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Abstract. In this paper, we extend the applicability of differential meet-
in-the-middle attacks, proposed at Crypto 2023, to truncated differen-
tials, and in addition, we introduce three new ideas to improve this type
of attack: we show how to add longer structures than the original pa-
per, we show how to improve the key recovery steps by introducing some
probability in them, and we combine this type of attacks with the state-
test technique, that was introduced in the context of impossible differ-
ential attacks. Furthermore, we have developed a MILP-based tool to
automate the search for a truncated differential-MITM attack with op-
timized overall complexity, incorporating some of the proposed improve-
ments. Thanks to this, we can build the best known attacks on the cipher
CRAFT, reaching 23 rounds against 21 previously; we provide a new at-
tack on 23-round SKINNY-64-192, and we improve the best attacks on
SKINNY-128-384.
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1 Introduction

Symmetric cryptanalysis is crucial for trusting symmetric primitives: the more
we cryptanalyze a primitive without success, the more confidence we will have
in it. It is essential for determining the security margin of the cryptographic con-
structions and being able to anticipate problems. Many different cryptanalysis
families exist, like differential attacks [9], linear attacks [25], meet-in-the-middle
attacks [13], invariant sub-space attacks [23], integral attacks [21]. Often new
techniques and variants are proposed to augment these attacks, but proposing
new families is less common.

In [11] a new cryptanalysis was proposed: differential meet-in-the-middle
(MITM) attack. It combines ideas from differential and MITM attacks, allowing
to build the best known attack on the cipher SKINNY-128-384 in the single-tweak
setting [11]. As described by the authors, these attacks could be seen in part as a



new way of performing the key recovery in differential attacks, or as MITM ones
where instead of looking for a partial collision at some middle state, we look for
states that verify, with certain probability, a differential relation. Because of the
MITM nature, the authors proposed in the SKINNY-128-384 scenario, a way of
extending the attack using parallel partitioning to gain one round, techniques
usually applied in MITM attacks [2,3,10], but not applicable during classical dif-
ferential attacks. Some questions were left unsolved in the original paper, such
as whether these attacks could be seen as just a new way of performing the
key recovery part, but were in essence differential attacks. Another interesting
question was if they could be combined with truncated differential attacks – as
the probability in both directions of a truncated path is often not symmetric, it
seemed at first counter-intuitive to apply it. We have considered and answered
these two questions, and in addition proposed two additional improvements to
the technique: allowing some probability in the key-guessing part, and combining
it with the state-test technique, introduced in [12] in the context of impossible
differential attacks.

We have applied our new techniques to CRAFT [8], SKINNY-128-384 [7] and
SKINNY-64-192 [7], providing the best known attacks in the two first cases, and
an attack reaching the highest number of rounds as the best attack for the third.
These attacks can be seen in Tab. 1.

This paper is organized as follows: Sec. 2 presents the previous framework
of differential MITM attacks. Sec. 3 describes our proposition of combining this
attack with truncated differentials and section 4 the newly proposed improve-
ments. Sec. 5 presents our new tool that finds the distinguishers providing the
best overall attacks, considering in addition most of the new improvements on
the external rounds, and Sec. 6 and Sec. 7 describe the new applications. The
paper is ended with a conclusion.

2 Preliminaries: Differential Meet-in-the-Middle

The differential meet-in-the-middle (MITM) technique, introduced in [11], rep-
resents a novel approach for the cryptanalysis of symmetric primitives. This
attack combines two significant families of symmetric cryptanalysis attacks: the
meet-in-the-middle attack and the differential attack. In [11], it is described as
both an extension of classical MITM attacks and as a new key recovery method
to apply in differential cryptanalysis.

This new technique has been successfully applied to SKINNY-128-384, the
128-bit block cipher variant employing a 384-bit tweakey, achieving the result
of breaking 25 out of the 56 rounds in the single-tweakey setting [11]. This
application highlights the attack’s efficiency by surpassing the best known attack
on this cipher by two rounds. Furthermore, another instance provided in [11],
involved AES-256, where this technique managed to break 12 rounds of the
cipher in the related-key model. This attack requires only 2 related keys while
the previous attacks with the same number of related keys achieve a maximum
of 10 rounds.
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Cipher Rounds Time Data Memory Attack Setting/Model Ref.

18 2101.7 260.92 284 Rectangle STK [17]
19 2114.68 256 2109 DS-MITM STK,CP [24]
19 2112.61 260.92 272 Rectangle SK [30]

CRAFT 20 2126.96 256 2109 DS-MITM STK,CP [24]
21 2106.53 260.99 2100 ID STK,CP [18]
21 2116 256 268 Tr-Diff-MITM STK Sec. 6
22 2125 258 272 Tr-Diff-MITM STK Sec. 6
23 2125 260 268 Tr-Diff-MITM STK Sec. 6
21 2180.01 244 2191.55 DS-MITM STK [29]
21 2174.42 262.43 2168 ID STK/CP [18]
22 2183.97 247.84 274.84 ID STK [32]

SKINNY-64-192 23 2188 252 24 MITM STK [14]
23 2184 260 28 MITM STK [6]
23 2188 228 24 MITM STK [6]
23 2188 256 2104 Tr-Diff-MITM STK Sec. 7.1
23 2376 2104 28 MITM STK [14]
23 2372 296 2352.46 DS-MITM STK [29]

SKINNY-128-384 23 2361.9 2117 2118.5 Diff-MITM STK [11]
24 2361.9 2117 2183 Diff-MITM STK [11]
24 2372.5 2122.3 2123.8 Diff-MITM STK [11]
25 2372.5 2122.3 2188.3 Diff-MITM STK [11]
25 2378.9 2117 2165 Diff-MITM STK Sec. 7.2
25 2366 2122.3 2188.3 Diff-MITM STK Sec. 7.2

MITM: Meet In The Middle ID: Impossible Differential
CP: Chosen Plaintext DS-MITM: Demirci-Selcuk
Diff-MITM: Differential MITM Tr-Diff-MITM: Truncated Differential MITM
STK: Single-Tweak/Tweakey SK: Single Key

Table 1. Summary of the best known cryptanalysis on CRAFT, SKINNY-64-192 and
SKINNY-128-384 in the single tweak setting (related tweak the strongest setting).

In this section, we will provide an overview of how differential MITM at-
tacks are constructed, along with the original improvements introduced in [11].
One improvement, achieved through a parallel treatment of data partitions, ex-
tends the attack for one round more, mostly at no cost, particularly when the
key was exclusively added to half of the internal state. Another one is a tech-
nique designed to reduce data complexity in the originally full code-book attack
scenario.

2.1 Framework of the differential MITM attack

Consider an n-bit cipher E decomposed into three sub-ciphers Eout ◦Em ◦Ein of
rin, rm and rout rounds respectively, as depicted in Fig. 1. Finally, suppose that
the efficient differential (α→ β), covering the rm middle rounds, with probability
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Fig. 1. Framework of the differential meet-in-the-middle attack.

2−p is a distinguisher for Em. The core idea of the attack involves employing
the MITM approach. In other words, given a pair of plaintext/ciphertext (P ,
C), we independently compute the candidate plaintexts and ciphertexts P̃ and
C̃ such that they follow the differential characteristic as summarized on Fig. 1.
P̃ is computed from the plaintext P and the difference α for each possible value
of the associated key kin, and C̃ from the ciphertext C and the difference β for
each possible value of the associated key kout.

Thus the aim of the following procedure is to find a pair of plaintext/ciphertext
(P,C) and (P̃ , C̃) such that:

{
Ein(P )⊕ Ein(P̃ ) = α

E−1
out(C)⊕ E−1

out(C̃) = β.
(1)

Procedure. First, we randomly pick a plaintext P and ask the encryption oracle
for its ciphertext C.

– Upper part: From P , α and some key information, we aim to compute P̃
such that Ein(P )⊕Ein(P̃ ) = α, if the key guess is correct. Thus, we want to
minimize the amount of key information, denoted by kin, needed. For each
possible value i of kin, we have a different candidate P̃ i. Thus, we have 2|kin|

candidates at the end of this step. For each P̃ i, we ask the oracle for its
encryption Ĉi, and store them in a hash table.

– Lower part: Similarly, given C, β and a minimized amount of key informa-
tion, denoted by kout, we can compute C̃j such that E−1

out(C)⊕E−1
out(C̃

j) = β,
if the key guess is correct. We have 2|kout| candidates for C̃j .

Actually, during the procedure before the upper and lower parts, we can first
guess the subkey bits of kin and kout in common thanks to the possible linear
relations between kin and kout given by the key schedule.

Furthermore, given that P (α → β) = 2−p, we have to repeat the procedure
2p times using 2p different plaintext/ciphertexts pairs (Pl, Cl) to have a good
pair (Pl, P̃

i
l ) and (Cl, C̃

j
l ), satisfying the distinguisher. When this is the case, we

will get a collision between a Ĉi = E(P̃ i) of the upper part and a C̃j of the
lower part. Each collision (i, j) yields a candidate key.

4



For each Pl, we initially have 2|kin|+|kout| candidate pairs (Ĉi
l , i) and (C̃j

l , j)

in search of a collision. After matching through the relation Ĉi
l = C̃j

l , we are
left with 2|kin|+|kout|−n candidates. Thus, in the end, for each Pl, the number of
expected collisions would be 2|kin|+|kout|−n−|kin∩kout|.
Complexity. The time complexity for the computations in the upper and lower
parts of the procedure is 2|kin|+p and 2|kout|+p, respectively. And as explained
above, the number of expected candidate keys is 2|kin|+|kout|−n−|kin∩kout|+p.
Thus, the time complexity is:

2p × 2|kin∩kout|(2|kin|−|kin∩kout| + 2|kout|−|kin∩kout| + 2|kin|+|kout|−n−2|kin∩kout|).

With this, we recover kin ∪ kout. So, if we expect fewer key candidates than the
whole key space K of size 2k, then we can guess the remaining bits of the master
key and test the guess with additional pairs. Thus, we recover the whole key
with a complexity smaller than the cost of an exhaustive key search, and the
additional cost of 2k−|kin∪kout|×max(1, 2|kin|+|kout|−n−|kin∩kout|+p) to be added
to the time complexity T . In the case that we need to guess the remaining bits
of the master key, specifically if |kin|+ |kout| − n− |kin ∩ kout|+ p > 0, the total
time complexity would be:

T = 2p+|kin∩kout|(2|kin|−|kin∩kout| + 2|kout|−|kin∩kout| + 2|kin|+|kout|−n−2|kin∩kout|)

+ 2k−n+p. (2)

The data complexity is D = min(2n, 2p+min(|kin|,|kout|)), and the memory com-
plexity is M = 2min(|kin|−|kin∩kout|,|kout|−|kin∩kout|).

2.2 Improvement: Parallel partitions for layers with partial subkeys

In [11], two methods for improving the original differential MITM attack are
proposed. The first method, elaborated upon below, focuses on adding an extra
round at the beginning or the end of the attack, in some specific cases.

In the cases where the round key addition only affects a part of the state,
as is the case with SKINNY [7] or GIFT [5] block ciphers, the differential MITM
attack can be extended by one round. Suppose m < n bits of the state are
affected by the round key addition. The framework of the improvement is given
in Fig. 2, where one round is added at the end of the attack covering r − 1
rounds of the cipher and we have eliminated all the transformations after the
round key addition of round r, if any. Let A and B denote the states before and
after adding Kr, respectively. The main idea of the improvement is to only keep
the ciphertexts that satisfy the following condition: we fix the n −m bits that
are not affected by the key addition in A and B, and compute all the 2m possible
values for A and B. Now, we will repeat the procedure 2p−m times. So, we can
apply this improvement without increasing the time complexity, if p > m.

