridAPre,3)(1
λ) = 1] ≤ 1

2

Proof. The proof relies on the fact that the adversary’s view in HybridAPre,3 is independent of the
challenge bit b.

In each iteration of Wrap, we run an instance of HybridAPre,3. The output of Wrap is defined to

be the output of the first instance of HybridAPre,3 where we did not output ⊥, or 0 if all instances

output ⊥. Consider any instance of HybridAPre,3. Conditioned on not outputting ⊥, we will
only output 1 if the adversary correctly guesses b = b′. However, since the adversary’s view in
HybridAPre,3 is independent of the bit b, then conditioned on not outputting ⊥, the probability that

the adversary makes it to the end of the hybrid and guesses correctly b is at most 1
2 . Thus, the

probability that Wrap(HybridA3 )(1
λ) outputs 1 is at most 1

2 .

Corollary 4.9. If iO is a indistinguishability obfuscator, PPRF is a puncturable pseudorandom
function, SSig is a splittable signature scheme, Itr is a cryptographic iterator, and SKE is a sym-
metric key encryption scheme, then for all λ ∈ N and all PPT adversaries A,

Pr[SKExptGuesssFE-1-Key-1-CT-SelA (1λ)] ≤ 1

2
+ negl(λ)

or, in other words, Pre-One-sFE is single-key, single-ciphertext, selectively secure for F⊥.

Proof. This follows by combining all of our intermediate lemmas since HybridAPre,0 is identical to

SKExptGuesssFE-1-Key-1-CT-SelA .
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5 Post-One-sFE

Guan, Korb, and Sahai [GKS23] construct a single-key, single-ciphertext, function-selectively secure
sFE scheme which we call Post-One-sFE.

Theorem 5.1 ( [GKS23]). Assuming a strongly-compact, selectively secure, secret-key FE scheme
for P/Poly, there exists a single-key, single-ciphertext, function-selectively secure, secret-key sFE
scheme for P/Poly.

In this section, we provide the construction of Post-One-sFE and prove additional properties for
it that will be useful in the security proof of our adaptive scheme One-sFE. For convenience, in
the construction, we have made some minor, mostly notational changes, including merging the two
PRFs in [GKS23] into one PRF. However, these changes do not affect any relevant properties of the
construction.

Post-One-sFE is built from the following tools, which as we show below, can each be instantiated
using a strongly-compact, selectively secure, secret-key FE scheme for P/Poly.

Tools.

• PRF = (PRF.Setup,PRF.Eval): A secure pseudorandom function family.

• SKE = (SKE.Setup, SKE.Enc,SKE.Dec): A secure symmetric key encryption scheme.

• SKE′ = (SKE′.Setup,SKE′.Enc,SKE′.Dec): A secure symmetric key encryption scheme.

• OneCompFE = (OneCompFE.Setup,OneCompFE.Enc,OneCompFE.KeyGen,OneCompFE.Dec):
A strongly-compact, single-key, single-ciphertext, selectively secure, secret-key FE scheme for
P/Poly.

• OneFSFE = (OneFSFE.Setup,OneFSFE.Enc,OneFSFE.KeyGen,OneFSFE.Dec): A single-key,
single-ciphertext, function-selectively secure, secret-key FE scheme for P/Poly.

Instantiation of the Tools. Let SKFE be a strongly-compact, selectively secure, secret-key FE
scheme for P/Poly.

• We can build PRF, SKE, SKE′ from any one-way-function using standard cryptographic tech-
niques (e.g. [Gol01,Gol09]). As FE implies one-way-functions, then we can build these from
SKFE.

• SKFE already satisfies the compactness and security requirements needed for OneCompFE.

• We can first build a function-private, selectively secure, secret-key FE scheme FPFE for P/Poly
by using the function-privacy transformation of [BS18] on SKFE. As observed in [BS18],
a single-key, single-ciphertext, function-private, selectively secure, secret-key FE scheme for
P/Poly is also a (non-compact) single-key, single-ciphertext, function-selectively secure, secret-
key FE scheme for P/Poly as we can simply exchange the roles of the functions and messages
using universal circuits. Thus, FPFE can be used to build OneFSFE.

5.1 Parameters

The parameters are identical to those in [GKS23] except that rather than using two PRFs, we use
one PRF which has input size λ and output size 6λ+ ℓS . Thus, we do not redefine the parameters
here. Additionally, for notational convenience, we will often omit the security, input size, output
size, message size, function size, and state size parameters from our algorithms.
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5.1.1 Post-One-sFE Construction

We now construct Post-One-sFE. This is identical to the construction from [GKS23] except for
some minor, mostly notational changes.

For later use, we have applied a similar transformation as in Remark 3.36 to turn our decryption
algorithm into a streaming function in the standard format (i.e. takes only two inputs: a decryption
state and a ciphertext). In this case, KeyGen simply outputs the first decryption state Dec.st1. As
this transformation only requires renaming skf to Dec.st1 and adding the index i to each Dec.sti,
this change can be considered a notational variation, rather than a major change to the underlying
algorithms.

We have also defined our KeyGen algorithm so that it additionally takes the starting state st1
as input (rather than hardwiring st1 = ⊥ as in [GKS23]).

• Post-One-sFE.Setup(1λ, 1ℓF , 1ℓS , 1ℓX , 1ℓY ):

1. K ← PRF.Setup(1λ).

* Throughout, for i ∈ [2λ], we will define

Ki = (pi, rmski , r
′
mski , rki , r

′
ki
, rKeyGeni , r

′
Enci) = PRF.Eval(K, i)

from which we can compute the following values defined below

mski = OneFSFE.Setup(1λ; rmski)

msk′i = OneCompFE.Setup(1λ; r′mski)

ki = SKE.Setup(1λ; rki)

k′i = SKE′.Setup(1λ; r′ki)

2. Output MSK = K.

• Post-One-sFE.EncSetup(MSK): Output Enc.st = ⊥.

• Post-One-sFE.Enc(MSK,Enc.st, i, xi):

1. Parse MSK = K.

2. Compute mski, pi, pi+1, r
′
mski+1

, r′Enci+1
, rmski+1

, rKeyGeni+1
, ki, k

′
i,msk′i from K.

3. cti ← OneFSFE.Enc(mski, (xi, pi, pi+1, r
′
mski+1

, r′Enci+1
, rmski+1

, rKeyGeni+1
, 0, 0λ, 0ℓY )).

4. If i = 1, output CT1 = ct1.

5. If i > 1,

(a) ci ← SKE.Enc(ki,⊥).
(b) c′i ← SKE′.Enc(k′i,⊥).
(c) Let hi = hci,c′i as defined in Figure 4.

(d) sk′hi
← OneCompFE.KeyGen(msk′i, hi).

(e) Output CTi = (cti, sk
′
hi
).

• Post-One-sFE.KeyGen(MSK, f, st1):

1. Parse MSK = K.

2. Compute msk1, k1, p1, rKeyGen1 from K.
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3. c1 ← SKE.Enc(k1,⊥).
4. s̃t1 = st1 ⊕ p1.
5. Let g1 = gf,s̃t1,c1 as defined in Figure 3.

6. skg1 ← OneFSFE.KeyGen(msk1, g1; rKeyGen1).

7. Output Dec.st1 = (1, skg1).

gf,s̃ti,ci(xi, pi, pi+1, r
′
mski+1

, r′Enci+1
, rmski+1

, rKeyGeni+1
, αi, rki , ψi):

• If αi = 0,

1. sti = s̃ti ⊕ pi.
2. (yi, sti+1) = f(xi, sti).

3. s̃ti+1 = sti+1 ⊕ pi+1.

4. msk′i+1 = OneCompFE.Setup(1λ; r′mski+1
).

5. ct′i+1 = OneCompFE.Enc(msk′i+1, (f, s̃ti+1, rmski+1
, rKeyGeni+1

, 0, 0λ); r′Enci+1
).

6. Output (yi, ct
′
i+1).

• Else,

1. ki = SKE.Setup(1λ; rki).

2. (θi, ct
′
i+1) = SKE.Dec(ki, ci).

3. Output (θi ⊕ ψi, ct
′
i+1).

Figure 3: Definition of gf,s̃ti,ci .

hci,c′i(f, s̃ti, rmski , rKeyGeni , α
′
i, r
′
ki
):

• If α′i = 0,

1. mski = OneFSFE.Setup(1λ; rmski).

2. Let gi = gf,s̃ti,ci as defined in Figure 3.

3. skgi = OneFSFE.KeyGen(mski, gi; rKeyGeni).

4. Output skgi .

• Else,

1. k′i = SKE′.Setup(1λ; r′ki).

2. Output skgi = SKE′.Dec(k′i, c
′
i).

Figure 4: Definition of hci,c′i .

• One-sFE.Dec(Dec.sti,CTi):
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1. Parse Dec.sti into (i, vali).

2. If i = 1, parse val1 = skg1 and CT1 = ct1.

3. If i > 1,

(a) Parse vali = ct′i and CTi = (cti, sk
′
hi
).

(b) skgi = OneCompFE.Dec(sk′hi
, ct′i).

4. (yi, ct
′
i+1) = OneFSFE.Dec(skgi , cti).

5. Dec.sti+1 = (i+ 1, ct′i+1).

6. Output (yi,Dec.sti+1).

5.2 Correctness, Efficiency, and Security

Correctness, efficiency, and single-key, single-ciphertext, function-selective security follow from the
corresponding theorems in [GKS23] as our construction is identical to theirs except for some minor,
mostly notational changes.

5.3 Additional Properties

Post-One-sFE has some useful properties that we will need for the security proof of our adaptive
scheme One-sFE.

1. The MSK K can be split up into individual parts: K1,K2,K3, . . ..
We define individual parts Ki = PRF.Eval(K, i) as shown in the construction.

2. Encryption at index i only requires Ki and Ki+1, rather than all of K.
To show this we define the following local encryption function:

• Post-One-sFE.EncLocal((Ki,Ki+1),Enc.st, i, xi).

(a) Computemski, pi, pi+1, r
′
mski+1

, r′Enci+1
, rmski+1

, rKeyGeni+1
, ki, k

′
i,msk′i from (Ki,Ki+1).

(b) cti ← OneFSFE.Enc(mski, (xi, pi, pi+1, r
′
mski+1

, r′Enci+1
, rmski+1

, rKeyGeni+1
, 0, 0λ, 0ℓY ))

(c) If i = 1, output Post.CT1 = ct1.

(d) If i > 1

i. ci ← SKE.Enc(ki,⊥)
ii. c′i ← SKE′.Enc(k′i,⊥)
iii. Let hi = hci,c′i as defined in Figure 4.

iv. sk′hi
← OneCompFE.KeyGen(msk′i, hi)

v. Output CTi = (cti, sk
′
hi
)

It is then easy to see that local encryption acts identically to regular encryption.

Lemma 5.2. For all K,Enc.st, i, xi and randomness rand,

Post-One-sFE.Enc(K,Enc.st, i, xi; rand) = Post-One-sFE.EncLocal((Ki,Ki+1),Enc.st, i, xi; rand)

where Ki = PRF.Eval(K, i) and Ki+1 = PRF.Eval(K, i+ 1).

Proof. The proof follows immediately from the definitions of Enc and EncLocal.
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3. Security holds even if we begin the two challenge streams at different (and po-
tentially non-⊥) starting states, as long as their output y values are the same and
the starting states are given to the challenger.22

We will not prove this here, but it is implicitly shown in the proof of security for One-sFE
(which uses Post-One-sFE as a building block).

4. We can generate intermediate decryption states Dec.sti without running through
the entire encryption and decryption process. In particular, we just need to know
the intermediate state sti along with Ki and f .
To generate Dec.st1, we can define the following local key generation function:

• Post-One-sFE.KeyGenLocal(K1, f, st1)

(a) Compute msk1, k1, p1, rKeyGen1 from K1.

(b) c1 ← SKE.Enc(k1,⊥).
(c) s̃t1 = p1 ⊕ st1.

(d) Let g1 = gf,s̃t1,c1 as defined in Figure 3.

(e) skg1 ← OneFSFE.KeyGen(msk1, g1; rKeyGen1)

(f) Output Dec.st1 = (1, skg1).

It is then easy to see that local keygen acts identically to regular keygen.

Lemma 5.3. For all K, f, st1 and randomness rand,,

Post-One-sFE.KeyGen(K, f, st1; rand) = Post-One-sFE.KeyGenLocal(K1, f, st1; rand)

where K1 = PRF.Eval(K, 1).

Proof. The proof follows immediately from the definitions of KeyGen and KeyGenLocal.

For i > 1, we can generate intermediate decryption states with the following function:

• Post-One-sFE.DecStGen(i,Ki, f, sti).

(a) Compute pi,msk′i, rmski , rKeyGeni , r
′
Enci

from Ki.

(b) s̃ti = sti ⊕ pi.
(c) ct′i = OneCompFE.Enc(msk′i, (f, s̃ti, rmski , rKeyGeni , 0, 0

λ); r′Enci).

(d) Output Dec.sti = (i, ct′i).

Lemma 5.4. For any streaming function f ∈ F [ℓF , ℓS , ℓX , ℓY ] with starting state23 st1 and
any stream x = x1x2 . . . xt∗ of length t∗ > 0 where each xi ∈ {0, 1}ℓX , then

Pr[D0(MSK) ̸= D1(MSK) : MSK← Post-One-sFE.Setup(1λ, 1ℓF , 1ℓS , 1ℓX , 1ℓY )] ≤ negl(λ)

where we define

22Syntatically, if we want to begin the challenge streams at different starting states, then in the security game,
if the adversary receives an encryption of stream x(b), then the starting state for stream x(b) is given as additional
input to KeyGen (as in our construction) when generating the function key.

23By definition, all functions f ∈ F [ℓF , ℓS , ℓX , ℓY ] have starting state st1 = ⊥. Here, we are using an expanded
definition of F [ℓF , ℓS , ℓX , ℓY ] which allows f to have an arbitrary starting state st1 ∈ {0, 1}ℓS .
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D0(MSK)

(a) Enc.st← Post-One-sFE.EncSetup(MSK).

(b) Dec.st1 ← Post-One-sFE.KeyGen(MSK, f, st1).

(c) For i ∈ [t∗],

i. CTi ← Post-One-sFE.Enc(MSK,Enc.st, i, xi).

ii. (yi,Dec.sti+1) = Post-One-sFE.Dec(Dec.sti,CTi)

(d) Output Dec.stt∗+1.

D1(MSK)

(a) Parse MSK = K.

(b) Kt∗+1 = PRF.Eval(K, t∗ + 1).

(c) For i ∈ [t∗],

i. (yi, sti+1) = f(xi, sti).

(d) Output Dec.stt∗+1 = Post-One-sFE.DecStGen(t∗ + 1,Kt∗+1, f, stt∗+1).

Proof. Let f be any streaming function f ∈ F [ℓF , ℓS , ℓX , ℓY ] with starting state st1, and let
x = x1x2 . . . xt∗ be any stream of length t∗ > 0 where each xi ∈ {0, 1}ℓX .
Let us first analyze D0. Consider

(a) MSK← Post-One-sFE.Setup(1λ).

(b) Enc.st← Post-One-sFE.EncSetup(MSK).

(c) Dec.st1 ← Post-One-sFE.KeyGen(MSK, f, st1).

(d) For i ∈ [t∗],

i. CTi ← Post-One-sFE.Enc(MSK,Enc.st, i, xi).

For notational convenience, in the following calculations, we will allow Dec.sti for i > 1 to be
ordered or reordered as either (i, ct′i) or (ct

′
i, i).

When i = 1, by correctness of OneFSFE, except with negligible probability,

Post-One-sFE.Dec(Dec.st1,CT1) = Post-One-sFE.Dec((1, skg1), ct1)

= (OneFSFE.Dec(skg1 , ct1), 2)

= (gf,st1⊕p1,c1(x1, p1, p2, r
′
msk2 , r

′
Enc2 , rmsk2 , rKeyGen2 , 0, 0

λ, 0ℓY ), 2)

= (y1, ct
′
2, 2)

= (y1,Dec.st2) for Dec.st2 = (2, ct′2)

where (y1, st2) = f(x1, st1) and ct′2 = OneCompFE.Enc(msk′2, (f, st2⊕p2, rmsk2 , rKeyGen2 , 0, 0
λ); r′Enc2).
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When i = 2, by correctness of OneCompFE and OneFSFE, except with negligible probablity,

Post-One-sFE.Dec(Dec.st2,CT2)

= Post-One-sFE.Dec((2, ct′2), (ct2, sk
′
h2
))

= (OneFSFE.Dec(OneCompFE.Dec(sk′h2
, ct′2), ct2), 3)

= (OneFSFE.Dec(hc2,c′2(f, st2 ⊕ p2, rmsk2 , rKeyGen2 , 0, 0
λ), ct2), 3)

= (OneFSFE.Dec(OneFSFE.KeyGen(msk2, gf,st2⊕p2,c2 ; rKeyGen2), ct2), 3)

= (OneFSFE.Dec(skg2 , ct2), 3)

= (gf,st2⊕p2,c2(x2, p2, p3, r
′
msk3 , r

′
Enc3 , rmsk3 , rKeyGen3 , 0, 0

λ, 0ℓY ), 3)

= (y2, ct
′
3, 3)

= (y2,Dec.st3) for Dec.st3 = (3, ct′3)

where (y2, st3) = f(x2, st2) and ct′3 = OneCompFE.Enc(msk′3, (f, st3⊕p3, rmsk3 , rKeyGen3 , 0, 0
λ); r′Enc3).

Similarly, by induction, for i > 2, except with negligible probability,

Post-One-sFE.Dec(Dec.sti,CTi) = (yi,Dec.sti+1) for Dec.sti+1 = (i+ 1, ct′i+1)

where (yi, sti+1) = f(xi, sti) and ct′i+1 = OneCompFE.Enc(msk′i+1, (f, sti+1 ⊕ pi+1, rmski+1
,

rKeyGeni+1
, 0, 0λ); r′Enci+1

).

Thus, except with negligible probability, D0(MSK) outputs (t∗ + 1, ct′t∗+1) where
ct′t∗+1 = OneCompFE.Enc(msk′t∗+1, (f, stt∗+1⊕ pt∗+1, rmskt∗+1

, rKeyGent∗+1
, 0, 0λ); r′Enct∗+1

). But

this is exactly what D1(MSK) outputs! Therefore the two distributions have identical output
except with negligible probability.
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6 Combining Pre-One-sFE and Post-One-sFE to Build One-sFE

We now construct our main building block: a single-key, single-ciphertext, adaptively secure, secret-
key sFE scheme which we call One-sFE. We prove the following:

Theorem 6.1. Assuming iO for P/Poly and injective PRGs, there exists a single-key, single-
ciphertext, adaptively secure, secret-key sFE scheme for P/Poly.

We build our scheme by combining the following two schemes:

• Pre-One-sFE: the single-key, single-ciphertext, selectively secure sFE scheme for F⊥ defined
in Section 4.

• Post-One-sFE: the single-key, single-ciphertext, function-selectively secure sFE scheme for
P/Poly defined in Section 5.

This is not a general transformation as our security proof is very non-black-box and relies on
properties of both schemes. Please refer to the technical overview (Section 2) for a high level
overview of our construction.

By Theorem 4.1, we can build Pre-One-sFE from iO and injective PRGs. By Theorem 5.1,
we can build Post-One-sFE from a strongly-compact, selectively secure, secret-key FE scheme for
P/Poly which in turn can be built from iO for P/Poly and OWFs [Wat15]. As OWFs are implied
by PRGs, then our final scheme One-sFE can also be built from iO for P/Poly and injective PRGs.

6.1 Parameters

On security parameter λ, function size ℓF , state size ℓS , input size ℓX , and output size ℓY , we will
instantiate our primitives with the following parameters:

• Post-One-sFE: We instantiate Post-One-sFE with function size ℓF , state size ℓS , input size ℓX ,
and output size ℓY .

• Pre-One-sFE: We instantiate Pre-One-sFE with function size LF , state size LS , input size LX ,
and output size LY where

– LF is the size of Post-One-sFE’s decryption function under the parameters listed above;

– LS is the size of Post-One-sFE’s decryption states under the parameters listed above;

– LX is the size of Post-One-sFE’s ciphertexts under the parameters listed above;

– LY = ℓY .

6.2 Construction

We now construct One-sFE from Pre-One-sFE and Post-One-sFE. Here, we omit the encryption
state from the encryption algorithms of both Pre-One-sFE and Post-One-sFE as their encryption
states are always ⊥ and are unused.

We also use the following notational variations when defining Pre-One-sFE and Post-One-sFE
as was already made explicit in the constructions given in Section 4 and Section 5: We define
the KeyGen algorithms of Pre-One-sFE and Post-One-sFE to additionally take the starting state as
input. We also write Post-One-sFE so that its decryption algorithm is a streaming function in the
standard format (i.e. takes only two inputs: a decryption state and a ciphertext). Note that in
this case, Post-One-sFE.KeyGen simply outputs the first decryption state.
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• One-sFE.Setup(1λ, 1ℓF , 1ℓS , 1ℓX , 1ℓY ):

1. Pre.MSK← Pre-One-sFE.Setup(1λ, 1LF , 1LS , 1LX , 1LY ).

2. Post.MSK← Post-One-sFE.Setup(1λ, 1ℓF , 1ℓS , 1ℓX , 1ℓY ).

3. Output MSK = (Pre.MSK,Post.MSK).

• One-sFE.EncSetup(MSK): Output Enc.st = ⊥.

• One-sFE.Enc(MSK,Enc.st, i, xi):

1. Parse MSK = (Pre.MSK,Post.MSK).

2. Post.CTi ← Post-One-sFE.Enc(Post.MSK, i, xi).

3. Pre.CTi ← Pre-One-sFE.Enc(Pre.MSK, i,Post.CTi).

4. Output CTi = Pre.CTi.

• One-sFE.KeyGen(MSK, f):

1. Parse MSK = (Pre.MSK,Post.MSK).

2. Post.Dec.st1 ← Post-One-sFE.KeyGen(Post.MSK, f, st1) where st1 = ⊥.
3. Pre.SKf ← Pre-One-sFE.KeyGen(Pre.MSK,Post-One-sFE.Dec,Post.Dec.st1).

4. Output SKf = Pre.SKf .

• One-sFE.Dec(SKf ,Dec.sti, i,CTi):

1. Parse SKf = Pre.SKf and CTi = Pre.CTi.

2. If i > 0, parse Dec.sti = Pre.Dec.sti. If i = 1, Pre.Dec.st1 = ⊥.
3. (yi,Pre.Dec.sti+1) = Pre-One-sFE.Dec(Pre.SKf ,Pre.Dec.sti, i,Pre.CTi).

4. Output (yi,Dec.sti+1 = Pre.Dec.sti+1).

6.3 Correctness and Efficiency

Efficiency. Efficiency follows directly from the efficiency requirements of Pre-One-sFE and Post-One-sFE.
By the streaming efficiency of Post-One-sFE, the size and runtime of all algorithms of Post-One-sFE

on security parameter λ, function size ℓF , state size ℓS , input size ℓX , and output size ℓY are
poly(λ, ℓF , ℓS , ℓX , ℓY).

By the streaming efficiency of Pre-One-sFE, the size and runtime of all algorithms of Pre-One-sFE
on security parameter λ, function size LF , state size LS , input size LX , and output size LY are
poly(λ, LF , LS , LX , LY) which are poly(λ, ℓF , ℓS , ℓX , ℓY) by the streaming efficiency of Post-One-sFE.

Thus, the size and runtime of all algorithms of One-sFE on security parameter λ, function size
ℓF , state size ℓS , input size ℓX , and output size ℓY are poly(λ, ℓF , ℓS , ℓX , ℓY)

Correctness Intuition. One-sFE composes Post-One-sFE and Pre-One-sFE in the following man-
ner:

• Post-One-sFE encrypts the stream x1, x2, . . . , xn and creates a function key for f .

• Pre-One-sFE encrypts the stream Post.CT1,Post.CT2, . . . ,Post.CTn of Post-One-sFE cipher-
texts, and creates a function key for Post-One-sFE.Dec.
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The decryption algorithm for One-sFE simply runs Pre-One-sFE’s decryption algorithm. This
means we will compute the output of running Post-One-sFE.Dec on the stream Post.CT1,Post.CT2, . . . ,
Post.CTn. But this means we will run Post-One-sFE’s decryption algorithm and thus will compute
the output of running f on our original stream x1, x2, . . . , xn. Thus, we will get the correct output
values we desire.

Correctness. More formally, let p be any polynomial and consider any λ and any ℓF , ℓS , ℓX , ℓY ≤
p(λ). Let SKf be a function key for function f ∈ F [ℓF , ℓS , ℓX , ℓY ], and let {CTi}i∈[n] be a ciphertext

for x where x = x1 . . . xn for some n ∈ [2λ] and where each xi ∈ {0, 1}ℓX .
For all i ∈ [n], by correctness of Pre-One-sFE, except with negligible probability,

One-sFE.Dec(SKf ,Dec.sti, i,CTi) = Pre-One-sFE.Dec(Pre.SKf ,Pre.Dec.sti, i,Pre.CTi)

= (yi,Pre.Dec.sti+1)

= (yi,Dec.sti+1)

where yi is the ith output in the computation of the streaming function Post-One-sFE.Dec on the
stream Post.CT1,Post.CT2, . . . ,Post.CTn, that is, we compute each yi by computing
(yi,Post.Dec.sti+1) = Post-One-sFE.Dec(Post.Dec.sti,Post.CTi). For all i ∈ [n], by correctness of
Post-One-sFE, except with negligible probability,

Post-One-sFE.Dec(Post.Dec.sti,Post.CTi) = (yi,Post.Dec.sti+1)

where (yi, sti+1) = f(xi, sti). Thus, we correctly output y = y1 . . . yn where (yi, sti+1) = f(xi, sti).

6.4 Security

We now prove that One-sFE is single-key, single-ciphertext, adaptively secure for the function class
P/Poly.

In this proof, we will use an alternate, but equivalent, definition of single-key, single-ciphertext,
adaptive security where instead of needing to distinguish between an encryption of stream x(0) and
an encryption of stream x(1), the adversary will receive an encryption of stream x(b) for a random
bit b and will win if they correctly guess b.

Definition 6.2 (Single-Key, Single-Ciphertext, Adaptive Security for Secret-Key sFE, Equivalent
Definition). A secret-key streaming FE scheme sFE for F⊥ is single-key, single-ciphertext,adaptively
secure if there exists a negligible function µ such that for all λ ∈ N and all PPT adversaries A,∣∣∣Pr[SKExptGuesssFE-1-Key-1-CT-AdA (1λ) = 1]

∣∣∣ ≤ 1

2
+ µ(λ)

where for λ ∈ N, we define

SKExptGuesssFE-1-Key-1-CT-AdA (1λ)

1. Parameters: A takes as input 1λ, and outputs a function size 1ℓF , a state size 1ℓS , an
input size 1ℓX , and an output size 1ℓY .

2. Setup: Compute msk← sFE.Setup(1λ, 1ℓF , 1ℓS , 1ℓX , 1ℓY ).

3. Challenge Bit: Sample b← {0, 1}.

4. The following can be repeated any polynomial number of times:
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(a) Challenge Message Query Phase 1:

i. If this is the first challenge message query, sample Enc.st← sFE.EncSetup(msk)
and initialize the index i = 1. Else, increment the index i by 1.

ii. A outputs a challenge message pair (x
(0)
i , x

(1)
i ) where x

(0)
i , x

(1)
i ∈ {0, 1}ℓX .

iii. cti ← sFE.Enc(msk,Enc.st, i, x
(b)
i ).

iv. Send cti to A.

5. Function Query:

(a) A outputs a streaming function query f ∈ F [ℓF , ℓS , ℓX , ℓY ].
(b) skf ← sFE.KeyGen(msk, f).

(c) Send skf to A.

6. The following can be repeated any polynomial number of times:

(a) Challenge Message Query Phase 2:

i. If this is the first challenge message query (in either Phase 1 or Phase 2), sample
Enc.st← sFE.EncSetup(msk) and initialize the index i = 1. Else, increment the
index i by 1.

ii. A outputs a challenge message pair (x
(0)
i , x

(1)
i ) where x

(0)
i , x

(1)
i ∈ {0, 1}ℓX .

iii. cti ← sFE.Enc(msk,Enc.st, i, x
(b)
i ).

iv. Send cti to A.

7. Experiment Outcome: A outputs a bit b′. The output of the experiment is set to 1 if
b = b′, and 0 otherwise.

Additionally, when running the experiment, we immediately halt and output 0 if the adversary
ever aborts or if it at any point some function query f submitted by the adversary yields different
outputs on the challenge message streams submitted so far (i.e. if f(x(0)) ̸= f(x(1)) for some

function query f submitted by the adversary where {(x(0)i , x
(1)
i )}i∈[t] are the message queries

submitted so far, x(0) = x
(0)
1 . . . x

(0)
t , and x(1) = x

(1)
1 . . . x

(1)
t ).

Using standard techniques, it is easy to show that this is equivalent to the regular definition of
single-key, single-ciphertext, adaptive security.

6.4.1 Proof Overview

We strongly recommend that the reader first reads the technical overview for intuition on the proof.
This section serves mainly as a structural overview of the proof which details the major hybrids.

The proof can be split into two main parts:

1. In Part 1, we use the security of Pre-One-sFE to deal with all the message queries given before
the function query.

2. In Part 2, we use the security of Post-One-sFE to deal with all the message queries given after
the function query.

Note that we use the security of these component schemes in a very non-black-box manner.
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First, however, we move to a hybrid that allows us to know the stream length at the beginning
of the hybrid. In our formal proof, we include the following two hybrids under Part 1.

Guessing the stream length. Define t∗ to be the length of the challenge stream preceding the
function query and define n to be the total length of the challenge stream. In many hybrids, it is
useful to know these values at the beginning of the hybrid. However, (t∗, n) are adaptively (and
implicitly) chosen by the adversary. Thus, to obtain these values earlier, we will use a guess and
check method.

1. HybridA0 : This is the real world security game where we encrypt stream x(b).

2. HybridA1 : We guess the length of the challenge stream at the beginning of the experiment
and output ⊥ if our guess turns out to be incorrect.

Since we only guess the correct values of (t∗, n) with an inverse polynomial probability, the actual
hybrid we will move to is Wrap(HybridA1 ) which repeats the entire experiment of HybridA1 with
fresh guesses whenever our guess turns out to be incorrect.

Part 1: Using the Security of Pre-One-sFE.
Our goal is to iteratively replace the encryption of each element of stream x(b) with a value which
is independent of the challenge bit b. For message queries given before the function query, we can
do this using the security of Pre-One-sFE. In particular, for i < t∗, we will replace each encryption

of x
(b)
i with an encryption of x

(0)
i . We will also replace the encryption of x

(b)
t∗ with an encryption of

⊥.
Our Pre-One-sFE scheme encrypts each stream value xi by first encrypting xi using a secret

key encryption scheme (SKE) and then signing the resulting ciphertext with a splittable signature
scheme. The function key for a streaming function f consists of a signed encryption of the starting
state along with an obfuscated program that at each step i, verifies and decrypts the incoming
stream and state ciphertexts, computes the streaming function on these values, and encrypts and
signs the new state.24

At a high level, for each index t, the idea is to replace the tth input and state ciphertexts of
stream x(b) for those of stream x(0) using the security of SKE. This works as long as the keys (and
randomness) used to encrypt these ciphertexts are hidden. Unfortunately, the function key contains
an obfuscated program which has these SKE keys hardwired into it since the program needs the keys
to decrypt the incoming messages and to encrypt outgoing states. However, by using different SKE
schemes for each index and by using standard punctured programming techniques, we can ensure
that the SKE keys for the tth ciphertexts are only used by the program at index t (to decrypt the
input) and at index t − 1 (to encrypt the new state). Then, we can modify the program so that
it skips the computation phase (involving the aforementioned encryption and decryption) at steps
t− 1 and t and instead uses pre-computed hardwired values. This removes the tth SKE keys from
the program entirely which allows us to swap the tth ciphertexts.

We describe the main hybrids involved in this part of the proof.

1. HybridA2 : We unwrap the construction of Pre-One-sFE.

2. We proceed through a series of sub-hybrids for t ∈ [t∗ − 1], in which we iteratively replace
the tth encryption of stream x(b) with the corresponding encryption of stream x(0). For each
index t, we do the following:

24The construction also involves a cryptographic iterator which we omit from this brief description for simplicity.
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(a) We assume that step t− 1 is hardwired into the program.

Note that we can hardwire step 0 for free (i.e. without changing the behavior of the
obfuscated program) since stream indexing starts at step 1.

i. HybridA3,t,0: For i < t, we encrypt stream x(0) instead of x(b). Additionally, we
hardwire the output values at step t− 1 into the program.

(b) We hardwire step t into the program.

This is a very complex and involved step. Please refer to the technical overview for
further intuition.

i. HybridA3,t,1: We introduce an alternative B-type signature scheme for verifying and
signing state ciphertexts within our obfuscated program. In particular, we mod-
ify our program so that if the incoming state ciphertext does not verify using the
(original) A-type signature scheme and i ≤ t−1, rather than immediately rejecting,
we instead try to verify it with the B-type signature scheme. If the incoming state
ciphertext verifies under the B-type scheme, we proceed with our computation as
usual except that we sign the outgoing state ciphertext with a B-type signature.

We add in the B-type signature scheme one index at a time starting from index
t − 1 and going backwards to index 1. Hybrids HybridA3,t,0,j,0 to HybridA3,t,0,j,6
detail how to add in this signature scheme at index j.

ii. HybridA3,t,2: If our outgoing message at step t−1 is the correct pre-computed hard-

wired value corresponding to stream x(0), then we sign the message with a B-type
signature. Additionally, we no longer verify using B type signatures.

To reach this hybrid, we must trace the computation up through the program.We
start by enforcing that at step 0 (which is unused), we will sign the outgoing mes-
sage with a B-type signature if and only if the outgoing message is the correct
pre-computed value corresponding to stream x(0). Then, for each index j from 1
to t− 1, we remove the B-type verification at step j and move the enforcement up
a step. (i.e. We instead enforce that at step j (rather than j − 1), only the cor-
rect outgoing message corresponding to stream x(0) will be signed with the B-type
scheme.)

At a high level, for each index j this involves

1. Hybrids HybridA3,t,1,j,0 to HybridA3,t,1,j,6: Splitting the jth A and B type sig-
nature schemes on the chosen values. Using further properties of splittable
signatures, this lets us moves the enforcement from the outgoing message at
step j − 1 to the incoming message at step j.

2. Hybrids HybridA3,t,1,j,7 to HybridA3,t,1,j,10: Merging the j − 1th A and B type
signature schemes. This removes the B-type verification at step j − 1.

3. Hybrids HybridA3,t,1,j,11 to HybridA3,t,1,j,19: Using the iterator to enforce the

jth step of computation. This moves the enforcement from the jth incoming
message to the jth outgoing message.

iii. HybridA3,t,3: At index t, rather than computing (yt, ctst,t+1) from the input values,
we set these values to pre-computed and hardwired outputs corresponding to stream
x(b). Hybrids HybridA3,t,2,1 to HybridA3,t,2,9 detail how to hardwire these values.
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iv. HybridA3,t,4: We remove all references to B type signatures. To do this, we essen-

tially perform the steps taken to bring us from HybridA3,t,0 to HybridA3,t,3 in reverse
order.

(c) Now, that both steps t − 1 and t are hardwired into the program, we can swap the tth

encryption of stream x(b) with an encryption of stream x(0) using the security of SKE.

i. HybridA3,t,5: At step t, we now encrypt stream x(0) instead of stream x(b).

Hybrids HybridA3,t,4,1 to HybridA3,t,4,5 detail how to swap the tth ciphertext.

(d) We clean up by un-hardwiring step t−1 from the program. This returns us toHybridA3,t+1,0.

This is done in a similar fashion as when we originally hardwired the step.

i. HybridA3,t,6: At steps i ≤ t−2, we introduce an alternative B-type signature scheme
for verifying and signing state ciphertexts within our obfuscated program. This step
is done in a similar fashion as in HybridA3,t−1,1.

ii. HybridA3,t,7: If our outgoing message at step t − 2 is the correct pre-computed

hardwired value corresponding to stream x(0), then we sign the message with a B-
type signature. Additionally, we no longer verify using B type signatures. This step
is done in a similar fashion as in HybridA3,t−1,2.

iii. HybridA3,t,8: At index t − 1, rather than setting (yt, ctst,t+1) to pre-computed and

hardwired outputs corresponding to stream x(0), we compute them from the input
values. This is essentially the inverse of HybridA3,t−1,3.

iv. HybridA3,t,9: We remove all references to B type signatures. This step is done in a

similar fashion as in HybridA3,t−1,4.

3. For the ciphertext at index t∗, rather than replacing it with an encryption of stream x(0), we
replace it with an encryption of ⊥.
This breaks the chain of dependencies between the ciphertexts of message queries given before
the function query and the ciphertexts of message queries given after the function query which
is needed in Part 2 of the security proof. In particular, the ciphertexts of our adaptive scheme
consist of an outer Pre-One-sFE encryption of an inner Post-One-sFE ciphertext of the stream
value. Thus, this step replaces the inner t∗th Post-One-sFE ciphertext with ⊥, removing it
from the scheme entirely. This is required since the t∗th Post-One-sFE ciphertext contains
secret values used in encrypting the t∗ + 1th Post-One-sFE ciphertext.

(a) HybridA4 : This is identical to HybridA3,t∗,4. In other words, for i < t∗, we encrypt

stream x(0) instead of stream x(b). We also have steps i = t∗ − 1 and i = t∗ hardwired
into the program.

(b) HybridA5 : We replace the t∗th encryption of stream x(b) with an encryption of ⊥.
Hybrids HybridA4,1 to HybridA4,5 detail how to swap this ciphertext with ⊥.

4. HybridA6 : We re-wrap the parts of our construction corresponding to Pre-One-sFE. Note
that our hybrid no longer acts identically to the original construction of Pre-One-sFE since
we have to maintain hardwired values in our hybrid in order to deal with the encryption of
⊥ at step t∗. However, we have removed the dependency on the challenge bit b from the
ciphertexts of message queries given before the function query.
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Part 2: Using the Security of Post-One-sFE.
Recall that our goal is to iteratively replace the encryption of each element of stream x(b) with a
value which is independent of the challenge bit b. Using our Pre-One-sFE scheme, we have already
done this for all message queries given before the function query. For the remaining message
queries, consisting of all message queries given after the function query, we will use the security of
Post-One-sFE. In particular, we will replace these values with values that can be simulated given
just the output of the streaming function on the challenge streams.

As this proof is essentially identical to the proof in [GKS23], we refer the reader to the proof
overview given in Section 5.4 of [GKS23] and simply list which of their hybrids corresponds to each
of our hybrids. Note that the last hybrid of Part 1 is HybridA6 which corresponds to the starting
hybrid HybridA1 in [GKS23].

1. HybridA7 : We unwrap the definition of Post-One-sFE and exchange some pseudorandom
values for truly random values. This corresponds to HybridA2 in [GKS23].

2. HybridA8 : This corresponds to HybridA3 in [GKS23].

3. HybridA9 : This corresponds to HybridA4 in [GKS23].

4. HybridA10 : This corresponds to HybridA5 in [GKS23].

5. We go through the following hybrids for t ∈ [t∗ + 1, n]. Note that relative to the proof
in [GKS23], we have modified the notational numbering of the following two hybrids. However,
we have not changed the order in which the hybrids occur in the proof.

• HybridA11,t,0: This corresponds to hybrid HybridA6,k−1,2 in [GKS23] for k = t− t∗.

• HybridA11,t,1: This corresponds to hybrid HybridA6,k,1 in [GKS23] for k = t− t∗.

6. HybridA12: This corresponds to HybridA7 in [GKS23].

7. HybridA13: This corresponds to HybridA8 in [GKS23], which is their final hybrid.

After concluding Part 2, our final hybrid is independent of the challenge bit b. This implies the
security of our scheme.

6.4.2 Formal Proof

As the proof is rather long and involved, we defer it to Appendix C (page 102).
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7 Bootstrapping to an Adaptively Secure, Public-Key Streaming
FE Scheme

To construct our adaptively secure, public-key sFE scheme, we use the following theorem which is
implied by the work of [GKS23].

Theorem 7.1. Assuming

1. a selectively secure, public-key FE scheme for P/Poly

2. a single-key, single-ciphertext, adaptively secure, secret-key, sFE scheme for P/Poly

there exists an adaptively secure, public-key sFE scheme for P/Poly.

Since [GKS23] only proves this theorem for function-selectively secure sFE schemes, for com-
pleteness, we provide a proof of Theorem 7.1 here.25 Apart from the fact that One-sFE now
represents a (single-key, single-ciphertext) adaptively secure scheme, rather than a (single-key,
single-ciphertext) function-selectively secure scheme, our construction is identical to the construc-
tion in [GKS23]. Our proof of security is also essentially the same. We have merely reordered some
of the steps in the hybrids so that they align with the adaptive security game. For a high level
overview of the construction, we refer the reader to the Technical Overview of [GKS23].

To prove Theorem 7.1, we build an sFE scheme from the following tools. As we show below,
apart from One-sFE, all of the following tools can be instantiated using a selectively secure, public-
key FE scheme for P/Poly.

Tools.

• One-sFE = (One-sFE.Setup,One-sFE.Enc,One-sFE.KeyGen,One-sFE.Dec): A single-key, single-
ciphertext, adaptively secure, secret-key sFE scheme for P/Poly.

• PRF = (PRF.Setup,PRF.Eval): A secure pseudorandom function family.

• PRF2 = (PRF2.Setup,PRF2.Eval): A secure pseudorandom function family.

• SKE = (SKE.Setup,SKE.Enc, SKE.Dec): A secure symmetric key encryption scheme with
pseudorandom ciphertexts.

• FPFE = (FPFE.Setup,FPFE.Enc,FPFE.KeyGen,FPFE.Dec): A function-private-selective-secure,
secret-key FE scheme for P/Poly

• FE = (FE.Setup,FE.Enc,FE.KeyGen,FE.Dec): A selectively secure, public-key FE scheme for
P/Poly.

Instantiation of the Tools. Let FE′ be a selectively secure, public-key FE scheme for P/Poly.

• We can build PRF,PRF2,SKE from any one-way-function using standard cryptographic tech-
niques (e.g. [Gol01,Gol09]). As FE′ implies one-way-functions, then we can build these from
FE′.

• FE′ already satisfies the security requirements needed for FE.

25 [GKS23] indeed remark, but do not formally prove, that their theorem should also hold for adaptively secure
schemes.
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• FE′ immediately implies a selectively secure, secret-key FE scheme SKFE′ for P/Poly. We can
then build our function-private-selective-secure, secret-key FE scheme FPFE for P/Poly by
using the function-privacy transformation of [BS18] on SKFE′.

7.1 Parameters

The parameters are identical to those in [GKS23] since our construction is identical to [GKS23]
except for the fact that One-sFE now represents a (single-key, single-ciphertext) adaptively secure
scheme, rather than a (single-key, single-ciphertext) function-selectively secure scheme.

On security parameter λ, function size ℓF , state size ℓS , input size ℓX , and output size ℓY , we
will instantiate our primitives with the following parameters:

• One-sFE: We instantiate One-sFE with function size ℓF , state size ℓS , input size ℓX , and output
size ℓY . This means that we will use the following setup algorithm: One-sFE.Setup(1λ, 1ℓF , 1ℓS , 1ℓX , 1ℓY ).

• PRF: We instantiate PRF with input size λ and output size 5λ. This means that we will use
the following setup algorithm: PRF.Setup(1λ, 1λ, 15λ).

• PRF2: We instantiate PRF2 with input size λ and output size λ. This means that we will use
the following setup algorithm: PRF2.Setup(1λ, 1λ, 1λ).

• FPFE: We instantiate FPFE with

– Input Size: ℓFPFE.mλ
= ℓOne-sFE.mskλ + ℓOne-sFE.Enc.stλ + ℓPRF2.kλ + 2 where ℓOne-sFE.mskλ

is the size of master secret keys of One-sFE, ℓOne-sFE.Enc.stλ is the size of encryption states
of One-sFE, and ℓPRF2.kλ is the size of keys of PRF2.

– Function Size: ℓHλ
where ℓHλ

is the maximum of the size of Hi,xi,ti defined in Figure 5
and the size of H∗i,xi,x′

i,ti,vi
defined in Figure 7 for any

∗ i, ti ∈ {0, 1}λ

∗ xi, x
′
i ∈ {0, 1}ℓX

∗ vi of size ℓOne-sFE.ctλ where ℓOne-sFE.ctλ is the size of ciphertexts of One-sFE

Observe that the function size depends only on λ, ℓF , ℓS , ℓX , ℓY and the sizes of PRF2,
and One-sFE.

– Output Size: ℓOne-sFE.ctλ where ℓOne-sFE.ctλ is the size of ciphertexts of One-sFE

This means that we will use the following setup algorithm: FPFE.Setup(1λ, 1ℓHλ , 1ℓFPFE.mλ , 1ℓOne-sFE.ctλ ).

• SKE: We instantiate SKE with messages of length ℓSKE.mλ
= ℓOne-sFE.skλ + ℓFPFE.ctλ where

ℓOne-sFE.skλ is the size of function keys of One-sFE and ℓFPFE.ctλ is the size of ciphertexts of
FPFE. This means that we will use the following setup algorithm: SKE.Setup(1λ, 1ℓSKE.mλ ).

• FE: We instantiate FE with

– Input Size: ℓFE.mλ
= ℓFPFE.mskλ + ℓPRF.kλ + 1 + ℓSKE.kλ where ℓFPFE.mskλ is the size of

master secret keys of FPFE, ℓPRF.kλ is the size of keys of PRF, and ℓSKE.kλ is the size of
keys of SKE.

– Function Size: ℓGλ
where ℓGλ

is the maximum size of Gf,s,c defined in Figure 6 for any

∗ f ∈ F [ℓF , ℓS , ℓX , ℓY ]
∗ s ∈ {0, 1}λ
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∗ c of size ℓSKE.ctλ where ℓSKE.ctλ is the size of ciphertexts of SKE

Note that the function size depends only on λ, ℓF , ℓS , ℓX , ℓY and the sizes of PRF, PRF2,
One-sFE, FPFE, and SKE.

– Output Size: ℓFE.outλ = ℓOne-sFE.skλ + ℓFPFE.ctλ where ℓOne-sFE.skλ is the size of secret
keys of One-sFE and ℓFPFE.ctλ is the size of ciphertexts of FPFE

This means that we will use the following setup algorithm: FE.Setup(1λ, 1ℓGλ , 1ℓFE.mλ , 1ℓFE.outλ ).

Notation. For notational convenience, when the parameters are understood, we will often omit
the security, input size, output size, message size, function size, or state size parameters from each
of the algorithms listed above.

Remark 7.2. We assume without loss of generality that for security parameter λ, all algorithms
only require randomness of length λ. If the original algorithm required additional randomness,
we can replace it with a new algorithm that first expands the λ bits of randomness using a PRG
of appropriate stretch and then runs the original algorithm. Note that this replacement does not
affect the security of the above schemes (as long as ℓF , ℓS , ℓX , ℓY are polynomial in λ).
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7.2 Construction

We now construct our streaming FE scheme sFE. Our construction is identical to [GKS23] except
for the fact that One-sFE now represents a (single-key, single-ciphertext) adaptively secure scheme,
rather than a (single-key, single-ciphertext) function-selectively secure scheme. Recall that for
notational convenience, we may omit the security, input size, output size, message size, function
size, or state size parameters from our algorithms. For information on these parameters, please see
the parameter section above.

• sFE.Setup(1λ, 1ℓF , 1ℓS , 1ℓX , 1ℓY ):

1. (FE.mpk,FE.msk)← FE.Setup(1λ)

2. Output (MPK = FE.mpk,MSK = FE.msk).

• sFE.EncSetup(MPK):

1. Parse MPK = FE.mpk.

2. PRF.K ← PRF.Setup(1λ).

3. FPFE.msk← FPFE.Setup(1λ)

4. FE.ct← FE.Enc(FE.mpk, (FPFE.msk,PRF.K, 0, 0ℓSKE.kλ )).

5. Output Enc.ST = (FPFE.msk,FE.ct).

• sFE.Enc(MPK,Enc.ST, i, xi):

1. Parse Enc.ST = (FPFE.msk,FE.ct).

2. ti ← {0, 1}λ.
3. Let Hi = Hi,xi,ti as defined in Figure 5.

4. FPFE.skHi = FPFE.KeyGen(FPFE.msk, Hi)

5. If i = 1, output CT1 = (FE.ct,FPFE.skH1).

6. Else, output CTi = FPFE.skHi

Hi,xi,ti(One-sFE.msk,One-sFE.Enc.st,PRF2.k, β):

1. If β = 0

(a) ri ← PRF2.Eval(PRF2.k, ti)

(b) Output One-sFE.cti ← One-sFE.Enc(One-sFE.msk,One-sFE.Enc.st, i, xi; ri)

2. Else, output ⊥

Figure 5: Definition of Hi,xi,ti

• sFE.KeyGen(MSK, f):

1. Parse MSK = FE.msk.

2. s← {0, 1}λ.
3. c← {0, 1}ℓSKE.ctλ .
4. Let G = Gf,s,c as defined in Figure 6.
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5. FE.skG ← FE.KeyGen(FE.msk, G).

6. Output SKf = FE.skG.

Gf,s,c(FPFE.msk,PRF.K, α, SKE.k):

1. If α = 0

(a) (rSetup, rKeyGen, rEncSetup, rPRF2, rEnc)← PRF.Eval(PRF.K, s)

(b) One-sFE.msk← One-sFE.Setup(1λ; rSetup)

(c) One-sFE.Enc.st← One-sFE.EncSetup(One-sFE.msk; rEncSetup)

(d) One-sFE.skf ← One-sFE.KeyGen(One-sFE.msk, f ; rKeyGen)

(e) PRF2.k ← PRF2.Setup(1λ; rPRF2)

(f) FPFE.ct← FPFE.Enc(FPFE.msk, (One-sFE.msk,One-sFE.Enc.st,PRF2.k, 0); rEnc)

(g) Output (One-sFE.skf ,FPFE.ct)

2. Else

(a) Output (One-sFE.skf ,FPFE.ct)← SKE.Dec(SKE.k, c)

Figure 6: Definition of Gf,s,c

• sFE.Dec(SKf ,Dec.STi, i,CTi):

1. If i = 1

(a) Parse CT1 = (FE.ct,FPFE.skH1) and SKf = FE.skG.

(b) (One-sFE.skf ,FPFE.ct) = FE.Dec(FE.skG,FE.ct)

(c) Set One-sFE.Dec.st1 = ⊥.
2. If i > 1

(a) Parse CTi = FPFE.skHi

(b) Parse Dec.STi = (One-sFE.skf ,FPFE.ct,One-sFE.Dec.sti)

3. One-sFE.cti = FPFE.Dec(FPFE.skHi ,FPFE.ct)

4. (yi,One-sFE.Dec.sti+1) = One-sFE.Dec(One-sFE.skf ,One-sFE.Dec.sti, i,
One-sFE.cti)

5. Output (yi,Dec.STi+1 = (One-sFE.skf ,FPFE.ct,One-sFE.Dec.sti+1))

We also define the following function which will be used in our security proof.
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H∗i,xi,x′
i,ti,vi

(One-sFE.msk,One-sFE.Enc.st,PRF2.k, β):

• If β = 0

1. ri ← PRF2.Eval(PRF2.k, ti)

2. Output One-sFE.cti ← One-sFE.Enc(One-sFE.msk,One-sFE.Enc.st, i, xi; ri)

• If β = 1

1. ri ← PRF2.Eval(PRF2.k, ti)

2. Output One-sFE.cti ← One-sFE.Enc(One-sFE.msk,One-sFE.Enc.st, i, x′i; ri)

• Else, output vi

Figure 7: Definition of H∗i,xi,x′
i,ti,vi

7.3 Correctness and Efficiency

Correctness and efficiency follow from the corresponding theorems in [GKS23] since our con-
struction is identical to [GKS23] except for the fact that One-sFE now represents a (single-key,
single-ciphertext) adaptively secure scheme, rather than a (single-key, single-ciphertext) function-
selectively secure scheme. However, this difference only affects the security of One-sFE and thus
only affects the proof of security.

7.4 Security

As the security proof is very similar to the one in [GKS23], we defer it to Appendix D (page 296).
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Tibouchi. Cryptanalysis of the quadratic zero-testing of GGH. IACR Cryptol. ePrint
Arch., page 845, 2015.

89

https://eprint.iacr.org/2018/615
https://eprint.iacr.org/2018/615


[BGI+01] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai, Salil P.
Vadhan, and Ke Yang. On the (im)possibility of obfuscating programs. In Joe Kilian,
editor, CRYPTO 2001, volume 2139 of LNCS, pages 1–18. Springer, Heidelberg, August
2001.

[BGI14] Elette Boyle, Shafi Goldwasser, and Ioana Ivan. Functional signatures and pseudoran-
dom functions. In Hugo Krawczyk, editor, PKC 2014, volume 8383 of LNCS, pages
501–519. Springer, Heidelberg, March 2014.

[BGK+14] Boaz Barak, Sanjam Garg, Yael Tauman Kalai, Omer Paneth, and Amit Sahai. Pro-
tecting obfuscation against algebraic attacks. In Phong Q. Nguyen and Elisabeth Os-
wald, editors, EUROCRYPT 2014, volume 8441 of LNCS, pages 221–238. Springer,
Heidelberg, May 2014.

[BIJ+20] James Bartusek, Yuval Ishai, Aayush Jain, Fermi Ma, Amit Sahai, and Mark Zhandry.
Affine determinant programs: A framework for obfuscation and witness encryption.
In Thomas Vidick, editor, ITCS 2020, volume 151, pages 82:1–82:39. LIPIcs, January
2020.

[BKS16] Zvika Brakerski, Ilan Komargodski, and Gil Segev. Multi-input functional encryption
in the private-key setting: Stronger security from weaker assumptions. In Marc Fischlin
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Nielsen, editors, EUROCRYPT 2017, Part III, volume 10212 of LNCS, pages 156–181.
Springer, Heidelberg, April / May 2017.

[GVW15] Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Predicate encryption
for circuits from LWE. In Rosario Gennaro and Matthew J. B. Robshaw, editors,
CRYPTO 2015, Part II, volume 9216 of LNCS, pages 503–523. Springer, Heidelberg,
August 2015.

[Hal15] Shai Halevi. Graded encoding, variations on a scheme. IACR Cryptol. ePrint Arch.,
page 866, 2015.

[HJ15] Yupu Hu and Huiwen Jia. Cryptanalysis of GGH map. IACR Cryptol. ePrint Arch.,
page 301, 2015.

[HJK+16] Dennis Hofheinz, Tibor Jager, Dakshita Khurana, Amit Sahai, Brent Waters, and Mark
Zhandry. How to generate and use universal samplers. In Jung Hee Cheon and Tsuyoshi
Takagi, editors, ASIACRYPT 2016, Part II, volume 10032 of LNCS, pages 715–744.
Springer, Heidelberg, December 2016.

[HSW13] Susan Hohenberger, Amit Sahai, and Brent Waters. Full domain hash from (leveled)
multilinear maps and identity-based aggregate signatures. In Ran Canetti and Juan A.
Garay, editors, CRYPTO 2013, Part I, volume 8042 of LNCS, pages 494–512. Springer,
Heidelberg, August 2013.

[IPS08] Yuval Ishai, Manoj Prabhakaran, and Amit Sahai. Founding cryptography on oblivious
transfer - efficiently. In David Wagner, editor, CRYPTO 2008, volume 5157 of LNCS,
pages 572–591. Springer, Heidelberg, August 2008.

[JKK+17] Zahra Jafargholi, Chethan Kamath, Karen Klein, Ilan Komargodski, Krzysztof
Pietrzak, and Daniel Wichs. Be adaptive, avoid overcommitting. In Jonathan Katz
and Hovav Shacham, editors, CRYPTO 2017, Part I, volume 10401 of LNCS, pages
133–163. Springer, Heidelberg, August 2017.

[JLMS19] Aayush Jain, Huijia Lin, Christian Matt, and Amit Sahai. How to leverage hardness of
constant-degree expanding polynomials over R to build iO. In Yuval Ishai and Vincent
Rijmen, editors, EUROCRYPT 2019, Part I, volume 11476 of LNCS, pages 251–281.
Springer, Heidelberg, May 2019.

[JLS21] Aayush Jain, Huijia Lin, and Amit Sahai. Indistinguishability obfuscation from well-
founded assumptions. In Samir Khuller and Virginia Vassilevska Williams, editors,
53rd ACM STOC, pages 60–73. ACM Press, June 2021.

[JLS22] Aayush Jain, Huijia Lin, and Amit Sahai. Indistinguishability obfuscation from LPN
over Fp, DLIN, and PRGs in NC0. In Orr Dunkelman and Stefan Dziembowski, ed-
itors, EUROCRYPT 2022, Part I, volume 13275 of LNCS, pages 670–699. Springer,
Heidelberg, May / June 2022.

[JW16] Zahra Jafargholi and Daniel Wichs. Adaptive security of yao’s garbled circuits. Cryp-
tology ePrint Archive, Report 2016/814, 2016. https://eprint.iacr.org/2016/814.

93

https://eprint.iacr.org/2016/814


[KLW15] Venkata Koppula, Allison Bishop Lewko, and Brent Waters. Indistinguishability obfus-
cation for Turing machines with unbounded memory. In Rocco A. Servedio and Ronitt
Rubinfeld, editors, 47th ACM STOC, pages 419–428. ACM Press, June 2015.

[KPTZ13] Aggelos Kiayias, Stavros Papadopoulos, Nikos Triandopoulos, and Thomas Zacharias.
Delegatable pseudorandom functions and applications. In Ahmad-Reza Sadeghi, Vir-
gil D. Gligor, and Moti Yung, editors, ACM CCS 2013, pages 669–684. ACM Press,
November 2013.

[KW20] Lucas Kowalczyk and Hoeteck Wee. Compact adaptively secure ABE for NC1 from
k-Lin. Journal of Cryptology, 33(3):954–1002, July 2020.

[Lin16] Huijia Lin. Indistinguishability obfuscation from constant-degree graded encoding
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A [JLS22] Assumptions

In this section, we detail the assumptions used in [JLS22] to build (subexponentially secure) iO for
P/Poly.

Definition A.1 (ϵ-Indistinguishability). We say that two ensembles X = {Xλ}λ∈N and Y =
{Yλ}λ∈N are ϵ-indistinguishable if for all PPT adversaries A and for all sufficiently large λ ∈ N,∣∣∣∣ Pr

x←Xλ

[A(1λ, x) = 1]− Pr
y←Yλ

[A(1λ, y) = 1]

∣∣∣∣ ≤ ϵ(λ)
We say that two ensembles are computationally indistinguishable if they are ϵ-indistinguishable for
ϵ(λ) = negl(λ) for some negligible negl, and that two ensembles are subexponentially indistinguish-
able if they are ϵ-indistinguishable for ϵ(λ) = 2−λ

c
for some positive real number c.

Definition A.2 (δ-LPN Assumption [BFKL94, IPS08,AAB15,BCGI18]). Let δ ∈ (0, 1). We say
that the δ-LPN Assumption is true if the following holds: For any constant ηp > 0, any function
p : N → N such that for every ℓ ∈ N, p(ℓ) is a prime of ℓηp bits, any constant ηn > 0, we set
p = p(ℓ), n = n(ℓ) = ℓηn, and r = r(ℓ) = ℓ−δ, and we require that the following two distributions
are computationally indistinguishable:{

(A, b = s ·A+ e) | A← Zℓ×n
p , s← Z1×n

p , e← D1×n
r (p)

}
ℓ∈N{

(A,u) | A← Zℓ×n
p ,u← Z1×n

p

}
ℓ∈N

where e ← Dr(p) is a generalized Bernoulli distribution, i.e. e is sampled randomly from Zp with
probability r = ℓ−δ and set to be 0 with probability 1− r. We say that subexponential δ-LPN holds
if the two distributions above are subexponentially indistinguishable.

Remark A.3. A PRG (see Definition B.1) is said to be in NC0 if it is implementable by a uniformly
efficiently generatable NC0 circuit. We say a PRG with stretch m(·) is subexponentially secure if
there exists a real positive constant c such that for all non-uniform PPT adversaries A and all
sufficiently large n ∈ N,∣∣∣∣ Pr

r←{0,1}n
[A(PRG(r)) = 1]− Pr

z←{0,1}m(n)
[A(z) = 1]

∣∣∣∣ ≤ 2−λ
c
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Definition A.4 (DLIN Assumption). The decision linear (DLIN) assumption over prime order
symmetric bilinear groups is stated as follows: Given an appropriate prime p, two groups G,GT
are chosen of order p such that there exists an efficiently computable nontrivial bilinear map e :
G × G → GT . Canonical generators g for G and gT for GT are also computed. Then, the DLIN
assumption requires that the following computational indistinguishability holds:

{(gx, gy, gz, gxa, gyb, gz(a+b)) : x, y, z, a, b← Zp} ≈c {(gx, gy, gz, gxa, gyb, gzc) : x, y, z, a, b, c← Zp}

We say that subexponential DLIN holds if the two distributions above are subexponentially indistin-
guishable.

B Preliminaries Continued

B.1 Standard Notions

Definition B.1 (Pseudorandom Generator (PRG)). A pseudorandom generator with stretch m(·)
is a Boolean function PRG : {0, 1}∗ → {0, 1}∗ mapping n-bit inputs to m(n)-bit outputs that is
computable by a uniform PPT machine. Security holds if there exists a negligible function µ such
that for all n ∈ N and all PPT adversaries A,∣∣∣∣ Pr

r←{0,1}n
[A(PRG(r)) = 1]− Pr

z←{0,1}m(n)
[A(z) = 1]

∣∣∣∣ ≤ µ(n)
Definition B.2 (Pseudorandom Function (PRF)). A pseudorandom function family (PRF) with
key space K = {Kλ,n,m}λ,n,m∈N is a tuple of PPT algorithms PRF = (PRF.Setup,PRF.Eval) where

• PRF.Setup(1λ, 1n, 1m) is a randomized algorithm that takes as input the security parameter
λ, an input length n, and an output length m, and outputs a key K ∈ Kλ,n,m

• PRF.Eval(K,x) is a deterministic algorithm that takes as input a key K ∈ Kλ,n,m and an
input x ∈ {0, 1}n, and outputs a value y ∈ {0, 1}m.

Security requires that there exists a negligible function µ such that for all λ ∈ N and all PPT
adversaries A, ∣∣∣Pr[ExptPRFA (1λ, 0) = 1]− Pr[ExptPRFA (1λ, 1) = 1]

∣∣∣ ≤ µ(λ)
where for each b ∈ {0, 1} and λ ∈ N, we define

ExptPRFA (1λ, b)

1. Parameters: A takes as input 1λ and outputs an input size 1n and an output size 1m.

2. Setup:

(a) If b = 0, sample K ← PRF.Setup(1λ, 1n, 1m).

(b) If b = 1, sample R ← Rn,m where Rn,m is the set of all functions from {0, 1}n to
{0, 1}m.

3. PRF Queries: The following can be repeated any polynomial number of times:

(a) A outputs a value x ∈ {0, 1}n.
(b) If b = 0, send y = PRF.Eval(K,x) to A.
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(c) If b = 1, send y = R(x) to A.

4. Experiment Outcome: A outputs a bit b′ which is the output of the experiment.

Definition B.3 (Symmetric Key Encryption (SKE)). A symmetric key encryption scheme with key
space K = {Kλ,n}λ,n∈N and ciphertext size m(·) is a tuple of PPT algorithms SKE = (SKE.Setup,
SKE.Enc,SKE.Dec) where

• SKE.Setup(1λ, 1n) is a randomized algorithm that takes as input the security parameter λ and
an input length n and outputs a secret key k ∈ Kλ,n

• SKE.Enc(k, x) is a randomized algorithm that takes as input a secret key k ∈ Kλ,n and a
message x ∈ {0, 1}n and outputs an encryption ct ∈ {0, 1}m(λ,n) of x.

• SKE.Dec(k, ct) is a deterministic algorithm that takes as input a secret key k ∈ Kλ,n and a
ciphertext ct ∈ {0, 1}m(λ,n) and outputs a value y ∈ {0, 1}n.

Correctness requires that for all λ, n ∈ N and every x ∈ {0, 1}n,

Pr
[
SKE.Dec(k, SKE.Enc(k, x)) = x : k ← SKE.Setup(1λ, 1n)

]
= 1

Security requires that there exists a negligible function µ such that for all λ ∈ N and all PPT
adversaries A, ∣∣∣Pr[ExptSKEA (1λ, 0) = 1]− Pr[ExptSKEA (1λ, 1) = 1]

∣∣∣ ≤ µ(λ)
where for each b ∈ {0, 1} and λ ∈ N, we define

ExptSKEA (1λ, b)

1. Parameters: A takes as input 1λ and outputs an input size 1n.

2. Setup: k ← SKE.Setup(1λ, 1n)

3. Challenge Message Queries: The following can be repeated any polynomial number
of times:

(a) A outputs a challenge message pair (x0, x1) where x0, x1 ∈ {0, 1}n.
(b) ctb ← SKE.Enc(k, xb)

(c) Sent ctb to A.

4. Experiment Outcome: A outputs a bit b′ which is the output of the experiment.

We will sometimes require that our symmetric key encryption scheme has pseudorandom ci-
phertexts. Intuitively, this means that ciphertexts should be indistinguishable from random strings
of the same size.

Definition B.4 (Symmetric Key Encryption (SKE) with Pseudorandom Ciphertexts). A symmet-
ric key encryption scheme SKE = (SKE.Setup,SKE.Enc, SKE.Dec) with key space K = {Kλ,n}λ,n∈N
and ciphertext size m(·) has pseudorandom ciphertexts if there exists a negligible function µ such
that for all λ ∈ N and all PPT adversaries A,∣∣∣Pr[ExptSKE-Pseudorandom-CT

A (1λ, 0) = 1]− Pr[ExptSKE-Pseudorandom-CT
A (1λ, 1) = 1]

∣∣∣ ≤ µ(λ)
where for each b ∈ {0, 1} and λ ∈ N, we define
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ExptSKE-Pseudorandom-CT
A (1λ, b)

1. Parameters: A takes as input 1λ and outputs an input size 1n.

2. Setup: k ← SKE.Setup(1λ, 1n)

3. Challenge Message Queries: The following can be repeated any polynomial number
of times:

(a) A outputs a challenge message x where x ∈ {0, 1}n.
(b) If b = 0, ct← SKE.Enc(k, x).

(c) If b = 1, ct← {0, 1}m(λ,n).

(d) Send ct to A.

4. Experiment Outcome: A outputs a bit b′ which is the output of the experiment.

B.2 Secret-Key Functional Encryption

In this section, we formally define secret-key functional encryption.

Definition B.5 (Secret-Key Functional Encryption). A secret-key functional encryption scheme
for P/Poly is a tuple of PPT algorithms FE = (Setup,Enc,KeyGen,Dec) defined as follows:26

• Setup(1λ, 1ℓF , 1ℓX , 1ℓY ): takes as input the security parameter λ, a function size ℓF , an input
size ℓX , and an output size ℓY , and outputs the master secret key msk.

• Enc(msk, x): takes as input the master secret key msk and a message x ∈ {0, 1}ℓX , and outputs
an encryption ct of x.

• KeyGen(msk, f): takes as input the master secret key msk and a function f ∈ F [ℓF , ℓX , ℓY ],
and outputs a function key skf .

• Dec(skf , ct): takes as input a function key skf and a ciphertext ct, and outputs a value
y ∈ {0, 1}ℓY .

FE satisfies correctness if for all polynomials p, there exists a negligible function µ such that for
all λ ∈ N, all ℓF , ℓX , ℓY ≤ p(λ), all x ∈ {0, 1}ℓX , and all f ∈ F [ℓF , ℓX , ℓY ],

Pr

Dec(skf , ctx) = f(x) :
msk← Setup(1λ, 1ℓF , 1ℓX , 1ℓY )

ctx ← Enc(msk, x)
skf ← KeyGen(msk, f)

 ≥ 1− µ(λ).

We now define adaptive security.

Definition B.6 (Adaptive Security for Secret-Key FE). A secret-key functional encryption scheme
FE for P/Poly is adaptively secure if there exists a negligible function µ such that for all λ ∈ N and
every PPT adversary A,∣∣∣Pr[SKExptFE-AdaptiveA (1λ, 0) = 1]− Pr[SKExptFE-AdaptiveA (1λ, 1) = 1]

∣∣∣ ≤ µ(λ)
where for each b ∈ {0, 1} and λ ∈ N, we define

26We also allow Enc,KeyGen, and Dec to additionally receive parameters 1λ, 1ℓF , 1ℓX , 1ℓY as input, but omit them
from our notation for convenience.
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SKExptFE-AdaptiveA (1λ, b)

1. Parameters: A takes as input 1λ, and outputs a function size 1ℓF , an input size 1ℓX ,
and an output size 1ℓY .

2. Setup: msk← FE.Setup(1λ, 1ℓF , 1ℓX , 1ℓY ).

3. For a polynomial number of rounds, the adversary can do either one of the following in
each round:

(a) Function Query:

i. A outputs a function query f ∈ F [ℓF , ℓX , ℓY ].
ii. skf ← FE.KeyGen(msk, f).

iii. Send skf to A.
(b) Challenge Message Query:

i. A outputs a challenge message pair (x0, x1) where x0, x1 ∈ {0, 1}ℓX .
ii. ct← FE.Enc(msk, xb).

iii. Send ct to A.

4. Experiment Outcome: A outputs a bit b′ which is the output of the experiment.

Additionally, when running the experiment, we immediately halt and output 0 if the adversary
ever aborts or if it at any point f(x0) ̸= f(x1) for some message query (x0, x1) and function
query f submitted by the adversary.

Definition B.7 (Other Secret-Key FE Security Definitions). There are many variations of the
security definition. We list a few below:

• Selective Security: The adversary is required to make the message queries at the beginning
of the experiment. This is similar to adaptive security, except that that we do not allow the
adversary to make a Challenge Message Query after it has made a Function Query.

• Function-Selective Security: The adversary is required to make the function queries at
the beginning of the experiment. This is similar to adaptive security, except that we do not
allow the adversary to make a Function Query after it has made a Challenge Message Query.

B.3 Secret-Key Streaming Functional Encryption

In this section, we formally define secret-key streaming functional encryption.

Definition B.8 (Secret-Key Streaming FE). A secret-key streaming functional encryption scheme
for P/Poly is a tuple of PPT algorithms sFE = (Setup,EncSetup,Enc,KeyGen,Dec) defined as fol-
lows:27

1. Setup(1λ, 1ℓF , 1ℓS , 1ℓX , 1ℓY ): takes as input the security parameter λ, a function size ℓF , a
state size ℓS , an input size ℓX , and an output size ℓY , and outputs the master secret key msk.

2. EncSetup(msk): takes as input the master secret key msk and outputs an encryption state
Enc.st

27We also allow Enc,EncSetup,KeyGen, and Dec to additionally receive parameters 1λ, 1ℓF , 1ℓS , 1ℓX , 1ℓY as input,
but omit them from our notation for convenience.
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3. Enc(msk,Enc.st, i, xi): takes as input the master secret key msk, an encryption state Enc.st,
an index i, and a message xi ∈ {0, 1}ℓX and outputs an encryption cti of xi.

4. KeyGen(msk, f): takes as input the master secret key msk and a function f ∈ F [ℓF , ℓS , ℓX , ℓY ]
and outputs a function key skf .

5. Dec(skf ,Dec.sti, i, cti): where for each function key skf , Dec(skf , ·, ·, ·) is a streaming function
that takes as input a state Dec.sti, an index i, and an encryption cti and outputs a new state
Dec.sti+1 and an output yi ∈ {0, 1}ℓY .

sFE must be streaming efficient, meaning that the size and runtime of all algorithms of sFE
on security parameter λ, function size ℓF , state size ℓS , input size ℓX , and output size ℓY are
poly(λ, ℓF , ℓS , ℓX , ℓY).

sFE satisfies correctness if for all polynomials p, there exists a negligible function µ such that for
all λ ∈ N, all ℓF , ℓS , ℓX , ℓY ≤ p(λ), all n ∈ [2λ], all x = x1 . . . xn where each xi ∈ {0, 1}ℓX , and all
f ∈ F [ℓF , ℓS , ℓX , ℓY ],

Pr

Dec(skf , ctx) = f(x) :

msk← Setup(1λ, 1ℓF , 1ℓS , 1ℓX , 1ℓY ),

ctx ← Enc(msk, x),
skf ← KeyGen(msk, f)

 ≥ 1− µ(λ)

where we define28

• Enc(msk, x) outputs ctx = (cti)i∈[n] produced by sampling Enc.st ← EncSetup(msk) and then
computing cti ← Enc(msk,Enc.st, i, xi) for i ∈ [n].

• Dec(skf , ctx) outputs y = (yi)i∈[n] where (yi,Dec.sti+1) = Dec(skf ,Dec.sti, i, cti) for i ∈ [n].

We now define adaptive security. Our definition of security is adaptive in a very strong sense,
in that the adversary can not only adaptively pick each of the next values of each stream based on
the ciphertexts and function keys already received, but can also interweave function queries with
message queries of any stream. As each stream consists of multiple values, to avoid confusion, we
require the adversary to specify which streams its challenge message queries are for by outputting
a stream identity τ with its message queries.

Definition B.9 (Adaptive Security for Secret-Key sFE). A secret-key streaming FE scheme sFE
for P/Poly is adaptively secure if there exists a negligible function µ such that for all λ ∈ N and all
PPT adversaries A,∣∣∣Pr[SKExptsFE-AdaptiveA (1λ, 0) = 1]− Pr[SKExptsFE-AdaptiveA (1λ, 1) = 1]

∣∣∣ ≤ µ(λ)
where for each b ∈ {0, 1} and λ ∈ N, we define

SKExptsFE-AdaptiveA (1λ, b)

1. Parameters: A takes as input 1λ, and outputs a function size 1ℓF , a state size 1ℓS , an
input size 1ℓX , and an output size 1ℓY .

2. Setup: Compute msk← sFE.Setup(1λ, 1ℓF , 1ℓS , 1ℓX , 1ℓY ).

3. For a polynomial number of rounds, the adversary can do either one of the following in

28As with all streaming functions, we assume that Dec.st1 = ⊥ if not otherwise specified.
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each round:

(a) Function Query:

i. A outputs a streaming function query f ∈ F [ℓF , ℓS , ℓX , ℓY ].
ii. skf ← sFE.KeyGen(msk, f).

iii. Send skf to A.
(b) Challenge Message Query:

i. A outputs a stream identity τ .

ii. If this is the first challenge message query with stream identity τ , sample Enc.stτ ←
sFE.EncSetup(msk) and initialize the index indτ = 1. Else, increment the index
indτ by 1.

iii. A outputs a challenge message pair (x
(0)
indτ

, x
(1)
indτ

) for stream τ where x
(0)
indτ

, x
(1)
indτ
∈

{0, 1}ℓX .
iv. ctindτ ← sFE.Enc(msk,Enc.stτ , indτ , x

(b)
indτ

).

v. Send ctindτ to A.

4. Experiment Outcome: A outputs a bit b′ which is the output of the experiment.

Additionally, when running the experiment, we immediately halt and output 0 if the adversary
ever aborts or if it at any point some function query f submitted by the adversary yields

different outputs on any of the challenge message streams submitted so far (i.e. if f(x
(0)
τ ) ̸=

f(x
(1)
τ ) for some function query f submitted by the adversary where {(x(0)indτ

, x
(1)
indτ

)}indτ∈[t] are
the message queries submitted so far under some stream identity τ , x

(0)
τ = x

(0)
1τ
. . . x

(0)
tτ , and

x
(1)
τ = x

(1)
1τ
. . . x

(1)
tτ ).

Definition B.10 (Other Secret-Key sFE Security Definitions). There are many variations of the
security definition. We list a few below:

• Selective Security: The adversary is required to make all message queries before any func-
tion queries. This is identical to adaptive security, except that we do not allow the adversary
to make a Challenge Message Query after it has made a Function Query.

• Function-Selective Security: The adversary is required to make all function queries before
any message queries. This is identical to adaptive security, except that we do not allow the
adversary to make a Function Query after it has made a Challenge Message Query.
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C Security Proof from Section 6

In this section, we formally prove that One-sFE is single-key, single-ciphertext, adaptively secure
for the function class P/Poly.

Please refer to the technical overview (Section 2, page 9) for intuition on the proof and the
proof overview (Section 6.4.1, page 77) for an overview of the hybrids.

The proof can be split into two main parts:

1. In Part 1, we use the security of Pre-One-sFE to deal with all the message queries given before
the function query.

2. In Part 2, we use the security of Post-One-sFE to deal with all the message queries given after
the function query.

Note that we use the security of these component schemes in a very non-black-box manner.

Remark C.1. Recall that for this proof, we will use an alternate, but equivalent, definition of
single-key, single-ciphertext, adaptive security (Definition 6.2, page 76) where instead of needing to
distinguish between an encryption of stream x(0) and an encryption of stream x(1), the adversary
will receive an encryption of stream x(b) for a random bit b and will win if they correctly guess b.

Notation. For HybridAsub labeled by subscript sub, we use Progsub to denote the program that is
obfuscated in that hybrid.

Remark C.2. We require all of our unwrapped29 hybrids to immediately halt and output 0 if the
adversary ever aborts or if it at any point some function query f submitted by the adversary yields
different outputs on the challenge message streams submitted so far (i.e. if f(x(0)) ̸= f(x(1)) for

some function query f submitted by the adversary where {(x(0)i , x
(1)
i )}i∈[t] are the message queries

submitted so far, x(0) = x
(0)
1 . . . x

(0)
t , and x(1) = x

(1)
1 . . . x

(1)
t ). For notational simplicitly, we omit

this requirement from the description of our hybrids.

