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Abstract. In this paper, we present a new type of algebraic attack that
applies to many recent arithmetization-oriented families of permutations,
such as those used in Griffin, Anemoi, ArionHash, and XHash8, whose se-
curity relies on the hardness of the constrained-input constrained-output
(CICO) problem. We refer to the attack as the FreeLunch approach: the
monomial ordering is chosen so that the natural polynomial system en-
coding the CICO problem already is a Gröbner basis. In addition, we
present a new dedicated resolution algorithm for FreeLunch systems of
complexity lower than current state-of-the-art resolution algorithms.
We show that the FreeLunch approach challenges the security of full-
round instances of Anemoi, Arion and Griffin, and we experimentally
con�rm these theoretical results. In particular, combining the FreeLunch
attack with a new technique to bypass 3 rounds of Griffin, we recover a
CICO solution for 7 out of 10 rounds of Griffin in less than four hours
on one core of AMD EPYC 7352 (2.3GHz).

Keywords: Algebraic attacks · Gröbner basis · FreeLunch · Symmetric
cryptanalysis · Griffin · Arion · Anemoi

1 Introduction

Recent decades have seen the emergence of new directions in symmetric cryp-
tography. The aim of symmetric primitives has always been to provide strong
security guarantees along with stringent performance requirements. For instance,
modern AES [1] implementations are able to process gigabytes of data in seconds.
This has not changed, but the nature of the performance constraints considered
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is evolving. While the focus has traditionally been on software and hardware
footprints, new use cases bring an entirely di�erent set of relevant metrics.

Numerous such new settings exist, such as Homomorphic Encryption-friendly
ciphers [18,19,42,21,8,37], ciphers designed to run e�ciently in Multi Party Com-
putation protocols [4,3,24], block ciphers de�ned over modular rings enabling
more e�cient masking [41], and Arithmetization-Oriented [5] Permutations
(AOP) operating on vectors over large �eld elements to better integrate with
modern Zero-Knowledge proof systems. Despite their di�erences, there are gen-
eral trends in the design of these primitives, which we group under a broad
umbrella: Symmetric Techniques for Advanced Protocols (STAP).

One noticeable change the STAPs have brought is the underlying alphabet
on which these primitives operate. Until recently, the overwhelming majority
of symmetric primitives were designed based on operations either on the vector
space (F2)

n, or using arithmetic over small binary �elds of size 2m, for 3 ≤ m ≤ 9.
For STAP, the used mathematical structures can be �elds of characteristic 2, but
with a much larger size (typically m ≥ 128), large �elds of prime characteristic
(say, p > 2128), or possibly not even a �eld (like Elisabeth [21] or Rubato [37]).

Moreover, the performance metrics now primarily involve the number of mul-
tiplications in the underlying structure. Some schemes are designed to have a low
multiplicative depth, that is, few multiplications in sequence on any data path
from input to output, while others are designed to merely have a low number of
multiplications in total. These performance metrics have led designers to pro-
pose schemes that are light on multiplications but compensate by de�ning the
multiplication operations over large �elds. The hope is that schemes constructed
this way may still be secure.

Resurgence of Algebraic Attacks. Despite its functionality, the constraints on
multiplications signi�cantly impact the security analysis of STAP primitives.
Key-recovery attacks can often be simpli�ed to the resolution of a (system of)
non-linear equation(s). While this general approach has been applied successfully
to F2-based stream ciphers, traditional block ciphers and hash functions have
mostly been resistant to algebraic attacks.

However, since the constraints that STAP primitives must meet often a�ect
their algebraic structure, algebraic attacks are one of the main threats to them.
After an initial security analysis, most designers end up setting the number of
rounds speci�cally so as to prevent algebraic attacks. Unfortunately, this is not
always su�cient: to attack Jarvis [5], Albrecht et al. managed to re-write the
equations considered by the designers in a simpler way, which made the resolution
step much more e�cient than initially thought [2]. When considering FHE- or
MPC-oriented stream ciphers, FLIP [42] and its descendant Elisabeth [21] both
fell [25,32] to linearization-based attacks: the system of equations to be solved
ended up being simple enough that linear algebra-based approaches could be
used.