Then, from all the 2m possible values for A, we can proceed with the lower
part of the differential MITM attack. We get 2|kout|+m possible candidates (A, Ã, j).
In parallel, we do the same for each of the 2m possible values for B, and we pro-
ceed with the upper part of differential MITM attack and we get 2|kin|+m possible
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Fig. 2. Framework of the parallel partitioning improvement.

candidates (B, B̃, i); hence 2|kin|+|kout|+2m total candidates which is a factor 2m
higher than before, as we are comparing this to performing the attack without
structures 2m times. Nevertheless, note that we have to match A and B and their
associated pairs Ã and B̃ through the relation A⊕B = Ã⊕ B̃. This also yields
the value of Kr, already determined by kin and kout, usually. So, the number of
expected collisions does not increase: in total, we need to collide on n−m bits
of the key-free parts of Ã and B̃; and we have to collide for both pairs in the m
bits once the key is added, providing a total filtering of (n−m) + 2m = n+m.
As we now have 2m additional potential candidates, but a 2m+n filter, we ex-
pect a total proportion of remaining candidates of 2−n, as in the attack without
parallel partitions. In [11], they applied this technique to reach one more round
of SKINNY-128-384 without increasing the time complexity and thus mounting
the best known attack on this cipher in the single tweak setting.

2.3 Reducing data needed with imposed conditions

The idea is to fix x bits of the plaintext P and of the associated plaintext P̃ to a
specific value, thereby restricting them to a set of 2n−x plaintexts instead of the
whole codebook. We can choose the plaintext P as desired but the probability to
get a P̃ with the fixed x bits is 2−x. Then, the probability of the attack decreases
by 2x as we have to repeat the procedure 2x times to get a pair that satisfies
the differential characteristic along with this new condition. On the other hand,
it means that during the upper and lower part of the attack, we will discard a
proportion of 2x tuples of (P , P̃ , i) and (C, C̃, j), the ones that do not satisfy
the conditions. Thus the data and memory complexities will decrease by 2x.

Furthermore, considering the attributes of the differential MITM attack, we
can derive the following two bounds on the number of fixed bits x:

p+ x ≤ n− x and 2p+x(2|kin| + 2|kout|) < 2k.

This technique particularly applies when the whole codebook would be needed,
as it is in the differential MITM attack on SKINNY-128-384 presented in [11].
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3 Truncated Differential Meet-in-the-Middle Attack

Truncated differential cryptanalysis was introduced at FSE in 1994 [20] by Knud-
sen as an extension of differential cryptanalysis and has proven its efficacy by
successfully attacking several ciphers which seemed to be secure against differ-
ential attacks. It is the case with the KLEIN block cipher, for which its security
against bit-wise differential attack had been proved but was broken by some
truncated differential attacks [22,27]. Thus the main extension of the differential
MITM attack that we will explain in this section is the truncated differential
MITM attack. A challenge of building this extension is that since the probabil-
ity of a truncated differential characteristic is not the same in both directions,
then it was not clear how to properly take this propriety into account in the
truncated differential MITM extension.

The main idea of truncated differential-MITM attacks is to use, instead of
a differential path, a truncated differential path as the underlying distinguisher
of the attack. As stated in Def. 2 in Appendix A, a truncated differential op-
erates based on sets of input and output differences rather than concrete ones.
It considers whether a word (typically of the S-box size in the cipher) has a
non-zero difference or not, regardless of its concrete value. One advantage of the
truncated differential attack is that during the key recovery step, we do not need
to know the concrete values of the states just before and after the distinguisher.
Consequently, we may need to guess fewer subkey words, potentially allowing
us to reach more rounds. Additionally, for certain ciphers, truncated differential
distinguishers can reach more rounds than concrete differentials (as in [26]). Fi-
nally, the search space for truncated differentials is much smaller than that of
concrete differentials, making it easier to deal with an automated method [26].

3.1 Framework of the truncated differential MITM attack

Similar to the differential MITM attack, consider the n-bit cipher E decomposed
into three sub-ciphers: Eout ◦Em ◦Ein, of rin, rm and rout rounds respectively,
as depicted in Fig. 3. Finally, suppose that (∆in

Em−−→ ∆out) is a truncated
distinguisher for Em with the probability of 2−p, where |∆in| = 2δin and |∆out| =
2δout . So, according to Def. 2, (∆in

Em−−→ ∆out) is an efficient differential if p <
n− δout.

We randomly pick a pair of plaintext/ciphertext pair (P,C), and try to gen-
erate appropriate candidates for (P̃ , C̃) such that the difference of these two data
ensures the truncated difference ∆in at round rin, i.e. Ein(P )⊕ Ein(P̃ ) ∈ ∆in,
and the truncated difference ∆out at round rin + rm, i.e. E−1

out(C) ⊕ E−1
out(C̃) ∈

∆out. The procedures of the upper and lower parts of the attack are as follows.

Upper part: To generate P̃ , we guess some key material, denoted by kin. For
each P , and each guess i of kin, there are 2δin distinct candidates P̃ i

l , each
corresponding to an input difference l ∈ ∆in. All the 2|kin|+δin ciphertexts Ĉi

l =

EK(P̃ i
l ), along with its associated key material i are stored in a hash table.
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Fig. 3. Framework of the truncated differential meet-in-the-middle attack. The prob-
ability of the distinguisher in the forward (backward) direction is 2−p (2−p′).

Lower part: In the ciphertext side, given C, for each guess j of kout, we compute
all the 2δout ciphertexts corresponding to the 2δout possible differences m ∈ ∆out.
So, there would be in total 2|kout| × 2δout values for C̃j

m.

Number of pairs: For the correct key guess, the transition (∆in
Em−−→ ∆out)

will happen with probability 2−p. So, a number of 2p pairs of data is expected
to be tested to find the correct key. For each P and a fixed key material i,
we can provide 2δin differential pairs (P, P̃ ), each of which corresponds to a
specific value of ∆in. So, it is required to repeat the upper and lower parts of
the attack for a number of 2p−δin plaintexts P . On the other hand, despite the
concrete differential-MITM attack, the output difference ∆out does not have a
specific single value, but it belongs to a set of size 2δout , whole of which should
be checked to certainly determine if the event (∆in

Em−−→ ∆out) has occurred or
not.

3.2 Attack complexities

As done in the differential MITM attack, we first guess the possible linear rela-
tions between kin and kout, i.e. kin∩kout. During the upper part of the attack, for
each guess of kin−kin∩kout, we get 2δin candidates P̃ i

l hence 2|kin|+δin−|kin∩kout|

candidates for (P, P̃ , i). Similarly, in the lower part, we have 2|kout|+δout−|kin∩kout|

candidates triplets for (C, C̃, j). So, there is 2|kin|+δin+|kout|+δout−2|kin∩kout| can-
didates for (i, j). Let’s denote Ĉ = E(P̃ ). The matching of Ĉi

l with C̃j
m leaves

us with 2|kin|+δin+|kout|+δout−2|kin∩kout|−n candidates. Moreover, similar to the
original differential-MITM attack, we can guess the remaining bits of the master
key and test the guess with additional pairs. Thus, the time complexity of the
attack is:

T = 2p−δin × 2|kin∩kout|(2|kin|+δin−|kin∩kout| + 2|kout|+δout−|kin∩kout|)

+ 2p−δin × 2|kin∩kout|(2|kin|+δin+|kout|+δout−2|kin∩kout|−n) (3)

The data and memory complexities are similar to the differential MITM ones.

D = min(2n, 2p−δin+min(|kin|+δin,|kout|+δout)), (4)
M = min(2|kin|+δin−|kin∩kout|, 2|kout|+δout−|kin∩kout|). (5)
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The second line of (3) refers to the number of candidates for kin ∪ kout to be
tested, which should be less than the whole set kin∪kout. This holds if p+ |kin|+
|kout| − |kin ∩ kout| − n+ δout < |kin ∪ kout|, implying that p < n− δout, which
is ensured by an efficient distinguisher (Def. 2).

Remark 1. According to (10), it holds for the reverse transition that P (∆out
E−1

m−−−→
∆in) = 2−p′

, where p′ = p + δout − δin. Using this equality, one can infer that
all the complexities of the reverse attack (the chosen ciphertext scenario) are
equivalent to that of the forward attack: equations (3), (4), (5).

4 New improvements to differential MITM attacks

We present in this section three new improvements that can be incorporated
into either the truncated or the original variants of differential MITM attacks.
These improvements include an extension of the parallel partitioning technique,
the state-test technique, and the probabilistic key recovery technique. The ex-
tended parallel partitioning technique, built upon the concept initially proposed
in [11] (also reviewed in Sec. 2.2 of this paper), expands its range of applica-
bility. The other two techniques focus on minimizing the information needed
to be guessed during the key guessing step, which has a direct impact on the
complexity. Specifically, the state-test technique, adopted from the impossible
differential attacks [12], guesses a word of the state instead of a larger-size key
material, thereby decreasing the total information that needs to be guessed.
The probabilistic key recovery technique introduces a probability into the key-
guessing step to reduce the number of active words in the key recovery parts of
the attack, and consequently, the keybits involved.

4.1 Improving the parallel partitioning

As explained in Sec. 2.2, the original parallel partitioning method proposed
in [11] effectively extends the attack for one round, in situations where the round
key addition impacts only a portion of the cipher’s state. This extension has no
additional cost in time or data complexities if certain specific conditions are
met. In this section, inspired by the structures commonly employed in MITM
attacks like initial structures [4] and bicliques [19], we explain how the applica-
bility range can be extended, specifically in two directions: One round extension,
in the case of SPN ciphers with a whole-state key addition (applied to CRAFT in
Sec. 6 of this paper). Additionally, more than one round extension, in the case of
SPN ciphers with a partial-state key addition (applied in Sec. 7 of this paper).
The general idea. Without loss of generality, we explain the procedure for the
round(s) extensions at the end of the cipher. A general view is shown in Fig. 4.
Suppose that the cipher state is formed of W words of size s bits (n = Ws).
Let A be the final state of the (truncated) differential-MITM attack, and B be
the ciphertext, typically one or two rounds after A. Without any extra condi-
tions, there are 2Ws possibilities for A and B values, each. A set of F words,
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MITM attack: A

(W − F )
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1 or 2 rounds

Matching already

Need to be matched
with linear relations
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(W − F )
words

F fixed
words

Fig. 4. High-level representation of the proposed structures when added at the end of
the attack. They could also be added at the input without loss of generality.

representing independent conditions, enforced at any point within the internal
states of the added rounds, would reduce the number of possibilities for each
of A and B to 2(W−F )s. The whole set of these possible values for A and B
is called a pair of initial structures of size 2(W−F )s. These conditions typically
involve forcing some words within the internal state into fixed values or impos-
ing linear relationships on specific internal state words. This set of conditions of
size Fs bits are selected so that having them, along with kin (resp. kout), allows
one to uniquely determine an equivalent of Fs information bits of B (resp. A).
Therefore, it makes sense to consider the Fs-bit internal state condition as the
starting point for the structures.

As in the previous parallel partitioning method, we next perform the upper
and lower procedures for both structures of size 2(W−F )s in parallel, generating
lists of (B, B̃, i) and (A, Ã, j). Therefore, we need to repeat the modified attack
2p−(W−F )s times, while the first two terms of time complexity in (2) and (3),
would be increased by a factor of 2(W−F )s, and the third term by a factor
of 22(W−F )s. So it is required to have efficient sieving on the candidates when
merging the two partial lists of solutions, to retain a number well below the
exhaustive search. The sieving over the candidate solutions is done in two ways:
Firstly, a 2−Fs sieving over B̃ and Ã, in the words involved in the starting point.
These words computed from the both sides, (i.e. from the Fs information bits
of Ã and B̃ possibly with the aid of the associated kout and kin, respectively)
should return the same values. Secondly, an L-bit sieving by new linear relations
between A and B (similarly, Ã and B̃) independent from those Fs-bit matching
over the starting point. To profit from the whole sieving potential, we would
need to discover 2(W − F )s linear relations between the pairs A and B, as well
as between Ã and B̃. The accurate value of L, upper bounded by 2(W − F )s,
depends on the particular cases. Finally, as far as (W − F )s ≤ p, this technique
imposes no additional costs to the time complexity of the original attack, besides
the possible increase in the size of kin and kout if more bits are needed to check
the linear relations.
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The time complexity of the truncated differential-MITM is then:

T = 2p−(W−F )s−δin+|kin∩kout| × (2(W−F )s × 2|kin|+δin−|kin∩kout|

+2(W−F )s × 2|kout|+δout−|kin∩kout| + 2|kin|+δin+|kout|+δout+2(W−F )s−Fs−L−2|kin∩kout|).