29Every hybrid named HybridA
sub for some subscrip sub is considered an “unwrapped” hybrid. See the discussion

betwen HybridA
0 and HybridA

1 for details.
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C.1 Part 1: Using the Security of Pre-One-sFE

HybridA0 : Real world encryption of stream x(b). Here, we define t∗ to be the length of the challenge
stream after Encryption Phase 1 and define n to be the total length of the challenge stream.
Note that both t∗ and n are adaptively (and implictly) chosen by the adversary.

1. Parameters: The adversary A receives security parameter 1λ, and outputs a function size
1ℓF , a state size 1ℓS , an input size 1ℓX , and an output size 1ℓY .

2. Setup:

(a) Pre.MSK← Pre-One-sFE.Setup(1λ, 1LF , 1LS , 1LX , 1LY ).

(b) Post.MSK← Post-One-sFE.Setup(1λ, 1ℓF , 1ℓS , 1ℓX , 1ℓY ).

3. Challenge Bit: b← {0, 1}.

4. Encryption Phase 1: For i = 1, 2, . . . , t∗:

(a) A sends (x
(0)
i , x

(1)
i ) to the challenger.

(b) Post.CT
(b)
i ← Post-One-sFE.Enc(Post.MSK, i, x

(b)
i ).

(c) Pre.CT
(b)
i ← Pre-One-sFE.Enc(Pre.MSK, i,Post.CT

(b)
i ).

(d) Send CTi = Pre.CT
(b)
i to A.

5. KeyGen:

(a) A sends f to the challenger. Define st1 = ⊥.
(b) Post.Dec.st1 ← Post-One-sFE.KeyGen(Post.MSK, f, st1).

(c) Pre.SKf ← Pre-One-sFE.KeyGen(Pre.MSK,Post-One-sFE.Dec,Post.Dec.st1).

(d) Send SKf = Pre.SKf to A.

6. Encryption Phase 2: For i = t∗ + 1, t∗ + 2, . . . , n:

(a) A sends (x
(0)
i , x

(1)
i ) to the challenger.

(b) Post.CT
(b)
i ← Post-One-sFE.Enc(Post.MSK, i, x

(b)
i ).

(c) Pre.CT
(b)
i ← Pre-One-sFE.Enc(Pre.MSK, i,Post.CT

(b)
i ).

(d) Send CTi = Pre.CT
(b)
i to A.

7. Output: A sends b′ to the challenger. Output 1 if b = b′, and output 0 else.
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Guessing the stream length. We defined t∗ to be the length of the challenge stream after
Encryption Phase 1 and defined n to be the total length of the challenge stream. Note that
both t∗ and n were adapatively (and implicitly) chosen by the adversary.

In later hybrids, it is useful to know (t∗, n) at the beginning of the hybrid. To deal with this,
we guess these values at the beginning of the experiment and abort (i.e. output ⊥ and halt) if we
notice that our guess is incorrect (i.e. the adversary asks for too few or too many queries at each
stage). See HybridA1 below as an example.

As we only guess correctly with some low probability, we will repeat the whole experiment
whenever our guess is incorrect. Thus, we define the following wrapper function Wrap for our
hybrids. We will call any hybrid named HybridAsub for some subscript sub an unwrapped hybrid,
and will call any hybrid named Wrap(HybridAsub) for some subscript sub a wrapped hybrid.

Wrap(HybridA):

1. For Iteration ∈ [T 3
A,λ] where TA,λ is the maximum runtime of A on security parameter λ:

(a) Run hybrid: v ← HybridA(1λ).

(b) Check for correct guess: If v ̸= ⊥, output v and halt.

2. Output 0.

Remark C.3. We overload notation and use (t∗, n) to additionally refer to the hybrid’s guess for the
length of the challenge stream after Encryption Phase 1 and Encryption Phase 2 respectively.

Remark C.4. By Lemma C.5 below, to show indistinguishability between two wrapped hybrids,
it suffices to show indistinguishability between the unwrapped hybrids. Thus, for simplicity, for
most of the remainder of this proof, we will omit this wrapper function from both our hybrids and
our proofs of security. Note that the formal security proof would require all hybrids to be wrapped.

Lemma C.5. Let HybridAα and HybridAβ be two PPT algorithms with outputs in {0, 1,⊥}.
If for all λ ∈ N and any PPT adversary A,

∆(HybridAα (1
λ),HybridAβ (1

λ)) ≤ negl(λ)

then for all λ ∈ N and any PPT adversary A,∣∣∣Pr[Wrap(HybridAα )(1
λ) = 1]− Pr[Wrap(HybridAβ )(1

λ) = 1]
∣∣∣ ≤ negl(λ)

Proof. Let λ ∈ N and letA be a PPT adversary. We define intermediate hybridsWrapi(HybridAα ,HybridAβ )
for i ∈ [0, T 3

A,λ]:

Wrapi(HybridAα ,HybridAβ ):

1. For Iteration ∈ [T 3
A,λ] where TA,λ is the maximum runtime of A on security parameter λ:

(a) Run hybrid:

i. If Iteration ≤ i, v ← HybridAβ (1
λ).

ii. If Iteration > i, v ← HybridAα (1
λ).

(b) Check for correct guess: If v ̸= ⊥, output v and halt.
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2. Output 0.

Note that Wrap(HybridAα ) = Wrap0(HybridA1 ,HybridA2 ) and
Wrap(HybridAβ ) = WrapT 3

A,λ
(HybridAα ,HybridAβ ).

Now, we claim that for all i ∈ [T 3
A,λ], Wrapi−1(HybridAα ,HybridAβ ) is indistinguishable from

Wrapi(HybridAα ,HybridAβ ). Consider the ith execution (which is the only place they differ). In

Wrapi−1(HybridAα ,HybridAβ ), we run HybridAα (1
λ), and in Wrapi(HybridAα ,HybridAβ ), we run

HybridAβ (1
λ). Since the outputs of these two hybrids differ by only a negligible amount, then the

outputs of Wrapi−1(HybridAα ,HybridAβ ) and Wrapi(HybridAα ,HybridAβ ) differ by only a negligi-
ble amount.

Thus, the output distributions of Wrap(HybridAα )(1
λ) and Wrap(HybridAα )(1

λ) can differ by
only T 3

A,λ · negl(λ) = negl(λ).
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HybridA1 : In this hybrid, we guess the stream length at the beginning of the experiment. We abort
the hybrid by outputting ⊥ if we notice our guess is incorrect.

1. Guess Stream Length: (t∗, n)← [TA,λ]× [TA,λ] where TA,λ is the maximum runtime of A
on security parameter λ.

2. Parameters: The adversary A receives security parameter 1λ, and outputs a function size
1ℓF , a state size 1ℓS , an input size 1ℓX , and an output size 1ℓY .

3. Setup:

(a) Pre.MSK← Pre-One-sFE.Setup(1λ, 1LF , 1LS , 1LX , 1LY ).

(b) Post.MSK← Post-One-sFE.Setup(1λ, 1ℓF , 1ℓS , 1ℓX , 1ℓY ).

4. Challenge Bit: b← {0, 1}.

5. Encryption Phase 1: For i = 1, 2, . . . , t∗:
If the adversary does not make exactly t∗ queries during this phase, output ⊥ and halt.

(a) A sends (x
(0)
i , x

(1)
i ) to the challenger.

(b) Post.CT
(b)
i ← Post-One-sFE.Enc(Post.MSK, i, x

(b)
i ).

(c) Pre.CT
(b)
i ← Pre-One-sFE.Enc(Pre.MSK, i,Post.CT

(b)
i ).

(d) Send CTi = Pre.CT
(b)
i to A.

6. KeyGen:

(a) A sends f to the challenger. Define st1 = ⊥.
(b) Post.Dec.st1 ← Post-One-sFE.KeyGen(Post.MSK, f, st1).

(c) Pre.SKf ← Pre-One-sFE.KeyGen(Pre.MSK,Post-One-sFE.Dec,Post.Dec.st1).

(d) Send SKf = Pre.SKf to A.

7. Encryption Phase 2: For i = t∗ + 1, t∗ + 2, . . . , n:
If the adversary does not make exactly n− t∗ queries during this phase, output ⊥ and halt.

(a) A sends (x
(0)
i , x

(1)
i ) to the challenger.

(b) Post.CT
(b)
i ← Post-One-sFE.Enc(Post.MSK, i, x

(b)
i ).

(c) Pre.CT
(b)
i ← Pre-One-sFE.Enc(Pre.MSK, i,Post.CT

(b)
i ).

(d) Send CTi = Pre.CT
(b)
i to A.

8. Output: A sends b′ to the challenger. Output 1 if b = b′, and output 0 else.

Lemma C.6. For all PPT adversaries A,∣∣∣Pr[HybridA0 (1
λ) = 1]− Pr[Wrap(HybridA1 )(1

λ) = 1]
∣∣∣ ≤ negl(λ)
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Proof. As long as we correctly guess (t∗, n) in any iteration ofWrap(HybridA1 ), thenWrap(HybridA1 )
and HybridA1 are identically distributed. This is because Wrap(HybridA1 ) throws out all execu-
tions of HybridA1 that are aborted, but conditioned on not aborting (i.e. correctly guessing (t∗, n)),
then HybridA0 and HybridA1 are identical to the adversary. Note also that TA,λ is an upper bound
on the number of queries that A can make on security parameter λ (and thus an upper bound on
the actual values of (t∗, n)).

Since HybridA1 does not make use of (t∗, n) beyond its abort condition, then until or unless
HybridA1 aborts, the distribution of the number of queries the adversary makes inHybridA1 is iden-
tical to that of HybridA0 . Thus, we can argue that the probability that HybridA1 correctly guesses
(t∗, n) is at least 1

T 2
A,λ

. In the up to T 3
A,λ independent executions of HybridA1 in Wrap(HybridA1 ),

the probability that HybridA1 never guesses correctly is

(
1− 1

T 2
A,λ

)T 3
A,λ

≈ e−TA,λ = e− poly(λ) =

negl(λ). Thus, the outputs of HybridA0 and Wrap(HybridA1 ) are negligibly close.
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HybridA2 : This is identical to the previous hybrid except that we have unwrapped the definition
of Pre-One-sFE.

1. Guess Stream Length: (t∗, n)← [TA,λ]× [TA,λ] where TA,λ is the maximum runtime of A
on security parameter λ.

2. Parameters: The adversary A receives security parameter 1λ, and outputs a function size
1ℓF , a state size 1ℓS , an input size 1ℓX , and an output size 1ℓY .

3. Setup:

(a) Kinp,KA,KE ← PPRF.Setup(1λ).

(b) Post.MSK← Post-One-sFE.Setup(1λ, 1ℓF , 1ℓS , 1ℓX , 1ℓY ).

4. Challenge Bit: b← {0, 1}.

5. Encryption Phase 1: For i = 1, 2, . . . , t∗:
If the adversary does not make exactly t∗ queries during this phase, output ⊥ and halt.

(a) A sends (x
(0)
i , x

(1)
i ) to the challenger.

(b) Post.CT
(b)
i = Post-One-sFE(Post.MSK, i, x

(b)
i ).

(c) Compute ctinp,i:

i. (rE,i, rEnc,i) = PPRF.Eval(KE , i).

ii. kE,i = SKE.Setup(1λ; rE,i).

iii. ctinp,i = ct
(b)
inp,i = SKE.Enc(kE,i,Post.CT

(b)
i ).

(d) Compute σinp,i:

i. (sgkinp,i, vkinp,i, vkinp,i,rej) = SSig.Setup(1λ;PPRF.Eval(Kinp, i)).

ii. σinp,i = SSig.Sign(sgkinp,i, ctinp,i).

(e) Send CTi = (ctinp,i, σinp,i) to A.

6. KeyGen:

(a) A sends f to the challenger. Define st1 = ⊥.
(b) Post.Dec.st1 ← Post-One-sFE.KeyGen(Post.MSK, f, st1).

(c) Compute ctst,1:

i. (rE,1, rEnc,1) = PPRF.Eval(KE , 1).

ii. kE,1 = SKE.Setup(1λ; rE,1).

iii. ctst,1 = SKE.Enc(kE,1,Post.Dec.st1; rEnc,1).

(d) Setup iterator: (ppst, itrst,0)← Itr.Setup(1λ, 2λ).

(e) Compute σst,1:

i. m1 = (1, ctst,1, itrst,0).

ii. (sgkA,1, vkA,1, vkA,1,rej)← SSig.Setup(1λ;PPRF.Eval(KA, 1)).

iii. σst,1 = SSig.Sign(sgkA,1,m1).

(f) Compute program: P ← iO(Prog[Post-One-sFE.Dec,Kinp,KA,KE , ppst]) where Prog
is defined below.
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(g) Send SKf = (P, ctst,1, σst,1, itrst,0) to A.

7. Encryption Phase 2: For i = t∗ + 1, t∗ + 2, . . . , n:
If the adversary does not make exactly n− t∗ queries during this phase, output ⊥ and halt.

(a) A sends (x
(0)
i , x

(1)
i ) to the challenger.

(b) Post.CT
(b)
i = Post-One-sFE(Post.MSK, i, x

(b)
i ).

(c) Compute ctinp,i:

i. (rE,i, rEnc,i) = PPRF.Eval(KE , i).

ii. kE,i = SKE.Setup(1λ; rE,i).

iii. ctinp,i = SKE.Enc(kE,i,Post.CT
(b)
i ).

(d) Compute σinp,i:

i. (sgkinp,i, vkinp,i, vkinp,i,rej) = SSig.Setup(1λ;PPRF.Eval(Kinp, i)).

ii. σinp,i = SSig.Sign(sgkinp,i, ctinp,i).

(e) Send CTi = (ctinp,i, σinp,i) to A.

8. Output: A sends b′ to the challenger. Output 1 if b = b′, and output 0 else.

Program Prog[Post-One-sFE.Dec,Kinp,KA,KE , ppst](i, ctinp,i, σinp,i, ctst,i, σst,i, itrst,i−1)

1. Verification Step:

i. Verify i is positive: If i ≤ 0, output ⊥.
ii. Verify input signature:

i. (sgkinp,i, vkinp,i, vkinp,i,rej)← SSig.Setup(1λ;PPRF.Eval(Kinp, i)).

ii. If SSig.Verify(vkinp,i, ctinp,i, σinp,i) = 0, output ⊥.
iii. mi = (i, ctst,i, itrst,i−1).

iv. Verify state signature:

i. (sgkA,i, vkA,i, vkA,i,rej)← SSig.Setup(1λ;PPRF.Eval(KA, i)).

ii. If SSig.Verify(vkA,i,mi, σst,i) = 0, output ⊥.

2. Computation Step:

(a) Decrypt input and state:

i. (rE,i, rEnc,i) = PPRF.Eval(KE , i).

ii. kE,i = SKE.Setup(1λ; rE,i).

iii. Post.CTi = SKE.Dec(kE,i, ctinp,i).

iv. Post.Dec.sti = SKE.Dec(kE,i, ctst,i).

(b) Compute output value and next state:

i. (yi,Post.Dec.sti+1) = Post-One-sFE.Dec(Post.Dec.sti,Post.CTi).

(c) Encrypt the new state:

i. (rE,i+1, rEnc,i+1) = PPRF.Eval(KE , i+ 1).

ii. kE,i+1 = SKE.Setup(1λ; rE,i+1).

iii. ctst,i+1 = SKE.Enc(kE,i+1,Post.Dec.sti+1; rEnc,i+1).
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3. Authentication Step:

i. itrst,i = Itr.Iterate(ppst, itrst,i−1, (i, ctst,i)).

ii. mi+1 = (i+ 1, ctst,i+1, itrst,i).

iii. Sign the new state:

i. (sgkA,i+1, vkA,i+1, vkA,i+1,rej)← SSig.Setup(1λ;PPRF.Eval(KA, i+ 1)).

ii. σst,i+1 = SSig.Sign(sgkA,i+1,mi+1).

4. Output (yi, ctst,i+1, σst,i+1, itrst,i).

Lemma C.7. For all λ ∈ N and all adversaries A,

∆(HybridA1 (1
λ),HybridA2 (1

λ)) = 0

Proof. The hybrids are identical.
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Replacing the encrypted stream values. Our goal is to iteratively replace the encryption
of each element of stream x(b) with the corresponding value from x(0). We can replace the tth

ciphertext using the security of SKE as long as the keys and randomness used for encryption are
hidden. However, these values are present in the obfuscated program since it needs them to decrypt
the input and encrypt the new state. But, if we hardcode the output values for steps t − 1 and t
into the program, then the program will no longer need these secret keys and randomness so we
can swap the tth ciphertext.

Thus our first goal will be to hardwire two steps of the program. We start by hardwiring step
0 for free since the indexing starts at t = 1. In general, we proceed as follows:

1. Assume step t− 1 is hardwired.

2. Hardwire step t.

3. Switch tth ciphertext to stream x(0).

4. Un-hardwire step t− 1.

5. Repeat process with t = t+ 1.

These define a series of hybrids for steps t ∈ [t∗].

HybridA3,t,0: For i < t, we now encrypt stream x(0) instead of stream x(b). Furthermore, inside
Prog, at step i = t − 1, rather than computing (yi, ctst,i+1) by decrypting, evaluating, and re-
encrypting, we instead set them to hardwired values that we have pre-computed ahead of time.
These hardwired values correspond to stream x(0) for i < t and to stream x(b) for i ≥ t.

1. Guess Stream Length: (t∗, n)← [TA,λ]× [TA,λ] where TA,λ is the maximum runtime of A
on security parameter λ.

2. Parameters: The adversary A receives security parameter 1λ, and outputs a function size
1ℓF , a state size 1ℓS , an input size 1ℓX , and an output size 1ℓY .

3. Setup:

(a) Kinp,KA,KE ← PPRF.Setup(1λ).

(b) Post.MSK← Post-One-sFE.Setup(1λ, 1ℓF , 1ℓS , 1ℓX , 1ℓY ).

4. Challenge Bit: b← {0, 1}.

5. Encryption Phase 1: For i = 1, 2, . . . , t∗:
If the adversary does not make exactly t∗ queries during this phase, output ⊥ and halt.

(a) A sends (x
(0)
i , x

(1)
i ) to the challenger.

(b) Post.CT
(0)
i = Post-One-sFE(Post.MSK, i, x

(0)
i ).

(c) Post.CT
(b)
i = Post-One-sFE(Post.MSK, i, x

(b)
i ).

(d) Compute input ciphertexts:

i. (rE,i, rEnc,i) = PPRF.Eval(KE , i).

ii. kE,i = SKE.Setup(1λ; rE,i).

iii. ct
(0)
inp,i = SKE.Enc(kE,i,Post.CT

(0)
i ).
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iv. ct
(b)
inp,i = SKE.Enc(kE,i,Post.CT

(b)
i ).

(e) Set hardwired values:

i. ct∗inp,i =

{
ct

(0)
inp,i if i < t

ct
(b)
inp,i if i ≥ t

.

(f) Compute input signature keys: Do nothing. (Will be added in a later hybrid.)

(g) Compute σinp,i:

i. (sgkinp,i, vkinp,i, vkinp,i,rej) = SSig.Setup(1λ;PPRF.Eval(Kinp, i)).

ii. σinp,i = SSig.Sign(sgkinp,i, ct
∗
inp,i).

(h) Send CTi = (ct∗inp,i, σinp,i) to A.

6. KeyGen:

(a) A sends f to the challenger. Define st1 = ⊥.
(b) Post.Dec.st1 ← Post-One-sFE.KeyGen(Post.MSK, f, st1).

(c) Post.Dec.st
(0)
1 = Post.Dec.st1 and Post.Dec.st

(b)
1 = Post.Dec.st1.

(d) Compute state and output values:

i. For i ∈ [t∗],

A. (yi,Post.Dec.st
(0)
i+1) = Post-One-sFE.Dec(Post.Dec.st

(0)
i ,Post.CT

(0)
i ).

B. (yi,Post.Dec.st
(b)
i+1) = Post-One-sFE.Dec(Post.Dec.st

(b)
i ,Post.CT

(b)
i ).30

(e) Compute state ciphertexts:

i. For i ∈ [t∗ + 1],

A. (rE,i, rEnc,i) = PPRF.Eval(KE , i).

B. kE,i = SKE.Setup(1λ; rE,i).

C. ct
(0)
st,i = SKE.Enc(kE,i,Post.Dec.st

(0)
i ; rEnc,i).

D. ct
(b)
st,i = SKE.Enc(kE,i,Post.Dec.st

(b)
i ; rEnc,i).

(f) Setup iterator: (ppst, itrst,0)← Itr.Setup(1λ, 2λ).

(g) Set hardwired values:

i. For i ∈ [t∗], y∗i = yi.

ii. For i ∈ [t∗ + 1],

A. ct∗st,i =

{
ct

(0)
st,i if i < t

ct
(b)
st,i if i ≥ t

B. itr∗st,i = Itr.Iterate(ppst, itr
∗
st,i−1, ct

∗
st,i) where itr∗st,0 = itrst,0.

C. m∗i = (i, ct∗st,i, itr
∗
st,i−1).

(h) Compute state signature keys: Do nothing. (Will be added in a later hybrid.)

(i) Compute σst,1:

i. (sgkA,1, vkA,1, vkA,1,rej)← SSig.Setup(1λ;PPRF.Eval(KA, 1)).

30Recall that if A submits a function or message query such that f(x(0)) ̸= f(x(1)) for all stream values seen so

far, then we immediately halt and output 0. Thus, if we reach this point in the hybrid, the ith output value y
(0)
i for

stream x(0) is the same as the ith output value y
(1)
i for stream x(1) and we can denote both by yi = y

(0)
i = y

(1)
i .
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ii. σst,1 = SSig.Sign(sgkA,1,m
∗
1).

(j) Compute program: P ← iO(Prog3,t,0[Kinp,KA,KE , ppst, y
∗
t−1, ct

∗
st,t]).

(We can omit the function Post-One-sFE.Dec from the parameters to the program as we
always use the same function.)

(k) Send SKf = (P, ct∗st,1, σst,1, itrst,0) to A.

7. Encryption Phase 2: For i = t∗ + 1, t∗ + 2, . . . , n:
If the adversary does not make exactly n− t∗ queries during this phase, output ⊥ and halt.

(a) A sends (x
(0)
i , x

(1)
i ) to the challenger.

(b) Post.CT
(b)
i = Post-One-sFE(Post.MSK, i, x

(b)
i ).

(c) Compute ctinp,i:

i. (rE,i, rEnc,i) = PPRF.Eval(KE , i).

ii. kE,i = SKE.Setup(1λ; rE,i).

iii. ctinp,i = SKE.Enc(kE,i,Post.CT
(b)
i ).

(d) Compute σinp,i:

i. (sgkinp,i, vkinp,i, vkinp,i,rej) = SSig.Setup(1λ;PPRF.Eval(Kinp, i)).

ii. σinp,i = SSig.Sign(sgkinp,i, ctinp,i).

(e) Send CTi = (ctinp,i, σinp,i) to A.

8. Output: A sends b′ to the challenger. Output 1 if b = b′, and output 0 else.

Program Prog3,t,0[Kinp,KA,KE , ppst, y
∗
t−1, ct

∗
st,t](i, ctinp,i, σinp,i, ctst,i, σst,i, itrst,i−1)

1. Verification Step:

i. Verify i is positive: If i ≤ 0, output ⊥.
ii. Verify input signature:

i. (sgkinp,i, vkinp,i, vkinp,i,rej)← SSig.Setup(1λ;PPRF.Eval(Kinp, i)).

ii. If SSig.Verify(vkinp,i, ctinp,i, σinp,i) = 0, output ⊥.
iii. mi = (i, ctst,i, itrst,i−1).

iv. Verify state signature:

i. (sgkA,i, vkA,i, vkA,i,rej)← SSig.Setup(1λ;PPRF.Eval(KA, i)).

ii. If SSig.Verify(vkA,i,mi, σst,i) = 0, output ⊥.

2. Computation Step:

i. If i = t− 1, (yi, ctst,i+1) = (y∗t−1, ct
∗
st,t).

ii. If i ̸= t− 1,

i. Decrypt input and state:

i. (rE,i, rEnc,i) = PPRF.Eval(KE , i).

ii. kE,i = SKE.Setup(1λ; rE,i).

iii. Post.CTi = SKE.Dec(kE,i, ctinp,i).

iv. Post.Dec.sti = SKE.Dec(kE,i, ctst,i).

113



ii. Compute output value and next state:

A. (yi,Post.Dec.sti+1) = Post-One-sFE.Dec(Post.Dec.sti,Post.CTi).

iii. Encrypt the new state:

i. (rE,i+1, rEnc,i+1) = PPRF.Eval(KE , i+ 1).

ii. kE,i+1 = SKE.Setup(1λ; rE,i+1).

iii. ctst,i+1 = SKE.Enc(kE,i+1,Post.Dec.sti+1; rEnc,i+1).

3. Authentication Step:

i. itrst,i = Itr.Iterate(ppst, itrst,i−1, (i, ctst,i)).

ii. mi+1 = (i+ 1, ctst,i+1, itrst,i).

iii. Sign the new state:

i. (sgkA,i+1, vkA,i+1, vkA,i+1,rej)← SSig.Setup(1λ;PPRF.Eval(KA, i+ 1)).

ii. σst,i+1 = SSig.Sign(sgkA,i+1,mi+1).

4. Output (yi, ctst,i+1, σst,i+1, itrst,i).

Lemma C.8. If iO is a secure indistinguishability obfuscation scheme, then for all λ ∈ N and all
PPT adversaries A,

∆(HybridA2 (1
λ),HybridA3,1,0(1

λ)) ≤ negl(λ)

Proof. Prog and Prog3,1,0 have the same input/output behavior since if i = t − 1 = 0, then both
programs will output ⊥ in the verification step before even reaching the computation step. Thus
the i = t− 1 branch in Prog3,1,0 can never be reached.

Apart from the obfuscated program P, the hybrids are identical since we encrypt stream x(b)

for all values of i ≥ t = 1.
Thus, by a straightforward reduction to the security of iO, the hybrids are indistinguishable.

114



Adding B type signatures. Our next goal is to hardwire step t into the obfuscated program.
However, to do so, we first need to do some prepwork.

In the next series of hybrids, we will introduce an alternative signature scheme for the state,
which we will call a B type signature scheme (since it uses KB). The original state signature
scheme will be called an A type signature scheme (since it use KA). Our obfuscated program will
now allow the state signature to verify under either an A type or B type signature and will sign
the outgoing state with either an A type signature (if it verified with A type) or a B type signature
(if it verified with B type).

Our eventual goal is to isolate a single computational path up to step t under the A type scheme
and make it the only path that can be verified under the A type scheme. This will allow us to
hardwire in step t since it lets us enforce the output at step t to be only one possible value (under
A type signatures). However, we cannot simply abort on all other computational paths. Instead,
we will use the B type signature scheme to provide an alternate path for all these other computa-
tional paths. Thus, since we wish to hardwire step t, we will have to add in B type signatures for
each index j ∈ [t−1]. This defines a sequence of hybrids for each additional index j we want to add.

HybridA3,t,0,j = HybridA3,t,0,j,0: For i ∈ [j + 1, t − 1], if the state signature fails to verify under
the original A type signature scheme, then rather than immediately outputting ⊥, we check if it
verifies under the B type signature scheme. If it verifies using a B type signature, then we will
carry on the computation, and sign the outgoing message using the B type signature scheme.

This hybrid is the same as the previous hybrid except that

• We compute Setup as

3. Setup:

(a) Kinp,KA,KB,KE ← PPRF.Setup(1λ).

(b) Post.MSK← Post-One-sFE.Setup(1λ, 1ℓF , 1ℓS , 1ℓX , 1ℓY ).

• During KeyGen, we make changes to the following steps:

6j. Compute program: P ← iO(Prog3,t,0,j,0[Kinp,KA,KB,KE , ppst, y
∗
t−1, ct

∗
st,t]).

Program Prog3,t,0,j,0[Kinp,KA,KB,KE , ppst, y
∗
t−1, ct

∗
st,t](i, ctinp,i, σinp,i, ctst,i, σst,i, itrst,i−1)

1. Verification Step:

i. Verify i is positive: If i ≤ 0, output ⊥.
ii. Verify input signature:

i. (sgkinp,i, vkinp,i, vkinp,i,rej)← SSig.Setup(1λ;PPRF.Eval(Kinp, i)).

ii. If SSig.Verify(vkinp,i, ctinp,i, σinp,i) = 0, output ⊥.
iii. mi = (i, ctst,i, itrst,i−1).

iv. in-type = ⊥.
v. Verify A type signatures:

i. (sgkA,i, vkA,i, vkA,i,rej)← SSig.Setup(1λ;PPRF.Eval(KA, i)).

ii. If SSig.Verify(vkA,i,mi, σst,i) = 1, in-type = out-type = A.

vi. Verify B type signatures:
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i. If in-type ̸= A and j + 1 ≤ i ≤ t− 1,

A. (sgkB,i, vkB,i, vkB,i,rej)← SSig.Setup(1λ;PPRF.Eval(KB, i)).

B. If SSig.Verify(vkB,i,mi, σst,i) = 1, in-type = out-type = B.

vii. If in-type = ⊥, output ⊥.

2. Computation Step:

i. If i = t− 1, (yi, ctst,i+1) = (y∗t−1, ct
∗
st,t).

ii. If i ̸= t− 1,

i. Decrypt input and state:

i. (rE,i, rEnc,i) = PPRF.Eval(KE , i).

ii. kE,i = SKE.Setup(1λ; rE,i).

iii. Post.CTi = SKE.Dec(kE,i, ctinp,i).

iv. Post.Dec.sti = SKE.Dec(kE,i, ctst,i).

ii. Compute output value and next state:

A. (yi,Post.Dec.sti+1) = Post-One-sFE.Dec(Post.Dec.sti,Post.CTi).

iii. Encrypt the new state:

i. (rE,i+1, rEnc,i+1) = PPRF.Eval(KE , i+ 1).

ii. kE,i+1 = SKE.Setup(1λ; rE,i+1).

iii. ctst,i+1 = SKE.Enc(kE,i+1,Post.Dec.sti+1; rEnc,i+1).

3. Authentication Step:

i. itrst,i = Itr.Iterate(ppst, itrst,i−1, (i, ctst,i)).

ii. mi+1 = (i+ 1, ctst,i+1, itrst,i).

iii. Sign A type messages: If out-type = A,

i. (sgkA,i+1, vkA,i+1, vkA,i+1,rej)← SSig.Setup(1λ;PPRF.Eval(KA, i+ 1)).

ii. σst,i+1 = SSig.Sign(sgkA,i+1,mi+1).

iv. Sign B type messages: If out-type = B,

i. (sgkB,i+1, vkB,i+1, vkB,i+1,rej)← SSig.Setup(1λ;PPRF.Eval(KB, i+ 1)).

ii. σst,i+1 = SSig.Sign(sgkB,i+1,mi+1).

4. Output (yi, ctst,i+1, σst,i+1, itrst,i).

Lemma C.9. If iO is a secure indistinguishability obfuscation scheme, then for all λ ∈ N, all
t ∈ [t∗], and all PPT adversaries A,

∆(HybridA3,t,0(1
λ),HybridA3,t,0,t−1(1

λ)) ≤ negl(λ)

Proof. Prog3,t,0 and Prog3,t,0,t−1 have identical input/output behavior since there is no i such that
j + 1 = t ≤ i ≤ t − 1. Therefore, Prog3,t,0,t−1 will never verify using B type signatures and thus
will never use the B type branches.

Thus, by a straightforward reduction to the security of iO, the hybrids are indistinguishable.
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HybridA3,t,0,j,1: We introduce B type signatures at step j. However, we only verify at step j using
vkB,j,rej. Since this verification key always rejects, we do not change the behavior of the obfuscated
program and can rely on the security of iO.

This hybrid is the same as the previous hybrid except that

• During KeyGen, we make changes to the following steps:

6j. Compute program: P ← iO(Prog3,t,0,j,1[Kinp,KA,KB,KE , ppst, y
∗
t−1, ct

∗
st,t]).

Program Prog3,t,0,j,1[Kinp,KA,KB,KE , ppst, y
∗
t−1, ct

∗
st,t](i, ctinp,i, σinp,i, ctst,i, σst,i, itrst,i−1)

1. Verification Step:

i. Verify i is positive: If i ≤ 0, output ⊥.
ii. Verify input signature:

i. (sgkinp,i, vkinp,i, vkinp,i,rej)← SSig.Setup(1λ;PPRF.Eval(Kinp, i)).

ii. If SSig.Verify(vkinp,i, ctinp,i, σinp,i) = 0, output ⊥.
iii. mi = (i, ctst,i, itrst,i−1).

iv. in-type = ⊥.
v. Verify A type signatures:

i. (sgkA,i, vkA,i, vkA,i,rej)← SSig.Setup(1λ;PPRF.Eval(KA, i)).

ii. If SSig.Verify(vkA,i,mi, σst,i) = 1, in-type = out-type = A.

vi. Verify B type signatures:

i. If in-type ̸= A and i = j,

A. (sgkB,i, vkB,i, vkB,i,rej)← SSig.Setup(1λ;PPRF.Eval(KB, i)).

B. If SSig.Verify(vkB,i,rej,mi, σst,i) = 1, in-type = out-type = B.

ii. If in-type ̸= A and j + 1 ≤ i ≤ t− 1,

A. (sgkB,i, vkB,i, vkB,i,rej)← SSig.Setup(1λ;PPRF.Eval(KB, i)).

B. If SSig.Verify(vkB,i,mi, σst,i) = 1, in-type = out-type = B.

vii. If in-type = ⊥, output ⊥.

2. Computation Step:

i. If i = t− 1, (yi, ctst,i+1) = (y∗t−1, ct
∗
st,t).

ii. If i ̸= t− 1,

i. Decrypt input and state:

i. (rE,i, rEnc,i) = PPRF.Eval(KE , i).

ii. kE,i = SKE.Setup(1λ; rE,i).

iii. Post.CTi = SKE.Dec(kE,i, ctinp,i).

iv. Post.Dec.sti = SKE.Dec(kE,i, ctst,i).

ii. Compute output value and next state:

A. (yi,Post.Dec.sti+1) = Post-One-sFE.Dec(Post.Dec.sti,Post.CTi).

iii. Encrypt the new state:
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i. (rE,i+1, rEnc,i+1) = PPRF.Eval(KE , i+ 1).

ii. kE,i+1 = SKE.Setup(1λ; rE,i+1).

iii. ctst,i+1 = SKE.Enc(kE,i+1,Post.Dec.sti+1; rEnc,i+1).

3. Authentication Step:

i. itrst,i = Itr.Iterate(ppst, itrst,i−1, (i, ctst,i)).

ii. mi+1 = (i+ 1, ctst,i+1, itrst,i).

iii. Sign A type messages: If out-type = A,

i. (sgkA,i+1, vkA,i+1, vkA,i+1,rej)← SSig.Setup(1λ;PPRF.Eval(KA, i+ 1)).

ii. σst,i+1 = SSig.Sign(sgkA,i+1,mi+1).

iv. Sign B type messages: If out-type = B,

i. (sgkB,i+1, vkB,i+1, vkB,i+1,rej)← SSig.Setup(1λ;PPRF.Eval(KB, i+ 1)).

ii. σst,i+1 = SSig.Sign(sgkB,i+1,mi+1).

4. Output (yi, ctst,i+1, σst,i+1, itrst,i).

Lemma C.10. If iO is a secure indistinguishability obfuscation scheme, then for all all λ ∈ N, all
t ∈ [t∗], all j ∈ [t− 1], and all PPT adversaries A,

∆(HybridA3,t,0,j,0(1
λ),HybridA3,t,0,j,1(1

λ)) ≤ negl(λ)

Proof. The only difference between Prog3,t,0,j,0 and Prog3,t,0,j,1 is that at step i = j, the latter will
check if the state signature verifies under vkB,j,rej. However, since verifying with vkB,j,rej which
always results in a rejected signature, then the two programs have identical input/output behavior.

Thus, by a straightforward reduction to the security of iO, the hybrids are indistinguishable.
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HybridA3,t,0,j,2: We puncture key KB at j. We verify B type signatures at step j using a hardwired
verification key. Note that we do not need to sign any B type messages at step j.

This hybrid is the same as the previous hybrid except that

• During KeyGen, we make changes to the following steps:

6h. Compute state signature keys:

(a) KB[j] = PPRF.Punc(KB, j).

(b) rB,j = PPRF.Eval(KB, j).

(c) (sgkB,j , vkB,j , vkB,j,rej)← SSig.Setup(1λ; rB,j).

(d) vk∗B,j = vkB,j,rej.

6j. Compute program: P ← iO(Prog3,t,0,j,2[Kinp,KA,KB[j], vk
∗
B,j ,KE , ppst, y

∗
t−1, ct

∗
st,t]).

Program
Prog3,t,0,j,2[Kinp,KA,KB[j], vk

∗
B,j ,KE , ppst, y

∗
t−1, ct

∗
st,t](i, ctinp,i, σinp,i, ctst,i, σst,i, itrst,i−1)

1. Verification Step:

i. Verify i is positive: If i ≤ 0, output ⊥.
ii. Verify input signature:

i. (sgkinp,i, vkinp,i, vkinp,i,rej)← SSig.Setup(1λ;PPRF.Eval(Kinp, i)).

ii. If SSig.Verify(vkinp,i, ctinp,i, σinp,i) = 0, output ⊥.
iii. mi = (i, ctst,i, itrst,i−1).

iv. in-type = ⊥.
v. Verify A type signatures:

i. (sgkA,i, vkA,i, vkA,i,rej)← SSig.Setup(1λ;PPRF.Eval(KA, i)).

ii. If SSig.Verify(vkA,i,mi, σst,i) = 1, in-type = out-type = A.

vi. Verify B type signatures:

i. If in-type ̸= A and i = j,

A. If SSig.Verify(vk∗B,j ,mi, σst,i) = 1, in-type = out-type = B.

ii. If in-type ̸= A and j + 1 ≤ i ≤ t− 1,

A. (sgkB,i, vkB,i, vkB,i,rej)← SSig.Setup(1λ;PPRF.Eval(KB[j], i)).

B. If SSig.Verify(vkB,i,mi, σst,i) = 1, in-type = out-type = B.

vii. If in-type = ⊥, output ⊥.

2. Computation Step:

i. If i = t− 1, (yi, ctst,i+1) = (y∗t−1, ct
∗
st,t).

ii. If i ̸= t− 1,

i. Decrypt input and state:

i. (rE,i, rEnc,i) = PPRF.Eval(KE , i).

ii. kE,i = SKE.Setup(1λ; rE,i).

iii. Post.CTi = SKE.Dec(kE,i, ctinp,i).
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iv. Post.Dec.sti = SKE.Dec(kE,i, ctst,i).

ii. Compute output value and next state:

A. (yi,Post.Dec.sti+1) = Post-One-sFE.Dec(Post.Dec.sti,Post.CTi).

iii. Encrypt the new state:

i. (rE,i+1, rEnc,i+1) = PPRF.Eval(KE , i+ 1).

ii. kE,i+1 = SKE.Setup(1λ; rE,i+1).

iii. ctst,i+1 = SKE.Enc(kE,i+1,Post.Dec.sti+1; rEnc,i+1).

3. Authentication Step:

i. itrst,i = Itr.Iterate(ppst, itrst,i−1, (i, ctst,i)).

ii. mi+1 = (i+ 1, ctst,i+1, itrst,i).

iii. Sign A type messages: If out-type = A,

i. (sgkA,i+1, vkA,i+1, vkA,i+1,rej)← SSig.Setup(1λ;PPRF.Eval(KA, i+ 1)).

ii. σst,i+1 = SSig.Sign(sgkA,i+1,mi+1).

iv. Sign B type messages: If out-type = B,
//Observe that this branch can only be reached if j ≤ i ≤ t− 1.

i. (sgkB,i+1, vkB,i+1, vkB,i+1,rej)← SSig.Setup(1λ;PPRF.Eval(KB[j], i+ 1)).

ii. σst,i+1 = SSig.Sign(sgkB,i+1,mi+1).

4. Output (yi, ctst,i+1, σst,i+1, itrst,i).

Lemma C.11. If iO is a secure indistinguishability obfuscation scheme, then for all λ ∈ N, all
t ∈ [t∗], all j ∈ [t− 1], and all PPT adversaries A,

∆(HybridA3,t,0,j,1(1
λ),HybridA3,t,0,j,2(1

λ)) ≤ negl(λ)

Proof. Prog3,t,0,j,2 only evaluates KB[j] in two places:

• During verification, it evaluates KB[j] at index i for j < i ≤ t− 1.

• During authentication, it evaluates KB[j] at index i + 1 when out-type = B. This can only
occur if we have verified a B type signature, which can only happen when j ≤ i ≤ t− 1.

Thus, Prog3,t,0,j,2 only evaluates KB[j] at points v ̸= j. By correctness of puncturing,

PPRF.Eval(KB[j], v) = PPRF.Eval(KB, v) for any v ̸= j.

Additionally the hardwired value vk∗B,j = vkB,j,rej is the same as what would have been computed
in the previous hybrid.

Thus, Prog3,t,0,j,1 and Prog3,t,0,j,2 have the same input/output behavior, so by a straightforward
reduction to the security of iO, the hybrids are indistinguishable.
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HybridA3,t,0,j,3: We compute rB,j as a random value. This hybrid is the same as the previous hybrid
except that

• During KeyGen, we make changes to the following steps:

6h. Compute state signature keys:

(a) KB[j] = PPRF.Punc(KB, j).

(b) rB,j ← {0, 1}λ.
(c) (sgkB,j , vkB,j , vkB,j,rej)← SSig.Sign(1λ; rB,j).

(d) vk∗B,j = vkB,j,rej.

Lemma C.12. If PPRF is a puncturable pseudorandom function, then for all λ ∈ N, all t ∈ [t∗],
all j ∈ [t− 1], and all PPT adversaries A,

∆(HybridA3,t,0,j,2(1
λ),HybridA3,t,0,j,3(1

λ)) ≤ negl(λ)

Proof. This follow by a reduction to the selective pseudorandomness at punctured points property
of our PPRF.

Observe that we can run both hybrids without knowingKB as long as we are given (KB[j], rB,j).
In the reduction, without computingKB, we run HybridA3,t,0,j,3 up to just before step 6h of KeyGen.
Then, we receive (KB[j], rB,j) from the PPRF challenger where rB,j is either a random value or
equal to PPRF.Eval(KB, j). We then use these values to run the rest of HybridA3,t,0,j,3 starting
from step 6h(c) of KeyGen. Observe that if rB,j was a random value then we exactly emulate
HybridA3,t,0,j,3, and if rB,j was equal to PPRF.Eval(KB, j) we emulate HybridA3,t,0,j,2. Thus, by
PPRF security, the outputs of these hybrids must be indistinguishable.

HybridA3,t,0,j,4: We set vk∗ to be vkB,j . This hybrid is the same as the previous hybrid except that

• During KeyGen, we make changes to the following steps:

6h. Compute state signature keys:

(a) KB[j] = PPRF.Punc(KB, j).

(b) rB,j ← {0, 1}λ.
(c) (sgkB,j , vkB,j , vkB,j,rej)← SSig.Sign(1λ; rB,j).

(d) vk∗B,j = vkB,j .

Lemma C.13. If SSig is a splittable signature scheme, then for all λ ∈ N, all t ∈ [t∗], all j ∈ [t−1],
and all PPT adversaries A,

∆(HybridA3,t,0,j,3(1
λ),HybridA3,t,0,j,4(1

λ)) ≤ negl(λ)

Proof. This follow by a reduction to the vkrej indistinguishabilty of SSig.
Observe that we can run both hybrids without knowing (rB,j , sgkB,j , vkB,j , vkB,j,rej) as long as

we are given vk∗B,j . In the reduction, we run HybridA3,t,0,j,4 up to just before step 6h(b) of KeyGen.
Then, we receive vk∗ from the SSig challenger where vk∗ is either a regular SSig verification key vk or
is a rejecting SSig verification key vkrej. We then set vk∗B,j,rej = vk∗ and run the rest ofHybridA3,t,0,j,4
starting from step 6i of KeyGen. Observe that if vk∗ was a regular verification key we exactly emulate
HybridA3,t,0,j,4, and if vk∗ was a rejecting verification key we emulate HybridA3,t,0,j,3. Thus, by the
vkrej indistinguishabilty of SSig security, the outputs of these hybrids must be indistinguishable.
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HybridA3,t,0,j,5: We change rB,j back to a PPRF evaluation. This hybrid is the same as the previous
hybrid except that

• During KeyGen, we make changes to the following steps:

6h Compute state signature keys:

(a) KB[j] = PPRF.Punc(KB, j).

(b) rB,j ← PPRF.Eval(KB, j).

(c) (sgkB,j , vkB,j , vkB,j,rej)← SSig.Sign(1λ; rB,j).

(d) vk∗B,j = vkB,j .

Lemma C.14. If PPRF is a puncturable pseudorandom function, then for all λ ∈ N, all t ∈ [t∗],
all j ∈ [t− 1], and all PPT adversaries A,

∆(HybridA3,t,0,j,4(1
λ),HybridA3,t,0,j,5(1

λ)) ≤ negl(λ)

Proof. This follow by a reduction to the selective pseudorandomness at punctured points property
of our PPRF.

Observe that we can run both hybrids without knowingKB as long as we are given (KB[j], rB,j).
In the reduction, without computingKB, we run HybridA3,t,0,j,5 up to just before step 6h of KeyGen.
Then, we receive (KB[j], rB,j) from the PPRF challenger where rB,j is either a random value or
equal to PPRF.Eval(KB, j). We then use these values to run the rest of HybridA3,t,0,j,5 starting
from step 6h(c) of KeyGen. Observe that if rB,j was a random value then we exactly emulate
HybridA3,t,0,j,4, and if rB,j was equal to PPRF.Eval(KB, j) we emulate HybridA3,t,0,j,5. Thus, by
PPRF security, the outputs of these hybrids must be indistinguishable.
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HybridA3,t,0,j,6: This hybrid is the same as the previous hybrid except that

• During KeyGen, we make changes to the following steps:

6h. Compute state signature keys: Do nothing.

6j. Compute program: P ← iO(Prog3,t,0,j,6[Kinp,KA,KB,KE , ppst, y
∗
t−1, ct

∗
st,t]).

Program Prog3,t,0,j,6[Kinp,KA,KB,KE , ppst, y
∗
t−1, ct

∗
st,t](i, ctinp,i, σinp,i, ctst,i, σst,i, itrst,i−1)

1. Verification Step:

i. Verify i is positive: If i ≤ 0, output ⊥.
ii. Verify input signature:

i. (sgkinp,i, vkinp,i, vkinp,i,rej)← SSig.Setup(1λ;PPRF.Eval(Kinp, i)).

ii. If SSig.Verify(vkinp,i, ctinp,i, σinp,i) = 0, output ⊥.
iii. mi = (i, ctst,i, itrst,i−1).

iv. in-type = ⊥.
v. Verify A type signatures:

i. (sgkA,i, vkA,i, vkA,i,rej)← SSig.Setup(1λ;PPRF.Eval(KA, i)).

ii. If SSig.Verify(vkA,i,mi, σst,i) = 1, in-type = out-type = A.

vi. Verify B type signatures:

i. If in-type ̸= A and i = j,

A. (sgkB,i, vkB,i, vkB,i,rej)← SSig.Setup(1λ;PPRF.Eval(KB, i)).

B. If SSig.Verify(vkB,i,mi, σst,i) = 1, in-type = out-type = B.

ii. If in-type ̸= A and j + 1 ≤ i ≤ t− 1,

A. (sgkB,i, vkB,i, vkB,i,rej)← SSig.Setup(1λ;PPRF.Eval(KB, i)).

B. If SSig.Verify(vkB,i,mi, σst,i) = 1, in-type = out-type = B.

vii. If in-type = ⊥, output ⊥.

2. Computation Step:

i. If i = t− 1, (yi, ctst,i+1) = (y∗t−1, ct
∗
st,t).

ii. If i ̸= t− 1,

i. Decrypt input and state:

i. (rE,i, rEnc,i) = PPRF.Eval(KE , i).

ii. kE,i = SKE.Setup(1λ; rE,i).

iii. Post.CTi = SKE.Dec(kE,i, ctinp,i).

iv. Post.Dec.sti = SKE.Dec(kE,i, ctst,i).

ii. Compute output value and next state:

A. (yi,Post.Dec.sti+1) = Post-One-sFE.Dec(Post.Dec.sti,Post.CTi).

iii. Encrypt the new state:

i. (rE,i+1, rEnc,i+1) = PPRF.Eval(KE , i+ 1).

ii. kE,i+1 = SKE.Setup(1λ; rE,i+1).
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iii. ctst,i+1 = SKE.Enc(kE,i+1,Post.Dec.sti+1; rEnc,i+1).

3. Authentication Step:

i. itrst,i = Itr.Iterate(ppst, itrst,i−1, (i, ctst,i)).

ii. mi+1 = (i+ 1, ctst,i+1, itrst,i).

iii. Sign A type messages: If out-type = A,

i. (sgkA,i+1, vkA,i+1, vkA,i+1,rej)← SSig.Setup(1λ;PPRF.Eval(KA, i+ 1)).

ii. σst,i+1 = SSig.Sign(sgkA,i+1,mi+1).

iv. Sign B type messages: If out-type = B,
//Observe that this branch can only be reached if j ≤ i ≤ t− 1.

i. (sgkB,i+1, vkB,i+1, vkB,i+1,rej)← SSig.Setup(1λ;PPRF.Eval(KB, i+ 1)).

ii. σst,i+1 = SSig.Sign(sgkB,i+1,mi+1).

4. Output (yi, ctst,i+1, σst,i+1, itrst,i).

Lemma C.15. If iO is a secure indistinguishability obfuscation scheme, then for all λ ∈ N, all
t ∈ [t∗], all j ∈ [t− 1], and all PPT adversaries A,

∆(HybridA3,t,0,j,5(1
λ),HybridA3,t,0,j,6(1

λ)) ≤ negl(λ)

Proof. The previous hybrid Prog3,t,0,j,5 only evaluates KB[j] in two places:

• During verification, it evaluates KB[j] at index i for j < i ≤ t− 1.

• During authentication, it evaluates KB[j] at index i + 1 when out-type = B. This can only
occur if we have verified a B type signature, which can only happen when j ≤ i ≤ t− 1.

Thus, Prog3,t,0,j,5 only evaluates KB[j] at points v ̸= j. By correctness of puncturing,

PPRF.Eval(KB[j], v) = PPRF.Eval(KB, v) for any v ̸= j.

Additionally the hardwired value vk∗B,j = vkB,j of the previous hybrid is the same as the value that
is computed in the current hybrid.

Thus, Prog3,t,0,j,5 and Prog3,t,0,j,6 have the same input/output behavior, so by a straightforward
reduction to the security of iO, the hybrids are indistinguishable.

Lemma C.16. If iO is a indistinguishability obfuscation, then for all λ ∈ N, all t ∈ [t∗], all
j ∈ [t− 1], and all PPT adversaries A,

∆(HybridA3,t,0,j,5(1
λ),HybridA3,t,0,j−1,0(1

λ)) ≤ negl(λ)

Proof. The hybrids are identical except that one hybrid obfuscates Prog3,t,0,j,5 and the other hybrid
obfuscates Prog3,t,0,j−1,0. Observe that though the two programs have mild notational differences,
they behave identically and have the same input/output behavior. Thus, by a straightforward
reduction to the security of iO, the hybrids are indistinguishable.
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HybridA3,t,1: This hybrid is identical to HybridA3,t,0,0,0. We have rewritten it here to make the

hybrids easier to follow. We have highlighted the differences from HybridA3,t,0. Observe that we
now have B type signatures for all i ∈ [t− 1].

1. Guess Stream Length: (t∗, n)← [TA,λ]× [TA,λ] where TA,λ is the maximum runtime of A
on security parameter λ.

2. Parameters: The adversary A receives security parameter 1λ, and outputs a function size
1ℓF , a state size 1ℓS , an input size 1ℓX , and an output size 1ℓY .

3. Setup:

(a) Kinp,KA,KB,KE ← PPRF.Setup(1λ).

(b) Post.MSK← Post-One-sFE.Setup(1λ, 1ℓF , 1ℓS , 1ℓX , 1ℓY ).

4. Challenge Bit: b← {0, 1}.

5. Encryption Phase 1: For i = 1, 2, . . . , t∗:
If the adversary does not make exactly t∗ queries during this phase, output ⊥ and halt.

(a) A sends (x
(0)
i , x

(1)
i ) to the challenger.

(b) Post.CT
(0)
i = Post-One-sFE(Post.MSK, i, x

(0)
i ).

(c) Post.CT
(b)
i = Post-One-sFE(Post.MSK, i, x

(b)
i ).

(d) Compute input ciphertexts:

i. (rE,i, rEnc,i) = PPRF.Eval(KE , i).

ii. kE,i = SKE.Setup(1λ; rE,i).

iii. ct
(0)
inp,i = SKE.Enc(kE,i,Post.CT

(0)
i ).

iv. ct
(b)
inp,i = SKE.Enc(kE,i,Post.CT

(b)
i ).

(e) Set hardwired values:

i. ct∗inp,i =

{
ct

(0)
inp,i if i < t

ct
(b)
inp,i if i ≥ t

.

(f) Compute input signature keys: Do nothing.

(g) Compute σinp,i:

i. (sgkinp,i, vkinp,i, vkinp,i,rej) = SSig.Setup(1λ;PPRF.Eval(Kinp, i)).

ii. σinp,i = SSig.Sign(sgkinp,i, ct
∗
inp,i).

(h) Send CTi = (ct∗inp,i, σinp,i) to A.

6. KeyGen:

(a) A sends f to the challenger. Define st1 = ⊥.
(b) Post.Dec.st1 ← Post-One-sFE.KeyGen(Post.MSK, f, st1).

(c) Post.Dec.st
(0)
1 = Post.Dec.st1 and Post.Dec.st

(b)
1 = Post.Dec.st1.

(d) Compute state and output values:

i. For i ∈ [t∗],
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A. (yi,Post.Dec.st
(0)
i+1) = Post-One-sFE.Dec(Post.Dec.st

(0)
i ,Post.CT

(0)
i ).

B. (yi,Post.Dec.st
(b)
i+1) = Post-One-sFE.Dec(Post.Dec.st

(b)
i ,Post.CT

(b)
i ).

(e) Compute state ciphertexts:

i. For i ∈ [t∗ + 1],

A. (rE,i, rEnc,i) = PPRF.Eval(KE , i).

B. kE,i = SKE.Setup(1λ; rE,i).

C. ct
(0)
st,i = SKE.Enc(kE,i,Post.Dec.st

(0)
i ; rEnc,i).

D. ct
(b)
st,i = SKE.Enc(kE,i,Post.Dec.st

(b)
i ; rEnc,i).

(f) Setup iterator: (ppst, itrst,0)← Itr.Setup(1λ, 2λ).

(g) Set hardwired values:

i. For i ∈ [t∗], y∗i = yi.

ii. For i ∈ [t∗ + 1],

A. ct∗st,i =

{
ct

(0)
st,i if i < t

ct
(b)
st,i if i ≥ t

B. itr∗st,i = Itr.Iterate(ppst, itr
∗
st,i−1, ct

∗
st,i) where itr∗st,0 = itrst,0.

C. m∗i = (i, ct∗st,i, itr
∗
st,i−1).

(h) Compute state signature keys: Do nothing.

(i) Compute σst,1:

i. (sgkA,1, vkA,1, vkA,1,rej)← SSig.Setup(1λ;PPRF.Eval(KA, 1)).

ii. σst,1 = SSig.Sign(sgkA,1,m
∗
1).

(j) Compute program: P ← iO(Prog3,t,1[Kinp,KA,KB,KE , ppst, y
∗
t−1, ct

∗
st,t]).

(k) Send SKf = (P, ct∗st,1, σst,1, itrst,0) to A.

7. Encryption Phase 2: For i = t∗ + 1, t∗ + 2, . . . , n:
If the adversary does not make exactly n− t∗ queries during this phase, output ⊥ and halt.

(a) A sends (x
(0)
i , x

(1)
i ) to the challenger.

(b) Post.CT
(b)
i = Post-One-sFE(Post.MSK, i, x

(b)
i ).

(c) Compute ctinp,i:

i. (rE,i, rEnc,i) = PPRF.Eval(KE , i).

ii. kE,i = SKE.Setup(1λ; rE,i).

iii. ctinp,i = SKE.Enc(kE,i,Post.CT
(b)
i ).

(d) Compute σinp,i:

i. (sgkinp,i, vkinp,i, vkinp,i,rej) = SSig.Setup(1λ;PPRF.Eval(Kinp, i)).

ii. σinp,i = SSig.Sign(sgkinp,i, ctinp,i).

(e) Send CTi = (ctinp,i, σinp,i) to A.

8. Output: A sends b′ to the challenger. Output 1 if b = b′, and output 0 else.
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Program Prog3,t,1[Kinp,KA,KB,KE , ppst, y
∗
t−1, ct

∗
st,t](i, ctinp,i, σinp,i, ctst,i, σst,i, itrst,i−1)

1. Verification Step:

i. Verify i is positive: If i ≤ 0, output ⊥.
ii. Verify input signature:

i. (sgkinp,i, vkinp,i, vkinp,i,rej)← SSig.Setup(1λ;PPRF.Eval(Kinp, i)).

ii. If SSig.Verify(vkinp,i, ctinp,i, σinp,i) = 0, output ⊥.
iii. mi = (i, ctst,i, itrst,i−1).

iv. in-type = ⊥.
v. Verify A type signatures:

i. (sgkA,i, vkA,i, vkA,i,rej)← SSig.Setup(1λ;PPRF.Eval(KA, i)).

ii. If SSig.Verify(vkA,i,mi, σst,i) = 1, in-type = out-type = A.

vi. Verify B type signatures:

i. If in-type ̸= A and 1 ≤ i ≤ t− 1,

A. (sgkB,i, vkB,i, vkB,i,rej)← SSig.Setup(1λ;PPRF.Eval(KB, i)).

B. If SSig.Verify(vkB,i,mi, σst,i) = 1, in-type = out-type = B.

vii. If in-type = ⊥, output ⊥.

2. Computation Step:

i. If i = t− 1, (yi, ctst,i+1) = (y∗t−1, ct
∗
st,t).

ii. If i ̸= t− 1,

i. Decrypt input and state:

i. (rE,i, rEnc,i) = PPRF.Eval(KE , i).

ii. kE,i = SKE.Setup(1λ; rE,i).

iii. Post.CTi = SKE.Dec(kE,i, ctinp,i).

iv. Post.Dec.sti = SKE.Dec(kE,i, ctst,i).

ii. Compute output value and next state:

A. (yi,Post.Dec.sti+1) = Post-One-sFE.Dec(Post.Dec.sti,Post.CTi).

iii. Encrypt the new state:

i. (rE,i+1, rEnc,i+1) = PPRF.Eval(KE , i+ 1).

ii. kE,i+1 = SKE.Setup(1λ; rE,i+1).

iii. ctst,i+1 = SKE.Enc(kE,i+1,Post.Dec.sti+1; rEnc,i+1).

3. Authentication Step:

i. itrst,i = Itr.Iterate(ppst, itrst,i−1, (i, ctst,i)).

ii. mi+1 = (i+ 1, ctst,i+1, itrst,i).

iii. Sign A type messages: If out-type = A,

i. (sgkA,i+1, vkA,i+1, vkA,i+1,rej)← SSig.Setup(1λ;PPRF.Eval(KA, i+ 1)).

ii. σst,i+1 = SSig.Sign(sgkA,i+1,mi+1).
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iv. Sign B type messages: If out-type = B,

i. (sgkB,i+1, vkB,i+1, vkB,i+1,rej)← SSig.Setup(1λ;PPRF.Eval(KB, i+ 1)).

ii. σst,i+1 = SSig.Sign(sgkB,i+1,mi+1).

4. Output (yi, ctst,i+1, σst,i+1, itrst,i).

Lemma C.17. For all λ ∈ N, all t ∈ [t∗], and all adversaries A,

∆(HybridA3,t,0,0,0(1
λ),HybridA3,t,1(1

λ)) = 0

Proof. The hybrids are identical.
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Tracing the computation through the program. Again, our next goal is to hardwire step
t into the obfuscated program. Since we are using iO, we can only hardwire in this step if the
hardwired values are the only possible values that could be computed in that portion of the program.
Thus, we want to enforce that only one set of incoming messages at step t can pass the verification
step. This can be accomplished as long as we only ever sign one message set with the tth signature
scheme since then the properties of SSig allow us to replace the verification key with one that only
verifies this single value.

Unfortunately, the key KA for the state signatures is embedded in the obfuscated program since
we need to sign outgoing states. Somehow, we will need to modify our program so that the tth

state signature scheme can only sign one possible state. This is the focus of our next set of hybrids.
At index t = 1, this is easy to do since the program does not need sgkA,1 since it only signs

outgoing states. For indices t > 1, it is more complicated. At a high level, we will need to trace
our computation path up from step 1 to t. At each step, we will move every state message other
than the chosen one to the B type scheme. Then, we can use the single state isolated in the A
type scheme to enforce the next step of computation. Once we make it up to step t, we can finally
hardwire the computation.

In more detail. First, we will add a conditional statement to our program (described below) at
step 0. This can be added for free at step 0 since our indexing starts at i = 1. In general, we will
proceed as follows:

1. We assume that at step i = j − 1, we have a conditional statement that sets out-type = A if
and only if the outgoing message mi+1 is our chosen message m∗j .

2. Our conditional statement ensures that we only use the A type scheme at j to sign one
message m∗j . Thus, we can use properties of SSig to change the verification key of our A type
scheme at j to only verify this one message. (We can also ensure that our B type scheme at
j cannot verify this one message.)

3. Since our A type scheme can only verify m∗j (and the B type scheme cannot), we can add a
conditional statement at step i = j that sets the out-type to A if and only if the incoming
message mi is equal to m

∗
j .

4. To clean up the conditional statement at step i = j − 1, we will merge the A and B type
signature schemes at index j using the properties of SSig. Thus, the out-type at i = j− 1 will
always be A and the conditional will not be needed.

5. Finally, we will change the conditional at step j so that it sets the out-type to A if and only if
the outgoing message mi+1 is our chosen message m∗j+1. This will require using our iterator
and signature schemes to enforce that the incoming message is m∗j if and only if the outgoing
message is m∗j+1.

6. We then repeat the process with j = j + 1.

This defines a series of hybrids for j ∈ [t].
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HybridA3,t,1,j = HybridA3,t,1,j,0: We now only verify with B type signatures for steps i ∈ [j, t − 1].
Furthermore, at step i = j − 1, if the outgoing message is not our chosen value m∗j , then we sign it
with a B type signature.

This hybrid is the same as the previous hybrid except that

• During KeyGen, we make changes to the following steps:

6j. Compute program: P ← iO(Prog3,t,1,j,0[Kinp,KA,KB,KE , ppst,m
∗
j , y
∗
t−1, ct

∗
st,t]).

Program Prog3,t,1,j,0[Kinp,KA,KB,KE , ppst,m
∗
j , y
∗
t−1, ct

∗
st,t](i, ctinp,i, σinp,i, ctst,i, σst,i, itrst,i−1)

1. Verification Step:

i. Verify i is positive: If i ≤ 0, output ⊥.
ii. Verify input signature:

i. (sgkinp,i, vkinp,i, vkinp,i,rej)← SSig.Setup(1λ;PPRF.Eval(Kinp, i)).

ii. If SSig.Verify(vkinp,i, ctinp,i, σinp,i) = 0, output ⊥.
iii. mi = (i, ctst,i, itrst,i−1).

iv. in-type = ⊥.
v. Verify A type signatures:

i. (sgkA,i, vkA,i, vkA,i,rej)← SSig.Setup(1λ;PPRF.Eval(KA, i)).

ii. If SSig.Verify(vkA,i,mi, σst,i) = 1, in-type = out-type = A.

vi. Verify B type signatures:

i. If in-type ̸= A and j ≤ i ≤ t− 1,

A. (sgkB,i, vkB,i, vkB,i,rej)← SSig.Setup(1λ;PPRF.Eval(KB, i)).

B. If SSig.Verify(vkB,i,mi, σst,i) = 1, in-type = out-type = B.

vii. If in-type = ⊥, output ⊥.

2. Computation Step:

i. If i = t− 1, (yi, ctst,i+1) = (y∗t−1, ct
∗
st,t).

ii. If i ̸= t− 1,

i. Decrypt input and state:

i. (rE,i, rEnc,i) = PPRF.Eval(KE , i).

ii. kE,i = SKE.Setup(1λ; rE,i).

iii. Post.CTi = SKE.Dec(kE,i, ctinp,i).

iv. Post.Dec.sti = SKE.Dec(kE,i, ctst,i).

ii. Compute output value and next state:

A. (yi,Post.Dec.sti+1) = Post-One-sFE.Dec(Post.Dec.sti,Post.CTi).

iii. Encrypt the new state:

i. (rE,i+1, rEnc,i+1) = PPRF.Eval(KE , i+ 1).

ii. kE,i+1 = SKE.Setup(1λ; rE,i+1).

iii. ctst,i+1 = SKE.Enc(kE,i+1,Post.Dec.sti+1; rEnc,i+1).
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3. Authentication Step:

i. itrst,i = Itr.Iterate(ppst, itrst,i−1, (i, ctst,i)).

ii. mi+1 = (i+ 1, ctst,i+1, itrst,i).

iii. If i = j − 1,

i. If mi+1 = m∗j , out-type = A. Else, out-type = B.

iv. Sign A type messages: If out-type = A,

i. (sgkA,i+1, vkA,i+1, vkA,i+1,rej)← SSig.Setup(1λ;PPRF.Eval(KA, i+ 1)).

ii. σst,i+1 = SSig.Sign(sgkA,i+1,mi+1).

v. Sign B type messages: If out-type = B,

i. (sgkB,i+1, vkB,i+1, vkB,i+1,rej)← SSig.Setup(1λ;PPRF.Eval(KB, i+ 1)).

ii. σst,i+1 = SSig.Sign(sgkB,i+1,mi+1).

4. Output (yi, ctst,i+1, σst,i+1, itrst,i).

Lemma C.18. If iO is a secure indistinguishability obfuscation scheme, then for all λ ∈ N, all
t ∈ [t∗], and all PPT adversaries A,

∆(HybridA3,t,0(1
λ),HybridA3,t,1,1(1

λ)) ≤ negl(1λ)

Proof. Prog3,t,0 and Prog3,t,1,1 have the same input/output behavior since if i = j − 1 = 0, then
both programs will output ⊥ in the verification step before even reaching the authentication step.
Thus the i = j − 1 branch in Prog3,t,1,1 can never be reached.

Thus, by a straightforward reduction to the security of iO, the hybrids are indistinguishable.
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HybridA3,t,1,j,1: We puncture both KA and KB at index j. We sign and verify A and B type
signatures at step j using hardwired keys.

This hybrid is the same as the previous hybrid except that

• During KeyGen, we make changes to the following steps:

6h. Compute state signature keys:

1. KA[j] = PPRF.Punc(KA, j).

2. KB[j] = PPRF.Punc(KB, j).

3. For α ∈ {A,B},
(a) rα,j ← PPRF.Eval(Kα, j).

(b) (sgkα,j , vkα,j , vkα,j,rej) = SSig.Setup(1λ; rα,j).

4. (σ∗st,j , sgk
∗
A,j , vk

∗
A,j) = (⊥, sgkA,j , vkA,j).

5. (sgk∗B,j , vk
∗
B,j) = (sgkB,j , vkB,j).

6i. Compute σst,1:

1. If 1 = j, σst,1 = SSig.Sign(sgk∗A,1,m
∗
1).

2. If 1 ̸= j,

(a) (sgkA,1, vkA,1, vkA,1,rej) = SSig.Setup(1λ;PPRF.Eval(KA[j], 1)).

(b) σst,1 = SSig.Sign(sgkA,1,m
∗
1).

6j. Compute program: P ← iO(Prog3,t,1,j,1[Kinp,KA[j], sgk
∗
A,j , vk

∗
A,j ,KB[j], sgk

∗
B,j , vk

∗
B,j ,

KE , ppst,m
∗
j , y
∗
t−1, ct

∗
st,t]).

Program Prog3,t,1,j,1[Kinp,KA[j], sgk
∗
A,j , vk

∗
A,j ,KB[j], sgk

∗
B,j , vk

∗
B,j ,KE , ppst,m

∗
j , y
∗
t−1, ct

∗
st,t]

(i, ctinp,i, σinp,i, ctst,i, σst,i, itrst,i−1)

1. Verification Step:

i. Verify i is positive: If i ≤ 0, output ⊥.
ii. Verify input signature:

i. (sgkinp,i, vkinp,i, vkinp,i,rej)← SSig.Setup(1λ;PPRF.Eval(Kinp, i)).

ii. If SSig.Verify(vkinp,i, ctinp,i, σinp,i) = 0, output ⊥.
iii. mi = (i, ctst,i, itrst,i−1).

iv. in-type = ⊥.
v. Verify A type signatures:

i. If i = j,

A. If SSig.Verify(vk∗A,j ,mi, σst,i) = 1, in-type = out-type = A.

ii. If i ̸= j,

A. (sgkA,i, vkA,i, vkA,i,rej)← SSig.Setup(1λ;PPRF.Eval(KA[j], i)).

B. If SSig.Verify(vkA,i,mi, σst,i) = 1, in-type = out-type = A.

vi. Verify B type signatures:

i. If in-type ̸= A and i = j,

A. If SSig.Verify(vk∗B,j ,mi, σst,i) = 1, in-type = out-type = B.

ii. If in-type ̸= A and j + 1 ≤ i ≤ t− 1,
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A. (sgkB,i, vkB,i, vkB,i,rej)← SSig.Setup(1λ;PPRF.Eval(KB[j], i)).

B. If SSig.Verify(vkB,i,mi, σst,i) = 1, in-type = out-type = B.

vii. If in-type = ⊥, output ⊥.

2. Computation Step:

i. If i = t− 1, (yi, ctst,i+1) = (y∗t−1, ct
∗
st,t).

ii. If i ̸= t− 1,

i. Decrypt input and state:

i. (rE,i, rEnc,i) = PPRF.Eval(KE , i).

ii. kE,i = SKE.Setup(1λ; rE,i).

iii. Post.CTi = SKE.Dec(kE,i, ctinp,i).

iv. Post.Dec.sti = SKE.Dec(kE,i, ctst,i).

ii. Compute output value and next state:

A. (yi,Post.Dec.sti+1) = Post-One-sFE.Dec(Post.Dec.sti,Post.CTi).

iii. Encrypt the new state:

i. (rE,i+1, rEnc,i+1) = PPRF.Eval(KE , i+ 1).

ii. kE,i+1 = SKE.Setup(1λ; rE,i+1).

iii. ctst,i+1 = SKE.Enc(kE,i+1,Post.Dec.sti+1; rEnc,i+1).

3. Authentication Step:

i. itrst,i = Itr.Iterate(ppst, itrst,i−1, (i, ctst,i)).

ii. mi+1 = (i+ 1, ctst,i+1, itrst,i).

iii. If i = j − 1,

i. If mi+1 = m∗j , out-type = A. Else, out-type = B.

iv. Sign A type messages: If out-type = A,

i. If i = j − 1,

A. σst,i+1 = SSig.Sign(sgk∗A,i+1,mi+1).

ii. If i ̸= j − 1,

A. (sgkA,i+1, vkA,i+1, vkA,i+1,rej)← SSig.Setup(1λ;PPRF.Eval(KA[j], i+ 1)).

B. σst,i+1 = SSig.Sign(sgkA,i+1,mi+1).

v. Sign B type messages: If out-type = B,

i. If i = j − 1,

A. σst,i+1 = SSig.Sign(sgk∗B,j ,mi+1).

ii. If i ̸= j − 1,

A. (sgkB,i+1, vkB,i+1, vkB,i+1,rej)← SSig.Setup(1λ;PPRF.Eval(KB[j], i+ 1)).

B. σst,i+1 = SSig.Sign(sgkB,i+1,mi+1).

4. Output (yi, ctst,i+1, σst,i+1, itrst,i).

Lemma C.19. If iO is a secure indistinguishability obfuscation scheme, then for all λ ∈ N, all
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t ∈ [t∗], all j ∈ [t− 1], and all PPT adversaries A,

∆(HybridA3,t,1,j,0(1
λ),HybridA3,t,1,j,1(1

λ)) ≤ negl(λ)

Proof. By correctness of puncturing, for α ∈ {A,B},

PPRF.Eval(Kα[j], v) = PPRF.Eval(Kα, v) for any v ̸= j.

Observe that we never evaluate punctured keys on their punctured points. Furthermore, the hard-
wired signing and verification keys are set to what they would have been computed to be in the
previous hybrid. Thus, Prog3,t,1,j,0 and Prog3,t,1,j,1 have the same input/output behavior. For the
same reasons, apart from the obfuscated programs, the hybrids are identical.

Thus, by a straightforward reduction to the security of iO, the hybrids are indistinguishable.
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HybridA3,t,1,j,2: We split both the A and B type signatures at index j on our chosen message m∗j .
We replace sgk∗B,j with sgkB,abo,j and replace signatures using sgk∗A,j with σA,one,j .

This hybrid is the same as the previous hybrid except that

• During KeyGen, we make changes to the following steps:

6h. Compute state signature keys:

1. KA[j] = PPRF.Punc(KA, j).

2. KB[j] = PPRF.Punc(KB, j).

3. For α ∈ {A,B},
(a) rα,j ← PPRF.Eval(Kα, j).

(b) (sgkα,j , vkα,j , vkα,j,rej) = SSig.Setup(1λ; rα,j).

(c) (σα,one,j , vkα,one,j , sgkα,abo,j , vkα,abo,j)← SSig.Split(sgkα,j ,m
∗
j ).

4. (σ∗st,j , sgk
∗
A,j , vk

∗
A,j) = (σA,one,j ,⊥, vkA,j).

5. (sgk∗B,j , vk
∗
B,j) = (sgkB,abo,j , vkB,j).

6i. Compute σst,1:

1. If 1 = j, σst,1 = σ∗st,j .

2. If 1 ̸= j,

(a) (sgkA,1, vkA,1, vkA,1,rej) = SSig.Setup(1λ;PPRF.Eval(KA[j], 1)).

(b) σst,1 = SSig.Sign(sgkA,1,m
∗
1).

6j. Compute program: P ← iO(Prog3,t,1,j,2[Kinp,KA[j], σ
∗
A,j , vk

∗
A,j ,KB[j], sgk

∗
B,j , vk

∗
B,j ,

KE , ppst,m
∗
j , y
∗
t−1, ct

∗
st,t]).

Program Prog3,t,1,j,2[Kinp,KA[j], σ
∗
A,j , vk

∗
A,j ,KB[j], sgk

∗
B,j , vk

∗
B,j ,KE , ppst,m

∗
j , y
∗
t−1, ct

∗
st,t]

(i, ctinp,i, σinp,i, ctst,i, σst,i, itrst,i−1)

1. Verification Step:

i. Verify i is positive: If i ≤ 0, output ⊥.
ii. Verify input signature:

i. (sgkinp,i, vkinp,i, vkinp,i,rej)← SSig.Setup(1λ;PPRF.Eval(Kinp, i)).

ii. If SSig.Verify(vkinp,i, ctinp,i, σinp,i) = 0, output ⊥.
iii. mi = (i, ctst,i, itrst,i−1).

iv. in-type = ⊥.
v. Verify A type signatures:

i. If i = j,

A. If SSig.Verify(vk∗A,j ,mi, σst,i) = 1, in-type = out-type = A.

ii. If i ̸= j,

A. (sgkA,i, vkA,i, vkA,i,rej)← SSig.Setup(1λ;PPRF.Eval(KA[j], i)).

B. If SSig.Verify(vkA,i,mi, σst,i) = 1, in-type = out-type = A.

vi. Verify B type signatures:

i. If in-type ̸= A and i = j,

A. If SSig.Verify(vk∗B,j ,mi, σst,i) = 1, in-type = out-type = B.
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ii. If in-type ̸= A and j + 1 ≤ i ≤ t− 1,

A. (sgkB,i, vkB,i, vkB,i,rej)← SSig.Setup(1λ;PPRF.Eval(KB[j], i)).

B. If SSig.Verify(vkB,i,mi, σst,i) = 1, in-type = out-type = B.

vii. If in-type = ⊥, output ⊥.

2. Computation Step:

i. If i = t− 1, (yi, ctst,i+1) = (y∗t−1, ct
∗
st,t).

ii. If i ̸= t− 1,

i. Decrypt input and state:

i. (rE,i, rEnc,i) = PPRF.Eval(KE , i).

ii. kE,i = SKE.Setup(1λ; rE,i).

iii. Post.CTi = SKE.Dec(kE,i, ctinp,i).

iv. Post.Dec.sti = SKE.Dec(kE,i, ctst,i).

ii. Compute output value and next state:

A. (yi,Post.Dec.sti+1) = Post-One-sFE.Dec(Post.Dec.sti,Post.CTi).

iii. Encrypt the new state:

i. (rE,i+1, rEnc,i+1) = PPRF.Eval(KE , i+ 1).

ii. kE,i+1 = SKE.Setup(1λ; rE,i+1).

iii. ctst,i+1 = SKE.Enc(kE,i+1,Post.Dec.sti+1; rEnc,i+1).