Despite their crucial impact (particularly on setting the number of rounds),
algebraic attacks against symmetric primitives are not nearly as well understood
as classical attacks. In particular, there is no consensus among designers on how

2



to provide solid and convincing arguments for the security of primitives against
algebraic attacks.

Principles of an Algebraic Attack. Let us describe the main phases involved in
the setup of an algebraic attack against a symmetric cipher. We provide a more
thorough presentation in Section 2.

First, the problem of interest to the cryptanalyst is modelled as a system of
polynomial equations: state variables are chosen, and equations linking them in
a way that captures the round function constraints are de�ned.

Second, this system of equations is solved, using one of a few existing strate-
gies. If the system can be represented as a unique univariate equation, an e�cient
FFT-based algorithm can be used to retrieve its roots, as performed in [11,9]. If,
on the other hand, the system consists of several non-linear equations, one may
need to convert the system into a form that can be solved e�ciently.

A common strategy, adopted in this paper, consists in deriving a univariate
polynomial equation that shares its solution with the original system, and in
e�ciently solving it afterwards. This is typically done via the computation of
a Gröbner basis [22] for the system, using an algorithm such as F4 [30], or its
follow-up F5 [31]. The Gröbner basis is then modi�ed using a change of order
algorithm, such as FGLM [29] or its variants [27,28,12], yielding a univariate
polynomial equation sharing its solutions with the original system.

In the past, cipher designers have adopted di�erent approaches to prevent
such an attack: the authors of Griffin bounded the complexity of an algebraic
attack with an estimate of the theoretical cost of F5, but the authors of Arion [45]
chose instead to bound the complexity of the change of order step5.

Our Contributions. In this paper, we present a new type of algebraic attack that
signi�cantly outperforms all known methods. It requires revisiting all steps of the
general approach outlined above: the encoding, the Gröbner basis computation
and the change of order steps are di�erent. First, using a custom monomial
ordering and a speci�c equation generation procedure, we get the Gröbner basis
for free. Combining this with known techniques is already su�cient to attack
a few full-round instances of Arion and Griffin with a complexity lower than
the security claim. We then further decrease the complexity of our attacks by
improving the �reordering� step: we provide a novel and more e�cient algorithm
of our own design6 that, in practice, signi�cantly outperforms FGLM for our
systems of equations. Unfortunately, the precise complexity analysis of one of
the steps of this algorithm has remained beyond our reach. Nevertheless, we
performed thorough experiments, implementing the full attack against several
round-reduced primitives�we published the code used to verify these results on
GitHub.7 From these experimental results we can extrapolate the complexity of

5 This seems to be a choice of pragmatism, as it seems easier to get tight bounds;
nothing in their experiments suggests that F5 is faster.

6 If the solving steps were meals of the day, the lunch would be free, hence FreeLunch.
7 https://github.com/aurelbof/algebraic-freelunch
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the dominating step, and get attack complexities as low as 264, 298, and 2118

for the weakest variants of Griffin, Arion, and Anemoi, respectively, where all
claim 128 bits of security. We can therefore con�dently claim to shave o� tens
of bits of security from some full-round Griffin instances.

Outline of this Paper. We recall the necessary background on algebraic attacks
based on Gröbner bases in Section 2. Our main contribution, the FreeLunch
method, is introduced in a generic fashion in Section 3, and we show how it can
be successfully applied to various primitives in Section 4. While it is a priori not
possible to obtain a Gröbner basis for free in some cases, we show in Section 5
that it may still be possible to derive one at a negligible cost and apply this
�nding to the AOP Anemoi. We conclude in Section 6 with a discussion on the
impact of the FreeLunch approach in terms e.g. of design.

2 Algebraic Background

We consider the case of an algebraic attack against a permutation intended for
sponge [13] use. In this section, we will walk through the detailed inner workings
of such an attack: it will allow us to introduce all the necessary mathematical
background and state-of-the-art methods and to set the stage for our attacks
by both providing all the theoretical tools we need and allowing to highlight
the advantages of our method. Throughout the paper, we denote the base �eld
by F. Depending on context, this notion includes both Fp for a prime p and/or
F2n . We will also use the notions of polynomials and polynomial mappings in-
terchangeably.