A positive side effect of this improvement is that thanks to the linear relations
checked in the second sieving, we recover most of the time the whole values of
the last subkey bits, which increases the size of the number of bits recovered, as
we will see in the applications.

In the following, we provide a brief description of two specific examples illus-
trating how this technique is applicable for more than one round (for SKINNY),
or even when the key is added to the entire state (for CRAFT).

The case of SKINNY. In Sec. 7.1, we add two rounds at the end of our truncated
differential MITM attack on SKINNY-64-192 as shown in Fig. 10. For the cipher
SKINNY, knowing the first key row of the first added key allows checking of all
the linear equations needed to profit from the whole sieving potential. In our
attack, we construct structures of size 240, thus to profit from the whole sieving
potential, we want to find 10 linear relations between the pairs A and B, as
well as between Ã and B̃. In our case, we guessed 3 subkey bits of the first
key row of the first key which gives us 8 linear equations out of the 10 linear
equations we want. And we guess the 2 subkey bits of the third column of the
second key to find the 2 remaining linear relations. A similar idea is applied in
our improvements of the SKINNY-128-384 attacks of section 7.2.

The case of CRAFT. In our attack of CRAFT in Sec. 6, we can check less than all
the linear equations as we have a bigger margin - we do not need to use all the
potentially available sieving. Thus we get our linear equation by checking the
relation MC(A) ⊕ B = MC(Ã) ⊕ B̃ for all the non-fixed words, which erases the
unknown key bits. Since we fixed 5 words in A and B, we get 11 linear relations
on 4 bits each.

4.2 Probabilistic key recovery technique

Usually, in the key recovery step of the differential attacks, we extend with
probability one the differential characteristic for some rounds in both sides. Our
second idea for improvement is to force one or more transitions to have zero dif-
ference, paying some probability. Thus the number of active words will decrease
and fewer key bits will need to be guessed.

Suppose we are in the case of a differential attack. In the classical case, we
propagate ∆in and ∆out with probability 1 for rin rounds backward and rout
rounds forward respectively, determining the truncated differences that pairs of
plaintexts/ciphertexts should verify. Then we will test the pairs verifying this
truncated differential and the possible keys that would lead to this differential.

Here instead of extending ∆in and ∆out for rin and rout rounds with proba-
bility 1, we allow these transitions to happen with probability 2−pin and 2−pout .
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Thus the overall probability for a random pair to follow the differential path is
now 2−p−pin−pout . Therefore we have to repeat the attack 2pin+pout more times.
However, the number of pairs we keep for each side decreases by 2pin for the
upper part and of 2pout for the lower part, so this is often compensated in the
final time complexity. On the other hand, this technique restricts the large dif-
fusion of active nibbles in the upper and lower sides, resulting in smaller sets of
kin and kout. We will show an application of this improvement in our attack on
CRAFT in Sec. 6.

Comparison with differential attacks. In differential attacks, the complexity of
the key recovery step is usually quite low, thanks to early abort techniques,
and therefore the improvement of using probabilistic key recovery thechnique
might be less advantageous, though it could still be applied. Here the number of
involved keybits is directly associated to the final complexity.

4.3 Applying the state-test technique

The state-test technique was introduced in [12,15] in the context of impossible
differential and MITM attacks respectively, to reduce the amounts of bits guessed
in the key guessing step. The main idea is to test a part of the internal state
that will uniquely define a partition of the involved key bits instead of guessing
these keybits, reducing, therefore, the complexity of the guess.

During the key guessing part, some internal state words needed for computing
P̃ or C̃ are smaller than the key materials that affect them. Thus guessing
the state words instead of the key bits involved decreases the time complexity.
Indeed, if l key or subkey bits are only needed to compute s bits of internal state
with no differences but required to compute some internal state with differences.
In such cases, we can guess s bits instead of the l key bits as P (or C) is
fixed and this will define a disjoint partition of the involved keybits. Thus the
time complexity of this part decreases of 2l−s. We use this technique in both
applications of Sec. 6 and Sec. 7.

This idea can be easily applied to differential-MITM attacks, unlike to clas-
sical differential attacks, as the plaintext for which we guess the keys is fixed,
therefore defining a disjoint partition of the involved keybits.

Analysis of the secret information recovered. As instead of recovering direct bits
from the key we can recover non-linear equations, we have to be careful when
computing the overall complexity that the number of recovered keybits of the
actual key is bigger than the number of candidates for the triplets (P, P̃ , |kin ∪
kout|) so that we do not have to deal with counters. We will see how to deal with
particular cases in the applications.
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5 MILP Modeling of the Truncated Differential-MITM
Attack

In this section, we describe the automatic MILP-aided method for searching
the truncated differential-MITM attack. We first introduce the modeling of the
basic attack. Then, we explain how the state-test and probabilistic key recovery
techniques can be incorporated into the model. We leave the inclusion of the
parallel partitioning method as an open problem for future work. All source
codes are available at https://github.com/CraftSkinny.

5.1 MILP model of the basic attack

The set of constraints used in our model can be divided into three parts: con-
straints describing the distinguisher, constraints associated to kin and kout, and
constraints describing the objective function.

Constraints associated with the distinguisher. This set of constraints is
derived according to the method given in [26]. Once the model is solved, the
approximated values of transition probabilities will be replaced by the accurate
ones, given in the Branching Property Tables (BPT) described in Appendix D.
To be more conservative, we can examine the accurate method given in [16],
which computes the exact value of the probability for a given path. Moreover,
we develop a distinguisher-only model with an accurate DBT, to compute the
clustering effect on the differential probability, by summing up the probabilities
of all the paths with (∆in, ∆out) fixed to that of the optimum solution.

Constraints determining kin and kout. We explain the method for the
identification of the set kout. A similar scenario holds for kin, as well. The set
kout is determined by two factors: First, all the subkeys involved in the differential
propagation of ∆out to the ciphertext, and second, all the subkeys involved in
the value determination of active words of ∆out from the ciphertext. These
two concepts have been previously used and modeled in other works such as
automation of MITM attacks [28]. In Appendix B, we state Theorems 1 and 2
to unify the description of the MILP modeling of the differential propagation and
value determination through the linear layer of a given matrix M with input and
output a and b, respectively.

These two concepts have been denoted in Fig. 5.1, where the differential
propagation and value determination of active words are indicated by {Di} and
{Vi} chains, respectively. The active words in round r, i.e. Dr only depend on
the active words in Dr−1, however, the words whose values should be determined
in round r, i.e. Vr, depend on both Dr−1 and Vr−1, i.e. on Dr−1 ∨ Vr−1.

There is a nuanced aspect at the starting point of chain {Vi}. Note that
since the truncated differential attack is not dependent on the concrete values of
differences, the attacker avoids the need to guess the subkeys required for value
determination just before and after the distinguisher. Moreover, this property
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Fig. 5. Differential propagation and value determination in the lower part, where r1 =
rin + rm and r2 = rin + rm + rout. The solid arrows show the differential propagation,
the dashed ones show the value determination trace and the dotted arrows show the
update of Vi by Vi ∨Di, for r1 + 2 ≤ i ≤ r2. Dr1 corresponds to ∆out.

may partially overspread to the next rounds. For instance, consider a scenario
where the differential output of a distinguisher for Skinny-64-192 is denoted
by ∆out = (a, b, 0, c), and this propagates to (a+ c, a, b, a) after the MixColumn
operation. It’s important to note that we do not have to determine the values
of all four active words; rather, we only need to determine the values of the
second and fourth words, while the other two can remain undetermined. This
is because the differences in the second and fourth words are independent of
the others, allowing them to have any non-zero value, thanks to the truncated
nature of the attack. Property 1 in Appendix B formulates this aspect.

Finally, we have specified the active words, as well as the words whose values
need to be determined, over all states of the first rin and the last rout rounds.
With this information in place, determining kin and kout becomes straightfor-
ward, as it equates to D ∨ V at the internal states where the round keys are
introduced. All details of the MILP parameters for the two cases studied in this
paper, i.e. CRAFT and Skinny-64-192, is given in Tab. 2 and 3. In both tables, Di

is the input differential state of round r1 ≤ i ≤ r2, Drin = ∆in, Drin+rm = ∆out,
Vrin = Vrin+rm = 0, and Ti = Di∨Vi. Finally, Ti[Rj ] denotes the jth row of state
Ti.

Constraints associated with the objective function. The model should
minimize the time complexity given in (3) while preserving the efficient distin-
guisher constraint given in (9). Let the time complexity be dominated by the
integer-valued variable u. the set of constraints associated with these parameters
would be defined as follows.

min u

s.t. p < n− δout

p+ |kin| < u

p+ |kout|+ δout − δin < u

|kin ∪ kout|+ p+ δout − n < u (6)
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Table 2. Skinny-64-192 MILP parameters.

Lower Part Upper Part
Parameters Description Parameters Description

Rounds r1 rin + rm r1 0
(r1 ≤ i ≤ r2) r2 rin + rm + rout − 1 r2 rin
Differential M MC M Inverse MC
Propagation a SR(Di) a Di

(Theorem 1) b Di+1 b SR(Di−1)

Value M Inverse MC M MC
Determination a Vi+1 a SR(Vi−1)

(Theorem 2, Prop. 1) b SR(Ti) b Ti

Involved Subkeys |kout|
r2∑

i=r1+1

Ti[R0, R1] |kin|
r2−2∑
i=r1

Ti[2] + (
∨
j ̸=2

Ti[Rj ])

Table 3. CRAFT MILP parameters.

Lower Part Upper Part
Parameters Description Parameters Description

Rounds r1 rin + rm r1 0
(r1 ≤ i ≤ r2) r2 rin + rm + rout − 1 r2 rin
Differential M MC M Inverse MC
Propagation a Di a P−1(Di)
(Theorem 1) b P−1(Di+1) b Di−1

Value M Inverse MC M MC
Determination a P−1(Vi+1) a Vi−1

(Theorem 2, Prop. 1) b Ti b P−1(Ti)

Involved subkeys |kout|
r2∑

i=r1+1

(
∨

i even

P−1(Ti))+ |kin|
r2−2∑
i=r1

(
∨

i even

(Ti))+

r2∑
i=r1+1

(
∨

i odd

P−1(Ti))
r2−2∑
i=r1

(
∨

i odd

(Ti))

5.2 MILP model of the improved attack

State-test enhanced attack. In this section, we propose a general method for
MILP modeling of the state-test technique introduced in Sec. 4.3, for reducing
the guessed key material on each side. This technique specifically influences the
constraints related to the value determination (Theorem 2), in such a way that
if a word of the internal state is preferred to be guessed, the value-determination
trace corresponding only to this specific word should be aborted, then. To MILP
model this event, for each state word whose value is supposed to be deter-
mined, we define a new binary variable s, indicating whether the corresponding
word should undergo the state-test (s = 1) or not (s = 0). Then, the value-
determination constraints would be as regular (Theorem 2) if s = 0 or aborted
if s = 1. Theorem 3, identifies the required constraints corresponding to the
value-determination for state-test enhanced attack.