3. Authentication Step:

i. itrst,i = Itr.Iterate(ppst, itrst,i−1, (i, ctst,i)).

ii. mi+1 = (i+ 1, ctst,i+1, itrst,i).

iii. If i = j − 1,

i. If mi+1 = m∗j , out-type = A. Else, out-type = B.

iv. Sign A type messages: If out-type = A,

i. If i = j − 1,

A. σst,i+1 = σ∗st,j .

ii. If i ̸= j − 1,

A. (sgkA,i+1, vkA,i+1, vkA,i+1,rej)← SSig.Setup(1λ;PPRF.Eval(KA[j], i+ 1)).

B. σst,i+1 = SSig.Sign(sgkA,i+1,mi+1).

v. Sign B type messages: If out-type = B,

i. If i = j − 1,

A. σst,i+1 = SSig.Sign(sgk∗B,j ,mi+1).

ii. If i ̸= j − 1,

A. (sgkB,i+1, vkB,i+1, vkB,i+1,rej)← SSig.Setup(1λ;PPRF.Eval(KB[j], i+ 1)).

B. σst,i+1 = SSig.Sign(sgkB,i+1,mi+1).

4. Output (yi, ctst,i+1, σst,i+1, itrst,i).

Lemma C.20. If iO is a secure indistinguishability obfuscation scheme, then for all λ ∈ N, all
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t ∈ [t∗], all j ∈ [t− 1], and all PPT adversaries A,

∆(HybridA3,t,1,j,1(1
λ),HybridA3,t,1,j,2(1

λ)) ≤ negl(λ)

Proof. By correctness of SSig, if (σA,one,j , vkA,one,j , sgkA,abo,j , vkA,abo,j)← SSig.Split(sgkA,j ,m
∗
j ) and

(σB,one,j , vkB,one,j , sgkB,abo,j , vkB,abo,j)← SSig.Split(sgkB,j ,m
∗
j ), then

σA,one,j = SSig.Sign(sgkA,j ,m
∗
j ).

∀m ̸= m∗j , SSig.Sign(sgkB,j ,m) = SSig.Sign(sgkB,abo,j ,m).

Thus, apart from the obfuscated programs, the hybrids act identically since σA,one,1 = SSig.Sign(sgkA,1,m
∗
1)

so step 6i of KeyGen results in the same signature.
Now, in the previous hybrid, Prog3,t,1,j,1 only used sgk∗A,j = sgkA,j and sgk∗B,j = sgkB,j in two

places:

• If out-type = A and i = j − 1, then it signed mi+1 with sgkA,j . However, we can only have
out-type = A at i = j − 1 if mi+1 = m∗j . Thus, replacing the signature with σA,one,j does not
change the behavior of the program.

• If out-type = B and i = j − 1, then it signed mi+1 with sgkB,j . However, we can only have
out-type = B at i = j−1 if mi+1 ̸= m∗j . Thus, signing instead with sgkB,abo,j does not change
the behavior of the program.

Therefore, Prog3,t,1,j,1 and Prog3,t,1,j,2 have the same input/output behavior, so by a straightforward
reduction to the security of iO, the hybrids are indistinguishable.
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HybridA3,t,1,j,3: We change rA,j and rB,j to random values. This hybrid is the same as the previous
hybrid except that

• During KeyGen, we make changes to the following steps:

6h. Compute state signature keys:

1. KA[j] = PPRF.Punc(KA, j).

2. KB[j] = PPRF.Punc(KB, j).

3. For α ∈ {A,B},
(a) rα,j ← {0, 1}λ.
(b) (sgkα,j , vkα,j , vkα,j,rej) = SSig.Setup(1λ; rα,j).

(c) (σα,one,j , vkα,one,j , sgkα,abo,j , vkα,abo,j)← SSig.Split(sgkα,j ,m
∗
j ).

4. (σ∗st,j , sgk
∗
A,j , vk

∗
A,j) = (σA,one,j ,⊥, vkA,j).

5. (sgk∗B,j , vk
∗
B,j) = (sgkB,abo,j , vkB,j).

Lemma C.21. If PPRF is a puncturable pseudorandom function, then for all λ ∈ N, all t ∈ [t∗],
all j ∈ [t− 1], and all PPT adversaries A,

∆(HybridA3,t,1,j,2(1
λ),HybridA3,t,1,j,3(1

λ)) ≤ negl(λ)

Proof. This follow by two reductions to the selective pseudorandomness at punctured points prop-
erty of our PPRF.

We first swap out only rA,j for a random value and leave rB,j as a PPRF evaluation. We call
this intermediate hybrid HybridA3,t,1,j,2.5.

Observe that we can run both the previous hybrid and the intermediate hybrid without know-
ing KA as long as we are given (KA[j], rA,j). In the reduction, without computing KA, we run
HybridA3,t,1,j,2.5 up to just before step 6h of KeyGen. We also run the parts of step 6h that only
deal with B type signatures. Then, we receive (KA[j], rA,j) from the PPRF challenger where
rA,j is either a random value or equal to PPRF.Eval(KA, j). We use this randomness to compute
(σ∗st,j , sgk

∗
A,j , vk

∗
A,j). We then run the rest of HybridA3,t,1,j,2.5 starting from step 6i of KeyGen. Ob-

serve that if rA,j was a random value then we exactly emulate HybridA3,t,1,j,2.5, and if rA,j was

equal to PPRF.Eval(KA, j) we emulate HybridA3,t,1,j,2. Thus, by PPRF security, the outputs of
these hybrids must be indistinguishable.

By a similar reduction on the B type signature scheme, HybridA3,t,1,j,2.5 and HybridA3,t,1,j,3 are
indistinguishable.
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HybridA3,t,1,j,4: We set vk∗A,j to vkA,one,j which will only verify m∗j . This hybrid is the same as the
previous hybrid except that

• During KeyGen, we make changes to the following steps:

6h. Compute state signature keys:

1. KA[j] = PPRF.Punc(KA, j).

2. KB[j] = PPRF.Punc(KB, j).

3. For α ∈ {A,B},
(a) rα,j ← {0, 1}λ.
(b) (sgkα,j , vkα,j , vkα,j,rej) = SSig.Setup(1λ; rα,j).

(c) (σα,one,j , vkα,one,j , sgkα,abo,j , vkα,abo,j)← SSig.Split(sgkα,j ,m
∗
j ).

4. (σ∗st,j , sgk
∗
A,j , vk

∗
A,j) = (σA,one,j ,⊥, vkA,one,j).

5. (sgk∗B,j , vk
∗
B,j) = (sgkB,abo,j , vkB,j).

Lemma C.22. If SSig is a splittable signature scheme, then for all λ ∈ N, all t ∈ [t∗], all j ∈ [t−1],
and all PPT adversaries A,

∆(HybridA3,t,1,j,3(1
λ),HybridA3,t,1,j,4(1

λ)) ≤ negl(λ)

Proof. This follow by a reduction to the vkone indistinguishabilty of SSig.
Observe that we can run both hybrids without knowing (rA,j , sgkA,j , vkA,j , vkA,j,rej) as long as

we are given (σ∗st,j , vk
∗
A,j). In the reduction, we run HybridA3,t,1,j,4 up to just before step 6h.3. of

KeyGen. We also run the parts of step 6h that only deal with B type signatures. We send m∗j to
the SSig challenger and receive (σ∗, vk∗) from the SSig challenger where σ∗ is a signature of m∗j and
vk∗ is either a verification key vkone that only verifies m∗j or is a regular verification key vk. We

then set (σ∗st,j , sgk
∗
A,j , vk

∗
A,j) = (σ∗,⊥, vk∗) and run the rest of HybridA3,t,1,j,4 starting from step 6i

of KeyGen. Observe that if vk∗ was a regular verification key vk we exactly emulate HybridA3,t,1,j,3,

and if vk∗ was vkone we emulate HybridA3,t,1,j,4. Thus, by the vkone indistinguishabilty of SSig
security, the outputs of these hybrids must be indistinguishable.
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HybridA3,t,1,j,5: We set vk∗B,j to vkB,abo,j which cannot verify m∗j . This hybrid is the same as the
previous hybrid except that

• During KeyGen, we make changes to the following steps:

6h. Compute state signature keys:

1. KA[j] = PPRF.Punc(KA, j).

2. KB[j] = PPRF.Punc(KB, j).

3. For α ∈ {A,B},
(a) rα,j ← {0, 1}λ.
(b) (sgkα,j , vkα,j , vkα,j,rej) = SSig.Setup(1λ; rα,j).

(c) (σα,one,j , vkα,one,j , sgkα,abo,j , vkα,abo,j)← SSig.Split(sgkα,j ,m
∗
j ).

4. (σ∗st,j , sgk
∗
A,j , vk

∗
A,j) = (σA,one,j ,⊥, vkA,one,j).

5. (sgk∗B,j , vk
∗
B,j) = (sgkB,abo,j , vkB,abo,j).

Lemma C.23. If SSig is a splittable signature scheme, then for all λ ∈ N, all t ∈ [t∗], all j ∈ [t−1],
and all PPT adversaries A,

∆(HybridA3,t,1,j,4(1
λ),HybridA3,t,1,j,5(1

λ)) ≤ negl(λ)

Proof. This follow by a reduction to the vkabo indistinguishabilty of SSig.
Observe that we can run both hybrids without knowing (rB,j , sgkB,j , vkB,j , vkB,j,rej) as long as

we are given (sgk∗B,j , vk
∗
B,j). In the reduction, we run HybridA3,t,1,j,5 up to just before step 6h.3.

of KeyGen. We also run the parts of step 6h that only deal with A type signatures. We send m∗j
to the SSig challenger and receive (sgk∗, vk∗) from the SSig challenger where sgk∗ is a signing key
sgkabo for signing every message except m∗j and vk∗ is either a verification key vkabo that verifies
every mesage except m∗j or is a regular verification key vk. We then set (sgk∗B,j , vk

∗
B,j) = (sgk∗, vk∗)

and run the rest of HybridA3,t,1,j,5 starting from step 6i of KeyGen. Observe that if vk∗ was a

regular verification key vk we exactly emulate HybridA3,t,1,j,4, and if vk∗ was vkabo we emulate

HybridA3,t,1,j,5. Thus, by the vkabo indistinguishabilty of SSig security, the outputs of these hybrids
must be indistinguishable.
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HybridA3,t,1,j,6: We add a conditional statement at step i = j based on the incoming message. At
i = j, if the incoming message mi is equal to m

∗
j , we will set out-type = A. Otherwise, we will set

out-type = B.
This hybrid is the same as the previous hybrid except that

• During KeyGen, we make changes to the following steps:

6j. Compute program: P ← iO(Prog3,t,1,j,6[Kinp,KA[j], σ
∗
A,j , vk

∗
A,j ,KB[j], sgk

∗
B,j , vk

∗
B,j ,

KE , ppst,m
∗
j , y
∗
t−1, ct

∗
st,t]).

Program Prog3,t,1,j,6[Kinp,KA[j], σ
∗
A,j , vk

∗
A,j ,KB[j], sgk

∗
B,j , vk

∗
B,j ,KE , ppst,m

∗
j , y
∗
t−1, ct

∗
st,t]

(i, ctinp,i, σinp,i, ctst,i, σst,i, itrst,i−1)

1. Verification Step:

i. Verify i is positive: If i ≤ 0, output ⊥.
ii. Verify input signature:

i. (sgkinp,i, vkinp,i, vkinp,i,rej)← SSig.Setup(1λ;PPRF.Eval(Kinp, i)).

ii. If SSig.Verify(vkinp,i, ctinp,i, σinp,i) = 0, output ⊥.
iii. mi = (i, ctst,i, itrst,i−1).

iv. in-type = ⊥.
v. Verify A type signatures:

i. If i = j,

A. If SSig.Verify(vk∗A,j ,mi, σst,i) = 1, in-type = out-type = A.

ii. If i ̸= j,

A. (sgkA,i, vkA,i, vkA,i,rej)← SSig.Setup(1λ;PPRF.Eval(KA[j], i)).

B. If SSig.Verify(vkA,i,mi, σst,i) = 1, in-type = out-type = A.

vi. Verify B type signatures:

i. If in-type ̸= A and i = j,

A. If SSig.Verify(vk∗B,j ,mi, σst,i) = 1, in-type = out-type = B.

ii. If in-type ̸= A and j + 1 ≤ i ≤ t− 1,

A. (sgkB,i, vkB,i, vkB,i,rej)← SSig.Setup(1λ;PPRF.Eval(KB[j], i)).

B. If SSig.Verify(vkB,i,mi, σst,i) = 1, in-type = out-type = B.

vii. If in-type = ⊥, output ⊥.

2. Computation Step:

i. If i = t− 1, (yi, ctst,i+1) = (y∗t−1, ct
∗
st,t).

ii. If i ̸= t− 1,

i. Decrypt input and state:

i. (rE,i, rEnc,i) = PPRF.Eval(KE , i).

ii. kE,i = SKE.Setup(1λ; rE,i).

iii. Post.CTi = SKE.Dec(kE,i, ctinp,i).

iv. Post.Dec.sti = SKE.Dec(kE,i, ctst,i).
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ii. Compute output value and next state:

A. (yi,Post.Dec.sti+1) = Post-One-sFE.Dec(Post.Dec.sti,Post.CTi).

iii. Encrypt the new state:

i. (rE,i+1, rEnc,i+1) = PPRF.Eval(KE , i+ 1).

ii. kE,i+1 = SKE.Setup(1λ; rE,i+1).

iii. ctst,i+1 = SKE.Enc(kE,i+1,Post.Dec.sti+1; rEnc,i+1).

3. Authentication Step:

i. itrst,i = Itr.Iterate(ppst, itrst,i−1, (i, ctst,i)).

ii. mi+1 = (i+ 1, ctst,i+1, itrst,i).

iii. If i = j − 1,

i. If mi+1 = m∗j , out-type = A. Else, out-type = B.

iv. If i = j,

i. If mi = m∗j , out-type = A. Else, out-type = B.

v. Sign A type messages: If out-type = A,

i. If i = j − 1,

A. σst,i+1 = σ∗st,j .

ii. If i ̸= j − 1,

A. (sgkA,i+1, vkA,i+1, vkA,i+1,rej)← SSig.Setup(1λ;PPRF.Eval(KA[j], i+ 1)).

B. σst,i+1 = SSig.Sign(sgkA,i+1,mi+1).

vi. Sign B type messages: If out-type = B,

i. If i = j − 1,

A. σst,i+1 = SSig.Sign(sgk∗B,j ,mi+1).

ii. If i ̸= j − 1,

A. (sgkB,i+1, vkB,i+1, vkB,i+1,rej)← SSig.Setup(1λ;PPRF.Eval(KB[j], i+ 1)).

B. σst,i+1 = SSig.Sign(sgkB,i+1,mi+1).

4. Output (yi, ctst,i+1, σst,i+1, itrst,i).

Lemma C.24. If iO is a secure indistinguishability obfuscation scheme, then for all λ ∈ N, all
t ∈ [t∗], all j ∈ [t− 1], and all PPT adversaries A,

∆(HybridA3,t,1,j,5(1
λ),HybridA3,t,1,j,6(1

λ)) ≤ negl(λ)

Proof. Prog3,t,1,j,5 and Prog3,t,1,j,6 can only differ when i = j. If i = j and mi = m∗j , both programs
must have in-type = out-type = A since they verify B type signatures at i = j with vk∗B,j = vkB,abo,j

which always rejects mi = m∗j . If i = j and mi ̸= m∗j , then they must have in-type = out-type = B
since they verify A type signatures at i = j with vk∗A,j = vkA,one,j which always rejects mi ̸= m∗j .
Thus, the additional code we have added into Prog3,t,1,j,6 does not change its behavior relative to
the previous program.

Therefore, the programs have identical input/output behavior, so by a straightforward reduction
to the security of iO, the hybrids are indistinguishable.
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HybridA3,t,1,j,7: We begin the process of merging the two signature schemes at index j by replacing
the B type keys at j with the corresponding A type keys.

This hybrid is the same as the previous hybrid except that

• During KeyGen, we make changes to the following steps:

6h. Compute state signature keys:

1. KA[j] = PPRF.Punc(KA, j).

2. KB[j] = PPRF.Punc(KB, j).

3. For α = A,

(a) rα,j ← {0, 1}λ.
(b) (sgkα,j , vkα,j , vkα,j,rej) = SSig.Setup(1λ; rα,j).

(c) (σα,one,j , vkα,one,j , sgkα,abo,j , vkα,abo,j)← SSig.Split(sgkα,j ,m
∗
j ).

4. (σ∗st,j , sgk
∗
A,j , vk

∗
A,j) = (σA,one,j ,⊥, vkA,one,j).

5. (sgk∗B,j , vk
∗
B,j) = (sgkA,abo,j , vkA,abo,j).

Lemma C.25. If SSig is a splittable signature scheme, then for all λ ∈ N, all t ∈ [t∗], all j ∈ [t−1],
and all PPT adversaries A,

∆(HybridA3,t,1,j,6(1
λ),HybridA3,t,1,j,7(1

λ)) ≤ negl(λ)

Proof. This follow by a reduction to the splitting indistinguishabilty of SSig.
Observe that we can run both hybrids without knowing (rα,j , sgkα,j , vkα,j , vkα,j,rej) for α ∈

{A,B} as long as we are given (σ∗st,j , vk
∗
A,j , sgk

∗
B,j , vk

∗
B,j). In the reduction, we run HybridA3,t,1,j,7 up

to just before step 6h.3. of KeyGen. We sendm∗j to the SSig challenger and receive (σone, vkone, sgk
′
abo, vk

′
abo)

where (σone, vkone) and (sgk′abo, vk
′
abo) are either from the same signature scheme or two independent

ones and were computed by splitting onm∗j . We set (σ∗st,j , vk
∗
A,j , sgk

∗
B,j , vk

∗
B,j) = (σone, vkone, sgk

′
abo, vk

′
abo)

and run the rest of HybridA3,t,1,j,7 starting from step 6i of KeyGen. Observe that if the keys were

from the same signature scheme, then we exactly emulate HybridA3,t,1,j,7, and if they were from two

independent schemes, then we we emulate HybridA3,t,1,j,6. Thus, by the splitting indistinguishabilty
of SSig security, the outputs of these hybrids must be indistinguishable.
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HybridA3,t,1,j,8: We complete the merge of the signature schemes at j. For index j, we no longer
split the signature on m∗j and we remove all references to B type signatures.

This hybrid is the same as the previous hybrid except that

• During KeyGen, we make changes to the following steps:

6h. Compute state signature keys:

1. KA[j] = PPRF.Punc(KA, j).

2. KB[j] = PPRF.Punc(KB, j).

3. For α = A,

(a) rα,j ← {0, 1}λ.
(b) (sgkα,j , vkα,j , vkα,j,rej) = SSig.Setup(1λ; rα,j).

(c) (σα,one,j , vkα,one,j , sgkα,abo,j , vkα,abo,j)← SSig.Split(sgkα,j ,m
∗
j ).

4. (σ∗st,j , sgk
∗
A,j , vk

∗
A,j) = (σA,one,j ,⊥, vkA,one,j).

5. (sgk∗B,j , vk
∗
B,j) = (sgkA,abo,j , vkA,abo,j).

6. (sgk∗A,j , vk
∗
A,j) = (sgkA,j , vkA,j).

6i. Compute σst,1:

1. If 1 = j, σst,1 = SSig.Sign(sgk∗A,1,m
∗
1).

2. If 1 ̸= j,

(a) (sgkA,1, vkA,1, vkA,1,rej) = SSig.Setup(1λ;PPRF.Eval(KA[j], 1)).

(b) σst,1 = SSig.Sign(sgkA,1,m
∗
1).

6j. Compute program: P ← iO(Prog3,t,1,j,8[Kinp,KA[j], sgk
∗
A,j , vk

∗
A,j ,KB[j],

KE , ppst,m
∗
j , y
∗
t−1, ct

∗
st,t]).

Program Prog3,t,1,j,8[Kinp,KA[j], sgk
∗
A,j , vk

∗
A,j ,KB[j],KE , ppst,m

∗
j , y
∗
t−1, ct

∗
st,t]

(i, ctinp,i, σinp,i, ctst,i, σst,i, itrst,i−1)

1. Verification Step:

i. Verify i is positive: If i ≤ 0, output ⊥.
ii. Verify input signature:

i. (sgkinp,i, vkinp,i, vkinp,i,rej)← SSig.Setup(1λ;PPRF.Eval(Kinp, i)).

ii. If SSig.Verify(vkinp,i, ctinp,i, σinp,i) = 0, output ⊥.
iii. mi = (i, ctst,i, itrst,i−1).

iv. in-type = ⊥.
v. Verify A type signatures:

i. If i = j,

A. If SSig.Verify(vk∗A,j ,mi, σst,i) = 1, in-type = out-type = A.

ii. If i ̸= j,

A. (sgkA,i, vkA,i, vkA,i,rej)← SSig.Setup(1λ;PPRF.Eval(KA[j], i)).

B. If SSig.Verify(vkA,i,mi, σst,i) = 1, in-type = out-type = A.

vi. Verify B type signatures:

i. If in-type ̸= A and i = j,
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A. If SSig.Verify(vk∗B,j ,mi, σst,i) = 1, in-type = out-type = B.

ii. If in-type ̸= A and j + 1 ≤ i ≤ t− 1,

A. (sgkB,i, vkB,i, vkB,i,rej)← SSig.Setup(1λ;PPRF.Eval(KB[j], i)).

B. If SSig.Verify(vkB,i,mi, σst,i) = 1, in-type = out-type = B.

vii. If in-type = ⊥, output ⊥.

2. Computation Step:

i. If i = t− 1, (yi, ctst,i+1) = (y∗t−1, ct
∗
st,t).

ii. If i ̸= t− 1,

i. Decrypt input and state:

i. (rE,i, rEnc,i) = PPRF.Eval(KE , i).

ii. kE,i = SKE.Setup(1λ; rE,i).

iii. Post.CTi = SKE.Dec(kE,i, ctinp,i).

iv. Post.Dec.sti = SKE.Dec(kE,i, ctst,i).

ii. Compute output value and next state:

A. (yi,Post.Dec.sti+1) = Post-One-sFE.Dec(Post.Dec.sti,Post.CTi).

iii. Encrypt the new state:

i. (rE,i+1, rEnc,i+1) = PPRF.Eval(KE , i+ 1).

ii. kE,i+1 = SKE.Setup(1λ; rE,i+1).

iii. ctst,i+1 = SKE.Enc(kE,i+1,Post.Dec.sti+1; rEnc,i+1).

3. Authentication Step:

i. itrst,i = Itr.Iterate(ppst, itrst,i−1, (i, ctst,i)).

ii. mi+1 = (i+ 1, ctst,i+1, itrst,i).

iii. If i = j − 1,

i. If mi+1 = m∗j , out-type = A. Else, out-type = B.

iv. If i = j,

i. If mi = m∗j , out-type = A. Else, out-type = B.

v. Sign A type messages: If out-type = A,

i. If i = j − 1,

A. σst,i+1 = SSig.Sign(sgk∗A,j ,mi+1).

ii. If i ̸= j − 1,

A. (sgkA,i+1, vkA,i+1, vkA,i+1,rej)← SSig.Setup(1λ;PPRF.Eval(KA[j], i+ 1)).

B. σst,i+1 = SSig.Sign(sgkA,i+1,mi+1).

vi. Sign B type messages: If out-type = B,
//Observe that this branch can only be reached if j ≤ i ≤ t− 1.

i. If i = j − 1,

A. σst,i+1 = SSig.Sign(sgk∗B,j ,mi+1).

ii. If i ̸= j − 1,
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A. (sgkB,i+1, vkB,i+1, vkB,i+1,rej)← SSig.Setup(1λ;PPRF.Eval(KB[j], i+ 1)).

B. σst,i+1 = SSig.Sign(sgkB,i+1,mi+1).

4. Output (yi, ctst,i+1, σst,i+1, itrst,i).

Lemma C.26. If iO is a secure indistinguishability obfuscation scheme, then for all λ ∈ N, all
t ∈ [t∗], all j ∈ [t− 1], and all PPT adversaries A,

∆(HybridA3,t,1,j,7(1
λ),HybridA3,t,1,j,8(1

λ)) ≤ negl(λ)

Proof. By correctness of SSig, if (sgkA,j , vkA,j , vkA,j,rej)← SSig.Setup(1λ) and
(σA,one,j , vkA,one,j , sgkA,abo,j , vkA,abo,j)← SSig.Split(sgkA,j ,m

∗
j ), then

σA,one,j = SSig.Sign(sgkA,j ,m
∗
j ).

∀m ̸= m∗j , SSig.Sign(sgkA,abo,j ,m) = SSig.Sign(sgkA,j ,m).

∀σ, SSig.Verify(vkA,one,j ,m
∗, σ) = SSig.Verify(vkA,j ,m

∗, σ).

∀m ̸= m∗ and σ, SSig.Verify(vkA,abo,j ,m, σ) = SSig.Verify(vkA,j ,m, σ).

Thus, apart from the obfuscated programs, the hybrids act identically since σA,one,1 = SSig.Sign(sgkA,1,m
∗
1)

so step 6i of KeyGen results in the same signature.
Now we need to argue that Prog3,t,1,j,7 and Prog3,t,1,j,8 have the same input/output behavior.

We will show this by carefully going through each of the relevant cases where they could differ.
Note that the computation steps of both programs are unaffected by these differences, so we will
omit the computation step from the analysis below.

• Case 1: i = j − 1 and mi+1 = m∗j .

Previous Hybrid Current Hybrid

Verification Step Same behavior as the other hy-
brid since i < j.

Authentication
Step

Will have out-type = A since i =
j − 1 and mi+1 = m∗j , and thus
will output σ∗st,j = σA,one,j .

Will have out-type = A since
there is no B type verification
branch for i = j−1, and thus will
sign the outgoing message using
sgk∗A,j = sgkA,j . This results
in the same signature as σA,one,j

since mi+1 = m∗j .

• Case 2: i = j − 1 and mi+1 ̸= m∗j−1.

Previous Hybrid Current Hybrid

Verification Step Same behavior as the other hy-
brid since i < j.

Authentication
Step

Will have out-type = B since
i = j − 1 but mi+1 ̸= m∗j , and
thus will sign the outgoing mes-
sage using sgk∗B,j = sgkA,abo,j .

Will have out-type = A since
there is no B type verification
branch for i = j−1, and thus will
sign the outgoing message using
sgk∗A,j = sgkA,j . This signa-
ture is the same as signing with
sgkA,abo,j since mi+1 ̸= m∗j .
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• Case 3: i = j and mi = m∗j .

Previous Hybrid Current Hybrid

Verification
Step

Must verify using an A type sig-
nature since the B type verifica-
tion uses vk∗B,j = vkA,abo,j which
always rejects on m∗j . In the A
branch, tries to verify the incom-
ing message using vkA,one,j .

Must verify using an A type sig-
nature since the B type verifica-
tion branch for i = j has been re-
moved. In the A branch, tries to
verify the incoming message us-
ing vk∗A,j = vkA,j which gives the
same verification output on m∗j
as vkA,one,j

Authentication
Step

Will have out-type = A since i =
j and mi = m∗j , and thus will
sign the outgoing message using
sgkA,j .

Will have out-type = A since i =
j and mi = m∗j , and thus will
sign the outgoing message using
sgkA,j .

• Case 4: i = j and mi ̸= m∗j .

Previous Hybrid Current Hybrid

Verification
Step

Must verify using a B type sig-
nature since the A type verifica-
tion uses vk∗A,j = vkA,one,j which
always rejects on m∗j . In the
B branch, tries to verify the in-
coming message using vk∗B,j =
vkA,abo,j .

Must verify using an A type sig-
nature since the B type verifica-
tion branch for i = j has been
removed. In the A branch, tries
to verify the incoming message
using vk∗A,j = vkA,j which gives
the same verification output on
mi ̸= m∗j as vkA,abo,j .

Authentication
Step

Will have out-type = A (even
though in-type = B) since i = j
and mi = m∗j , and thus will
sign the outgoing message using
sgkA,j .

Will have out-type = A since i =
j and mi = m∗j , and thus will
sign the outgoing message using
sgkA,j .

Therefore, Prog3,t,1,j,7 and Prog3,t,1,j,8 have the same input/output behavior, so by a straightforward
reduction to the security of iO, the hybrids are indistinguishable.
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HybridA3,t,1,j,9: We change rA,j back to a PPRF evaluation. This hybrid is the same as the previous
hybrid except that

• During KeyGen, we make changes to the following steps:

6h. Compute state signature keys:

1. KA[j] = PPRF.Punc(KA, j).

2. KB[j] = PPRF.Punc(KB, j).

3. For α = A,

(a) rα,j ← PPRF.Eval(Kα, j).

(b) (sgkα,j , vkα,j , vkα,j,rej) = SSig.Setup(1λ; rα,j).

4. (sgk∗A,j , vk
∗
A,j) = (sgkA,j , vkA,j).

Lemma C.27. If PPRF is a puncturable pseudorandom function, then for all λ ∈ N, all t ∈ [t∗],
all j ∈ [t− 1], and all PPT adversaries A,

∆(HybridA3,t,1,j,8(1
λ),HybridA3,t,1,j,9(1

λ)) ≤ negl(λ)

Proof. This follow by a reduction to the selective pseudorandomness at punctured points property
of our PPRF.

Observe that we can run both hybrids without knowing KA as long as we are given (KA[j], rA,j).
In the reduction, without computing KA, we run HybridA3,t,1,j,9 up to just before step 6h.3. of
KeyGen. Then, we receive (KA[j], rA,j) from the PPRF challenger where rA,j is either a random
value or equal to PPRF.Eval(KA, j). We use this randomness to run the rest of HybridA3,t,1,j,9
starting from step 6h.3(b) of KeyGen. Observe that if rA,j was a random value then we exactly
emulateHybridA3,t,1,j,9, and if rA,j was equal to PPRF.Eval(KA, j) we emulateHybridA3,t,1,j,8. Thus,
by PPRF security, the outputs of these hybrids must be indistinguishable.
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HybridA3,t,1,j,10: We no longer puncture either KA or KB at j. We sign and verify A and B type
signatures at step j using keys computed from KA and KB rather than hardwired values.

This hybrid is the same as the previous hybrid except that

• During KeyGen, we make changes to the following steps:

6h. Compute state signature keys: Do nothing.

6i. Compute σst,1:

1. If 1 = j, σst,1 = SSig.Sign(sgk∗A,1,m
∗
1).

2. If 1 ̸= j,

(a) (sgkA,1, vkA,1, vkA,1,rej) = SSig.Setup(1λ;PPRF.Eval(KA, 1)).

(b) σst,1 = SSig.Sign(sgkA,1,m
∗
1).

6j. Compute program: P ← iO(Prog3,t,1,j,10[Kinp,KA,KB,KE , ppst,m
∗
j , y
∗
t−1, ct

∗
st,t]).

Program Prog3,t,1,j,10[Kinp,KA,KB,KE , ppst,m
∗
j , y
∗
t−1, ct

∗
st,t]

(i, ctinp,i, σinp,i, ctst,i, σst,i, itrst,i−1)

1. Verification Step:

i. Verify i is positive: If i ≤ 0, output ⊥.
ii. Verify input signature:

i. (sgkinp,i, vkinp,i, vkinp,i,rej)← SSig.Setup(1λ;PPRF.Eval(Kinp, i)).

ii. If SSig.Verify(vkinp,i, ctinp,i, σinp,i) = 0, output ⊥.
iii. mi = (i, ctst,i, itrst,i−1).

iv. in-type = ⊥.
v. Verify A type signatures:

i. If i = j,

A. If SSig.Verify(vk∗A,j ,mi, σst,i) = 1, in-type = out-type = A.

ii. If i ̸= j,

A. (sgkA,i, vkA,i, vkA,i,rej)← SSig.Setup(1λ;PPRF.Eval(KA, i)).

B. If SSig.Verify(vkA,i,mi, σst,i) = 1, in-type = out-type = A.

vi. Verify B type signatures:

i. If in-type ̸= A and j + 1 ≤ i ≤ t− 1,

A. (sgkB,i, vkB,i, vkB,i,rej)← SSig.Setup(1λ;PPRF.Eval(KB, i)).

B. If SSig.Verify(vkB,i,mi, σst,i) = 1, in-type = out-type = B.

vii. If in-type = ⊥, output ⊥.

2. Computation Step:

i. If i = t− 1, (yi, ctst,i+1) = (y∗t−1, ct
∗
st,t).

ii. If i ̸= t− 1,

i. Decrypt input and state:

i. (rE,i, rEnc,i) = PPRF.Eval(KE , i).
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ii. kE,i = SKE.Setup(1λ; rE,i).

iii. Post.CTi = SKE.Dec(kE,i, ctinp,i).

iv. Post.Dec.sti = SKE.Dec(kE,i, ctst,i).

ii. Compute output value and next state:

A. (yi,Post.Dec.sti+1) = Post-One-sFE.Dec(Post.Dec.sti,Post.CTi).

iii. Encrypt the new state:

i. (rE,i+1, rEnc,i+1) = PPRF.Eval(KE , i+ 1).

ii. kE,i+1 = SKE.Setup(1λ; rE,i+1).

iii. ctst,i+1 = SKE.Enc(kE,i+1,Post.Dec.sti+1; rEnc,i+1).

3. Authentication Step:

i. itrst,i = Itr.Iterate(ppst, itrst,i−1, (i, ctst,i)).

ii. mi+1 = (i+ 1, ctst,i+1, itrst,i).

iii. If i = j,

i. If mi = m∗j , out-type = A. Else, out-type = B.

iv. Sign A type messages: If out-type = A,

i. If i = j − 1,

A. σst,i+1 = SSig.Sign(sgk∗A,j ,mi+1).

ii. If i ̸= j − 1,

A. (sgkA,i+1, vkA,i+1, vkA,i+1,rej)← SSig.Setup(1λ;PPRF.Eval(KA, i+ 1)).

B. σst,i+1 = SSig.Sign(sgkA,i+1,mi+1).

v. Sign B type messages: If out-type = B,
//Observe that this branch can only be reached if j ≤ i ≤ t− 1.

i. (sgkB,i+1, vkB,i+1, vkB,i+1,rej)← SSig.Setup(1λ;PPRF.Eval(KB, i+ 1)).

ii. σst,i+1 = SSig.Sign(sgkB,i+1,mi+1).

4. Output (yi, ctst,i+1, σst,i+1, itrst,i).

Lemma C.28. If iO is a secure indistinguishability obfuscation scheme, then for all λ ∈ N, all
t ∈ [t∗], all j ∈ [t− 1], and all PPT adversaries A,

∆(HybridA3,t,1,j,9(1
λ),HybridA3,t,1,j,10(1

λ)) ≤ negl(λ)

Proof. By correctness of puncturing, for α ∈ {A,B},

PPRF.Eval(Kα[j], v) = PPRF.Eval(Kα, v) for any v ̸= j

. Observe that the previous hybrid explicitly prevents the evaluation of punctured keys on their
punctured points everywhere except for during the authentication step where it evaluates KB[j]
at index i + 1 if out-type = B. However, we can only have out-type = B if we either verified a B
type signature or had i = j. Either way, this means we would have j ≤ i ≤ t− 1. Thus, we never
evaluate punctured keys on punctured points.

Additionally, the hardwired signing and verification keys of the previous hybrid are the same
as what is computed in the current hybrid. Thus, Prog3,t,1,j,9 and Prog3,t,1,j,10 have the same
input/output behavior. For the same reasons, apart from the obfuscated programs, the hybrids are
identical.
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Thus, by a straightforward reduction to the security of iO, the hybrids are indistinguishable.
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Enforcing the input. We want to change the conditional at step i = j so that it sets the out-type
based on the outgoing message rather than the incoming message. Thus, we will need to enforce
that the incoming message is m∗j if and only if the outgoing message is m∗j+1.

Since the value of m∗j+1 depends on the j+1th state which depends on the jth value of the input
stream, we will need to ensure that the incoming input ciphertext ctinp,j is equal to our chosen value
ct∗inp,j . Since we only ever sign one input ciphertext at j, we can use properties of SSig to change
the verification key of Kinp to only verify this one ciphertext. This will allow us to enforce that the
input stream value at j must be our chosen value.

HybridA3,t,1,j,11: We puncture Kinp at j. We sign and verify inputs at j using hardwired signatures
and verification keys. This hybrid is the same as the previous hybrid except that

• During Encryption Phase 1, we make changes to the following steps:

5f. Compute input signature keys:

1. Kinp[j]← PPRF.Punc(Kinp, j).

2. rinp,j ← PPRF.Eval(Kinp, j).

3. (sgkinp,j , vkinp,j , vkinp,j,rej)← SSig.Setup(1λ; rinp,j).

4. (σinp,j,one, vkinp,j,one, sgkinp,j,abo, vkinp,j,abo)← SSig.Split(sgkinp,j , ct
∗
inp,j).

5. (σ∗inp,j , vk
∗
inp,j) = (σinp,j,one, vkinp,j).

5g. Compute σinp,i:

1. If i = j, σinp,i = σ∗inp,j .

2. If i ̸= j,

(a) (sgkinp,i, vkinp,i, vkinp,i,rej) = SSig.Setup(1λ;PPRF.Eval(Kinp[j], i)).

(b) σinp,i = SSig.Sign(sgkinp,i, ct
∗
inp,i).

• During KeyGen, we make changes to the following steps:

6j. Compute program: P ← iO(Prog3,t,1,j,11[Kinp[j], vk
∗
inp,j ,KA,KB,KE , ppst,m

∗
j , y
∗
t−1, ct

∗
st,t]).

• During Encryption Phase 2, we make changes to the following steps:

7d. Compute σinp,i:

1. (sgkinp,i, vkinp,i, vkinp,i,rej) = SSig.Setup(1λ;PPRF.Eval(Kinp[j], i)).

2. σinp,i = SSig.Sign(sgkinp,i, ctinp,i).

Program Prog3,t,1,j,11[Kinp[j], vk
∗
inp,j ,KA,KB,KE , ppst,m

∗
j , y
∗
t−1, ct

∗
st,t]

(i, ctinp,i, σinp,i, ctst,i, σst,i, itrst,i−1)

1. Verification Step:

i. Verify i is positive: If i ≤ 0, output ⊥.
ii. Verify input signature:

i. If i = j,

A. If SSig.Verify(vk∗inp,i, ctinp,i, σinp,i) = 0, output ⊥.
ii. If i ̸= j,

A. (sgkinp,i, vkinp,i, vkinp,i,rej)← SSig.Setup(1λ;PPRF.Eval(Kinp[j], i)).
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B. If SSig.Verify(vkinp,i, ctinp,i, σinp,i) = 0, output ⊥.
iii. mi = (i, ctst,i, itrst,i−1).

iv. in-type = ⊥.
v. Verify A type signatures:

i. (sgkA,i, vkA,i, vkA,i,rej)← SSig.Setup(1λ;PPRF.Eval(KA, i)).

ii. If SSig.Verify(vkA,i,mi, σst,i) = 1, in-type = out-type = A.

vi. Verify B type signatures:

i. If in-type ̸= A and j + 1 ≤ i ≤ t− 1,

A. (sgkB,i, vkB,i, vkB,i,rej)← SSig.Setup(1λ;PPRF.Eval(KB, i)).

B. If SSig.Verify(vkB,i,mi, σst,i) = 1, in-type = out-type = B.

vii. If in-type = ⊥, output ⊥.

2. Computation Step:

i. If i = t− 1, (yi, ctst,i+1) = (y∗t−1, ct
∗
st,t).

ii. If i ̸= t− 1,

i. Decrypt input and state:

i. (rE,i, rEnc,i) = PPRF.Eval(KE , i).

ii. kE,i = SKE.Setup(1λ; rE,i).

iii. Post.CTi = SKE.Dec(kE,i, ctinp,i).

iv. Post.Dec.sti = SKE.Dec(kE,i, ctst,i).

ii. Compute output value and next state:

A. (yi,Post.Dec.sti+1) = Post-One-sFE.Dec(Post.Dec.sti,Post.CTi).

iii. Encrypt the new state:

i. (rE,i+1, rEnc,i+1) = PPRF.Eval(KE , i+ 1).

ii. kE,i+1 = SKE.Setup(1λ; rE,i+1).

iii. ctst,i+1 = SKE.Enc(kE,i+1,Post.Dec.sti+1; rEnc,i+1).

3. Authentication Step:

i. itrst,i = Itr.Iterate(ppst, itrst,i−1, (i, ctst,i)).

ii. mi+1 = (i+ 1, ctst,i+1, itrst,i).

iii. If i = j,

i. If mi = m∗j , out-type = A. Else, out-type = B.

iv. Sign A type messages: If out-type = A,

i. (sgkA,i+1, vkA,i+1, vkA,i+1,rej)← SSig.Setup(1λ;PPRF.Eval(KA, i+ 1)).

ii. σst,i+1 = SSig.Sign(sgkA,i+1,mi+1).

v. Sign B type messages: If out-type = B,

i. (sgkB,i+1, vkB,i+1, vkB,i+1,rej)← SSig.Setup(1λ;PPRF.Eval(KB, i+ 1)).

ii. σst,i+1 = SSig.Sign(sgkB,i+1,mi+1).

4. Output (yi, ctst,i+1, σst,i+1, itrst,i).
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Lemma C.29. If iO is a secure indistinguishability obfuscation scheme, then for all λ ∈ N, all
t ∈ [t∗], all j ∈ [t− 1], and all PPT adversaries A,

∆(HybridA3,t,1,j,10(1
λ),HybridA3,t,1,j,11(1

λ)) ≤ negl(λ)

Proof. By correctness of puncturing,

PPRF.Eval(Kinp[j], v) = PPRF.Eval(Kinp, v) for any v ̸= j.

By correctness of SSig, if (σinp,one,j , vkinp,one,j , sgkinp,abo,j , vkinp,abo,j) ← SSig.Split(sgkinp,j , ct
∗
inp,j),

then
σinp,one,j = SSig.Sign(sgkinp,j , ct

∗
inp,j).

Observe that we never evaluate punctured keys on their punctured points. This is true even in
Encryption Phase 2 since in that phase, we have i ≥ t∗ + 1 which is not equal to j since
j ≤ t − 1 ≤ t∗ − 1 by assumption. Additionally σinp,one,1 = SSig.Sign(sgkinp,1, ct

∗
inp,1) so step 5g of

Encryption Phase 1 results in the same signature. Thus, apart from the obfuscated programs,
the hybrids act identically.

Furthermore, the hardwired verification key vk∗inp,j is set to what it would have been com-
puted to be in program of the previous hybrid. Thus, Prog3,t,1,j,10 and Prog3,t,1,j,11 have the same
input/output behavior, so by a straightforward reduction to the security of iO, the hybrids are
indistinguishable.
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HybridA3,t,1,j,12: We change rinp,j to a random value. This hybrid is the same as the previous hybrid
except that

• During Encryption Phase 1, we make changes to the following steps:

5f. Compute input signature keys:

1. Kinp[j]← PPRF.Punc(Kinp, j).

2. rinp,j ← {0, 1}λ.
3. (sgkinp,j , vkinp,j , vkinp,j,rej)← SSig.Setup(1λ; rinp,j).

4. (σinp,j,one, vkinp,j,one, sgkinp,j,abo, vkinp,j,abo)← SSig.Split(sgkinp,j , ct
∗
inp,j).

5. (σ∗inp,j , vk
∗
inp,j) = (σinp,j,one, vkinp,j).

Lemma C.30. If PPRF is a puncturable pseudorandom function, then for all λ ∈ N, all t ∈ [t∗],
all j ∈ [t− 1], and all PPT adversaries A,

∆(HybridA3,t,1,j,11(1
λ),HybridA3,t,1,j,12(1

λ)) ≤ negl(λ)

Proof. This follow by a reduction to the selective pseudorandomness at punctured points property
of our PPRF.

Observe that we can run both hybrids without knowingKinp as long as we are given (Kinp[j], rinp,j).
In the reduction, without computing Kinp, we run HybridA3,t,1,j,12 up to just before step 5f of
Encryption Phase 1. Then, we receive (Kinp[j], rinp,j) from the PPRF challenger where rinp,j is
either a random value or equal to PPRF.Eval(Kinp, j). We use this randomness to run the rest
of HybridA3,t,1,j,12 starting from step 5f.3 of Encryption Phase 1. Observe that if rinp,j was a

random value then we exactly emulate HybridA3,t,1,j,12, and if rinp,j was equal to PPRF.Eval(Kinp, j)

we emulate HybridA3,t,1,j,11. Thus, by PPRF security, the outputs of these hybrids must be indis-
tinguishable.
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HybridA3,t,1,j,13: We change vk∗inp,j to vkinp,j,one which can only verify ct∗inp,j . This hybrid is the
same as the previous hybrid except that

• During Encryption Phase 1, we make changes to the following steps:

5f. Compute input signature keys:

1. Kinp[j]← PPRF.Punc(Kinp, j).

2. rinp,j ← {0, 1}λ.
3. (sgkinp,j , vkinp,j , vkinp,j,rej)← SSig.Setup(1λ; rinp,j).

4. (σinp,j,one, vkinp,j,one, sgkinp,j,abo, vkinp,j,abo)← SSig.Split(sgkinp,j , ct
∗
inp,j).

5. (σ∗inp,j , vk
∗
inp,j) = (σinp,j,one, vkinp,j,one).

Lemma C.31. If SSig is a splittable signature scheme, then for all λ ∈ N, all t ∈ [t∗], all j ∈ [t−1],
and all PPT adversaries A,

∆(HybridA3,t,1,j,12(1
λ),HybridA3,t,1,j,13(1

λ)) ≤ negl(λ)

Proof. This follow by a reduction to the vkone indistinguishabilty of SSig.
Observe that we can run both hybrids without knowing (rinp,j , sgkinp,j , vkinp,j , vkinp,j,rej) as long

as we are given (σ∗inp,j , vk
∗
inp,j). In the reduction, we run HybridA3,t,1,j,13 up to just before step 5f.2

of Encryption Phase 1. We send ct∗inp,j to the SSig challenger and receive (σ∗, vk∗) from the
SSig challenger where σ∗ is a signature of ct∗inp,j and vk∗ is either a verification key vkone that only
verifies ct∗inp,j or is a regular verification key vk. We then set (σ∗inp,j , vk

∗
inp,j) = (σ∗, vk∗) and run the

rest of HybridA3,t,1,j,13 starting from step 5g of Encryption Phase 1. Observe that if vk∗ was

a regular verification key vk we exactly emulate HybridA3,t,1,j,12, and if vk∗ was vkone we emulate

HybridA3,t,1,j,13. Thus, by the vkone indistinguishabilty of SSig security, the outputs of these hybrids
must be indistinguishable.
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Using the iterator. Again, we want to enforce that the incoming message is m∗j if and only if
the outgoing message is m∗j+1.

Intuitively, the forward direction now follows. If the incoming message is m∗j , then this means
that the incoming state must be our chosen value. We have also just enforced that the incoming
stream input must be our chosen value. Thus, the program will compute our chosen output state,
corresponding to m∗j+1.

However, the backwards direction does not work since it is not true that some specific output
state implies a unique input state. To solve this, we will use the iterator in m∗j+1 to enforce that
the values iterated into it are correct. Since we iterate the input state into m∗j+1’s iterator, we can
then enforce the input state (and thus m∗j ) to be correct.

HybridA3,t,1,j,14: We enforce the iterator on ct∗st,i for i ∈ [j]. This hybrid is the same as the previous
hybrid except that

• During KeyGen, we make changes to the following steps:

6f. Setup iterator: (ppst, itrst,0)← Itr.SetupEnforce(1λ, (1, ct∗st,1), . . . , (j, ct
∗
st,j)).

31

Lemma C.32. If Itr is a cryptographic iterator, then for all λ ∈ N, all t ∈ [t∗], all j ∈ [t− 1], and
all PPT adversaries A,

∆(HybridA3,t,1,j,13(1
λ),HybridA3,t,1,j,14(1

λ)) ≤ negl(λ)

Proof. This follows by a straightforward reduction to the indistinguishabilty of setup of the iterator.

31Technically the values ct∗st,j are not defined until the next step. For completeness, we can define these values here

as ct∗st,i =

{
ct

(0)
st,i if i < t

ct
(b)
st,i if i ≥ t

which is identical to how they are defined in the next step.
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HybridA3,t,1,j,15: We change the conditional at step i = j so that it sets the out-type based on the
outgoing message rather than the incoming message. Recall that in the previous hybrid, we set the
following values in Encryption Phase 1 and KeyGen:

5e. Set hardwired values:

1. ct∗inp,i =

{
ct

(0)
inp,i if i < t

ct
(b)
inp,i if i ≥ t

.

6g. Set hardwired values:

1. For i ∈ [t∗], y∗i = yi.

2. For i ∈ [t∗ + 1],

(a) ct∗st,i =

{
ct

(0)
st,i if i < t

ct
(b)
st,i if i ≥ t

(b) itr∗st,i = Itr.Iterate(ppst, itr
∗
st,i−1, ct

∗
st,i) where itr∗st,0 = itrst,0.

(c) m∗i = (i, ct∗st,i, itr
∗
st,i−1).

This hybrid is the same as the previous hybrid except that

• During KeyGen, we make changes to the following steps:

6j. Compute program: P ← iO(Prog3,t,1,j,15[Kinp[j], vk
∗
inp,j ,KA,KB,KE , ppst,m

∗
j+1, y

∗
t−1, ct

∗
st,t]).

Program Prog3,t,1,j,15[Kinp[j], vk
∗
inp,j ,KA,KB,KE , ppst,m

∗
j+1, y

∗
t−1, ct

∗
st,t]

(i, ctinp,i, σinp,i, ctst,i, σst,i, itrst,i−1)

1. Verification Step:

i. Verify i is positive: If i ≤ 0, output ⊥.
ii. Verify input signature:

i. If i = j,

A. If SSig.Verify(vk∗inp,i, ctinp,i, σinp,i) = 0, output ⊥.
ii. If i ̸= j,

A. (sgkinp,i, vkinp,i, vkinp,i,rej)← SSig.Setup(1λ;PPRF.Eval(Kinp[j], i)).

B. If SSig.Verify(vkinp,i, ctinp,i, σinp,i) = 0, output ⊥.
iii. mi = (i, ctst,i, itrst,i−1).

iv. in-type = ⊥.
v. Verify A type signatures:

i. (sgkA,i, vkA,i, vkA,i,rej)← SSig.Setup(1λ;PPRF.Eval(KA, i)).

ii. If SSig.Verify(vkA,i,mi, σst,i) = 1, in-type = out-type = A.

vi. Verify B type signatures:

i. If in-type ̸= A and j + 1 ≤ i ≤ t− 1,

A. (sgkB,i, vkB,i, vkB,i,rej)← SSig.Setup(1λ;PPRF.Eval(KB, i)).

B. If SSig.Verify(vkB,i,mi, σst,i) = 1, in-type = out-type = B.

vii. If in-type = ⊥, output ⊥.
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2. Computation Step:

i. If i = t− 1, (yi, ctst,i+1) = (y∗t−1, ct
∗
st,t).

ii. If i ̸= t− 1,

i. Decrypt input and state:

i. (rE,i, rEnc,i) = PPRF.Eval(KE , i).

ii. kE,i = SKE.Setup(1λ; rE,i).

iii. Post.CTi = SKE.Dec(kE,i, ctinp,i).

iv. Post.Dec.sti = SKE.Dec(kE,i, ctst,i).

ii. Compute output value and next state:

A. (yi,Post.Dec.sti+1) = Post-One-sFE.Dec(Post.Dec.sti,Post.CTi).

iii. Encrypt the new state:

i. (rE,i+1, rEnc,i+1) = PPRF.Eval(KE , i+ 1).

ii. kE,i+1 = SKE.Setup(1λ; rE,i+1).

iii. ctst,i+1 = SKE.Enc(kE,i+1,Post.Dec.sti+1; rEnc,i+1).

3. Authentication Step:

i. itrst,i = Itr.Iterate(ppst, itrst,i−1, (i, ctst,i)).

ii. mi+1 = (i+ 1, ctst,i+1, itrst,i).

iii. If i = j,

i. If mi+1 = m∗j+1, out-type = A. Else, out-type = B.

iv. Sign A type messages: If out-type = A,

i. (sgkA,i+1, vkA,i+1, vkA,i+1,rej)← SSig.Setup(1λ;PPRF.Eval(KA, i+ 1)).

ii. σst,i+1 = SSig.Sign(sgkA,i+1,mi+1).

v. Sign B type messages: If out-type = B,

i. (sgkB,i+1, vkB,i+1, vkB,i+1,rej)← SSig.Setup(1λ;PPRF.Eval(KB, i+ 1)).

ii. σst,i+1 = SSig.Sign(sgkB,i+1,mi+1).

4. Output (yi, ctst,i+1, σst,i+1, itrst,i).

Lemma C.33. If iO is a secure indistinguishability obfuscation scheme, then for all λ ∈ N, all
t ∈ [t∗], all j ∈ [t− 1], and all PPT adversaries A,

∆(HybridA3,t,1,j,14(1
λ),HybridA3,t,1,j,15(1

λ)) ≤ negl(λ)

Proof. To show that Prog3,t,1,j,14 and Prog3,t,1,j,15 have the same input/output behavior, we need to
show that the following two conditions in the authentication steps of the programs are equivalent:

1. i = j and mi = m∗j .

2. i = j and mi+1 = m∗j+1.

We show this in two steps:

• (1) =⇒ (2). Let i = j. Since we verify input ciphertexts with vk∗inp,j = vkinp,j,one, the only
way to pass the verification step is to have

ctinp,i = ct∗inp,j
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If mi = m∗j , then we must have

mi = (i, ctst,i, itrst,i−1) = (j, ct∗st,j , itr
∗
st,j−1) = m∗j

which means that since j < t,

(ctinp,i, ctst,i) = (ct∗inp,j , ct
∗
st,j) = (ct

(0)
inp,j , ct

(0)
st,j)

In the computation step,

– If i = j < t − 1, by correctness of decryption of SKE, since our incoming ciphertexts

are (ctinp,i, ctst,i) = (ct
(0)
inp,j , ct

(0)
st,j), we will compute the outgoing ciphertext as ctst,i+1 =

ct
(0)
st,j+1. Thus, since j + 1 < t, then we must compute

ctst,i+1 = ct
(0)
st,j+1 = ct∗st,j+1

– If i = j = t− 1, then we set

ctst,i+1 = ct∗st,t = ct∗st,j+1

Since Itr.Iterate is a deterministic function, then

itrst,i = Itr.Iterate(ppst, itrst,i−1, (i, ctst,i) = Itr.Iterate(ppst, itr
∗
st,j−1, (j, ct

∗
st,j)) = itr∗st,j

But this means that

mi+1 = (i+ 1, ctst,i+1, itrst,i) = (j + 1, ct∗st,j+1, itr
∗
st,j) = m∗j+1

which means that (2) holds.

• (2) =⇒ (1). Let i = j. If mi+1 = m∗j+1, then we must have

mi+1 = (i+ 1, ctst,i+1, itrst,i) = (j + 1, ct∗st,j+1, itr
∗
st,j) = m∗j+1

Since the iterator is in enforcing mode and

itr∗st,j = itrst,i = Itr.Iterate(ppst, itrst,i−1, (i, ctst,i)

it must be the case that
(itrst,i−1, ctst,i) = (itr∗st,j−1, ct

∗
st,j)

But this means that

mi = (i, ctst,i, itrst,i) = (j, ct∗st,j , itr
∗
st,j−1) = m∗j

which means that (1) holds.

Thus, Prog3,t,1,j,14 and Prog3,t,1,j,15 have the same input/output behavior, so by a straightforward
reduction to the security of iO, the hybrids are indistinguishable.
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HybridA3,t,1,j,16: We undo the enforcing on the iterator. This hybrid is the same as the previous
hybrid except that

• During KeyGen, we make changes to the following steps:

6f. Setup iterator: (ppst, itrst,0)← Itr.Setup(1λ, 2λ)

Lemma C.34. If Itr is a cryptographic iterator, then for all λ ∈ N, all t ∈ [t∗], all j ∈ [t− 1], and
all PPT adversaries A,

∆(HybridA3,t,1,j,15(1
λ),HybridA3,t,1,j,16(1

λ)) ≤ negl(λ)

Proof. This follows by a straightforward reduction to the indistinguishabilty of setup of the iterator.

HybridA3,t,1,j,17: We change vk∗inp,j back to vkinp,j . This hybrid is the same as the previous hybrid
except that

• During Encryption Phase 1, we make changes to the following steps:

5f. Compute input signature keys:

1. Kinp[j]← PPRF.Punc(Kinp, j).

2. rinp,j ← {0, 1}λ.
3. (sgkinp,j , vkinp,j , vkinp,j,rej)← SSig.Setup(1λ; rinp,j).

4. (σinp,j,one, vkinp,j,one, sgkinp,j,abo, vkinp,j,abo)← SSig.Split(sgkinp,j , ct
∗
inp,j).

5. (σ∗inp,j , vk
∗
inp,j) = (σinp,j,one, vkinp,j).

Lemma C.35. If SSig is a splittable signature scheme, then for all λ ∈ N, all t ∈ [t∗], all j ∈ [t−1],
and all PPT adversaries A,

∆(HybridA3,t,1,j,16(1
λ),HybridA3,t,1,j,17(1

λ)) ≤ negl(λ)

Proof. This follow by a reduction to the vkone indistinguishabilty of SSig. The reduction is essen-
tially the same as that of Lemma C.31 as it is still the case that we can run both hybrids without
knowing (rinp,j , sgkinp,j , vkinp,j , vkinp,j,rej) as long as we are given (σ∗inp,j , vk

∗
inp,j).

HybridA3,t,1,j,18: We change rinp,j back to a PPRF value. This hybrid is the same as the previous
hybrid except that

• During Encryption Phase 1, we make changes to the following steps:

5f. Compute input signature keys:

1. Kinp[j]← PPRF.Punc(Kinp, j).

2. rinp,j ← PPRF.Eval(Kinp, j).

3. (sgkinp,j , vkinp,j , vkinp,j,rej)← SSig.Setup(1λ; rinp,j).

4. (σinp,j,one, vkinp,j,one, sgkinp,j,abo, vkinp,j,abo)← SSig.Split(sgkinp,j , ct
∗
inp,j).

5. (σ∗inp,j , vk
∗
inp,j) = (σinp,j,one, vkinp,j).

Lemma C.36. If PPRF is a puncturable pseudorandom function, then for all λ ∈ N, all t ∈ [t∗],
all j ∈ [t− 1], and all PPT adversaries A,

∆(HybridA3,t,1,j,17(1
λ),HybridA3,t,1,j,18(1

λ)) ≤ negl(λ)
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Proof. This follow by a reduction to the selective pseudorandomness at punctured points property
of our PPRF. The reduction is essentially the same as that of Lemma C.30 as it is still the case
that we can run both hybrids without knowing Kinp as long as we are given (Kinp[j], rinp,j).
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HybridA3,t,1,j,19: We no longer puncture Kinp at j and no longer use hardwired signatures and

verification keys. Note that this hybrid is identical to HybridA3,t,1,j+1,0. This hybrid is the same as
the previous hybrid except that

• During Encryption Phase 1, we make changes to the following steps:

5f. Compute input signature keys: Do nothing.

5g. Compute σinp,i:

1. If i = j, σinp,i = SSig.σ∗inp,j .

2. If i ̸= j,

(a) (sgkinp,i, vkinp,i, vkinp,i,rej) = SSig.Setup(1λ;PPRF.Eval(Kinp, i)).

(b) σinp,i = SSig.Sign(sgkinp,i, ct
∗
inp,i).

• During KeyGen, we make changes to the following steps:

6j. Compute program: P ← iO(Prog3,t,1,j,19[Kinp,KA,KB,KE , ppst,m
∗
j , y
∗
t−1, ct

∗
st,t]).

• During Encryption Phase 2, we make changes to the following steps:

7d. Compute σinp,i:

1. (sgkinp,i, vkinp,i, vkinp,i,rej) = SSig.Setup(1λ;PPRF.Eval(Kinp, i)).

2. σinp,i = SSig.Sign(sgkinp,i, ctinp,i).

Program Prog3,t,1,j,19[Kinp,KA,KB,KE , ppst,m
∗
j+1, y

∗
t−1, ct

∗
st,t]

(i, ctinp,i, σinp,i, ctst,i, σst,i, itrst,i−1)

1. Verification Step:

i. Verify i is positive: If i ≤ 0, output ⊥.
ii. Verify input signature:

i. If i = j,

A. If SSig.Verify(vk∗inp,i, ctinp,i, σinp,i) = 0, output ⊥.
ii. If i ̸= j,

A. (sgkinp,i, vkinp,i, vkinp,i,rej)← SSig.Setup(1λ;PPRF.Eval(Kinp, i)).

B. If SSig.Verify(vkinp,i, ctinp,i, σinp,i) = 0, output ⊥.
iii. mi = (i, ctst,i, itrst,i−1).

iv. in-type = ⊥.
v. Verify A type signatures:

i. (sgkA,i, vkA,i, vkA,i,rej)← SSig.Setup(1λ;PPRF.Eval(KA, i)).

ii. If SSig.Verify(vkA,i,mi, σst,i) = 1, in-type = out-type = A.

vi. Verify B type signatures:

i. If in-type ̸= A and j + 1 ≤ i ≤ t− 1,

A. (sgkB,i, vkB,i, vkB,i,rej)← SSig.Setup(1λ;PPRF.Eval(KB, i)).

B. If SSig.Verify(vkB,i,mi, σst,i) = 1, in-type = out-type = B.

vii. If in-type = ⊥, output ⊥.
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2. Computation Step:

i. If i = t− 1, (yi, ctst,i+1) = (y∗t−1, ct
∗
st,t).

ii. If i ̸= t− 1,

i. Decrypt input and state:

i. (rE,i, rEnc,i) = PPRF.Eval(KE , i).

ii. kE,i = SKE.Setup(1λ; rE,i).

iii. Post.CTi = SKE.Dec(kE,i, ctinp,i).

iv. Post.Dec.sti = SKE.Dec(kE,i, ctst,i).

ii. Compute output value and next state:

A. (yi,Post.Dec.sti+1) = Post-One-sFE.Dec(Post.Dec.sti,Post.CTi).

iii. Encrypt the new state:

i. (rE,i+1, rEnc,i+1) = PPRF.Eval(KE , i+ 1).

ii. kE,i+1 = SKE.Setup(1λ; rE,i+1).

iii. ctst,i+1 = SKE.Enc(kE,i+1,Post.Dec.sti+1; rEnc,i+1).

3. Authentication Step:

i. itrst,i = Itr.Iterate(ppst, itrst,i−1, (i, ctst,i)).

ii. mi+1 = (i+ 1, ctst,i+1, itrst,i).

iii. If i = j,

i. If mi+1 = m∗j+1, out-type = A. Else, out-type = B.

iv. Sign A type messages: If out-type = A,

i. (sgkA,i+1, vkA,i+1, vkA,i+1,rej)← SSig.Setup(1λ;PPRF.Eval(KA, i+ 1)).

ii. σst,i+1 = SSig.Sign(sgkA,i+1,mi+1).

v. Sign B type messages: If out-type = B,

i. (sgkB,i+1, vkB,i+1, vkB,i+1,rej)← SSig.Setup(1λ;PPRF.Eval(KB, i+ 1)).

ii. σst,i+1 = SSig.Sign(sgkB,i+1,mi+1).

4. Output (yi, ctst,i+1, σst,i+1, itrst,i).

Lemma C.37. If iO is a secure indistinguishability obfuscation scheme, then for all λ ∈ N, all
t ∈ [t∗], all j ∈ [t− 1], and all PPT adversaries A,

∆(HybridA3,t,1,j,18(1
λ),HybridA3,t,1,j,19(1

λ)) ≤ negl(λ)

Proof. By correctness of puncturing,

PPRF.Eval(Kinp[j], v) = PPRF.Eval(Kinp, v) for any v ̸= j.

By correctness of SSig, if (σinp,one,j , vkinp,one,j , sgkinp,abo,j , vkinp,abo,j) ← SSig.Split(sgkinp,j , ct
∗
inp,j),

then
σinp,one,j = SSig.Sign(sgkinp,j , ct

∗
inp,j).

Observe that the previous hybrid never evaluated punctured keys on their punctured points. This
was true even in Encryption Phase 2 since in that phase, we had i ≥ t∗ + 1 which is not equal
to j since j ≤ t − 1 ≤ t∗ − 1 by assumption. Additionally σinp,one,1 = SSig.Sign(sgkinp,1, ct

∗
inp,1) so
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step 5g of Encryption Phase 1 results in the same signature. Thus, apart from the obfuscated
programs, the hybrids act identically.

Furthermore, the hardwired verification key vk∗inp,j of the previous hybrid is set to the same
value that is computed in the program of the current hybrid. Thus, Prog3,t,1,j,18 and Prog3,t,1,j,19
have the same input/output behavior, so by a straightforward reduction to the security of iO, the
hybrids are indistinguishable.

Lemma C.38. For all λ ∈ N, all t ∈ [t∗], all j ∈ [t− 1], and all adversaries A,

∆(HybridA3,t,1,j,18(1
λ),HybridA3,t,1,j+1,0(1

λ)) = 0

Proof. The hybrids are identical.
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HybridA3,t,2 = HybridA3,t,2,0: This hybrid is the same as HybridA3,t,1,t,0 except that we have re-
moved the B type verification branch in the obfuscated program. Except for this removal, we have
highlighted all other differences between this hybrid and HybridA3,t,1

1. Guess Stream Length: (t∗, n)← [TA,λ]× [TA,λ] where TA,λ is the maximum runtime of A
on security parameter λ.

2. Parameters: The adversary A receives security parameter 1λ, and outputs a function size
1ℓF , a state size 1ℓS , an input size 1ℓX , and an output size 1ℓY .

3. Setup:

(a) Kinp,KA,KB,KE ← PPRF.Setup(1λ).

(b) Post.MSK← Post-One-sFE.Setup(1λ, 1ℓF , 1ℓS , 1ℓX , 1ℓY ).

4. Challenge Bit: b← {0, 1}.

5. Encryption Phase 1: For i = 1, 2, . . . , t∗:
If the adversary does not make exactly t∗ queries during this phase, output ⊥ and halt.

(a) A sends (x
(0)
i , x

(1)
i ) to the challenger.

(b) Post.CT
(0)
i = Post-One-sFE(Post.MSK, i, x

(0)
i ).

(c) Post.CT
(b)
i = Post-One-sFE(Post.MSK, i, x

(b)
i ).

(d) Compute input ciphertexts:

i. (rE,i, rEnc,i) = PPRF.Eval(KE , i).

ii. kE,i = SKE.Setup(1λ; rE,i).

iii. ct
(0)
inp,i = SKE.Enc(kE,i,Post.CT

(0)
i ).

iv. ct
(b)
inp,i = SKE.Enc(kE,i,Post.CT

(b)
i ).

(e) Set hardwired values:

i. ct∗inp,i =

{
ct

(0)
inp,i if i < t

ct
(b)
inp,i if i ≥ t

.

(f) Compute input signature keys: Do nothing.

(g) Compute σinp,i:

i. (sgkinp,i, vkinp,i, vkinp,i,rej) = SSig.Setup(1λ;PPRF.Eval(Kinp, i)).

ii. σinp,i = SSig.Sign(sgkinp,i, ct
∗
inp,i).

(h) Send CTi = (ct∗inp,i, σinp,i) to A.

6. KeyGen:

(a) A sends f to the challenger. Define st1 = ⊥.
(b) Post.Dec.st1 ← Post-One-sFE.KeyGen(Post.MSK, f, st1).

(c) Post.Dec.st
(0)
1 = Post.Dec.st1 and Post.Dec.st

(b)
1 = Post.Dec.st1.

(d) Compute state and output values:

i. For i ∈ [t∗],
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A. (yi,Post.Dec.st
(0)
i+1) = Post-One-sFE.Dec(Post.Dec.st

(0)
i ,Post.CT

(0)
i ).

B. (yi,Post.Dec.st
(b)
i+1) = Post-One-sFE.Dec(Post.Dec.st

(b)
i ,Post.CT

(b)
i ).

(e) Compute state ciphertexts:

i. For i ∈ [t∗ + 1],

A. (rE,i, rEnc,i) = PPRF.Eval(KE , i).

B. kE,i = SKE.Setup(1λ; rE,i).

C. ct
(0)
st,i = SKE.Enc(kE,i,Post.Dec.st

(0)
i ; rEnc,i).

D. ct
(b)
st,i = SKE.Enc(kE,i,Post.Dec.st

(b)
i ; rEnc,i).

(f) Setup iterator: (ppst, itrst,0)← Itr.Setup(1λ, 2λ).

(g) Set hardwired values:

i. For i ∈ [t∗], y∗i = yi.

ii. For i ∈ [t∗ + 1],

A. ct∗st,i =

{
ct

(0)
st,i if i < t

ct
(b)
st,i if i ≥ t

B. itr∗st,i = Itr.Iterate(ppst, itr
∗
st,i−1, ct

∗
st,i) where itr∗st,0 = itrst,0.

C. m∗i = (i, ct∗st,i, itr
∗
st,i−1).

(h) Compute state signature keys: Do nothing.

(i) Compute σst,1:

i. (sgkA,1, vkA,1, vkA,1,rej)← SSig.Setup(1λ;PPRF.Eval(KA, 1)).

ii. σst,1 = SSig.Sign(sgkA,1,m
∗
1).

(j) Compute program: P ← iO(Prog3,t,2[Kinp,KA,KB,KE , ppst,m
∗
t , y
∗
t−1, ct

∗
st,t]).

(k) Send SKf = (P, ct∗st,1, σst,1, itrst,0) to A.

7. Encryption Phase 2: For i = t∗ + 1, t∗ + 2, . . . , n:
If the adversary does not make exactly n− t∗ queries during this phase, output ⊥ and halt.

(a) A sends (x
(0)
i , x

(1)
i ) to the challenger.

(b) Post.CT
(b)
i = Post-One-sFE(Post.MSK, i, x

(b)
i ).

(c) Compute ctinp,i:

i. (rE,i, rEnc,i) = PPRF.Eval(KE , i).

ii. kE,i = SKE.Setup(1λ; rE,i).

iii. ctinp,i = SKE.Enc(kE,i,Post.CT
(b)
i ).

(d) Compute σinp,i:

i. (sgkinp,i, vkinp,i, vkinp,i,rej) = SSig.Setup(1λ;PPRF.Eval(Kinp, i)).

ii. σinp,i = SSig.Sign(sgkinp,i, ctinp,i).

(e) Send CTi = (ctinp,i, σinp,i) to A.

8. Output: A sends b′ to the challenger. Output 1 if b = b′, and output 0 else.
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Program Prog3,t,2[Kinp,KA,KB,KE , ppst,m
∗
t , y
∗
t−1, ct

∗
st,t]

(i, ctinp,i, σinp,i, ctst,i, σst,i, itrst,i−1)

1. Verification Step:

i. Verify i is positive: If i ≤ 0, output ⊥.
ii. Verify input signature:

i. (sgkinp,i, vkinp,i, vkinp,i,rej)← SSig.Setup(1λ;PPRF.Eval(Kinp, i)).

ii. If SSig.Verify(vkinp,i, ctinp,i, σinp,i) = 0, output ⊥.
iii. mi = (i, ctst,i, itrst,i−1).

iv. in-type = ⊥.
v. Verify A type signatures:

i. (sgkA,i, vkA,i, vkA,i,rej)← SSig.Setup(1λ;PPRF.Eval(KA, i)).

ii. If SSig.Verify(vkA,i,mi, σst,i) = 1, in-type = out-type = A.

vi. If in-type = ⊥, output ⊥.

2. Computation Step:

i. If i = t− 1, (yi, ctst,i+1) = (y∗t−1, ct
∗
st,t).

ii. If i ̸= t− 1,

i. Decrypt input and state:

i. (rE,i, rEnc,i) = PPRF.Eval(KE , i).

ii. kE,i = SKE.Setup(1λ; rE,i).

iii. Post.CTi = SKE.Dec(kE,i, ctinp,i).

iv. Post.Dec.sti = SKE.Dec(kE,i, ctst,i).

ii. Compute output value and next state:

A. (yi,Post.Dec.sti+1) = Post-One-sFE.Dec(Post.Dec.sti,Post.CTi).

iii. Encrypt the new state:

i. (rE,i+1, rEnc,i+1) = PPRF.Eval(KE , i+ 1).

ii. kE,i+1 = SKE.Setup(1λ; rE,i+1).

iii. ctst,i+1 = SKE.Enc(kE,i+1,Post.Dec.sti+1; rEnc,i+1).

3. Authentication Step:

i. itrst,i = Itr.Iterate(ppst, itrst,i−1, (i, ctst,i)).

ii. mi+1 = (i+ 1, ctst,i+1, itrst,i).

iii. If i = t− 1,

i. If mi+1 = m∗t , out-type = A. Else, out-type = B.

iv. Sign A type messages: If out-type = A,

i. (sgkA,i+1, vkA,i+1, vkA,i+1,rej)← SSig.Setup(1λ;PPRF.Eval(KA, i+ 1)).

ii. σst,i+1 = SSig.Sign(sgkA,i+1,mi+1).

v. Sign B type messages: If out-type = B,
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i. (sgkB,i+1, vkB,i+1, vkB,i+1,rej)← SSig.Setup(1λ;PPRF.Eval(KB, i+ 1)).

ii. σst,i+1 = SSig.Sign(sgkB,i+1,mi+1).

4. Output (yi, ctst,i+1, σst,i+1, itrst,i).

Lemma C.39. If iO is a secure indistinguishability obfuscation scheme, then for all λ ∈ N, all
t ∈ [t∗] and all PPT adversaries A,

∆(HybridA3,t,1,t,0(1
λ),HybridA3,t,2(1

λ)) ≤ negl(1λ)

Proof. The only difference between the hybrids is that Prog3,t,2 has entirely removed the B type
verification branch. However, for j = t, since there is no i such that j = t ≤ i ≤ t − 1, then
Prog3,t,1,t,0 will never use the B type verification branch anyway. Thus Prog3,t,2 and Prog3,t,1,t,0
have the same input/output behavior, so by a straightforward reduction to the security of iO, the
hybrids are indistinguishable.
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Hardcoding step t. It is now the case that at index t, we only have one input ciphertext ct∗st,t
signed using Kinp and only one state message m∗t signed using KA. Therefore, we can use SSig
to enforce that these are the only input and state values that can be verified. Thus, there can be
only one possible output in the computation step, which means we can finally hardcode in step i = t.

HybridA3,t,2,1: We start by puncturing both Kinp and KA at t. We sign and verify at index t using
hardcoded values.

This hybrid is the same as the previous hybrid except that

• During Encryption Phase 1, we make changes to the following steps:

5f. Compute input signature keys:

1. Kinp[t]← PPRF.Punc(Kinp, t).

2. rinp,t ← PPRF.Eval(Kinp, t).

3. (sgkinp,t, vkinp,t, vkinp,t,rej)← SSig.Setup(1λ; rinp,t).

4. (σ∗inp,t, sgk
∗
inp,t, vk

∗
inp,t) = (⊥, sgkinp,t, vkinp,t).

5g. Compute σinp,i:

1. If i = t, σinp,i = SSig.Sign(sgk∗inp,t, ct
∗
inp,t).

2. If i ̸= t,

(a) (sgkinp,i, vkinp,i, vkinp,i,rej) = SSig.Setup(1λ;PPRF.Eval(Kinp[t], i)).

(b) σinp,i = SSig.Sign(sgkinp,i, ct
∗
inp,i).

• During KeyGen, we make changes to the following steps:

6h. Compute state signature keys:

1. KA[t] = PPRF.Punc(KA, t).

2. rA,t ← PPRF.Eval(KA, t).

3. (sgkA,t, vkA,t, vkA,t,rej)← SSig.Setup(1λ; rA,t).

4. (σ∗st,t, sgk
∗
A,t, vk

∗
A,t) = (⊥, sgkA,t, vkA,t).

6i. Compute σst,1:

1. If 1 = t, σst,1 = SSig.Sign(sgk∗A,1,m
∗
1).

2. If 1 ̸= t,

(a) (sgkA,1, vkA,1, vkA,1,rej) = SSig.Setup(1λ;PPRF.Eval(KA[t], 1)).

(b) σst,1 = SSig.Sign(sgkA,1,m
∗
1).

6j. Compute program: P ← iO(Prog3,t,2,1[Kinp[t], vk
∗
inp,t,KA[t], sgk

∗
A,t, vk

∗
A,t,KB,KE ,

ppst,m
∗
t , y
∗
t−1, ct

∗
st,t]).

• During Encryption Phase 2, we make changes to the following steps:

7d. Compute σinp,i:

1. (sgkinp,i, vkinp,i, vkinp,i,rej) = SSig.Setup(1λ;PPRF.Eval(Kinp[t], i)).

2. σinp,i = SSig.Sign(sgkinp,i, ctinp,i).
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Program Prog3,t,2,1[Kinp[t], vk
∗
inp,t,KA[t], sgk

∗
A,t, vk

∗
A,t,KB,KE , ppst,m

∗
t , y
∗
t−1, ct

∗
st,t]

(i, ctinp,i, σinp,i, ctst,i, σst,i, itrst,i−1)

1. Verification Step:

i. Verify i is positive: If i ≤ 0, output ⊥.
ii. Verify input signature:

i. If i = t,

A. If SSig.Verify(vk∗inp,t, ctinp,i, σinp,i) = 0, output ⊥.
ii. If i ̸= t,

A. (sgkinp,i, vkinp,i, vkinp,i,rej)← SSig.Setup(1λ;PPRF.Eval(Kinp[t], i)).

B. If SSig.Verify(vkinp,i, ctinp,i, σinp,i) = 0, output ⊥.
iii. mi = (i, ctst,i, itrst,i−1).

iv. in-type = ⊥.
v. Verify A type signatures:

i. If i = t,

A. If SSig.Verify(vk∗A,t,mi, σst,i) = 1, in-type = out-type = A.

ii. If i ̸= t,

A. (sgkA,i, vkA,i, vkA,i,rej)← SSig.Setup(1λ;PPRF.Eval(KA[t], i)).

B. If SSig.Verify(vkA,i,mi, σst,i) = 1, in-type = out-type = A.

vi. If in-type = ⊥, output ⊥.

2. Computation Step:

i. If i = t− 1, (yi, ctst,i+1) = (y∗t−1, ct
∗
st,t).

ii. If i ̸= t− 1,

i. Decrypt input and state:

i. (rE,i, rEnc,i) = PPRF.Eval(KE , i).

ii. kE,i = SKE.Setup(1λ; rE,i).

iii. Post.CTi = SKE.Dec(kE,i, ctinp,i).

iv. Post.Dec.sti = SKE.Dec(kE,i, ctst,i).

ii. Compute output value and next state:

A. (yi,Post.Dec.sti+1) = Post-One-sFE.Dec(Post.Dec.sti,Post.CTi).

iii. Encrypt the new state:

i. (rE,i+1, rEnc,i+1) = PPRF.Eval(KE , i+ 1).

ii. kE,i+1 = SKE.Setup(1λ; rE,i+1).

iii. ctst,i+1 = SKE.Enc(kE,i+1,Post.Dec.sti+1; rEnc,i+1).