2.1 From an Attack to a System of Equations

We �rst present the constrained-input constrained-output (CICO) problem, that
we will focus on solving. It was initially proposed by the designers of Keccak [36]
as a crucial problem for estimating the security of permutations used in sponge
constructions. It can also be seen as a variant of the limited birthday prob-
lem [33]. A natural instance in the context of algebraic cryptanalysis may be
stated in the following form.

Problem 1 (CICO problem). Let F : Ft −→ Ft be a permutation and 1 ≤ ` < t
an integer. The goal is to �nd x ∈ {0}` × Ft−` such that F (x) ∈ {0}` × Ft−`.

In this paper we will focus on the case ` = 1. An attacker able to solve the
CICO problem has control over both the input and output of the permutation,
which is precisely what a good permutation is supposed to prevent. Furthermore,
in our case, the value 0 in the output could be replaced e.g., by a digest d to
immediately obtain a preimage attack.
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Encoding. To solve a CICO instance, we need to model or encode the problem
into a system of polynomial equations. In symmetric cryptography, this is usu-
ally done iteratively by modelling one round after another, possibly adding new
variables to keep the degree of the initial system low. The main challenge is
encoding the cipher's non-linear operations in a form that may be amenable for
cryptanalysis. For STAP ciphers, the existence of low-degree models is usually
possible by design: while such systems can be leveraged for cryptanalysis, they
are also required for a fast veri�cation in many ZK protocols.

Consider a non-linear function S : Ft → Ft, and let S0, ..., St−1 be its coor-
dinate functions. A trivial model of such a function would consist of t equations
of the form yi = Si(x0, ..., xt−1). In this case, a tuple (x0, ..., xt−1, y0, ..., yt−1) is
a solution of the system if and only if we indeed have y = S(x).

This situation corresponds to the simplest case, where the model is simply
the evaluation of the function. However, more sophisticated models can exist,
as �rst pointed out by the authors of Rescue [5,46]. Indeed, the non-linear layer
of this permutation involves both x 7→ xα and x 7→ x1/α, where α is a small
integer. In this case, even though a non-linear function has a very high degree
(1/α being a dense integer of Z/(p − 1)Z), it is possible to design a low-degree
model by using the equation x = yα rather than y = x1/α.

More generally, all that is needed from a model is that it describes the graph
of S, i.e., the set ΓS =

{
(x, y) | (x, y) ∈ (Ft)2, y = S(x)

}
. In what follows, we

focus on models corresponding to a system of multivariate polynomials P =
{p0, . . . , pn−1} ⊂ F[x0, . . . , xn−1], which is associated with the following system
of polynomial equations:

pi(x0, . . . , xn−1) = 0 1 ≤ i ≤ n− 1 . (1)

The polynomial systems we consider have a �nite number of solutions in the
algebraic closure of F, and are such that there exists a solution of P which
directly leads to a solution of an associated CICO problem (or to a preimage of
a given hash). In the remainder of this paper, we call sysGen the procedure used
to generate a system of equation.

If n = 1, then P contains a unique equation of degree D in one variable, and
we can use univariate techniques to solve the problem. In practice, such an at-
tack needs a number of operations given by O ((D(log(D) + log(p)) log(log(D)))
(see [11] for more details). We call the function returning the root(s) of a uni-
variate polynomial uniSol.

2.2 Finding Structures in a System of Equations

Once our attack is represented by a system of equations, we need to solve it. To
this end, we need to better understand the structures implied by a system of
polynomial equations. Indeed, in order to solve the system, we need to somehow
derive equations sharing the solutions of the original system, and whose solu-
tions can be computed in practice. We thus need to formally describe the set of
multivariate polynomials that have the roots we are interested in.
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This set of polynomials is in fact an ideal I = 〈P 〉, contained in the ring
R = F[x0, . . . , xn−1]. We denote di the degree of equation pi, and DI the ideal
degree of I, i.e. the number of solutions of P in the algebraic closure of Fn,
counted with multiplicity. In order to study this ideal, we need the notion of
monomial order.