Finally, in the objective function constraints (6), |kin| should be replaced by
|kin| + sin where sin =

∑
0≤i≤rin−2 Hw(si), and |kout| should be replaced by

|kout|+ sout where sout =
∑

rin+rm+1≤i≤rin+rm+rout−1 Hw(si).
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Probabilistic key recovery enhanced attack. In order to incorporate this technique
into the model, it suffices to replace the differential propagation constraints gen-
erated according to Theorem 1 by the MILP model of the probabilistic trun-
cated differential propagation given in [26]. In the upper part, this model is
used for the inverse of MixColumn matrix as M, and in the lower part, with
MixColumn matrix. Then, the constraint p+ |kin| < u of (6) should be modified
as p + pout + |kin| < u, and p + |kout| + δout − δin < u should be modified to
p+ pin + |kout|+ δout − δin < u.

6 Application on 23-round CRAFT

CRAFT is a lightweight, tweakable block cipher designed with the goal of pro-
tecting implementations against differential fault analysis while also providing
strong security guarantees within the related-tweak model. The specification of
this cipher is provided in Appendix C.1.

Security claim. In [8], the authors presented optimum differentials for 13 and 14
rounds of CRAFT and claimed that using those differentials the attacker cannot
have a successful single-tweak differential attack on 22 rounds. The best previous
known attack on CRAFT [18] is a 21-round impossible differential attack with time
complexity of 2106.53, data complexity of 260.99 and memory complexity of 2100.

Using truncated differential-MITM, enhanced with parallel partitioning for
whole-state key addition ciphers, probabilistic key guessing, and the state-test
techniques we managed to provide the best attack on CRAFT [8], improving by 2
rounds the best known attack, as detailed in Tab. 1.

6.1 An attack on 23 rounds of CRAFT

The truncated differential-MITM attack proposed in this section is composed
of a 22-round core attack followed by one additional round using the parallel
partitioning method. We conducted an automatic search for the optimum 22-
round core attack on CRAFT, enhanced with the state-test and probabilistic key
guessing techniques, based on the MILP method proposed in Sec. 5. We set
rm = 11, rin = 6, and rout = 5. The 11-round distinguisher and the core 22-
round attack are represented in Figures 6 and 7 respectively, with the following
parameters:

p pin pout sin sout δin δout |kin| |kout|
44 16 12 16 12 16 16 32 32

where sin and sout is the number of state-test bits to guess. The clustering effect
was also examined which has a negligible impact. Since the matrix M used in
the MixColumn operation is involutory, and the input and output differences of
the distinguisher are the same, the propagation of active nibbles in the upper
and lower parts is very similar. Thus, as shown in Tab. 4, the subkey words
needed on both parts have many words in common thanks to the key schedule
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∆in X6 X7 X8 X9 X10 X11 X12 X13 X14 X15 ∆out

Fig. 6. CRAFT 11-round truncated differential distinguisher with p = 44

Subkey kin kout |kin ∩ kout|
Even K0[1, 6, 10, 14, 15] K0[6, 10, 14] 3 nibbles
Odd K1[4, 8, 12] K1[4, 8, 12, 13, 3⊕ 11⊕ 15] 3 nibbles

Table 4. Subkey nibbles guessed during the 23-round attack of CRAFT.

and the position of the odd and even subkeys, which allows us to efficiently
apply the parallel partitioning technique. The parallel key guessing steps of this
attack benefit from the state-test technique from Sec. 4.3 and the probabilistic
key recovery technique of Sec. 4.2.

Probabilistic key recovery technique. It is imposed that the difference during
the MixColumn transition on nibbles X2[2], X3[0], X4[2], X5[0], Y17[0], Y18[2] and
Y19[0] is null. This decreases the overall probability by a factor of 2pin+pout =
216+12, but the number of active words, and consequently |kin| and |kout|, also
decreases dramatically. This attack is easy to adapt to 21 rounds, as we will
show in Sec 6.2.

State-test technique We use the state-test technique to test four and three nibbles
of the internal state in the upper and lower parts respectively, which are given
in Appendix E. This avoids guessing more subkey nibbles.

Parallel guessing step. From a pair (P, Y22), we need to know the values of the
active nibbles before the S-boxes, in green in Fig. 7, to be able to compute the
associated value of P̃ for each kin and of Ỹ22 for each kout. We will first describe
the procedure over the 22 first rounds, and then show how to deal with the last
round with parallel partitions.

1. We first guess the 6× 4 = 24 subkey bits of (kin ∩ kout) given in Tab. 4. We
then fix F = 5 nibbles Y22[1, 6, 10, 14, 15], the words denoted by F in Fig. 8
and since we know the subkey nibbles K22[6, 10, 14] for both the upper and
lower parts, and of K22[1, 15] for the upper part, then we also have the fixed
values of the ciphertext C[1, 6, 10, 14, 15].

2. As 5 nibbles from C and Y22 are fixed, we can build a pair of structures
of size 24(16−5) = 244 for Y22 and for the ciphertext C. We decrypt the 244

ciphertexts Cs and we obtain the associated plaintexts Ps.
3. For each of the 2|kin−kin∩kout| × 2sin = 28+16 = 224 possible values i of kin

and the state-test relations, and each of the 244 Ps from the structure defined
at the previous step, compute all possible tuples (Ps, P̃s, i) such that they
generate ∆in after 6 rounds and they follow the probabilistic differential
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Fig. 7. The 22-round core part of the 23-round attack on CRAFT not including the
structures. Differential propagation in the upper (lower) part has been shown in red
(blue). The state-test nibble is shown in orange. The gray-striped nibbles are whose
values are no longer required thanks to the state-tests, except K21 that the XOR of
gray-striped nibbles are required.
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Fig. 8. The last round of the 23-round attack on CRAFT, using parallel partitioning
technique. The red nibbles are known or can be computed from the fixed values and
kin in the upper part of the attack and the blue nibbles are known or can be computed
from the fixed values in the lower part of the attack as Y22 = MC(SB(W21)). The purple
subkey nibbles are known in both the upper and lower parts.

transitions in the first rounds. There are 224 possible values for kin, and it
needs to be done for each 2δin = 216 possible differences in ∆in, but we
expect only a proportion of 2−pin = 2−16 to verify the upward path, so the
expected number of total solutions per Ps will be 224+16−16, and if we use
rebound-like techniques as shown in the original paper [11] the cost of this
step would be equal to the number of solutions: 244+24 = 268. We store them
in a hash table.

4. Similarly, for each of the 2|kout−kin∩kout|×2sout = 28+12 = 220 possible values
j of kout and the state-test relations, and each of the 244 states Y22,s, compute
all possible tuples (Y22, Ỹ22, j) such that there is the ∆out difference on the
state before the 17th S-box layer. It needs to be done for each 2δout = 216

possible difference in ∆out but we expect only a proportion of 2−pout = 2−12

to verify the downward path, so the expected number of total solutions per
Y22,s will be 220+16−12. As the previous step, we expect a cost and a number
of solutions of 244+24 = 268. For each solution, check for possible matches
on the hash table. The match is performed on two quantities:

– The values of Ỹ22[1, 6, 10, 14, 15] can be fully computed from C̃[1, 6, 10, 14, 15]
and the guessed kin: 20-bit filter;

– The linear relations between Y22 and C and between Ỹ22 and C̃, i.e.
Y22⊕C = Ỹ22⊕ C̃, excluding the nibbles we could fully compute as they
were already used in the 20 bit filter: 44-bit filter (11 equations on 4 bits
each);

5. Repeat from Step 1 until the right key is retrieved: as the structures check
244 plaintexts, we need to repeat all this procedure 244−16+16+12−44 = 212,
to expect having a pair of data that verifies the middle distinguisher and the
external transitions 2−56.

The data complexity of the attack is 264 as we ask the whole codebook to
the oracle. But, applying the improved data technique from [11], we can fix
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64−56
2 = 4 bits of the ciphertexts to reduce the data needed without increasing

the time complexity, hence the data complexity will become D = 260.
The memory complexity is determined by Step 3 where 268 words of 64×2+

16 + 8 = 152 bits each are stored in the hash table, so M = 268.
The time complexity so far is

212224
(
244224216−16 + 244220216−12 + 268+68−20−44

)
= 2108.

But the attack is not yet finished. Indeed, we have recovered 5 × 4 = 20 bits
of K1, as well as 64 bits of K0, as the unguessed bits of K0 = K22 would be
revealed as a side effect of the second sieving, explained in Step. 4. In addition,
we recover 7 × 4 = 28 bits of information in key bits due to the 7 nibbles of
state-tests, so 64 + 20 + 28 = 112 information-bits of the key in total, which is
bigger than the number of candidates, i.e. 108. The big question now is how to
determine the whole key from each candidate because of the complex form of
the state test equations.

How to recover the whole key. The whole key K0 is known. Considering this and
rewriting the state-test equations given in Appendix E, we recover the following
values and relations. From the first equation we can derive the value of K1[3],
giving us K1[11] ⊕ K1[15] from the guesses, and we choose to write K1[15] as
a function of K1[11]. Then we rewrite the equations given on rounds 4 and 18
as a function of some variables x1, . . . , x24 which depend only on the plaintext,
the ciphertext, the guessed values of the state tests, the nibbles of K0 and those
nibbles of K1 from kin and kout. We obtain the following equations:

Equation 4 : SB(K1[2]⊕ SB(SB(K1[0]⊕ x1)⊕ SB(K1[14]⊕ x2)⊕ SB(K1[7]

⊕ x3)⊕ x4)⊕ SB(SB(K1[1]⊕ x5)⊕ SB(K1[10]⊕ x6)⊕ x7)

⊕ SB(SB(K1[2]⊕ x8)⊕ x9))⊕ SB(K1[5]⊕ SB(SB(K1[5]⊕ x10)

⊕ x11)⊕ x12)⊕ x13 = 0,

Equation 18 : SB(K1[2]⊕K1[10]⊕K1[14]⊕ SB(SB(K1[7]⊕K1[11]⊕ x14)

⊕ SB(SB(K1[0]⊕ x15)⊕ SB(K1[14]⊕ x16)⊕ x17))⊕ SB(SB(K1[1]⊕K1[9]

⊕ x18)⊕ SB(K1[10]⊕ x19)⊕ x20)⊕ SB(SB(K1[2]⊕K1[10]⊕K1[14]

⊕ x21)⊕ x9)⊕ SB(K1[5]⊕ SB(SB(K1[5]⊕ x22)⊕ x11)⊕ x23)⊕ x24 = 0.

During the attack procedure, we stock the candidates we find after the match-
ing in a table of size 2s with s ≥ 100, and sort this table based on x1, . . . , x24.
We will have 296 groups of candidates of size 2x = 2s−96 with the same variables.
Since x1, · · · , x24 define equations 4 and 18, each candidate in one group will
have the same set of solutions for those two equations. Thus, for each group, we
can calculate and store the list of the 220 solutions for equation 4 and 18. And in
parallel, for each of the 2x candidates in the group, we calculate the 216 possible
solutions of equations 3 and 19. For each of these 216 solutions, we get one match
with the stored list of 220 solutions from equation 4 and 18 with respect to the
nibbles K1[0, 1, 9, 11, 14]. Thus, for each element in the group, we can find 216
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possibilities for K1[0, 1, 2, 5, 6, 7, 9, 10, 11, 14, 15] giving us the whole key. Finally,
the overall time cost of this will be:

T = 2108−s296
(
220 + 2x216

)
,

which equals to 2124 if x > 4 and if x = 4 it equals to 2125 of small compu-
tations for recovering the whole key, which is lower than exhaustive search. And
the memory complexity is 2s as we stock the candidates in a table of size 2s. For
s = 101, we get a time complexity of 2124.58, and many trade-offs are possible.

6.2 Other Attacks on CRAFT and conclusion

The attack described above can be applied to fewer than 23 rounds straight-
forwardly by subsequently removing one round from each side and adapting the
structures to the known key nibbles. These results can be seen in Table 1. In this
case, the data will be smaller, as we can apply the data reduction idea from [11].