3. Authentication Step:

i. itrst,i = Itr.Iterate(ppst, itrst,i−1, (i, ctst,i)).

ii. mi+1 = (i+ 1, ctst,i+1, itrst,i).
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iii. If i = t− 1,

i. If mi+1 = m∗t , out-type = A. Else, out-type = B.

iv. Sign A type messages: If out-type = A,

i. If i = t− 1,

A. σst,i+1 = SSig.Sign(sgk∗A,t,mi+1).

ii. If i ̸= t− 1,

A. (sgkA,i+1, vkA,i+1, vkA,i+1,rej)← SSig.Setup(1λ;PPRF.Eval(KA[t], i+ 1)).

B. σst,i+1 = SSig.Sign(sgkA,i+1,mi+1).

v. Sign B type messages: If out-type = B,

i. (sgkB,i+1, vkB,i+1, vkB,i+1,rej)← SSig.Setup(1λ;PPRF.Eval(KB, i+ 1)).

ii. σst,i+1 = SSig.Sign(sgkB,i+1,mi+1).

4. Output (yi, ctst,i+1, σst,i+1, itrst,i).

Lemma C.40. If iO is a secure indistinguishability obfuscation scheme, then for all λ ∈ N, all
t ∈ [t∗] and all PPT adversaries A,

∆(HybridA3,t,2,0(1
λ),HybridA3,t,2,1(1

λ)) ≤ negl(λ)

Proof. By correctness of puncturing, for α ∈ {A, inp},

PPRF.Eval(Kα[t], v) = PPRF.Eval(Kα, v) for any v ̸= t

. Observe that we never evaluate punctured keys on their punctured points. This is true even in
Encryption Phase 2 since in that phase, we have i ≥ t∗ + 1 > t.

Furthermore, the hardwired signing and verification keys are set to what they would have been
computed to be in the previous hybrid. Thus, Prog3,t,2,0 and Prog3,t,2,1 have the same input/output
behavior. For the same reasons, apart from the obfuscated programs, the hybrids are identical.

Thus, by a straightforward reduction to the security of iO, the hybrids are indistinguishable.
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HybridA3,t,2,2: We split our input signature and our A type signature at t on ct∗inp,t and m
∗
t respec-

tively. We replace signatures using sgk∗inp,t or sgk
∗
A,t with σinp,one,t and σA,one,t respectively.

This hybrid is the same as the previous hybrid except that

• During Encryption Phase 1, we make changes to the following steps:

5f. Compute input signature keys:

1. Kinp[t]← PPRF.Punc(Kinp, t).

2. rinp,t ← PPRF.Eval(Kinp, t).

3. (sgkinp,t, vkinp,t, vkinp,t,rej)← SSig.Setup(1λ; rinp,t).

4. (σinp,one,t, vkinp,one,t, sgkinp,abo,t, vkinp,abo,t)← SSig.Split(sgkinp,t, ct
∗
inp,t).

5. (σ∗inp,t, sgk
∗
inp,t, vk

∗
inp,t) = (σinp,one,t,⊥, vkinp,t).

5g. Compute σinp,i:

1. If i = t, σinp,i = σ∗inp,t.

2. If i ̸= t,

(a) (sgkinp,i, vkinp,i, vkinp,i,rej) = SSig.Setup(1λ;PPRF.Eval(Kinp[t], i)).

(b) σinp,i = SSig.Sign(sgkinp,i, ct
∗
inp,i).

• During KeyGen, we make changes to the following steps:

6h. Compute state signature keys:

1. KA[t] = PPRF.Punc(KA, t).

2. rA,t ← PPRF.Eval(KA, t).

3. (sgkA,t, vkA,t, vkA,t,rej)← SSig.Setup(1λ; rA,t).

4. (σA,one,t, vkA,one,t, sgkA,abo,t, vkA,abo,t)← SSig.Split(sgkA,t,m
∗
t ).

5. (σ∗st,t, sgk
∗
A,t, vk

∗
A,t) = (σA,one,t,⊥, vkA,t).

6i. Compute σst,1:

1. If 1 = t, σst,i = σ∗st,t.

2. If 1 ̸= t,

(a) (sgkA,1, vkA,1, vkA,1,rej) = SSig.Setup(1λ;PPRF.Eval(KA[t], 1)).

(b) σst,1 = SSig.Sign(sgkA,1,m
∗
1).

6j. Compute program: P ← iO(Prog3,t,2,2[Kinp[t], vk
∗
inp,t,KA[t], σ

∗
st,t, vk

∗
A,t,KB,KE ,

ppst,m
∗
t , y
∗
t−1, ct

∗
st,t]).

Program Prog3,t,2,2[Kinp[t], vk
∗
inp,t,KA[t], σ

∗
st,t, vk

∗
A,t,KB,KE , ppst,m

∗
t , y
∗
t−1, ct

∗
st,t]

(i, ctinp,i, σinp,i, ctst,i, σst,i, itrst,i−1)

1. Verification Step:

i. Verify i is positive: If i ≤ 0, output ⊥.
ii. Verify input signature:

i. If i = t,

A. If SSig.Verify(vk∗inp,t, ctinp,i, σinp,i) = 0, output ⊥.
ii. If i ̸= t,

A. (sgkinp,i, vkinp,i, vkinp,i,rej)← SSig.Setup(1λ;PPRF.Eval(Kinp[t], i)).
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B. If SSig.Verify(vkinp,i, ctinp,i, σinp,i) = 0, output ⊥.
iii. mi = (i, ctst,i, itrst,i−1).

iv. in-type = ⊥.
v. Verify A type signatures:

i. If i = t,

A. If SSig.Verify(vk∗A,t,mi, σst,i) = 1, in-type = out-type = A.

ii. If i ̸= t,

A. (sgkA,i, vkA,i, vkA,i,rej)← SSig.Setup(1λ;PPRF.Eval(KA[t], i)).

B. If SSig.Verify(vkA,i,mi, σst,i) = 1, in-type = out-type = A.

vi. If in-type = ⊥, output ⊥.

2. Computation Step:

i. If i = t− 1, (yi, ctst,i+1) = (y∗t−1, ct
∗
st,t).

ii. If i ̸= t− 1,

i. Decrypt input and state:

i. (rE,i, rEnc,i) = PPRF.Eval(KE , i).

ii. kE,i = SKE.Setup(1λ; rE,i).

iii. Post.CTi = SKE.Dec(kE,i, ctinp,i).

iv. Post.Dec.sti = SKE.Dec(kE,i, ctst,i).

ii. Compute output value and next state:

A. (yi,Post.Dec.sti+1) = Post-One-sFE.Dec(Post.Dec.sti,Post.CTi).

iii. Encrypt the new state:

i. (rE,i+1, rEnc,i+1) = PPRF.Eval(KE , i+ 1).

ii. kE,i+1 = SKE.Setup(1λ; rE,i+1).

iii. ctst,i+1 = SKE.Enc(kE,i+1,Post.Dec.sti+1; rEnc,i+1).

3. Authentication Step:

i. itrst,i = Itr.Iterate(ppst, itrst,i−1, (i, ctst,i)).

ii. mi+1 = (i+ 1, ctst,i+1, itrst,i).

iii. If i = t− 1,

i. If mi+1 = m∗t , out-type = A. Else, out-type = B.

iv. Sign A type messages: If out-type = A,

i. If i = t− 1,

A. σst,i+1 = σ∗st,t.

ii. If i ̸= t− 1,

A. (sgkA,i+1, vkA,i+1, vkA,i+1,rej)← SSig.Setup(1λ;PPRF.Eval(KA[t], i+ 1)).

B. σst,i+1 = SSig.Sign(sgkA,i+1,mi+1).

v. Sign B type messages: If out-type = B,
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i. (sgkB,i+1, vkB,i+1, vkB,i+1,rej)← SSig.Setup(1λ;PPRF.Eval(KB, i+ 1)).

ii. σst,i+1 = SSig.Sign(sgkB,i+1,mi+1).

4. Output (yi, ctst,i+1, σst,i+1, itrst,i).

Lemma C.41. If iO is a secure indistinguishability obfuscation scheme, then for all λ ∈ N, all
t ∈ [t∗] and all PPT adversaries A,

∆(HybridA3,t,2,1(1
λ),HybridA3,t,2,2(1

λ)) ≤ negl(λ)

Proof. By correctness of SSig, if (σone, vkone, sgkabo, vkabo)← SSig.Split(sgk, v∗), then

σone = SSig.Sign(sgk, v∗).

Thus, apart from the obfuscated programs, the hybrids act identically since σinp,one,t = SSig.Sign(sgkinp,t, ct
∗
st,t)

and σA,one,1 = SSig.Sign(sgkA,1,m
∗
1) so step 5g of Encryption Phase 1 and step 6i of KeyGen

result in the same signatures.
Now, in the previous hybrid, Prog3,t,2,1 only used sgk∗A,t = sgkA,t in one place: If out-type = A

and i = t− 1, then it signed mi+1 with sgkA,t. However, we can only have out-type = A at i = t− 1
if mi+1 = m∗t . Thus, replacing the signature with σA,one,t does not change the behavior of the
program.

Therefore, Prog3,t,2,1 and Prog3,t,2,2 have the same input/output behavior, so by a straightfor-
ward reduction to the security of iO, the hybrids are indistinguishable.
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HybridA3,t,2,3: We change rinp,t and rA,t to random values. This hybrid is the same as the previous
hybrid except that

• During Encryption Phase 1, we make changes to the following steps:

5f. Compute input signature keys:

1. Kinp[t]← PPRF.Punc(Kinp, t).

2. rinp,t ← {0, 1}λ.
3. (sgkinp,t, vkinp,t, vkinp,t,rej)← SSig.Setup(1λ; rinp,t).

4. (σinp,one,t, vkinp,one,t, sgkinp,abo,t, vkinp,abo,t)← SSig.Split(sgkinp,t, ct
∗
inp,t).

5. (σ∗inp,t, sgk
∗
inp,t, vk

∗
inp,t) = (σinp,one,t,⊥, vkinp,t).

• During KeyGen, we make changes to the following steps:

6h. Compute state signature keys:

1. KA[t] = PPRF.Punc(KA, t).

2. rA,t ← {0, 1}λ.
3. (sgkA,t, vkA,t, vkA,t,rej)← SSig.Setup(1λ; rA,t).

4. (σA,one,t, vkA,one,t, sgkA,abo,t, vkA,abo,t)← SSig.Split(sgkA,t,m
∗
t ).

5. (σ∗st,t, sgk
∗
A,t, vk

∗
A,t) = (σA,one,t,⊥, vkA,t).

Lemma C.42. If PPRF is a puncturable pseudorandom function, then for all λ ∈ N, all t ∈ [t∗],
and all PPT adversaries A,

∆(HybridA3,t,2,2(1
λ),HybridA3,t,2,3(1

λ)) ≤ negl(λ)

Proof. This follow by two reductions to the selective pseudorandomness at punctured points prop-
erty of our PPRF.

We first swap out only rinp,t for a random value and leave rA,t as a PPRF evaluation. We call
this intermediate hybrid HybridA3,t,2,2.5.

Observe that we can run both the previous hybrid and the intermediate hybrid without know-
ing Kinp as long as we are given (Kinp[t], rinp,t). In the reduction, without computing Kinp, we run
HybridA3,t,2,2.5 up to just before step 5f of Encryption Phase 1. Then, we receive (Kinp[t], rinp,t)
from the PPRF challenger where rinp,t is either a random value or equal to PPRF.Eval(Kinp, t). We
use this randomness to compute (σ∗inp,t, sgk

∗
inp,t, vk

∗
inp,t). We then run the rest of HybridA3,t,2,j,2.5

starting from step 5g of Encryption Phase 1. Observe that if rinp,t was a random value then we ex-
actly emulate HybridA3,t,2,2.5, and if rinp,t was equal to PPRF.Eval(Kinp, t) we emulate HybridA3,t,2,2.
Thus, by PPRF security, the outputs of these hybrids must be indistinguishable.

By a similar reduction on the A type signature scheme, HybridA3,t,2,2.5 and HybridA3,t,2,3 are
indistinguishable.
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HybridA3,t,2,4: We set vk∗inp,t to vkinp,one,t which will only verify ct∗inp,t, and set vk∗A,t to vkA,one,t which
will only verify m∗t . This hybrid is the same as the previous hybrid except that

• During Encryption Phase 1, we make changes to the following steps:

5f. Compute input signature keys:

1. Kinp[t]← PPRF.Punc(Kinp, t).

2. rinp,t ← {0, 1}λ.
3. (sgkinp,t, vkinp,t, vkinp,t,rej)← SSig.Setup(1λ; rinp,t).

4. (σinp,one,t, vkinp,one,t, sgkinp,abo,t, vkinp,abo,t)← SSig.Split(sgkinp,t, ct
∗
inp,t).

5. (σ∗inp,t, sgk
∗
inp,t, vk

∗
inp,t) = (σinp,one,t,⊥, vkinp,one,t).

• During KeyGen, we make changes to the following steps:

6h. Compute state signature keys:

1. KA[t] = PPRF.Punc(KA, t).

2. rA,t ← {0, 1}λ.
3. (sgkA,t, vkA,t, vkA,t,rej)← SSig.Setup(1λ; rA,t).

4. (σA,one,t, vkA,one,t, sgkA,abo,t, vkA,abo,t)← SSig.Split(sgkA,t,m
∗
t ).

5. (σ∗st,t, sgk
∗
A,t, vk

∗
A,t) = (σA,one,t,⊥, vkA,one,t).

Lemma C.43. If SSig is a splittable signature scheme, then for all λ ∈ N, all t ∈ [t∗] and all PPT
adversaries A,

∆(HybridA3,t,2,3(1
λ),HybridA3,t,2,4(1

λ)) ≤ negl(λ)

Proof. This follow by two reductions to the vkone indistinguishabilty of SSig.
We first swap out only vk∗inp,t for vkinp,one,t and leave vk∗A,t as vkA,t. We call this intermediate

hybrid HybridA3,t,2,3.5.
Observe that we can run both hybrids without knowing (rinp,t, sgkinp,t, vkinp,t, vkinp,t,rej) as long

as we are given (σ∗inp,t, vk
∗
inp,t). In the reduction, we run HybridA3,t,2,4 up to just before step 5f.2

of Encryption Phase 1. We send ct∗inp,t to the SSig challenger and receive (σ∗, vk∗) from the
SSig challenger where σ∗ is a signature of ct∗inp,t and vk∗ is either a verification key vkone that only
verifies ct∗inp,t or is a regular verification key vk. We then set (σ∗inp,t, sgk

∗
inp,t, vk

∗
inp,t) = (σ∗,⊥, vk∗)

and run the rest of HybridA3,t,2,4 starting from step 5g of Encryption Phase 1. Observe that

if vk∗ was a regular verification key vk we exactly emulate HybridA3,t,2,3, and if vk∗ was vkone we

emulate HybridA3,t,2,3.5. Thus, by the vkone indistinguishabilty of SSig security, the outputs of these
hybrids must be indistinguishable.

By a similar reduction on the A type signature scheme, HybridA3,t,2,3.5 and HybridA3,t,2,4 are
indistinguishable.

177



HybridA3,t,2,5: We now hardwire step t into the program. Recall that in the previous hybrids, we
set the following values in Encryption Phase 1 and KeyGen:

5e. Set hardwired values:

1. ct∗inp,i =

{
ct

(0)
inp,i if i < t

ct
(b)
inp,i if i ≥ t

.

6g. Set hardwired values:

1. For i ∈ [t∗], y∗i = yi.

2. For i ∈ [t∗ + 1],

(a) ct∗st,i =

{
ct

(0)
st,i if i < t

ct
(b)
st,i if i ≥ t

(b) itr∗st,i = Itr.Iterate(ppst, itr
∗
st,i−1, ct

∗
st,i) where itr∗st,0 = itrst,0.

(c) m∗i = (i, ct∗st,i, itr
∗
st,i−1).

This hybrid is the same as the previous hybrid except that

• During KeyGen, we make changes to the following steps:

6j. Compute program: P ← iO(Prog3,t,2,5[Kinp[t], vk
∗
inp,t,KA[t], σ

∗
st,t, vk

∗
A,t,KB,KE ,

ppst,m
∗
t , y
∗
t−1, ct

∗
st,t, y

∗
t , ct

∗
st,t+1]).

Program Prog3,t,2,5[Kinp[t], vk
∗
inp,t,KA[t], σ

∗
st,t, vk

∗
A,t,KB,KE , ppst,m

∗
t , y
∗
t−1, ct

∗
st,t, y

∗
t , ct

∗
st,t+1]

(i, ctinp,i, σinp,i, ctst,i, σst,i, itrst,i−1)

1. Verification Step:

i. Verify i is positive: If i ≤ 0, output ⊥.
ii. Verify input signature:

i. If i = t,

A. If SSig.Verify(vk∗inp,t, ctinp,i, σinp,i) = 0, output ⊥.
ii. If i ̸= t,

A. (sgkinp,i, vkinp,i, vkinp,i,rej)← SSig.Setup(1λ;PPRF.Eval(Kinp[t], i)).

B. If SSig.Verify(vkinp,i, ctinp,i, σinp,i) = 0, output ⊥.
iii. mi = (i, ctst,i, itrst,i−1).

iv. in-type = ⊥.
v. Verify A type signatures:

i. If i = t,

A. If SSig.Verify(vk∗A,t,mi, σst,i) = 1, in-type = out-type = A.

ii. If i ̸= t,

A. (sgkA,i, vkA,i, vkA,i,rej)← SSig.Setup(1λ;PPRF.Eval(KA[t], i)).

B. If SSig.Verify(vkA,i,mi, σst,i) = 1, in-type = out-type = A.

vi. If in-type = ⊥, output ⊥.
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2. Computation Step:

i. If i = t− 1, (yi, ctst,i+1) = (y∗t−1, ct
∗
st,t).

ii. If i = t, (yi, ctst,i+1) = (y∗t , ct
∗
st,t+1).

iii. If i /∈ {t− 1, t},
i. Decrypt input and state:

i. (rE,i, rEnc,i) = PPRF.Eval(KE , i).

ii. kE,i = SKE.Setup(1λ; rE,i).

iii. Post.CTi = SKE.Dec(kE,i, ctinp,i).

iv. Post.Dec.sti = SKE.Dec(kE,i, ctst,i).

ii. Compute output value and next state:

A. (yi,Post.Dec.sti+1) = Post-One-sFE.Dec(Post.Dec.sti,Post.CTi).

iii. Encrypt the new state:

i. (rE,i+1, rEnc,i+1) = PPRF.Eval(KE , i+ 1).

ii. kE,i+1 = SKE.Setup(1λ; rE,i+1).

iii. ctst,i+1 = SKE.Enc(kE,i+1,Post.Dec.sti+1; rEnc,i+1).

3. Authentication Step:

i. itrst,i = Itr.Iterate(ppst, itrst,i−1, (i, ctst,i)).

ii. mi+1 = (i+ 1, ctst,i+1, itrst,i).

iii. If i = t− 1,

i. If mi+1 = m∗t , out-type = A. Else, out-type = B.

iv. Sign A type messages: If out-type = A,

i. If i = t− 1,

A. σst,i+1 = σ∗st,t.

ii. If i ̸= t− 1,

A. (sgkA,i+1, vkA,i+1, vkA,i+1,rej)← SSig.Setup(1λ;PPRF.Eval(KA[t], i+ 1)).

B. σst,i+1 = SSig.Sign(sgkA,i+1,mi+1).

v. Sign B type messages: If out-type = B,

i. (sgkB,i+1, vkB,i+1, vkB,i+1,rej)← SSig.Setup(1λ;PPRF.Eval(KB, i+ 1)).

ii. σst,i+1 = SSig.Sign(sgkB,i+1,mi+1).

4. Output (yi, ctst,i+1, σst,i+1, itrst,i).

Lemma C.44. If iO is a secure indistinguishability obfuscation scheme, then for all λ ∈ N, all
t ∈ [t∗] and all PPT adversaries A,

∆(HybridA3,t,2,4(1
λ),HybridA3,t,2,5(1

λ)) ≤ negl(λ)

Proof. We will show that Prog3,t,2 and Prog3,t,2,t−1 have identical input/output behavior. The
programs can only differ when i = t. Thus, we will restrict ourselves to this setting.

Since vk∗inp,t = vkinp,one,t, then in order to pass the verification step, it must be the case that

ctinp,i = ct∗inp,t = ct
(b)
inp,t
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Similarly, since vk∗A,t = vkA,one,t, in order to pass the verification step, we must have

mi = m∗t = (t, ct
(b)
st,t, itr

∗
st,t−1)

Therefore, by correctness of decryption of SKE and Post-One-sFE, in the previous hybrid, we would
have computed

(yi, ctst,i+1) = (yt, ct
(b)
st,t+1) = (y∗t , ct

∗
st,t+1)

But these are exactly the values that we have hardwired them to be in the current hybrids. Thus
the input/output behavior of the two programs is identical, so by a straightforward reduction to
the security of iO, the hybrids are indistinguishable.
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HybridA3,t,2,6: We change vk∗inp,t and vk∗A,t back to vkinp,t and vkA,t. This hybrid is the same as the
previous hybrid except that

• During Encryption Phase 1, we make changes to the following steps:

5f. Compute input signature keys:

1. Kinp[t]← PPRF.Punc(Kinp, t).

2. rinp,t ← {0, 1}λ.
3. (sgkinp,t, vkinp,t, vkinp,t,rej)← SSig.Setup(1λ; rinp,t).

4. (σinp,one,t, vkinp,one,t, sgkinp,abo,t, vkinp,abo,t)← SSig.Split(sgkinp,t, ct
∗
inp,t).

5. (σ∗inp,t, sgk
∗
inp,t, vk

∗
inp,t) = (σinp,one,t,⊥, vkinp,t).

• During KeyGen, we make changes to the following steps:

6h. Compute state signature keys:

1. KA[t] = PPRF.Punc(KA, t).

2. rA,t ← {0, 1}λ.
3. (sgkA,t, vkA,t, vkA,t,rej)← SSig.Setup(1λ; rA,t).

4. (σA,one,t, vkA,one,t, sgkA,abo,t, vkA,abo,t)← SSig.Split(sgkA,t,m
∗
t ).

5. (σ∗st,t, sgk
∗
A,t, vk

∗
A,t) = (σA,one,t,⊥, vkA,t).

Lemma C.45. If SSig is a splittable signature scheme, then for all λ ∈ N, all t ∈ [t∗] and all PPT
adversaries A,

∆(HybridA3,t,2,5(1
λ),HybridA3,t,2,6(1

λ)) ≤ negl(λ)

Proof. This follows by two reductions to the vkone indistinguishabilty of SSig. The reductions
are essentially the same as in Lemma C.43 as it is still the case that we can run both hybrids
without knowing (rinp,t, sgkinp,t, vkinp,t, vkinp,t,rej) or (rA,t, sgkA,t, vkA,t, vkA,t,rej) as long as we are given
(σ∗inp,t, vk

∗
inp,t) and (σ∗A,t, vk

∗
A,t).
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HybridA3,t,2,7: We change rinp,t and rA,t back to PPRF values. This hybrid is the same as the
previous hybrid except that

• During Encryption Phase 1, we make changes to the following steps:

5f. Compute input signature keys:

1. Kinp[t]← PPRF.Punc(Kinp, t).

2. rinp,t ← PPRF.Eval(Kinp, t).

3. (sgkinp,t, vkinp,t, vkinp,t,rej)← SSig.Setup(1λ; rinp,t).

4. (σinp,one,t, vkinp,one,t, sgkinp,abo,t, vkinp,abo,t)← SSig.Split(sgkinp,t, ct
∗
inp,t).

5. (σ∗inp,t, sgk
∗
inp,t, vk

∗
inp,t) = (σinp,one,t,⊥, vkinp,t).

• During KeyGen, we make changes to the following steps:

6h. Compute state signature keys:

1. KA[t] = PPRF.Punc(KA, t).

2. rA,t ← PPRF.Eval(KA, t).

3. (sgkA,t, vkA,t, vkA,t,rej)← SSig.Setup(1λ; rA,t).

4. (σA,one,t, vkA,one,t, sgkA,abo,t, vkA,abo,t)← SSig.Split(sgkA,t,m
∗
t ).

5. (σ∗st,t, sgk
∗
A,t, vk

∗
A,t) = (σA,one,t,⊥, vkA,t).

Lemma C.46. If PPRF is a puncturable pseudorandom function, then for all λ ∈ N, all t ∈ [t∗]
and all PPT adversaries A,

∆(HybridA3,t,2,6(1
λ),HybridA3,t,2,7(1

λ)) ≤ negl(λ)

Proof. This follows by two reductions to the selective pseudorandomness at punctured points prop-
erty of our PPRF. The reductions are essentially the same as that of Lemma C.42 as it is still the
case that we can run both hybrids without knowingKinp orKA as long as we are given (Kinp[t], rinp,t)
and (KA[t], rA,t).
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HybridA3,t,2,8: We no longer split our input signature and our A type signature at t on ct∗inp,t andm
∗
t

respectively. We replace signatures σinp,one,t and σA,one,t with signatures using sgk∗inp,t and sgk∗A,t.
This hybrid is the same as the previous hybrid except that

• During Encryption Phase 1, we make changes to the following steps:

5f. Compute input signature keys:

1. Kinp[t]← PPRF.Punc(Kinp, t).

2. rinp,t ← PPRF.Eval(Kinp, t).

3. (sgkinp,t, vkinp,t, vkinp,t,rej)← SSig.Setup(1λ; rinp,t).

4. (σinp,one,t, vkinp,one,t, sgkinp,abo,t, vkinp,abo,t)← SSig.Split(sgkinp,t, ct
∗
inp,t).

5. (σ∗inp,t, sgk
∗
inp,t, vk

∗
inp,t) = (⊥, sgkinp,t, vkinp,t).

5g. Compute σinp,i:

1. If i = t, σinp,i = SSig.Sign(sgk∗inp,i, ct
∗
inp,i).

2. If i ̸= t,

(a) (sgkinp,i, vkinp,i, vkinp,i,rej) = SSig.Setup(1λ;PPRF.Eval(Kinp[t], i)).

(b) σinp,i = SSig.Sign(sgkinp,i, ct
∗
inp,i).

• During KeyGen, we make changes to the following steps:

6h. Compute state signature keys:

1. KA[t] = PPRF.Punc(KA, t).

2. rA,t ← PPRF.Eval(KA, t).

3. (sgkA,t, vkA,t, vkA,t,rej)← SSig.Setup(1λ; rA,t).

4. (σA,one,t, vkA,one,t, sgkA,abo,t, vkA,abo,t)← SSig.Split(sgkA,t,m
∗
t ).

5. (σ∗st,t, sgk
∗
A,t, vk

∗
A,t) = (⊥, sgkA,t, vkA,t).

6i. Compute σst,1:

1. If 1 = t, σst,i = SSig.Sign(sgk∗A,t,m
∗
1).

2. If 1 ̸= t,

(a) (sgkA,1, vkA,1, vkA,1,rej) = SSig.Setup(1λ;PPRF.Eval(KA[t], 1)).

(b) σst,1 = SSig.Sign(sgkA,1,m
∗
1).

6j. Compute program: P ← iO(Prog3,t,2,8[Kinp[t], vk
∗
inp,t,KA[t], sgk

∗
A,t, vk

∗
A,t,KB,KE ,

ppst,m
∗
t , y
∗
t−1, ct

∗
st,t, y

∗
t , ct

∗
st,t+1]).

Program Prog3,t,2,8[Kinp[t], vk
∗
inp,t,KA[t], sgk

∗
A,t, vk

∗
A,t,KB,KE , ppst,m

∗
t , y
∗
t−1, ct

∗
st,t, y

∗
t−1, ct

∗
st,t]

(i, ctinp,i, σinp,i, ctst,i, σst,i, itrst,i−1)

1. Verification Step:

i. Verify i is positive: If i ≤ 0, output ⊥.
ii. Verify input signature:

i. If i = t,

A. If SSig.Verify(vk∗inp,t, ctinp,i, σinp,i) = 0, output ⊥.
ii. If i ̸= t,

A. (sgkinp,i, vkinp,i, vkinp,i,rej)← SSig.Setup(1λ;PPRF.Eval(Kinp[t], i)).

183



B. If SSig.Verify(vkinp,i, ctinp,i, σinp,i) = 0, output ⊥.
iii. mi = (i, ctst,i, itrst,i−1).

iv. in-type = ⊥.
v. Verify A type signatures:

i. If i = t,

A. If SSig.Verify(vk∗A,t,mi, σst,i) = 1, in-type = out-type = A.

ii. If i ̸= t,

A. (sgkA,i, vkA,i, vkA,i,rej)← SSig.Setup(1λ;PPRF.Eval(KA[t], i)).

B. If SSig.Verify(vkA,i,mi, σst,i) = 1, in-type = out-type = A.

vi. If in-type = ⊥, output ⊥.

2. Computation Step:

i. If i = t− 1, (yi, ctst,i+1) = (y∗t−1, ct
∗
st,t).

ii. If i = t, (yi, ctst,i+1) = (y∗t , ct
∗
st,t+1).

iii. If i /∈ {t− 1, t},
i. Decrypt input and state:

i. (rE,i, rEnc,i) = PPRF.Eval(KE , i).

ii. kE,i = SKE.Setup(1λ; rE,i).

iii. Post.CTi = SKE.Dec(kE,i, ctinp,i).

iv. Post.Dec.sti = SKE.Dec(kE,i, ctst,i).

ii. Compute output value and next state:

A. (yi,Post.Dec.sti+1) = Post-One-sFE.Dec(Post.Dec.sti,Post.CTi).

iii. Encrypt the new state:

i. (rE,i+1, rEnc,i+1) = PPRF.Eval(KE , i+ 1).

ii. kE,i+1 = SKE.Setup(1λ; rE,i+1).

iii. ctst,i+1 = SKE.Enc(kE,i+1,Post.Dec.sti+1; rEnc,i+1).

3. Authentication Step:

i. itrst,i = Itr.Iterate(ppst, itrst,i−1, (i, ctst,i)).

ii. mi+1 = (i+ 1, ctst,i+1, itrst,i).

iii. If i = t− 1,

i. If mi+1 = m∗t , out-type = A. Else, out-type = B.

iv. Sign A type messages: If out-type = A,

i. If i = t− 1,

A. σst,i+1 = SSig.Sign(sgk∗A,t,mi+1).

ii. If i ̸= t− 1,

A. (sgkA,i+1, vkA,i+1, vkA,i+1,rej)← SSig.Setup(1λ;PPRF.Eval(KA[t], i+ 1)).

B. σst,i+1 = SSig.Sign(sgkA,i+1,mi+1).

v. Sign B type messages: If out-type = B,
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i. (sgkB,i+1, vkB,i+1, vkB,i+1,rej)← SSig.Setup(1λ;PPRF.Eval(KB, i+ 1)).

ii. σst,i+1 = SSig.Sign(sgkB,i+1,mi+1).

4. Output (yi, ctst,i+1, σst,i+1, itrst,i).

Lemma C.47. If iO is a secure indistinguishability obfuscation scheme, then for all λ ∈ N, all
t ∈ [t∗] and all PPT adversaries A,

∆(HybridA3,t,2,7(1
λ),HybridA3,t,2,8(1

λ)) ≤ negl(λ)

Proof. By correctness of SSig, if (σone, vkone, sgkabo, vkabo)← SSig.Split(sgk, v∗), then

σone = SSig.Sign(sgk, v∗).

Thus, apart from the obfuscated programs, the hybrids act identically since σinp,one,t = SSig.Sign(sgkinp,t, ct
∗
st,t)

and σA,one,1 = SSig.Sign(sgkA,1,m
∗
1) so step 5g of Encryption Phase 1 and step 6i of KeyGen

result in the same signatures.
The current hybrid Prog3,t,2,8 only uses sgk∗A,t = sgkA,t in one place: If out-type = A and

i = t − 1, then it signs mi+1 with sgkA,t. However, we can only have out-type = A at i = t − 1 if
mi+1 = m∗t . Thus, the signature it generates is the same as the signature σ∗st,t = σA,one,t used in
the previous hybrid.

Therefore, Prog3,t,2,7 and Prog3,t,2,8 have the same input/output behavior, so by a straightfor-
ward reduction to the security of iO, the hybrids are indistinguishable.
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HybridA3,t,2,9: We no longer puncture Kinp at t and no longer use hardwired signatures and verifi-
cation keys. This hybrid is the same as the previous hybrid except that

• During Encryption Phase 1, we make changes to the following steps:

5f. Compute input signature keys: Do nothing.

5g. Compute σinp,i:

1. If i = t, σinp,i = SSig.Sign(sgk∗inp,t, ct
∗
inp,t).

2. If i ̸= t,

(a) (sgkinp,i, vkinp,i, vkinp,i,rej) = SSig.Setup(1λ;PPRF.Eval(Kinp, i)).

(b) σinp,i = SSig.Sign(sgkinp,i, ct
∗
inp,i).

• During KeyGen, we make changes to the following steps:

6h. Compute state signature keys: Do nothing.

6i. Compute σst,1:

1. If 1 = t, σst,1 = SSig.Sign(sgk∗A,1,m
∗
1).

2. If 1 ̸= t,

(a) (sgkA,1, vkA,1, vkA,1,rej) = SSig.Setup(1λ;PPRF.Eval(KA, 1)).

(b) σst,1 = SSig.Sign(sgkA,1,m
∗
1).

6j. Compute program: P ← iO(Prog3,t,2,9[Kinp,KA,KB,KE , ppst,m
∗
t , y
∗
t−1, ct

∗
st,t, y

∗
t , ct

∗
st,t+1]).

• During Encryption Phase 2, we make changes to the following steps:

7d. Compute σinp,i:

1. (sgkinp,i, vkinp,i, vkinp,i,rej) = SSig.Setup(1λ;PPRF.Eval(Kinp, i)).

2. σinp,i = SSig.Sign(sgkinp,i, ctinp,i).

Program Prog3,t,2,9[Kinp,KA,KB,KE , ppst,m
∗
t , y
∗
t−1, ct

∗
st,t, y

∗
t−1, ct

∗
st,t, y

∗
t , ct

∗
st,t+1]

(i, ctinp,i, σinp,i, ctst,i, σst,i, itrst,i−1)

1. Verification Step:

i. Verify i is positive: If i ≤ 0, output ⊥.
ii. Verify input signature:

i. If i = t,

A. If SSig.Verify(vk∗inp,t, ctinp,i, σinp,i) = 0, output ⊥.
ii. If i ̸= t,

A. (sgkinp,i, vkinp,i, vkinp,i,rej)← SSig.Setup(1λ;PPRF.Eval(Kinp, i)).

B. If SSig.Verify(vkinp,i, ctinp,i, σinp,i) = 0, output ⊥.
iii. mi = (i, ctst,i, itrst,i−1).

iv. in-type = ⊥.
v. Verify A type signatures:

i. If i = t,

A. If SSig.Verify(vk∗A,t,mi, σst,i) = 1, in-type = out-type = A.
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ii. If i ̸= t,

A. (sgkA,i, vkA,i, vkA,i,rej)← SSig.Setup(1λ;PPRF.Eval(KA, i)).

B. If SSig.Verify(vkA,i,mi, σst,i) = 1, in-type = out-type = A.

vi. If in-type = ⊥, output ⊥.

2. Computation Step:

i. If i = t− 1, (yi, ctst,i+1) = (y∗t−1, ct
∗
st,t).

ii. If i = t, (yi, ctst,i+1) = (y∗t , ct
∗
st,t+1).

iii. If i /∈ {t− 1, t},
i. Decrypt input and state:

i. (rE,i, rEnc,i) = PPRF.Eval(KE , i).

ii. kE,i = SKE.Setup(1λ; rE,i).

iii. Post.CTi = SKE.Dec(kE,i, ctinp,i).

iv. Post.Dec.sti = SKE.Dec(kE,i, ctst,i).

ii. Compute output value and next state:

A. (yi,Post.Dec.sti+1) = Post-One-sFE.Dec(Post.Dec.sti,Post.CTi).

iii. Encrypt the new state:

i. (rE,i+1, rEnc,i+1) = PPRF.Eval(KE , i+ 1).

ii. kE,i+1 = SKE.Setup(1λ; rE,i+1).

iii. ctst,i+1 = SKE.Enc(kE,i+1,Post.Dec.sti+1; rEnc,i+1).

3. Authentication Step:

i. itrst,i = Itr.Iterate(ppst, itrst,i−1, (i, ctst,i)).

ii. mi+1 = (i+ 1, ctst,i+1, itrst,i).

iii. If i = t− 1,

i. If mi+1 = m∗t , out-type = A. Else, out-type = B.

iv. Sign A type messages: If out-type = A,

i. If i = t− 1,

A. σst,i+1 = SSig.Sign(sgk∗A,t,mi+1).

ii. If i ̸= t− 1,

A. (sgkA,i+1, vkA,i+1, vkA,i+1,rej)← SSig.Setup(1λ;PPRF.Eval(KA, i+ 1)).

B. σst,i+1 = SSig.Sign(sgkA,i+1,mi+1).

v. Sign B type messages: If out-type = B,

i. (sgkB,i+1, vkB,i+1, vkB,i+1,rej)← SSig.Setup(1λ;PPRF.Eval(KB, i+ 1)).

ii. σst,i+1 = SSig.Sign(sgkB,i+1,mi+1).

4. Output (yi, ctst,i+1, σst,i+1, itrst,i).

Lemma C.48. If iO is a secure indistinguishability obfuscation scheme, then for all λ ∈ N, all
t ∈ [t∗] and all PPT adversaries A,

∆(HybridA3,t,2,8(1
λ),HybridA3,t,2,9(1

λ)) ≤ negl(λ)
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Proof. By correctness of puncturing, for α ∈ {A, inp},

PPRF.Eval(Kα[t], v) = PPRF.Eval(Kα, v) for any v ̸= t

. Observe that our previous hybrid never evaluated punctured keys on their punctured points. This
was true even in Encryption Phase 2 since in that phase, we have i ≥ t∗ + 1 > t.

Additionally, the hardwired signing and verification keys of the previous hybrid are the same as
what is computed in the current hybrid. Thus, Prog3,t,2,8 and Prog3,t,2,9 have the same input/output
behavior. For the same reasons, apart from the obfuscated programs, the hybrids are identical.

Thus, by a straightforward reduction to the security of iO, the hybrids are indistinguishable.
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HybridA3,t,3: This hybrid is identical to HybridA3,t,2,9. Note that we now have two steps hardwired

into the program. We have highlighted the differences between this hybrid and HybridA3,t,2 below:

1. Guess Stream Length: (t∗, n)← [TA,λ]× [TA,λ] where TA,λ is the maximum runtime of A
on security parameter λ.

2. Parameters: The adversary A receives security parameter 1λ, and outputs a function size
1ℓF , a state size 1ℓS , an input size 1ℓX , and an output size 1ℓY .

3. Setup:

(a) Kinp,KA,KB,KE ← PPRF.Setup(1λ).

(b) Post.MSK← Post-One-sFE.Setup(1λ, 1ℓF , 1ℓS , 1ℓX , 1ℓY ).

4. Challenge Bit: b← {0, 1}.

5. Encryption Phase 1: For i = 1, 2, . . . , t∗:
If the adversary does not make exactly t∗ queries during this phase, output ⊥ and halt.

(a) A sends (x
(0)
i , x

(1)
i ) to the challenger.

(b) Post.CT
(0)
i = Post-One-sFE(Post.MSK, i, x

(0)
i ).

(c) Post.CT
(b)
i = Post-One-sFE(Post.MSK, i, x

(b)
i ).

(d) Compute input ciphertexts:

i. (rE,i, rEnc,i) = PPRF.Eval(KE , i).

ii. kE,i = SKE.Setup(1λ; rE,i).

iii. ct
(0)
inp,i = SKE.Enc(kE,i,Post.CT

(0)
i ).

iv. ct
(b)
inp,i = SKE.Enc(kE,i,Post.CT

(b)
i ).

(e) Set hardwired values:

i. ct∗inp,i =

{
ct

(0)
inp,i if i < t

ct
(b)
inp,i if i ≥ t

.

(f) Compute input signature keys: Do nothing.

(g) Compute σinp,i:

i. (sgkinp,i, vkinp,i, vkinp,i,rej) = SSig.Setup(1λ;PPRF.Eval(Kinp, i)).

ii. σinp,i = SSig.Sign(sgkinp,i, ct
∗
inp,i).

(h) Send CTi = (ct∗inp,i, σinp,i) to A.

6. KeyGen:

(a) A sends f to the challenger. Define st1 = ⊥.
(b) Post.Dec.st1 ← Post-One-sFE.KeyGen(Post.MSK, f, st1).

(c) Post.Dec.st
(0)
1 = Post.Dec.st1 and Post.Dec.st

(b)
1 = Post.Dec.st1.

(d) Compute state and output values:

i. For i ∈ [t∗],

A. (yi,Post.Dec.st
(0)
i+1) = Post-One-sFE.Dec(Post.Dec.st

(0)
i ,Post.CT

(0)
i ).
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B. (yi,Post.Dec.st
(b)
i+1) = Post-One-sFE.Dec(Post.Dec.st

(b)
i ,Post.CT

(b)
i ).

(e) Compute state ciphertexts:

i. For i ∈ [t∗ + 1],

A. (rE,i, rEnc,i) = PPRF.Eval(KE , i).

B. kE,i = SKE.Setup(1λ; rE,i).

C. ct
(0)
st,i = SKE.Enc(kE,i,Post.Dec.st

(0)
i ; rEnc,i).

D. ct
(b)
st,i = SKE.Enc(kE,i,Post.Dec.st

(b)
i ; rEnc,i).

(f) Setup iterator: (ppst, itrst,0)← Itr.Setup(1λ, 2λ).

(g) Set hardwired values:

i. For i ∈ [t∗], y∗i = yi.

ii. For i ∈ [t∗ + 1],

A. ct∗st,i =

{
ct

(0)
st,i if i < t

ct
(b)
st,i if i ≥ t

B. itr∗st,i = Itr.Iterate(ppst, itr
∗
st,i−1, ct

∗
st,i) where itr∗st,0 = itrst,0.

C. m∗i = (i, ct∗st,i, itr
∗
st,i−1).

(h) Compute state signature keys: Do nothing.

(i) Compute σst,1:

i. (sgkA,1, vkA,1, vkA,1,rej)← SSig.Setup(1λ;PPRF.Eval(KA, 1)).

ii. σst,1 = SSig.Sign(sgkA,1,m
∗
1).

(j) Compute program: P ← iO(Prog3,t,3,[Kinp,KA,KB,KE , ppst,m
∗
t , y
∗
t−1, ct

∗
st,t, y

∗
t , ct

∗
st,t+1]).

(k) Send SKf = (P, ct∗st,1, σst,1, ppst, itrst,0) to A.

7. Encryption Phase 2: For i = t∗ + 1, t∗ + 2, . . . , n:
If the adversary does not make exactly n− t∗ queries during this phase, output ⊥ and halt.

(a) A sends (x
(0)
i , x

(1)
i ) to the challenger.

(b) Post.CT
(b)
i = Post-One-sFE(Post.MSK, i, x

(b)
i ).

(c) Compute ctinp,i:

i. (rE,i, rEnc,i) = PPRF.Eval(KE , i).

ii. kE,i = SKE.Setup(1λ; rE,i).

iii. ctinp,i = SKE.Enc(kE,i,Post.CT
(b)
i ).

(d) Compute σinp,i:

i. (sgkinp,i, vkinp,i, vkinp,i,rej) = SSig.Setup(1λ;PPRF.Eval(Kinp, i)).

ii. σinp,i = SSig.Sign(sgkinp,i, ctinp,i).

(e) Send CTi = (ctinp,i, σinp,i) to A.

8. Output: A sends b′ to the challenger. Output 1 if b = b′, and output 0 else.

Program Prog3,t,3[Kinp,KA,KB,KE , ppst,m
∗
t , y
∗
t−1, ct

∗
st,t, y

∗
t , ct

∗
st,t+1]

(i, ctinp,i, σinp,i, ctst,i, σst,i, itrst,i−1)

1. Verification Step:
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i. Verify i is positive: If i ≤ 0, output ⊥.
ii. Verify input signature:

i. (sgkinp,i, vkinp,i, vkinp,i,rej)← SSig.Setup(1λ;PPRF.Eval(Kinp, i)).

ii. If SSig.Verify(vkinp,i, ctinp,i, σinp,i) = 0, output ⊥.
iii. mi = (i, ctst,i, itrst,i−1).

iv. in-type = ⊥.
v. Verify A type signatures:

i. (sgkA,i, vkA,i, vkA,i,rej)← SSig.Setup(1λ;PPRF.Eval(KA, i)).

ii. If SSig.Verify(vkA,i,mi, σst,i) = 1, in-type = out-type = A.

vi. If in-type = ⊥, output ⊥.

2. Computation Step:

i. If i = t− 1, (yi, ctst,i+1) = (y∗t−1, ct
∗
st,t).

ii. If i = t, (yi, ctst,i+1) = (y∗t , ct
∗
st,t+1).

iii. If i /∈ {t− 1, t},
i. Decrypt input and state:

i. (rE,i, rEnc,i) = PPRF.Eval(KE , i).

ii. kE,i = SKE.Setup(1λ; rE,i).

iii. Post.CTi = SKE.Dec(kE,i, ctinp,i).

iv. Post.Dec.sti = SKE.Dec(kE,i, ctst,i).

ii. Compute output value and next state:

A. (yi,Post.Dec.sti+1) = Post-One-sFE.Dec(Post.Dec.sti,Post.CTi).

iii. Encrypt the new state:

i. (rE,i+1, rEnc,i+1) = PPRF.Eval(KE , i+ 1).

ii. kE,i+1 = SKE.Setup(1λ; rE,i+1).

iii. ctst,i+1 = SKE.Enc(kE,i+1,Post.Dec.sti+1; rEnc,i+1).

3. Authentication Step:

i. itrst,i = Itr.Iterate(ppst, itrst,i−1, (i, ctst,i)).

ii. mi+1 = (i+ 1, ctst,i+1, itrst,i).

iii. If i = t− 1,

i. If mi+1 = m∗t , out-type = A. Else, out-type = B.

iv. Sign A type messages: If out-type = A,

i. (sgkA,i+1, vkA,i+1, vkA,i+1,rej)← SSig.Setup(1λ;PPRF.Eval(KA, i+ 1)).

ii. σst,i+1 = SSig.Sign(sgkA,i+1,mi+1).

v. Sign B type messages: If out-type = B,

i. (sgkB,i+1, vkB,i+1, vkB,i+1,rej)← SSig.Setup(1λ;PPRF.Eval(KB, i+ 1)).

ii. σst,i+1 = SSig.Sign(sgkB,i+1,mi+1).

4. Output (yi, ctst,i+1, σst,i+1, itrst,i).
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Lemma C.49. For all λ ∈ N, all t ∈ [t∗], and all PPT adversaries A,

∆(HybridA3,t,2,9(1
λ),HybridA3,t,3(1

λ)) = 0

Proof. The hybrids are identical.
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Cleaning up the conditional statement. Hardwiring step t took a lot of prepwork and required
us to iterate up through the entire computation. The end result was a conditional statement at
i = t− 1 that sets the out-type = A if and only if the outgoing message mi+1 is equal to our chosen
message m∗t . We now wish to remove this conditional statement, which we can do by going through
all the prepwork hybrids in reverse order.

It would have been nice to reuse this prepwork for hardwiring and un-hardwiring other steps
later in the proof. Unfortunately, it is unclear how to reuse this work as which step it allows you to
hardwire is very dependent on how many initial B type signatures you set up, which is determined
in the beginning of the prepwork. Thus, we simply remove all prepwork after each time we hardwire
or unhardwire a step.

HybridA3,t,4 = HybridA3,t,4,0: We remove the conditional statement at i = t−1 from the obfuscated
program and remove all references to B type signatures. We have highlighted the differences
between this hybrid and HybridA3,t,0 below:

1. Guess Stream Length: (t∗, n)← [TA,λ]× [TA,λ] where TA,λ is the maximum runtime of A
on security parameter λ.

2. Parameters: The adversary A receives security parameter 1λ, and outputs a function size
1ℓF , a state size 1ℓS , an input size 1ℓX , and an output size 1ℓY .

3. Setup:

(a) Kinp,KA,KE ← PPRF.Setup(1λ).

(b) Post.MSK← Post-One-sFE.Setup(1λ, 1ℓF , 1ℓS , 1ℓX , 1ℓY ).

4. Challenge Bit: b← {0, 1}.

5. Encryption Phase 1: For i = 1, 2, . . . , t∗:
If the adversary does not make exactly t∗ queries during this phase, output ⊥ and halt.

(a) A sends (x
(0)
i , x

(1)
i ) to the challenger.

(b) Post.CT
(0)
i = Post-One-sFE(Post.MSK, i, x

(0)
i ).

(c) Post.CT
(b)
i = Post-One-sFE(Post.MSK, i, x

(b)
i ).

(d) Compute input ciphertexts:

i. (rE,i, rEnc,i) = PPRF.Eval(KE , i).

ii. kE,i = SKE.Setup(1λ; rE,i).

iii. ct
(0)
inp,i = SKE.Enc(kE,i,Post.CT

(0)
i ).

iv. ct
(b)
inp,i = SKE.Enc(kE,i,Post.CT

(b)
i ).

(e) Set hardwired values:

i. ct∗inp,i =

{
ct

(0)
inp,i if i < t

ct
(b)
inp,i if i ≥ t

.

(f) Compute input signature keys: Do nothing.

(g) Compute σinp,i:

i. (sgkinp,i, vkinp,i, vkinp,i,rej) = SSig.Setup(1λ;PPRF.Eval(Kinp, i)).

ii. σinp,i = SSig.Sign(sgkinp,i, ct
∗
inp,i).
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(h) Send CTi = (ct∗inp,i, σinp,i) to A.

6. KeyGen:

(a) A sends f to the challenger. Define st1 = ⊥.
(b) Post.Dec.st1 ← Post-One-sFE.KeyGen(Post.MSK, f, st1).

(c) Post.Dec.st
(0)
1 = Post.Dec.st1 and Post.Dec.st

(b)
1 = Post.Dec.st1.

(d) Compute state and output values:

i. For i ∈ [t∗],

A. (yi,Post.Dec.st
(0)
i+1) = Post-One-sFE.Dec(Post.Dec.st

(0)
i ,Post.CT

(0)
i ).

B. (yi,Post.Dec.st
(b)
i+1) = Post-One-sFE.Dec(Post.Dec.st

(b)
i ,Post.CT

(b)
i ).

(e) Compute state ciphertexts:

i. For i ∈ [t∗ + 1],

A. (rE,i, rEnc,i) = PPRF.Eval(KE , i).

B. kE,i = SKE.Setup(1λ; rE,i).

C. ct
(0)
st,i = SKE.Enc(kE,i,Post.Dec.st

(0)
i ; rEnc,i).

D. ct
(b)
st,i = SKE.Enc(kE,i,Post.Dec.st

(b)
i ; rEnc,i).

(f) Setup iterator: (ppst, itrst,0)← Itr.Setup(1λ, 2λ).

(g) Set hardwired values:

i. For i ∈ [t∗], y∗i = yi.

ii. For i ∈ [t∗ + 1],

A. ct∗st,i =

{
ct

(0)
st,i if i < t

ct
(b)
st,i if i ≥ t

B. itr∗st,i = Itr.Iterate(ppst, itr
∗
st,i−1, ct

∗
st,i) where itr∗st,0 = itrst,0.

C. m∗i = (i, ct∗st,i, itr
∗
st,i−1).

(h) Compute state signature keys: Do nothing.

(i) Compute σst,1:

i. (sgkA,1, vkA,1, vkA,1,rej)← SSig.Setup(1λ;PPRF.Eval(KA, 1)).

ii. σst,1 = SSig.Sign(sgkA,1,m
∗
1).

(j) Compute program: P ← iO(Prog3,t,4[Kinp,KA,KE , ppst, y
∗
t−1, ct

∗
st,t, y

∗
t , ct

∗
st,t+1]).

(k) Send SKf = (P, ct∗st,1, σst,1, itrst,0) to A.

7. Encryption Phase 2: For i = t∗ + 1, t∗ + 2, . . . , n:
If the adversary does not make exactly n− t∗ queries during this phase, output ⊥ and halt.

(a) A sends (x
(0)
i , x

(1)
i ) to the challenger.

(b) Post.CT
(b)
i = Post-One-sFE(Post.MSK, i, x

(b)
i ).

(c) Compute ctinp,i:

i. (rE,i, rEnc,i) = PPRF.Eval(KE , i).

ii. kE,i = SKE.Setup(1λ; rE,i).

iii. ctinp,i = SKE.Enc(kE,i,Post.CT
(b)
i ).
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(d) Compute σinp,i:

i. (sgkinp,i, vkinp,i, vkinp,i,rej) = SSig.Setup(1λ;PPRF.Eval(Kinp, i)).

ii. σinp,i = SSig.Sign(sgkinp,i, ctinp,i).

(e) Send CTi = (ctinp,i, σinp,i) to A.

8. Output: A sends b′ to the challenger. Output 1 if b = b′, and output 0 else.

Program Prog3,t,4[Kinp,KA,KE , ppst, y
∗
t−1, ct

∗
st,t, y

∗
t , ct

∗
st,t+1](i, ctinp,i, σinp,i, ctst,i, σst,i, itrst,i−1)

1. Verification Step:

i. Verify i is positive: If i ≤ 0, output ⊥.
ii. Verify input signature:

i. (sgkinp,i, vkinp,i, vkinp,i,rej)← SSig.Setup(1λ;PPRF.Eval(Kinp, i)).

ii. If SSig.Verify(vkinp,i, ctinp,i, σinp,i) = 0, output ⊥.
iii. mi = (i, ctst,i, itrst,i−1).

iv. Verify state signature:

i. (sgkA,i, vkA,i, vkA,i,rej)← SSig.Setup(1λ;PPRF.Eval(KA, i)).

ii. If SSig.Verify(vkA,i,mi, σst,i) = 0, output ⊥.

2. Computation Step:

i. If i = t− 1, (yi, ctst,i+1) = (y∗t−1, ct
∗
st,t).

ii. If i = t, (yi, ctst,i+1) = (y∗t , ct
∗
st,t+1).

iii. If i /∈ {t− 1, t},
i. Decrypt input and state:

i. (rE,i, rEnc,i) = PPRF.Eval(KE , i).

ii. kE,i = SKE.Setup(1λ; rE,i).

iii. Post.CTi = SKE.Dec(kE,i, ctinp,i).

iv. Post.Dec.sti = SKE.Dec(kE,i, ctst,i).

ii. Compute output value and next state:

A. (yi,Post.Dec.sti+1) = Post-One-sFE.Dec(Post.Dec.sti,Post.CTi).

iii. Encrypt the new state:

i. (rE,i+1, rEnc,i+1) = PPRF.Eval(KE , i+ 1).

ii. kE,i+1 = SKE.Setup(1λ; rE,i+1).

iii. ctst,i+1 = SKE.Enc(kE,i+1,Post.Dec.sti+1; rEnc,i+1).

3. Authentication Step:

i. itrst,i = Itr.Iterate(ppst, itrst,i−1, (i, ctst,i)).

ii. mi+1 = (i+ 1, ctst,i+1, itrst,i).

iii. Sign the new state:
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i. (sgkA,i+1, vkA,i+1, vkA,i+1,rej)← SSig.Setup(1λ;PPRF.Eval(KA, i+ 1)).

ii. σst,i+1 = SSig.Sign(sgkA,i+1,mi+1).

4. Output (yi, ctst,i+1, σst,i+1, itrst,i).

Lemma C.50. If iO is a secure indistinguishability obfuscation scheme, PPRF is a puncturable
pseudorandom function, SSig is a splittable signature scheme, and Itr is a cryptographic iterator,
then for all λ ∈ N, all t ∈ [t∗] and all PPT adversaries A,

∆(HybridA3,t,3(1
λ),HybridA3,t,4(1

λ)) ≤ negl(1λ)

Proof. The proof is essentially the same as the proof of indistinguishability between HybridA3,t,0
(which is similar to HybridA3,t,4) and HybridA3,t,2 (which is similar to HybridA3,t,3).

The only difference between hybrids (HybridA3,t,0,HybridA3,t,2) and hybrids (HybridA3,t,4,HybridA3,t,3)
is in the way they compute (yi, ctst,i+1) for i = t in the computation step of the obfuscated program.
In the former hybrids, they compute (yi, ctst,i+1) for i = t by decrypting, computing the function,
and re-encrypting. In the latter hybrids, they set (yi, ctst,i+1) for i = t to the hardwired values
(y∗t , ct

∗
st,t+1).

However, this difference does not affect the progression of the proof. If we simply change all the
intermediate hybrids of the previous proof so that they compute (yi, ctst,i+1) for i = t as in hybrids
(HybridA3,t,4,HybridA3,t,3), then we get a proof for this lemma. We do not even have to modify
any of the proofs of indistinguishability between the intermediate hybrids.
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Replacing the tth encrypted stream values. Now that the obfuscated program has the output
values for steps t − 1 and t hardwired into the program, it no longer needs to know the SKE keys
and randomness at index t. Thus, we can swap the tth input ciphertext and tth state ciphertext of
x(b) for those of x(0).

HybridA3,t,4,1: We puncture KE at t. This hybrid is the same as the previous hybrid except that

• During Encryption Phase 1, we make changes to the following steps:

5d. Compute input ciphertexts:

1. KE [t] = PPRF.Punc(KE , t).

2. If i = t,

(a) (rE,t, rEnc,t) = PPRF.Eval(KE , t).

(b) kE,t = SKE.Setup(1λ; rE,t).

(c) ctinp,i = SKE.Enc(kE,t,Post.CT
(b)
i ).

3. If i ̸= t,

(a) (rE,i, rEnc,i) = PPRF.Eval(KE [t], i).

(b) kE,i = SKE.Setup(1λ; rE,i).

(c) ct
(0)
inp,i = SKE.Enc(kE,i,Post.CT

(0)
i ).

(d) ct
(b)
inp,i = SKE.Enc(kE,i,Post.CT

(b)
i ).

5e. Set hardwired values:

1. ct∗inp,i =


ct

(0)
inp,i if i < t

ctinp,i if i = t

ct
(b)
inp,i if i > t

.

• During KeyGen, we make changes to the following steps:

6e. Compute state ciphertexts:

1. For i ∈ [t∗ + 1],

(a) If i = t,

i. ctst,i = SKE.Enc(kE,t,Post.Dec.st
(b)
i ; rEnc,t).

(b) If i ̸= t,

i. (rE,i, rEnc,i) = PPRF.Eval(KE [t], i).

ii. kE,i = SKE.Setup(1λ; rE,i).

iii. ct
(0)
st,i = SKE.Enc(kE,i,Post.Dec.st

(0)
i ; rEnc,i).

iv. ct
(b)
st,i = SKE.Enc(kE,i,Post.Dec.st

(b)
i ; rEnc,i).

6g. Set hardwired values:

1. For i ∈ [t∗], y∗i = yi.

2. For i ∈ [t∗ + 1],

(a) ct∗st,i =


ct

(0)
st,i if i < t

ctst,i if i = t

ct
(b)
st,i if i > t
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(b) itr∗st,i = Itr.Iterate(ppst, itr
∗
st,i−1, ct

∗
st,i) where itr∗st,0 = itrst,0.

(c) m∗i = (i, ct∗st,i, itr
∗
st,i−1).

6j. Compute program: P ← iO(Prog3,t,4,1[Kinp,KA,KE [t], ppst, y
∗
t−1, ct

∗
st,t, y

∗
t , ct

∗
st,t+1]).

• During Encryption Phase 2, we make changes to the following steps:

7c. Compute ctinp,i:

1. (rE,i, rEnc,i) = PPRF.Eval(KE [t], i).

2. kE,i = SKE.Setup(1λ; rE,i).

3. ctinp,i = SKE.Enc(kE,i,Post.CT
(b)
i ).

Program Prog3,t,4[Kinp,KA,KE [t], ppst, y
∗
t−1, ct

∗
st,t, y

∗
t , ct

∗
st,t+1](i, ctinp,i, σinp,i, ctst,i, σst,i, itrst,i−1)

1. Verification Step:

i. Verify i is positive: If i ≤ 0, output ⊥.
ii. Verify input signature:

i. (sgkinp,i, vkinp,i, vkinp,i,rej)← SSig.Setup(1λ;PPRF.Eval(Kinp, i)).

ii. If SSig.Verify(vkinp,i, ctinp,i, σinp,i) = 0, output ⊥.
iii. mi = (i, ctst,i, itrst,i−1).

iv. Verify state signature:

i. (sgkA,i, vkA,i, vkA,i,rej)← SSig.Setup(1λ;PPRF.Eval(KA, i)).

ii. If SSig.Verify(vkA,i,mi, σst,i) = 0, output ⊥.

2. Computation Step:

i. If i = t− 1, (yi, ctst,i+1) = (y∗t−1, ct
∗
st,t).

ii. If i = t, (yi, ctst,i+1) = (y∗t , ct
∗
st,t+1).

iii. If i /∈ {t− 1, t},
i. Decrypt input and state:

i. (rE,i, rEnc,i) = PPRF.Eval(KE [t], i).

ii. kE,i = SKE.Setup(1λ; rE,i).

iii. Post.CTi = SKE.Dec(kE,i, ctinp,i).

iv. Post.Dec.sti = SKE.Dec(kE,i, ctst,i).

ii. Compute output value and next state:

A. (yi,Post.Dec.sti+1) = Post-One-sFE.Dec(Post.Dec.sti,Post.CTi).

iii. Encrypt the new state:

i. (rE,i+1, rEnc,i+1) = PPRF.Eval(KE [t], i+ 1).

ii. kE,i+1 = SKE.Setup(1λ; rE,i+1).

iii. ctst,i+1 = SKE.Enc(kE,i+1,Post.Dec.sti+1; rEnc,i+1).

3. Authentication Step:

i. itrst,i = Itr.Iterate(ppst, itrst,i−1, (i, ctst,i)).
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ii. mi+1 = (i+ 1, ctst,i+1, itrst,i).

iii. Sign the new state:

i. (sgkA,i+1, vkA,i+1, vkA,i+1,rej)← SSig.Setup(1λ;PPRF.Eval(KA, i+ 1)).

ii. σst,i+1 = SSig.Sign(sgkA,i+1,mi+1).

4. Output (yi, ctst,i+1, σst,i+1, itrst,i).

Lemma C.51. If iO is a secure indistinguishability obfuscation scheme, then for all λ ∈ N, all
t ∈ [t∗] and all PPT adversaries A,

∆(HybridA3,t,4,0(1
λ),HybridA3,t,4,1(1

λ)) ≤ negl(λ)

Proof. By correctness of puncturing,

PPRF.Eval(KE [t], v) = PPRF.Eval(KE , v) for any v ̸= t.

Observe that we never evaluate punctured keys on their punctured points. This is true even in
Encryption Phase 2 since in that phase, we have i ≥ t∗ + 1 > t. It is also true within the
obfuscated program since we only need to encrypt or decrypt using KE [t] on steps i /∈ {t − 1, t}.
Furthermore, ct∗inp,t and ct∗st,t are set to the same values as in the previous hybrid.

Thus, Prog3,t,4,0 and Prog3,t,4,1 have the same input/output behavior. For the same reasons,
apart from the obfuscated programs, the hybrids are identical.

Thus, by a straightforward reduction to the security of iO, the hybrids are indistinguishable.
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HybridA3,t,4,2: We change rE,t and rEnc,t to random values. This hybrid is the same as the previous
hybrid except that

• During Encryption Phase 1, we make changes to the following steps:

5d. Compute input ciphertexts:

1. KE [t] = PPRF.Punc(KE , t).

2. If i = t,

(a) (rE,t, rEnc,t)← {0, 1}λ × {0, 1}λ.
(b) kE,t = SKE.Setup(1λ; rE,t).

(c) ctinp,i = SKE.Enc(kE,i,Post.CT
(b)
i ).

3. If i ̸= t,

(a) (rE,i, rEnc,i) = PPRF.Eval(KE [t], i).

(b) kE,i = SKE.Setup(1λ; rE,i).

(c) ct
(0)
inp,i = SKE.Enc(kE,i,Post.CT

(0)
i ).

(d) ct
(b)
inp,i = SKE.Enc(kE,i,Post.CT

(b)
i ).

Lemma C.52. If PPRF is a puncturable pseudorandom function, then for all λ ∈ N, all t ∈ [t∗]
and all PPT adversaries A,

∆(HybridA3,t,4,1(1
λ),HybridA3,t,4,2(1

λ)) ≤ negl(λ)

Proof. This follows by a reduction to the selective pseudorandomness at punctured points property
of our PPRF.

Observe that we can run both hybrids without knowingKE as long as we are given (KE [t], rE,t, rEnc,t).
In the reduction, without computing KE , we run HybridA3,t,4,2 up to just before step 5d.2 of
Encryption Phase 1. Then, we receive (KE [t], rE,t, rEnc,t) from the PPRF challenger where
(rE,t, rEnc,t) is either a random value or equal to PPRF.Eval(KE , t). We use this randomness to
compute ctinp,t now (and to compute ctst,t later in the hybrid). We then run the rest of HybridA3,t,4,2
starting from step 5d.3 of Encryption Phase 1. Observe that if (rE,t, rEnc,t) was a random value
then we exactly emulateHybridA3,t,4,2, and if (rE,t, rEnc,t) was equal to PPRF.Eval(KE , t) we emulate

HybridA3,t,4,1. Thus, by PPRF security, the outputs of these hybrids must be indistinguishable.
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HybridA3,t,4,3: We change the tth ciphertext to an encryption of stream x(0) instead of stream x(b).
This hybrid is the same as the previous hybrid except that

• During Encryption Phase 1, we make changes to the following steps:

5d. Compute input ciphertexts:

1. KE [t] = PPRF.Punc(KE , t).

2. If i = t,

(a) (rE,t, rEnc,t)← {0, 1}λ × {0, 1}λ.
(b) kE,t = SKE.Setup(1λ; rE,t).

(c) ctinp,i = SKE.Enc(kE,i,Post.CT
(0)
i ).

3. If i ̸= t,

(a) (rE,i, rEnc,i) = PPRF.Eval(KE [t], i).

(b) kE,i = SKE.Setup(1λ; rE,i).

(c) ct
(0)
inp,i = SKE.Enc(kE,i,Post.CT

(0)
i ).

(d) ct
(b)
inp,i = SKE.Enc(kE,i,Post.CT

(b)
i ).

• During KeyGen, we make changes to the following steps:

6e. Compute state ciphertexts:

1. For i ∈ [t∗ + 1],

(a) If i = t,

i. ctst,i = SKE.Enc(kE,t,Post.Dec.st
(0)
i ; rEnc,t).

(b) If i ̸= t,

i. (rE,i, rEnc,i) = PPRF.Eval(KE [t], i).

ii. kE,i = SKE.Setup(1λ; rE,i).

iii. ct
(0)
st,i = SKE.Enc(kE,i,Post.Dec.st

(0)
i ; rEnc,i).

iv. ct
(b)
st,i = SKE.Enc(kE,i,Post.Dec.st

(b)
i ; rEnc,i).

Lemma C.53. If SKE is a secure encryption scheme, then for all λ ∈ N, all t ∈ [t∗] and all PPT
adversaries A,

∆(HybridA3,t,4,2(1
λ),HybridA3,t,4,3(1

λ)) ≤ negl(λ)

Proof. This follows by a reduction to the security of SKE.
Observe that we can run both hybrids without knowing (rE,t, rEnc,t, kE,t) as long as we are given

(ctinp,t, ctst,t). In the reduction, we run HybridA3,t,4,3 up to just before step 5d.2 of Encryption

Phase 1. Then, we send challenge message pair (Post.CT
(b)
i ,Post.CT

(0)
i ) to the SKE challenger

and receive an encryption ct1 of one of the two messages. We set ctinp,t = ct1. Next, we run
HybridA3,t,4,3 starting from step 5d.3 of Encryption Phase 1 to just before step 6e of KeyGen.

We then send another challenge message pair (Post.Dec.st
(b)
i ,Post.Dec.st

(0)
i ) to the SKE challenger

and receive an encryption ct2 of one of the two messages. We set ctst,t = ct2. We also run the
parts of step 6e of KeyGen that are not contained within the i = t branch. We then run the rest
of HybridA3,t,4,3 starting from step 6f of KeyGen. Observe that if (ct1, ct2) were encryptions of the

first message of each set (i.e. (Post.CT
(b)
i ,Post.Dec.st

(b)
i )) then we exactly emulate HybridA3,t,4,2,

and if (ct1, ct2) were encryptions of the second message of each set (i.e. (Post.CT
(0)
i ,Post.Dec.st

(0)
i ))

then we exactly emulate HybridA3,t,4,3. Thus, by SKE security, the outputs of these hybrids must
be indistinguishable.
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HybridA3,t,4,4: We change (rE,t, rEnc,t) back to PPRF evaluations. This hybrid is the same as the
previous hybrid except that

• During Encryption Phase 1, we make changes to the following steps:

5d. Compute input ciphertexts:

1. KE [t] = PPRF.Punc(KE , t).

2. If i = t,

(a) (rE,t, rEnc,t)← PPRF.Eval(KE , t).

(b) kE,t = SKE.Setup(1λ; rE,t).

(c) ctinp,i = SKE.Enc(kE,i,Post.CT
(0)
i ).

3. If i ̸= t,

(a) (rE,i, rEnc,i) = PPRF.Eval(KE [t], i).

(b) kE,i = SKE.Setup(1λ; rE,i).

(c) ct
(0)
inp,i = SKE.Enc(kE,i,Post.CT

(0)
i ).

(d) ct
(b)
inp,i = SKE.Enc(kE,i,Post.CT

(b)
i ).

Lemma C.54. If PPRF is a puncturable pseudorandom function, then for all λ ∈ N, all t ∈ [t∗]
and all PPT adversaries A,

∆(HybridA3,t,4,3(1
λ),HybridA3,t,4,4(1

λ)) ≤ negl(λ)

Proof. This follows by a reduction to the selective pseudorandomness at punctured points property
of our PPRF. The reduction is essentially the same as that of Lemma C.52 as it is still the case
that we can run both hybrids without knowing KE as long as we are given (KE [t], rE,t, rEnc,t).
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HybridA3,t,4,5: We no longer puncture KE at t. This hybrid is the same as the previous hybrid
except that

• During Encryption Phase 1, we make changes to the following steps:

5d. Compute input ciphertexts:

1. KE [t] = PPRF.Punc(KE , t).

2. If i = t,

(a) (rE,t, rEnc,t) = PPRF.Eval(KE , t).

(b) kE,t = SKE.Setup(1λ; rE,t).

(c) ctinp,i = SKE.Enc(kE,t,Post.CT
(0)
i ).

3. If i ̸= t,

(a) (rE,i, rEnc,i) = PPRF.Eval(KE , i).

(b) kE,i = SKE.Setup(1λ; rE,i).

(c) ct
(0)
inp,i = SKE.Enc(kE,i,Post.CT

(0)
i ).

(d) ct
(b)
inp,i = SKE.Enc(kE,i,Post.CT

(b)
i ).

5e. Set hardwired values:

1. ct∗inp,i =

{
ct

(0)
inp,i if i < t+ 1

ct
(b)
inp,i if i ≥ t+ 1

.

• During KeyGen, we make changes to the following steps:

6e. Compute state ciphertexts:

1. For i ∈ [t∗ + 1],

(a) If i = t,

i. ctst,i = SKE.Enc(kE,t,Post.Dec.st
(0)
i ; rEnc,t).

(b) If i ̸= t,

i. (rE,i, rEnc,i) = PPRF.Eval(KE , i).

ii. kE,i = SKE.Setup(1λ; rE,i).

iii. ct
(0)
st,i = SKE.Enc(kE,i,Post.Dec.st

(0)
i ; rEnc,i).

iv. ct
(b)
st,i = SKE.Enc(kE,i,Post.Dec.st

(b)
i ; rEnc,i).

6g. Set hardwired values:

1. For i ∈ [t∗], y∗i = yi.

2. For i ∈ [t∗ + 1],

(a) ct∗st,i =

{
ct

(0)
st,i if i < t+ 1

ct
(b)
st,i if i ≥ t+ 1

(b) itr∗st,i = Itr.Iterate(ppst, itr
∗
st,i−1, ct

∗
st,i) where itr∗st,0 = itrst,0.

(c) m∗i = (i, ct∗st,i, itr
∗
st,i−1).

6j. Compute program: P ← iO(Prog3,t,4,5[Kinp,KA,KE , ppst, y
∗
t−1, ct

∗
st,t, y

∗
t , ct

∗
st,t+1]).

• During Encryption Phase 2, we make changes to the following steps:

7c. Compute ctinp,i:
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1. (rE,i, rEnc,i) = PPRF.Eval(KE , i).

2. kE,i = SKE.Setup(1λ; rE,i).

3. ctinp,i = SKE.Enc(kE,i,Post.CT
(b)
i ).

Program Prog3,t,4[Kinp,KA,KE , ppst, y
∗
t−1, ct

∗
st,t, y

∗
t , ct

∗
st,t+1](i, ctinp,i, σinp,i, ctst,i, σst,i, itrst,i−1)

1. Verification Step:

i. Verify i is positive: If i ≤ 0, output ⊥.
ii. Verify input signature:

i. (sgkinp,i, vkinp,i, vkinp,i,rej)← SSig.Setup(1λ;PPRF.Eval(Kinp, i)).

ii. If SSig.Verify(vkinp,i, ctinp,i, σinp,i) = 0, output ⊥.
iii. mi = (i, ctst,i, itrst,i−1).

iv. Verify state signature:

i. (sgkA,i, vkA,i, vkA,i,rej)← SSig.Setup(1λ;PPRF.Eval(KA, i)).

ii. If SSig.Verify(vkA,i,mi, σst,i) = 0, output ⊥.

2. Computation Step:

i. If i = t− 1, (yi, ctst,i+1) = (y∗t−1, ct
∗
st,t).

ii. If i = t, (yi, ctst,i+1) = (y∗t , ct
∗
st,t+1).

iii. If i /∈ {t− 1, t},
i. Decrypt input and state:

i. (rE,i, rEnc,i) = PPRF.Eval(KE , i).

ii. kE,i = SKE.Setup(1λ; rE,i).

iii. Post.CTi = SKE.Dec(kE,i, ctinp,i).

iv. Post.Dec.sti = SKE.Dec(kE,i, ctst,i).

ii. Compute output value and next state:

A. (yi,Post.Dec.sti+1) = Post-One-sFE.Dec(Post.Dec.sti,Post.CTi).

iii. Encrypt the new state:

i. (rE,i+1, rEnc,i+1) = PPRF.Eval(KE , i+ 1).

ii. kE,i+1 = SKE.Setup(1λ; rE,i+1).

iii. ctst,i+1 = SKE.Enc(kE,i+1,Post.Dec.sti+1; rEnc,i+1).

3. Authentication Step:

i. itrst,i = Itr.Iterate(ppst, itrst,i−1, (i, ctst,i)).

ii. mi+1 = (i+ 1, ctst,i+1, itrst,i).

iii. Sign the new state:

i. (sgkA,i+1, vkA,i+1, vkA,i+1,rej)← SSig.Setup(1λ;PPRF.Eval(KA, i+ 1)).

ii. σst,i+1 = SSig.Sign(sgkA,i+1,mi+1).

4. Output (yi, ctst,i+1, σst,i+1, itrst,i).

204



Lemma C.55. If iO is a secure indistinguishability obfuscation scheme, then for all λ ∈ N, all
t ∈ [t∗] and all PPT adversaries A,

∆(HybridA3,t,4,4(1
λ),HybridA3,t,4,5(1

λ)) ≤ negl(λ)

Proof. By correctness of puncturing,

PPRF.Eval(KE [t], v) = PPRF.Eval(KE , v) for any v ̸= t.

Observe that the previous hybrid never evaluate punctured keys on their punctured points. This
was true even in Encryption Phase 2 since in that phase, we have i ≥ t∗+1 > t. It was also true
within the obfuscated program since we only needed to encrypt or decrypt using KE [t] on steps
i /∈ {t− 1, t}. Furthermore, ct∗inp,t and ct∗st,t from the previous hybrid are set to the same values as
in the current hybrid.

Thus, Prog3,t,4,4 and Prog3,t,4,5 have the same input/output behavior. For the same reasons,
apart from the obfuscated programs, the hybrids are identical.

Thus, by a straightforward reduction to the security of iO, the hybrids are indistinguishable.
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HybridA3,t,5: This hybrid is identical to HybridA3,t,4,5. Observe that we now encrypt stream x(0)

for i < t+ 1. We have highlighted the differences between this hybrid and HybridA3,t,0 below:

1. Guess Stream Length: (t∗, n)← [TA,λ]× [TA,λ] where TA,λ is the maximum runtime of A
on security parameter λ.

2. Parameters: The adversary A receives security parameter 1λ, and outputs a function size
1ℓF , a state size 1ℓS , an input size 1ℓX , and an output size 1ℓY .

3. Setup:

(a) Kinp,KA,KE ← PPRF.Setup(1λ).

(b) Post.MSK← Post-One-sFE.Setup(1λ, 1ℓF , 1ℓS , 1ℓX , 1ℓY ).

4. Challenge Bit: b← {0, 1}.

5. Encryption Phase 1: For i = 1, 2, . . . , t∗:
If the adversary does not make exactly t∗ queries during this phase, output ⊥ and halt.

(a) A sends (x
(0)
i , x

(1)
i ) to the challenger.

(b) Post.CT
(0)
i = Post-One-sFE(Post.MSK, i, x

(0)
i ).

(c) Post.CT
(b)
i = Post-One-sFE(Post.MSK, i, x

(b)
i ).