De�nition 1. A monomial order ≺ is a total order on the set of monomials
of R such that i) for any monomial m ∈ R we have 1 ≺ m; and ii) for any three
monomials m1,m2, t ∈ R we have

m1 ≺ m2 =⇒ t ·m1 ≺ t ·m2 .

The typical monomial orders used in computations are the lexicographical
(lex) order and the graded reverse lexicographical (grevlex) order. We now de�ne
a particular weighted order which we will use throughout the paper.

De�nition 2. Consider a weight vector w = (w0, . . . , wn−1) ∈ Rn, where
w0 6= 0. We say that w is associated with the monomial order ≺, de�ned
by:

n−1∏
i=0

xαii ≺
n−1∏
i=0

xβii ⇐⇒



n−1∑
i=0

wiαi <

n−1∑
i=0

wiβi

or

∃k,
n−1∑
i=0

wiαi =

n−1∑
i=0

wiβi, ∀j > k, αj = βj and αk < βk.

Technically speaking, this de�nes a weighted graded lexicographical (deglex) order
with x0 ≺ x1 ≺ . . . ≺ xn−1. The particularities of this choice will be needed in
Section 5.

De�nition 3. The leading monomial of a nonzero polynomial f ∈ R, relative
to a monomial order ≺, is the largest monomial contained in f according to ≺.
It is denoted LM(f). The leading coe�cient of f , LC(f), is the coe�cient
associated with LM(f). Finally, the leading term of f , LT(f), is the product
of its leading monomial and coe�cient.

If S = {f1, f2, . . .} ⊆ R, then we can extend the above de�nitions to the set
S, e.g., LT (S) = {LT (f1), LT (f2), . . .}. We may now de�ne the notion of a
Gröbner basis of an ideal of R.

De�nition 4 (Gröbner basis [16]). Let I be an ideal of R. A �nite set of
polynomials G ⊂ I is a Gröbner basis with respect to ≺ if the leading monomial
of every polynomial in I is a multiple of the leading monomial of some polynomial
in G. A Gröbner basis G is said to be reduced if for all g ∈ G, no monomial in
g is divisible by an element of LT(G) \ {LT(g)} and LC(G) = {1}.

An ideal I always contains a Gröbner basis. For a �xed ≺ there are usually many
Gröbner bases, but only one reduced Gröbner bases. We will crucially rely on
the following results throughout this paper.
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Proposition 1 ([22, Chapter 2,�9, Prop 4 and Thm 3]). Let G be a set
of polynomials of R, G = {g1, ..., gm}. If the leading monomials of gi and gj are
relatively prime for all 1 ≤ i 6= j ≤ m, then G is a Gröbner basis for 〈G〉.

Proposition 2 ([22, Chapter 2 �6 Prop 1]). Let I be an ideal, ≺ a mono-
mial order, G a Gröbner basis of I w.r.t. ≺, and f ∈ R. There exists a unique
r ∈ R such that:

� LT(r) is not divisible by any element of LT(G).
� ∃ g ∈ I, such that f = g + r.

The polynomial r is called the remainder or normal form of f w.r.t. I and
≺.

2.3 Exploiting a Gröbner Basis

The characteristics of a Gröbner basis can vary greatly depending on the under-
lying monomial order. For our goal, that is �nding solutions of P , one typically
wants to compute a Gröbner basis of 〈P 〉 in the lex order. However, computing
a Gröbner basis directly in this order tends to be computationally expensive. In-
stead, it is common to �rst compute a Gröbner basis in the grevlex order � which
tends to be signi�cantly faster � and then apply a dedicated order-changing al-
gorithm, such as FGLM or its variants [29,27,28,44], to �nally recover a basis in
lex order. While we do not give a complete description of these algorithms, we
nevertheless highlight some of the principles underpinning them, as they will be
needed later for our own resolution algorithm.