It is worth pointing out that the authors did not expect differential attacks
to reach 22 rounds with the best paths they found. Given that these paths
reached 13 rounds, and the distinguisher used in our attack reaches 11 (two less
rounds), it makes us deduce that truncated MITM attacks seem to be much
more performant on CRAFT than differential attacks, and the most performant
attack, to the best of our knowledge. We believe this is the case because of
its alternated key schedule and the existence of iterative truncated paths, both
with period two. The number of rounds reached is still far from the full version,
but we expect further attacks with these techniques and better dealing with the
state-test relations to reach more rounds.

7 Applications: SKINNY-64-192 and SKINNY-128-384

In this section, we provide two applications on two variants of SKINNY. Using
a truncated path, state-test technique and the enhanced parallel partitioning
method over two rounds, we provide a new attack on 23-round SKINNY-64-192,
with slightly better time and lower data than the best known attack. In order
to illustrate the importance of our improved parallel partitioning method, we
have improved the previous differential MITM attack on SKINNY-128-384, that
provided the best attacks on the single tweakey setting, and we have managed to
slightly reduce their time or data complexity thanks to the structures, providing
the best current attack on SKINNY-128-384 in the single tweakey setting. The
specification of this cipher is given in C.2. In the proposed attacks, we use the
modified round key addition in the upper part where Ur = MC(SR(Kr)) is Xored
to the output state of the MixColumn operation. This shows the fact that (trun-
cated) differential MITM attacks work well on reduced-round variants of the
SKINNY constructions. As further work, we plan to automatize the tool including
more evolved structures, as the ones used in the MITM attacks from [2,3,10],
and we expect we might be able to reach more rounds in both variants.

21



∆in X7 X8 X9 X10 X11 X12 X13 X14 ∆out

Fig. 9. 9-round truncated differential characteristic of probability 252 for
SKINNY-64-192.

7.1 Attack on 23-round SKINNY-64-192

Since SKINNY key schedule is linear, it would be an efficient approach to guess
some subkey bits and retrieve the whole key after guessing enough independent
round key bits. Moreover, the key schedule makes the evaluation of the dimen-
sion of any set of round key nibbles easy since a round key nibble depends on
exactly three master key nibbles, TK1[i],TK2[i], and TK3[i], for a specific
i ∈ {0, . . . , 15}.

An attack on SKINNY-64-192 without parallel partitioning. We first pro-
pose a 21-round truncated differential-MITM attack which is followed by two
additional rounds using the parallel partitioning method, resulting in a 23-round
attack. We conducted an automatic search for the optimum 21-round core at-
tack on SKINNY-64-192, enhanced with the state-test key guessing technique,
based on the MILP method proposed in Sec. 5. We set rm = 9, rin = 6, and
rout = 6. The core attack is represented in Fig. 14 in Appendix F, with the
following parameters:

Rounds p sin sout δin δout |kin| |kout|
22 52 4 4 4 8 128 116

The clustering effect increases p to 51.78, which is not very significant. Although
we have included the probabilistic key recovery method in our search, the opti-
mum solution returned pin = pout = 0, meaning that a deterministic key guessing
is more efficient for SKINNY-64-192.

Tab. 9 in Appendix F describes all the subkey nibbles of kin and kout needed
in the 21-round attack of SKINNY-64-192 which are also reflected in Fig. 14 (this
information is also included in the needed key nibbles for the 23-round full attack
in Table 10). It also indicates which nibble of the master key each subkey nibble
of kin and kout depends on, and presents the total number of linear relations in
each nibble of the master key, given kin and kout. In this way, we can determine
the number of common linear relations, i.e. the size of the intersection |kin∩kout|
which is 15× 4 = 60 bits.

State-test technique. We could use the state-test technique to reduce |kin| and
|kout| by testing the 3 and 2 respective nibbles of Tab. 5, instead of guessing
the 5 and 4 respective subkeys nibbles described on the table. Thanks to this
technique, the number of bits in kin could be reduced by 8 bits, and the number
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of bits in kout could also be reduced by 8 bits. The optimal time complexity
is nevertheless reached when we only consider one state-test technique for each
part (the non-crossed ones in Tab. 5).

Wanted
nibble

RoundKey
nibbles
involved

Nibbles needed from the precedent state

X4[2] K3[2], K2[7]
K3[2]⊕ SC(X3[2])⊕ SC(X3[15])⊕ SC(K2[7]⊕

SC(X2[7])⊕ SC(X2[10]))

X4[10] K3[5], K2[7]
K3[5]⊕ SC(X3[5])⊕ SC(K2[7]⊕ SC(X2[7])⊕

SC(X2[10]))

X5[9] K4[4], K3[6]
K4[4]⊕ SC(X4[4])⊕ SC(K3[6]⊕ SC(X3[6])⊕

SC(X3[9]))

X17[5] K17[5],K18[6]
K17[5]⊕ SC−1(X18[10])⊕ SC−1(X18[14])⊕

SC−1(K18[6]⊕ SC−1(X19[7])⊕ SC−1(X19[11])⊕
SC−1(X19[15]))

X16[5] K16[5],K17[6]
K16[5]⊕ SC−1(X17[10])⊕ SC−1(X17[14])⊕

SC−1(K17[6]⊕ SC−1(X18[7])⊕ SC−1(X18[11])⊕
SC−1(X18[15]))

Table 5. Non-linear relations available in the state-test technique on the 21 and 23
rounds of SKINNY-64-192. The crossed cells will not be used in the 23-round attack.

Attack steps We describe now the core attack on 21 rounds of SKINNY-64-192.
The guesses needed for this attack are given in Tab. 9 and the state test equations
to guess are given in Tab. 5.

1. Ask for the encryption of the whole codebook (we will explain later how to
apply the data reduction of Sec. 2.3 to this case).

2. Pick one plaintext/ciphertext pair (P , C).
3. First we guess the 44 subkey bit common relations shared between kin and

kout given by Tab. 9.
4. Compute all possible tuples (P, P̃ , i) for each value i of the remaining 84 bits

of kin such that the difference after the 6th S-box layer is according to ∆in

of Fig. 9. At the end of this step, we have 284+4 possible candidates. For all
P̃ , compute E(P̃ ) = Ĉ and store them in a hash table.

5. Similarly, for each value j of the remaining 72 bits of kout, compute all
possible tuples (C, C̃, j) so that the difference on the state before the 15th S-
box layer is according to ∆out of Fig. 9. At the end of this step, we have 272+8

possible candidates for the tuples (C, C̃, j). And check for possible matches
on the hash table. The match is performed on both the new ciphertext Ĉ
and C̃ so that (P̃ ,C̃) is a valid plaintext/ciphertext pair.

6. Repeat from Step 1 until the right key is retrieved.

Adjustment for the number of candidate triplets. If we consider what complexity
such an attack would have, we obtain:

252−4244
(
2128−44+4 + 2116−44+8 + 2168−64

)
= 2196,

23



X21 W21

Y22 C

SC ⊕

K21

SR MC

SC ⊕

K22

SR

F

F

A

B

C

D

a

b

d

Fig. 10. The two last rounds of the 23-round attack on SKINNY-64-192, using parallel
partitioning technique with fixed values for X[1]⊕X[11], X[3]⊕X[9], Y [2]⊕Y [13] and
Y [7]⊕ Y [13].

that exceeds the exhaustive search.
This is a possible side effect of the state test technique, that allows less

sieving regarding the keybits. To compensate this, we will consider less state-
test equations: we will guess in addition K2[7], that will determine because of
the two first state-test equations K3[2] and K3[5]; and also K18[6] and K17[6]
that will determine because of the fourth and fifth state test equations K17[5]
and K16[5]. These three words guesses provide an additional sieving of 6 words,
so 2−24. The complexity will then be below exhaustive search:

252−4268
(
2128+4−68+4 + 2116+8−68+8 + 2132−64

)
= 2184.

Attack on 23-round of SKINNY-64-192 Now we will explain how to extend
for two rounds this 21-round attack thanks to the improvement with the parallel
partitioning method. In addition to the 21-round attack, we guess words K22[6],
K21[0], K21[3] and K21[1], as they will be needed to sieve with respect to all
the available potential during the parallel partitioning. In Fig. 10, we give the
scheme of the two last rounds of the attack. We represent in red the internal
state and the subkey words that we will use to build the parallel partitions and
compute the upper part of the attack. Similarly, we represent in blue the internal
state and the subkey words used to build the initial structure and compute the
lower part of the attack. The remaining attack procedure of the 23-round attack
is similar to the 21-round one:

1. We fix the values of the words F , A⊕B and C ⊕D of W21 in Fig. 10, and
of the words a⊕ d and b⊕ d of Y22 in Fig. 10.
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2. We guess the 76 bits of linear common relations of (kin ∩ kout) given in Tab.
10.

3. Then for each value i of the remaining 56+4=60 bits of (kin − kin ∩ kout),
we can compute from the values of step 1, the fixed nibbles C[5, 12, 14, 15],
C[2]⊕C[13] and C[7]⊕C[13] as shown in Fig. 10. Then we have 240 possible
states for C as we have imposed the values of 6 nibbles thus there are 10
nibbles that can take all possible values. For all the possible values for C,
we compute the ciphertext and get the corresponding plaintext P .

4. Compute all possible tuples (P, P̃ , i) for each 2|kin−kin∩kout| × 2sin = 256+4

values i of kin − |kin ∩ kout| and the state test relation, and each P from
the structure defined at the previous step, such that they generate ∆in after
six rounds. At the end of this step, we have 240 × 260+4 = 2104 possible
candidates, and store them in a hash table.

5. Similarly, for each of the 2|kout−kin∩kout| × 2sout = 252+4 possible values j of
(kout−kin∩kout) and state-test relations, we can compute from the values of
step 1, the fixed values X21[0, 8, 10, 15], X21[1]⊕X21[11] and X21[3]⊕X21[9],
in blue in Fig. 10. We then pick all the 240 possible states of X21 and we
compute the 240 possible W20 = MC−1(X21).

6. For each 252+4 = 256 values j of (kout−kin∩kout) and state-test relation and
for each value of state W20, compute all possible tuples (W20, W̃20, j) so that
there is a difference on the state before the 15th S-box layer on both nibbles.
At the end of this step we have 240 × 256+8 = 2104 possible candidates for
the tuples (W20, W̃20, j).

7. Check for possible matches on the hash table. The match is performed on
two quantities:

– The values of the nibbles X̃21[8] and X̃21[15] can be fully computed from
C̃[2] ⊕ C̃[13],C̃[7] ⊕ C̃[13] and the guessed kin and similarly the values
of the nibbles C̃[5],C̃[12], C̃[14] and C̃[15] can be fully computed from
X̃21[0], X̃21[10], X̃21[1]⊕ X̃21[11], X̃21[3]⊕ X̃21[9] and the guessed kout:
a 6× 4 = 24 bit filter;

– The linear relations between X21 and C and between X̃21 and C̃ : a 80-bit
filter (10× 2 equations on 4 bits each), in Table 11 from supplementary
material.

8. Repeat from Step 1 with different values for the fixed nibbles until the right
key is retrieved.

Linear relations to match with the parallel partitioning improvement. At the end
of the attack procedure we have to match X21 and C and their associated pair
X̃21 and C̃. After two rounds of SKINNY-64-192, if we know the 4 first subkey
nibbles then the relations between the words of X21 and C and X̃21 and C̃,
of Fig. 10, are linear. In our application, we have guessed the subkey nibbles
K21[0],K21[1] and K21[3]. We do not know the subkey nibble K21[2] but we have
guessed the subkey nibbles K22[2] and K22[6] and thus we obtain the linear
relations of Column 3. To match both sides of the equations when the subkey
word is not completely determined, we add on each side the subkey information
known by each side, respectively. Thus the relations are linear as we can compute
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each side of the equations independently. The linear relations (given for the pair
(X21,C), but that are also true for (X̃21, C̃)) to match are given in Tab. 11 of
Appendix F.