(d) Compute input ciphertexts:

i. (rE,i, rEnc,i) = PPRF.Eval(KE , i).

ii. kE,i = SKE.Setup(1λ; rE,i).

iii. ct
(0)
inp,i = SKE.Enc(kE,i,Post.CT

(0)
i ).

iv. ct
(b)
inp,i = SKE.Enc(kE,i,Post.CT

(b)
i ).

(e) Set hardwired values:

i. ct∗inp,i =

{
ct

(0)
inp,i if i < t+ 1

ct
(b)
inp,i if i ≥ t+ 1

.

(f) Compute input signature keys: Do nothing. (Will be added in a later hybrid.)

(g) Compute σinp,i:

i. (sgkinp,i, vkinp,i, vkinp,i,rej) = SSig.Setup(1λ;PPRF.Eval(Kinp, i)).

ii. σinp,i = SSig.Sign(sgkinp,i, ct
∗
inp,i).

(h) Send CTi = (ct∗inp,i, σinp,i) to A.

6. KeyGen:

(a) A sends f to the challenger. Define st1 = ⊥.
(b) Post.Dec.st1 ← Post-One-sFE.KeyGen(Post.MSK, f, st1).

(c) Post.Dec.st
(0)
1 = Post.Dec.st1 and Post.Dec.st

(b)
1 = Post.Dec.st1.

(d) Compute state and output values:

i. For i ∈ [t∗],

A. (yi,Post.Dec.st
(0)
i+1) = Post-One-sFE.Dec(Post.Dec.st

(0)
i ,Post.CT

(0)
i ).
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B. (yi,Post.Dec.st
(b)
i+1) = Post-One-sFE.Dec(Post.Dec.st

(b)
i ,Post.CT

(b)
i ).

(e) Compute state ciphertexts:

i. For i ∈ [t∗ + 1],

A. (rE,i, rEnc,i) = PPRF.Eval(KE , i).

B. kE,i = SKE.Setup(1λ; rE,i).

C. ct
(0)
st,i = SKE.Enc(kE,i,Post.Dec.st

(0)
i ; rEnc,i).

D. ct
(b)
st,i = SKE.Enc(kE,i,Post.Dec.st

(b)
i ; rEnc,i).

(f) Setup iterator: (ppst, itrst,0)← Itr.Setup(1λ, 2λ).

(g) Set hardwired values:

i. For i ∈ [t∗], y∗i = yi.

ii. For i ∈ [t∗ + 1],

A. ct∗st,i =

{
ct

(0)
st,i if i < t+ 1

ct
(b)
st,i if i ≥ t+ 1

B. itr∗st,i = Itr.Iterate(ppst, itr
∗
st,i−1, ct

∗
st,i) where itr∗st,0 = itrst,0.

C. m∗i = (i, ct∗st,i, itr
∗
st,i−1).

(h) Compute state signature keys: Do nothing. (Will be added in a later hybrid.)

(i) Compute σst,1:

i. (sgkA,1, vkA,1, vkA,1,rej)← SSig.Setup(1λ;PPRF.Eval(KA, 1)).

ii. σst,1 = SSig.Sign(sgkA,1,m
∗
1).

(j) Compute program: P ← iO(Prog3,t,5[Kinp,KA,KE , ppst, y
∗
t−1, ct

∗
st,t, y

∗
t , ct

∗
st,t+1]).

(k) Send SKf = (P, ct∗st,1, σst,1, itrst,0) to A.

7. Encryption Phase 2: For i = t∗ + 1, t∗ + 2, . . . , n:
If the adversary does not make exactly n− t∗ queries during this phase, output ⊥ and halt.

(a) A sends (x
(0)
i , x

(1)
i ) to the challenger.

(b) Post.CT
(b)
i = Post-One-sFE(Post.MSK, i, x

(b)
i ).

(c) Compute ctinp,i:

i. (rE,i, rEnc,i) = PPRF.Eval(KE , i).

ii. kE,i = SKE.Setup(1λ; rE,i).

iii. ctinp,i = SKE.Enc(kE,i,Post.CT
(b)
i ).

(d) Compute σinp,i:

i. (sgkinp,i, vkinp,i, vkinp,i,rej) = SSig.Setup(1λ;PPRF.Eval(Kinp, i)).

ii. σinp,i = SSig.Sign(sgkinp,i, ctinp,i).

(e) Send CTi = (ctinp,i, σinp,i) to A.

8. Output: A sends b′ to the challenger. Output 1 if b = b′, and output 0 else.

Program Prog3,t,5[Kinp,KA,KE , ppst, y
∗
t−1, ct

∗
st,t, y

∗
t , ct

∗
st,t+1](i, ctinp,i, σinp,i, ctst,i, σst,i, itrst,i−1)

1. Verification Step:

i. Verify i is positive: If i ≤ 0, output ⊥.

207



ii. Verify input signature:

i. (sgkinp,i, vkinp,i, vkinp,i,rej)← SSig.Setup(1λ;PPRF.Eval(Kinp, i)).

ii. If SSig.Verify(vkinp,i, ctinp,i, σinp,i) = 0, output ⊥.
iii. mi = (i, ctst,i, itrst,i−1).

iv. Verify state signature:

i. (sgkA,i, vkA,i, vkA,i,rej)← SSig.Setup(1λ;PPRF.Eval(KA, i)).

ii. If SSig.Verify(vkA,i,mi, σst,i) = 0, output ⊥.

2. Computation Step:

i. If i = t− 1, (yi, ctst,i+1) = (y∗t−1, ct
∗
st,t).

ii. If i = t, (yi, ctst,i+1) = (y∗t , ct
∗
st,t+1).

iii. If i /∈ {t− 1, t},
i. Decrypt input and state:

i. (rE,i, rEnc,i) = PPRF.Eval(KE , i).

ii. kE,i = SKE.Setup(1λ; rE,i).

iii. Post.CTi = SKE.Dec(kE,i, ctinp,i).

iv. Post.Dec.sti = SKE.Dec(kE,i, ctst,i).

ii. Compute output value and next state:

A. (yi,Post.Dec.sti+1) = Post-One-sFE.Dec(Post.Dec.sti,Post.CTi).

iii. Encrypt the new state:

i. (rE,i+1, rEnc,i+1) = PPRF.Eval(KE , i+ 1).

ii. kE,i+1 = SKE.Setup(1λ; rE,i+1).

iii. ctst,i+1 = SKE.Enc(kE,i+1,Post.Dec.sti+1; rEnc,i+1).

3. Authentication Step:

i. itrst,i = Itr.Iterate(ppst, itrst,i−1, (i, ctst,i)).

ii. mi+1 = (i+ 1, ctst,i+1, itrst,i).

iii. Sign the new state:

i. (sgkA,i+1, vkA,i+1, vkA,i+1,rej)← SSig.Setup(1λ;PPRF.Eval(KA, i+ 1)).

ii. σst,i+1 = SSig.Sign(sgkA,i+1,mi+1).

4. Output (yi, ctst,i+1, σst,i+1, itrst,i).

Lemma C.56. For all λ ∈ N, all t ∈ [t∗], and all PPT adversaries A,

∆(HybridA3,t,4,5(1
λ),HybridA3,t,5(1

λ)) = 0

Proof. The hybrids are identical.
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Preparing to un-hardwire step t − 1. We now want to remove the hardwiring of step t − 1
within the obfuscated program. To do so, we will use the same tools we used to hardwire step
t. First, we will add in B type signatures up to step t − 2. Then, we will iterate up through the
computation to get a conditional statement at step t − 2 that sets the out-type = A if and only if
the outgoing message mi+1 is equal to our chosen message m∗t−1.

HybridA3,t,6: We add in B type signatures up to step t − 2. We have highlighted the differences

between this hybrid and HybridA3,t,1 below. This hybrid is the same as the previous hybrid except
that

• We compute Setup as

3. Setup:

(a) Kinp,KA,KB,KE ← PPRF.Setup(1λ).

(b) Post.MSK← Post-One-sFE.Setup(1λ, 1ℓF , 1ℓS , 1ℓX , 1ℓY ).

• During KeyGen, we make changes to the following steps:

6j. Compute program: P ← iO(Prog3,t,6[Kinp,KA,KB,KE , ppst, y
∗
t−1, ct

∗
st,t, y

∗
t , ct

∗
st,t+1]).

Program
Prog3,t,6[Kinp,KA,KB,KE , ppst, y

∗
t−1, ct

∗
st,t, y

∗
t , ct

∗
st,t+1](i, ctinp,i, σinp,i, ctst,i, σst,i, itrst,i−1)

1. Verification Step:

i. Verify i is positive: If i ≤ 0, output ⊥.
ii. Verify input signature:

i. (sgkinp,i, vkinp,i, vkinp,i,rej)← SSig.Setup(1λ;PPRF.Eval(Kinp, i)).

ii. If SSig.Verify(vkinp,i, ctinp,i, σinp,i) = 0, output ⊥.
iii. mi = (i, ctst,i, itrst,i−1).

iv. in-type = ⊥.
v. Verify A type signatures:

i. (sgkA,i, vkA,i, vkA,i,rej)← SSig.Setup(1λ;PPRF.Eval(KA, i)).

ii. If SSig.Verify(vkA,i,mi, σst,i) = 1, in-type = out-type = A.

vi. Verify B type signatures:

i. If in-type ̸= A and 1 ≤ i ≤ t− 2,

A. (sgkB,i, vkB,i, vkB,i,rej)← SSig.Setup(1λ;PPRF.Eval(KB, i)).

B. If SSig.Verify(vkB,i,mi, σst,i) = 1, in-type = out-type = B.

vii. If in-type = ⊥, output ⊥.

2. Computation Step:

i. If i = t− 1, (yi, ctst,i+1) = (y∗t−1, ct
∗
st,t).

ii. If i = t, (yi, ctst,i+1) = (y∗t , ct
∗
st,t+1).

iii. If i /∈ {t− 1, t},
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i. Decrypt input and state:

i. (rE,i, rEnc,i) = PPRF.Eval(KE , i).

ii. kE,i = SKE.Setup(1λ; rE,i).

iii. Post.CTi = SKE.Dec(kE,i, ctinp,i).

iv. Post.Dec.sti = SKE.Dec(kE,i, ctst,i).

ii. Compute output value and next state:

A. (yi,Post.Dec.sti+1) = Post-One-sFE.Dec(Post.Dec.sti,Post.CTi).

iii. Encrypt the new state:

i. (rE,i+1, rEnc,i+1) = PPRF.Eval(KE , i+ 1).

ii. kE,i+1 = SKE.Setup(1λ; rE,i+1).

iii. ctst,i+1 = SKE.Enc(kE,i+1,Post.Dec.sti+1; rEnc,i+1).

3. Authentication Step:

i. itrst,i = Itr.Iterate(ppst, itrst,i−1, (i, ctst,i)).

ii. mi+1 = (i+ 1, ctst,i+1, itrst,i).

iii. Sign A type messages: If out-type = A,

i. (sgkA,i+1, vkA,i+1, vkA,i+1,rej)← SSig.Setup(1λ;PPRF.Eval(KA, i+ 1)).

ii. σst,i+1 = SSig.Sign(sgkA,i+1,mi+1).

iv. Sign B type messages: If out-type = B,

i. (sgkB,i+1, vkB,i+1, vkB,i+1,rej)← SSig.Setup(1λ;PPRF.Eval(KB, i+ 1)).

ii. σst,i+1 = SSig.Sign(sgkB,i+1,mi+1).

4. Output (yi, ctst,i+1, σst,i+1, itrst,i).

Lemma C.57. If iO is a secure indistinguishability obfuscation scheme, PPRF is a puncturable
pseudorandom function, and SSig is a splittable signature scheme, then for all λ ∈ N, all t ∈ [t∗]
and all PPT adversaries A,

∆(HybridA3,t,5(1
λ),HybridA3,t,6(1

λ)) ≤ negl(1λ)

Proof. The proof is almost the same as the proof of indistinguishability between HybridA3,t,0 (which

is similar to HybridA3,t,5) and HybridA3,t,1 (which is similar to HybridA3,t,6).
The only differences are that

1. We only add in B type signatures up to step t − 2 (as opposed to t − 1). The proof can be
easily modified to account for this change. We just do one fewer iteration.

2. We compute different values at step i = t both within and outside of the obfuscated program.
This difference does not affect the proof as the necessary hybrids are only concerned with
values up to i ≤ t− 1.

Thus, essentially the same proof can be used for this lemma.

210



HybridA3,t,7 = HybridA3,t,7,0: We have removed the B type verification branch in the obfuscated
program. Furthermore, at step t− 2, we set out-type = A if and only if the outgoing message mi+1

is equal to our chosen message m∗t−1. We have highlighted the differences between this hybrid and

HybridA3,t,2.

1. Guess Stream Length: (t∗, n)← [TA,λ]× [TA,λ] where TA,λ is the maximum runtime of A
on security parameter λ.

2. Parameters: The adversary A receives security parameter 1λ, and outputs a function size
1ℓF , a state size 1ℓS , an input size 1ℓX , and an output size 1ℓY .

3. Setup:

(a) Kinp,KA,KB,KE ← PPRF.Setup(1λ).

(b) Post.MSK← Post-One-sFE.Setup(1λ, 1ℓF , 1ℓS , 1ℓX , 1ℓY ).

4. Challenge Bit: b← {0, 1}.

5. Encryption Phase 1: For i = 1, 2, . . . , t∗:
If the adversary does not make exactly t∗ queries during this phase, output ⊥ and halt.

(a) A sends (x
(0)
i , x

(1)
i ) to the challenger.

(b) Post.CT
(0)
i = Post-One-sFE(Post.MSK, i, x

(0)
i ).

(c) Post.CT
(b)
i = Post-One-sFE(Post.MSK, i, x

(b)
i ).

(d) Compute input ciphertexts:

i. (rE,i, rEnc,i) = PPRF.Eval(KE , i).

ii. kE,i = SKE.Setup(1λ; rE,i).

iii. ct
(0)
inp,i = SKE.Enc(kE,i,Post.CT

(0)
i ).

iv. ct
(b)
inp,i = SKE.Enc(kE,i,Post.CT

(b)
i ).

(e) Set hardwired values:

i. ct∗inp,i =

{
ct

(0)
inp,i if i < t+ 1

ct
(b)
inp,i if i ≥ t+ 1

.

(f) Compute input signature keys: Do nothing.

(g) Compute σinp,i:

i. (sgkinp,i, vkinp,i, vkinp,i,rej) = SSig.Setup(1λ;PPRF.Eval(Kinp, i)).

ii. σinp,i = SSig.Sign(sgkinp,i, ct
∗
inp,i).

(h) Send CTi = (ct∗inp,i, σinp,i) to A.

6. KeyGen:

(a) A sends f to the challenger. Define st1 = ⊥.
(b) Post.Dec.st1 ← Post-One-sFE.KeyGen(Post.MSK, f, st1).

(c) Post.Dec.st
(0)
1 = Post.Dec.st1 and Post.Dec.st

(b)
1 = Post.Dec.st1.

(d) Compute state and output values:

i. For i ∈ [t∗],
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A. (yi,Post.Dec.st
(0)
i+1) = Post-One-sFE.Dec(Post.Dec.st

(0)
i ,Post.CT

(0)
i ).

B. (yi,Post.Dec.st
(b)
i+1) = Post-One-sFE.Dec(Post.Dec.st

(b)
i ,Post.CT

(b)
i ).

(e) Compute state ciphertexts:

i. For i ∈ [t∗ + 1],

A. (rE,i, rEnc,i) = PPRF.Eval(KE , i).

B. kE,i = SKE.Setup(1λ; rE,i).

C. ct
(0)
st,i = SKE.Enc(kE,i,Post.Dec.st

(0)
i ; rEnc,i).

D. ct
(b)
st,i = SKE.Enc(kE,i,Post.Dec.st

(b)
i ; rEnc,i).

(f) Setup iterator: (ppst, itrst,0)← Itr.Setup(1λ, 2λ).

(g) Set hardwired values:

i. For i ∈ [t∗], y∗i = yi.

ii. For i ∈ [t∗ + 1],

A. ct∗st,i =

{
ct

(0)
st,i if i < t+ 1

ct
(b)
st,i if i ≥ t+ 1

B. itr∗st,i = Itr.Iterate(ppst, itr
∗
st,i−1, ct

∗
st,i) where itr∗st,0 = itrst,0.

C. m∗i = (i, ct∗st,i, itr
∗
st,i−1).

(h) Compute state signature keys: Do nothing.

(i) Compute σst,1:

i. (sgkA,1, vkA,1, vkA,1,rej)← SSig.Setup(1λ;PPRF.Eval(KA, 1)).

ii. σst,1 = SSig.Sign(sgkA,1,m
∗
1).

(j) Compute program: P ← iO(Prog3,t,7[Kinp,KA,KB,KE , ppst,m
∗
t−1, y

∗
t−1, ct

∗
st,t, y

∗
t , ct

∗
st,t+1]).

(k) Send SKf = (P, ct∗st,1, σst,1, itrst,0) to A.

7. Encryption Phase 2: For i = t∗ + 1, t∗ + 2, . . . , n:
If the adversary does not make exactly n− t∗ queries during this phase, output ⊥ and halt.

(a) A sends (x
(0)
i , x

(1)
i ) to the challenger.

(b) Post.CT
(b)
i = Post-One-sFE(Post.MSK, i, x

(b)
i ).

(c) Compute ctinp,i:

i. (rE,i, rEnc,i) = PPRF.Eval(KE , i).

ii. kE,i = SKE.Setup(1λ; rE,i).

iii. ctinp,i = SKE.Enc(kE,i,Post.CT
(b)
i ).

(d) Compute σinp,i:

i. (sgkinp,i, vkinp,i, vkinp,i,rej) = SSig.Setup(1λ;PPRF.Eval(Kinp, i)).

ii. σinp,i = SSig.Sign(sgkinp,i, ctinp,i).

(e) Send CTi = (ctinp,i, σinp,i) to A.

8. Output: A sends b′ to the challenger. Output 1 if b = b′, and output 0 else.
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Program Prog3,t,7[Kinp,KA,KB,KE , ppst,m
∗
t−1, y

∗
t−1, ct

∗
st,t, y

∗
t , ct

∗
st,t+1]

(i, ctinp,i, σinp,i, ctst,i, σst,i, itrst,i−1)

1. Verification Step:

i. Verify i is positive: If i ≤ 0, output ⊥.
ii. Verify input signature:

i. (sgkinp,i, vkinp,i, vkinp,i,rej)← SSig.Setup(1λ;PPRF.Eval(Kinp, i)).

ii. If SSig.Verify(vkinp,i, ctinp,i, σinp,i) = 0, output ⊥.
iii. mi = (i, ctst,i, itrst,i−1).

iv. in-type = ⊥.
v. Verify A type signatures:

i. (sgkA,i, vkA,i, vkA,i,rej)← SSig.Setup(1λ;PPRF.Eval(KA, i)).

ii. If SSig.Verify(vkA,i,mi, σst,i) = 1, in-type = out-type = A.

vi. If in-type = ⊥, output ⊥.

2. Computation Step:

i. If i = t− 1, (yi, ctst,i+1) = (y∗t−1, ct
∗
st,t).

ii. If i = t, (yi, ctst,i+1) = (y∗t , ct
∗
st,t+1).

iii. If i /∈ {t− 1, t},
i. Decrypt input and state:

i. (rE,i, rEnc,i) = PPRF.Eval(KE , i).

ii. kE,i = SKE.Setup(1λ; rE,i).

iii. Post.CTi = SKE.Dec(kE,i, ctinp,i).

iv. Post.Dec.sti = SKE.Dec(kE,i, ctst,i).

ii. Compute output value and next state:

A. (yi,Post.Dec.sti+1) = Post-One-sFE.Dec(Post.Dec.sti,Post.CTi).

iii. Encrypt the new state:

i. (rE,i+1, rEnc,i+1) = PPRF.Eval(KE , i+ 1).

ii. kE,i+1 = SKE.Setup(1λ; rE,i+1).

iii. ctst,i+1 = SKE.Enc(kE,i+1,Post.Dec.sti+1; rEnc,i+1).

3. Authentication Step:

i. itrst,i = Itr.Iterate(ppst, itrst,i−1, (i, ctst,i)).

ii. mi+1 = (i+ 1, ctst,i+1, itrst,i).

iii. If i = t− 2,

i. If mi+1 = m∗t−1, out-type = A. Else, out-type = B.

iv. Sign A type messages: If out-type = A,

i. (sgkA,i+1, vkA,i+1, vkA,i+1,rej)← SSig.Setup(1λ;PPRF.Eval(KA, i+ 1)).

ii. σst,i+1 = SSig.Sign(sgkA,i+1,mi+1).
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v. Sign B type messages: If out-type = B,

i. (sgkB,i+1, vkB,i+1, vkB,i+1,rej)← SSig.Setup(1λ;PPRF.Eval(KB, i+ 1)).

ii. σst,i+1 = SSig.Sign(sgkB,i+1,mi+1).

4. Output (yi, ctst,i+1, σst,i+1, itrst,i).

Lemma C.58. If iO is a secure indistinguishability obfuscation scheme, PPRF is a puncturable
pseudorandom function, SSig is a splittable signature scheme, and Itr is a cryptographic iterator,
then for all λ ∈ N, all t ∈ [t∗] and all PPT adversaries A,

∆(HybridA3,t,6(1
λ),HybridA3,t,7(1

λ)) ≤ negl(1λ)

Proof. The proof is almost the same as the proof of indistinguishability between HybridA3,t,1 (which

is similar to HybridA3,t,6) and HybridA3,t,2 (which is similar to HybridA3,t,7).
The only differences are that

1. We only iterate the computation up to step t− 2 with outgoing message m∗t−1 (as opposed to
step t − 1 with outgoing message m∗t ). The proof can be easily modified to account for this
change since our previous hybrid only added in B type signatures up to step t − 1. We just
do one fewer iteration.

2. We compute different values at step i = t both within and outside of the obfuscated program.
This difference does not affect the proof as the necessary hybrids are only concerned with
values up to i ≤ t− 1.

Thus, essentially the same proof can be used for this lemma.
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Un-hardwiring step t − 1. We can now remove the hardwiring of step t − 1 within the obfus-
cated program. We remove the hardwiring by doing essentially the reverse of what we did to add
in hardwiring. Thus the proof of indistinguishability between HybridA3,t,7 and HybridA3,t,8 is very

similar to the proof of indistinguishability between HybridA3,t,2 (which is similar to HybridA3,t,8)

and HybridA3,t,3 (which is similar to HybridA3,t,7).

HybridA3,t,7,1: We start by puncturing both Kinp and KA at t− 1. This hybrid is the same as the
previous hybrid except that

• During Encryption Phase 1, we make changes to the following steps:

5f. Compute input signature keys:

1. Kinp[t− 1]← PPRF.Punc(Kinp, t− 1).

2. rinp,t−1 ← PPRF.Eval(Kinp, t− 1).

3. (sgkinp,t−1, vkinp,t−1, vkinp,t−1,rej)← SSig.Setup(1λ; rinp,t−1).

4. (σ∗inp,t−1, sgk
∗
inp,t−1, vk

∗
inp,t−1) = (⊥, sgkinp,t−1, vkinp,t−1).

5g. Compute σinp,i:

1. If i = t− 1, σinp,i = SSig.Sign(sgk∗inp,t−1, ct
∗
inp,t−1).

2. If i ̸= t− 1,

(a) (sgkinp,i, vkinp,i, vkinp,i,rej) = SSig.Setup(1λ;PPRF.Eval(Kinp[t− 1], i)).

(b) σinp,i = SSig.Sign(sgkinp,i, ct
∗
inp,i).

• During KeyGen, we make changes to the following steps:

6h. Compute state signature keys:

1. KA[t− 1] = PPRF.Punc(KA, t).

2. rA,t−1 ← PPRF.Eval(KA, t− 1).

3. (sgkA,t−1, vkA,t−1, vkA,t−1,rej)← SSig.Setup(1λ; rA,t−1).

4. (σ∗st,t−1, sgk
∗
A,t−1, vk

∗
A,t−1) = (⊥, sgkA,t−1, vkA,t−1).

6i. Compute σst,1:

1. If 1 = t− 1, σst,1 = SSig.Sign(sgk∗A,1,m
∗
1).

2. If 1 ̸= t− 1,

(a) (sgkA,1, vkA,1, vkA,1,rej) = SSig.Setup(1λ;PPRF.Eval(KA[t− 1], 1)).

(b) σst,1 = SSig.Sign(sgkA,1,m
∗
1).

6j. Compute program: P ← iO(Prog3,t,7,1[Kinp[t− 1], vk∗inp,t−1,KA[t− 1], sgk∗A,t−1, vk
∗
A,t−1,

KB,KE , ppst,m
∗
t−1, y

∗
t−1, ct

∗
st,t, y

∗
t , ct

∗
st,t+1]).

• During Encryption Phase 2, we make changes to the following steps:

7d. Compute σinp,i:

1. (sgkinp,i, vkinp,i, vkinp,i,rej) = SSig.Setup(1λ;PPRF.Eval(Kinp[t− 1], i)).

2. σinp,i = SSig.Sign(sgkinp,i, ctinp,i).
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Program
Prog3,t,7,1[Kinp[t− 1], vk∗inp,t−1,KA[t− 1], sgk∗A,t−1, vk

∗
A,t−1,KB,KE , ppst,m

∗
t−1, y

∗
t−1, ct

∗
st,t, y

∗
t , ct

∗
st,t+1]

(i, ctinp,i, σinp,i, ctst,i, σst,i, itrst,i−1)

1. Verification Step:

i. Verify i is positive: If i ≤ 0, output ⊥.
ii. Verify input signature:

i. If i = t− 1,

A. If SSig.Verify(vk∗inp,t−1, ctinp,i, σinp,i) = 0, output ⊥.
ii. If i ̸= t− 1,

A. (sgkinp,i, vkinp,i, vkinp,i,rej)← SSig.Setup(1λ;PPRF.Eval(Kinp[t− 1], i)).

B. If SSig.Verify(vkinp,i, ctinp,i, σinp,i) = 0, output ⊥.
iii. mi = (i, ctst,i, itrst,i−1).

iv. in-type = ⊥.
v. Verify A type signatures:

i. If i = t− 1,

A. If SSig.Verify(vk∗A,t−1,mi, σst,i) = 1, in-type = out-type = A.

ii. If i ̸= t− 1,

A. (sgkA,i, vkA,i, vkA,i,rej)← SSig.Setup(1λ;PPRF.Eval(KA[t− 1], i)).

B. If SSig.Verify(vkA,i,mi, σst,i) = 1, in-type = out-type = A.

vi. If in-type = ⊥, output ⊥.

2. Computation Step:

i. If i = t− 1, (yi, ctst,i+1) = (y∗t−1, ct
∗
st,t).

ii. If i = t, (yi, ctst,i+1) = (y∗t , ct
∗
st,t+1).

iii. If i /∈ {t− 1, t},
i. Decrypt input and state:

i. (rE,i, rEnc,i) = PPRF.Eval(KE , i).

ii. kE,i = SKE.Setup(1λ; rE,i).

iii. Post.CTi = SKE.Dec(kE,i, ctinp,i).

iv. Post.Dec.sti = SKE.Dec(kE,i, ctst,i).

ii. Compute output value and next state:

A. (yi,Post.Dec.sti+1) = Post-One-sFE.Dec(Post.Dec.sti,Post.CTi).

iii. Encrypt the new state:

i. (rE,i+1, rEnc,i+1) = PPRF.Eval(KE , i+ 1).

ii. kE,i+1 = SKE.Setup(1λ; rE,i+1).

iii. ctst,i+1 = SKE.Enc(kE,i+1,Post.Dec.sti+1; rEnc,i+1).

3. Authentication Step:
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i. itrst,i = Itr.Iterate(ppst, itrst,i−1, (i, ctst,i)).

ii. mi+1 = (i+ 1, ctst,i+1, itrst,i).

iii. If i = t− 2,

i. If mi+1 = m∗t−1, out-type = A. Else, out-type = B.

iv. Sign A type messages: If out-type = A,

i. If i = t− 2,

A. σst,i+1 = SSig.Sign(sgk∗A,t−1,mi+1).

ii. If i ̸= t− 2,

A. (sgkA,i+1, vkA,i+1, vkA,i+1,rej)← SSig.Setup(1λ;PPRF.Eval(KA[t− 1], i+1)).

B. σst,i+1 = SSig.Sign(sgkA,i+1,mi+1).

v. Sign B type messages: If out-type = B,

i. (sgkB,i+1, vkB,i+1, vkB,i+1,rej)← SSig.Setup(1λ;PPRF.Eval(KB, i+ 1)).

ii. σst,i+1 = SSig.Sign(sgkB,i+1,mi+1).

4. Output (yi, ctst,i+1, σst,i+1, itrst,i).

Lemma C.59. If iO is a secure indistinguishability obfuscation scheme, then for all λ ∈ N, all
t ∈ [t∗], and all PPT adversaries A,

∆(HybridA3,t,7,0(1
λ),HybridA3,t,7,1(1

λ)) ≤ negl(λ)

Proof. By correctness of puncturing, for α ∈ {inp, A},

PPRF.Eval(Kα[t− 1], v) = PPRF.Eval(Kα, v) for any v ̸= t− 1

. Observe that we never evaluate punctured keys on their punctured points. This is true even in
Encryption Phase 2 since in that phase, we have i ≥ t∗ + 1 > t− 1.

Furthermore, the hardwired signing and verification keys are set to what they would have been
computed to be in the previous hybrid. Thus, Prog3,t,7,0 and Prog3,t,7,1 have the same input/output
behavior. For the same reasons, apart from the obfuscated programs, the hybrids are identical.

Thus, by a straightforward reduction to the security of iO, the hybrids are indistinguishable.
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HybridA3,t,7,2: We split our input signature and our A type signature at t − 1 on ct∗inp,t−1 and
m∗t−1 respectively. We replace signatures using sgk∗inp,t−1 or sgk∗A,t−1 with σinp,one,t−1 and σA,one,t−1
respectively.

This hybrid is the same as the previous hybrid except that

• During Encryption Phase 1, we make changes to the following steps:

5f. Compute input signature keys:

1. Kinp[t− 1]← PPRF.Punc(Kinp, t− 1).

2. rinp,t−1 ← PPRF.Eval(Kinp, t− 1).

3. (sgkinp,t−1, vkinp,t−1, vkinp,t−1,rej)← SSig.Setup(1λ; rinp,t−1).

4. (σinp,one,t−1, vkinp,one,t−1, sgkinp,abo,t−1, vkinp,abo,t−1)← SSig.Split(sgkinp,t−1, ct
∗
inp,t−1).

5. (σ∗inp,t−1, sgk
∗
inp,t−1, vk

∗
inp,t−1) = (σinp,one,t−1,⊥, vkinp,t−1).

5g. Compute σinp,i:

1. If i = t− 1, σinp,i = σ∗inp,t−1.

2. If i ̸= t− 1,

(a) (sgkinp,i, vkinp,i, vkinp,i,rej) = SSig.Setup(1λ;PPRF.Eval(Kinp[t− 1], i)).

(b) σinp,i = SSig.Sign(sgkinp,i, ct
∗
inp,i).

• During KeyGen, we make changes to the following steps:

6h. Compute state signature keys:

1. KA[t− 1] = PPRF.Punc(KA, t− 1).

2. rA,t−1 ← PPRF.Eval(KA, t− 1).

3. (sgkA,t−1, vkA,t−1, vkA,t−1,rej)← SSig.Setup(1λ; rA,t−1).

4. (σA,one,t−1, vkA,one,t−1, sgkA,abo,t−1, vkA,abo,t−1)← SSig.Split(sgkA,t−1,m
∗
t−1).

5. (σ∗st,t−1, sgk
∗
A,t−1, vk

∗
A,t−1) = (σA,one,t−1,⊥, vkA,t−1).

6i. Compute σst,1:

1. If 1 = t− 1, σst,i = σ∗st,t−1.

2. If 1 ̸= t− 1,

(a) (sgkA,1, vkA,1, vkA,1,rej) = SSig.Setup(1λ;PPRF.Eval(KA[t− 1], 1)).

(b) σst,1 = SSig.Sign(sgkA,1,m
∗
1).

6j. Compute program: P ← iO(Prog3,t,7,2[Kinp[t− 1], vk∗inp,t−1,KA[t− 1], σ∗st,t−1, vk
∗
A,t−1,

KB,KE , ppst,m
∗
t−1, y

∗
t−1, ct

∗
st,t, y

∗
t , ct

∗
st,t+1]).

Program Prog3,t,7,2[Kinp[t− 1], vk∗inp,t−1,KA[t− 1], σ∗st,t−1, vk
∗
A,t−1,KB,KE , ppst,

m∗t−1, y
∗
t−1, ct

∗
st,t, y

∗
t , ct

∗
st,t+1](i, ctinp,i, σinp,i, ctst,i, σst,i, itrst,i−1)

1. Verification Step:

i. Verify i is positive: If i ≤ 0, output ⊥.
ii. Verify input signature:

i. If i = t− 1,

A. If SSig.Verify(vk∗inp,t−1, ctinp,i, σinp,i) = 0, output ⊥.
ii. If i ̸= t− 1,
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A. (sgkinp,i, vkinp,i, vkinp,i,rej)← SSig.Setup(1λ;PPRF.Eval(Kinp[t− 1], i)).

B. If SSig.Verify(vkinp,i, ctinp,i, σinp,i) = 0, output ⊥.
iii. mi = (i, ctst,i, itrst,i−1).

iv. in-type = ⊥.
v. Verify A type signatures:

i. If i = t− 1,

A. If SSig.Verify(vk∗A,t−1,mi, σst,i) = 1, in-type = out-type = A.

ii. If i ̸= t− 1,

A. (sgkA,i, vkA,i, vkA,i,rej)← SSig.Setup(1λ;PPRF.Eval(KA[t− 1], i)).

B. If SSig.Verify(vkA,i,mi, σst,i) = 1, in-type = out-type = A.

vi. If in-type = ⊥, output ⊥.

2. Computation Step:

i. If i = t− 1, (yi, ctst,i+1) = (y∗t−1, ct
∗
st,t).

ii. If i = t, (yi, ctst,i+1) = (y∗t , ct
∗
st,t+1).

iii. If i /∈ {t− 1, t},
i. Decrypt input and state:

i. (rE,i, rEnc,i) = PPRF.Eval(KE , i).

ii. kE,i = SKE.Setup(1λ; rE,i).

iii. Post.CTi = SKE.Dec(kE,i, ctinp,i).

iv. Post.Dec.sti = SKE.Dec(kE,i, ctst,i).

ii. Compute output value and next state:

A. (yi,Post.Dec.sti+1) = Post-One-sFE.Dec(Post.Dec.sti,Post.CTi).

iii. Encrypt the new state:

i. (rE,i+1, rEnc,i+1) = PPRF.Eval(KE , i+ 1).

ii. kE,i+1 = SKE.Setup(1λ; rE,i+1).

iii. ctst,i+1 = SKE.Enc(kE,i+1,Post.Dec.sti+1; rEnc,i+1).

3. Authentication Step:

i. itrst,i = Itr.Iterate(ppst, itrst,i−1, (i, ctst,i)).

ii. mi+1 = (i+ 1, ctst,i+1, itrst,i).

iii. If i = t− 2,

i. If mi+1 = m∗t−1, out-type = A. Else, out-type = B.

iv. Sign A type messages: If out-type = A,

i. If i = t− 2,

A. σst,i+1 = σ∗st,t−1.

ii. If i ̸= t− 2,

A. (sgkA,i+1, vkA,i+1, vkA,i+1,rej)← SSig.Setup(1λ;PPRF.Eval(KA[t− 1], i+ 1)).

B. σst,i+1 = SSig.Sign(sgkA,i+1,mi+1).
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v. Sign B type messages: If out-type = B,

i. (sgkB,i+1, vkB,i+1, vkB,i+1,rej)← SSig.Setup(1λ;PPRF.Eval(KB, i+ 1)).

ii. σst,i+1 = SSig.Sign(sgkB,i+1,mi+1).

4. Output (yi, ctst,i+1, σst,i+1, itrst,i).

Lemma C.60. If iO is a secure indistinguishability obfuscation scheme, then for all λ ∈ N, all
t ∈ [t∗], and all PPT adversaries A,

∆(HybridA3,t,7,1(1
λ),HybridA3,t,7,2(1

λ)) ≤ negl(λ)

Proof. By correctness of SSig, if (σone, vkone, sgkabo, vkabo)← SSig.Split(sgk, v∗), then

σone = SSig.Sign(sgk, v∗).

Thus, apart from the obfuscated programs, the hybrids act identically since
σinp,one,t−1 = SSig.Sign(sgkinp,t−1, ct

∗
st,t−1) and σA,one,1 = SSig.Sign(sgkA,1,m

∗
1) so step 5g of En-

cryption Phase 1 and step 6i of KeyGen result in the same signatures.
Now, in the previous hybrid, Prog3,t,7,1 only used sgk∗A,t−1 = sgkA,t−1 in one place: If out-type =

A and i = t − 2, then it signed mi+1 with sgkA,t−1. However, we can only have out-type = A
at i = t − 2 if mi+1 = m∗t−1. Thus, replacing the signature with σA,one,t−1 does not change the
behavior of the program.

Therefore, Prog3,t,7,1 and Prog3,t,7,2 have the same input/output behavior, so by a straightfor-
ward reduction to the security of iO, the hybrids are indistinguishable.
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HybridA3,t,7,3: We change rinp,t−1 and rA,t−1 to random values. This hybrid is the same as the
previous hybrid except that

• During Encryption Phase 1, we make changes to the following steps:

5f. Compute input signature keys:

1. Kinp[t− 1]← PPRF.Punc(Kinp, t− 1).

2. rinp,t−1 ← {0, 1}λ.
3. (sgkinp,t−1, vkinp,t−1, vkinp,t−1,rej)← SSig.Setup(1λ; rinp,t−1).

4. (σinp,one,t−1, vkinp,one,t−1, sgkinp,abo,t−1, vkinp,abo,t−1)← SSig.Split(sgkinp,t−1, ct
∗
inp,t−1).

5. (σ∗inp,t−1, sgk
∗
inp,t−1, vk

∗
inp,t−1) = (σinp,one,t−1,⊥, vkinp,t−1).

• During KeyGen, we make changes to the following steps:

6h. Compute state signature keys:

1. KA[t− 1] = PPRF.Punc(KA, t− 1).

2. rA,t−1 ← {0, 1}λ.
3. (sgkA,t−1, vkA,t−1, vkA,t−1,rej)← SSig.Setup(1λ; rA,t−1).

4. (σA,one,t−1, vkA,one,t−1, sgkA,abo,t−1, vkA,abo,t−1)← SSig.Split(sgkA,t−1,m
∗
t−1).

5. (σ∗st,t−1, sgk
∗
A,t−1, vk

∗
A,t−1) = (σA,one,t−1,⊥, vkA,t−1).

Lemma C.61. If PPRF is a puncturable pseudorandom function, then for all λ ∈ N, all t ∈ [t∗],
and all PPT adversaries A,

∆(HybridA3,t,7,2(1
λ),HybridA3,t,7,3(1

λ)) ≤ negl(λ)

Proof. This follow by two reductions to the selective pseudorandomness at punctured points prop-
erty of our PPRF.

We first swap out only rinp,t−1 for a random value and leave rA,t−1 as a PPRF evaluation. We
call this intermediate hybrid HybridA3,t,7,2.5.

Observe that we can run both the previous hybrid and the intermediate hybrid without knowing
Kinp as long as we are given (Kinp[t − 1], rinp,t−1). In the reduction, without computing Kinp,
we run HybridA3,t,7,2.5 up to just before step 5f of Encryption Phase 1. Then, we receive
(Kinp[t − 1], rinp,t−1) from the PPRF challenger where rinp,t−1 is either a random value or equal to
PPRF.Eval(Kinp, t− 1). We use this randomness to compute (σ∗inp,t−1, sgk

∗
inp,t−1, vk

∗
inp,t−1). We then

run the rest of HybridA3,t,7,2.5 starting from step 5g of Encryption Phase 1. Observe that if

rinp,t−1 was a random value then we exactly emulate HybridA3,t,7,2.5, and if rinp,t−1 was equal to

PPRF.Eval(Kinp, t − 1) we emulate HybridA3,t,7,2. Thus, by PPRF security, the outputs of these
hybrids must be indistinguishable.

By a similar reduction on the A type signature scheme, HybridA3,t,7,2.5 and HybridA3,t,7,3 are
indistinguishable.
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HybridA3,t,7,4: We set vk∗inp,t−1 to vkinp,one,t−1 which will only verify ct∗inp,t−1, and set vk∗A,t−1 to
vkA,one,t−1 which will only verify m∗t−1. This hybrid is the same as the previous hybrid except that

• During Encryption Phase 1, we make changes to the following steps:

5f. Compute input signature keys:

1. Kinp[t− 1]← PPRF.Punc(Kinp, t− 1).

2. rinp,t−1 ← {0, 1}λ.
3. (sgkinp,t−1, vkinp,t−1, vkinp,t−1,rej)← SSig.Setup(1λ; rinp,t−1).

4. (σinp,one,t−1, vkinp,one,t−1, sgkinp,abo,t−1, vkinp,abo,t−1)← SSig.Split(sgkinp,t−1, ct
∗
inp,t−1).

5. (σ∗inp,t−1, sgk
∗
inp,t−1, vk

∗
inp,t−1) = (σinp,one,t−1,⊥, vkinp,one,t−1).

• During KeyGen, we make changes to the following steps:

6h. Compute state signature keys:

1. KA[t− 1] = PPRF.Punc(KA, t− 1).

2. rA,t−1 ← {0, 1}λ.
3. (sgkA,t−1, vkA,t−1, vkA,t−1,rej)← SSig.Setup(1λ; rA,t−1).

4. (σA,one,t−1, vkA,one,t−1, sgkA,abo,t−1, vkA,abo,t−1)← SSig.Split(sgkA,t−1,m
∗
t−1).

5. (σ∗st,t−1, sgk
∗
A,t−1, vk

∗
A,t−1) = (σA,one,t−1,⊥, vkA,one,t−1).

Lemma C.62. If SSig is a splittable signature scheme, then for all λ ∈ N, all t ∈ [t∗], and all PPT
adversaries A,

∆(HybridA3,t,7,3(1
λ),HybridA3,t,7,4(1

λ)) ≤ negl(λ)

Proof. This follow by two reductions to the vkone indistinguishabilty of SSig.
We first swap out only vk∗inp,t−1 for vkinp,one,t−1 and leave vk∗A,t−1 as vkA,t−1. We call this

intermediate hybrid HybridA3,t,7,3.5.
Observe that we can run both hybrids without knowing (rinp,t−1, sgkinp,t−1, vkinp,t−1, vkinp,t−1,rej)

as long as we are given (σ∗inp,t−1, vk
∗
inp,t−1). In the reduction, we run HybridA3,t,7,4 up to just before

step 5f.2 of Encryption Phase 1. We send ct∗inp,t−1 to the SSig challenger and receive (σ∗, vk∗) from
the SSig challenger where σ∗ is a signature of ct∗inp,t−1 and vk∗ is either a verification key vkone that
only verifies ct∗inp,t−1 or is a regular verification key vk. We then set (σ∗inp,t−1, sgk

∗
inp,t−1, vk

∗
inp,t−1) =

(σ∗,⊥, vk∗) and run the rest of HybridA3,t,7,4 starting from step 5g of Encryption Phase 1.

Observe that if vk∗ was a regular verification key vk we exactly emulate HybridA3,t,7,3, and if vk∗

was vkone we emulate HybridA3,t,7,3.5. Thus, by the vkone indistinguishabilty of SSig security, the
outputs of these hybrids must be indistinguishable.

By a similar reduction on the A type signature scheme, HybridA3,t,7,3.5 and HybridA3,t,7,4 are
indistinguishable.
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HybridA3,t,7,5: We now remove the hardwiring of step t − 1 from the program. Recall that in the
previous hybrids, we set the following values in Encryption Phase 1 and KeyGen:

5e. Set hardwired values:

1. ct∗inp,i =

{
ct

(0)
inp,i if i < t+ 1

ct
(b)
inp,i if i ≥ t+ 1

.

6g. Set hardwired values:

1. For i ∈ [t∗], y∗i = yi.

2. For i ∈ [t∗ + 1],

(a) ct∗st,i =

{
ct

(0)
st,i if i < t+ 1

ct
(b)
st,i if i ≥ t+ 1

(b) itr∗st,i = Itr.Iterate(ppst, itr
∗
st,i−1, ct

∗
st,i) where itr∗st,0 = itrst,0.

(c) m∗i = (i, ct∗st,i, itr
∗
st,i−1).

This hybrid is the same as the previous hybrid except that

• During KeyGen, we make changes to the following steps:

6j. Compute program: P ← iO(Prog3,t,7,5[Kinp[t− 1], vk∗inp,t−1,KA[t− 1], σ∗st,t−1, vk
∗
A,t−1,

KB,KE , ppst,m
∗
t−1, y

∗
t , ct

∗
st,t+1]).

Program
Prog3,t,7,5[Kinp[t− 1], vk∗inp,t−1,KA[t− 1], σ∗st,t−1, vk

∗
A,t−1,KB,KE , ppst,m

∗
t−1, y

∗
t , ct

∗
st,t+1]

(i, ctinp,i, σinp,i, ctst,i, σst,i, itrst,i−1)

1. Verification Step:

i. Verify i is positive: If i ≤ 0, output ⊥.
ii. Verify input signature:

i. If i = t− 1,

A. If SSig.Verify(vk∗inp,t−1, ctinp,i, σinp,i) = 0, output ⊥.
ii. If i ̸= t− 1,

A. (sgkinp,i, vkinp,i, vkinp,i,rej)← SSig.Setup(1λ;PPRF.Eval(Kinp[t− 1], i)).

B. If SSig.Verify(vkinp,i, ctinp,i, σinp,i) = 0, output ⊥.
iii. mi = (i, ctst,i, itrst,i−1).

iv. in-type = ⊥.
v. Verify A type signatures:

i. If i = t− 1,

A. If SSig.Verify(vk∗A,t−1,mi, σst,i) = 1, in-type = out-type = A.

ii. If i ̸= t− 1,

A. (sgkA,i, vkA,i, vkA,i,rej)← SSig.Setup(1λ;PPRF.Eval(KA[t− 1], i)).

B. If SSig.Verify(vkA,i,mi, σst,i) = 1, in-type = out-type = A.

vi. If in-type = ⊥, output ⊥.
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2. Computation Step:

i. If i = t− 1, (yi, ctst,i+1) = (y∗t−1, ct
∗
st,t).

ii. If i = t, (yi, ctst,i+1) = (y∗t , ct
∗
st,t+1).

iii. If i ̸= t,

i. Decrypt input and state:

i. (rE,i, rEnc,i) = PPRF.Eval(KE , i).

ii. kE,i = SKE.Setup(1λ; rE,i).

iii. Post.CTi = SKE.Dec(kE,i, ctinp,i).

iv. Post.Dec.sti = SKE.Dec(kE,i, ctst,i).

ii. Compute output value and next state:

A. (yi,Post.Dec.sti+1) = Post-One-sFE.Dec(Post.Dec.sti,Post.CTi).

iii. Encrypt the new state:

i. (rE,i+1, rEnc,i+1) = PPRF.Eval(KE , i+ 1).

ii. kE,i+1 = SKE.Setup(1λ; rE,i+1).

iii. ctst,i+1 = SKE.Enc(kE,i+1,Post.Dec.sti+1; rEnc,i+1).

3. Authentication Step:

i. itrst,i = Itr.Iterate(ppst, itrst,i−1, (i, ctst,i)).

ii. mi+1 = (i+ 1, ctst,i+1, itrst,i).

iii. If i = t− 2,

i. If mi+1 = m∗t−1, out-type = A. Else, out-type = B.

iv. Sign A type messages: If out-type = A,

i. If i = t− 2,

A. σst,i+1 = σ∗st,t−1.

ii. If i ̸= t− 2,

A. (sgkA,i+1, vkA,i+1, vkA,i+1,rej)← SSig.Setup(1λ;PPRF.Eval(KA[t− 1], i+ 1)).

B. σst,i+1 = SSig.Sign(sgkA,i+1,mi+1).

v. Sign B type messages: If out-type = B,

i. (sgkB,i+1, vkB,i+1, vkB,i+1,rej)← SSig.Setup(1λ;PPRF.Eval(KB, i+ 1)).

ii. σst,i+1 = SSig.Sign(sgkB,i+1,mi+1).

4. Output (yi, ctst,i+1, σst,i+1, itrst,i).

Lemma C.63. If iO is a secure indistinguishability obfuscation scheme, then for all λ ∈ N, all
t ∈ [t∗], and all PPT adversaries A,

∆(HybridA3,t,7,4(1
λ),HybridA3,t,7,5(1

λ)) ≤ negl(λ)

Proof. We will show that Prog3,t,7 and Prog3,t,7,t−1 have identical input/output behavior. The
programs can only differ when i = t− 1. Thus, we will restrict ourselves to this setting.

Since vk∗inp,t−1 = vkinp,one,t−1, then in order to pass the verification step, it must be the case that

ctinp,i = ct∗inp,t−1 = ct
(0)
inp,t−1
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Similarly, since vk∗A,t−1 = vkA,one,t−1, in order to pass the verification step, we must have

mi = m∗t−1 = (t− 1, ct
(0)
st,t−1, itr

∗
st,t−2)

Therefore, by correctness of decryption of SKE and Post-One-sFE, in the current hybrid, we compute

(yi, ctst,i+1) = (yt−1, ct
(0)
st,t) = (y∗t−1, ct

∗
st,t)

But these are exactly the values that we had hardwired them to be in the previous hybrid. Thus
the input/output behavior of the two programs is identical, so by a straightforward reduction to
the security of iO, the hybrids are indistinguishable.
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HybridA3,t,7,6: We change vk∗inp,t−1 and vk∗A,t−1 back to vkinp,t−1 and vkA,t−1. This hybrid is the
same as the previous hybrid except that

• During Encryption Phase 1, we make changes to the following steps:

5f. Compute input signature keys:

1. Kinp[t− 1]← PPRF.Punc(Kinp, t− 1).

2. rinp,t−1 ← {0, 1}λ.
3. (sgkinp,t−1, vkinp,t−1, vkinp,t−1,rej)← SSig.Setup(1λ; rinp,t−1).

4. (σinp,one,t−1, vkinp,one,t−1, sgkinp,abo,t−1, vkinp,abo,t−1)← SSig.Split(sgkinp,t−1, ct
∗
inp,t−1).

5. (σ∗inp,t−1, sgk
∗
inp,t−1, vk

∗
inp,t−1) = (σinp,one,t−1,⊥, vkinp,t−1).

• During KeyGen, we make changes to the following steps:

6h. Compute state signature keys:

1. KA[t− 1] = PPRF.Punc(KA, t− 1).

2. rA,t−1 ← {0, 1}λ.
3. (sgkA,t−1, vkA,t−1, vkA,t−1,rej)← SSig.Setup(1λ; rA,t−1).

4. (σA,one,t−1, vkA,one,t−1, sgkA,abo,t−1, vkA,abo,t−1)← SSig.Split(sgkA,t−1,m
∗
t−1).

5. (σ∗st,t−1, sgk
∗
A,t−1, vk

∗
A,t−1) = (σA,one,t−1,⊥, vkA,t−1).

Lemma C.64. If SSig is a splittable signature scheme, then for all λ ∈ N, all t ∈ [t∗] and all PPT
adversaries A,

∆(HybridA3,t,7,5(1
λ),HybridA3,t,7,6(1

λ)) ≤ negl(λ)

Proof. This follows by two reductions to the vkone indistinguishabilty of SSig. The reductions are
essentially the same as in Lemma C.62 as it is still the case that we can run both hybrids without
knowing (rinp,t−1, sgkinp,t−1, vkinp,t−1, vkinp,t−1,rej) or (rA,t−1, sgkA,t−1, vkA,t−1, vkA,t−1,rej) as long as
we are given (σ∗inp,t−1, vk

∗
inp,t−1) and (σ∗A,t−1, vk

∗
A,t−1).
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HybridA3,t,7,7: We change rinp,t−1 and rA,t−1 back to PPRF values. This hybrid is the same as the
previous hybrid except that

• During Encryption Phase 1, we make changes to the following steps:

5f. Compute input signature keys:

1. Kinp[t− 1]← PPRF.Punc(Kinp, t− 1).

2. rinp,t−1 ← PPRF.Eval(Kinp, t− 1).

3. (sgkinp,t−1, vkinp,t−1, vkinp,t−1,rej)← SSig.Setup(1λ; rinp,t−1).

4. (σinp,one,t−1, vkinp,one,t−1, sgkinp,abo,t−1, vkinp,abo,t−1)← SSig.Split(sgkinp,t−1, ct
∗
inp,t−1).

5. (σ∗inp,t−1, sgk
∗
inp,t−1, vk

∗
inp,t−1) = (σinp,one,t−1,⊥, vkinp,t−1).

• During KeyGen, we make changes to the following steps:

6h. Compute state signature keys:

1. KA[t− 1] = PPRF.Punc(KA, t− 1).

2. rA,t−1 ← PPRF.Eval(KA, t− 1).

3. (sgkA,t−1, vkA,t−1, vkA,t−1,rej)← SSig.Setup(1λ; rA,t−1).

4. (σA,one,t−1, vkA,one,t−1, sgkA,abo,t−1, vkA,abo,t−1)← SSig.Split(sgkA,t−1,m
∗
t−1).

5. (σ∗st,t−1, sgk
∗
A,t−1, vk

∗
A,t−1) = (σA,one,t−1,⊥, vkA,t−1).

Lemma C.65. If PPRF is a puncturable pseudorandom function, then for all λ ∈ N, all t ∈ [t∗],
and all PPT adversaries A,

∆(HybridA3,t,7,6(1
λ),HybridA3,t,7,7(1

λ)) ≤ negl(λ)

Proof. This follows by two reductions to the selective pseudorandomness at punctured points prop-
erty of our PPRF. The reductions are essentially the same as that of Lemma C.61 as it is still
the case that we can run both hybrids without knowing Kinp or KA as long as we are given
(Kinp[t− 1], rinp,t−1) and (KA[t− 1], rA,t−1).
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HybridA3,t,7,8: We no longer split our input signature and our A type signature at t− 1 on ct∗inp,t−1
and m∗t − 1 respectively. We replace signatures σinp,one,t−1 and σA,one,t−1 with signatures using
sgk∗inp,t−1 and sgk∗A,t−1. This hybrid is the same as the previous hybrid except that

• During Encryption Phase 1, we make changes to the following steps:

5f. Compute input signature keys:

1. Kinp[t− 1]← PPRF.Punc(Kinp, t− 1).

2. rinp,t−1 ← PPRF.Eval(Kinp, t− 1).

3. (sgkinp,t−1, vkinp,t−1, vkinp,t−1,rej)← SSig.Setup(1λ; rinp,t−1).

4. (σinp,one,t−1, vkinp,one,t−1, sgkinp,abo,t−1, vkinp,abo,t−1)← SSig.Split(sgkinp,t−1, ct
∗
inp,t−1).

5. (σ∗inp,t−1, sgk
∗
inp,t−1, vk

∗
inp,t−1) = (⊥, sgkinp,t−1, vkinp,t−1).

5g. Compute σinp,i:

1. If i = t− 1, σinp,i = SSig.Sign(sgk∗inp,i, ct
∗
inp,i).

2. If i ̸= t− 1,

(a) (sgkinp,i, vkinp,i, vkinp,i,rej) = SSig.Setup(1λ;PPRF.Eval(Kinp[t− 1], i)).

(b) σinp,i = SSig.Sign(sgkinp,i, ct
∗
inp,i).

• During KeyGen, we make changes to the following steps:

6h. Compute state signature keys:

1. KA[t− 1] = PPRF.Punc(KA, t− 1).

2. rA,t−1 ← PPRF.Eval(KA, t− 1).

3. (sgkA,t−1, vkA,t−1, vkA,t−1,rej)← SSig.Setup(1λ; rA,t−1).

4. (σA,one,t−1, vkA,one,t−1, sgkA,abo,t−1, vkA,abo,t−1)← SSig.Split(sgkA,t−1,m
∗
t−1).

5. (σ∗st,t−1, sgk
∗
A,t−1, vk

∗
A,t−1) = (⊥, sgkA,t−1, vkA,t−1).

6i. Compute σst,1:

1. If 1 = t− 1, σst,i = SSig.Sign(sgk∗A,t−1,m
∗
1).

2. If 1 ̸= t− 1,

(a) (sgkA,1, vkA,1, vkA,1,rej) = SSig.Setup(1λ;PPRF.Eval(KA[t− 1], 1)).

(b) σst,1 = SSig.Sign(sgkA,1,m
∗
1).

6j. Compute program: P ← iO(Prog3,t,7,j,8[Kinp[t−1], vk∗inp,t−1,KA[t−1], sgk∗A,t−1, vk
∗
A,t−1,

KB,KE , ppst,m
∗
t−1, y

∗
t , ct

∗
st,t+1]).

Program
Prog3,t,7,8[Kinp[t− 1], vk∗inp,t−1,KA[t− 1], sgk∗A,t−1, vk

∗
A,t−1,KB,KE , ppst,m

∗
t−1, y

∗
t , ct

∗
st,t+1]

(i, ctinp,i, σinp,i, ctst,i, σst,i, itrst,i−1)

1. Verification Step:

i. Verify i is positive: If i ≤ 0, output ⊥.
ii. Verify input signature:

i. If i = t− 1,

A. If SSig.Verify(vk∗inp,t−1, ctinp,i, σinp,i) = 0, output ⊥.
ii. If i ̸= t− 1,

228



A. (sgkinp,i, vkinp,i, vkinp,i,rej)← SSig.Setup(1λ;PPRF.Eval(Kinp[t− 1], i)).

B. If SSig.Verify(vkinp,i, ctinp,i, σinp,i) = 0, output ⊥.
iii. mi = (i, ctst,i, itrst,i−1).

iv. in-type = ⊥.
v. Verify A type signatures:

i. If i = t− 1,

A. If SSig.Verify(vk∗A,t−1,mi, σst,i) = 1, in-type = out-type = A.

ii. If i ̸= t− 1,

A. (sgkA,i, vkA,i, vkA,i,rej)← SSig.Setup(1λ;PPRF.Eval(KA[t− 1], i)).

B. If SSig.Verify(vkA,i,mi, σst,i) = 1, in-type = out-type = A.

vi. If in-type = ⊥, output ⊥.

2. Computation Step:

i. If i = t, (yi, ctst,i+1) = (y∗t , ct
∗
st,t+1).

ii. If i ̸= t,

i. Decrypt input and state:

i. (rE,i, rEnc,i) = PPRF.Eval(KE , i).

ii. kE,i = SKE.Setup(1λ; rE,i).

iii. Post.CTi = SKE.Dec(kE,i, ctinp,i).

iv. Post.Dec.sti = SKE.Dec(kE,i, ctst,i).

ii. Compute output value and next state:

A. (yi,Post.Dec.sti+1) = Post-One-sFE.Dec(Post.Dec.sti,Post.CTi).

iii. Encrypt the new state:

i. (rE,i+1, rEnc,i+1) = PPRF.Eval(KE , i+ 1).

ii. kE,i+1 = SKE.Setup(1λ; rE,i+1).

iii. ctst,i+1 = SKE.Enc(kE,i+1,Post.Dec.sti+1; rEnc,i+1).

3. Authentication Step:

i. itrst,i = Itr.Iterate(ppst, itrst,i−1, (i, ctst,i)).

ii. mi+1 = (i+ 1, ctst,i+1, itrst,i).

iii. If i = t− 2,

i. If mi+1 = m∗t−1, out-type = A. Else, out-type = B.

iv. Sign A type messages: If out-type = A,

i. If i = t− 2,

A. σst,i+1 = SSig.Sign(sgk∗A,t−1,mi+1).

ii. If i ̸= t− 2,

A. (sgkA,i+1, vkA,i+1, vkA,i+1,rej)← SSig.Setup(1λ;PPRF.Eval(KA[t− 1], i+ 1)).

B. σst,i+1 = SSig.Sign(sgkA,i+1,mi+1).

v. Sign B type messages: If out-type = B,
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i. (sgkB,i+1, vkB,i+1, vkB,i+1,rej)← SSig.Setup(1λ;PPRF.Eval(KB, i+ 1)).

ii. σst,i+1 = SSig.Sign(sgkB,i+1,mi+1).

4. Output (yi, ctst,i+1, σst,i+1, itrst,i).

Lemma C.66. If iO is a secure indistinguishability obfuscation scheme, then for all λ ∈ N, all
t ∈ [t∗], and all PPT adversaries A,

∆(HybridA3,t,7,7(1
λ),HybridA3,t,7,8(1

λ)) ≤ negl(λ)

Proof. By correctness of SSig, if (σone, vkone, sgkabo, vkabo)← SSig.Split(sgk, v∗), then

σone = SSig.Sign(sgk, v∗).

Thus, apart from the obfuscated programs, the hybrids act identically since
σinp,one,t−1 = SSig.Sign(sgkinp,t−1, ct

∗
st,t−1) and σA,one,1 = SSig.Sign(sgkA,1,m

∗
1) so step 5g of En-

cryption Phase 1 and step 6i of KeyGen result in the same signatures.
The current hybrid Prog3,t,7,8 only uses sgk∗A,t−1 = sgkA,t−1 in one place: If out-type = A and

i = t − 2, then it signs mi+1 with sgkA,t−1. However, we can only have out-type = A at i = t − 2
if mi+1 = m∗t−1. Thus, the signature it generates is the same as the signature σ∗st,t−1 = σA,one,t−1
used in the previous hybrid.

Therefore, Prog3,t,7,7 and Prog3,t,7,8 have the same input/output behavior, so by a straightfor-
ward reduction to the security of iO, the hybrids are indistinguishable.
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HybridA3,t,7,9: We no longer puncture Kinp at t − 1 and no longer use hardwired signatures and
verification keys. This hybrid is the same as the previous hybrid except that

• During Encryption Phase 1, we make changes to the following steps:

5f. Compute input signature keys: Do nothing.

5g. Compute σinp,i:

1. If i = t− 1, σinp,i = SSig.Sign(sgk∗inp,t−1, ct
∗
inp,t−1).

2. If i ̸= t− 1,

(a) (sgkinp,i, vkinp,i, vkinp,i,rej) = SSig.Setup(1λ;PPRF.Eval(Kinp, i)).

(b) σinp,i = SSig.Sign(sgkinp,i, ct
∗
inp,i).

• During KeyGen, we make changes to the following steps:

6h. Compute state signature keys: Do nothing.

6i. Compute σst,1:

1. If 1 = t− 1, σst,1 = SSig.Sign(sgk∗A,1,m
∗
1).

2. If 1 ̸= t− 1,

(a) (sgkA,1, vkA,1, vkA,1,rej) = SSig.Setup(1λ;PPRF.Eval(KA, 1)).

(b) σst,1 = SSig.Sign(sgkA,1,m
∗
1).

6j. Compute program: P ← iO(Prog3,t,7,j,9[Kinp,KA,KB,KE , ppst,m
∗
t−1, y

∗
t , ct

∗
st,t+1]).

• During Encryption Phase 2, we make changes to the following steps:

7d. Compute σinp,i:

1. (sgkinp,i, vkinp,i, vkinp,i,rej) = SSig.Setup(1λ;PPRF.Eval(Kinp, i)).

2. σinp,i = SSig.Sign(sgkinp,i, ctinp,i).

Program Prog3,t,7,9[Kinp,KA,KB,KE , ppst,m
∗
t−1, y

∗
t , ct

∗
st,t+1]

(i, ctinp,i, σinp,i, ctst,i, σst,i, itrst,i−1)

1. Verification Step:

i. Verify i is positive: If i ≤ 0, output ⊥.
ii. Verify input signature:

i. If i = t− 1,

A. If SSig.Verify(vk∗inp,t−1, ctinp,i, σinp,i) = 0, output ⊥.
ii. If i ̸= t− 1,

A. (sgkinp,i, vkinp,i, vkinp,i,rej)← SSig.Setup(1λ;PPRF.Eval(Kinp, i)).

B. If SSig.Verify(vkinp,i, ctinp,i, σinp,i) = 0, output ⊥.
iii. mi = (i, ctst,i, itrst,i−1).

iv. in-type = ⊥.
v. Verify A type signatures:

i. If i = t− 1,

A. If SSig.Verify(vk∗A,t−1,mi, σst,i) = 1, in-type = out-type = A.
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ii. If i ̸= t− 1,

A. (sgkA,i, vkA,i, vkA,i,rej)← SSig.Setup(1λ;PPRF.Eval(KA, i)).

B. If SSig.Verify(vkA,i,mi, σst,i) = 1, in-type = out-type = A.

vi. If in-type = ⊥, output ⊥.

2. Computation Step:

i. If i = t, (yi, ctst,i+1) = (y∗t , ct
∗
st,t+1).

ii. If i ̸= t,

i. Decrypt input and state:

i. (rE,i, rEnc,i) = PPRF.Eval(KE , i).

ii. kE,i = SKE.Setup(1λ; rE,i).

iii. Post.CTi = SKE.Dec(kE,i, ctinp,i).

iv. Post.Dec.sti = SKE.Dec(kE,i, ctst,i).

ii. Compute output value and next state:

A. (yi,Post.Dec.sti+1) = Post-One-sFE.Dec(Post.Dec.sti,Post.CTi).

iii. Encrypt the new state:

i. (rE,i+1, rEnc,i+1) = PPRF.Eval(KE , i+ 1).

ii. kE,i+1 = SKE.Setup(1λ; rE,i+1).

iii. ctst,i+1 = SKE.Enc(kE,i+1,Post.Dec.sti+1; rEnc,i+1).

3. Authentication Step:

i. itrst,i = Itr.Iterate(ppst, itrst,i−1, (i, ctst,i)).

ii. mi+1 = (i+ 1, ctst,i+1, itrst,i).

iii. If i = t− 2,

i. If mi+1 = m∗t−1, out-type = A. Else, out-type = B.

iv. Sign A type messages: If out-type = A,

i. If i = t− 2,

A. σst,i+1 = SSig.Sign(sgk∗A,t−1,mi+1).

ii. If i ̸= t− 2,

A. (sgkA,i+1, vkA,i+1, vkA,i+1,rej)← SSig.Setup(1λ;PPRF.Eval(KA, i+ 1)).

B. σst,i+1 = SSig.Sign(sgkA,i+1,mi+1).

v. Sign B type messages: If out-type = B,

i. (sgkB,i+1, vkB,i+1, vkB,i+1,rej)← SSig.Setup(1λ;PPRF.Eval(KB, i+ 1)).

ii. σst,i+1 = SSig.Sign(sgkB,i+1,mi+1).

4. Output (yi, ctst,i+1, σst,i+1, itrst,i).

Lemma C.67. If iO is a secure indistinguishability obfuscation scheme, then for all λ ∈ N, all
t ∈ [t∗], and all PPT adversaries A,

∆(HybridA3,t,7,8(1
λ),HybridA3,t,7,9(1

λ)) ≤ negl(λ)
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Proof. By correctness of puncturing, for α ∈ {inp, A},

PPRF.Eval(Kα[t− 1], v) = PPRF.Eval(Kα, v) for any v ̸= t− 1

. Observe that our previous hybrid never evaluated punctured keys on their punctured points. This
was true even in Encryption Phase 2 since in that phase, we have i ≥ t∗ + 1 > t− 1.

Additionally, the hardwired signing and verification keys of the previous hybrid are the same as
what is computed in the current hybrid. Thus, Prog3,t,7,8 and Prog3,t,7,9 have the same input/output
behavior. For the same reasons, apart from the obfuscated programs, the hybrids are identical.

Thus, by a straightforward reduction to the security of iO, the hybrids are indistinguishable.
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HybridA3,t,8: This hybrid is identical to HybridA3,t,7,9. Note that we now have two steps hardwired

into the program. We have highlighted the differences between this hybrid and HybridA3,t,7 below:

1. Guess Stream Length: (t∗, n)← [TA,λ]× [TA,λ] where TA,λ is the maximum runtime of A
on security parameter λ.

2. Parameters: The adversary A receives security parameter 1λ, and outputs a function size
1ℓF , a state size 1ℓS , an input size 1ℓX , and an output size 1ℓY .

3. Setup:

(a) Kinp,KA,KB,KE ← PPRF.Setup(1λ).

(b) Post.MSK← Post-One-sFE.Setup(1λ, 1ℓF , 1ℓS , 1ℓX , 1ℓY ).

4. Challenge Bit: b← {0, 1}.

5. Encryption Phase 1: For i = 1, 2, . . . , t∗:
If the adversary does not make exactly t∗ queries during this phase, output ⊥ and halt.

(a) A sends (x
(0)
i , x

(1)
i ) to the challenger.

(b) Post.CT
(0)
i = Post-One-sFE(Post.MSK, i, x

(0)
i ).

(c) Post.CT
(b)
i = Post-One-sFE(Post.MSK, i, x

(b)
i ).

(d) Compute input ciphertexts:

i. (rE,i, rEnc,i) = PPRF.Eval(KE , i).

ii. kE,i = SKE.Setup(1λ; rE,i).

iii. ct
(0)
inp,i = SKE.Enc(kE,i,Post.CT

(0)
i ).

iv. ct
(b)
inp,i = SKE.Enc(kE,i,Post.CT

(b)
i ).

(e) Set hardwired values:

i. ct∗inp,i =

{
ct

(0)
inp,i if i < t+ 1

ct
(b)
inp,i if i ≥ t+ 1

.

(f) Compute input signature keys: Do nothing.

(g) Compute σinp,i:

i. (sgkinp,i, vkinp,i, vkinp,i,rej) = SSig.Setup(1λ;PPRF.Eval(Kinp, i)).

ii. σinp,i = SSig.Sign(sgkinp,i, ct
∗
inp,i).

(h) Send CTi = (ct∗inp,i, σinp,i) to A.

6. KeyGen:

(a) A sends f to the challenger. Define st1 = ⊥.
(b) Post.Dec.st1 ← Post-One-sFE.KeyGen(Post.MSK, f, st1).

(c) Post.Dec.st
(0)
1 = Post.Dec.st1 and Post.Dec.st

(b)
1 = Post.Dec.st1.

(d) Compute state and output values:

i. For i ∈ [t∗],

A. (yi,Post.Dec.st
(0)
i+1) = Post-One-sFE.Dec(Post.Dec.st

(0)
i ,Post.CT

(0)
i ).
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B. (yi,Post.Dec.st
(b)
i+1) = Post-One-sFE.Dec(Post.Dec.st

(b)
i ,Post.CT

(b)
i ).

(e) Compute state ciphertexts:

i. For i ∈ [t∗ + 1],

A. (rE,i, rEnc,i) = PPRF.Eval(KE , i).

B. kE,i = SKE.Setup(1λ; rE,i).

C. ct
(0)
st,i = SKE.Enc(kE,i,Post.Dec.st

(0)
i ; rEnc,i).

D. ct
(b)
st,i = SKE.Enc(kE,i,Post.Dec.st

(b)
i ; rEnc,i).

(f) Setup iterator: (ppst, itrst,0)← Itr.Setup(1λ, 2λ).

(g) Set hardwired values:

i. For i ∈ [t∗], y∗i = yi.

ii. For i ∈ [t∗ + 1],

A. ct∗st,i =

{
ct

(0)
st,i if i < t+ 1

ct
(b)
st,i if i ≥ t+ 1

B. itr∗st,i = Itr.Iterate(ppst, itr
∗
st,i−1, ct

∗
st,i) where itr∗st,0 = itrst,0.

C. m∗i = (i, ct∗st,i, itr
∗
st,i−1).

(h) Compute state signature keys: Do nothing.

(i) Compute σst,1:

i. (sgkA,1, vkA,1, vkA,1,rej)← SSig.Setup(1λ;PPRF.Eval(KA, 1)).

ii. σst,1 = SSig.Sign(sgkA,1,m
∗
1).

(j) Compute program: P ← iO(Prog3,t,8[Kinp,KA,KB,KE , ppst,m
∗
t−1, y

∗
t , ct

∗
st,t+1]).

(k) Send SKf = (P, ct∗st,1, σst,1, itrst,0) to A.

7. Encryption Phase 2: For i = t∗ + 1, t∗ + 2, . . . , n:
If the adversary does not make exactly n− t∗ queries during this phase, output ⊥ and halt.

(a) A sends (x
(0)
i , x

(1)
i ) to the challenger.

(b) Post.CT
(b)
i = Post-One-sFE(Post.MSK, i, x

(b)
i ).

(c) Compute ctinp,i:

i. (rE,i, rEnc,i) = PPRF.Eval(KE , i).

ii. kE,i = SKE.Setup(1λ; rE,i).

iii. ctinp,i = SKE.Enc(kE,i,Post.CT
(b)
i ).

(d) Compute σinp,i:

i. (sgkinp,i, vkinp,i, vkinp,i,rej) = SSig.Setup(1λ;PPRF.Eval(Kinp, i)).

ii. σinp,i = SSig.Sign(sgkinp,i, ctinp,i).

(e) Send CTi = (ctinp,i, σinp,i) to A.

8. Output: A sends b′ to the challenger. Output 1 if b = b′, and output 0 else.

Program Prog3,t,8[Kinp,KA,KB,KE , ppst,m
∗
t−1, y

∗
t , ct

∗
st,t+1](i, ctinp,i, σinp,i, ctst,i, σst,i, itrst,i−1)

1. Verification Step:

i. Verify i is positive: If i ≤ 0, output ⊥.
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ii. Verify input signature:

i. (sgkinp,i, vkinp,i, vkinp,i,rej)← SSig.Setup(1λ;PPRF.Eval(Kinp, i)).

ii. If SSig.Verify(vkinp,i, ctinp,i, σinp,i) = 0, output ⊥.
iii. mi = (i, ctst,i, itrst,i−1).

iv. in-type = ⊥.
v. Verify A type signatures:

i. (sgkA,i, vkA,i, vkA,i,rej)← SSig.Setup(1λ;PPRF.Eval(KA, i)).

ii. If SSig.Verify(vkA,i,mi, σst,i) = 1, in-type = out-type = A.

vi. If in-type = ⊥, output ⊥.

2. Computation Step:

i. If i = t− 1, (yi, ctst,i+1) = (y∗t−1, ct
∗
st,t).

ii. If i = t, (yi, ctst,i+1) = (y∗t , ct
∗
st,t+1).

iii. If i = t,

i. Decrypt input and state:

i. (rE,i, rEnc,i) = PPRF.Eval(KE , i).

ii. kE,i = SKE.Setup(1λ; rE,i).

iii. Post.CTi = SKE.Dec(kE,i, ctinp,i).

iv. Post.Dec.sti = SKE.Dec(kE,i, ctst,i).

ii. Compute output value and next state:

A. (yi,Post.Dec.sti+1) = Post-One-sFE.Dec(Post.Dec.sti,Post.CTi).

iii. Encrypt the new state:

i. (rE,i+1, rEnc,i+1) = PPRF.Eval(KE , i+ 1).

ii. kE,i+1 = SKE.Setup(1λ; rE,i+1).

iii. ctst,i+1 = SKE.Enc(kE,i+1,Post.Dec.sti+1; rEnc,i+1).

3. Authentication Step:

i. itrst,i = Itr.Iterate(ppst, itrst,i−1, (i, ctst,i)).

ii. mi+1 = (i+ 1, ctst,i+1, itrst,i).

iii. If i = t− 2,

i. If mi+1 = m∗t−1, out-type = A. Else, out-type = B.

iv. Sign A type messages: If out-type = A,

i. (sgkA,i+1, vkA,i+1, vkA,i+1,rej)← SSig.Setup(1λ;PPRF.Eval(KA, i+ 1)).

ii. σst,i+1 = SSig.Sign(sgkA,i+1,mi+1).

v. Sign B type messages: If out-type = B,

i. (sgkB,i+1, vkB,i+1, vkB,i+1,rej)← SSig.Setup(1λ;PPRF.Eval(KB, i+ 1)).

ii. σst,i+1 = SSig.Sign(sgkB,i+1,mi+1).

4. Output (yi, ctst,i+1, σst,i+1, itrst,i).
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Lemma C.68. For all λ ∈ N, all t ∈ [t∗], and all PPT adversaries A,

∆(HybridA3,t,7,9(1
λ),HybridA3,t,8(1

λ)) = 0

Proof. The hybrids are identical.
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HybridA3,t,9: We remove the conditional statement at i = t − 1 from the obfuscated program and
remove all references to B type signatures. We have highlighted the differences between this hybrid
and HybridA3,t,5 below:

1. Guess Stream Length: (t∗, n)← [TA,λ]× [TA,λ] where TA,λ is the maximum runtime of A
on security parameter λ.

2. Parameters: The adversary A receives security parameter 1λ, and outputs a function size
1ℓF , a state size 1ℓS , an input size 1ℓX , and an output size 1ℓY .

3. Setup:

(a) Kinp,KA,KE ← PPRF.Setup(1λ).

(b) Post.MSK← Post-One-sFE.Setup(1λ, 1ℓF , 1ℓS , 1ℓX , 1ℓY ).

4. Challenge Bit: b← {0, 1}.

5. Encryption Phase 1: For i = 1, 2, . . . , t∗:
If the adversary does not make exactly t∗ queries during this phase, output ⊥ and halt.

(a) A sends (x
(0)
i , x

(1)
i ) to the challenger.

(b) Post.CT
(0)
i = Post-One-sFE(Post.MSK, i, x

(0)
i ).

(c) Post.CT
(b)
i = Post-One-sFE(Post.MSK, i, x

(b)
i ).

(d) Compute input ciphertexts:

i. (rE,i, rEnc,i) = PPRF.Eval(KE , i).

ii. kE,i = SKE.Setup(1λ; rE,i).

iii. ct
(0)
inp,i = SKE.Enc(kE,i,Post.CT

(0)
i ).

iv. ct
(b)
inp,i = SKE.Enc(kE,i,Post.CT

(b)
i ).

(e) Set hardwired values:

i. ct∗inp,i =

{
ct

(0)
inp,i if i < t+ 1

ct
(b)
inp,i if i ≥ t+ 1

.