The Quotient Ring. Thanks to Proposition 2, we can de�ne the quotient ring
R/I, where each class has a unique representative r such that LT(r) is not
divisible by any element of a LT(I). The monomial order ≺ does not a�ect the
quotient ring R/I, but determines the representative of each class. Macaulay's
theorem [26, Theorem 15.3] states that the set of monomials in R \ LT(I) form
a basis for R/I.

De�nition 5. Let I be an ideal of R. We say that I is zero-dimensional if
dimF(R/I) is �nite. In this case, its ideal degree DI is dimF(R/I).

The quotient ring R/I has a canonical basis with respect to ≺ denoted
B≺(R/I), where the basis elements are given by all the monomials in R that are
not in the ideal 〈LM(G)〉, for G a Gröbner basis for I. If I is zero-dimensional,
we have |B≺(R/I)| = DI . Each element r of R/I can then be written as a vector
in the basis B≺(R/I), which we will call NormalForm(r). This allows us to de�ne
the linear matrix Tj : R/I → R/I corresponding to the multiplication by xj .

De�nition 6 (Multiplication matrix of xj). The multiplication matrix

Tj of xj relative to a zero-dimensional ideal I, a monomial order ≺, and the
basis B≺(R/I) = (ε1, . . . , εDI ) is de�ned as the square matrix which has each
column de�ned as Ci = εi × xj represented in the basis B≺(R/I).
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Said di�erently, T0 is the DI × DI matrix mapping the basis elements εi 7→
NormalForm(x0εi). The following result is well-known in the literature, but we
have not been able to �nd a reference that holds for �nite �elds (e.g., it is derived
as Corollary 4.6 in [23] over C). For completeness, we provide a short proof that
works over any �eld.

Proposition 3. Let I be a zero-dimensional ideal of R, ≺ a monomial order,
and T0 the multiplication matrix of the variable x0 with respect to ≺. We have
det(x0I − T0) ∈ I, where I is the identity matrix.

Proof. Let C(x) = det(xI − T0) =
∑DI

i=0
cix

i be the characteristic polynomial

of T0. By the Cayley-Hamilton theorem we have C(T0) =
∑DI

i=0
ciT

i
0 = 0, where

0 is the DI ×DI zero-matrix. Letting ε denote the column vector representing
the constant polynomial 1 in R/I, we then have C(T0)ε = 0. As T i0ε is the
representation of NormalForm(xi0), this implies that NormalForm(C(x0)) = 0,
hence C(x0) ∈ I. ut

The next de�nition is a very standard and common hypothesis for an ideal when
implementing Gröbner basis polynomial solving algorithms.

De�nition 7 ([27], De�nition 3.1). An ideal I of R is in shape position

if its reduced Gröbner basis in the lexicographical order has the following form

G = {f0(x0), x1 − f1(x0), . . . , xn−1 − fn−1(x0)}.

In this case, it follows straightforwardly that DI = deg(f0), and the cost of
�nding solutions for I, given its lexicographic Gröbner basis, reduces to the
problem of �nding the roots of f0.

3 The Algebraic FreeLunch

In this section, we present our own custom approach to algebraic attacks, which
is applicable to solve CICO instances for some arithmetization-oriented per-
mutations (see Section 4). As with the algebraic attacks we presented in the
previous section, we �rst need to describe our problem using a system of poly-
nomial equations. We start with a description of the general form of systems
for which a Gröbner basis can be obtained for free (see Section 3.1). Then, we
show how to deduce a univariate polynomial from this system in Section 3.2.
Means to create these polynomial systems for various primitives are discussed
in Sections 3.3 and 3.4, where we reuse and generalize an encoding technique
introduced by the authors of Griffin in a way that can be applied to iterated
functions. The entire solving strategy is summarized in Section 3.5.

3.1 FreeLunch Systems

We saw in Proposition 1 that there is a class of polynomial systems that admits
a simple Gröbner basis. This is the motivation for the following de�nition.
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De�nition 8 (FreeLunch System). Let R be the ring F[x0, . . . , xn−1] and
P = {p0, . . . , pn−1} be a sequence of polynomials of R. We say that P is a
FreeLunch system if there exists a monomial order ≺ and integers
(α0, . . . , αn−1) such that for all i ∈ {0, . . . , n − 1}, LM≺(pi) = xαii . Any mono-
mial order ≺ that veri�es this property is said to be a FreeLunch order.