The time complexity of this step will be:

T = 252−4−40276
(
256+4+4240 + 252+4+8240 + 2104+104−24−40−40

)
= 2188.

To reduce the data complexity of our attack, we use the improvement of [11] to
impose the value of 64−48

2 = 8 bits of the ciphertexts. Thus we fix the nibbles
C[6], C[1]⊕C[13], C̃[6] and C̃[1]⊕ C̃[13], which is a 8 bits condition. Moreover,
we compute and build a stored table with the data needed to perform the attack
to avoid doing the decryption during the upper part of the attack. Finally the
data complexity of this attack is D = 264−8 = 256. The memory complexity is
determined by Step 6 storing M = 2104 words of 64 + 64 = 128.

Thanks to the truncated differential, we manage to extend the characteristic
for more rounds than if it was a concrete differential characteristic since the
subkeys around the characteristic are not needed in the attack. Moreover in the
case of SKINNY, we can use, with little cost, the parallel partitioning improvement
to reach two more rounds and thus reach the same best number of rounds in the
single tweak setting as the best known attack.

7.2 Improved attacks on 25-round SKINNY-128-384

We consider the 24-round and the 25-round attack given in [11] in section 3.4
and 3.5 respectively. Each uses a different differential. By considering the core
attack on 23 rounds that is extended by one round in the paper, we will apply our
improved structure with a two-round extension, reducing the data complexity
of the best known attacks, that cover 25 rounds. By considering the 25-round
attack also considered in the paper, and including the last key recovery round
in the final structure, reaching now 2 rounds instead of 1, we are able to reduce
the overall time complexity, as we have fewer key bits to guess, providing the
25-round SKINNY-128-384 attacks with the lowest complexity. These results are
shown in Table 1, compared to all the previous results.

Reducing the data needed. The application is quite straightforward given
the previous attack, so we will omit the details here and just provide the image
representing the attack in appendix G.

We consider exactly the same core over 23 rounds as in the attack from [11],
but we will add two rounds instead of one. For this, we will additionally guess
nibbles 5, 2, and 4 from K24 in kin, and nibbles 14 and 11 from K23 in Kout.
All these guesses add equations in the common part of the key to guess. This
will allow us to build structures of size 264, with 2 fixed words from the first and
the last columns, 3 from the second, and one from the third – see Fig. 15. The
full filtering can be applied as we can rewrite all equations as linear ones in the
unknown parts of the key. The time complexity becomes:
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T = 2105.9−642120+40
(
2128−16264 + 2136−24264 + 2128−16+64+136−24+64−128−64

)

So we have T = 2201.9
(
2176 + 2176 + 2160

)
= 2378.9, and the memory com-

plexity, with x = (128 − 105.9)/2 = 11.05 becomes 2176−11.05 = 2165, and data
D = 2128−11.05 = 2117, providing the best data complexity for a 25-round attack,
as can be seen in Tab. 1.

Reducing the time. We consider the attack from [11] on 25 rounds, which
added 4 rounds at the top and 5 rounds at the bottom of a 15-round distin-
guisher, plus one added through a structure. As the bottleneck term is the
five rounds at the lower part, where we guess 8 more keybits than the upper
part, we propose our attack with a 2-round structure, yielding a configuration of
4+15+4+2 rounds. As we are guessing 1 less word from kout (all but the word
12 from K23) than before, as we add 7 words needed in order to verify linearly
the equations in the structure and to build small structures, all the complexities
stay the same, but the time reduces of about a factor of 28 as shown in Tab. 1.
We can build now 4 fixed relations between the input and the output of the
structure, given by equations A1 + C1, A2 + C2, A3 + C3, A4 + C4, B1 + C1,
B2 + C2, B3 + C3 from Fig. 16, and the structures will have a size of 272. We
do not guess the word 12 from round K23 anymore, which reduces by 1 word
the lower guess and leaves the number of common keybits the same. The time
complexity becomes:

T = 2116.5−722120
(
2128+72 + 2136−64+56+72 + 2128+72+136−64+56+72−72−128

)
,

giving T = 2164.5
(
2200 + 2200 + 2200

)
= 2366, while previous best time was

2372.5. Applying the same idea as in the previous attack for reducing the data
and memory needed, we obtain, without modifying the time and memory com-
plexities a data of also 2128−x = 2122.25, as x = 128−116.5

2 = 5.75, with a memory
complexity of 2194.25, that stays the same.

8 Conclusion

We have implemented a tool, based on MILP modeling, that finds the distin-
guishers that produce the best overall attack complexities when considering the
key-guessing rounds and their two related improvements. The inclusion of the
structures is left as an open problem for the future.

We have been able to apply the variety of results to CRAFT, SKINNY-64-192
and SKINNY-128-384. For CRAFT we managed to improve by two rounds the pre-
vious attacks with a truncated version of differential MTIM. For SKINNY-128-384
we managed to improve the complexities of the best known attacks in the single
tweak setting, and for SKINNY-64-192 we matched the same number of rounds
while the time stays comparable and the memory and data are worse.
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We have in particular shown that differential MITM attacks have a different
nature than differential attacks that allow them to be combined with MITM-
related techniques that can not be combined with differential attacks, like the
parallel partitions that are closely related to initial structures and bicliques.
Actually, we leave as an open problem to produce a tool that will combine dif-
ferential MITM attacks with parallel partitioning technique [4] and bicliques [19]
over more rounds, as the one in [14].

In addition, we showed that differential MITM attacks can be easily com-
bined with the state-test technique, thanks to the fact that each key is tested
for a fixed data. In differentials attacks it would be much harder to apply.
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Supplementary Material

A Preliminaries on truncated differential characteristics

We first briefly review the truncated differential distinguisher. In the following,
consider a block cipher E : Fn

2 ×F k
2 → Fn

2 , with an n-bit block and a k-bit key.
The input and output difference variables of E are denoted by ∆X and ∆Y ,
respectively.

Definition 1 (Differential Probability). For a block cipher EK , with the
input and output concrete differences α, β ∈ Fn

2 , the differential probability of
(α

E−→ β) is defined as:

P (α
E−→ β) = P (∆Y = β|∆X = α) = P [EK(x)⊕ EK(x⊕ α) = β] (7)

The differential (α E−→ β) is called an efficient distinguisher if P (α
E−→ β)≫ 2−n.

Definition 2 (Truncated Differential Probability). For a block cipher EK ,
with the input and output truncated differences ∆in, ∆out ⊆ Fn

2 , the truncated
differential probability of (∆in

E−→ ∆out) is defined as:

P (∆in
E−→ ∆out) = P (∆Y ∈ ∆out|∆X ∈ ∆in)

= P [EK(x)⊕ EK(x⊕ α) ∈ ∆out|α ∈ ∆in] (8)

The truncated differential (∆in
E−→ ∆out) is called efficient if

P (∆in
E−−→ ∆out) > P (∆in

PRP−−−→ ∆out) =
|∆out|
2n

. (9)

In both cases, an efficient (truncated) differential can be used for distinguishing
the block cipher E from a Pseudo Random Permutation (PRP). In the context of

the concrete differential attack, it remains true that P (α
E−→ β) = P (β

E−1

−−−→ α).
However, it doesn’t hold for truncated differentials. In [1], it is shown that for a
block cipher E with a truncated input/output differential pair (∆in, ∆out):

P (∆out
E−1

−−−→ ∆in) = P (∆in
E−→ ∆out)

|∆in|
|∆out|

(10)

B Theorems

In the followings, ri and ci refers to the ith row and column of M, respectively,
and Hw(·) is the Hamming weight operation.
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Theorem 1 (Differential Propagation Constraints). Let a and b be the
binary vectors indicating the truncated differences at the input and output of the
c× c matrix M. The subsequent two sets of constraints specify the MILP model
for the activation of b, given the activation of a.

{
ci · b ≥ Hw(ci)ai , i = 0, . . . , c− 1

bi ≤ ri · a , i = 0, . . . , c− 1
(11)

Proof. We should consider two aspects for determining the set of constraints:

1. Constraints ensuring the activeness of b depending on the activeness of a.
Since b = Ma =

∑c−1
i=0 ciai, those entries of b would be affected by ai whose

corresponding entry in ci is non-zero. This yields a set of constraints of the
form bj ≥ ai, where the j-th entry of ci is nonzero. Summing up this set of
constraints, they all can be summarized in the following inequality.

ci · b ≥ Hw(ci)ai , i = 0, . . . , 3 (12)

2. Constraints preventing the undesired activeness of b. We have bi = ri · a =∑c
j=0 (ri)jaj . If none of aj present in this linear description with a non-zero

coefficient are active, then bi should not be activated. This is equivalent to
the following constraint:

bi ≤ ri · a , i = 0, . . . , 3 (13)

Theorem 2 (Value Determination Constraints). Let a and b be the binary
vectors indicating the value required/known words in the input and output of the
c×c matrix M. The subsequent sets of the MILP constraints specify the required
a for determination of a given b.

{
ri · a ≥ Hw(ri)bi , i = 0, . . . , c− 1

ai ≤ ci · b , i = 0, . . . , c− 1
(14)

Proof. We should consider two aspects for determining the set of constraints:

1. Constraints ensuring the activeness of a depending on the activeness of b.
We have bi = ri · a =

∑c
j=0 (ri)jaj . So, if bi = 1, all the aj present in this

linear description with a non-zero coefficient should be set to 1, i.e. we should
have aj ≥ bi if the j-th entry of ri is non-zero. The following inequality also
establishes such conditions.

ri · a ≥ Hw(ri)bi , i = 0, . . . , 3 (15)

2. Constraints preventing the undesired activeness of a. If

ai ≤ ci · b , i = 0, . . . , 3 (16)
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Theorem 3. Let a and b be the binary vectors indicating the value required/known
words in the input and output of the c × c matrix M. Suppose s is the binary
vector indicating that the corresponding words in b are tested (si = 1) or not
(si = 0). The subsequent sets of the MILP constraints specify the required a for
determination of a given b, in the presence of s.





si ≤ bi , i = 0, . . . , c− 1

ri · a ≥ Hw(ri)(bi − si) , i = 0, . . . , c− 1

ai ≤ ci · (b− s) , i = 0, . . . , c− 1

(17)

Proof. We should consider three aspects for determining the set of constraints:

1. Constraints preventing the undesired activeness of s. Obviousely, the value
required/known words (bi = 1) should be given the chance of turning into a
state-test word (si = 1). In other words, for words with bi = 0, si must be
0. This leads us to the following constraint:

si ≤ bi , i = 0, . . . , 3 (18)

2. Constraints ensuring the activeness of a depending on the activeness of b.
This set of constraints is the counterpart of (12). If si = 0, it should follows
(12) without any change. On the other hand, if si = 1, the value determi-
nation trace arising from this word, should be terminated, equivalently bi
should be considered zero. both cases are equivalent to replacing bi with
bi − si in (12), resulting the following constraint:

ri · a ≥ Hw(ri)(bi − si) , i = 0, . . . , 3 (19)

3. Constraints preventing the undesired activeness of a. The same discussion
as above is valid for this set of constraints along with its counterpart (13).
So, we have:

ai ≤ ci · (b− s) , i = 0, . . . , 3 (20)

Value Determination at the edges of the Distinguisher

Property 1. Suppose that a is the output truncated difference of the distin-
guisher at round rm+rin with A defined as A = {j|aj = 0}. Let b = Ma, M ′ be
matrix M excluding columns with indexes from A, and B = {i|r′i is independent
of the other rows of M ′}. Then, the value of bi, where i ∈ B is not needed to be
determined.