(f) Compute input signature keys: Do nothing. (Will be added in a later hybrid.)

(g) Compute σinp,i:

i. (sgkinp,i, vkinp,i, vkinp,i,rej) = SSig.Setup(1λ;PPRF.Eval(Kinp, i)).

ii. σinp,i = SSig.Sign(sgkinp,i, ct
∗
inp,i).

(h) Send CTi = (ct∗inp,i, σinp,i) to A.

6. KeyGen:

(a) A sends f to the challenger. Define st1 = ⊥.
(b) Post.Dec.st1 ← Post-One-sFE.KeyGen(Post.MSK, f, st1).

(c) Post.Dec.st
(0)
1 = Post.Dec.st1 and Post.Dec.st

(b)
1 = Post.Dec.st1.

(d) Compute state and output values:

i. For i ∈ [t∗],
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A. (yi,Post.Dec.st
(0)
i+1) = Post-One-sFE.Dec(Post.Dec.st

(0)
i ,Post.CT

(0)
i ).

B. (yi,Post.Dec.st
(b)
i+1) = Post-One-sFE.Dec(Post.Dec.st

(b)
i ,Post.CT

(b)
i ).

(e) Compute state ciphertexts:

i. For i ∈ [t∗ + 1],

A. (rE,i, rEnc,i) = PPRF.Eval(KE , i).

B. kE,i = SKE.Setup(1λ; rE,i).

C. ct
(0)
st,i = SKE.Enc(kE,i,Post.Dec.st

(0)
i ; rEnc,i).

D. ct
(b)
st,i = SKE.Enc(kE,i,Post.Dec.st

(b)
i ; rEnc,i).

(f) Setup iterator: (ppst, itrst,0)← Itr.Setup(1λ, 2λ).

(g) Set hardwired values:

i. For i ∈ [t∗], y∗i = yi.

ii. For i ∈ [t∗ + 1],

A. ct∗st,i =

{
ct

(0)
st,i if i < t+ 1

ct
(b)
st,i if i ≥ t+ 1

B. itr∗st,i = Itr.Iterate(ppst, itr
∗
st,i−1, ct

∗
st,i) where itr∗st,0 = itrst,0.

C. m∗i = (i, ct∗st,i, itr
∗
st,i−1).

(h) Compute state signature keys: Do nothing. (Will be added in a later hybrid.)

(i) Compute σst,1:

i. (sgkA,1, vkA,1, vkA,1,rej)← SSig.Setup(1λ;PPRF.Eval(KA, 1)).

ii. σst,1 = SSig.Sign(sgkA,1,m
∗
1).

(j) Compute program: P ← iO(Prog3,t,9[Kinp,KA,KE , ppst, y
∗
t , ct

∗
st,t+1]).

(k) Send SKf = (P, ct∗st,1, σst,1, itrst,0) to A.

7. Encryption Phase 2: For i = t∗ + 1, t∗ + 2, . . . , n:
If the adversary does not make exactly n− t∗ queries during this phase, output ⊥ and halt.

(a) A sends (x
(0)
i , x

(1)
i ) to the challenger.

(b) Post.CT
(b)
i = Post-One-sFE(Post.MSK, i, x

(b)
i ).

(c) Compute ctinp,i:

i. (rE,i, rEnc,i) = PPRF.Eval(KE , i).

ii. kE,i = SKE.Setup(1λ; rE,i).

iii. ctinp,i = SKE.Enc(kE,i,Post.CT
(b)
i ).

(d) Compute σinp,i:

i. (sgkinp,i, vkinp,i, vkinp,i,rej) = SSig.Setup(1λ;PPRF.Eval(Kinp, i)).

ii. σinp,i = SSig.Sign(sgkinp,i, ctinp,i).

(e) Send CTi = (ctinp,i, σinp,i) to A.

8. Output: A sends b′ to the challenger. Output 1 if b = b′, and output 0 else.
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Program Prog3,t,9[Kinp,KA,KE , ppst, y
∗
t , ct

∗
st,t+1](i, ctinp,i, σinp,i, ctst,i, σst,i, itrst,i−1)

1. Verification Step:

i. Verify i is positive: If i ≤ 0, output ⊥.
ii. Verify input signature:

i. (sgkinp,i, vkinp,i, vkinp,i,rej)← SSig.Setup(1λ;PPRF.Eval(Kinp, i)).

ii. If SSig.Verify(vkinp,i, ctinp,i, σinp,i) = 0, output ⊥.
iii. mi = (i, ctst,i, itrst,i−1).

iv. Verify state signature:

i. (sgkA,i, vkA,i, vkA,i,rej)← SSig.Setup(1λ;PPRF.Eval(KA, i)).

ii. If SSig.Verify(vkA,i,mi, σst,i) = 0, output ⊥.

2. Computation Step:

i. If i = t− 1, (yi, ctst,i+1) = (y∗t−1, ct
∗
st,t).

ii. If i = t, (yi, ctst,i+1) = (y∗t , ct
∗
st,t+1).

iii. If i ̸= t,

i. Decrypt input and state:

i. (rE,i, rEnc,i) = PPRF.Eval(KE , i).

ii. kE,i = SKE.Setup(1λ; rE,i).

iii. Post.CTi = SKE.Dec(kE,i, ctinp,i).

iv. Post.Dec.sti = SKE.Dec(kE,i, ctst,i).

ii. Compute output value and next state:

A. (yi,Post.Dec.sti+1) = Post-One-sFE.Dec(Post.Dec.sti,Post.CTi).

iii. Encrypt the new state:

i. (rE,i+1, rEnc,i+1) = PPRF.Eval(KE , i+ 1).

ii. kE,i+1 = SKE.Setup(1λ; rE,i+1).

iii. ctst,i+1 = SKE.Enc(kE,i+1,Post.Dec.sti+1; rEnc,i+1).

3. Authentication Step:

i. itrst,i = Itr.Iterate(ppst, itrst,i−1, (i, ctst,i)).

ii. mi+1 = (i+ 1, ctst,i+1, itrst,i).

iii. Sign the new state:

i. (sgkA,i+1, vkA,i+1, vkA,i+1,rej)← SSig.Setup(1λ;PPRF.Eval(KA, i+ 1)).

ii. σst,i+1 = SSig.Sign(sgkA,i+1,mi+1).

4. Output (yi, ctst,i+1, σst,i+1, itrst,i).

Lemma C.69. If iO is a secure indistinguishability obfuscation scheme, PPRF is a puncturable
pseudorandom function, SSig is a splittable signature scheme, and Itr is a cryptographic iterator,
then for all λ ∈ N, all t ∈ [t∗], and all PPT adversaries A,

∆(HybridA3,t,8(1
λ),HybridA3,t,9(1

λ)) ≤ negl(1λ)
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Proof. The proof is similar to the proof of indistinguishability between HybridA3,t,5 (which is similar

to HybridA3,t,9) and HybridA3,t,7 (which is similar to HybridA3,t,8).

The only difference between hybrids (HybridA3,t,5,HybridA3,t,7) and hybrids (HybridA3,t,9,HybridA3,t,8)
is in the way they compute (yi, ctst,i+1) for i = t − 1 in the computation step of the obfuscated
program. In the latter hybrids, they compute (yi, ctst,i+1) for i = t − 1 by decrypting, computing
the function, and re-encrypting. In the former hybrids, they set (yi, ctst,i+1) for i = t − 1 to the
hardwired values (y∗t−1, ct

∗
st,t).

However, the proof can be easily modified to accommodate these changes. First, we change all
the intermediate hybrids of the previous proof so that they compute (yi, ctst,i+1) for i = t − 1 as
in hybrids (HybridA3,t,9,HybridA3,t,8). Then, the only lemmas affected by these changes are the
following:

• Lemma corresponding to Lemma C.26:
Observe that the proof relies on the adjacent hybrids having the same behavior during the
computation step regardless of whether in-type = A or in-type = B. Although we have
changed the behavior of the computation step so that it does not hardcode values at i = t−1,
the computation step is still oblivious of whether in-type = A or in-type = B. Thus, the proof
still follows.

• Lemma corresponding to Lemma C.33:
This proof relies on the fact that if (ctinp,i, ctst,i) = (ct∗inp,i, ct

∗
st,i), then we will compute

(yi, ctst,i+1) = (y∗i , ct
∗
st,i+1). For i = t − 1, since (ct∗inp,t−1, ct

∗
st,t−1) = (ct

(0)
inp,t−1, ct

(0)
st,t−1) and

(y∗t−1, ct
∗
st,t) = (y∗t−1, ct

(0)
st,t), then we will compute the correct values regardless of whether

they are hardcoded (as in the previous proof) or computed by decrypting, evaluating, and
re-encrypting (as in the current proof). Thus, the proof still follows.

Lemma C.70. For all λ ∈ N, all t ∈ [t∗] and all adversaries A,

∆(HybridA3,t,9(1
λ),HybridA3,t+1,0(1

λ)) = 0

Proof. The hybrids are identical.
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Erasing the streams from ciphertext t∗. We could continue advancing through our hybrids
until we have reached HybridA3,t∗+1,0. At this point, we would encrypt stream x(0) for i ≤ t∗ and

would encrypt stream x(b) for i > t∗.
For i > t∗ we want to rely on the security of Post-One-sFE. However, in Post-One-sFE, the

security of each ciphertext is correlated with the security of adjacent ciphertexts. Thus, to break
this chain of dependencies, we actually want to remove both streams entirely from ciphertext t∗.

Therefore, rather than starting with HybridA3,t∗+1,0, we will actually start with HybridA3,t∗,4.
At this stage, we have both steps t∗ − 1 and t∗ hardwired into the program. Then, we will replace
the encryption of x(b) at t∗ with an encryption of ⊥. The following sequence of hybrids is very
similar to the proof of indistinguishabilty between HybridA3,t∗,4 and HybridA3,t∗,5.

HybridA4 = HybridA4,0: This is the same as hybrid HybridA3,t∗,4. We have marked the minor
notational differences below.

1. Guess Stream Length: (t∗, n)← [TA,λ]× [TA,λ] where TA,λ is the maximum runtime of A
on security parameter λ.

2. Parameters: The adversary A receives security parameter 1λ, and outputs a function size
1ℓF , a state size 1ℓS , an input size 1ℓX , and an output size 1ℓY .

3. Setup:

(a) Kinp,KA,KE ← PPRF.Setup(1λ).

(b) Post.MSK← Post-One-sFE.Setup(1λ, 1ℓF , 1ℓS , 1ℓX , 1ℓY ).

4. Challenge Bit: b← {0, 1}.

5. Encryption Phase 1: For i = 1, 2, . . . , t∗:
If the adversary does not make exactly t∗ queries during this phase, output ⊥ and halt.

(a) A sends (x
(0)
i , x

(1)
i ) to the challenger.

(b) Post.CT
(0)
i = Post-One-sFE(Post.MSK, i, x

(0)
i ).

(c) Post.CT
(b)
i = Post-One-sFE(Post.MSK, i, x

(b)
i ).

(d) Compute input ciphertexts:

i. (rE,i, rEnc,i) = PPRF.Eval(KE , i).

ii. kE,i = SKE.Setup(1λ; rE,i).

iii. ct
(0)
inp,i = SKE.Enc(kE,i,Post.CT

(0)
i ).

iv. ct
(b)
inp,i = SKE.Enc(kE,i,Post.CT

(b)
i ).

(e) Set hardwired values:

i. ct∗inp,i =

{
ct

(0)
inp,i if i < t∗

ct
(b)
inp,i if i = t∗

.

(f) Compute input signature keys: Do nothing. (Will be added in a later hybrid.)

(g) Compute σinp,i:

i. (sgkinp,i, vkinp,i, vkinp,i,rej) = SSig.Setup(1λ;PPRF.Eval(Kinp, i)).

ii. σinp,i = SSig.Sign(sgkinp,i, ct
∗
inp,i).
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(h) Send CTi = (ct∗inp,i, σinp,i) to A.

6. KeyGen:

(a) A sends f to the challenger. Define st1 = ⊥.
(b) Post.Dec.st1 ← Post-One-sFE.KeyGen(Post.MSK, f, st1).

(c) Post.Dec.st
(0)
1 = Post.Dec.st1 and Post.Dec.st

(b)
1 = Post.Dec.st1.

(d) Compute state and output values:

i. For i ∈ [t∗],

A. (yi,Post.Dec.st
(0)
i+1) = Post-One-sFE.Dec(Post.Dec.st

(0)
i ,Post.CT

(0)
i ).

B. (yi,Post.Dec.st
(b)
i+1) = Post-One-sFE.Dec(Post.Dec.st

(b)
i ,Post.CT

(b)
i ).

(e) Compute state ciphertexts:

i. For i ∈ [t∗ + 1],

A. (rE,i, rEnc,i) = PPRF.Eval(KE , i).

B. kE,i = SKE.Setup(1λ; rE,i).

C. ct
(0)
st,i = SKE.Enc(kE,i,Post.Dec.st

(0)
i ; rEnc,i).

D. ct
(b)
st,i = SKE.Enc(kE,i,Post.Dec.st

(b)
i ; rEnc,i).

(f) Setup iterator: (ppst, itrst,0)← Itr.Setup(1λ, 2λ).

(g) Set hardwired values:

i. For i ∈ [t∗], y∗i = yi.

ii. For i ∈ [t∗ + 1],

A. ct∗st,i =

{
ct

(0)
st,i if i = 1

ct
(b)
st,i if i ∈ {t∗, t∗ + 1}

B. itr∗st,i = Itr.Iterate(ppst, itr
∗
st,i−1, ct

∗
st,i) where itr∗st,0 = itrst,0.

C. m∗i = (i, ct∗st,i, itr
∗
st,i−1).

(h) Compute state signature keys: Do nothing. (Will be added in a later hybrid.)

(i) Compute σst,1:

i. m1 = (1, ct∗st,1, itrst,0).

ii. (sgkA,1, vkA,1, vkA,1,rej)← SSig.Setup(1λ;PPRF.Eval(KA, 1)).

iii. σst,1 = SSig.Sign(sgkA,1,m1).

(j) Compute program: P ← iO(Prog4[Kinp,KA,KE , ppst, t
∗, y∗t∗−1, ct

∗
st,t∗ , y

∗
t∗ , ct

∗
st,t∗+1]).

(k) Send SKf = (P, ct∗st,1, σst,1, itrst,0) to A.

7. Encryption Phase 2: For i = t∗ + 1, t∗ + 2, . . . , n:
If the adversary does not make exactly n− t∗ queries during this phase, output ⊥ and halt.

(a) A sends (x
(0)
i , x

(1)
i ) to the challenger.

(b) Post.CT
(b)
i = Post-One-sFE(Post.MSK, i, x

(b)
i ).

(c) Compute ctinp,i:

i. (rE,i, rEnc,i) = PPRF.Eval(KE , i).

ii. kE,i = SKE.Setup(1λ; rE,i).
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iii. ctinp,i = SKE.Enc(kE,i,Post.CT
(b)
i ).

(d) Compute σinp,i:

i. (sgkinp,i, vkinp,i, vkinp,i,rej) = SSig.Setup(1λ;PPRF.Eval(Kinp, i)).

ii. σinp,i = SSig.Sign(sgkinp,i, ctinp,i).

(e) Send CTi = (ctinp,i, σinp,i) to A.

8. Output: A sends b′ to the challenger. Output 1 if b = b′, and output 0 else.

Program
Prog4[Kinp,KA,KE , ppst, t

∗, y∗t∗−1, ct
∗
st,t∗ , y

∗
t∗ , ct

∗
st,t∗+1](i, ctinp,i, σinp,i, ctst,i, σst,i, itrst,i−1)

1. Verification Step:

i. Verify i is positive: If i ≤ 0, output ⊥.
ii. Verify input signature:

i. (sgkinp,i, vkinp,i, vkinp,i,rej)← SSig.Setup(1λ;PPRF.Eval(Kinp, i)).

ii. If SSig.Verify(vkinp,i, ctinp,i, σinp,i) = 0, output ⊥.
iii. mi = (i, ctst,i, itrst,i−1).

iv. Verify state signature:

i. (sgkA,i, vkA,i, vkA,i,rej)← SSig.Setup(1λ;PPRF.Eval(KA, i)).

ii. If SSig.Verify(vkA,i,mi, σst,i) = 0, output ⊥.

2. Computation Step:

i. If i = t∗ − 1, (yi, ctst,i+1) = (y∗t∗−1, ct
∗
st,t∗).

ii. If i = t∗, (yi, ctst,i+1) = (y∗t∗ , ct
∗
st,t∗+1).

iii. If i /∈ {t∗ − 1, t∗},
i. Decrypt input and state:

i. (rE,i, rEnc,i) = PPRF.Eval(KE , i).

ii. kE,i = SKE.Setup(1λ; rE,i).

iii. Post.CTi = SKE.Dec(kE,i, ctinp,i).

iv. Post.Dec.sti = SKE.Dec(kE,i, ctst,i).

ii. Compute output value and next state:

A. (yi,Post.Dec.sti+1) = Post-One-sFE.Dec(Post.Dec.sti,Post.CTi).

iii. Encrypt the new state:

i. (rE,i+1, rEnc,i+1) = PPRF.Eval(KE , i+ 1).

ii. kE,i+1 = SKE.Setup(1λ; rE,i+1).

iii. ctst,i+1 = SKE.Enc(kE,i+1,Post.Dec.sti+1; rEnc,i+1).

3. Authentication Step:

i. itrst,i = Itr.Iterate(ppst, itrst,i−1, (i, ctst,i)).

ii. mi+1 = (i+ 1, ctst,i+1, itrst,i).

iii. Sign the new state:
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i. (sgkA,i+1, vkA,i+1, vkA,i+1,rej)← SSig.Setup(1λ;PPRF.Eval(KA, i+ 1)).

ii. σst,i+1 = SSig.Sign(sgkA,i+1,mi+1).

4. Output (yi, ctst,i+1, σst,i+1, itrst,i).

Lemma C.71. For all λ ∈ N and all adversaries A,

∆(HybridA3,t∗,4(1
λ),HybridA4 (1

λ)) = 0

Proof. The hybrids are identical.
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HybridA4,1: We puncture KE at t. This hybrid is the same as the previous hybrid except that

• During Encryption Phase 1, we make changes to the following steps:

5d. Compute input ciphertexts:

1. KE [t
∗] = PPRF.Punc(KE , t

∗).

2. If i = t∗,

(a) (rE,t∗ , rEnc,t∗) = PPRF.Eval(KE , t
∗).

(b) kE,t∗ = SKE.Setup(1λ; rE,t∗).

(c) ctinp,i = SKE.Enc(kE,t∗ ,Post.CT
(b)
i ).

3. If i ̸= t∗,

(a) (rE,i, rEnc,i) = PPRF.Eval(KE [t
∗], i).

(b) kE,i = SKE.Setup(1λ; rE,i).

(c) ct
(0)
inp,i = SKE.Enc(kE,i,Post.CT

(0)
i ).

(d) ct
(b)
inp,i = SKE.Enc(kE,i,Post.CT

(b)
i ).

5e. Set hardwired values:

1. ct∗inp,i =

{
ct

(0)
inp,i if i < t∗

ctinp,i if i = t∗
.

• During KeyGen, we make changes to the following steps:

6e. Compute state ciphertexts:

1. For i ∈ [t∗ + 1],

(a) If i = t∗,

i. ctst,i = SKE.Enc(kE,t∗ ,Post.Dec.st
(b)
i ; rEnc,t∗).

(b) If i ̸= t∗,

i. (rE,i, rEnc,i) = PPRF.Eval(KE [t
∗], i).

ii. kE,i = SKE.Setup(1λ; rE,i).

iii. ct
(0)
st,i = SKE.Enc(kE,i,Post.Dec.st

(0)
i ; rEnc,i).

iv. ct
(b)
st,i = SKE.Enc(kE,i,Post.Dec.st

(b)
i ; rEnc,i).

6g. Set hardwired values:

1. For i ∈ [t∗], y∗i = yi.

2. For i ∈ [t∗ + 1],

(a) ct∗st,i =


ct

(0)
st,i if i = 1

ctst,i if i = t∗

ct
(b)
st,i if i = t∗ + 1

6j. Compute program: P ← iO(Prog4,1[Kinp,KA,KE [t
∗], ppst, t

∗, y∗t∗−1, ct
∗
st,t∗ , y

∗
t∗ , ct

∗
st,t∗+1]).

• During Encryption Phase 2, we make changes to the following steps:

7c. Compute ctinp,i:

1. (rE,i, rEnc,i) = PPRF.Eval(KE [t
∗], i).

2. kE,i = SKE.Setup(1λ; rE,i).

3. ctinp,i = SKE.Enc(kE,i,Post.CT
(b)
i ).

246



Program
Prog4,1[Kinp,KA,KE [t

∗], ppst, t
∗, y∗t∗−1, ct

∗
st,t∗ , y

∗
t∗ , ct

∗
st,t∗+1](i, ctinp,i, σinp,i, ctst,i, σst,i, itrst,i−1)

1. Verification Step:

i. Verify i is positive: If i ≤ 0, output ⊥.
ii. Verify input signature:

i. (sgkinp,i, vkinp,i, vkinp,i,rej)← SSig.Setup(1λ;PPRF.Eval(Kinp, i)).

ii. If SSig.Verify(vkinp,i, ctinp,i, σinp,i) = 0, output ⊥.
iii. mi = (i, ctst,i, itrst,i−1).

iv. Verify state signature:

i. (sgkA,i, vkA,i, vkA,i,rej)← SSig.Setup(1λ;PPRF.Eval(KA, i)).

ii. If SSig.Verify(vkA,i,mi, σst,i) = 0, output ⊥.

2. Computation Step:

i. If i = t∗ − 1, (yi, ctst,i+1) = (y∗t∗−1, ct
∗
st,t∗).

ii. If i = t∗, (yi, ctst,i+1) = (y∗t∗ , ct
∗
st,t∗+1).

iii. If i /∈ {t∗ − 1, t∗},
i. Decrypt input and state:

i. (rE,i, rEnc,i) = PPRF.Eval(KE [t
∗], i).

ii. kE,i = SKE.Setup(1λ; rE,i).

iii. Post.CTi = SKE.Dec(kE,i, ctinp,i).

iv. Post.Dec.sti = SKE.Dec(kE,i, ctst,i).

ii. Compute output value and next state:

A. (yi,Post.Dec.sti+1) = Post-One-sFE.Dec(Post.Dec.sti,Post.CTi).

iii. Encrypt the new state:

i. (rE,i+1, rEnc,i+1) = PPRF.Eval(KE [t
∗], i+ 1).

ii. kE,i+1 = SKE.Setup(1λ; rE,i+1).

iii. ctst,i+1 = SKE.Enc(kE,i+1,Post.Dec.sti+1; rEnc,i+1).

3. Authentication Step:

i. itrst,i = Itr.Iterate(ppst, itrst,i−1, (i, ctst,i)).

ii. mi+1 = (i+ 1, ctst,i+1, itrst,i).

iii. Sign the new state:

i. (sgkA,i+1, vkA,i+1, vkA,i+1,rej)← SSig.Setup(1λ;PPRF.Eval(KA, i+ 1)).

ii. σst,i+1 = SSig.Sign(sgkA,i+1,mi+1).

4. Output (yi, ctst,i+1, σst,i+1, itrst,i).

Lemma C.72. If iO is a secure indistinguishability obfuscation scheme, then for all λ ∈ N and all
PPT adversaries A,

∆(HybridA4,0(1
λ),HybridA4,1(1

λ)) ≤ negl(λ)
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Proof. By correctness of puncturing,

PPRF.Eval(KE [t
∗], v) = PPRF.Eval(KE , v) for any v ̸= t∗.

Observe that we never evaluate punctured keys on their punctured points. This is true even in
Encryption Phase 2 since in that phase, we have i ≥ t∗ + 1 > t∗. It is also true within the
obfuscated program since we only need to encrypt or decrypt using KE [t

∗] on steps i /∈ {t∗− 1, t∗}.
Furthermore, ct∗inp,t∗ and ct∗st,t∗ are set to the same values as in the previous hybrid.

Thus, Prog4,0 and Prog4,1 have the same input/output behavior. For the same reasons, apart
from the obfuscated programs, the hybrids are identical.

Thus, by a straightforward reduction to the security of iO, the hybrids are indistinguishable.
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HybridA4,2: We change rE,t∗ and rEnc,t∗ to random values. This hybrid is the same as the previous
hybrid except that

• During Encryption Phase 1, we make changes to the following steps:

5d. Compute input ciphertexts:

1. KE [t
∗] = PPRF.Punc(KE , t

∗).

2. If i = t∗,

(a) (rE,t∗ , rEnc,t∗)← {0, 1}λ × {0, 1}λ.
(b) kE,t∗ = SKE.Setup(1λ; rE,t∗).

(c) ctinp,i = SKE.Enc(kE,i,Post.CT
(b)
i ).

3. If i ̸= t∗,

(a) (rE,i, rEnc,i) = PPRF.Eval(KE [t
∗], i).

(b) kE,i = SKE.Setup(1λ; rE,i).

(c) ct
(0)
inp,i = SKE.Enc(kE,i,Post.CT

(0)
i ).

Lemma C.73. If PPRF is a puncturable pseudorandom function, then for all λ ∈ N and all PPT
adversaries A,

∆(HybridA4,1(1
λ),HybridA4,2(1

λ)) ≤ negl(λ)

Proof. This follows by a reduction to the selective pseudorandomness at punctured points property
of our PPRF.

Observe that we can run both hybrids without knowingKE as long as we are given (KE [t
∗], rE,t∗ , rEnc,t∗).

In the reduction, without computing KE , we run HybridA4,2 up to just before step 5d.2 of En-
cryption Phase 1. Then, we receive (KE [t

∗], rE,t∗ , rEnc,t∗) from the PPRF challenger where
(rE,t∗ , rEnc,t∗) is either a random value or equal to PPRF.Eval(KE , t

∗). We use this randomness to
compute ctinp,t∗ now (and to compute ctst,t∗ later in the hybrid). We then run the rest of HybridA4,2
starting from step 5d.3 of Encryption Phase 1. Observe that if (rE,t∗ , rEnc,t∗) was a random value
then we exactly emulateHybridA4,2, and if (rE,t∗ , rEnc,t∗) was equal to PPRF.Eval(KE , t

∗) we emulate

HybridA4,1. Thus, by PPRF security, the outputs of these hybrids must be indistinguishable.
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HybridA4,3: We change ciphertext t∗ so that it encrypts ⊥ instead of stream x(b). This hybrid is
the same as the previous hybrid except that

• During Encryption Phase 1, we make changes to the following steps:

5d. Compute input ciphertexts:

1. KE [t
∗] = PPRF.Punc(KE , t

∗).

2. If i = t∗,

(a) (rE,t∗ , rEnc,t∗)← {0, 1}λ × {0, 1}λ.
(b) kE,t∗ = SKE.Setup(1λ; rE,t∗).

(c) ctinp,i = SKE.Enc(kE,i,⊥).
3. If i ̸= t∗,

(a) (rE,i, rEnc,i) = PPRF.Eval(KE [t
∗], i).

(b) kE,i = SKE.Setup(1λ; rE,i).

(c) ct
(0)
inp,i = SKE.Enc(kE,i,Post.CT

(0)
i ).

• During KeyGen, we make changes to the following steps:

6e. Compute state ciphertexts:

1. For i ∈ [t∗ + 1],

(a) If i = t∗,

i. ctst,i = SKE.Enc(kE,t∗ ,⊥; rEnc,t∗).
(b) If i ̸= t∗,

i. (rE,i, rEnc,i) = PPRF.Eval(KE [t
∗], i).

ii. kE,i = SKE.Setup(1λ; rE,i).

iii. ct
(0)
st,i = SKE.Enc(kE,i,Post.Dec.st

(0)
i ; rEnc,i).

iv. ct
(b)
st,i = SKE.Enc(kE,i,Post.Dec.st

(b)
i ; rEnc,i).

Lemma C.74. If SKE is a secure encryption scheme, then for all λ ∈ N and all PPT adversaries
A,

∆(HybridA4,2(1
λ),HybridA4,3(1

λ)) ≤ negl(λ)

Proof. This follows by a reduction to the security of SKE.
Observe that we can run both hybrids without knowing (rE,t∗ , rEnc,t∗ , kE,t∗) as long as we are

given (ctinp,t∗ , ctst,t∗). In the reduction, we runHybridA4,3 up to just before step 5d.2 of Encryption

Phase 1. Then, we send challenge message pair (Post.CT
(b)
i ,⊥) to the SKE challenger and receive

an encryption ct1 of one of the two messages. We set ctinp,t∗ = ct1. Next, we run HybridA4,3
starting from step 5d.3 of Encryption Phase 1 to just before step 6e of KeyGen. We then send

another challenge message pair (Post.Dec.st
(b)
i ,⊥) to the SKE challenger and receive an encryption

ct2 of one of the two messages. We set ctst,t∗ = ct2. We also run the parts of step 6e of KeyGen
that are not contained within the i = t∗ branch. We then run the rest of HybridA4,3 starting from
step 6f of KeyGen. Observe that if (ct1, ct2) were encryptions of the first message of each set (i.e.

(Post.CT
(b)
i ,Post.Dec.st

(b)
i )) then we exactly emulate HybridA4,2, and if (ct1, ct2) were encryptions

of the second message of each set (i.e. (⊥,⊥)) then we exactly emulate HybridA4,3. Thus, by SKE
security, the outputs of these hybrids must be indistinguishable.
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HybridA4,4: We change (rE,t∗ , rEnc,t∗) back to PPRF evaluations. This hybrid is the same as the
previous hybrid except that

• During Encryption Phase 1, we make changes to the following steps:

5d. Compute input ciphertexts:

1. KE [t
∗] = PPRF.Punc(KE , t

∗).

2. If i = t∗,

(a) (rE,t∗ , rEnc,t∗)← PPRF.Eval(KE , t
∗).

(b) kE,t∗ = SKE.Setup(1λ; rE,t∗).

(c) ctinp,i = SKE.Enc(kE,i,⊥).
3. If i ̸= t∗,

(a) (rE,i, rEnc,i) = PPRF.Eval(KE [t
∗], i).

(b) kE,i = SKE.Setup(1λ; rE,i).

(c) ct
(0)
inp,i = SKE.Enc(kE,i,Post.CT

(0)
i ).

Lemma C.75. If PPRF is a puncturable pseudorandom function, then for all λ ∈ N and all PPT
adversaries A,

∆(HybridA4,3(1
λ),HybridA4,4(1

λ)) ≤ negl(λ)

Proof. This follows by a reduction to the selective pseudorandomness at punctured points property
of our PPRF. The reduction is essentially the same as that of Lemma C.73 as it is still the case that
we can run both hybrids without knowing KE as long as we are given (KE [t

∗], rE,t∗ , rEnc,t∗).

251



HybridA4,5: We no longer puncture KE at t∗. This hybrid is the same as the previous hybrid except
that

• During Encryption Phase 1, we make changes to the following steps:

5d. Compute input ciphertexts:

1. KE [t
∗] = PPRF.Punc(KE , t

∗).

2. If i = t∗,

(a) (rE,t∗ , rEnc,t∗) = PPRF.Eval(KE , t
∗).

(b) kE,t∗ = SKE.Setup(1λ; rE,t∗).

(c) ctinp,i = SKE.Enc(kE,t∗ ,⊥).
3. If i ̸= t∗,

(a) (rE,i, rEnc,i) = PPRF.Eval(KE , i).

(b) kE,i = SKE.Setup(1λ; rE,i).

(c) ct
(0)
inp,i = SKE.Enc(kE,i,Post.CT

(0)
i ).

(d) ct
(⊥)
inp,i = SKE.Enc(kE,i,⊥).

5e. Set hardwired values:

1. ct∗inp,i =

{
ct

(0)
inp,i if i < t∗

ct
(⊥)
inp,i if i = t∗

.

• During KeyGen, we make changes to the following steps:

6e. Compute state ciphertexts:

1. For i ∈ [t∗ + 1],

(a) If i = t∗,

i. ctst,i = SKE.Enc(kE,t∗ ,⊥; rEnc,t∗).
(b) If i ̸= t∗,

i. (rE,i, rEnc,i) = PPRF.Eval(KE , i).

ii. kE,i = SKE.Setup(1λ; rE,i).

iii. ct
(0)
st,i = SKE.Enc(kE,i,Post.Dec.st

(0)
i ; rEnc,i).

iv. ct
(⊥)
st,i = SKE.Enc(kE,i,⊥; rEnc,i).

v. ct
(b)
st,i = SKE.Enc(kE,i,Post.Dec.st

(b)
i ; rEnc,i).

6g. Set hardwired values:

1. For i ∈ [t∗], y∗i = yi.

2. For i ∈ [t∗ + 1],

(a) ct∗st,i =


ct

(0)
st,i if i = 1

ct
(⊥)
st,i if i = t∗

ct
(b)
st,i if i = t∗ + 1

6j. Compute program: P ← iO(Prog4,5[Kinp,KA,KE , ppst, t
∗, y∗t∗−1, ct

∗
st,t∗ , y

∗
t∗ , ct

∗
st,t∗+1]).

• During Encryption Phase 2, we make changes to the following steps:

7c. Compute ctinp,i:
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1. (rE,i, rEnc,i) = PPRF.Eval(KE , i).

2. kE,i = SKE.Setup(1λ; rE,i).

3. ctinp,i = SKE.Enc(kE,i,Post.CT
(b)
i ).

Program
Prog4,5[Kinp,KA,KE , ppst, t

∗, y∗t∗−1, ct
∗
st,t∗ , y

∗
t∗ , ct

∗
st,t∗+1](i, ctinp,i, σinp,i, ctst,i, σst,i, itrst,i−1)

1. Verification Step:

i. Verify i is positive: If i ≤ 0, output ⊥.
ii. Verify input signature:

i. (sgkinp,i, vkinp,i, vkinp,i,rej)← SSig.Setup(1λ;PPRF.Eval(Kinp, i)).

ii. If SSig.Verify(vkinp,i, ctinp,i, σinp,i) = 0, output ⊥.
iii. mi = (i, ctst,i, itrst,i−1).

iv. Verify state signature:

i. (sgkA,i, vkA,i, vkA,i,rej)← SSig.Setup(1λ;PPRF.Eval(KA, i)).

ii. If SSig.Verify(vkA,i,mi, σst,i) = 0, output ⊥.

2. Computation Step:

i. If i = t∗ − 1, (yi, ctst,i+1) = (y∗t∗−1, ct
∗
st,t∗).

ii. If i = t∗, (yi, ctst,i+1) = (y∗t∗ , ct
∗
st,t∗+1).

iii. If i /∈ {t∗ − 1, t∗},
i. Decrypt input and state:

i. (rE,i, rEnc,i) = PPRF.Eval(KE , i).

ii. kE,i = SKE.Setup(1λ; rE,i).

iii. Post.CTi = SKE.Dec(kE,i, ctinp,i).

iv. Post.Dec.sti = SKE.Dec(kE,i, ctst,i).

ii. Compute output value and next state:

A. (yi,Post.Dec.sti+1) = Post-One-sFE.Dec(Post.Dec.sti,Post.CTi).

iii. Encrypt the new state:

i. (rE,i+1, rEnc,i+1) = PPRF.Eval(KE , i+ 1).

ii. kE,i+1 = SKE.Setup(1λ; rE,i+1).

iii. ctst,i+1 = SKE.Enc(kE,i+1,Post.Dec.sti+1; rEnc,i+1).

3. Authentication Step:

i. itrst,i = Itr.Iterate(ppst, itrst,i−1, (i, ctst,i)).

ii. mi+1 = (i+ 1, ctst,i+1, itrst,i).

iii. Sign the new state:
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i. (sgkA,i+1, vkA,i+1, vkA,i+1,rej)← SSig.Setup(1λ;PPRF.Eval(KA, i+ 1)).

ii. σst,i+1 = SSig.Sign(sgkA,i+1,mi+1).

4. Output (yi, ctst,i+1, σst,i+1, itrst,i).

Lemma C.76. If iO is a secure indistinguishability obfuscation scheme, then for all λ ∈ N, all
t∗ ∈ [t∗], and all PPT adversaries A,

∆(HybridA4,4(1
λ),HybridA4,5(1

λ)) ≤ negl(λ)

Proof. By correctness of puncturing,

PPRF.Eval(KE [t
∗], v) = PPRF.Eval(KE , v) for any v ̸= t∗.

Observe that the previous hybrid never evaluate punctured keys on their punctured points. This
was true even in Encryption Phase 2 since in that phase, we have i ≥ t∗ + 1 > t∗. It was also
true within the obfuscated program since we only needed to encrypt or decrypt using KE [t

∗] on
steps i /∈ {t∗ − 1, t∗}. Furthermore, ct∗inp,t∗ and ct∗st,t∗ from the previous hybrid are set to the same
values as in the current hybrid.

Thus, Prog4,4 and Prog4,5 have the same input/output behavior. For the same reasons, apart
from the obfuscated programs, the hybrids are identical.

Thus, by a straightforward reduction to the security of iO, the hybrids are indistinguishable.
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Cleaning up the hybrid. We now want to write our hybrids in terms of Pre-One-sFE’s al-
gorithms. First, however, we will make some notational changes to make the hybrid easier to
understand.

HybridA5 = HybridA5,0: This is the same as HybridA4,5. We have marked the changes between this

hybrid and HybridA4 .

1. Guess Stream Length: (t∗, n)← [TA,λ]× [TA,λ] where TA,λ is the maximum runtime of A
on security parameter λ.

2. Parameters: The adversary A receives security parameter 1λ, and outputs a function size
1ℓF , a state size 1ℓS , an input size 1ℓX , and an output size 1ℓY .

3. Setup:

(a) Kinp,KA,KE ← PPRF.Setup(1λ).

(b) Post.MSK← Post-One-sFE.Setup(1λ, 1ℓF , 1ℓS , 1ℓX , 1ℓY ).

4. Challenge Bit: b← {0, 1}.

5. Encryption Phase 1: For i = 1, 2, . . . , t∗:
If the adversary does not make exactly t∗ queries during this phase, output ⊥ and halt.

(a) A sends (x
(0)
i , x

(1)
i ) to the challenger.

(b) Post.CT
(0)
i = Post-One-sFE(Post.MSK, i, x

(0)
i ).

(c) Post.CT
(b)
i = Post-One-sFE(Post.MSK, i, x

(b)
i ).

(d) Compute input ciphertexts:

i. (rE,i, rEnc,i) = PPRF.Eval(KE , i).

ii. kE,i = SKE.Setup(1λ; rE,i).

iii. ct
(0)
inp,i = SKE.Enc(kE,i,Post.CT

(0)
i ).

iv. ct
(⊥)
inp,i = SKE.Enc(kE,i,⊥).

(e) Set hardwired values:

i. ct∗inp,i =

{
ct

(0)
inp,i if i < t∗

ct
(⊥)
inp,i if i = t∗

.

(f) Compute σinp,i:

i. (sgkinp,i, vkinp,i, vkinp,i,rej) = SSig.Setup(1λ;PPRF.Eval(Kinp, i)).

ii. σinp,i = SSig.Sign(sgkinp,i, ct
∗
inp,i).

(g) Send CTi = (ct∗inp,i, σinp,i) to A.

6. KeyGen:

(a) A sends f to the challenger. Define st1 = ⊥.
(b) Post.Dec.st1 ← Post-One-sFE.KeyGen(Post.MSK, f, st1).

(c) Post.Dec.st
(0)
1 = Post.Dec.st1 and Post.Dec.st

(b)
1 = Post.Dec.st1.

(d) Compute state and output values:
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i. For i ∈ [t∗],

A. (yi,Post.Dec.st
(0)
i+1) = Post-One-sFE.Dec(Post.Dec.st

(0)
i ,Post.CT

(0)
i ).

B. (yi,Post.Dec.st
(b)
i+1) = Post-One-sFE.Dec(Post.Dec.st

(b)
i ,Post.CT

(b)
i ).

(e) Compute state ciphertexts:

i. For i ∈ [t∗ + 1],

A. (rE,i, rEnc,i) = PPRF.Eval(KE , i).

B. kE,i = SKE.Setup(1λ; rE,i).

C. ct
(0)
st,i = SKE.Enc(kE,i,Post.Dec.st

(0)
i ; rEnc,i).

D. ct
(⊥)
st,i = SKE.Enc(kE,i,⊥; rEnc,i).

E. ct
(b)
st,i = SKE.Enc(kE,i,Post.Dec.st

(b)
i ; rEnc,i).

(f) Setup iterator: (ppst, itrst,0)← Itr.Setup(1λ, 2λ).

(g) Set hardwired values:

i. For i ∈ [t∗], y∗i = yi.

ii. For i ∈ [t∗ + 1],

A. ct∗st,i =


ct

(0)
st,i if i = 1

ct
(⊥)
st,i if i = t∗

ct
(b)
st,i if i = t∗ + 1

(h) Compute σst,1:

i. m1 = (1, ct∗st,1, itrst,0).

ii. (sgkA,1, vkA,1, vkA,1,rej)← SSig.Setup(1λ;PPRF.Eval(KA, 1)).

iii. σst,1 = SSig.Sign(sgkA,1,m1).

(i) Compute program: P ← iO(Prog5[Kinp,KA,KE , ppst, t
∗, y∗t∗−1, ct

∗
st,t∗ , y

∗
t∗ , ct

∗
st,t∗+1]).

(j) Send SKf = (P, ct∗st,1, σst,1, itrst,0) to A.

7. Encryption Phase 2: For i = t∗ + 1, t∗ + 2, . . . , n:
If the adversary does not make exactly n− t∗ queries during this phase, output ⊥ and halt.

(a) A sends (x
(0)
i , x

(1)
i ) to the challenger.

(b) Post.CT
(b)
i = Post-One-sFE(Post.MSK, i, x

(b)
i ).

(c) Compute ctinp,i:

i. (rE,i, rEnc,i) = PPRF.Eval(KE , i).

ii. kE,i = SKE.Setup(1λ; rE,i).

iii. ctinp,i = SKE.Enc(kE,i,Post.CT
(b)
i ).

(d) Compute σinp,i:

i. (sgkinp,i, vkinp,i, vkinp,i,rej) = SSig.Setup(1λ;PPRF.Eval(Kinp, i)).

ii. σinp,i = SSig.Sign(sgkinp,i, ctinp,i).

(e) Send CTi = (ctinp,i, σinp,i) to A.

8. Output: A sends b′ to the challenger. Output 1 if b = b′, and output 0 else.

256



Program
Prog5[Kinp,KA,KE , ppst, t

∗, y∗t∗−1, ct
∗
st,t∗ , y

∗
t∗ , ct

∗
st,t∗+1](i, ctinp,i, σinp,i, ctst,i, σst,i, itrst,i−1)

1. Verification Step:

i. Verify i is positive: If i ≤ 0, output ⊥.
ii. Verify input signature:

i. (sgkinp,i, vkinp,i, vkinp,i,rej)← SSig.Setup(1λ;PPRF.Eval(Kinp, i)).

ii. If SSig.Verify(vkinp,i, ctinp,i, σinp,i) = 0, output ⊥.
iii. mi = (i, ctst,i, itrst,i−1).

iv. Verify state signature:

i. (sgkA,i, vkA,i, vkA,i,rej)← SSig.Setup(1λ;PPRF.Eval(KA, i)).

ii. If SSig.Verify(vkA,i,mi, σst,i) = 0, output ⊥.

2. Computation Step:

i. If i = t∗ − 1, (yi, ctst,i+1) = (y∗t∗−1, ct
∗
st,t∗).

ii. If i = t∗, (yi, ctst,i+1) = (y∗t∗ , ct
∗
st,t∗+1).

iii. If i /∈ {t∗ − 1, t∗},
i. Decrypt input and state:

i. (rE,i, rEnc,i) = PPRF.Eval(KE , i).

ii. kE,i = SKE.Setup(1λ; rE,i).

iii. Post.CTi = SKE.Dec(kE,i, ctinp,i).

iv. Post.Dec.sti = SKE.Dec(kE,i, ctst,i).

ii. Compute output value and next state:

A. (yi,Post.Dec.sti+1) = Post-One-sFE.Dec(Post.Dec.sti,Post.CTi).

iii. Encrypt the new state:

i. (rE,i+1, rEnc,i+1) = PPRF.Eval(KE , i+ 1).

ii. kE,i+1 = SKE.Setup(1λ; rE,i+1).

iii. ctst,i+1 = SKE.Enc(kE,i+1,Post.Dec.sti+1; rEnc,i+1).

3. Authentication Step:

i. itrst,i = Itr.Iterate(ppst, itrst,i−1, (i, ctst,i)).

ii. mi+1 = (i+ 1, ctst,i+1, itrst,i).

iii. Sign the new state:

i. (sgkA,i+1, vkA,i+1, vkA,i+1,rej)← SSig.Setup(1λ;PPRF.Eval(KA, i+ 1)).

ii. σst,i+1 = SSig.Sign(sgkA,i+1,mi+1).

4. Output (yi, ctst,i+1, σst,i+1, itrst,i).

Lemma C.77. For all λ ∈ N and all adversaries A,

∆(HybridA4,5(1
λ),HybridA5 (1

λ)) = 0

Proof. The hybrids are identical.
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HybridA5,1: This is the same as the previous hybrid except that we have rearranged some steps
and changed some notation.

1. Guess Stream Length: (t∗, n)← [TA,λ]× [TA,λ] where TA,λ is the maximum runtime of A
on security parameter λ.

2. Parameters: The adversary A receives security parameter 1λ, and outputs a function size
1ℓF , a state size 1ℓS , an input size 1ℓX , and an output size 1ℓY .

3. Setup:

(a) Kinp,KA,KE ← PPRF.Setup(1λ).

(b) Post.MSK← Post-One-sFE.Setup(1λ, 1ℓF , 1ℓS , 1ℓX , 1ℓY ).

4. Challenge Bit: b← {0, 1}.

5. Encryption Phase 1: For i = 1, 2, . . . , t∗:
If the adversary does not make exactly t∗ queries during this phase, output ⊥ and halt.

(a) A sends (x
(0)
i , x

(1)
i ) to the challenger.

(b) Post.CT
(0)
i = Post-One-sFE(Post.MSK, i, x

(0)
i ).

(c) Post.CT
(b)
i = Post-One-sFE(Post.MSK, i, x

(b)
i ).

(d) Compute input ciphertexts:

i. (rE,i, rEnc,i) = PPRF.Eval(KE , i).

ii. kE,i = SKE.Setup(1λ; rE,i).

iii. ct
(0)
inp,i = SKE.Enc(kE,i,Post.CT

(0)
i ).

iv. ct
(⊥)
inp,i = SKE.Enc(kE,i,⊥).

(e) Set hardwired values:

i. ct∗inp,i =

{
ct

(0)
inp,i if i < t∗

ct
(⊥)
inp,i if i = t∗

.

(f) Compute σinp,i:

i. (sgkinp,i, vkinp,i, vkinp,i,rej) = SSig.Setup(1λ;PPRF.Eval(Kinp, i)).

ii. σinp,i = SSig.Sign(sgkinp,i, ct
∗
inp,i).

(g) Send CTi = (ct∗inp,i, σinp,i) to A.

6. KeyGen:

(a) A sends f to the challenger. Define st1 = ⊥.
(b) Post.Dec.st1 ← Post-One-sFE.KeyGen(Post.MSK, f, st1).

(c) Post.Dec.st
(0)
1 = Post.Dec.st1 and Post.Dec.st

(b)
1 = Post.Dec.st1.

(d) Compute state and output values:

i. For i ∈ [t∗],

A. (yi,Post.Dec.st
(0)
i+1) = Post-One-sFE.Dec(Post.Dec.st

(0)
i ,Post.CT

(0)
i ).

B. Post.CT
(b)
i = Post-One-sFE(Post.MSK, i, x

(b)
i ).
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C. (yi,Post.Dec.st
(b)
i+1) = Post-One-sFE.Dec(Post.Dec.st

(b)
i ,Post.CT

(b)
i ).

(e) Compute ctst,1:

i. (rE,1, rEnc,1) = PPRF.Eval(KE , 1).

ii. kE,1 = SKE.Setup(1λ; rE,1).

iii. ctst,1 = SKE.Enc(kE,1,Post.Dec.st1; rEnc,1).

(f) Compute state ciphertexts:

i. For i ∈ {t∗, t∗ + 1},
A. (rE,i, rEnc,i) = PPRF.Eval(KE , i).

B. kE,i = SKE.Setup(1λ; rE,i).

C. ct
(0)
st,i = SKE.Enc(kE,i,Post.Dec.st

(0)
i ; rEnc,i).

D. ct
(⊥)
st,i = SKE.Enc(kE,i,⊥; rEnc,i).

E. ct
(b)
st,i = SKE.Enc(kE,i,Post.Dec.st

(b)
i ; rEnc,i).

ii. ct
(⊥)
st,t∗ = SKE.Enc(kE,t∗ ,⊥; rEnc,t∗).

iii. ct
(b)
st,t∗+1 = SKE.Enc(kE,t∗+1,Post.Dec.st

(b)
t∗+1; rEnc,t∗).

(g) Setup iterator: (ppst, itrst,0)← Itr.Setup(1λ, 2λ).

(h) Set hardwired values:

i. (y∗t∗−1, y
∗
t∗) = (yt∗−1, yt∗).

ii. (ct∗st,t∗ , ct
∗
st,t∗+1) = (ct

(⊥)
st,t∗ , ct

(b)
st,t∗+1).

(i) Compute σst,1:

i. m1 = (1, ctst,1, itrst,0).

ii. (sgkA,1, vkA,1, vkA,1,rej)← SSig.Setup(1λ;PPRF.Eval(KA, 1)).

iii. σst,1 = SSig.Sign(sgkA,1,m1).

(j) Compute program: P ← iO(Prog5[Kinp,KA,KE , ppst, t
∗, y∗t∗−1, ct

∗
st,t∗ , y

∗
t∗ , ct

∗
st,t∗+1]).

(k) Send SKf = (P, ctst,1, σst,1, itrst,0) to A.

7. Encryption Phase 2: For i = t∗ + 1, t∗ + 2, . . . , n:
If the adversary does not make exactly n− t∗ queries during this phase, output ⊥ and halt.

(a) A sends (x
(0)
i , x

(1)
i ) to the challenger.

(b) Post.CT
(b)
i = Post-One-sFE(Post.MSK, i, x

(b)
i ).

(c) Compute ctinp,i:

i. (rE,i, rEnc,i) = PPRF.Eval(KE , i).

ii. kE,i = SKE.Setup(1λ; rE,i).

iii. ctinp,i = SKE.Enc(kE,i,Post.CT
(b)
i ).

(d) Compute σinp,i:

i. (sgkinp,i, vkinp,i, vkinp,i,rej) = SSig.Setup(1λ;PPRF.Eval(Kinp, i)).

ii. σinp,i = SSig.Sign(sgkinp,i, ctinp,i).

(e) Send CTi = (ctinp,i, σinp,i) to A.

8. Output: A sends b′ to the challenger. Output 1 if b = b′, and output 0 else.
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Lemma C.78. For all λ ∈ N and all adversaries A,

∆(HybridA5,0(1
λ),HybridA5,1(1

λ)) = 0

Proof. The hybrids are identical.
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HybridA5,2: This is the same as the previous hybrid except that we have rearranged some steps
and changed some notation.

1. Guess Stream Length: (t∗, n)← [TA,λ]× [TA,λ] where TA,λ is the maximum runtime of A
on security parameter λ.

2. Parameters: The adversary A receives security parameter 1λ, and outputs a function size
1ℓF , a state size 1ℓS , an input size 1ℓX , and an output size 1ℓY .

3. Setup:

(a) Kinp,KA,KE ← PPRF.Setup(1λ).

(b) Post.MSK← Post-One-sFE.Setup(1λ, 1ℓF , 1ℓS , 1ℓX , 1ℓY ).

4. Challenge Bit: b← {0, 1}.

5. Encryption Phase 1: For i = 1, 2, . . . , t∗:
If the adversary does not make exactly t∗ queries during this phase, output ⊥ and halt.

(a) A sends (x
(0)
i , x

(1)
i ) to the challenger.

(b) Compute phase 1 ciphertexts:

i. If i < t∗, Post.CTi = Post-One-sFE.Enc(Post.MSK, i, x
(0)
i ).

ii. If i = t∗, Post.CTi = ⊥.

(c) Compute input ciphertexts:

i. (rE,i, rEnc,i) = PPRF.Eval(KE , i).

ii. kE,i = SKE.Setup(1λ; rE,i).

iii. ctinp,i = SKE.Enc(kE,i,Post.CTi).

(d) Set hardwired values:

(e) Compute σinp,i:

i. (sgkinp,i, vkinp,i, vkinp,i,rej) = SSig.Setup(1λ;PPRF.Eval(Kinp, i)).

ii. σinp,i = SSig.Sign(sgkinp,i, ctinp,i).

(f) Send CTi = (ctinp,i, σinp,i) to A.

6. KeyGen:

(a) A sends f to the challenger. Define st1 = ⊥.
(b) Compute Post.Dec.st1: Post.Dec.st1 ← Post-One-sFE.KeyGen(Post.MSK, f, st1).

(c) Compute (yt∗−1, yt∗ ,Post.Dec.stt∗+1):

i. Post.Dec.st
(b)
1 = Post.Dec.st1.

ii. For i ∈ [t∗],

A. Post.CT
(b)
i = Post-One-sFE.Enc(Post.MSK, i, x

(b)
i ).

B. (yi,Post.Dec.st
(b)
i+1) = Post-One-sFE.Dec(Post.Dec.st

(b)
i ,Post.CT

(b)
i ).

iii. If t∗ + 1 > 1, Post.Dec.stt∗+1 = Post.Dec.st
(b)
t∗+1.

(d) (y∗t∗−1, y
∗
t∗) = (yt∗−1, yt∗).

(e) Compute ctst,1:
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i. (rE,1, rEnc,1) = PPRF.Eval(KE , 1).

ii. kE,1 = SKE.Setup(1λ; rE,1).

iii. ctst,1 = SKE.Enc(kE,1,Post.Dec.st1; rEnc,1).

(f) Setup iterator: (ppst, itrst,0)← Itr.Setup(1λ, 2λ).

(g) Compute σst,1:

i. m1 = (1, ctst,1, itrst,0).

ii. (sgkA,1, vkA,1, vkA,1,rej)← SSig.Setup(1λ;PPRF.Eval(KA, 1)).

iii. σst,1 = SSig.Sign(sgkA,1,m1).

(h) Compute state ciphertexts:

i. For i ∈ {t∗, t∗ + 1},
A. (rE,i, rEnc,i) = PPRF.Eval(KE , i).

B. kE,i = SKE.Setup(1λ; rE,i).

ii. ct∗st,t∗ = ct
(⊥)
st,t∗ = SKE.Enc(kE,t∗ ,⊥; rEnc,t∗).

iii. ct∗st,t∗+1 = ct
(b)
st,t∗+1 = SKE.Enc(kE,t∗+1,Post.Dec.stt∗+1; rEnc,t∗+1).

(i) Set hardwired values:

(j) Compute program: P ← iO(Prog5[Kinp,KA,KE , ppst, t
∗, y∗t∗−1, ct

∗
st,t∗ , y

∗
t∗ , ct

∗
st,t∗+1]).

(k) Send SKf = (P, ctst,1, σst,1, itrst,0) to A.

7. Encryption Phase 2: For i = t∗ + 1, t∗ + 2, . . . , n:
If the adversary does not make exactly n− t∗ queries during this phase, output ⊥ and halt.

(a) A sends (x
(0)
i , x

(1)
i ) to the challenger.

(b) Compute phase 2 ciphertexts:

i. Post.CTi = Post-One-sFE(Post.MSK, i, x
(b)
i ).

(c) Compute ctinp,i:

i. (rE,i, rEnc,i) = PPRF.Eval(KE , i).

ii. kE,i = SKE.Setup(1λ; rE,i).

iii. ctinp,i = SKE.Enc(kE,i,Post.CTi).

(d) Compute σinp,i:

i. (sgkinp,i, vkinp,i, vkinp,i,rej) = SSig.Setup(1λ;PPRF.Eval(Kinp, i)).

ii. σinp,i = SSig.Sign(sgkinp,i, ctinp,i).

(e) Send CTi = (ctinp,i, σinp,i) to A.

8. Output: A sends b′ to the challenger. Output 1 if b = b′, and output 0 else.

Lemma C.79. For all λ ∈ N and all adversaries A,

∆(HybridA5,1(1
λ),HybridA5,2(1

λ)) = 0

Proof. The hybrids are identical.
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HybridA6 : We now rewrite our hybrid in terms of Pre-One-sFE.

1. Guess Stream Length: (t∗, n)← [TA,λ]× [TA,λ] where TA,λ is the maximum runtime of A
on security parameter λ.

2. Parameters: The adversary A receives security parameter 1λ, and outputs a function size
1ℓF , a state size 1ℓS , an input size 1ℓX , and an output size 1ℓY .

3. Setup:

(a) Pre.MSK← Pre-One-sFE.Setup(1λ, 1LF , 1LS , 1LX , 1LY ).

(b) Post.MSK← Post-One-sFE.Setup(1λ, 1ℓF , 1ℓS , 1ℓX , 1ℓY ).

4. Challenge Bit: b← {0, 1}.

5. Encryption Phase 1: For i = 1, 2, . . . , t∗:
If the adversary does not make exactly t∗ queries during this phase, output ⊥ and halt.

(a) A sends (x
(0)
i , x

(1)
i ) to the challenger.

(b) Compute phase 1 ciphertexts:

i. If i < t∗, Post.CTi = Post-One-sFE.Enc(Post.MSK, i, x
(0)
i ).

ii. If i = t∗, Post.CTi = ⊥.
(c) Pre.CTi ← Pre-One-sFE.Enc(Pre.MSK, i,Post.CTi).

(d) Send CTi = Pre.CTi to A.

6. KeyGen:

(a) A sends f to the challenger. Define st1 = ⊥.
(b) Compute Post.Dec.st1: Post.Dec.st1 ← Post-One-sFE.KeyGen(Post.MSK, f, st1).

(c) Compute (yt∗−1, yt∗ ,Post.Dec.stt∗+1):

i. Post.Dec.st
(b)
1 = Post.Dec.st1.

ii. For i ∈ [t∗],

A. Post.CT
(b)
i = Post-One-sFE.Enc(Post.MSK, i, x

(b)
i ).

B. (yi,Post.Dec.st
(b)
i+1) = Post-One-sFE.Dec(Post.Dec.st

(b)
i ,Post.CT

(b)
i ).

iii. If t∗ + 1 > 1, Post.Dec.stt∗+1 = Post.Dec.st
(b)
t∗+1.

(d) Pre.SKf ← Pre-One-sFE.KeyGenHardwire(Pre.MSK,Post-One-sFE.Dec,Post.Dec.st1,
t∗, yt∗−1, yt∗ ,Post.Dec.stt∗+1).

(e) Send SKf = Pre.SKf to A.

7. Encryption Phase 2: For i = t∗ + 1, t∗ + 2, . . . , n:
If the adversary does not make exactly n− t∗ queries during this phase, output ⊥ and halt.

(a) A sends (x
(0)
i , x

(1)
i ) to the challenger.

(b) Compute phase 2 ciphertexts:

i. Post.CTi = Post-One-sFE(Post.MSK, i, x
(b)
i ).

(c) Pre.CTi ← Pre-One-sFE.Enc(Pre.MSK, i,Post.CTi).
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(d) Send CTi = Pre.CTi to A.

8. Output: A sends b′ to the challenger. Output 1 if b = b′, and output 0 else.

Lemma C.80. For all λ ∈ N and all adversaries A,

∆(HybridA5,2(1
λ),HybridA6 (1

λ)) = 0

Proof. The hybrids are identical.
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C.2 Part 2: Using the Security of Post-One-sFE

Using the security of Post-One-sFE. We will now rely on the security of Post-One-sFE for in-
dices i > t. First, we unwrap the algorithms of Post-One-sFE and reorganize our hybrid. We make
use of the fact that many of the algorithms of Post-One-sFE can be computed with only a portion
of the MSK.

HybridA6 = HybridA6,0: Our starting hybrid has already swapped out encryptions of x(b) for

encryptions of x(0) for i < t∗ and for encryptions of ⊥ for i = t∗.

1. Guess Stream Length: (t∗, n)← [TA,λ]× [TA,λ] where TA,λ is the maximum runtime of A
on security parameter λ.

2. Parameters: The adversary A receives security parameter 1λ, and outputs a function size
1ℓF , a state size 1ℓS , an input size 1ℓX , and an output size 1ℓY .

3. Setup:

(a) Pre.MSK← Pre-One-sFE.Setup(1λ, 1LF , 1LS , 1LX , 1LY ).

(b) Post.MSK← Post-One-sFE.Setup(1λ, 1ℓF , 1ℓS , 1ℓX , 1ℓY ).

4. Challenge Bit: b← {0, 1}.

5. Encryption Phase 1: For i = 1, 2, . . . , t∗:
If the adversary does not make exactly t∗ queries during this phase, output ⊥ and halt.

(a) A sends (x
(0)
i , x

(1)
i ) to the challenger.

(b) Compute phase 1 ciphertexts:

i. If i < t∗, Post.CTi = Post-One-sFE.Enc(Post.MSK, i, x
(0)
i ).

ii. If i = t∗, Post.CTi = ⊥.
(c) Pre.CTi ← Pre-One-sFE.Enc(Pre.MSK, i,Post.CTi).

(d) Send CTi = Pre.CTi to A.

6. KeyGen:

(a) A sends f to the challenger. Define st1 = ⊥.
(b) Compute Post.Dec.st1: Post.Dec.st1 ← Post-One-sFE.KeyGen(Post.MSK, f, st1).

(c) Compute (yt∗−1, yt∗ ,Post.Dec.stt∗+1):

i. Post.Dec.st
(b)
1 = Post.Dec.st1.

ii. For i ∈ [t∗],

A. Post.CT
(b)
i = Post-One-sFE.Enc(Post.MSK, i, x

(b)
i ).

B. (yi,Post.Dec.st
(b)
i+1) = Post-One-sFE.Dec(Post.Dec.st

(b)
i ,Post.CT

(b)
i ).

iii. If t∗ + 1 > 1, Post.Dec.stt∗+1 = Post.Dec.st
(b)
t∗+1.

(d) Pre.SKf ← Pre-One-sFE.KeyGenHardwire(Pre.MSK,Post-One-sFE.Dec,Post.Dec.st1,
t∗, yt∗−1, yt∗ ,Post.Dec.stt∗+1)

(e) Send SKf = Pre.SKf to A.
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7. Encryption Phase 2: For i = t∗ + 1, t∗ + 2, . . . , n:
If the adversary does not make exactly n− t∗ queries during this phase, output ⊥ and halt.

(a) A sends (x
(0)
i , x

(1)
i ) to the challenger.

(b) Compute phase 2 ciphertexts:

i. Post.CTi = Post-One-sFE(Post.MSK, i, x
(b)
i ).

(c) Pre.CTi ← Pre-One-sFE.Enc(Pre.MSK, i,Post.CTi).

(d) Send CTi = Pre.CTi to A.

8. Output: A sends b′ to the challenger. Output 1 if b = b′, and output 0 else.
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HybridA6,1: We now make use of the additional properties of Post-One-sFE as defined in Sec-
tion 5.3. We unwrap Post-One-sFE.Setup and rewrite our hybrid in terms of the algorithms
Post-One-sFE.EncLocal, Post-One-sFE.KeyGenLocal, and
Post-One-sFE.DecStGen defined in Section 5.3.

1. Guess Stream Length: (t∗, n)← [TA,λ]× [TA,λ] where TA,λ is the maximum runtime of A
on security parameter λ.

2. Parameters: The adversary A receives security parameter 1λ, and outputs a function size
1ℓF , a state size 1ℓS , an input size 1ℓX , and an output size 1ℓY .

3. Setup:

(a) Pre.MSK← Pre-One-sFE.Setup(1λ, 1LF , 1LS , 1LX , 1LY ).

(b) K ← PRF.Setup(1λ).

(c) For i ∈ [n+ 1], Ki ← PRF.Eval(K, i).

4. Challenge Bit: b← {0, 1}.

5. Encryption Phase 1: For i = 1, 2, . . . , t∗:
If the adversary does not make exactly t∗ queries during this phase, output ⊥ and halt.

(a) A sends (x
(0)
i , x

(1)
i ) to the challenger.

(b) Compute phase 1 ciphertexts:

i. If i < t∗, Post.CTi = Post-One-sFE.EncLocal((Ki,Ki+1), i, x
(0)
i ).

ii. If i = t∗, Post.CTi = ⊥.
(c) Pre.CTi ← Pre-One-sFE.Enc(Pre.MSK, i,Post.CTi).

(d) Send CTi = Pre.CTi to A.

6. KeyGen:

(a) A sends f to the challenger. Define st1 = ⊥.
(b) Compute Post.Dec.st1: Post.Dec.st1 ← Post-One-sFE.KeyGenLocal(K1, f, st1).

(c) Compute (yt∗−1, yt∗ ,Post.Dec.stt∗+1):

i. st
(b)
1 = st1.

ii. For i ∈ [t∗],

A. (yi, st
(b)
i+1) = f(x

(b)
i , st

(b)
i ).

iii. If t∗ + 1 > 1, Post.Dec.stt∗+1 = Post-One-sFE.DecStGen(t∗ + 1,Kt∗+1, f, st
(b)
t∗+1).

(d) Pre.SKf ← Pre-One-sFE.KeyGenHardwire(Pre.MSK,Post-One-sFE.Dec,Post.Dec.st1,
t∗, yt∗−1, yt∗ ,Post.Dec.stt∗+1)

(e) Send SKf = Pre.SKf to A.

7. Encryption Phase 2: For i = t∗ + 1, t∗ + 2, . . . , n:
If the adversary does not make exactly n− t∗ queries during this phase, output ⊥ and halt.

(a) A sends (x
(0)
i , x

(1)
i ) to the challenger.

(b) Compute phase 2 ciphertexts:
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i. Post.CTi = Post-One-sFE.EncLocal((Ki,Ki+1), i, x
(b)
i ).

(c) Pre.CTi ← Pre-One-sFE.Enc(Pre.MSK, i,Post.CTi).

(d) Send CTi = Pre.CTi to A.

8. Output: A sends b′ to the challenger. Output 1 if b = b′, and output 0 else.

Lemma C.81. For all λ ∈ N and all adversaries A,

∆(HybridA6,0(1
λ),HybridA6,1(1

λ)) ≤ negl(λ)

Proof. By Lemmas 5.2,5.3,5.4, except with negligible probability the two hybrids are identical.
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HybridA6,2: We compute the partial keys Ki as random values. This hybrid is the same as the
previous hybrid except that

• We compute Setup as

3. Setup:

(a) Pre.MSK← Pre-One-sFE.Setup(1λ, 1LF , 1LS , 1LX , 1LY ).

(b) K ← PRF.Setup(1λ).

(c) For i ∈ [n+ 1], Ki ← {0, 1}6λ+ℓS

Lemma C.82. If PRF is a pseudorandom function, then for all λ ∈ N and all PPT adversaries A,

∆(HybridA6,1(1
λ),HybridA6,2(1

λ)) ≤ negl(λ)

Proof. This follows by a reduction to the security of our PRF.
Observe that we can run both hybrids without knowing K as long as we are given {Ki}i∈[n+1].

In the reduction, we run HybridA6,2 up to just before the Setup step. For each i ∈ [n + 1], we
query our PRF challenger on input i and receive backKi which is either a random value or is equal to
PRF.Eval(K, i) for some PRF keyK. We then compute Pre.MSK← Pre-One-sFE.Setup(1λ, 1LF , 1LS , 1LX , 1LY )
and run the rest of HybridA6,2 starting from Encryption Phase 1. Observe that if we received

random values, then we exactly emulate HybridA6,2, and if we received PRF evaluations, then we

emulate HybridA6,1. Thus, by PRF security, the outputs of these hybrids must be indistinguish-
able.
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HybridA6,3: We now unwrap more of Post-One-sFE.

1. Guess Stream Length: (t∗, n)← [TA,λ]× [TA,λ] where TA,λ is the maximum runtime of A
on security parameter λ.

2. Parameters: The adversary A receives security parameter 1λ, and outputs a function size
1ℓF , a state size 1ℓS , an input size 1ℓX , and an output size 1ℓY .

3. Setup:

(a) Pre.MSK← Pre-One-sFE.Setup(1λ, 1LF , 1LS , 1LX , 1LY ).

(b) For i ∈ [n+ 1],

i. Ki = (pi, rmski , r
′
mski

, rki , r
′
ki
, rKeyGeni , r

′
Enci

)← {0, 1}6λ+ℓS .

ii. mski = OneFSFE.Setup(1λ; rmski), msk′i = OneCompFE.Setup(1λ; r′mski
),

ki = SKE.Setup(1λ; rki), k
′
i = SKE′.Setup(1λ; r′ki).

4. Challenge Bit: b← {0, 1}.

5. Encryption Phase 1: For i = 1, 2, . . . , t∗:
If the adversary does not make exactly t∗ queries during this phase, output ⊥ and halt.

(a) A sends (x
(0)
i , x

(1)
i ) to the challenger.

(b) Compute phase 1 ciphertexts:

i. If i < t∗, Post.CTi = Post-One-sFE.EncLocal((Ki,Ki+1), i, x
(0)
i ).

ii. If i = t∗, Post.CTi = ⊥.
(c) Pre.CTi ← Pre-One-sFE.Enc(Pre.MSK, i,Post.CTi).

(d) Send CTi = Pre.CTi to A.

6. KeyGen:

(a) A sends f to the challenger. Define st1 = ⊥.
(b) Compute Post.Dec.st1:

i. If t∗ + 1 = 1,

A. c1 ← SKE.Enc(k1,⊥).
B. s̃t1 = st1 ⊕ p1.
C. skg1 ← OneFSFE.KeyGen(msk1, g1; rKeyGen1) for g1 = gf,s̃t1,c1 .

D. Post.Dec.st1 = skg1 .

ii. If t∗ + 1 > 1, Post.Dec.st1 ← Post-One-sFE.KeyGenLocal(K1, f, st1).

(c) Compute (yt∗−1, yt∗ ,Post.Dec.stt∗+1):

i. st
(b)
1 = st1.

ii. For i ∈ [t∗],

A. (yi, st
(b)
i+1) = f(x

(b)
i , st

(b)
i ).

iii. If t∗ + 1 > 1,

A. s̃tt∗+1 = st
(b)
t∗+1 ⊕ pt∗+1.

B. ct′t∗+1 = OneCompFE.Enc(msk′t∗+1, (f, s̃tt∗+1, rmskt∗+1
, rKeyGent∗+1

, 0, 0λ); r′Enct∗+1
).
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C. Post.Dec.stt∗+1 = ct′t∗+1.

(d) Pre.SKf ← Pre-One-sFE.KeyGenHardwire(Pre.MSK,Post-One-sFE.Dec,Post.Dec.st1,
t∗, yt∗−1, yt∗ ,Post.Dec.stt∗+1)

(e) Send SKf = Pre.SKf to A.

7. Encryption Phase 2: For i = t∗ + 1, t∗ + 2, . . . , n:
If the adversary does not make exactly n− t∗ queries during this phase, output ⊥ and halt.

(a) A sends (x
(0)
i , x

(1)
i ) to the challenger.

(b) Compute phase 2 ciphertexts:

i. cti ← OneFSFE.Enc(mski, (x
(b)
i , pi, pi+1, r

′
mski+1

, r′Enci+1
, rmski+1

, rKeyGeni+1
, 0, 0λ, 0ℓY )).

ii. If i = 1, Post.CT1 = ct1.

iii. If i > 1,

A. ci ← SKE.Enc(ki,⊥).
B. c′i ← SKE′.Enc(k′i,⊥).
C. sk′hi

← OneCompFE.KeyGen(msk′i, hi) for hi = hci,c′i .

D. Post.CTi = (cti, sk
′
hi
).

(c) Pre.CTi ← Pre-One-sFE.Enc(Pre.MSK, i,Post.CTi).

(d) Send CTi = Pre.CTi to A.

8. Output: A sends b′ to the challenger. Output 1 if b = b′, and output 0 else.

Lemma C.83. For all λ ∈ N and all adversaries A,

∆(HybridA6,2(1
λ),HybridA6,3(1

λ)) = 0

Proof. The hybrids are identical.
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HybridA7 : This is the same as the previous hybrid except that we have rearranged some steps and
changed some notation.

1. Guess Stream Length: (t∗, n)← [TA,λ]× [TA,λ] where TA,λ is the maximum runtime of A
on security parameter λ.

2. Parameters: The adversary A receives security parameter 1λ, and outputs a function size
1ℓF , a state size 1ℓS , an input size 1ℓX , and an output size 1ℓY .

3. Setup:

(a) Pre.MSK← Pre-One-sFE.Setup(1λ, 1LF , 1LS , 1LX , 1LY ).

(b) For i ∈ [n+ 1],

i. rmski , r
′
mski

, rki , r
′
ki
, rKeyGeni , r

′
Enci
← {0, 1}λ.

ii. mski = OneFSFE.Setup(1λ; rmski), msk′i = OneCompFE.Setup(1λ; r′mski
),

ki = SKE.Setup(1λ; rki), k
′
i = SKE′.Setup(1λ; r′ki).

iii. pi ← {0, 1}ℓS .
iv. Ki = (pi, rmski , r

′
mski

, rki , r
′
ki
, rKeyGeni , r

′
Enci

).

4. Challenge Bit: b← {0, 1}.

5. Encryption Phase 1: For i = 1, 2, . . . , t∗:
If the adversary does not make exactly t∗ queries during this phase, output ⊥ and halt.

(a) A sends (x
(0)
i , x

(1)
i ) to the challenger.

(b) Compute phase 1 ciphertexts:

i. If i < t∗, Post.CTi = Post-One-sFE.EncLocal((Ki,Ki+1), i, x
(0)
i ).

ii. If i = t∗, Post.CTi = ⊥.
(c) Pre.CTi ← Pre-One-sFE.Enc(Pre.MSK, i,Post.CTi).

(d) Send CTi = Pre.CTi to A.

6. KeyGen:

(a) A sends f to the challenger. Define st1 = ⊥.
(b) Compute phase 1 state and output values:

i. st
(b)
1 = st1.

ii. For i ∈ [t∗],

A. (yi, st
(b)
i+1) = f(x

(b)
i , st

(b)
i ).

iii. s̃tt∗+1 = st
(b)
t∗+1 ⊕ pt∗+1.

(c) Compute sk′hi
: For i ∈ [t∗ + 1, n],

i. ci ← SKE.Enc(ki,⊥).
ii. If i > 1,

A. c′i ← SKE′.Enc(k′i,⊥).
B. sk′hi

← OneCompFE.KeyGen(msk′i, hi) for hi = hci,c′i .

(d) Compute hardcoded values:
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i. If t∗ + 1 = 1,

A. skg1 ← OneFSFE.KeyGen(msk1, g1; rKeyGen1) for g1 = gf,s̃t1,c1 .

(Note that in this case (s̃t1, c1) = (s̃tt∗+1, ct∗+1)).

B. Post.Dec.st1 = skg1 .

ii. If t∗ + 1 > 1,

A. Post.Dec.st1 ← Post-One-sFE.KeyGenLocal(K1, f, st1).

B. ct′t∗+1 = OneCompFE.Enc(msk′t∗+1, (f, s̃tt∗+1, rmskt∗+1
, rKeyGent∗+1

, 0, 0λ); r′Enct∗+1
).

C. Post.Dec.stt∗+1 = ct′t∗+1.

(e) Pre.SKf ← Pre-One-sFE.KeyGenHardwire(Pre.MSK,Post-One-sFE.Dec,Post.Dec.st1,
t∗, yt∗−1, yt∗ ,Post.Dec.stt∗+1)

(f) Send SKf = Pre.SKf to A.

7. Encryption Phase 2: For i = t∗ + 1, t∗ + 2, . . . , n:
If the adversary does not make exactly n− t∗ queries during this phase, output ⊥ and halt.

(a) A sends (x
(0)
i , x

(1)
i ) to the challenger.

(b) Compute phase 2 ciphertexts:

i. cti ← OneFSFE.Enc(mski, (x
(b)
i , pi, pi+1, r

′
mski+1

, r′Enci+1
, rmski+1

, rKeyGeni+1
, 0, 0λ, 0ℓY )).

ii. If i = 1, Post.CT1 = ct1. Else Post.CTi = (cti, sk
′
hi
).

(c) Pre.CTi ← Pre-One-sFE.Enc(Pre.MSK, i,Post.CTi).

(d) Send CTi = Pre.CTi to A.

8. Output: A sends b′ to the challenger. Output 1 if b = b′, and output 0 else.

Lemma C.84. For all λ ∈ N and all adversaries A,

∆(HybridA6,3(1
λ),HybridA7 (1

λ)) = 0

Proof. The hybrids are identical.
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Finishing the proof. We now use the security of Post-One-sFE to finish our proof. This proof
is essentially the same as the proof in [GKS23].

HybridA8 : For each i ≥ t∗+1, rather than sampling pi at random and later computing s̃ti = st
(b)
i ⊕pi,

we instead sample s̃ti at random and later compute pi = st
(b)
i ⊕ s̃ti. Our hybrid can change this

ordering since for i ≥ t∗+1, we don’t need to compute pi until after we have received x
(b)
i−1 and can

compute st
(b)
i . Note that for i ≥ t∗ + 1 we do not need to compute Ki.

1. Guess Stream Length: (t∗, n)← [TA,λ]× [TA,λ] where TA,λ is the maximum runtime of A
on security parameter λ.

2. Parameters: The adversary A receives security parameter 1λ, and outputs a function size
1ℓF , a state size 1ℓS , an input size 1ℓX , and an output size 1ℓY .

3. Setup:

(a) Pre.MSK← Pre-One-sFE.Setup(1λ, 1LF , 1LS , 1LX , 1LY ).