Note that this is not the �rst time Proposition 1 has been used in cryptography.
In [17], the authors describe a polynomial modeling for AES that can be said
to be a FreeLunch system in a graded lex order. However, the ensuing change of
order computation to a lex order is too costly to threaten the security of AES.
The following properties are now easy to verify, and were also used in [17].

Proposition 4. A FreeLunch system P is a Gröbner basis for the ideal I = 〈P 〉
with respect to any of its FreeLunch orders. Moreover, I is zero-dimensional and

of ideal degree DI =

n−1∏
i=0

αi.

Proof. The �rst statement follows directly from Proposition 1. For the latter
statement, note that the canonical basis of R/I (w.r.t. a FreeLunch order ≺) is

B≺(R/I) = {xi00 · · ·x
in−1

n−1 | 0 ≤ ij < αj , for 0 ≤ j ≤ n− 1}.

Counting all these basis elements yields DI . ut

We conceived a dedicated algorithm for the resolution of FreeLunch systems,
which has a competitive time complexity. The following result will be proven in
Section 3.2, where 2 ≤ ω ≤ 3 denotes the linear algebra exponent.

Theorem 1. Given a FreeLunch system P , a FreeLunch order ≺, and the as-
sociated multiplication matrix T0 of the variable x0, there exists an algorithm to
compute a solution for x0 with time complexity

Õ

(
α0

(
n−1∏
i=1

αi

)ω)
.

3.2 Extracting a Univariate Equation from a FreeLunch System

We now turn to the problem of solving a FreeLunch system, with the aim of
showing Theorem 1. As we will see in later sections, a FreeLunch system is
typically only already a Gröbner basis under specially crafted monomial orders.
To easily retrieve the solutions of a FreeLunch system, we look for a univariate
polynomial belonging to the ideal spawned by the system. To do so, a common
approach is to compute a Gröbner basis in the lex order. Given an initial Gröbner
basis, computing a lex Gröbner basis can be performed using a change of order
algorithm.
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Existing change of order algorithms. The FGLM algorithm [29] provides an
e�cient method for changing the monomial orders of Gröbner bases of zero-
dimensional ideals, with a running time of O(nD3

I ) operations and no conditions
on the Gröbner bases, on the monomial order or on the ideal. Note that this cost
includes computing the multiplication matrix T0.

Later algorithms [27,28,44,12] signi�cantly improve upon this running time,
but require various assumptions on the input basis and underlying ideal. For
instance, [27,28,12] assume that the multiplication matrix T0 is either given,
or can be e�ciently computed. Note that the latter is a consequence of the
stability property (see [12, De�nition 2.1]), which is assumed in some of these
works. Unfortunately, FreeLunch systems do not generally satisfy this property.
In fact, the authors of [12] state that when the base �eld is large enough and
the ideal under consideration is radical, the stability property can be ensured
through a generic linear change of coordinates. The issue is that doing so might
transform the FreeLunch system into a di�erent type of system that is not a
Gröbner basis.

We brie�y recall the e�ectiveness of the change of order algorithms assuming
that T0 is given and that the ideal is in shape position. In this case, the algorithm
of [28] runs in O(Dω

I log(DI)) and supposes that the input order is grevlex and
the output order is lex. [44] runs in O(nDω

I log(DI)) with no additional hypoth-
esis, and achieve O(Dω

I log(DI)) when the ideal is in shape position. In our case,
we are particularly interested in some algorithms that bene�t from the sparsity
of T0, represented by its sparsity indicator t. The algorithm of [27, Theorem 3.2]
for example runs in O(tD2

I ). The algorithm of [12] achieves an even better time
complexity, of Õ(tω−1DI), if the input order is grevlex and the output order is
lex. However, it is not clear to us if the ideas as presented in [12] can be directly
generalized to our setting, i.e. with a weighted input monomial order, even if T0
is given. Instead, we will develop a dedicated resolution algorithm from a basis
in a FreeLunch order when T0 is given, whose running time happens to coincide
with that of [12] (Õ(tω−1DI)).