Then, one can derive the set of feasible points (a,b′), where b′i = 0 if i ∈ B,
defined in Property 1, otherwise b′i = bi. Then the set of constraints describing
this set of feasible points can be constructed, using the method proposed in [31].
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R0 R1 Ri R30 R′31· · · · · ·

TK0 TK1 TKi mod 4 TK2 TK3

RC0 RC1 RCi RC30 RC31

Figure 3: Structure of CRAFT
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PermuteNibbles
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15 12 13 14
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Figure 4: One full round function of CRAFT

Table 1: The Sbox of MIDORI and CRAFT

x 0 1 2 3 4 5 6 7 8 9 a b c d e f

S(x) c a d 3 e b f 7 8 9 1 5 0 2 4 6

MixColumn (MC): The following involutory binary matrixM is multiplied to each column
of the state:

M =




1 0 1 1
0 1 0 1
0 0 1 0
0 0 0 1


 .

That is, for each column index j ∈ {0, . . . , 3},



I0,j
I1,j
I2,j
I3,j


 7→




I0,j ⊕ I2,j ⊕ I3,j
I1,j ⊕ I3,j

I2,j
I3,j


 .

PermuteNibbles (PN): An involutory permutation P is applied on the nibble positions
of the state. In particular, for all 0 ≤ i ≤ 15, Ii is replaced by IP(i), where

P = [15, 12, 13, 14, 10, 9, 8, 11, 6, 5, 4, 7, 1, 2, 3, 0] .

AddConstantsi (ARCi): One 4-bit and one 3-bit LFSR, whose states are denoted by
a = (a3, a2, a1, a0) and b = (b2, b1, b0) (with a0 and b0 being the least significant bits),
respectively, are used to generate round constants. The LFSRs are initialized by the values
(0001) and (001) and their update functions are

(a3, a2, a1, a0)→ (a1 ⊕ a0, a3, a2, a1) , (b2, b1, b0)→ (b1 ⊕ b0, b2, b1) .

In every round, (a3, a2, a1, a0) and (0, b2, b1, b0) are XOR-ed with the state nibbles I4 and
I5, respectively, and then both LFSRs get updated. Table 2 shows the hexadecimal values
of all round constants.

Fig. 11. CRAFT round function [8]

C Specification of the Ciphers

C.1 Description of CRAFT

CRAFT is a lightweight tweakable block cipher made out of involutory building
blocks [8]. It consists of a 64-bit block, a 128-bit key, and a 64-bit tweak. The
state is seen as a 4× 4 matrix of 4-bits cells (nibbles) and is denoted by I. Row
0 is considered the uppermost one and column 0 is taken to be the leftmost one.
The numbering of the words inside the state matrix is as follows.

0 1 2 3
4 5 6 7
8 9 10 11
12 13 14 15

The round function of CRAFT is depicted in Fig. 11. By initializing the state
with the plaintext, the cipher iterates 31 round functions (Ri, 0 ≤ i ≤ 30), fol-
lowed by one more round R′

31) to compute the ciphertext. The round operations
are defined as follows:

1. MixColumn (MC): The following binary matrix M is multiplied with each
column of the state. Note that M = M−1

M =




1 0 1 1
0 1 0 1
0 0 1 0
0 0 0 1


 .

2. AddConstanti (ARCi) A pair of round constants RCi is Xored to nibbles 4
and 5 of the state at round i.

3. AddTweakeyi (ATKi): The round tweakey RTi = TKi mod 4, described as fol-
lows, is Xored to the cipher state.

TK0 = K0 ⊕ T, TK1 = K1 ⊕ T, TK2 = K0 ⊕ Q(T ), TK3 = K1 ⊕ Q(T ).

where K = (K0||K1) is the 128-bit secret key, and Q(·) is the permutation:

Q = [12, 10, 15, 5, 14, 8, 9, 2, 11, 3, 7, 4, 6, 0, 1, 13].
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Initialization. The cipher receives a plaintext m = m0‖m1‖ · · · ‖m14‖m15, where the mi

are s-bit cells, with s = n/16 (we have s = 4 for the 64-bit block SKINNY versions and
s = 8 for the 128-bit block SKINNY versions). The initialization of the cipher’s internal
state is performed by simply setting ISi = mi for 0 ≤ i ≤ 15:

IS =




m0 m1 m2 m3

m4 m5 m6 m7

m8 m9 m10 m11

m12 m13 m14 m15




This is the initial value of the cipher internal state and note that the state is loaded
row-wise rather than in the column-wise fashion we have come to expect from the AES;
this is a more hardware-friendly choice, as pointed out in [29].

The cipher receives a tweakey input tk = tk0‖tk1‖ · · · ‖tk30‖tk16z−1, where the tki are
s-bit cells. The initialization of the cipher’s tweakey state is performed by simply setting
for 0 ≤ i ≤ 15: TK1i = tki when z = 1, TK1i = tki and TK2i = tk16+i when z = 2, and
finally TK1i = tki, TK2i = tk16+i and TK3i = tk32+i when z = 3. We note that the
tweakey states are loaded row-wise.

Table 1. Number of rounds for SKINNY-n-t, with n-bit internal state and t-bit tweakey
state.

Tweakey size t

Block size n n 2n 3n

64 32 rounds 36 rounds 40 rounds

128 40 rounds 48 rounds 56 rounds

The Round Function. One encryption round of SKINNY is composed of five opera-
tions in the following order: SubCells, AddConstants, AddRoundTweakey, ShiftRows and
MixColumns (see illustration in Figure 1). The number r of rounds to perform during

SC AC

ART

>>> 1

>>> 2

>>> 3

ShiftRows MixColumns

Fig. 1. The SKINNY round function applies five different transformations: SubCells (SC),
AddConstants (AC), AddRoundTweakey (ART), ShiftRows (SR) and MixColumns (MC).

encryption depends on the block and tweakey sizes. The actual values are summarized in
Table 1. Note that no whitening key is used in SKINNY. Thus, a part of the first and last
round do not add any security. We motivate this choice in Section 3.

SubCells. A s-bit Sbox is applied to every cell of the cipher internal state. For s = 4,
SKINNY cipher uses a Sbox S4 very close to the PICCOLO Sbox [39]. The action of this
Sbox in hexadecimal notation is given by the following Table 2.

7

Fig. 12. Round function of SKINNY-64-192 [7].

4. PermuteNibbles (P): An involutory permutation P is applied to nibbles of
the cipher state.

P = [15, 12, 13, 14, 10, 9, 8, 11, 6, 5, 4, 7, 1, 2, 3, 0].

5. SubBox (SB): The following 4-bit involutory S-box S is applied to each nibble
of the state.

x 0 1 2 3 4 5 6 7 8 9 a b c d e f

S(x) c a d 3 e b f 7 8 9 1 5 0 2 4 6

Finally, the round functions of CRAFT are defined as Ri = SB◦PN◦ATKi◦ARCi◦MC
for i = 0, . . . , 30, and R31 = ATKi ◦ ARCi ◦ MC.

C.2 Description of SKINNY-64-192

SKINNY, designed by Beierle et al. [7], is a family of tweakable lightweight block
ciphers denoted by SKINNY-n-t, where n = 64 or 128 is the block size, and
t = n, 2n, and 3n is the tweakey [7] (key plus tweak) size. The exact specification
of the cipher depends on the block and key sizes. Here, we consider SKINNY-64-
192. The cipher follows an SPN structure with a very compact S-box, a linear
layer based on a sparse non-MDS binary matrix, and a lightweight tweakey
schedule. The state is seen as a 4× 4 matrix of 4-bits cells. Row 0 is considered
the uppermost one and column 0 is taken to be the leftmost one. The numbering
of the words inside the state matrix also follows that of CRAFT, explained in Sec.
C.1.

The round function of SKINNY is depicted in Fig. 12, which is iterated 40 times
for SKINNY-64-192. One round of SKINNY is composed of five operations applied
in the following order: SubCells, AddConstants, AddRoundTweakey, ShiftRows
and MixColumns.

1. SubCells (SC). A 4-bit S-box S, described as follows, is applied to every cell
of the cipher’s internal state.

x 0 1 2 3 4 5 6 7 8 9 a b c d e f

S(x) c 6 9 0 1 a 2 b 3 8 5 d 4 e 7 f

S−1(x) 3 4 6 8 c a 1 e 9 2 5 7 0 b d f
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Extracted
8s-bit subtweakey

PT

LFSR

LFSR

Fig. 13. The tweakey schedule in SKINNY. Each tweakey word TK1,TK2, and TK3
follows a similar transformation update, except that no LFSR is applied on TK1.

2. AddConstants (AC). A round constant is added to the internal state of the
cipher.

3. AddRoundTweakey (ART). In case of SKINNY-64-192, where t = 3n, the first
and second rows of the three tweakey arrays TK1,TK2, and TK3 are
extracted from the tweakey with respect to the tweakey schedule and Xored
to the first two rows of the internal state, respecting the cell positions inside
the arrays.

4. ShiftRows (SR). The rows of the cipher internal state array are rotated to
the right. More precisely, the second, third, and fourth cell rows are rotated
by 1, 2 and 3 positions to the right, respectively.

5. MixColumns (MC). Each column of the cipher internal state array is multiplied
by the following binary matrix M (or M−1 for decryption):

M =




1 0 1 1
1 0 0 0
0 1 1 0
1 0 1 0


 and M−1 =




0 1 0 0
0 1 1 1
0 1 0 1
1 0 0 1


 .

The tweakey schedule used in SKINNY-64-192 updates TK1,TK2, and TK3
as illustrated in Fig. 13. First, the cell-wised permutation

PT = [9, 15, 8, 13, 10, 14, 12, 11, 0, 1, 2, 3, 4, 5, 6, 7]

is applied on the tweakey arrays. Moreover, every cell of the first and second
rows of TK2 and TK3 are individually updated with LFSRs given in Tab. 6,
where x0 is the least significant bit of the cell.

TK LFSR
TK2 (x3 || x2 || x1 || x0) → (x2 || x1 || x0 || x3 ⊕ x2)
TK3 (x3 || x2 || x1 || x0) → (x3 ⊕ x0 || x3 || x2 || x1)

Table 6. The LFSRs used in the tweakey schedule SKINNY-64-192.
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D Branching Property Tables

Definition 3 (Branching Property Table (BPT)). Let M be a matrix over
F2m of size c × c. The BPT of M is a 2c × 2c table, such that BPT (a,b)

represents transition probability P (a
M−→ b), where a,b ∈ Fc

2 are the input and
output truncated differential vectors. In more details,

BPT (a,b) = log2(Prx{Tr(M · x) = b|Tr(x) = a}) (21)

where Tr(·) is the truncation operator, and the probability is taken over all uni-
formly distributed x over Fc

2m .

Tables 7 and 8 display the BPTs for the SKINNY-64-192 and CRAFT MixColumn
matrices, respectively. Each entry (a,b) in these tables represents the base-2
logarithm of the transition probability. The impossible transitions are indicated
by a "-" in the tables.