(b) For i ∈ [n+ 1],

i. rmski , r
′
mski

, rki , r
′
ki
, rKeyGeni , r

′
Enci
← {0, 1}λ.

ii. mski = OneFSFE.Setup(1λ; rmski), msk′i = OneCompFE.Setup(1λ; r′mski
),

ki = SKE.Setup(1λ; rki), k
′
i = SKE′.Setup(1λ; r′ki).

iii. If i < t∗ + 1,

A. pi ← {0, 1}ℓS .
B. Ki = (pi, rmski , r

′
mski

, rki , r
′
ki
, rKeyGeni , r

′
Enci

).

iv. If i ≥ t∗ + 1,

A. s̃ti ← {0, 1}ℓS .

4. Challenge Bit: b← {0, 1}.

5. Encryption Phase 1: For i = 1, 2, . . . , t∗:
If the adversary does not make exactly t∗ queries during this phase, output ⊥ and halt.

(a) A sends (x
(0)
i , x

(1)
i ) to the challenger.

(b) Compute phase 1 ciphertexts:

i. If i < t∗, Post.CTi = Post-One-sFE.EncLocal((Ki,Ki+1), i, x
(0)
i ).

ii. If i = t∗, Post.CTi = ⊥.
(c) Pre.CTi ← Pre-One-sFE.Enc(Pre.MSK, i,Post.CTi).

(d) Send CTi = Pre.CTi to A.

6. KeyGen:

(a) A sends f to the challenger. Define st1 = ⊥.
(b) Compute phase 1 state and output values:

i. st
(b)
1 = st1.

ii. For i ∈ [t∗],

A. (yi, st
(b)
i+1) = f(x

(b)
i , st

(b)
i ).
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iii. pt∗+1 = st
(b)
t∗+1 ⊕ s̃tt∗+1.

(c) Compute sk′hi
: For i ∈ [t∗ + 1, n],

i. ci ← SKE.Enc(ki,⊥).
ii. If i > 1,

A. c′i ← SKE′.Enc(k′i,⊥).
B. sk′hi

← OneCompFE.KeyGen(msk′i, hi) for hi = hci,c′i .

(d) Compute hardcoded values:

i. If t∗ + 1 = 1,

A. skg1 ← OneFSFE.KeyGen(msk1, g1; rKeyGen1) for g1 = gf,s̃t1,c1 .

(Note that in this case (s̃t1, c1) = (s̃tt∗+1, ct∗+1)).

B. Post.Dec.st1 = skg1 .

ii. If t∗ + 1 > 1,

A. Post.Dec.st1 ← Post-One-sFE.KeyGenLocal(K1, f, st1).

B. ct′t∗+1 = OneCompFE.Enc(msk′t∗+1, (f, s̃tt∗+1, rmskt∗+1
, rKeyGent∗+1

, 0, 0λ); r′Enct∗+1
).

C. Post.Dec.stt∗+1 = ct′t∗+1.

(e) Pre.SKf ← Pre-One-sFE.KeyGenHardwire(Pre.MSK,Post-One-sFE.Dec,Post.Dec.st1,
t∗, yt∗−1, yt∗ ,Post.Dec.stt∗+1)

(f) Send SKf = Pre.SKf to A.

7. Encryption Phase 2: For i = t∗ + 1, t∗ + 2, . . . , n:
If the adversary does not make exactly n− t∗ queries during this phase, output ⊥ and halt.

(a) A sends (x
(0)
i , x

(1)
i ) to the challenger.

(b) Compute pi:

i. (yi, st
(b)
i+1) = f(x

(b)
i , st

(b)
i ).

ii. pi+1 = st
(b)
i+1 ⊕ s̃ti+1.

(c) Compute phase 2 ciphertexts:

i. cti ← OneFSFE.Enc(mski, (x
(b)
i , pi, pi+1, r

′
mski+1

, r′Enci+1
, rmski+1

, rKeyGeni+1
, 0, 0λ, 0ℓY )).

ii. If i = 1, Post.CT1 = ct1. Else Post.CTi = (cti, sk
′
hi
).

(d) Pre.CTi ← Pre-One-sFE.Enc(Pre.MSK, i,Post.CTi).

(e) Send CTi = Pre.CTi to A.

8. Output: A sends b′ to the challenger. Output 1 if b = b′, and output 0 else.

Lemma C.85. For all λ ∈ N and all adversaries A,

∆(HybridA7 (1
λ),HybridA8 (1

λ) = 1) = 0

Proof. The hybrids are identically distributed. This follow from the fact that for any value of st
(b)
i ,

the following two distributions are identically distributed:

• D1,i :

1. s̃ti ← {0, 1}ℓS .
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2. pi = st
(b)
i ⊕ s̃ti.

3. Output (st
(b)
i , pi, s̃ti).

• D2,i :

1. pi ← {0, 1}ℓS .

2. s̃ti = st
(b)
i ⊕ pi.

3. Output (st
(b)
i , pi, s̃ti).

Thus, it does not matter whether we compute s̃ti first and then set pi = st
(b)
i ⊕ s̃ti (as in the previous

hybrid), or compute pi first and then set s̃ti = st
(b)
i ⊕ pi (as in the current hybrid).
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HybridA9 : For each i ≥ t∗ + 1, we hardwire into ci the values (yi, ct
′
i+1) that are output by

gi = gf,s̃t,ci on the αi = 0 branch if we run it on the input generated by the challenge stream x(b).
This will allow us to later switch to the αi = 1 branch in gi = gf,s̃ti,ci using the security of OneFSFE.

Observe that the values being hardcoded into ci can be determined before knowing x(b).

1. Guess Stream Length: (t∗, n)← [TA,λ]× [TA,λ] where TA,λ is the maximum runtime of A
on security parameter λ.

2. Parameters: The adversary A receives security parameter 1λ, and outputs a function size
1ℓF , a state size 1ℓS , an input size 1ℓX , and an output size 1ℓY .

3. Setup:

(a) Pre.MSK← Pre-One-sFE.Setup(1λ, 1LF , 1LS , 1LX , 1LY ).

(b) For i ∈ [n+ 1],

i. rmski , r
′
mski

, rki , r
′
ki
, rKeyGeni , r

′
Enci
← {0, 1}λ.

ii. mski = OneFSFE.Setup(1λ; rmski), msk′i = OneCompFE.Setup(1λ; r′mski
),

ki = SKE.Setup(1λ; rki), k
′
i = SKE′.Setup(1λ; r′ki).

iii. If i < t∗ + 1,

A. pi ← {0, 1}ℓS .
B. Ki = (pi, rmski , r

′
mski

, rki , r
′
ki
, rKeyGeni , r

′
Enci

).

iv. If i ≥ t∗ + 1,

A. s̃ti ← {0, 1}ℓS .

4. Challenge Bit: b← {0, 1}.

5. Encryption Phase 1: For i = 1, 2, . . . , t∗:
If the adversary does not make exactly t∗ queries during this phase, output ⊥ and halt.

(a) A sends (x
(0)
i , x

(1)
i ) to the challenger.

(b) Compute phase 1 ciphertexts:

i. If i < t∗, Post.CTi = Post-One-sFE.EncLocal((Ki,Ki+1), i, x
(0)
i ).

ii. If i = t∗, Post.CTi = ⊥.
(c) Pre.CTi ← Pre-One-sFE.Enc(Pre.MSK, i,Post.CTi).

(d) Send CTi = Pre.CTi to A.

6. KeyGen:

(a) A sends f to the challenger. Define st1 = ⊥.
(b) Compute phase 1 state and output values:

i. st
(b)
1 = st1.

ii. For i ∈ [t∗],

A. (yi, st
(b)
i+1) = f(x

(b)
i , st

(b)
i ).

iii. pt∗+1 = st
(b)
t∗+1 ⊕ s̃tt∗+1.

(c) Compute sk′hi
: For i ∈ [t∗ + 1, n],
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i. θi ← {0, 1}ℓY .
ii. ct′i+1 ← OneCompFE.Enc(msk′i+1, (f, s̃ti+1, rmski+1

, rKeyGeni+1
, 0, 0λ); r′Enci+1

)

iii. ci ← SKE.Enc(ki, (θi, ct
′
i+1))

iv. If i > 1,

A. c′i ← SKE′.Enc(k′i,⊥).
B. sk′hi

← OneCompFE.KeyGen(msk′i, hi) for hi = hci,c′i .

(d) Compute hardcoded values:

i. If t∗ + 1 = 1,

A. skg1 ← OneFSFE.KeyGen(msk1, g1; rKeyGen1) for g1 = gf,s̃t1,c1 .

(Note that in this case (s̃t1, c1) = (s̃tt∗+1, ct∗+1)).

B. Post.Dec.st1 = skg1 .

ii. If t∗ + 1 > 1,

A. Post.Dec.st1 ← Post-One-sFE.KeyGenLocal(K1, f, st1).

B. ct′t∗+1 = OneCompFE.Enc(msk′t∗+1, (f, s̃tt∗+1, rmskt∗+1
, rKeyGent∗+1

, 0, 0λ); r′Enct∗+1
).

C. Post.Dec.stt∗+1 = ct′t∗+1.

(e) Pre.SKf ← Pre-One-sFE.KeyGenHardwire(Pre.MSK,Post-One-sFE.Dec,Post.Dec.st1,
t∗, yt∗−1, yt∗ ,Post.Dec.stt∗+1)

(f) Send SKf = Pre.SKf to A.

7. Encryption Phase 2: For i = t∗ + 1, t∗ + 2, . . . , n:
If the adversary does not make exactly n− t∗ queries during this phase, output ⊥ and halt.

(a) A sends (x
(0)
i , x

(1)
i ) to the challenger.

(b) Compute pi and ψi:

i. (yi, st
(b)
i+1) = f(x

(b)
i , st

(b)
i ).

ii. ψi = yi ⊕ θi.
iii. pi+1 = st

(b)
i+1 ⊕ s̃ti+1.

(c) Compute phase 2 ciphertexts:

i. cti ← OneFSFE.Enc(mski, (x
(b)
i , pi, pi+1, r

′
mski+1

, r′Enci+1
, rmski+1

, rKeyGeni+1
, 0, 0λ, 0ℓY )).

ii. If i = 1, Post.CT1 = ct1. Else Post.CTi = (cti, sk
′
hi
).

(d) Pre.CTi ← Pre-One-sFE.Enc(Pre.MSK, i,Post.CTi).

(e) Send CTi = Pre.CTi to A.

8. Output: A sends b′ to the challenger. Output 1 if b = b′, and output 0 else.

Lemma C.86. If SKE is a secure encryption scheme, then for all λ ∈ N and all PPT adversaries
A,

∆(HybridA8 (1
λ),HybridA9 (1

λ)) ≤ negl(λ)

Proof. The lemma follows by the security of SKE since we only use the keys ki to encrypt ci.
For t ∈ [t∗, n], define HybridA8,t be the same as HybridA9 except that in step 6c of KeyGen,

if i ≤ t, we compute ci ← SKE.Enc(ki, (θi, ct
′
i+1)) as in HybridA9 and if i > t, we compute

ci ← SKE.Enc(ki,⊥) as in HybridA8 . Observe that HybridA8 = HybridA8,t∗ since for i ≥ t∗ + 1,

ct′i+1, θi and ψi are not used in HybridA8,t∗ . Additionally, HybridA9 = HybridA8,n.
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By a reduction to the security of SKE, we show that for all t ∈ [t∗ + 1, n], HybridA8,t−1 and

HybridA8,t are indistinguishable. This implies our lemma. In the reduction, without sampling rkt
or computing kt, we run HybridA8,t−1 up to just before step 6c of KeyGen. We sample θt ← {0, 1}ℓY
and compute ct′t+1 ← OneCompFE.Enc(msk′t+1, (f, s̃tt+1, rmskt+1 , rKeyGent+1

, 0, 0λ); r′Enct+1
). We then

send (⊥, (θt, ct′t+1)) to the SKE challenger and receive an encryption c∗ of one of the two messages.

We set ct = c∗. Next, we compute ci for i ∈ [t∗ + 1, n]\{t} as in step 6c of KeyGen of HybridA8,t−1.

We then run the rest of HybridA8,t−1 starting from step 6c.iv of KeyGen. Observe that if c∗ was

an encryption of ⊥ then we exactly emulate HybridA8,t−1, and if c∗ was an encryption of (θt, ct
′
t+1)

then we exactly emulate HybridA8,t. Thus, by SKE security, the outputs of these hybrids must be
indistinguishable.
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HybridA10: For each i ≥ t∗+1, we hardwire into c′i the value skgi that would be output by hi = hci,c′i
in the α′i = 0 branch if we were to run it on the input generated by the challenge stream x(b). This
will allow us to later switch to the α′i = 1 branch in hi = hci,c′i using the security of OneCompFE.

Observe that the values being hardcoded into c′i can be determined before knowing x(b).

1. Guess Stream Length: (t∗, n)← [TA,λ]× [TA,λ] where TA,λ is the maximum runtime of A
on security parameter λ.

2. Parameters: The adversary A receives security parameter 1λ, and outputs a function size
1ℓF , a state size 1ℓS , an input size 1ℓX , and an output size 1ℓY .

3. Setup:

(a) Pre.MSK← Pre-One-sFE.Setup(1λ, 1LF , 1LS , 1LX , 1LY ).

(b) For i ∈ [n+ 1],

i. rmski , r
′
mski

, rki , r
′
ki
, rKeyGeni , r

′
Enci
← {0, 1}λ.

ii. mski = OneFSFE.Setup(1λ; rmski), msk′i = OneCompFE.Setup(1λ; r′mski
),

ki = SKE.Setup(1λ; rki), k
′
i = SKE′.Setup(1λ; r′ki).

iii. If i < t∗ + 1,

A. pi ← {0, 1}ℓS .
B. Ki = (pi, rmski , r

′
mski

, rki , r
′
ki
, rKeyGeni , r

′
Enci

).

iv. If i ≥ t∗ + 1,

A. s̃ti ← {0, 1}ℓS .

4. Challenge Bit: b← {0, 1}.

5. Encryption Phase 1: For i = 1, 2, . . . , t∗:
If the adversary does not make exactly t∗ queries during this phase, output ⊥ and halt.

(a) A sends (x
(0)
i , x

(1)
i ) to the challenger.

(b) Compute phase 1 ciphertexts:

i. If i < t∗, Post.CTi = Post-One-sFE.EncLocal((Ki,Ki+1), i, x
(0)
i ).

ii. If i = t∗, Post.CTi = ⊥.
(c) Pre.CTi ← Pre-One-sFE.Enc(Pre.MSK, i,Post.CTi).

(d) Send CTi = Pre.CTi to A.

6. KeyGen:

(a) A sends f to the challenger. Define st1 = ⊥.
(b) Compute phase 1 state and output values:

i. st
(b)
1 = st1.

ii. For i ∈ [t∗],

A. (yi, st
(b)
i+1) = f(x

(b)
i , st

(b)
i ).

iii. pt∗+1 = st
(b)
t∗+1 ⊕ s̃tt∗+1.

(c) Compute sk′hi
: For i ∈ [t∗ + 1, n],
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i. θi ← {0, 1}ℓY .
ii. ct′i+1 ← OneCompFE.Enc(msk′i+1, (f, s̃ti+1, rmski+1

, rKeyGeni+1
, 0, 0λ); r′Enci+1

).

iii. ci ← SKE.Enc(ki, (θi, ct
′
i+1)).

iv. skgi ← OneFSFE.KeyGen(mski, gi; rKeyGeni) for gi = gf,s̃ti,ci .

v. If i > 1,

A. c′i ← SKE′.Enc(k′i, skgi).

B. sk′hi
← OneCompFE.KeyGen(msk′i, hi) for hi = hci,c′i .

(d) Compute hardcoded values:

i. If t∗ + 1 = 1,

A. skg1 ← OneFSFE.KeyGen(msk1, g1; rKeyGen1) for g1 = gf,s̃t1,c1 .

(Note that in this case (s̃t1, c1) = (s̃tt∗+1, ct∗+1)).

B. Post.Dec.st1 = skg1 .

ii. If t∗ + 1 > 1,

A. Post.Dec.st1 ← Post-One-sFE.KeyGenLocal(K1, f, st1).

B. ct′t∗+1 = OneCompFE.Enc(msk′t∗+1, (f, s̃tt∗+1, rmskt∗+1
, rKeyGent∗+1

, 0, 0λ); r′Enct∗+1
).

C. Post.Dec.stt∗+1 = ct′t∗+1.

(e) Pre.SKf ← Pre-One-sFE.KeyGenHardwire(Pre.MSK,Post-One-sFE.Dec,Post.Dec.st1,
t∗, yt∗−1, yt∗ ,Post.Dec.stt∗+1)

(f) Send SKf = Pre.SKf to A.

7. Encryption Phase 2: For i = t∗ + 1, t∗ + 2, . . . , n:
If the adversary does not make exactly n− t∗ queries during this phase, output ⊥ and halt.

(a) A sends (x
(0)
i , x

(1)
i ) to the challenger.

(b) Compute pi and ψi:

i. (yi, st
(b)
i+1) = f(x

(b)
i , st

(b)
i ).

ii. ψi = yi ⊕ θi.
iii. pi+1 = st

(b)
i+1 ⊕ s̃ti+1.

(c) Compute phase 2 ciphertexts:

i. cti ← OneFSFE.Enc(mski, (x
(b)
i , pi, pi+1, r

′
mski+1

, r′Enci+1
, rmski+1

, rKeyGeni+1
, 0, 0λ, 0ℓY )).

ii. If i = 1, Post.CT1 = ct1. Else Post.CTi = (cti, sk
′
hi
).

(d) Pre.CTi ← Pre-One-sFE.Enc(Pre.MSK, i,Post.CTi).

(e) Send CTi = Pre.CTi to A.

8. Output: A sends b′ to the challenger. Output 1 if b = b′, and output 0 else.

Lemma C.87. If SKE′ is a secure encryption scheme, then for all λ ∈ N and all PPT adversaries
A,

∆(HybridA9 (1
λ),HybridA10(1

λ)) ≤ negl(λ)

Proof. The lemma follows by the security of SKE′ since we only use the keys k′i to encrypt c′i.
For t ∈ [t∗, n], defineHybridA9,t be the same asHybridA10 except that in step 6c of KeyGen, if i ≤

t, we compute c′i ← SKE′.Enc(k′i, skgi) as inHybridA10 and if i > t, we compute c′i ← SKE′.Enc(k′i,⊥)
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as in HybridA9 . Observe that HybridA9 = HybridA9,t∗ since moving the computation of skg,i up in

the hybrid does not affect its output. Additionally, HybridA10 = HybridA9,n.

By a reduction to the security of SKE, we show that for all t ∈ [t∗ + 1, n], HybridA9,t−1 and

HybridA9,t are indistinguishable. This implies our lemma. In the reduction, without sampling r′kt
or computing k′t, we run HybridA9,t−1 up to just before step 6c of KeyGen. We sample θt ← {0, 1}ℓY ,
compute ct′t+1 ← OneCompFE.Enc(msk′t+1, (f, s̃tt+1, rmskt+1 , rKeyGent+1

, 0, 0λ); r′Enct+1
), compute ct ←

SKE.Enc(kt, (θt, ct
′
t+1)), and compute skgt ← OneFSFE.KeyGen(mskt, gt; rKeyGent) for gt = gf,s̃tt,ct .

We then send (⊥, skgt) to the SKE challenger and receive an encryption c∗ of one of the two mes-
sages. We set c′t = c∗ and compute sk′ht

← OneCompFE.KeyGen(msk′t, ht) for hct,c′t . Next, we run

step 6c of KeyGen of HybridA9,t−1 for i ∈ [t∗+1, n]\{t}. We then run the rest of HybridA9,t−1 start-
ing from step 6d of KeyGen. Observe that if c∗ was an encryption of ⊥ then we exactly emulate
HybridA9,t−1, and if c∗ was an encryption of skgt then we exactly emulate HybridA9,t. Thus, by
SKE security, the outputs of these hybrids must be indistinguishable.
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HybridA11,t,0: We change the message encrypted in ct′t so that we use the α′t = 1 branch of hct,c′t .

1. Guess Stream Length: (t∗, n)← [TA,λ]× [TA,λ] where TA,λ is the maximum runtime of A
on security parameter λ.

2. Parameters: The adversary A receives security parameter 1λ, and outputs a function size
1ℓF , a state size 1ℓS , an input size 1ℓX , and an output size 1ℓY .

3. Setup:

(a) Pre.MSK← Pre-One-sFE.Setup(1λ, 1LF , 1LS , 1LX , 1LY ).

(b) For i ∈ [n+ 1],

i. rmski , r
′
mski

, rki , r
′
ki
, rKeyGeni , r

′
Enci
← {0, 1}λ.

ii. mski = OneFSFE.Setup(1λ; rmski), msk′i = OneCompFE.Setup(1λ; r′mski
),

ki = SKE.Setup(1λ; rki), k
′
i = SKE′.Setup(1λ; r′ki).

iii. If i < t∗ + 1,

A. pi ← {0, 1}ℓS .
B. Ki = (pi, rmski , r

′
mski

, rki , r
′
ki
, rKeyGeni , r

′
Enci

).

iv. If i ≥ t∗ + 1,

A. s̃ti ← {0, 1}ℓS .

4. Challenge Bit: b← {0, 1}.

5. Encryption Phase 1: For i = 1, 2, . . . , t∗:
If the adversary does not make exactly t∗ queries during this phase, output ⊥ and halt.

(a) A sends (x
(0)
i , x

(1)
i ) to the challenger.

(b) Compute phase 1 ciphertexts:

i. If i < t∗, Post.CTi = Post-One-sFE.EncLocal((Ki,Ki+1), i, x
(0)
i ).

ii. If i = t∗, Post.CTi = ⊥.
(c) Pre.CTi ← Pre-One-sFE.Enc(Pre.MSK, i,Post.CTi).

(d) Send CTi = Pre.CTi to A.

6. KeyGen:

(a) A sends f to the challenger. Define st1 = ⊥.
(b) Compute phase 1 state and output values:

i. st
(b)
1 = st1.

ii. For i ∈ [t∗],

A. (yi, st
(b)
i+1) = f(x

(b)
i , st

(b)
i ).

iii. pt∗+1 = st
(b)
t∗+1 ⊕ s̃tt∗+1.

(c) Compute sk′hi
: For i ∈ [t∗ + 1, n],

i. θi ← {0, 1}ℓY .
ii. If i+ 1 ≤ t, ct′i+1 ← OneCompFE.Enc(msk′i+1, (0

ℓF , 0ℓS , 0λ, 0λ, 1, r′ki+1
); r′Enci+1

).

iii. If i+1 > t, ct′i+1 ← OneCompFE.Enc(msk′i+1, (f, s̃ti+1, rmski+1
, rKeyGeni+1

, 0, 0λ); r′Enci+1
).
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iv. ci ← SKE.Enc(ki, (θi, ct
′
i+1)).

v. skgi ← OneFSFE.KeyGen(mski, gi; rKeyGeni) for gi = gf,s̃ti,ci .

vi. If i > 1,

A. c′i ← SKE′.Enc(k′i, skgi).

B. sk′hi
← OneCompFE.KeyGen(msk′i, hi) for hi = hci,c′i .

(d) Compute hardcoded values:

i. If t∗ + 1 = 1, Post.Dec.st1 = skg1 .

ii. If t∗ + 1 > 1,

A. Post.Dec.st1 ← Post-One-sFE.KeyGenLocal(K1, f, st1).

B. ct′t∗+1 = OneCompFE.Enc(msk′t∗+1, (0
ℓF , 0ℓS , 0λ, 0λ, 1, r′kt∗+1

); r′Enct∗+1
).

C. Post.Dec.stt∗+1 = ct′t∗+1.

(e) Pre.SKf ← Pre-One-sFE.KeyGenHardwire(Pre.MSK,Post-One-sFE.Dec,Post.Dec.st1,
t∗, yt∗−1, yt∗ ,Post.Dec.stt∗+1)

(f) Send SKf = Pre.SKf to A.

7. Encryption Phase 2: For i = t∗ + 1, t∗ + 2, . . . , n:
If the adversary does not make exactly n− t∗ queries during this phase, output ⊥ and halt.

(a) A sends (x
(0)
i , x

(1)
i ) to the challenger.

(b) Compute pi and ψi:

i. (yi, st
(b)
i+1) = f(x

(b)
i , st

(b)
i ).

ii. ψi = yi ⊕ θi.
iii. pi+1 = st

(b)
i+1 ⊕ s̃ti+1.

(c) Compute phase 2 ciphertexts:

i. If i < t, cti ← OneFSFE.Enc(mski, (0
ℓX , 0ℓS , 0ℓS , 0λ, 0λ, 0λ, 0λ, 1, rki , ψi)).

ii. If i ≥ t, cti ← OneFSFE.Enc(mski, (x
(b)
i , pi, pi+1, r

′
mski+1

, r′Enci+1
, rmski+1

, rKeyGeni+1
, 0, 0λ, 0ℓY )).

iii. If i = 1, Post.CT1 = ct1. Else Post.CTi = (cti, sk
′
hi
).

(d) Pre.CTi ← Pre-One-sFE.Enc(Pre.MSK, i,Post.CTi).

(e) Send CTi = Pre.CTi to A.

8. Output: A sends b′ to the challenger. Output 1 if b = b′, and output 0 else.

Lemma C.88. If OneCompFE is a single-key, single-ciphertext, selective secure functional encryp-
tion scheme, then for all λ ∈ N and all PPT adversaries A,

∆(HybridA10(1
λ),HybridA11,t∗+1,0(1

λ)) ≤ negl(λ)

Proof. The lemma follows by a reduction to the security of OneCompFE since we only use
(r′mskt∗+1

,msk′t∗+1, r
′
Enct∗+1

) to compute ct′t∗+1 and sk′ht∗+1
.

Observe that since t = t∗+1, then step 6c of KeyGen and step 7c of Encryption Phase 2 are
identical in both hybrids. Thus, the only change is to ct′t∗+1.

In the reduction, without sampling or computing (r′mskt∗+1
,msk′t∗+1, r

′
Enct∗+1

), we runHybridA11,t∗+1,0

up to just before step 6c of KeyGen. We then run step 6c of KeyGen except that we skip over com-
puting sk′ht∗+1

. This is possible without needing to know (r′mskt∗+1
,msk′t∗+1, r

′
Enct∗+1

) since
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• We only need to know Ki for i < t∗ + 1.

• In step 6c of KeyGen, to compute all the ct′i+1, we only need to know (r′mski+1
,msk′i+1, r

′
Enci+1

)
for i ≥ t∗ + 1.

• In step 6c of KeyGen, to compute sk′hi
for i ̸= t∗+1, we only need to know (r′mski

,msk′i, r
′
Enci

)
for i ̸= t∗ + 1.

We then send challenge message pair (m0,m1) to the OneFSFE challenger where

m0 = (f, s̃tt∗+1, rmskt∗+1
, rKeyGent∗+1

, 0, 0λ)

m1 = (0ℓF , 0ℓS , 0λ, 0λ, 1, r′kt∗+1
)

and receive back a OneFSFE encryption ct∗ of one of them. We send function hct∗+1,c
′
t∗+1

to the

OneFSFE challenger and receive back a function key sk∗. We set ct′t∗+1 = ct∗ and sk′ht∗+1
= sk∗. As

needed for the security game, we can observe that

hct∗+1,c
′
t∗+1

(0ℓF , 0ℓS , 0λ, 0λ, 1, r′kt∗+1
)

= SKE′.Dec(k′t∗+1, c
′
t∗+1)

= skgt∗+1

= hct∗+1,c
′
t∗+1

(f, s̃tt∗+1, rmskt∗+1
, rKeyGent∗+1

, 0, 0λ)

This is because c′t∗+1 encrypts skgt∗+1
where skgt∗+1

is generated in the same way as in the α′t∗+1 = 0
branch of hct∗+1,c

′
t∗+1

.

Then, if t∗ + 1 = 1, we set Post.Dec.st1 = skg1 . Else, we sample
Post.Dec.st1 ← Post-One-sFE.KeyGenLocal(K1, f, s̃t1) and set Post.Dec.stt∗+1 = ct′t∗+1. We then

compute the remainder of HybridA11,t∗+1,0 starting from step 6e of KeyGen. Note that we do not
need to know (r′mskt∗+1

,msk′t∗+1, r
′
Enct∗+1

) to compute the remainder of the hybrid since Encryption

Phase 2 only needs to know (r′mskt∗+1
, r′Enct∗+1

) for i > t∗ + 1.

Observe that if c∗ was an encryption of m0 then we exactly emulate HybridA10, and if c∗ was an
encryption of m1 then we exactly emulate HybridA11,t∗+1,0. Thus, by the security of OneCompFE,
the outputs of these hybrids must be indistinguishable.
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HybridA11,t,1:We change the message encrypted in ctt so that we use the αt = 1 branch of gf,s̃tt,ct .

1. Guess Stream Length: (t∗, n)← [TA,λ]× [TA,λ] where TA,λ is the maximum runtime of A
on security parameter λ.

2. Parameters: The adversary A receives security parameter 1λ, and outputs a function size
1ℓF , a state size 1ℓS , an input size 1ℓX , and an output size 1ℓY .

3. Setup:

(a) Pre.MSK← Pre-One-sFE.Setup(1λ, 1LF , 1LS , 1LX , 1LY ).

(b) For i ∈ [n+ 1],

i. rmski , r
′
mski

, rki , r
′
ki
, rKeyGeni , r

′
Enci
← {0, 1}λ.

ii. mski = OneFSFE.Setup(1λ; rmski), msk′i = OneCompFE.Setup(1λ; r′mski
),

ki = SKE.Setup(1λ; rki), k
′
i = SKE′.Setup(1λ; r′ki).

iii. If i < t∗ + 1,

A. pi ← {0, 1}ℓS .
B. Ki = (pi, rmski , r

′
mski

, rki , r
′
ki
, rKeyGeni , r

′
Enci

).

iv. If i ≥ t∗ + 1,

A. s̃ti ← {0, 1}ℓS .

4. Challenge Bit: b← {0, 1}.

5. Encryption Phase 1: For i = 1, 2, . . . , t∗:
If the adversary does not make exactly t∗ queries during this phase, output ⊥ and halt.

(a) A sends (x
(0)
i , x

(1)
i ) to the challenger.

(b) Compute phase 1 ciphertexts:

i. If i < t∗, Post.CTi = Post-One-sFE.EncLocal((Ki,Ki+1), i, x
(0)
i ).

ii. If i = t∗, Post.CTi = ⊥.
(c) Pre.CTi ← Pre-One-sFE.Enc(Pre.MSK, i,Post.CTi).

(d) Send CTi = Pre.CTi to A.

6. KeyGen:

(a) A sends f to the challenger. Define st1 = ⊥.
(b) Compute phase 1 state and output values:

i. st
(b)
1 = st1.

ii. For i ∈ [t∗],

A. (yi, st
(b)
i+1) = f(x

(b)
i , st

(b)
i ).

iii. pt∗+1 = st
(b)
t∗+1 ⊕ s̃tt∗+1.

(c) Compute sk′hi
: For i ∈ [t∗ + 1, n],

i. θi ← {0, 1}ℓY .
ii. If i+ 1 ≤ t, ct′i+1 ← OneCompFE.Enc(msk′i+1, (0

ℓF , 0ℓS , 0λ, 0λ, 1, r′ki+1
); r′Enci+1

).

iii. If i+1 > t, ct′i+1 ← OneCompFE.Enc(msk′i+1, (f, s̃ti+1, rmski+1
, rKeyGeni+1

, 0, 0λ); r′Enci+1
).
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iv. ci ← SKE.Enc(ki, (θi, ct
′
i+1)).

v. skgi ← OneFSFE.KeyGen(mski, gi; rKeyGeni) for gi = gf,s̃ti,ci .

vi. If i > 1,

A. c′i ← SKE′.Enc(k′i, skgi).

B. sk′hi
← OneCompFE.KeyGen(msk′i, hi) for hi = hci,c′i .

(d) Compute hardcoded values:

i. If t∗ + 1 = 1, Post.Dec.st1 = skg1 .

ii. If t∗ + 1 > 1,

A. Post.Dec.st1 ← Post-One-sFE.KeyGenLocal(K1, f, st1).

B. ct′t∗+1 = OneCompFE.Enc(msk′t∗+1, (0
ℓF , 0ℓS , 0λ, 0λ, 1, r′kt∗+1

); r′Enct∗+1
).

C. Post.Dec.stt∗+1 = ct′t∗+1.

(e) Pre.SKf ← Pre-One-sFE.KeyGenHardwire(Pre.MSK,Post-One-sFE.Dec,Post.Dec.st1,
t∗, yt∗−1, yt∗ ,Post.Dec.stt∗+1)

(f) Send SKf = Pre.SKf to A.

7. Encryption Phase 2: For i = t∗ + 1, t∗ + 2, . . . , n:
If the adversary does not make exactly n− t∗ queries during this phase, output ⊥ and halt.

(a) A sends (x
(0)
i , x

(1)
i ) to the challenger.

(b) Compute pi and ψi:

i. (yi, st
(b)
i+1) = f(x

(b)
i , st

(b)
i ).

ii. ψi = yi ⊕ θi.
iii. pi+1 = st

(b)
i+1 ⊕ s̃ti+1.

(c) Compute phase 2 ciphertexts:

i. If i ≤ t, cti ← OneFSFE.Enc(mski, (0
ℓX , 0ℓS , 0ℓS , 0λ, 0λ, 0λ, 0λ, 1, rki , ψi)).

ii. If i > t, cti ← OneFSFE.Enc(mski, (x
(b)
i , pi, pi+1, r

′
mski+1

, r′Enci+1
, rmski+1

, rKeyGeni+1
, 0, 0λ, 0ℓY )).

iii. If i = 1, Post.CT1 = ct1. Else Post.CTi = (cti, sk
′
hi
).

(d) Pre.CTi ← Pre-One-sFE.Enc(Pre.MSK, i,Post.CTi).

(e) Send CTi = Pre.CTi to A.

8. Output: A sends b′ to the challenger. Output 1 if b = b′, and output 0 else.

Lemma C.89. If OneFSFE is a single-key, single-ciphertext, function-selective secure functional
encryption scheme, then for all λ ∈ N, all t ∈ [t∗ + 1, n], and all PPT adversaries A,

∆(Pr[HybridA11,t,0(1
λ),HybridA11,t,1(1

λ)) ≤ negl(λ)

Proof. This lemma follows by a reduction to the security of OneFSFE since we only use (rmskt ,mskt, rKeyGent)
to compute ctt and skgt .

In the reduction, without sampling or computing (rmskt ,mskt, rKeyGent), we run HybridA11,t∗+1,1

up to just before step 6c of KeyGen. We then run step 6c of KeyGen except that we skip over
computing (skgt , c

′
t, sk

′
ht
). This is possible without needing to know (rmskt ,mskt, rKeyGent) since

• We only need to know Ki for i < t∗ + 1 ≤ t.
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• In step 6c of KeyGen, to compute all the ct′i+1, we only need to know (rmski+1
,mski+1, rKeyGeni+1

)
for i+ 1 > t.

• In step 6c of KeyGen, to compute (skgi , c
′
i, sk

′
hi
) for i ̸= t, we only need to know (rmski ,mski, rKeyGeni)

for i ̸= t.

We then send challenge function gf,s̃tt,ct to the OneFSFE challenger and receive back a function
key sk∗. We set skgt = sk∗. We then compute c′t ← SKE′.Enc(k′t, skg,t) and sk′ht

← OneCompFE.KeyGen(msk′t, ht)

for ht = hct,c′t . We then compute HybridA11,t,1 from step 6d of KeyGen to just before step 7c of itera-
tion i = t of Encryption Phase 2. Note that this computation only requires (rmski ,mski, rKeyGeni)
for i < t.

We send challenge message pair (m0,m1) to the OneFSFE challenger where

m0 = (x
(b)
i , pi, pi+1, r

′
mski+1

, r′Enci+1
, rmski+1

, rKeyGeni+1
, 0, 0λ, 0ℓY )

m1 = (0ℓX , 0ℓS , 0ℓS , 0λ, 0λ, 0λ, 0λ, 1, rki , ψi)

and receive back a OneFSFE encryption ct∗ of one of them. We set ctt = ct∗. If i = 1, Post.CT1 =
ct1. Else Post.CTi = (cti, sk

′
hi
). As needed for the security game, we can observe that

gct(0
ℓX , 0ℓS , 0ℓS , 0λ, 0λ, 0λ, 0λ, 1, rkt , ψt)

= SKE.Dec(kt, ct)⊕ (ψt, 0
|ct′t+1|)

= (θt ⊕ ψt, ct
′
t+1)

= (yt, ct
′
t+1)

= gct(x
(b)
i , pi, pi+1, r

′
mski+1

, r′Enci+1
, rmski+1

, rKeyGeni+1
, 0, 0λ, 0ℓY )

This is because ct encrypts (θt, ct
′
t+1) where θt ⊕ ψt = yt and where ct′t+1 is generated in the same

way as in the αt = 0 branch of gt.
We then compute the rest ofHybridA11,t,1 starting from step 7d of iteration i = t of Encryption

Phase 2. Note that this computation only requires (rmski ,mski, rKeyGeni) for i > t.

Observe that if c∗ was an encryption of m0 then we exactly emulate HybridA11,t,0, and if c∗ was

an encryption of m1 then we exactly emulate HybridA11,t,1. Thus, by the security of OneFSFE, the
outputs of these hybrids must be indistinguishable.

288



Lemma C.90. If OneCompFE is a single-key, single-ciphertext, selective secure functional encryp-
tion scheme, then for all λ ∈ N, all t ∈ [t∗ + 2, n+ 1], and all PPT adversaries A,

∆(HybridA11,t−1,1(1
λ),HybridA11,t,0(1

λ)) ≤ negl(λ)

Proof. Observe that the only difference between HybridA11,t−1,1 and HybridA11,t,0 is in how we
compute ct′t in the latter hybrid. Thus, the lemma follows by a reduction to the security of
OneCompFE since we only use (r′mskt

,msk′t, r
′
Enct

) to compute ct′t and sk′ht
.

In the reduction, without sampling or computing (r′mskt
,msk′t, r

′
Enct

), we run HybridA11,t,0 up
to just before iteration i = t − 1 of step 6c of KeyGen. This is possible without needing to know
(r′mskt

,msk′t, r
′
Enct

) since

• We only need to know Ki for i < t∗ + 1 < t.

• For iterations i < t−1 of step 6c, to compute ct′i+1, we only need to know (r′mski+1
,msk′i+1, r

′
Enci+1

)
for i+ 1 < t.

• For iterations i < t− 1 of step 6c, to compute sk′hi
, we only need to know (r′mski

,msk′i, r
′
Enci

)
for i < t− 1.

We then send challenge message pair (m0,m1) to the OneFSFE challenger where

m0 = (f, s̃tt, rmskt , rKeyGent , 0, 0
λ)

m1 = (0ℓF , 0ℓS , 0λ, 0λ, 1, r′kt)

and receive back a OneFSFE encryption ct∗ of one of them. We set ct′t = ct∗.
We then run the rest of step 6c of KeyGen of HybridA11,t,0 starting from step 6c.iv in iteration

i = t−1, but skip over computing sk′ht
. This is possible without needing to know (r′mskt

,msk′t, r
′
Enct

)
since

• For iterations i > t−1 of step 6c, to compute ct′i+1, we only need to know (r′mski+1
,msk′i+1, r

′
Enci+1

)
for i+ 1 > t.

• For iterations i ≥ t − 1 of step 6c, to compute sk′hi
for i ̸= t, we only need to know

(r′mski
,msk′i, r

′
Enci

) for i ̸= t.

We then send function hct,c′t to the OneFSFE challenger and receive back a function key sk∗.
We set sk′ht

= sk∗. As needed for the security game, we can observe that

hct,c′t(0
ℓF , 0ℓS , 0λ, 0λ, 1, r′kt)

= SKE′.Dec(k′t, c
′
t)

= skgt

= hct,c′t(f, s̃tt, rmskt , rKeyGent , 0, 0
λ)

This is because c′t encrypts skgt where skgt is generated in the same way as in the α′t = 0 branch of
hct,c′t .

We then compute the remainder of HybridA11,t,0 starting from step 6d of KeyGen. Note that we
do not need to know (r′mskt

,msk′t, r
′
Enct

) to compute the remainder of the hybrid since

• Computing ct′t∗+1 only requires (r′mskt∗+1
, r′Enct∗+1

) and t∗ + 1 < t.
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• Encryption Phase 2 only needs to know (r′mski+1
, r′Enci+1

) for i ≥ t.

Observe that if c∗ was an encryption ofm0 then we exactly emulateHybridA10,t−1,1, and if c∗ was

an encryption of m1 then we exactly emulate HybridA11,t,0. Thus, by the security of OneCompFE,
the outputs of these hybrids must be indistinguishable.
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HybridA12: This is the same as HybridA11,n+1,0. Observe that we no longer need to compute pi for
i ≥ t∗ + 1.

1. Guess Stream Length: (t∗, n)← [TA,λ]× [TA,λ] where TA,λ is the maximum runtime of A
on security parameter λ.

2. Parameters: The adversary A receives security parameter 1λ, and outputs a function size
1ℓF , a state size 1ℓS , an input size 1ℓX , and an output size 1ℓY .

3. Setup:

(a) Pre.MSK← Pre-One-sFE.Setup(1λ, 1LF , 1LS , 1LX , 1LY ).

(b) For i ∈ [n+ 1],

i. rmski , r
′
mski

, rki , r
′
ki
, rKeyGeni , r

′
Enci
← {0, 1}λ.

ii. mski = OneFSFE.Setup(1λ; rmski), msk′i = OneCompFE.Setup(1λ; r′mski
),

ki = SKE.Setup(1λ; rki), k
′
i = SKE′.Setup(1λ; r′ki).

iii. If i < t∗ + 1,

A. pi ← {0, 1}ℓS .
B. Ki = (pi, rmski , r

′
mski

, rki , r
′
ki
, rKeyGeni , r

′
Enci

).

iv. If i ≥ t∗ + 1,

A. s̃ti ← {0, 1}ℓS .

4. Challenge Bit: b← {0, 1}.

5. Encryption Phase 1: For i = 1, 2, . . . , t∗:
If the adversary does not make exactly t∗ queries during this phase, output ⊥ and halt.

(a) A sends (x
(0)
i , x

(1)
i ) to the challenger.

(b) Compute phase 1 ciphertexts:

i. If i < t∗, Post.CTi = Post-One-sFE.EncLocal((Ki,Ki+1), i, x
(0)
i ).

ii. If i = t∗, Post.CTi = ⊥.
(c) Pre.CTi ← Pre-One-sFE.Enc(Pre.MSK, i,Post.CTi).

(d) Send CTi = Pre.CTi to A.

6. KeyGen:

(a) A sends f to the challenger. Define st1 = ⊥.
(b) Compute phase 1 state and output values:

i. st
(b)
1 = st1.

ii. For i ∈ [t∗],

A. (yi, st
(b)
i+1) = f(x

(b)
i , st

(b)
i ).

iii. pt∗+1 = st
(b)
t∗+1 ⊕ s̃tt∗+1.

(c) Compute sk′hi
: For i ∈ [t∗ + 1, n],

i. θi ← {0, 1}ℓY .
ii. ct′i+1 ← OneCompFE.Enc(msk′i+1, (0

ℓF , 0ℓS , 0λ, 0λ, 1, r′ki+1
); r′Enci+1

).
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iii. ci ← SKE.Enc(ki, (θi, ct
′
i+1)).

iv. skgi ← OneFSFE.KeyGen(mski, gi; rKeyGeni) for gi = gf,s̃ti,ci .

v. If i > 1,

A. c′i ← SKE′.Enc(k′i, skgi).

B. sk′hi
← OneCompFE.KeyGen(msk′i, hi) for hi = hci,c′i .

(d) Compute hardcoded values:

i. If t∗ + 1 = 1, Post.Dec.st1 = skg1 .

ii. If t∗ + 1 > 1,

A. Post.Dec.st1 ← Post-One-sFE.KeyGenLocal(K1, f, st1).

B. ct′t∗+1 = OneCompFE.Enc(msk′t∗+1, (0
ℓF , 0ℓS , 0λ, 0λ, 1, r′kt∗+1

); r′Enct∗+1
).

C. Post.Dec.stt∗+1 = ct′t∗+1.

(e) Pre.SKf ← Pre-One-sFE.KeyGenHardwire(Pre.MSK,Post-One-sFE.Dec,Post.Dec.st1,
t∗, yt∗−1, yt∗ ,Post.Dec.stt∗+1)

(f) Send SKf = Pre.SKf to A.

7. Encryption Phase 2: For i = t∗ + 1, t∗ + 2, . . . , n:
If the adversary does not make exactly n− t∗ queries during this phase, output ⊥ and halt.

(a) A sends (x
(0)
i , x

(1)
i ) to the challenger.

(b) Compute pi and ψi:

i. (yi, st
(b)
i+1) = f(x

(b)
i , st

(b)
i ).

ii. ψi = yi ⊕ θi.
iii. pi+1 = st

(b)
i+1 ⊕ s̃ti+1.

(c) Compute phase 2 ciphertexts:

i. cti ← OneFSFE.Enc(mski, (0
ℓX , 0ℓS , 0ℓS , 0λ, 0λ, 0λ, 0λ, 1, rki , ψi)).

ii. If i = 1, Post.CT1 = ct1. Else Post.CTi = (cti, sk
′
hi
).

(d) Pre.CTi ← Pre-One-sFE.Enc(Pre.MSK, i,Post.CTi).

(e) Send CTi = Pre.CTi to A.

8. Output: A sends b′ to the challenger. Output 1 if b = b′, and output 0 else.

Lemma C.91. For all λ ∈ N and all adversaries A,

∆(HybridA11,n+1,0(1
λ),HybridA12(1

λ)) = 0

Proof. The hybrids are identical.
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HybridA13: Finally, we observe that for i ≥ t∗ + 1 the hybrid does not depend on the challenge
stream except for the values of st1 and {yi}i∈[n]. Thus, since x(b) and x(0) have the same starting

state and output values, we can exchange stream x(b) for x(0). The view of the adversary in the
final hybrid is independent of the bit b.

1. Guess Stream Length: (t∗, n)← [TA,λ]× [TA,λ] where TA,λ is the maximum runtime of A
on security parameter λ.

2. Parameters: The adversary A receives security parameter 1λ, and outputs a function size
1ℓF , a state size 1ℓS , an input size 1ℓX , and an output size 1ℓY .

3. Setup:

(a) Pre.MSK← Pre-One-sFE.Setup(1λ, 1LF , 1LS , 1LX , 1LY ).

(b) For i ∈ [n+ 1],

i. rmski , r
′
mski

, rki , r
′
ki
, rKeyGeni , r

′
Enci
← {0, 1}λ.

ii. mski = OneFSFE.Setup(1λ; rmski), msk′i = OneCompFE.Setup(1λ; r′mski
),

ki = SKE.Setup(1λ; rki), k
′
i = SKE′.Setup(1λ; r′ki).

iii. If i < t∗ + 1,

A. pi ← {0, 1}ℓS .
B. Ki = (pi, rmski , r

′
mski

, rki , r
′
ki
, rKeyGeni , r

′
Enci

).

iv. If i ≥ t∗ + 1,

A. s̃ti ← {0, 1}ℓS .

4. Challenge Bit: b← {0, 1}.

5. Encryption Phase 1: For i = 1, 2, . . . , t∗:
If the adversary does not make exactly t∗ queries during this phase, output ⊥ and halt.

(a) A sends (x
(0)
i , x

(1)
i ) to the challenger.

(b) Compute phase 1 ciphertexts:

i. If i < t∗, Post.CTi = Post-One-sFE.EncLocal((Ki,Ki+1), i, x
(0)
i ).

ii. If i = t∗, Post.CTi = ⊥.
(c) Pre.CTi ← Pre-One-sFE.Enc(Pre.MSK, i,Post.CTi).

(d) Send CTi = Pre.CTi to A.

6. KeyGen:

(a) A sends f to the challenger. Define st1 = ⊥.
(b) Compute phase 1 state and output values:

i. st
(0)
1 = st1.

ii. For i ∈ [t∗],

A. (yi, st
(0)
i+1) = f(x

(0)
i , st

(0)
i ).

(c) Compute sk′hi
: For i ∈ [t∗ + 1, n],

i. θi ← {0, 1}ℓY .
ii. ct′i+1 ← OneCompFE.Enc(msk′i+1, (0

ℓF , 0ℓS , 0λ, 0λ, 1, r′ki); r
′
Enci+1

).
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iii. ci ← SKE.Enc(ki, (θi, ct
′
i+1)).

iv. skgi ← OneFSFE.KeyGen(mski, gi; rKeyGeni) for gi = gf,s̃ti,ci .

v. If i > 1,

A. c′i ← SKE′.Enc(k′i, skgi).

B. sk′hi
← OneCompFE.KeyGen(msk′i, hi) for hi = hci,c′i .

(d) Compute hardcoded values:

i. If t∗ + 1 = 1, Post.Dec.st1 = skg1 .

ii. If t∗ + 1 > 1,

A. Post.Dec.st1 ← Post-One-sFE.KeyGenLocal(K1, f, st1).

B. ct′t∗+1 = OneCompFE.Enc(msk′t∗+1, (0
ℓF , 0ℓS , 0λ, 0λ, 1, r′kt∗+1

); r′Enct∗+1
).

C. Post.Dec.stt∗+1 = ct′t∗+1.

(e) Pre.SKf ← Pre-One-sFE.KeyGenHardwire(Pre.MSK,Post-One-sFE.Dec,Post.Dec.st1,
t∗, yt∗−1, yt∗ ,Post.Dec.stt∗+1)

(f) Send SKf = Pre.SKf to A.

7. Encryption Phase 2: For i = t∗ + 1, t∗ + 2, . . . , n:
If the adversary does not make exactly n− t∗ queries during this phase, output ⊥ and halt.

(a) A sends (x
(0)
i , x

(1)
i ) to the challenger.

(b) Compute ψi:

i. (yi, st
(0)
i+1) = f(x

(0)
i , st

(0)
i ).

ii. ψi = yi ⊕ θi.
(c) Compute phase 2 ciphertexts:

i. cti ← OneFSFE.Enc(mski, (0
ℓX , 0ℓS , 0ℓS , 0λ, 0λ, 0λ, 0λ, 1, rki , ψi)).

ii. If i = 1, Post.CT1 = ct1. Else Post.CTi = (cti, sk
′
hi
).

(d) Pre.CTi ← Pre-One-sFE.Enc(Pre.MSK, i,Post.CTi).

(e) Send CTi = Pre.CTi to A.

8. Output: A sends b′ to the challenger. Output 1 if b = b′, and output 0 else.

Lemma C.92. For all λ ∈ N and all adversaries A,

∆(HybridA12(1
λ),HybridA13(1

λ)) = 0

Proof. The hybrids are identical. In step 6b of KeyGen and step 7b of Encryption Phase 2,
the two hybrids compute the same values of yi and ψi since x

(b) and x(0) have the same output
values. Since the previous hybrid did not depend on any other values computed during these two
steps, then exchanging stream x(b) to x(0) as in the current hybrid does not affect the output of the
hybrid.

Lemma C.93. For all λ ∈ N and all adversaries A,

Pr[Wrap(HybridA13)(1
λ) = 1] ≤ 1

2
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Proof. The proof relies on the fact that the adversary’s view in HybridA13 is independent of the
challenge bit b.

In each iteration of Wrap, we run an instance of HybridA13. The output of Wrap is defined to be
the output of the first instance of HybridA13 where we did not output ⊥, or 0 if all instances output
⊥. Consider any instance of HybridA13. Conditioned on not outputting ⊥, we will only output
1 if the adversary correctly guesses b = b′. However, since the adversary’s view in HybridA13 is
independent of the bit b, then conditioned on not outputting ⊥, the probability that the adversary
makes it to the end of the hybrid and guesses correctly is at most 1

2 . Thus, the probability that

Wrap(HybridA13)(1
λ) outputs 1 is at most 1

2 .

Lemma C.94. Assuming iO for P/Poly and injective PRGs, One-sFE is a single-key, single-
ciphertext, adapively secure sFE schme.

Proof. We start by combining all of our intermediate lemmas to prove indistinguishability be-
tween HybridA0 and Wrap(HybridA13). By Lemma C.6, HybridA0 and Wrap(HybridA1 ) are indis-
tinguishable. We then show indistinguishability between Wrap(HybridA1 ) and Wrap(HybridA13)
by iterating through the wrapped versions of each of the intermediate hybrids of this security
proof. To prove indistinguishability between each pair of intermediate wrapped hybrids, we rely
on Lemma C.5 which says that it is sufficient to prove indistinguishability between the unwrapped
hybrids, which we have already done.

Since HybridA0 and Wrap(HybridA13) are indistinguishable, then by Lemma C.93, for all PPT
adversaries A,

Pr[HybridA0 (1
λ) = 1] ≤ 1

2
+ negl(λ)

which implies that One-sFE is a single-key, single-ciphertext, adapively secure sFE scheme.
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D Security Proof from Section 7

In this section, we prove that sFE is adaptively secure (see Definition 3.30). In this proof, we will
use an alternate, but equivalent definition of adaptive security.

Definition D.1 (Adaptive Security for Public-Key sFE, Equivalent Definition). A public-key
streaming FE scheme sFE for P/Poly is adaptively secure if there exists a negligible function µ
such that for all λ ∈ N and all PPT adversaries A,∣∣∣Pr[ExptGuesssFE-AdaptiveA (1λ) = 1]

∣∣∣ ≤ 1

2
+ µ(λ)

where for each λ ∈ N, we define

ExptGuesssFE-AdaptiveA (1λ)

1. Parameters: A takes as input 1λ, and outputs a function size 1ℓF , a state size 1ℓS , an
input size 1ℓX , and an output size 1ℓY .

2. Setup: Compute (mpk,msk)← sFE.Setup(1λ, 1ℓF , 1ℓS , 1ℓX , 1ℓY ).

3. Public Key: Send mpk to A.

4. Challenge Bit: Sample b← {0, 1}.

5. For a polynomial number of rounds, the adversary can do either one of the following in
each round:

(a) Function Query:

i. A outputs a streaming function query f ∈ F [ℓF , ℓS , ℓX , ℓY ].
ii. skf ← sFE.KeyGen(msk, f).

iii. Send skf to A.
(b) Challenge Message Query:

i. If this is the first challenge message query, sample Enc.st← sFE.EncSetup(mpk)
and initialize the index i = 0. Else, increment the index i by 1.

ii. A outputs a challenge message pair (x
(0)
i , x

(1)
i ) ∈ {0, 1}ℓX × {0, 1}ℓX .

iii. cti ← sFE.Enc(mpk,Enc.st, i, x
(b)
i ).

iv. Send cti to A.

6. Experiment Outcome: A outputs a bit b′. The output of the experiment is set to 1 if
b = b′, and 0 otherwise.

Additionally, when running the experiment, we immediately halt and output 0 if the adversary
ever aborts or if it at any point some function query f submitted by the adversary yields different
outputs on the challenge message streams submitted so far (i.e. if f(x(0)) ̸= f(x(1)) for some

function query f submitted by the adversary where {(x(0)i , x
(1)
i )}i∈[t] are the message queries

submitted so far, x(0) = x
(0)
1 . . . x

(0)
t , and x(1) = x

(1)
1 . . . x

(1)
t ).

Using standard techniques, it is easy to show that this is equivalent to the regular definition of
adaptive security.
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D.1 Proof Overview

To build intuition, we provide a brief overview of each hybrid below.

• HybridA0 : This is the real world experiment. The adversary first receives the security pa-
rameter and chooses the function size, state size, input size, and output size. Then, the
adversary receives the master public key MPK. After that, the adversary can repeatedly and
adaptively submit either a streaming function fj and receive a function key skfj for fj , or

submit a challenge message pair (x
(0)
i , x

(1)
i ) and receives a ciphertext of x

(b)
i for a fixed random

bit b ∈ {0, 1}. The adversary guesses b and wins if it guesses b correctly. Throughout the
process, we require that for all fj queried by the adversary, fj(x

(0)) = fj(x
(1)).

• HybridA1 : We hardcode in values for the α = 1 branch of Gfj ,sj ,cj for each function key.
For each function query fj , we hardcode into cj the values (One-sFE.skfj ,FPFE.ctj) that are

output by Gfj ,sj ,cj on the α = 0 branch if we run it on the input (FPFE.msk,PRF.K, 0, 0ℓSKE.kλ )
generated by the challenge message. Note that this input is independent of the choice of
challenge messages (x(0), x(1)). (By hardcode, we mean that we generate
ci ← SKE.Enc(SKE.k, (One-sFE.skfj ,FPFE.ctj))). The objective is to use the security of FE
in the next hybrid to switch to the α = 1 branch of each Gfj ,cj ,sj , which does not require
knowledge of PRF.K or FPFE.msk in the input. As PRF.K is used to generate all of the
One-sFEmaster secret keys, being able to remove this value will allow us to hide these One-sFE
master secret keys in later hybrids. The indistinguishability of HybridA0 and HybridA1 holds
by the pseudorandom ciphertext property of SKE.

• HybridA2 : In the challenge ciphertext, instead of encrypting

FE.ct← FE.Enc(FE.mpk, (FPFE.msk,PRF.K, 0, 0ℓSKE.kλ ))

we encrypt
FE.ct← FE.Enc(FE.mpk, (0ℓFPFE.mskλ , 0ℓPRF.Kλ , 1, SKE.k))

Observe that the only functions keys generated using the corresponding FE.msk are for func-
tions Gfj ,sj ,cj . However, because we have hardcoded the correct output values into each cj in
our previous hybrid, then for all j,

Gfj ,sj ,cj (FPFE.msk,PRF.K, 0, 0ℓSKE.kλ ) = Gfj ,sj ,cj (0
ℓFPFE.mskλ , 0ℓPRF.Kλ , 1,SKE.k)

Thus, the indistinguishability of HybridA1 and HybridA2 holds by the selective-security of
FE. Selective security is sufficient as the messages
(FPFE.msk,PRF.K, 0, 0ℓSKE.kλ ) and (0ℓFPFE.mskλ , 0ℓPRF.Kλ , 1,SKE.k) can be computed at the be-
ginning of the experiment, even before learning FE.mpk.

• HybridA3 : For each j, to determine the values we need to hardcode into cj , we use ran-
domness rSetup,j , rKeyGen,j , rEncSetup,j , rPRF2,j , rEnc,j to generate One-sFE.mskj ,One-sFE.Enc.stj ,
One-sFE.skfj ,PRF2.kj , and FPFE.ctj . Instead of generating these random values using PRF.K,
we now generate these values using true randomness. Because of the change made in our
previous hybrid, the key PRF.K is not used anywhere else in our experiment, so the indistin-
guishability of HybridA2 and HybridA3 holds by the security of PRF.

• HybridA4 : In the ciphertext, we replace the FPFE function keys for H
i,x

(b)
i ,ti

with function

keys for new functions H∗
i,x

(b)
i ,x

(0)
i ,ti,vi

(defined in Figure 8) that have additional branches of

computation.
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– When β = 0, H∗
i,x

(b)
i ,x

(0)
i ,vi

will act the same as H
i,x

(b)
i ,ti

and will generate a One-sFE

ciphertext for x
(b)
i .

– When β = 1, H∗
i,x

(b)
i ,x

(0)
i ,ti,vi

will instead generate a One-sFE ciphertext for x
(0)
i .

– When β = 2, H∗
i,x

(b)
i ,x

(0)
i ,ti,vi

will simply output vi (which is set to 0 in this hybrid).

As H
i,x

(b)
i ,ti

and H∗
i,x

(b)
i ,x

(0)
i ,ti,vi

act the same when β = 0, and we only encrypt FPFE messages

where β = 0, then the indistinguishability of HybridA3 and HybridA4 holds by the function
privacy of FPFE.

• We will now go through a series of hybrids for k = 1 to q where q = q(λ) is the runtime of
A and an implicit bound on the number of function queries made by A. At a high level, the
goal is to one by one switch to the β = 1 branch in every FPFE ciphertext. This will allow
us to use the function privacy of FPFE to remove the dependence on b present in the β = 0
branch of each H∗

i,x
(b)
i ,x

(0)
i ,ti,vi

.

– HybridA5,k,0: We prepare to switch to the β = 2 branch in the kth FPFE ciphertext. For
each i, we replace the value vi in the FPFE function key ofH∗

i,x
(b)
i ,x

(0)
i ,ti,vi

(or for k > 1, the

value vi,k−1 in H∗
i,x

(b)
i ,x

(0)
i ,ti,vi,k−1

) with a new value vi,k which corresponds to the output

of H∗
i,x

(b)
i ,x

(0)
i ,ti,vi

on the message (One-sFE.mskk,One-sFE.Enc.stk,PRF2.kk, 0) encrypted

in the kth FPFE ciphertext. This value vi,k is an encryption of x
(b)
i under One-sFE.mskk

using randomness generated by PRF2.kk. Since the value of vi (or vi,k−1) only affects
the β = 2 branch of H∗

i,x
(b)
i ,x

(0)
i ,ti,vi

(or H∗
i,x

(b)
i ,x

(0)
i ,ti,vi,k−1

), and we only encrypt FPFE

ciphertexts where β = 0 or β = 1, then we can perform this change due to the function
privacy of FPFE.

– HybridA5,k,1: We now switch to the β = 2 branch of the kth FPFE ciphertext. When we
hardcode values into ck in our function key, instead of encrypting

FPFE.ctk ← FPFE.Enc(FPFE.msk, (One-sFE.mskk,One-sFE.Enc.stk,PRF2.kk, 0))

we encrypt

FPFE.ctk ← FPFE.Enc(FPFE.msk, (0ℓOne-sFE.mskλ , 0ℓOne-sFE.Enc.stλ , 0ℓPRF2.kλ , 2))

Observe that the only FPFE function keys generated using FPFE.msk are for functions
H∗

i,x
(b)
i ,x

(0)
i ,ti,vi,k

. However, because we hardcoded the correct output values into each vi,k,

then

H∗
i,x

(b)
i ,x

(0)
i ,ti,vi,k

(One-sFE.mskk,One-sFE.Enc.stk,PRF2.kk, 0)

= H∗
i,x

(b)
i ,x

(0)
i ,ti,vi,k

(0ℓOne-sFE.mskλ0ℓOne-sFE.Enc.stλ , 0ℓPRF2.kλ , 2)

Thus, the indistinguishability of HybridA5,k,0 and HybridA5,k,1 holds by the message
privacy of FPFE.
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– HybridA5,k,2: We would now like to change vi,k from a One-sFE encryption of x
(b)
i to

a One-sFE encryption of x
(0)
i . However, in order to perform that step, we first need

to use true randomness for the encryption. Thus, in this hybrid, instead of generating

ri,k (which is the randomness used to generate vi,k: the ith ciphertext of x
(b)
i under

One-sFE.mskk and One-sFE.Enc.stk) using PRF2.kk, we generate ri,k using true random-
ness. Observe that PRF2.kk was removed from our experiment in the previous hybrid
when we switched to the β = 2 branch in FPFE.ctk. Thus, the indistinguishability of
HybridA5,k,1 and HybridA5,k,2 holds by the security of PRF2.

– HybridA5,k,3: We now invoke the security of One-sFE to change the value of vi,k. For
each i, instead of computing

vi,k ← One-sFE.Enc(One-sFE.mskk,One-sFE.Enc.stk, i, x
(b)
i )

we compute

vi,k ← One-sFE.Enc(One-sFE.mskk,One-sFE.Enc.stk, i, x
(0)
i )

Observe that this is equivalent to switching from an encryption of x(b) under One-sFE.mskk
to an encryption of x(0) under One-sFE.mskk. (If for d ∈ {0, 1}, CT(d) = {CT(d)

i }i∈[n]
is an encryption of x(d) under One-sFE.mskk, then vi,k = CT

(b)
i in the former case and

vi,k = CT
(0)
i in the latter.) To allow this change under the single-key, single-ciphertext,

adaptive-security of One-sFE, we need to ensure the following:

1. We only use One-sFE.mskk and One-sFE.Enc.stk for one ciphertext and one function
key. For our challenge message, every function query generates a different One-sFE
master secret key. Thus, we only use these values for one ciphertext (namely the
challenge ciphertext) and one key (corresponding to the kth function query fk).

2. The One-sFE challenge function fk has the same output value on the challenge
messages x(b) and x(0). This holds since the sFE security game requires fj(x

(0)) =
fj(x

(1)) for all functions fj queried, so indeed fk(x
(b)) = fk(x

(0)).

3. We do not leak additional information about One-sFE.mskk,
One-sFE.Enc.stk, or the randomness used to generate the ciphertext or function key.
Except for their appearances in the kth One-sFE ciphertext and function key, the only
place that One-sFE.mskk and One-sFE.Enc.stk appeared was in FPFE.ctk. However,
we removed these values from FPFE.ctk in a previous hybrid when we switched to the
β = 2 branch. Observe also that the randomness used is independent and uniform
as we have already removed PRF.K and PRF2.kk from the experiment.

Thus, the indistinguishability of HybridA5,k,2 and HybridA5,k,3 holds by the security of
One-sFE.

– HybridA5,k,4: We undo the change made in HybridA5,k,2. Instead of computing vi,k using

true randomness, we compute vi,k using randomness ri,k generated by the kth PRF2 key
PRF2.kk. The indistinguishability of HybridA5,k,3 and HybridA5,k,4 holds by the security
of PRF2.

– HybridA5,k,5: We now switch to the β = 1 branch in the kth ciphertext. When we
hardcode values into ck in our function key, instead of encrypting

FPFE.ctk ← FPFE.Enc(FPFE.msk, (0ℓOne-sFE.mskλ , 0ℓOne-sFE.Enc.stλ , 0ℓPRF2.kλ , 2))
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we encrypt

FPFE.ctk ← FPFE.Enc(FPFE.msk, (One-sFE.mskk,One-sFE.Enc.stk,PRF2.kk, 1))

Observe that the only FPFE function keys we generated using FPFE.msk are for functions
H∗

i,x
(b)
i ,x

(0)
i ,ti,vi,k

. However, we observe that the value of vi,k is now in fact equal to

H∗
i,x

(b)
i ,x

(0)
i ,ti,vi,k

(One-sFE.mskk,One-sFE.Enc.stk,

PRF2.kk, 1) as it is an encryption of x
(0)
i under One-sFE.mskk using randomness generated

by PRF2.kk. Therefore,

H∗
i,x

(b)
i ,x

(0)
i ,ti,vi,k

(One-sFE.mskk,One-sFE.Enc.stk,PRF2.kk, 1)

= H∗
i,x

(b)
i ,x

(0)
i ,ti,vi,k

(0ℓOne-sFE.mskλ , 0ℓOne-sFE.Enc.stλ0ℓPRF2.kλ , 2)

and the indistinguishability ofHybridA5,k,4 andHybridA5,k,5 holds by the message privacy
of FPFE.

• HybridA6 : In the ciphertext, we replace the FPFE function keys for H∗
i,x

(b)
i ,x

(0)
i ,tivi,q

(where q

is the runtime of A) with FPFE function keys for functions H∗
i,x

(0)
i ,x

(0)
i ,ti,vi

where vi is set to

0. Observe that q is an implicit bound on the number of function queries made by A and
thus on the number of FPFE ciphertexts that we generate. Therefore, by the time we reach
HybridA5,q,5, we will have switched all FPFE ciphertexts to the β = 1 branch. But since
H∗

i,x
(b)
i ,x

(0)
i ,ti,vi,q

and H∗
i,x

(0)
i ,x

(0)
i ,ti,vi

act the same when β = 1, then the indistinguishability of

HybridA5,q,5 and Hybrid6 holds by the function privacy of FPFE.

Our final hybrid HybridA6 is independent of the bit b. Thus, any adversary’s advantage in guessing
b inHybridA6 is zero. But our proof shows that for any PPT adversaryA, A’s advantage in guessing
b in HybridA1 is negligibly close to A’s advantage in guessing b in HybridA6 . Thus, for any PPT
adversary A, the advantage in guessing b in the real world must be negligible, so security holds.
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D.2 Formal Proof

We now formally prove security via a hybrid argument.

Remark D.2. We require all of our hybrids to immediately halt and output 0 if the adversary ever
aborts or if it at any point some function query f submitted by the adversary yields different outputs
on the challenge message streams submitted so far (i.e. if f(x(0)) ̸= f(x(1)) for some function query

f submitted by the adversary where {(x(0)i , x
(1)
i )}i∈[t] are the message queries submitted so far,

x(0) = x
(0)
1 . . . x

(0)
t , and x(1) = x

(1)
1 . . . x

(1)
t ). We will consider the latter behavior to also be an

abort condition. For notational simplicity, we will omit this requirement from the description of
our hybrids.

HybridA0 (1
λ): This is the real world experiment. Though we have reordered some steps for the

sake of the proof, this does not affect the outcome of the experiment.

1. Parameters: The adversary A receives security parameter 1λ, and outputs a function size
1ℓF , a state size 1ℓS , an input size 1ℓX , and an output size 1ℓY .

2. Setup:

(a) (FE.mpk,FE.msk)← FE.Setup(1λ)

(b) PRF.K ← PRF.Setup(1λ)

(c) FPFE.msk← FPFE.Setup(1λ)

(d) FE.ct← FE.Enc(FE.mpk, (FPFE.msk,PRF.K, 0, 0ℓSKE.kλ ))

3. Public Key: Send MPK = FE.mpk to the adversary.

4. Challenge Bit: Sample b← {0, 1}.

5. For a polynomial number of rounds, the adversary can do either one of the following in each
round:

(a) Function Query: For the jth function query fj ∈ F [ℓF , ℓS , ℓX , ℓY ] made by the adver-
sary:

i. sj ← {0, 1}λ

ii. cj ← {0, 1}ℓSKE.ctλ
iii. Let Gj = Gfj ,sj ,cj as defined in Figure 6 (page 86).

iv. FE.skGj ← FE.KeyGen(FE.msk, Gj)

v. Send SKfj = FE.skGj to the adversary.

(b) Challenge Message Query: For the ith challenge message query, A outputs a challenge

message pair (x
(0)
i , x

(1)
i ) where x

(0)
i , x

(1)
i ∈ {0, 1}ℓX .

i. ti ← {0, 1}λ

ii. Let Hi = H
i,x

(b)
i ,ti

as defined in Figure 5 (page 85).

iii. FPFE.skHi = FPFE.KeyGen(FPFE.msk, Hi)

iv. If i = 1, let CT1 = (FE.ct,FPFE.skH1). Else, let CTi = FPFE.skHi .

v. Send CTi to the adversary.

6. Experiment Outcome: A outputs a bit b′. The output of the experiment is set to 1 if
b = b′, and 0 otherwise.
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HybridA1 (1
λ): For each j, we hardcode into cj the values

(One-sFE.skfj ,FPFE.ctj) = Gfj ,sj ,cj (FPFE.msk,PRF.K, 0, 0ℓSKE.kλ )

which would be generated in the real world experiment. This will allow us to later switch to the
α = 1 branch in Gfj ,sj ,cj using the security of FE. Observe that the values being hardcoded into cj
can be computed before knowing x(0) or x(1).

1. Parameters: The adversary A receives security parameter 1λ, and outputs a function size
1ℓF , a state size 1ℓS , an input size 1ℓX , and an output size 1ℓY .

2. Setup:

(a) (FE.mpk,FE.msk)← FE.Setup(1λ)

(b) PRF.K ← PRF.Setup(1λ)

(c) FPFE.msk← FPFE.Setup(1λ)

(d) SKE.k ← SKE.Setup(1λ)

(e) FE.ct← FE.Enc(FE.mpk, (FPFE.msk,PRF.K, 0, 0ℓSKE.kλ ))

3. Public Key: Send MPK = FE.mpk to the adversary.

4. Challenge Bit: Sample b← {0, 1}.

5. For a polynomial number of rounds, the adversary can do either one of the following in each
round:

(a) Function Query: For the jth function query fj ∈ F [ℓF , ℓS , ℓX , ℓY ] made by the adver-
sary:

i. sj ← {0, 1}λ

ii. Compute cj:

A. (rSetup,j , rKeyGen,j , rEncSetup,j , rPRF2,j , rEnc,j)← PRF.Eval(PRF.K, sj)

B. One-sFE.mskj ← One-sFE.Setup(1λ; rSetup,j)

C. One-sFE.Enc.stj ← One-sFE.EncSetup(One-sFE.mskj ; rEncSetupj )

D. One-sFE.skfj ← One-sFE.KeyGen(One-sFE.mskj , fj ; rKeyGen,j)

E. PRF2.kj ← PRF2.Setup(1λ; rPRF2,j)

F. FPFE.ctj ← FPFE.Enc(FPFE.msk, (One-sFE.mskj ,One-sFE.Enc.stj ,
PRF2.kj , 0); rEnc,j)

G. cj ← SKE.Enc(SKE.k, (One-sFE.skfj ,FPFE.ctj))

iii. Let Gj = Gfj ,sj ,cj as defined in Figure 6 (page 86).

iv. FE.skGj ← FE.KeyGen(FE.msk, Gj)

v. Send SKfj = FE.skGj to the adversary.

(b) Challenge Message Query: For the ith challenge message query, A outputs a challenge

message pair (x
(0)
i , x

(1)
i ) where x

(0)
i , x

(1)
i ∈ {0, 1}ℓX .

i. ti ← {0, 1}λ

ii. Let Hi = H
i,x

(b)
i ,ti

as defined in Figure 5 (page 85).

iii. FPFE.skHi = FPFE.KeyGen(FPFE.msk, Hi)
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iv. If i = 1, let CT1 = (FE.ct,FPFE.skH1). Else, let CTi = FPFE.skHi .

v. Send CTi to the adversary.

6. Experiment Outcome: A outputs a bit b′. The output of the experiment is set to 1 if
b = b′, and 0 otherwise.

Lemma D.3. If SKE has pseudorandom ciphertexts, then for all PPT adversaries A,∣∣∣Pr[HybridA0 (1
λ) = 1]− Pr[HybridA1 (1

λ) = 1]
∣∣∣ ≤ negl(λ)

Proof. Suppose for sake of contradiction that there exists a PPT adversary A such that∣∣∣Pr[HybridA0 (1
λ) = 1]− Pr[HybridA1 (1

λ) = 1]
∣∣∣ > negl(λ) (1)

We build a PPT adversary B that breaks the pseudorandom ciphertext property of SKE. B first runs
A on input 1λ and receives parameters 1ℓF , 1ℓS , 1ℓX , 1ℓY . B then sends message length 1ℓSKE.mλ to
its SKE challenger where where ℓSKE.mλ

is computed as described in the parameter section. B then
computes (FE.mpk,FE.msk,PRF.K,FPFE.msk,FE.ct) as in HybridA0 and sends MPK = FE.mpk to
A. B samples b← {0, 1}.

For each function query fj that A sends to B, B does the following: B computes sj ← {0, 1}λ and
(One-sFE.skfj ,FPFE.ctj) as in HybridA1 . B sends (One-sFE.skfj ,FPFE.ctj) as its challenge message
to its SKE challenger and receives cj which is either a uniform random value or an encryption of
(One-sFE.skfj ,FPFE.ctj) under SKE. B then computes FE.skGj ← FE.KeyGen(FE.msk, Gfj ,sj ,cj ) and
sends SKfj = FE.skGj to A.

For each challenge message query (x
(0)
i , x

(1)
i ) output by A, B computes CTi as in HybridA0 , and

sends CTi to A.
After A is done making queries, A outputs b′. B outputs 1 if b = b′, and outputs 0 otherwise.

If the experiment for A aborts for any reason, B always outputs 0. Observe that if every cj
is an independent uniform random value, then B exactly emulates HybridA0 , and if each cj is
an encryption of B’s jth challenge message (One-sFE.skfj ,FPFE.ctj) under SKE, then B emulates

HybridA1 . Additionally, B does not need to know SKE.k to carry out this experiment. Thus,
by Equation 1, this means that B breaks the pseudorandom ciphertext property of SKE as B can
distinguish between receiving random values and valid ciphertexts with non-negligible probability.
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HybridA2 : We change the message encrypted in FE.ct so that we use the α = 1 branch of every
Gfj ,sj ,cj . This allows us to remove FPFE.msk and PRF.K from FE.ct.

1. Parameters: The adversary A receives security parameter 1λ, and outputs a function size
1ℓF , a state size 1ℓS , an input size 1ℓX , and an output size 1ℓY .

2. Setup:

(a) (FE.mpk,FE.msk)← FE.Setup(1λ)

(b) PRF.K ← PRF.Setup(1λ)

(c) FPFE.msk← FPFE.Setup(1λ)

(d) SKE.k ← SKE.Setup(1λ)

(e) FE.ct← FE.Enc(FE.mpk, (0ℓFPFE.mskλ , 0ℓPRF.kλ , 1,SKE.k))

3. Public Key: Send MPK = FE.mpk to the adversary.

4. Challenge Bit: Sample b← {0, 1}.

5. For a polynomial number of rounds, the adversary can do either one of the following in each
round:

(a) Function Query: For the jth function query fj ∈ F [ℓF , ℓS , ℓX , ℓY ] made by the adver-
sary:

i. sj ← {0, 1}λ

ii. Compute cj:

A. (rSetup,j , rKeyGen,j , rEncSetup,j , rPRF2,j , rEnc,j)← PRF.Eval(PRF.K, sj)

B. One-sFE.mskj ← One-sFE.Setup(1λ; rSetup,j)

C. One-sFE.Enc.stj ← One-sFE.EncSetup(One-sFE.mskj ; rEncSetupj )

D. One-sFE.skfj ← One-sFE.KeyGen(One-sFE.mskj , fj ; rKeyGen,j)

E. PRF2.kj ← PRF2.Setup(1λ; rPRF2,j)

F. FPFE.ctj ← FPFE.Enc(FPFE.msk, (One-sFE.mskj ,One-sFE.Enc.stj ,
PRF2.kj , 0); rEnc,j)

G. cj ← SKE.Enc(SKE.k, (One-sFE.skfj ,FPFE.ctj))

iii. Let Gj = Gfj ,sj ,cj as defined in Figure 6 (page 86).

iv. FE.skGj ← FE.KeyGen(FE.msk, Gj)

v. Send SKfj = FE.skGj to the adversary.