Table 7. BPT for SKINNY MixColumn Matrix

in/out 0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7 0x8 0x9 0xa 0xb 0xc 0xd 0xe 0xf

0x0 0 - - - - - - - - - - - - - - -

0x1 - - - - - - - - 0 - - - - - - -

0x2 - - - - - - - - - - - 0 - - - -

0x3 - - - -3.907 - - - - - - - -0.09954 - - - -

0x4 - - 0 - - - - - - - - - - - - -

0x5 - - - - - - - - - - 0 - - - - -

0x6 - - - - - - - - - -3.907 - -0.09954 - - - -

0x7 - -7.814 - -4.0064 - - - - - -4.0064 - -0.19907 - - - -

0x8 - - - - - - - - - - - - - 0 - -

0x9 - - - - - -3.907 - - - - - - - -0.09954 - -

0xa - - - - - - -3.907 - - - - - - - - -0.09954

0xb - - - - - - - -4.106 - - - - - - -3.9996 -0.1990

0xc - - - - - - - - - - - - - - - 0

0xd - - - - - - - -3.907 - - - - - - - -0.09954

0xe - - - - -7.814 - -4.006 - - - - - - -4.0064 - -0.1990

0xf - - - - - -7.913 - -4.106 - - - - -7.814 -4.106 -4.0064 -0.2986
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Table 8. BPT for CRAFT MixColumn Matrix

in/out 0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7 0x8 0x9 0xa 0xb 0xc 0xd 0xe 0xf

0x0 0 - - - - - - - - - - - - - - -

0x1 - - - - - - - - - - - - - 0 - -

0x2 - - - - - - - - - - 0 - - - - -

0x3 - - - - - - - -3.907 - - - - - - - -0.09954

0x4 - - - - 0 - - - - - - - - - - -

0x5 - - - - - - - - - -3.907 - - - -0.09954 - -

0x6 - - - - - - - - - - - - - - 0 -

0x7 - - - -7.814 - - - -4.0064 - - - -4.0064 - - - -0.19907

0x8 - - - - - - - - 0 - - - - - - -

0x9 - - - - - -3.907 - - - - - - - -0.09954 - -

0xa - - -3.907 - - - - - - - -0.09954 - - - - -

0xb - - - - - - - -4.0064 - - - - - - - -0.09268

0xc - - - - - - - - - - - - 0 - - -

0xd - -7.814 - - - -4.0064 - - - -4.0064 - - - -0.19907 - -

0xe - - - - - - -3.907 - - - - - - - -0.09954 -

0xf - - - -7.913 - - - -4.106 - - - -3.9996 - - - -0.1922
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E Equations used in the State-test technique of CRAFT

In the attack of CRAFT, we use the state-test technique to test the 7 nibbles of
the state given below, instead of guessing more subkey nibbles. The nibbles are
given as a function of all the subkey nibbles needed to compute them and the fi
are non-linear functions, possibly involving internal states words, taking subkey
words as parameters.

W1[14] = K1[3]⊕ f0(K0[14])⊕ f1(K0[7])⊕ f2(K0[0]);

W2[12] = K2[1]⊕ f0(K1[12], f1(K0[1]))⊕ f2(K1[5], f3(K0[2]), f4(K0[9]))

⊕ f5(K1[2], f6(K0[3]), f7(K0[4]), f8(K0[13]));

W3[14] = K3[3]⊕ f0(K2[14], f1(K1[3]), f2(K0[0]), f3(K0[7]), f4(K0[14]))

⊕ f5(K2[7], f6(K1[11], f7(K0[7]), f8(K1[0], f9(K0[1]), f10(K0[6]), f11(K0[15]))))

⊕ f12(K2[0], f13(K1[15], f14(K0[0])), f15(K1[6], f16(K0[8]), f17(K0[3])),

f18(K1[1], f19(K0[2]), f20(K0[5]), f21(K0[12])))

W4[12] = K4[1]⊕ f0(K3[12], f1(K2[1], f2(K1[12], f3(K0[1])),

f4(K1[5], f5(K0[9]), f2(K0[2]))f6(K1[2], f7(K0[3]), f8(K0[4]), f9(K0[13]))))

⊕ f10(K3[5], f11(K2[9], f12(K1[5], f13(K0[9]), f14(K0[2]))), f15(K2[2], f16(K1[13],

f17(K0[2])), f18(K1[4], f19(K0[10]), f20(K0[1])), f21(K1[3], f22(K0[0]), f23(K0[7]), f24(K0[14]))))

⊕ f25(K3[2], f26(K2[13], f27(K1[2], f28(K0[13]), f29(K0[4]), f30(K0[3])),

f31(K2[4], f32(K1[10], f33(K0[4])), f34(K1[1], f35(K0[12]), f36(K0[5]), f37(K0[2])),

f38(K2[3], f39(K1[0], f40(K0[15]), f41(K0[6]), f42(K0[1])), f43(K1[7], f44(K0[11]), f45(K0[0])),

f46(K1[14], f47(K0[3]))))))

X20[1] = K20[1, 9, 13]⊕ f0(K21[2, 10, 14])⊕ f1(K21[5, 13])

X19[3] = K19[3, 11, 15]⊕ f0(K20[0, 8, 12], f1(K21[1, 9, 13]), f2(K21[6, 14]), f3(K21[15]))

⊕ f4(K20[7, 15], f5(K21[11]), f6(K21[0, 8, 12]))⊕ f7(K20[14], f8(K21[3, 11, 15]))

X18[1] = K18[1, 9, 13]⊕ f0(K19[2, 10, 14], f1(K20[13], f2(K21[2, 10, 14])), f3(K20[4, 12], f4(K21[10]),

f5(K21[1, 9, 13])), f6(K20[3, 11, 15], f7(K21[14]), f8(K21[7, 15]), f9(K21[0, 8, 12])))

⊕ f10(K19[5, 13], f11(K20[9], f12(K21[5, 13])), f13(K20[2, 10, 14], f14(K21[3, 11, 15]),

f15(K21[4, 12]), f16[K21[13]])

⊕ f17(K19[12], f18(K20[1, 9, 13], f19(K21[12]), f20(K21[5, 13]), f21(K21[2, 10, 14]).

For the sake of clarity, we rewrite the equations erasing the key bits we
already know after the attack steps. We get the following equations:

– round 1: the equation is K1[3]⊕Known = 0; which give us the value of K1[3].
– round 2: f0(K1[5]) ⊕ f1(K1[2]) ⊕ Known = 0; from this we get K1[5] in

function of K1[2].
– round 20: f0(K1[2, 10, 14])⊕ f1(K1[5])⊕Known = 0, which gives us K1[10]

in function of K1[2] and K1[14].
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– round 3: f0(f1(K1[11]), f2(K1[0])) ⊕ f3(f4(K1[11]), f5(K1[6]), f6(K1[1])) ⊕
Known = 0.

– round 19: f0(f1(K1[1, 9]), f2(K1[6, 14]), f3(K1[11]))⊕f4(f5(K1[11]), f6(K1[0]))⊕
Known = 0.

– round 4: the equation becomes

f0(K1[5], f1(f12(K1[5])))⊕ f2(K1[2], f3(f4(K1[2]), f5(f6(K1[10])

, f7(K1[1]), f8(f9(K1[0]), f10(K1[7]), f11(K1[14])))))⊕Known = 0.

– round 18: the equation becomes

f0(K1[2, 10, 14], f1(f2(K1[2, 10, 14])), f3(f4(K1[10]), f5(K1[1, 9])), f6(f7(K1[14])

, f8(K1[7, 11]), f9(K1[0])))⊕ f10(K1[5], f11(f12(K1[5])))⊕Known = 0.
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F Details of the 23-round attack on SKINNY-64-192

X0 SC
Y0 SR

Z0 MC
⊕

W0
U0

SC SR MC
⊕
U1

SC SR MC
⊕
U2

SC SR MC
⊕
U3

SC SR MC
⊕
U4

SC SR MC
⊕
U5

SC
∆in

9 rounds distinguisher

∆out SC
⊕
K15 SR MC

SC
⊕
K16 SR MC

SC
⊕
K17 SR MC

SC
⊕
K18 SR MC

SC
⊕
K19 SR MC

SC
⊕
K20 SR

Fig. 14. The 21-round core part of the 23-round attack on SKINNY-64-192 from round
0 to round 20 included. Differential propagation in the upper (lower) part has been
shown in red (blue). The stripped red (blue) nibbles are those non-active nibbles whose
value is needed to compute the value of green ones in the upper (lower) part. The state-
test nibble is shown in orange. The gray-striped nibbles are whose values are no longer
required, thanks to the state-tests. The equivalent subkey Ui = MC(SR(Ki)).
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TKi Nibble kin kout # Equations
0 K0[0], K2[2] K18[2], K20[4] 1
1 K0[1], K2[0], K4[2] K16[1], K18[0], K20[2] 3
2 K0[2], K2[4] K18[4], K20[6] 1
3 K0[3], K2[7] K18[7], K20[1] 1
4 K0[4], K2[6] K18[6], K20[5] 1
5 K0[5], K2[3] K18[3], K20[7] 1
6 K0[6], K2[5] K18[5], K20[3] 1
7 K0[7], K2[1], K4[0] K18[1], K20[0] 2
8 K1[2] K19[4] 0
9 K1[0], K3[2] K17[0], K19[2] 1
10 K1[4] K19[6] 0
11 K1[7], K3[1] K19[1] 0
12 K1[6], K3[5] K19[5] 0
13 K1[3], K3[7] K17[3], K19[7] 1
14 K1[5], K3[3] K17[5], K19[3] 1
15 K1[1], K3[0] K17[1], K19[0] 1

Table 9. Subkey nibbles involved in the 21-round attack of SKINNY-64-192. The bold
symbols correspond to the key words not involved in state-test relations anymore.

TKi Nibble kin kout # Equations
0 K0[0], K2[2], K22[6] K18[2], K20[4] 2
1 K0[1], K2[0], K4[2] K16[1],K18[0], K20[2] 3
2 K0[2], K2[4] K18[4], K20[6] 1
3 K0[3], K2[7] K18[7], K20[1] 1
4 K0[4], K2[6] K18[6], K20[5] 1
5 K0[5], K2[3] K18[3], K20[7] 1
6 K0[6], K2[5] K18[5], K20[3] 1
7 K0[7], K2[1], K4[0] K18[1], K20[0] 2
8 K1[2] K19[4] 0
9 K1[0], K3[2] K17[0], K19[2] 1
10 K1[4] K19[6] 0
11 K1[7], K3[1] K19[1], K21[0] 1
12 K1[6], K3[5] K19[5], K21[3] 1
13 K1[3], K3[7] K17[3], K19[7], K21[1] 2
14 K1[5], K3[3] K19[3], K17[5] 1
15 K1[1], K3[0] K17[1], K19[0] 1

Table 10. Subkey nibbles involved in the 23-round attack of SKINNY-64-192.

Internal state computed from X21 Internal state computed from C

SB(SB(X21[0])⊕K21[0]⊕ SB(X21[10])⊕ SB(X21[13])) C[0]⊕K22[[0]]
SB(X21[7])⊕K21[7]⊕ SB(X21[10]) SB−1(C[8])

SB(SB(X21[1])⊕K21[1]⊕ SB(X21[11])⊕ SB(X21[14])) C[1]⊕K22[1]
SB(SB(X21[1])⊕K21[1]) C[5]⊕K22[5]
SB(X21[4])⊕K21[4]⊕ SB(X21[11]) SB−1(C[9])

SB(X21[2])⊕K21[2] SB−1(C[6]⊕K22[6])
SB(X21[5])⊕K21[5]⊕ SB(X21[8]) SB−1(C[10])

SB(SB(X21[3])⊕K21[3]⊕ SB(X21[9])⊕ SB(X21[12])) C[3]⊕K22[3]
SB(SB(X21[3])⊕K21[3]) C[7]⊕K22[7]
SB(X21[6])⊕K21[6]⊕ SB(X21[9]) SB−1(C[11])

Table 11. Linear relation to match between (X21, C) and between (X̃21, C̃). Two sides
of each row are equal.
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G Figures of the added rounds in two 25-round attacks
on SKINNY-128-384

In Sec. 7.2, we explained how to mount an attack on 25-round of SKINNY-128-384
using our improvement of the parallel partitioning of Sec. 4.1. Here we give the
figure representing the two last rounds of the attacks.

X23 W21

Y22 C

SC ⊕

K23

SR MC

SC ⊕

K24
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A A

C
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F
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a2
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d2
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b2

a1

b1

d2 d1

Fig. 15. Parallel partitioning applied to the last two rounds of the 25-round attack on
SKINNY-128-384 using the 23-round path given in [11].
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Fig. 16. Parallel partitioning applied to the last two rounds of the 25-round attack on
SKINNY-128-384 using the 24-round path minus the last round given in [11].
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