(b) Challenge Message Query: For the ith challenge message query, A outputs a challenge

message pair (x
(0)
i , x

(1)
i ) where x

(0)
i , x

(1)
i ∈ {0, 1}ℓX .

i. ti ← {0, 1}λ

ii. Let Hi = H
i,x

(b)
i ,ti

as defined in Figure 5 (page 85).

iii. FPFE.skHi = FPFE.KeyGen(FPFE.msk, Hi)

iv. If i = 1, let CT1 = (FE.ct,FPFE.skH1). Else, let CTi = FPFE.skHi .

v. Send CTi to the adversary.

6. Experiment Outcome: A outputs a bit b′. The output of the experiment is set to 1 if
b = b′, and 0 otherwise.
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Lemma D.4. If FE is selectively secure, then for all PPT adversaries,∣∣∣Pr[HybridA1 (1
λ) = 1]− Pr[HybridA2 (1

λ) = 1]
∣∣∣ ≤ negl(λ)

Proof. Suppose for sake of contradiction that there exists a PPT adversary A such that∣∣∣Pr[HybridA1 (1
λ) = 1]− Pr[HybridA2 (1

λ) = 1]
∣∣∣ > negl(λ) (2)

We build a PPT adversary B that breaks the selective-security of FE. B first runs A on input 1λ

and receives parameters 1ℓF , 1ℓS , 1ℓX , 1ℓY . B then sends function size 1ℓGλ , input size 1ℓFE.mλ , and
output size 1ℓFE.outλ to its FE challenger where ℓGλ

, ℓFE.mλ
, ℓFE.outλ are computed as described in

the parameter section. B computes (PRF.K,FPFE.msk,SKE.k) as in HybridA1 . B sends challenge
message pair ((FPFE.msk,PRF.K, 0, 0ℓSKE.kλ ), (0ℓFPFE.mskλ , 0ℓPRF.Kλ , 1,SKE.k)) to its FE challenger and
receives (FE.mpk,FE.ct) where FE.ct is either an encryption of (FPFE.msk,PRF.K, 0, 0ℓSKE.kλ ) or
an encryption of (0ℓFPFE.mskλ , 0ℓPRF.Kλ , 1,SKE.k). B then sends MPK = FE.mpk to A and samples
b← {0, 1}.

For each function query fj that A sends to B, B does the following: B computes (sj , cj) as in
HybridA1 . B then sends function query Gj = Gfj ,sj ,cj to its FE challenger and receives a function
key FE.skGj in return. This is a valid function query since for all j,

Gfj ,sj ,cj (FPFE.msk,PRF.K, 0, 0ℓSKE.kλ ) = Gfj ,sj ,cj (0
ℓFPFE.mskλ , 0ℓPRF.Kλ , 1,SKE.k)

because cj encrypts (One-sFE.skfj ,FPFE.ctj) which are generated in the same way as in the α = 0
branch of Gfj ,sj ,cj . B then sends SKfj = FE.skGj to A.

For each challenge message query (x
(0)
i , x

(1)
i ) output by A, B computes CTi as in HybridA1 , and

sends CTi to A.
After A is done making queries, A outputs b′. B outputs 1 if b = b′, and outputs 0 otherwise.

If the experiment for A aborts for any reason, B always outputs 0. Observe that if FE.ct is an
encryption of (FPFE.msk,PRF.K, 0, 0ℓSKE.kλ ), then B exactly emulates HybridA1 , and if FE.ct is an
encryption of (0ℓFPFE.mskλ , 0ℓPRF.Kλ , 1,SKE.k) then B emulates HybridA2 . Additionally, B does not
need to know FE.msk to carry out this experiment. Thus, by Equation 2, this means that B breaks
the selective-security of FE as B can distinguish between the two ciphertexts with non-negligible
probability.
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HybridA3 : We exchange the randomness generated by PRF.K with true randomness.

1. Parameters: The adversary A receives security parameter 1λ, and outputs a function size
1ℓF , a state size 1ℓS , an input size 1ℓX , and an output size 1ℓY .

2. Setup:

(a) (FE.mpk,FE.msk)← FE.Setup(1λ)

(b) PRF.K ← PRF.Setup(1λ)

(c) FPFE.msk← FPFE.Setup(1λ)

(d) SKE.k ← SKE.Setup(1λ)

(e) FE.ct← FE.Enc(FE.mpk, (0ℓFPFE.mskλ , 0ℓPRF.kλ , 1,SKE.k))

3. Public Key: Send MPK = FE.mpk to the adversary.

4. Challenge Bit: Sample b← {0, 1}.

5. For a polynomial number of rounds, the adversary can do either one of the following in each
round:

(a) Function Query: For the jth function query fj ∈ F [ℓF , ℓS , ℓX , ℓY ] made by the adver-
sary:

i. sj ← {0, 1}λ

ii. Compute cj:

A. (rSetup,j , rKeyGen,j , rEncSetupjrPRF2,j , rEnc,j)← PRF.Eval(PRF.K, sj)

B. One-sFE.mskj ← One-sFE.Setup(1λ)

C. One-sFE.Enc.stj ← One-sFE.EncSetup(One-sFE.mskj)

D. One-sFE.skfj ← One-sFE.KeyGen(One-sFE.mskj , fj)

E. PRF2.kj ← PRF2.Setup(1λ)

F. FPFE.ctj ← FPFE.Enc(FPFE.msk, (One-sFE.mskj ,One-sFE.Enc.stj ,
PRF2.kj , 0))

G. cj ← SKE.Enc(SKE.k, (One-sFE.skfj ,FPFE.ctj))

iii. Let Gj = Gfj ,sj ,cj as defined in Figure 6 (page 86).

iv. FE.skGj ← FE.KeyGen(FE.msk, Gj)

v. Send SKfj = FE.skGj to the adversary.

(b) Challenge Message Query: For the ith challenge message query, A outputs a challenge

message pair (x
(0)
i , x

(1)
i ) where x

(0)
i , x

(1)
i ∈ {0, 1}ℓX .

i. ti ← {0, 1}λ

ii. Let Hi = H
i,x

(b)
i ,ti

as defined in Figure 5 (page 85).

iii. FPFE.skHi = FPFE.KeyGen(FPFE.msk, Hi)

iv. If i = 1, let CT1 = (FE.ct,FPFE.skH1). Else, let CTi = FPFE.skHi .

v. Send CTi to the adversary.

6. Experiment Outcome: A outputs a bit b′. The output of the experiment is set to 1 if
b = b′, and 0 otherwise.
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Lemma D.5. If PRF is a secure PRF, then for all PPT adversaries A,∣∣∣Pr[HybridA2 (1
λ) = 1]− Pr[HybridA3 (1

λ) = 1]
∣∣∣ ≤ negl(λ)

Proof. Suppose for sake of contradiction that there exists a PPT adversary A such that∣∣∣Pr[HybridA2 (1
λ) = 1]− Pr[HybridA3 (1

λ) = 1]
∣∣∣ > negl(λ) (3)

We build a PPT adversary B that breaks the security of PRF. B first runs A on input 1λ and receives
parameters 1ℓF , 1ℓS , 1ℓX , 1ℓY . B then sends input size 1λ, and output size 15λ to its PRF challenger.
B is then given oracle access to either PRF.Eval(PRF.K, ·) for some PRF.K ← PRF.Setup(1λ, 1λ, 15λ)
or to a uniformly random function R← Rλ,5λ where Rλ,5λ is the set of all functions from {0, 1}λ to
{0, 1}5λ. B computes (FE.mpk,FE.msk,FPFE.msk,SKE.k) as in HybridA2 and computes FE.ct ←
FE.Enc(FE.mpk, 0ℓFPFE.mskλ , 0ℓPRF.kλ , 1,SKE.k). (This does not require knowledge of PRF.K). B then
sends MPK = FE.mpk to A and samples b← {0, 1}.

For each function query fj that A sends to B, B does the following: B samples sj ← {0, 1}λ
and sets (rSetup,j , rKeyGen,j , rEncSetup,j , rPRF2,j , rEnc,j) equal to the output of B’s oracle on sj .
B then computes One-sFE.mskj ← One-sFE.Setup(1λ; rSetup,j),
One-sFE.Enc.stj ← One-sFE.EncSetup(One-sFE.mskj ; rEncSetup,j),
One-sFE.skfj ← One-sFE.KeyGen(One-sFE.mskj , fj ; rKeyGen,j), PRF2.kj ← PRF2.Setup(1λ; rPRF2,j),
and FPFE.ctj ← FPFE.Enc(FPFE.msk, (One-sFE.mskj ,One-sFE.Enc.stj ,PRF2.kj , 0); rEnc,j) using these
values as randomness. B computes cj and SKfj from these values as in HybridA2 and sends SKfj

to A.
For each challenge message query (x

(0)
i , x

(1)
i ) output by A, B computes CTi as in HybridA2 , and

sends CTi to A.
After A is done making queries, A outputs b′. B outputs 1 if b = b′, and outputs 0 other-

wise. If the experiment for A aborts for any reason, B always outputs 0. Observe that if B’s
oracle was a uniform random function R, then B exactly emulates HybridA3 , and if B’s oracle was
PRF.Eval(PRF.K, ·), then B emulates HybridA2 . Additionally, B does not need to know PRF.K to
carry out this experiment. Thus, by Equation 3, this means that B breaks the security of PRF as
B can distinguish between a random function and the PRF.
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H∗i,xi,x′
i,ti,vi

(One-sFE.msk,One-sFE.Enc.st,PRF2.k, β):

• If β = 0

1. ri ← PRF2.Eval(PRF2.k, ti)

2. Output One-sFE.cti ← One-sFE.Enc(One-sFE.msk,One-sFE.Enc.st, i, xi; ri)

• If β = 1

1. ri ← PRF2.Eval(PRF2.k, ti)

2. Output One-sFE.cti ← One-sFE.Enc(One-sFE.msk,One-sFE.Enc.st, i, x′i; ri)

• Else, output vi

Figure 8:

HybridA4 (1
λ): We replace each H

i,x
(b)
i ,ti

with a new function H∗
i,x

(b)
i ,x

(0)
i ,ti,vi

that has additional

branches of computation. We also move some steps further up in the proof, which we can do since
these steps do not depend on the function queries.

1. Parameters: The adversary A receives security parameter 1λ, and outputs a function size
1ℓF , a state size 1ℓS , an input size 1ℓX , and an output size 1ℓY .

2. Setup:

(a) (FE.mpk,FE.msk)← FE.Setup(1λ)

(b) FPFE.msk← FPFE.Setup(1λ)

(c) SKE.k ← SKE.Setup(1λ)

(d) FE.ct← FE.Enc(FE.mpk, (0ℓFPFE.mskλ , 0ℓPRF.kλ , 1, SKE.k))

3. Public Key: Send MPK = FE.mpk to the adversary.

4. Challenge Bit: Sample b← {0, 1}.

5. Pre-Compute FPFE Ciphertexts: For j ∈ [q] where q = q(λ) is a bound on the runtime
of A,

(a) One-sFE.mskj ← One-sFE.Setup(1λ).

(b) One-sFE.Enc.stj ← One-sFE.EncSetup(One-sFE.mskj).

(c) PRF2.kj ← PRF2.Setup(1λ)

(d) FPFE.ctj ← FPFE.Enc(FPFE.msk, (One-sFE.mskj ,One-sFE.Enc.stj ,PRF2.kj , 0))

6. For a polynomial number of rounds, the adversary can do either one of the following in each
round:

(a) Function Query: For the jth function query fj ∈ F [ℓF , ℓS , ℓX , ℓY ] made by the adver-
sary:

i. sj ← {0, 1}λ
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ii. Compute cj:

A. One-sFE.mskj ← One-sFE.Setup(1λ)

B. One-sFE.Enc.stj ← One-sFE.EncSetup(One-sFE.mskj)

C. One-sFE.skfj ← One-sFE.KeyGen(One-sFE.mskj , fj)

D. PRF2.kj ← PRF2.Setup(1λ)

E. FPFE.ctj ← FPFE.Enc(FPFE.msk, (One-sFE.mskj ,One-sFE.Enc.stj ,
PRF2.kj , 0))

F. cj ← SKE.Enc(SKE.k, (One-sFE.skfj ,FPFE.ctj))

iii. Let Gj = Gfj ,sj ,cj as defined in Figure 6 (page 86).

iv. FE.skGj ← FE.KeyGen(FE.msk, Gj)

v. Send SKfj = FE.skGj to the adversary.

(b) Challenge Message Query: For the ith challenge message query, A outputs a challenge

message pair (x
(0)
i , x

(1)
i ) where x

(0)
i , x

(1)
i ∈ {0, 1}ℓX .

i. ti ← {0, 1}λ

ii. vi = 0ℓOne-sFE.ctλ

iii. Let Hi = H∗
i,x

(b)
i ,x

(0)
i ,ti,vi

as defined in Figure 8.

iv. FPFE.skHi = FPFE.KeyGen(FPFE.msk, Hi)

v. If i = 1, let CT1 = (FE.ct,FPFE.skH1). Else, let CTi = FPFE.skHi .

vi. Send CTi to the adversary.

7. Experiment Outcome: A outputs a bit b′. The output of the experiment is set to 1 if
b = b′, and 0 otherwise.

Lemma D.6. If FPFE is a function-private-selective-secure FE scheme, then for all PPT adver-
saries A, ∣∣∣Pr[HybridA3 (1

λ) = 1]− Pr[HybridA4 (1
λ) = 1]

∣∣∣ ≤ negl(λ)

Proof. Suppose for sake of contradiction that there exists a PPT adversary A such that∣∣∣Pr[HybridA3 (1
λ) = 1]− Pr[HybridA4 (1

λ) = 1]
∣∣∣ > negl(λ) (4)

We build a PPT adversary B that breaks the function-private-selective-security of FPFE. B first
runs A on input 1λ and receives parameters 1ℓF , 1ℓS , 1ℓX , 1ℓY . B then sends function size 1ℓHλ , input
size 1ℓFPFE.mλ , and output size 1ℓOne-sFE.ctλ to its FPFE challenger where ℓHλ

, ℓFPFE.mλ
, ℓOne-sFE.ctλ are

computed as described in the parameter section. B computes (FE.mpk,FE.msk, SKE.k,FE.ct) as in
HybridA3 and sends MPK = FE.mpk to A. B then samples b← {0, 1}.

Let q = q(λ) be the running time of A. Observe that q = poly(λ) as A is polytime and
that A outputs at most q(λ) function queries on security parameter λ. For j ∈ [q], B computes
(One-sFE.mskj ,One-sFE.Enc.stj ,PRF2.kj) as in HybridA3 . (This does not require knowledge of
FPFE.msk or fj). B then sends challenge message pairs {((One-sFE.mskj ,One-sFE.Enc.stj ,PRF2.kj , 0),
(One-sFE.mskj ,One-sFE.Enc.stj ,PRF2.kj , 0))}j∈[q] to its FPFE challenger and receives {FPFE.ctj}j∈[q]
where each FPFE.ctj is an encryption of (One-sFE.mskj ,One-sFE.Enc.stj ,PRF2.kj , 0).

For each function query fj that A sends to B, B computes sj ← {0, 1}λ, One-sFE.skfj ←
One-sFE.KeyGen(One-sFE.mskj , fj), cj ← SKE.Enc(SKE.k, (One-sFE.skfj ,FPFE.ctj)), and FE.skGj ←
FE.KeyGen(FE.msk, Gfj ,sj ,cj ), and sends SKfj = FE.skGj to A. (This is possible to compute as q is
at least as large as the number of function queries that A makes).
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For each challenge message query (x
(0)
i , x

(1)
i ) output by A, B does the following: B samples

ti ← {0, 1}λ and sets vi = 0ℓOne-sFE.ctλ . B sends a challenge function pair (H
i,x

(b)
i ,ti

, H∗
i,x

(b)
i ,x

(0)
i ,ti,vi

) to

its FPFE challenger and receives an FPFE function key FPFE.skHi which is either a function key for
H

i,x
(b)
i ,ti

or a function key for H∗
i,x

(b)
i ,x

(0)
i ,ti,vi

. This is a valid function query pair since for all j ∈ [q],

H
i,x

(b)
i ,ti

(One-sFE.mskj ,One-sFE.Enc.stj ,PRF2.kj , 0)

= H∗
i,x

(b)
i ,x

(0)
i ,ti,vi

(One-sFE.mskj ,One-sFE.Enc.stj ,PRF2.kj , 0)

as the two function act the same when β = 0. If i = 1, B sets CT1 = (FE.ct,FPFE.skH1). Else, B
sets CTi = FPFE.skHi . B sends CTi to A.

After A is done making queries, A outputs b′. B outputs 1 if b = b′, and outputs 0 otherwise.
If the experiment for A aborts for any reason, B always outputs 0. Observe that if B received only
ciphertexts and function keys for the first message or function of each of its challenge pairs, then
B exactly emulates HybridA3 , and if B received only ciphertexts and function keys for the second
message or function of each of its challenge pairs, then B emulates HybridA4 . Additionally, B does
not need to know FPFE.msk to carry out this experiment. Thus, by Equation 4, this means that B
breaks the function-private-selective-security of FPFE as B can distinguish between the two security
games with non-negligible probability.
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HybridA5,k,0(1
λ): We replace vi with vi,k = H∗

i,x
(b)
i ,x

(0)
i ,ti,vi

(One-sFE.mskk,PRF2.kk, 0). This will

allow us to later use the security of FPFE to change the input message in the kth ciphertext
FPFE.ctk so that it uses the β = 2 branch of Hi.

1. Parameters: The adversary A receives security parameter 1λ, and outputs a function size
1ℓF , a state size 1ℓS , an input size 1ℓX , and an output size 1ℓY .

2. Setup:

(a) (FE.mpk,FE.msk)← FE.Setup(1λ)

(b) FPFE.msk← FPFE.Setup(1λ)

(c) SKE.k ← SKE.Setup(1λ)

(d) FE.ct← FE.Enc(FE.mpk, (0ℓFPFE.mskλ , 0ℓPRF.kλ , 1, SKE.k))

3. Public Key: Send MPK = FE.mpk to the adversary.

4. Challenge Bit: Sample b← {0, 1}.

5. Pre-Compute FPFE Ciphertexts: For j ∈ [q] where q = q(λ) is a bound on the runtime
of A,

(a) One-sFE.mskj ← One-sFE.Setup(1λ).

(b) One-sFE.Enc.stj ← One-sFE.EncSetup(One-sFE.mskj).

(c) PRF2.kj ← PRF2.Setup(1λ).

(d) If j < k, FPFE.ctj ← FPFE.Enc(FPFE.msk, (One-sFE.mskj ,One-sFE.Enc.stj ,PRF2.kj , 1))

(e) If j = k, FPFE.ctj ← FPFE.Enc(FPFE.msk, (One-sFE.mskj ,One-sFE.Enc.stj ,PRF2.kj , 0))

(f) If j > k, FPFE.ctj ← FPFE.Enc(FPFE.msk, (One-sFE.mskj ,One-sFE.Enc.stj ,PRF2.kj , 0))

6. For a polynomial number of rounds, the adversary can do either one of the following in each
round:

(a) Function Query: For the jth function query fj ∈ F [ℓF , ℓS , ℓX , ℓY ] made by the adver-
sary:

i. sj ← {0, 1}λ

ii. Compute cj:

A. One-sFE.skfj ← One-sFE.KeyGen(One-sFE.mskj , fj)

B. cj ← SKE.Enc(SKE.k, (One-sFE.skfj ,FPFE.ctj))

iii. Let Gj = Gfj ,sj ,cj as defined in Figure 6 (page 86).

iv. FE.skGj ← FE.KeyGen(FE.msk, Gj)

v. Send SKfj = FE.skGj to the adversary.

(b) Challenge Message Query: For the ith challenge message query, A outputs a challenge

message pair (x
(0)
i , x

(1)
i ) where x

(0)
i , x

(1)
i ∈ {0, 1}ℓX .

i. ti ← {0, 1}λ

ii. ri,k = PRF2.Eval(PRF2.kk, ti)

iii. vi,k ← One-sFE.Enc(One-sFE.mskk,One-sFE.Enc.stk, i, x
(b)
i ; ri,k)

iv. Let Hi = H∗
i,x

(b)
i ,x

(0)
i ,ti,vi,k

as defined in Figure 8.
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v. FPFE.skHi = FPFE.KeyGen(FPFE.msk, Hi)

vi. If i = 1, let CT1 = (FE.ct,FPFE.skH1). Else, let CTi = FPFE.skHi .

vii. Send CTi to the adversary.

7. Experiment Outcome: A outputs a bit b′. The output of the experiment is set to 1 if
b = b′, and 0 otherwise.

Lemma D.7. If FPFE is a function-private-selective-secure FE scheme, then for all PPT adver-
saries A, ∣∣∣Pr[HybridA4 (1

λ) = 1]− Pr[HybridA5,1,0(1
λ) = 1]

∣∣∣ ≤ negl(λ)

Proof. Suppose for sake of contradiction that there exists a PPT adversary A such that∣∣∣Pr[HybridA4 (1
λ) = 1]− Pr[HybridA5,1,0(1

λ) = 1]
∣∣∣ > negl(λ) (5)

We build a PPT adversary B that breaks the function-private-selective-security of FPFE. B first
runs A on input 1λ and receives parameters 1ℓF , 1ℓS , 1ℓX , 1ℓY . B then sends function size 1ℓHλ , input
size 1ℓFPFE.mλ , and output size 1ℓOne-sFE.ctλ to its FPFE challenger where ℓHλ

, ℓFPFE.mλ
, ℓOne-sFE.ctλ are

computed as described in the parameter section. B computes (FE.mpk,FE.msk, SKE.k,FE.ct) as in
HybridA4 and sends MPK = FE.mpk to A. B samples b← {0, 1}.

Let q = q(λ) be the running time of A. Observe that q = poly(λ) as A is polytime and
that A outputs at most q(λ) function queries on security parameter λ. For j ∈ [q], B computes
(One-sFE.mskj ,One-sFE.Enc.stj ,PRF2.kj) as in HybridA4 . (This does not require knowledge of
FPFE.msk or fj). B then sends challenge message pairs {((One-sFE.mskj ,One-sFE.Enc.stj ,PRF2.kj , 0),
(One-sFE.mskj ,One-sFE.Enc.stj ,PRF2.kj , 0))}j∈[q] to its FPFE challenger and receives {FPFE.ctj}j∈[q]
where each FPFE.ctj is an encryption of (One-sFE.mskj ,One-sFE.Enc.stj ,PRF2.kj , 0).

For each function query fj that A sends to B, B computes sj ← {0, 1}λ, One-sFE.skfj ←
One-sFE.KeyGen(One-sFE.mskj , fj), cj ← SKE.Enc(SKE.k, (One-sFE.skfj ,FPFE.ctj)), and FE.skGj ←
FE.KeyGen(FE.msk, Gfj ,sj ,cj ), and sends SKfj = FE.skGj to A. (This is possible to compute as q is
at least as large as the number of function queries that A makes).

For each challenge message query (x
(0)
i , x

(1)
i ) output by A, B does the following: B sam-

ples ti ← {0, 1}λ, sets vi = 0ℓOne-sFE.ctλ , sets ri,1 = PRF2.Eval(PRF2.k1, ti), and computes vi,1 ←
One-sFE.Enc(One-sFE.msk1,One-sFE.Enc.st1, i, x

(b)
i ; ri,1). B sends challenge function pair

(H∗
i,x

(b)
i ,x

(0)
i ,ti,vi

, H∗
i,x

(b)
i ,x

(0)
i ,ti,vi,1

) to its FPFE challenger and receives an FPFE function key FPFE.skHi

which is either a function key for H∗
i,x

(b)
i ,x

(0)
i ,ti,vi

or a function key for H∗
i,x

(b)
i ,x

(0)
i ,ti,vi,1

. This is a valid

function query pair since for all j ∈ [q],

H∗
i,x

(b)
i ,x

(0)
i ,ti,vi

(One-sFE.mskj ,One-sFE.Enc.stj ,PRF2.kj , 0)

= H∗
i,x

(b)
i ,x

(0)
i ,ti,vi,1

(One-sFE.mskj ,One-sFE.Enc.stj ,PRF2.kj , 0)

as the two function act the same when β = 0. If i = 1, B sets CT1 = (FE.ct,FPFE.skH1). Else, B
sets CTi = FPFE.skHi . B sends CTi to A.

After A is done making queries, A outputs b′. B outputs 1 if b = b′, and outputs 0 otherwise.
If the experiment for A aborts for any reason, B always outputs 0. Observe that if B received only
ciphertexts and function keys for the first message or function of each of its challenge pairs, then
B exactly emulates HybridA4 , and if B received only ciphertexts and function keys for the second
message or function of each of its challenge pairs, then B emulates HybridA5,1,0. Additionally, B
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does not need to know FPFE.msk to carry out this experiment. Thus, by Equation 5, this means
that B breaks the function-private selective-security of FPFE as B can distinguish between the two
security games with non-negligible probability.
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HybridA5,k,1(1
λ): We change the message encrypted in FPFE.ctk so that we use the β = 2 branch

of every H∗
i,x

(b)
i ,x

(0)
i ,ti,vi,k

. This allows us to remove One-sFE.mskk and PRF2.kk from FPFE.ctk.

1. Parameters: The adversary A receives security parameter 1λ, and outputs a function size
1ℓF , a state size 1ℓS , an input size 1ℓX , and an output size 1ℓY .

2. Setup:

(a) (FE.mpk,FE.msk)← FE.Setup(1λ)

(b) FPFE.msk← FPFE.Setup(1λ)

(c) SKE.k ← SKE.Setup(1λ)

(d) FE.ct← FE.Enc(FE.mpk, (0ℓFPFE.mskλ , 0ℓPRF.kλ , 1, SKE.k))

3. Public Key: Send MPK = FE.mpk to the adversary.

4. Pre-Compute FPFE Ciphertexts: For j ∈ [q] where q = q(λ) is a bound on the runtime
of A,

(a) One-sFE.mskj ← One-sFE.Setup(1λ).

(b) One-sFE.Enc.stj ← One-sFE.EncSetup(One-sFE.mskj).

(c) PRF2.kj ← PRF2.Setup(1λ).

(d) If j < k, FPFE.ctj ← FPFE.Enc(FPFE.msk, (One-sFE.mskj ,One-sFE.Enc.stj ,PRF2.kj , 1))

(e) If j = k, FPFE.ctj ← FPFE.Enc(FPFE.msk, (0ℓOne-sFE.mskλ , 0ℓOne-sFE.Enc.stλ , 0ℓPRF2.kλ , 2))

(f) If j > k, FPFE.ctj ← FPFE.Enc(FPFE.msk, (One-sFE.mskj ,One-sFE.Enc.stj ,PRF2.kj , 0))

5. Challenge Bit: Sample b← {0, 1}.

6. For a polynomial number of rounds, the adversary can do either one of the following in each
round:

(a) Function Query: For the jth function query fj ∈ F [ℓF , ℓS , ℓX , ℓY ] made by the adver-
sary:

i. sj ← {0, 1}λ

ii. Compute cj:

A. One-sFE.skfj ← One-sFE.KeyGen(One-sFE.mskj , fj)

B. cj ← SKE.Enc(SKE.k, (One-sFE.skfj ,FPFE.ctj))

iii. Let Gj = Gfj ,sj ,cj as defined in Figure 6 (page 86).

iv. FE.skGj ← FE.KeyGen(FE.msk, Gj)

v. Send SKfj = FE.skGj to the adversary.

(b) Challenge Message Query: For the ith challenge message query, A outputs a challenge

message pair (x
(0)
i , x

(1)
i ) where x

(0)
i , x

(1)
i ∈ {0, 1}ℓX .

i. ti ← {0, 1}λ

ii. ri,k = PRF2.Eval(PRF2.kk, ti)

iii. vi,k ← One-sFE.Enc(One-sFE.mskk,One-sFE.Enc.stk, i, x
(b)
i ; ri,k)

iv. Let Hi = H∗
i,x

(b)
i ,x

(0)
i ,ti,vi,k

as defined in Figure 8.
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v. FPFE.skHi = FPFE.KeyGen(FPFE.msk, Hi)

vi. If i = 1, let CT1 = (FE.ct,FPFE.skH1). Else, let CTi = FPFE.skHi .

vii. Send CTi to the adversary.

7. Experiment Outcome: A outputs a bit b′. The output of the experiment is set to 1 if
b = b′, and 0 otherwise.

Lemma D.8. If FPFE is a function-private-selective-secure FE scheme, then for all PPT adver-
saries A and for all k ∈ N,∣∣∣Pr[HybridA5,k,0(1

λ) = 1]− Pr[HybridA5,k,1(1
λ) = 1]

∣∣∣ ≤ negl(λ)

Proof. Suppose for sake of contradiction that there exists a PPT adversary A and k ∈ N such that∣∣∣Pr[HybridA5,k,0(1
λ) = 1]− Pr[HybridA5,k,1(1

λ) = 1]
∣∣∣ > negl(λ) (6)

We build a PPT adversary B that breaks the function-private-selective-security of FPFE. B first
runs A on input 1λ and receives parameters 1ℓF , 1ℓS , 1ℓX , 1ℓY . B then sends function size 1ℓHλ , input
size 1ℓFPFE.mλ , and output size 1ℓOne-sFE.ctλ to its FPFE challenger where ℓHλ

, ℓFPFE.mλ
, ℓOne-sFE.ctλ are

computed as described in the parameter section. B computes (FE.mpk,FE.msk, SKE.k,FE.ct) as in
HybridA5,k,0 and sends MPK = FE.mpk to A. B samples b← {0, 1}.

Let q = q(λ) be the running time of A. Observe that q = poly(λ) as A is polytime and that A
outputs at most q(λ) function queries on security parameter λ. For j ∈ [q], B does the following:
B computes (One-sFE.mskj ,One-sFE.Enc.stj ,PRF2.kj) as in HybridA5,k,0. (This does not require
knowledge of FPFE.msk or fj).

• If j < k, B sets its jth challenge message pair to be
((One-sFE.mskj ,One-sFE.Enc.stj ,PRF2.kj , 1),
(One-sFE.mskj ,One-sFE.Enc.stj ,PRF2.kj , 1)).

• If j = k, B sets its jth challenge message pair to be
((One-sFE.mskj ,One-sFE.Enc.stj ,PRF2.kj , 0),
(0ℓOne-sFE.mskλ , 0ℓOne-sFE.Enc.stλ , 0ℓPRF2.kλ , 2))

• If j > k, B sets its jth challenge message pair to be
((One-sFE.mskj ,One-sFE.Enc.stj ,PRF2.kj , 0),
(One-sFE.mskj ,One-sFE.Enc.stj ,PRF2.kj , 0))

B then sends all q challenge message pairs to its FPFE challenger and receives {FPFE.ctj}j∈[q] where
either each FPFE.ctj is an encryption of the first message of the jth challenge message pair, or each
FPFE.ctj is an encryption of the second message of the jth challenge message pair.

For each function query fj that A sends to B, B computes sj ← {0, 1}λ, One-sFE.skfj ←
One-sFE.KeyGen(One-sFE.mskj , fj), cj ← SKE.Enc(SKE.k, (One-sFE.skfj ,FPFE.ctj)), and FE.skGj ←
FE.KeyGen(FE.msk, Gfj ,sj ,cj ), and sends SKfj = FE.skGj to A. (This is possible to compute as q is
at least as large as the number of function queries that A makes.)

For each challenge message query (x
(0)
i , x

(1)
i ) output by A, B does the following: B samples

ti ← {0, 1}λ, sets ri,k = PRF2.Eval(PRF2.kk, ti), and computes vi,k ← One-sFE.Enc(One-sFE.mskk,

One-sFE.Enc.stk, i, x
(b)
i ; ri,k). B sends challenge function pair (H∗

i,x
(b)
i ,x

(0)
i ,ti,vi,k

, H∗
i,x

(b)
i ,x

(0)
i ,ti,vi,k

) to

its FPFE challenger and receives a FPFE function key FPFE.skHi which is a function key for
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H∗
i,x

(b)
i ,x

(0)
i ,ti,vi,k

. This is a valid function query pair since for all j ∈ [q] and β ∈ {0, 1}, we clearly

have,

H∗
i,x

(b)
i ,x

(0)
i ,ti,vi,k

(One-sFE.mskj ,One-sFE.Enc.stj ,PRF2.kj , β)

= H∗
i,x

(b)
i ,x

(0)
i ,ti,vi,k

(One-sFE.mskj ,One-sFE.Enc.stj ,PRF2.kj , β)

and additionally,

H∗
i,x

(b)
i ,x

(0)
i ,ti,vi,k

(One-sFE.mskk,One-sFE.Enc.stk,PRF2.kk, 0)

= H∗
i,x

(b)
i ,x

(0)
i ,ti,vi,k

(0ℓOne-sFE.mskλ , 0ℓOne-sFE.Enc.stλ , 0ℓPRF2.kλ , 2)

as when β = 2, the output is vi,k which has been programmed to be equal to
H∗

i,x
(b)
i ,x

(0)
i ,ti,vi,k

(One-sFE.mskk,One-sFE.Enc.stk,PRF2.kk, 0). If i = 1, B sets CT1 = (FE.ct,FPFE.skH1).

Else, B sets CTi = FPFE.skHi . B sends CTi to A.
After A is done making queries, A outputs b′. B outputs 1 if b = b′, and outputs 0 otherwise.

If the experiment for A aborts for any reason, B always outputs 0. Observe that if B received only
ciphertexts and function keys for the first message or function of each of its challenge pairs, then B
exactly emulates HybridA5,k,0, and if B received only ciphertexts and function keys for the second

message or function of each of its challenge pairs, then B emulates HybridA5,k,1. Additionally, B
does not need to know FPFE.msk to carry out this experiment. Thus, by Equation 6, this means
that B breaks the function-private-selective-security of FPFE as B can distinguish between the two
security games with non-negligible probability.
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HybridA5,k,2(1
λ): For each i, instead of sampling ri,k using PRF2.kk, we sample ri,k uniformly at

random.

1. Parameters: The adversary A receives security parameter 1λ, and outputs a function size
1ℓF , a state size 1ℓS , an input size 1ℓX , and an output size 1ℓY .

2. Setup:

(a) (FE.mpk,FE.msk)← FE.Setup(1λ)

(b) FPFE.msk← FPFE.Setup(1λ)

(c) SKE.k ← SKE.Setup(1λ)

(d) FE.ct← FE.Enc(FE.mpk, (0ℓFPFE.mskλ , 0ℓPRF.kλ , 1, SKE.k))

3. Public Key: Send MPK = FE.mpk to the adversary.

4. Challenge Bit: Sample b← {0, 1}.

5. Pre-Compute FPFE Ciphertexts: For j ∈ [q] where q = q(λ) is a bound on the runtime
of A,

(a) One-sFE.mskj ← One-sFE.Setup(1λ).

(b) One-sFE.Enc.stj ← One-sFE.EncSetup(One-sFE.mskj).

(c) If j ̸= k, PRF2.kj ← PRF2.Setup(1λ)

(d) If j < k, FPFE.ctj ← FPFE.Enc(FPFE.msk, (One-sFE.mskj ,One-sFE.Enc.stj ,PRF2.kj , 1))

(e) If j = k, FPFE.ctj ← FPFE.Enc(FPFE.msk, (0ℓOne-sFE.mskλ , 0ℓOne-sFE.Enc.stλ , 0ℓPRF2.kλ , 2))

(f) If j > k, FPFE.ctj ← FPFE.Enc(FPFE.msk, (One-sFE.mskj ,One-sFE.Enc.stj ,PRF2.kj , 0))

6. For a polynomial number of rounds, the adversary can do either one of the following in each
round:

(a) Function Query: For the jth function query fj ∈ F [ℓF , ℓS , ℓX , ℓY ] made by the adver-
sary:

i. sj ← {0, 1}λ

ii. Compute cj:

A. One-sFE.skfj ← One-sFE.KeyGen(One-sFE.mskj , fj)

B. cj ← SKE.Enc(SKE.k, (One-sFE.skfj ,FPFE.ctj))

iii. Let Gj = Gfj ,sj ,cj as defined in Figure 6 (page 86).

iv. FE.skGj ← FE.KeyGen(FE.msk, Gj)

v. Send SKfj = FE.skGj to the adversary.

(b) Challenge Message Query: For the ith challenge message query, A outputs a challenge

message pair (x
(0)
i , x

(1)
i ) where x

(0)
i , x

(1)
i ∈ {0, 1}ℓX .

i. ti ← {0, 1}λ

ii. ri,k ← PRF2.Eval(PRF2.kk, ti)

iii. vi,k ← One-sFE.Enc(One-sFE.mskk,One-sFE.Enc.stk, i, x
(b)
i )

iv. Let Hi = H∗
i,x

(b)
i ,x

(0)
i ,ti,vi,k

as defined in Figure 8.

v. FPFE.skHi = FPFE.KeyGen(FPFE.msk, Hi)
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vi. If i = 1, let CT1 = (FE.ct,FPFE.skH1). Else, let CTi = FPFE.skHi .

vii. Send CTi to the adversary.

7. Experiment Outcome: A outputs a bit b′. The output of the experiment is set to 1 if
b = b′, and 0 otherwise.

Lemma D.9. If PRF2 is a secure PRF, then for all PPT adversaries A and for all k ∈ N,∣∣∣Pr[HybridA5,k,1(1
λ) = 1]− Pr[HybridA5,k,2(1

λ) = 1]
∣∣∣ ≤ negl(λ)

Proof. Suppose for sake of contradiction that there exists a PPT adversary A and k ∈ N such that∣∣∣Pr[HybridA5,k,1(1
λ) = 1]− Pr[HybridA5,k,2(1

λ) = 1]
∣∣∣ > negl(λ) (7)

We build a PPT adversary B that breaks the security of PRF2. B first runs A on input 1λ and
receives parameters 1ℓF , 1ℓS , 1ℓX , 1ℓY . B then sends input size 1λ, and output size 1λ to its PRF2
challenger. B is then given oracle access to either PRF2.Eval(PRF2.kk, ·) for some PRF2.kk ←
PRF2.Setup(1λ, 1λ, 1λ) or to a uniformly random function R2 ← R2λ,λ where R2λ,λ is the set of
all functions from {0, 1}λ to {0, 1}λ. B computes (FE.mpk,FE.msk,FPFE.msk,SKE.k,FE.ct) as in
HybridA5,k,1. B then sends MPK = FE.mpk to A. B samples b← {0, 1}.

Let q = q(λ) be the running time of A. Observe that q = poly(λ) as A is polytime and that A
outputs at most q(λ) function queries on security parameter λ. For j ∈ [q], B does the following:
B computes (One-sFE.mskj ,One-sFE.Enc.stj) as in HybridA5,k,1. If j ̸= k, B also computes

PRF2.kj ← PRF2.Setup(1λ, 1λ, 1λ).

• If j < k, B computes
FPFE.ctj ← FPFE.Enc(FPFE.msk, (One-sFE.mskj ,One-sFE.Enc.stj ,PRF2.kj , 1)).

• If j = k, B computes
FPFE.ctj ← FPFE.Enc(FPFE.msk, (0ℓOne-sFE.mskλ , 0ℓOne-sFE.Enc.stλ , 0ℓPRF2.kλ , 2)).

• If j > k, B computes
FPFE.ctj ← FPFE.Enc(FPFE.msk, (One-sFE.mskj ,One-sFE.Enc.stj ,PRF2.kj , 0)).

For each function query fj that A sends to B, B computes sj ← {0, 1}λ, One-sFE.skfj ←
One-sFE.KeyGen(One-sFE.mskj , fj), cj ← SKE.Enc(SKE.k, (One-sFE.skfj ,FPFE.ctj)), and FE.skGj ←
FE.KeyGen(FE.msk, Gfj ,sj ,cj ), and sends SKfj = FE.skGj to A. (This is possible to compute as q is
at least as large as the number of function queries that A makes.)

For each challenge message query (x
(0)
i , x

(1)
i ) output by A, B does the following: B samples

ti ← {0, 1}λ and sets ri,k equal to the output of its oracle on input ti. B computes vi,k ←
One-sFE.Enc(One-sFE.mskk,One-sFE.Enc.stk, i, x

(b)
i ; ri,k) and

FPFE.skHi ← FPFE.KeyGen(FPFE.msk, H∗
i,x

(b)
i ,x

(0)
i ,ti,vi,k

). If i = 1, B sets CT1 = (FE.ct,FPFE.skH1).

Else, B sets CTi = FPFE.skHi . B sends CTi to A.
After A is done making queries, A outputs b′. B outputs 1 if b = b′, and outputs 0 other-

wise. If the experiment for A aborts for any reason, B always outputs 0. Observe that if B’s
oracle was a uniform random function R2, then B exactly emulates HybridA5,k,2, and if B’s oracle
was PRF2.Eval(PRF2.kk, ·), then B emulates HybridA5,k,1. Additionally, B does not need to know
PRF2.kk to carry out this experiment. Thus, by Equation 7, this means that B breaks the security
of PRF2 as B can distinguish between a random function and PRF2.
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HybridA5,k,3(1
λ): We now invoke the security of One-sFE to change vi,k from an encryption of x(b)

under One-sFE.mskk to an encryption of x(0) under One-sFE.mskk.

1. Parameters: The adversary A receives security parameter 1λ, and outputs a function size
1ℓF , a state size 1ℓS , an input size 1ℓX , and an output size 1ℓY .

2. Setup:

(a) (FE.mpk,FE.msk)← FE.Setup(1λ)

(b) FPFE.msk← FPFE.Setup(1λ)

(c) SKE.k ← SKE.Setup(1λ)

(d) FE.ct← FE.Enc(FE.mpk, (0ℓFPFE.mskλ , 0ℓPRF.kλ , 1, SKE.k))

3. Public Key: Send MPK = FE.mpk to the adversary.

4. Challenge Bit: Sample b← {0, 1}.

5. Pre-Compute FPFE Ciphertexts: For j ∈ [q] where q = q(λ) is a bound on the runtime
of A,

(a) One-sFE.mskj ← One-sFE.Setup(1λ).

(b) One-sFE.Enc.stj ← One-sFE.EncSetup(One-sFE.mskj).

(c) If j ̸= k, PRF2.kj ← PRF2.Setup(1λ)

(d) If j < k, FPFE.ctj ← FPFE.Enc(FPFE.msk, (One-sFE.mskj ,One-sFE.Enc.stj ,PRF2.kj , 1))

(e) If j = k, FPFE.ctj ← FPFE.Enc(FPFE.msk, (0ℓOne-sFE.mskλ , 0ℓOne-sFE.Enc.stλ , 0ℓPRF2.kλ , 2))

(f) If j > k, FPFE.ctj ← FPFE.Enc(FPFE.msk, (One-sFE.mskj ,One-sFE.Enc.stj ,PRF2.kj , 0))

6. For a polynomial number of rounds, the adversary can do either one of the following in each
round:

(a) Function Query: For the jth function query fj ∈ F [ℓF , ℓS , ℓX , ℓY ] made by the adver-
sary:

i. sj ← {0, 1}λ

ii. Compute cj:

A. One-sFE.skfj ← One-sFE.KeyGen(One-sFE.mskj , fj)

B. cj ← SKE.Enc(SKE.k, (One-sFE.skfj ,FPFE.ctj))

iii. Let Gj = Gfj ,sj ,cj as defined in Figure 6 (page 86).

iv. FE.skGj ← FE.KeyGen(FE.msk, Gj)

v. Send SKfj = FE.skGj to the adversary.

(b) Challenge Message Query: For the ith challenge message query, A outputs a challenge

message pair (x
(0)
i , x

(1)
i ) where x

(0)
i , x

(1)
i ∈ {0, 1}ℓX .

i. ti ← {0, 1}λ

ii. vi,k ← One-sFE.Enc(One-sFE.mskk,One-sFE.Enc.stk, i, x
(0)
i )

iii. Let Hi = H∗
i,x

(b)
i ,x

(0)
i ,ti,vi,k

as defined in Figure 8.

iv. FPFE.skHi = FPFE.KeyGen(FPFE.msk, Hi)
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v. If i = 1, let CT1 = (FE.ct,FPFE.skH1). Else, let CTi = FPFE.skHi .

vi. Send CTi to the adversary.

7. Experiment Outcome: A outputs a bit b′. The output of the experiment is set to 1 if
b = b′, and 0 otherwise.

Lemma D.10. If One-sFE is single-key, single-ciphertext, adaptively secure, then for all PPT
adversaries A and for all k ∈ N,∣∣∣Pr[HybridA5,k,2(1

λ) = 1]− Pr[HybridA5,k,3(1
λ) = 1]

∣∣∣ ≤ negl(λ)

Proof. Suppose for sake of contradiction that there exists a PPT adversary A and k ∈ N such that∣∣∣Pr[HybridA5,k,2(1
λ) = 1]− Pr[HybridA5,k,3(1

λ) = 1]
∣∣∣ > negl(λ) (8)

We build a PPT adversary B that breaks the single-key, single-ciphertext, adaptive-security of
One-sFE. B first runsA on input 1λ and receives parameters 1ℓF , 1ℓS , 1ℓX , 1ℓY . B then sends function
size 1ℓF , state size 1ℓS , input size 1ℓX , and output size 1ℓY to its One-sFE challenger. B computes
(FE.mpk,FE.msk,FPFE.msk, SKE.k,FE.ct) as in HybridA5,k,2. B then sends MPK = FE.mpk to A.
B samples b← {0, 1}.

Let q = q(λ) be the running time of A. Observe that q = poly(λ) as A is polytime and that A
outputs at most q(λ) function queries on security parameter λ. For j ∈ [q], B does the following:
If j ̸= k, B computes One-sFE.mskj ← One-sFE.Setup(1λ), One-sFE.EncSetup(One-sFE.mskj), and
PRF2.kj ← PRF2.Setup(1λ).

• If j < k, B computes
FPFE.ctj ← FPFE.Enc(FPFE.msk, (One-sFE.mskj ,One-sFE.Enc.stj ,PRF2.kj , 1)).

• If j = k, B computes
FPFE.ctj ← FPFE.Enc(FPFE.msk, (0ℓOne-sFE.mskλ , 0ℓOne-sFE.Enc.stλ , 0ℓPRF2.kλ , 2)).

• If j > k, B computes
FPFE.ctj ← FPFE.Enc(FPFE.msk, (One-sFE.mskj ,One-sFE.Enc.stj ,PRF2.kj , 0)).

For each function query fj that A sends to B, B does the following: B computes sj ← {0, 1}λ.
If j ̸= k, B computes One-sFE.skfj ← One-sFE.KeyGen(One-sFE.mskj , fj). If j = k, B sends fk to
its One-sFE challenger and receives a function key One-sFE.skfk in return. B computes cj and SKfj

from these values as in HybridA5,k,2 and sends SKfj to A.
For each challenge message query (x

(0)
i , x

(1)
i ) submitted by A, B sends challenge message

pair (x
(b)
i , x

(0)
i ) to its One-sFE challenger, and receives a ciphertext One-sFE.cti of either x

(b)
i

or x
(0)
i . Then, B samples ti ← {0, 1}λ, sets vi,k = One-sFE.cti, and computes FPFE.skHi ←

FPFE.KeyGen(FPFE.msk, H∗
i,x

(b)
i ,x

(0)
i ,ti,vi,k

). If i = 1, B sets CT1 = (FE.ct,FPFE.skH1). Else, B sets

CTi = FPFE.skHi . B sends CTi to A.
Observe that these are valid message and function queries to the One-sFE challenger since the

adversary is required to have fj(x
(0)) = fj(x

(1)) = fj(x
(b)) for all fj queried by A and for streams

x(0) = x
(0)
1 , . . . , x

(0)
t and x(1) = x

(1)
1 , . . . , x

(1)
t where {(x(0)i , x

(1)
i )}i∈[t] are the messages queried by

A so far. (If not, the adversary is considered aborting, so the hybrid would immediately halt and
output 0.)
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After A is done making queries, B receives b′ from A. B outputs 1 if b = b′, and outputs 0
otherwise. If the experiment for A aborts for any reason, B always outputs 0. Observe that if

One-sFE.cti is an encryption of x
(b)
i for all i ∈ [n], then B exactly emulates HybridA5,k,2, and if

One-sFE.ct is an encryption of x(0), then B emulates HybridA5,k,3. Additionally, B does not need to
know One-sFE.mskk to carry out this experiment. Thus, by Equation 8, this means that B breaks
the single-key, single-ciphertext, adaptive-security of One-sFE, as B can distinguish between the
two ciphertexts with non-negligible probability.
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HybridA5,k,4(1
λ): We now reverse the change we made in HybridA5,k,2. For each i, instead of

sampling ri,k uniformly at random, we sample ri,k using PRF2.kk.

1. Parameters: The adversary A receives security parameter 1λ, and outputs a function size
1ℓF , a state size 1ℓS , an input size 1ℓX , and an output size 1ℓY .

2. Setup:

(a) (FE.mpk,FE.msk)← FE.Setup(1λ)

(b) FPFE.msk← FPFE.Setup(1λ)

(c) SKE.k ← SKE.Setup(1λ)

(d) FE.ct← FE.Enc(FE.mpk, (0ℓFPFE.mskλ , 0ℓPRF.kλ , 1, SKE.k))

3. Public Key: Send MPK = FE.mpk to the adversary.

4. Challenge Bit: Sample b← {0, 1}.

5. Pre-Compute FPFE Ciphertexts: For j ∈ [q] where q = q(λ) is a bound on the runtime
of A,

(a) One-sFE.mskj ← One-sFE.Setup(1λ).

(b) One-sFE.Enc.stj ← One-sFE.EncSetup(One-sFE.mskj).

(c) If j ̸= k, PRF2.kj ← PRF2.Setup(1λ)

(d) If j < k, FPFE.ctj ← FPFE.Enc(FPFE.msk, (One-sFE.mskj ,One-sFE.Enc.stj ,PRF2.kj , 1))

(e) If j = k, FPFE.ctj ← FPFE.Enc(FPFE.msk, (0ℓOne-sFE.mskλ , 0ℓOne-sFE.Enc.stλ , 0ℓPRF2.kλ , 2))

(f) If j > k, FPFE.ctj ← FPFE.Enc(FPFE.msk, (One-sFE.mskj ,One-sFE.Enc.stj ,PRF2.kj , 0))

6. For a polynomial number of rounds, the adversary can do either one of the following in each
round:

(a) Function Query: For the jth function query fj ∈ F [ℓF , ℓS , ℓX , ℓY ] made by the adver-
sary:

i. sj ← {0, 1}λ

ii. Compute cj:

A. One-sFE.skfj ← One-sFE.KeyGen(One-sFE.mskj , fj)

B. cj ← SKE.Enc(SKE.k, (One-sFE.skfj ,FPFE.ctj))

iii. Let Gj = Gfj ,sj ,cj as defined in Figure 6 (page 86).

iv. FE.skGj ← FE.KeyGen(FE.msk, Gj)

v. Send SKfj = FE.skGj to the adversary.

(b) Challenge Message Query: For the ith challenge message query, A outputs a challenge

message pair (x
(0)
i , x

(1)
i ) where x

(0)
i , x

(1)
i ∈ {0, 1}ℓX .

i. ti ← {0, 1}λ

ii. ri,k ← PRF2.Eval(PRF2.kk, ti)

iii. vi,k ← One-sFE.Enc(One-sFE.mskk,One-sFE.Enc.stk, i, x
(0)
i ; ri,k)

iv. Let Hi = H∗
i,x

(b)
i ,x

(0)
i ,ti,vi,k

as defined in Figure 8.

v. FPFE.skHi = FPFE.KeyGen(FPFE.msk, Hi)
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vi. If i = 1, let CT1 = (FE.ct,FPFE.skH1). Else, let CTi = FPFE.skHi .

vii. Send CTi to the adversary.

7. Experiment Outcome: A outputs a bit b′. The output of the experiment is set to 1 if
b = b′, and 0 otherwise.

Lemma D.11. If PRF2 is a secure PRF, then for all PPT adversaries A and for all k ∈ N,∣∣∣Pr[HybridA5,k,3(1
λ) = 1]− Pr[HybridA5,k,4(1

λ) = 1]
∣∣∣ ≤ negl(λ)

Proof. Suppose for sake of contradiction that there exists a PPT adversary A and k ∈ N such that∣∣∣Pr[HybridA5,k,3(1
λ) = 1]− Pr[HybridA5,k,4(1

λ) = 1]
∣∣∣ > negl(λ) (9)

We build a PPT adversary B that breaks the security of PRF2. B first runs A on input 1λ and
receives parameters 1ℓF , 1ℓS , 1ℓX , 1ℓY . B then sends input size 1λ, and output size 1λ to its PRF2
challenger. B is then given oracle access to either PRF2.Eval(PRF2.kk, ·) for some PRF2.kk ←
PRF2.Setup(1λ, 1λ, 1λ) or to a uniformly random function R2 ← R2λ,λ where R2λ,λ is the set of
all functions from {0, 1}λ to {0, 1}λ. B computes (FE.mpk,FE.msk,FPFE.msk,SKE.k,FE.ct) as in
HybridA5,k,3. B then sends MPK = FE.mpk to A. B samples b← {0, 1}.

Let q = q(λ) be the running time of A. Observe that q = poly(λ) as A is polytime and that A
outputs at most q(λ) function queries on security parameter λ. For j ∈ [q], B does the following:
B computes (One-sFE.mskj ,One-sFE.Enc.stj ,One-sFE.skfj ) as in HybridA5,k,3. If j ̸= k, B computes

PRF2.kj ← PRF2.Setup(1λ)

• If j < k, B computes
FPFE.ctj ← FPFE.Enc(FPFE.msk, (One-sFE.mskj ,One-sFE.Enc.stj ,PRF2.kj , 1)).

• If j = k, B computes
FPFE.ctj ← FPFE.Enc(FPFE.msk, (0ℓOne-sFE.mskλ , 0ℓOne-sFE.Enc.stλ , 0ℓPRF2.kλ , 2)).

• If j > k, B computes
FPFE.ctj ← FPFE.Enc(FPFE.msk, (One-sFE.mskj ,One-sFE.Enc.stj ,PRF2.kj , 0)).

For each function query fj that A sends to B, B computes sj ← {0, 1}λ, One-sFE.skfj ←
One-sFE.KeyGen(One-sFE.mskj , fj), cj ← SKE.Enc(SKE.k, (One-sFE.skfj ,FPFE.ctj)), and FE.skGj ←
FE.KeyGen(FE.msk, Gfj ,sj ,cj ), and sends SKfj = FE.skGj to A. (This is possible to compute as q is
at least as large as the number of function queries that A makes.)

For each challenge message query (x
(0)
i , x

(1)
i ) output by A, B does the following: B samples

ti ← {0, 1}λ and sets ri,k equal to the output of its oracle on input ti. B computes vi,k ←
One-sFE.Enc(One-sFE.mskk,One-sFE.Enc.stk, i, x

(0)
i ; ri,k) and computes

FPFE.skHi ← FPFE.KeyGen(FPFE.msk, H∗
i,x

(b)
i ,x

(0)
i ,ti,vi,k

). If i = 1, B sets CT1 = (FE.ct,FPFE.skH1).

Else, B sets CTi = FPFE.skHi . B sends CTi to A.
After A is done making queries, A outputs b′. B outputs 1 if b = b′, and outputs 0 other-

wise. If the experiment for A aborts for any reason, B always outputs 0. Observe that if B’s
oracle was a uniform random function R2, then B exactly emulates HybridA5,k,3, and if B’s oracle
was PRF2.Eval(PRF2.kk, ·), then B emulates HybridA5,k,4. Additionally, B does not need to know
PRF2.kk to carry out this experiment. Thus, by Equation 9, this means that B breaks the security
of PRF2 as B can distinguish betwewen a random function and PRF2.
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HybridA5,k,5(1
λ): We change the message encrypted in FPFE.ctk so that it uses the β = 1 branch

of every H∗
i,x

(b)
i ,x

(0)
i ,ti,vi,k

.

1. Parameters: The adversary A receives security parameter 1λ, and outputs a function size
1ℓF , a state size 1ℓS , an input size 1ℓX , and an output size 1ℓY .

2. Setup:

(a) (FE.mpk,FE.msk)← FE.Setup(1λ)

(b) FPFE.msk← FPFE.Setup(1λ)

(c) SKE.k ← SKE.Setup(1λ)

(d) FE.ct← FE.Enc(FE.mpk, (0ℓFPFE.mskλ , 0ℓPRF.kλ , 1, SKE.k))

3. Public Key: Send MPK = FE.mpk to the adversary.

4. Challenge Bit: Sample b← {0, 1}.

5. Pre-Compute FPFE Ciphertexts: For j ∈ [q] where q = q(λ) is a bound on the runtime
of A,

(a) One-sFE.mskj ← One-sFE.Setup(1λ).

(b) One-sFE.Enc.stj ← One-sFE.EncSetup(One-sFE.mskj).

(c) PRF2.kj ← PRF2.Setup(1λ)

(d) If j < k, FPFE.ctj ← FPFE.Enc(FPFE.msk, (One-sFE.mskj ,One-sFE.Enc.stj ,PRF2.kj , 1))

(e) If j = k, FPFE.ctj ← FPFE.Enc(FPFE.msk, (One-sFE.mskj ,One-sFE.Enc.stj ,PRF2.kj , 1))

(f) If j > k, FPFE.ctj ← FPFE.Enc(FPFE.msk, (One-sFE.mskj ,One-sFE.Enc.stj ,PRF2.kj , 0))

6. For a polynomial number of rounds, the adversary can do either one of the following in each
round:

(a) Function Query: For the jth function query fj ∈ F [ℓF , ℓS , ℓX , ℓY ] made by the adver-
sary:

i. sj ← {0, 1}λ

ii. Compute cj:

A. One-sFE.skfj ← One-sFE.KeyGen(One-sFE.mskj , fj)

B. cj ← SKE.Enc(SKE.k, (One-sFE.skfj ,FPFE.ctj))

iii. Let Gj = Gfj ,sj ,cj as defined in Figure 6 (page 86).

iv. FE.skGj ← FE.KeyGen(FE.msk, Gj)

v. Send SKfj = FE.skGj to the adversary.

(b) Challenge Message Query: For the ith challenge message query, A outputs a challenge

message pair (x
(0)
i , x

(1)
i ) where x

(0)
i , x

(1)
i ∈ {0, 1}ℓX .

i. ti ← {0, 1}λ

ii. ri,k ← PRF2.Eval(PRF2.kk, ti)

iii. vi,k ← One-sFE.Enc(One-sFE.mskk,One-sFE.Enc.stk, i, x
(0)
i ; ri,k)

iv. Let Hi = H∗
i,x

(b)
i ,x

(0)
i ,ti,vi,k

as defined in Figure 8.
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v. FPFE.skHi = FPFE.KeyGen(FPFE.msk, Hi)

vi. If i = 1, let CT1 = (FE.ct,FPFE.skH1). Else, let CTi = FPFE.skHi .

vii. Send CTi to the adversary.

7. Experiment Outcome: A outputs a bit b′. The output of the experiment is set to 1 if
b = b′, and 0 otherwise.

Lemma D.12. If FPFE is function-private-selective-secure, then for all PPT adversaries A and
for all k ∈ N, ∣∣∣Pr[HybridA5,k,4(1

λ) = 1]− Pr[HybridA5,k,5(1
λ) = 1]

∣∣∣ ≤ negl(λ)

Proof. Suppose for sake of contradiction that there exists a PPT adversary A and k ∈ N such that∣∣∣Pr[HybridA5,k,4(1
λ) = 1]− Pr[HybridA5,k,5(1

λ) = 1]
∣∣∣ > negl(λ) (10)

We build a PPT adversary B that breaks the function-private-selective-security of FPFE. B first
runs A on input 1λ and receives parameters 1ℓF , 1ℓS , 1ℓX , 1ℓY . B then sends function size 1ℓHλ , input
size 1ℓFPFE.mλ , and output size 1ℓOne-sFE.ctλ to its FPFE challenger where ℓHλ

, ℓFPFE.mλ
, ℓOne-sFE.ctλ are

computed as described in the parameter section. B computes (FE.mpk,FE.msk, SKE.k,FE.ct) as in
HybridA5,k,4 and sends MPK = FE.mpk to A. B samples b← {0, 1}.

Let q = q(λ) be the running time of A. Observe that q = poly(λ) as A is polytime and that A
outputs at most q(λ) function queries on security parameter λ. For j ∈ [q], B does the following:
B computes (One-sFE.mskj ,One-sFE.Enc.stj ,PRF2.kj) as in HybridA5,k,4. (This does not require
knowledge of FPFE.msk or fj).

• If j < k, B sets its jth challenge message pair to be
((One-sFE.mskj ,One-sFE.Enc.stj ,PRF2.kj , 1),
(One-sFE.mskj ,One-sFE.Enc.stj ,PRF2.kj , 1)).

• If j = k, B sets its jth challenge message pair to be
((One-sFE.mskj ,One-sFE.Enc.stj ,PRF2.kj , 1),
(0ℓOne-sFE.mskλ , 0ℓOne-sFE.Enc.stλ , 0ℓPRF2.kλ , 2))

• If j > k, B sets its jth challenge message pair to be
((One-sFE.mskj ,One-sFE.Enc.stj ,PRF2.kj , 0),
(One-sFE.mskj ,One-sFE.Enc.stj ,PRF2.kj , 0))

B then sends all q challenge message pairs to its FPFE challenger and receives {FPFE.ctj}j∈[q] where
either each FPFE.ctj is an encryption of the first message of the jth challenge message pair, or each
FPFE.ctj is an encryption of the second message of the jth challenge message pair.

For each function query fj that A sends to B, B computes sj ← {0, 1}λ, One-sFE.skfj ←
One-sFE.KeyGen(One-sFE.mskj , fj), cj ← SKE.Enc(SKE.k, (One-sFE.skfj ,FPFE.ctj)), and FE.skGj ←
FE.KeyGen(FE.msk, Gfj ,sj ,cj ), and sends SKfj = FE.skGj to A. (This is possible to compute as q is
at least as large as the number of function queries that A makes.)

For each challenge message query (x
(0)
i , x

(1)
i ) output by A, B does the following: B samples

ti ← {0, 1}λ, sets ri,k = PRF2.Eval(PRF2.kk, ti), and computes vi,k ← One-sFE.Enc(One-sFE.mskk,

One-sFE.Enc.stk, i, x
(0)
i ; ri,k). B sends a challenge function pair (H∗

i,x
(b)
i ,x

(0)
i ,ti,vi,k

, H∗
i,x

(b)
i ,x

(0)
i ,ti,vi,k

)

to its FPFE challenger and receives an FPFE function key FPFE.skHi which is a function key for
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H∗
i,x

(b)
i ,x

(0)
i ,ti,vi,k

. This is a valid function query pair since for all j ∈ [q] and β ∈ {0, 1}, we clearly

have

H∗
i,x

(b)
i ,x

(0)
i ,ti,vi,k

(One-sFE.mskj ,One-sFE.Enc.stj ,PRF2.kj , β)

= H∗
i,x

(b)
i ,x

(0)
i ,ti,vi,k

(One-sFE.mskj ,One-sFE.Enc.stj ,PRF2.kj , β)

and additionally

H∗
i,x

(b)
i ,x

(0)
i ,ti,vi,k

(One-sFE.mskk,One-sFE.Enc.stk,PRF2.kk, 1)

= H∗
i,x

(b)
i ,x

(0)
i ,ti,vi,k

(0ℓOne-sFE.mskλ , 0ℓOne-sFE.Enc.stλ , 0ℓPRF2.kλ , 2)

as when β = 2, the output is vi,k which has been programmed to be equal to
H∗

i,x
(b)
i ,x

(0)
i ,ti,vi,k

(One-sFE.mskk,One-sFE.Enc.stk,PRF2.kk, 1). If i = 1, B sets CT1 = (FE.ct,FPFE.skH1).

Else, B sets CTi = FPFE.skHi . B sends CTi to A.
After A is done making queries, A outputs b′. B outputs 1 if b = b′, and outputs 0 otherwise.

If the experiment for A aborts for any reason, B always outputs 0. Observe that if B received only
ciphertexts and function keys for the first message or function of each of its challenge pairs, then B
exactly emulates HybridA5,k,5, and if B received only ciphertexts and function keys for the second

message or function of each of its challenge pairs, then B emulates HybridA5,k,4. Additionally, B
does not need to know FPFE.msk to carry out this experiment. Thus, by Equation 10, this means
that B breaks the function-private-selective-security of FPFE as B can distinguish between the two
security games with non-negligible probability.

Lemma D.13. If FPFE is a function-private-selective-secure FE scheme, then for all PPT adver-
saries A and for all k ∈ N\{1},∣∣∣Pr[HybridA5,k−1,5(1

λ) = 1]− Pr[HybridA5,k,0(1
λ) = 1]

∣∣∣ ≤ negl(λ)

Proof. Suppose for sake of contradiction that there exists a PPT adversary A and a k ∈ N\{1}
such that ∣∣∣Pr[HybridA5,k−1,5(1

λ) = 1]− Pr[HybridA5,k,0(1
λ) = 1]

∣∣∣ > negl(λ) (11)

We build a PPT adversary B that breaks the function-private-selective-security of FPFE. B first
runs A on input 1λ and receives parameters 1ℓF , 1ℓS , 1ℓX , 1ℓY . B then sends function size 1ℓHλ , input
size 1ℓFPFE.mλ , and output size 1ℓOne-sFE.ctλ to its FPFE challenger where ℓHλ

, ℓFPFE.mλ
, ℓOne-sFE.ctλ are

computed as described in the parameter section. B computes (FE.mpk,FE.msk, SKE.k,FE.ct) as in
HybridA5,k−1,5 and sends MPK = FE.mpk to A. B samples b← {0, 1}.

Let q = q(λ) be the running time of A. Observe that q = poly(λ) as A is polytime and that A
outputs at most q(λ) function queries on security parameter λ. For j ∈ [q], B does the following:
B computes (One-sFE.mskj ,One-sFE.Enc.stj ,PRF2.kj) as in HybridA5,k−1,5. (This does not require
knowledge of FPFE.msk or fj).

• If j < k, B sets its jth challenge message pair to be
((One-sFE.mskj ,One-sFE.Enc.stj ,PRF2.kj , 1),
(One-sFE.mskj ,One-sFE.Enc.stj ,PRF2.kj , 1)).

• If j ≥ k, B sets its jth challenge message pair to be
((One-sFE.mskj ,One-sFE.Enc.stj ,PRF2.kj , 0),
(One-sFE.mskj ,One-sFE.Enc.stj ,PRF2.kj , 0)).
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B then sends all q challenge message pairs to its FPFE challenger and receives {FPFE.ctj}j∈[q] where
for j < k, FPFE.ctj is an encryption of (One-sFE.mskj ,One-sFE.Enc.stj ,PRF2.kj , 1), and for j ≥ k,
FPFE.ctj is an encryption of (One-sFE.mskj ,One-sFE.Enc.stj ,PRF2.kj , 0).

For each function query fj that A sends to B, B samples sj ← {0, 1}λ, computes One-sFE.skfj ←
One-sFE.KeyGen(One-sFE.mskj , fj), cj ← SKE.Enc(SKE.k, (One-sFE.skfj ,FPFE.ctj)), and FE.skGj ←
FE.KeyGen(FE.msk, Gfj ,sj ,cj ), and sends SKfj = FE.skGj to A. (This is possible to compute as q is
at least as large as the number of function queries that A makes.)

For each challenge message query (x
(0)
i , x

(1)
i ) output by A, B does the following: B computes

ti ← {0, 1}λ, ri,k−1 = PRF2.Eval(PRF2.kk−1, ti), vi,k−1 ← One-sFE.Enc(One-sFE.mskk−1,

One-sFE.Enc.stk−1, i, x
(0)
i ; ri,k−1), ri,k = PRF2.Eval(PRF2.kk, ti), and

vi,k ← One-sFE.Enc(One-sFE.mskk,One-sFE.Enc.stk, i, x
(b)
i ; ri,k). B sends a challenge function pair

(H∗
i,x

(b)
i ,x

(0)
i ,ti,vi,k−1

, H∗
i,x

(b)
i ,x

(0)
i ,ti,vi,k

) to its FPFE challenger and receives an FPFE function key FPFE.skHi

which is either a function key for H∗
i,x

(b)
i ,x

(0)
i ,ti,vi,k−1

or a function key for H∗
i,x

(b)
i ,x

(0)
i ,ti,vi,k

. This is a

valid function query pair since for all j ∈ [q] and β ∈ {0, 1},

H∗
i,x

(b)
i ,x

(0)
i ,ti,vi,k−1

(One-sFE.mskj ,One-sFE.Enc.stj ,PRF2.kj , β)

= H∗
i,x

(b)
i ,x

(0)
i ,ti,vi,k

(One-sFE.mskj ,One-sFE.Enc.stj ,PRF2.kj , β)

as the two functions act the same when β = 0 or β = 1. If i = 1, B sets CT1 = (FE.ct,FPFE.skH1).
Else, B sets CTi = FPFE.skHi . B sends CTi to A.

After A is done making queries, A outputs b′. B outputs 1 if b = b′, and outputs 0 otherwise.
If the experiment for A aborts for any reason, B always outputs 0. Observe that if B received only
ciphertexts and function keys for the first message or function of each of its challenge pairs, then B
exactly emulates HybridA5,k−1,5, and if B received only ciphertexts and function keys for the second

message or function of each of its challenge pairs, then B emulates HybridA5,k,0. Additionally, B
does not need to know FPFE.msk to carry out this experiment. Thus, by Equation 11, this means
that B breaks the function-private selective-security of FPFE as B can distinguish between the two
security games with non-negligible probability.
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HybridA6 (1
λ): We replace each H∗

i,x
(b)
i ,x

(0)
i ,ti,vi,k

with a function H∗
i,x

(0)
i ,x

(0)
i ,ti,vi

which is independent

of b.

1. Parameters: The adversary A receives security parameter 1λ, and outputs a function size
1ℓF , a state size 1ℓS , an input size 1ℓX , and an output size 1ℓY .

2. Setup:

(a) (FE.mpk,FE.msk)← FE.Setup(1λ)

(b) FPFE.msk← FPFE.Setup(1λ)

(c) SKE.k ← SKE.Setup(1λ)

(d) FE.ct← FE.Enc(FE.mpk, (0ℓFPFE.mskλ , 0ℓPRF.kλ , 1, SKE.k))

3. Public Key: Send MPK = FE.mpk to the adversary.

4. Challenge Bit: Sample b← {0, 1}.

5. Pre-Compute FPFE Ciphertexts: For j ∈ [q] where q = q(λ) is a bound on the runtime
of A,

(a) One-sFE.mskj ← One-sFE.Setup(1λ).

(b) One-sFE.Enc.stj ← One-sFE.EncSetup(One-sFE.mskj).

(c) PRF2.kj ← PRF2.Setup(1λ)

(d) FPFE.ctj ← FPFE.Enc(FPFE.msk, (One-sFE.mskj ,One-sFE.Enc.stj ,PRF2.kj , 1))

6. For a polynomial number of rounds, the adversary can do either one of the following in each
round:

(a) Function Query: For the jth function query fj ∈ F [ℓF , ℓS , ℓX , ℓY ] made by the adver-
sary:

i. sj ← {0, 1}λ

ii. Compute cj:

A. One-sFE.skfj ← One-sFE.KeyGen(One-sFE.mskj , fj)

B. cj ← SKE.Enc(SKE.k, (One-sFE.skfj ,FPFE.ctj))

iii. Let Gj = Gfj ,sj ,cj as defined in Figure 6 (page 86).

iv. FE.skGj ← FE.KeyGen(FE.msk, Gj)

v. Send SKfj = FE.skGj to the adversary.

(b) Challenge Message Query: For the ith challenge message query, A outputs a challenge

message pair (x
(0)
i , x

(1)
i ) where x

(0)
i , x

(1)
i ∈ {0, 1}ℓX .

i. ti ← {0, 1}λ

ii. vi = 0ℓOne-sFE.ctλ

iii. Let Hi = H∗
i,x

(0)
i ,x

(0)
i ,ti,vi

as defined in Figure 8.

iv. FPFE.skHi = FPFE.KeyGen(FPFE.msk, Hi)

v. If i = 1, let CT1 = (FE.ct,FPFE.skH1). Else, let CTi = FPFE.skHi .

vi. Send CTi to the adversary.
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7. Experiment Outcome: A outputs a bit b′. The output of the experiment is set to 1 if
b = b′, and 0 otherwise.

Lemma D.14. If FPFE is a function-private-selective-secure FE scheme, then for all PPT adver-
saries A, ∣∣∣Pr[HybridA5,q,5(1

λ) = 1]− Pr[HybridA6 (1
λ) = 1]

∣∣∣ ≤ negl(λ)

where q = q(λ) is the runtime of A on security parameter λ.

Proof. First, observe that if q(λ) is the runtime of A, then A outputs at most q(λ) function queries
on security parameter λ. Thus, HybridA5,q,5 always uses the β = 1 branch when encrypting FPFE.ctj
as in HybridA6 . Now, suppose for sake of contradiction that there exists a PPT adversary A such
that ∣∣∣Pr[HybridA5,q,5(1

λ) = 1]− Pr[HybridA6 (1
λ) = 1]

∣∣∣ > negl(λ) (12)

We build a PPT adversary B that breaks the function-private-selective-security of FPFE. B first
runs A on input 1λ and receives parameters 1ℓF , 1ℓS , 1ℓX , 1ℓY . B then sends function size 1ℓHλ , input
size 1ℓFPFE.mλ , and output size 1ℓOne-sFE.ctλ to its FPFE challenger where ℓHλ

, ℓFPFE.mλ
, ℓOne-sFE.ctλ are

computed as described in the parameter section. B computes (FE.mpk,FE.msk, SKE.k,FE.ct) as in
HybridA5,q,5 and sends MPK = FE.mpk to A. B samples b← {0, 1}.

For j ∈ [q], B computes (One-sFE.mskj ,One-sFE.Enc.stj ,PRF2.kj) as in HybridA5,q,5. (This does
not require knowledge of FPFE.msk or fj). B then sends challenge message pairs
{((One-sFE.mskj ,One-sFE.Enc.stj ,PRF2.kj , 1), (One-sFE.mskj ,One-sFE.Enc.stj ,PRF2.kj , 1))}j∈[q] to
its FPFE challenger and receives {FPFE.ctj}j∈[q] where each FPFE.ctj is an encryption of
(One-sFE.mskj ,One-sFE.Enc.stj ,PRF2.kj , 1).

For each function query fj that A sends to B, B samples sj ← {0, 1}λ, computes One-sFE.skfj ←
One-sFE.KeyGen(One-sFE.mskj , fj), cj ← SKE.Enc(SKE.k, (One-sFE.skfj ,FPFE.ctj)), and FE.skGj ←
FE.KeyGen(FE.msk, Gfj ,sj ,cj ), and sends SKfj = FE.skGj to A. (This is possible to compute as q is
at least as large as the number of function queries that A makes.)

For each challenge message query (x
(0)
i , x

(1)
i ) output by A, B does the following: B computes

ti ← {0, 1}λ, vi = 0ℓOne-sFE.ctλ , ri,q ← PRF2.Eval(PRF2.kq, ti), and vi,q ← One-sFE.Enc(One-sFE.mskq,

One-sFE.Enc.stq, i, x
(0)
i ; ri,q). B sends challenge function pair (H∗

i,x
(b)
i ,x

(0)
i ,ti,vi,q

, H∗
i,x

(0)
i ,x

(0)
i ,ti,vi

) to its

FPFE challenger and receives an FPFE function key FPFE.skHi which is either a function key for
H∗

i,x
(b)
i ,x

(0)
i ,ti,vi,q

or a function key for H∗
i,x

(0)
i ,x

(0)
i ,ti,vi

. This is a valid function query pair since for all

j ∈ [q],

H∗
i,x

(b)
i ,x

(0)
i ,ti,vi,q

(One-sFE.mskj ,One-sFE.Enc.stj ,PRF2.kj , 1)

= H∗
i,x

(0)
i ,x

(0)
i ,ti,vi

(One-sFE.mskj ,One-sFE.Enc.stj ,PRF2.kj , 1)

as the two function act the same when β = 1. If i = 1, B sets CT1 = (FE.ct,FPFE.skH1). Else, B
sets CTi = FPFE.skHi . B sends CTi to A.

After A is done making queries, A outputs b′. B outputs 1 if b = b′, and outputs 0 otherwise.
If the experiment for A aborts for any reason, B always outputs 0. Observe that if B received
only ciphertexts and function keys for the first message or function of each of its challenge pairs,
then B exactly emulates HybridA5,q,5, and if B received only ciphertexts and function keys for the

second message or function of each of its challenge pairs, then B emulates HybridA6 . Additionally,
B does not need to know FPFE.msk to carry out this experiment. Thus, by Equation 12, this means
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that B breaks the function-private-selective-security of FPFE as B can distinguish between the two
security games with non-negligible probability.

Lemma D.15. For all adversaries A,

Pr[HybridA6 (1
λ) = 1] ≤ 1

2

Proof. The messages sent to A in HybridA6 are independent of b. Thus, the probability that A
correctly guesses b in HybridA6 is 1

2 . The lemma then follows since the probability that HybridA6
outputs 1 is at most the probability that A correctly guesses b.

Thus, our lemmas give us the following corollary:

Corollary D.16. If

• PRF and PRF2 are secure PRFs,

• SKE is a secure symmetric key encryption scheme with pseudorandom ciphertexts,

• One-sFE is single-key, single-ciphertext, adaptively secure,

• FPFE is function-private-selective-secure,

• and FE is selective-secure,

then sFE is adaptively secure.

Proof. By combining the hybrid indistinguishability lemmas above, we get that for all PPT adver-
saries A, ∣∣∣Pr[ExptGuesssFE-AdaptiveA (1λ) = 1]

∣∣∣ = ∣∣∣Pr[HybridA1 (1
λ) = 1]

∣∣∣ ≤ 1

2
+ negl(λ)

The corollary then follows immediately.

Corollary D.16 then implies Theorem 7.1 (page 82) , since as shown earlier, we can instantiate
the required primitives from a selectively secure, public-key FE scheme for P/Poly and a single-key,
single-ciphertext, adaptively secure, secret-key, sFE scheme for P/Poly.
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