A new approach. From the above discussion we see that while the original FGLM
algorithm is applicable to the FreeLunch systems we are interested in, the im-
proved variants are generally not. This motivated the design of a new dedicated
algorithm for �nding a univariate polynomial f0(x0) belonging to the ideal, ex-
ploiting the sparsity of the multiplication matrix T0.

Let I be a zero-dimensional ideal of R = F[x0, . . . , xn−1], ≺ a monomial
order giving a FreeLunch system, B≺ = (ε1, . . . , εDI ) the canonical basis of R/I,
and T0 the multiplication matrix corresponding to the variable x0. Let H be the
subspace of R/I containing the classes h of R/I where the unique representative
of h with respect to ≺ does not contain the variable x0. Let DH be the dimension
of H and BH≺ = [φ1, . . . , φDH ] be a canonical basis for the subspace H. It is clear
that BH≺ exactly consists of the monomials m of B≺ such that x0 - m. Thus, it
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holds that DH =

n−1∏
i=1

αi = DI/α0. We order the basis B≺ speci�cally as

[φ1, . . . , φDH , x0φ1, . . . , x0φDH , x
2
0φ1, . . . , x

2
0φDH , . . . , x

α0−1
0 φ1, . . . , x

α0−1
0 φDH ] ,

and identify any polynomial f ∈ R/I with its coe�cient vector vf of length DI .
The coe�cient vector for the polynomial x0f ∈ R/I can then be computed as a
matrix/vector multiplication T0v

>
f for a �xed matrix T0. The following lemma

gives the structure of T0.

Lemma 1. Under the basis B≺, the matrix T0 is of the following form, repre-
sented as a block matrix with block sizes DH ×DH :

T0 =


0 0 . . . 0 −M0

I 0 . . . 0 −M1

.

.

.
. . .

. . .
.
.
.

.

.

.

0 . . . 0 I −Mα0−1

 .

The block matrices M0, . . . ,Mα0−1 are a representation of the reduction of
xα0
0 BH≺ modulo I. The exact entries in theMi matrices depend on the particular

polynomials making up the Gröbner basis for the FreeLunch system. We call
matGen the procedure which, given a basis B≺, returns T0.

From Proposition 3 it follows that det(x0IDI−T0) is a univariate polynomial
belonging to the ideal I. Computing this determinant and using a root-�nding
algorithm to solve det(x0IDI − T0) = 0 will �nally give us a value for x0 that
solves the CICO problem. The following lemma shows that computing this de-
terminant of this particularly structured matrix T0 can be done with much lower
complexity than for a generic matrix of dimension DI .

Lemma 2. Let M0, . . . ,Mα0−1 be the matrices de�ned in Lemma 1. We have

det(x0IDI − T0) = ±det

(
xα0
0 IDH +

α0−1∑
i=0

xi0Mi

)
.

Proof.

det(x0IDI − T0) = det


x0I 0 . . . 0 M0

−I x0I . . . 0 M1

...
. . .

. . . 0
...

0 0 −I x0I Mα0−2

0 0 0 −I x0I +Mα0−1

 .

The rows of this matrix can be split into a set of α0 blocks of DH rows each.
Denote these blocks as L0, . . . , Lα0−1 from top to bottom. We now do elementary
row operations block-wise, from bottom to the top, with Li = Li + x0Li+1, for
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i = α0 − 2, . . . , 0. This does not change the value of the determinant, and after
these row operations, the resulting determinant to compute is:

det



0 0 . . . 0 xα0
0 I +

α0−1∑
i=0

xi0Mi

−I 0 . . . 0 xα0−1
0 I +

α0−2∑
i=0

xi0Mi+1

...
. . .

. . .
...

...

0 . . . −I 0 x20I +

1∑
i=0

xi0Mi+α0−2

0 . . . 0 −I x0I +Mα0−1


.

In this block matrix representation, the determinant of the full matrix is the
determinant of the top right matrix, up to the sign (−1)α0+1. ut

Complexity Analysis. We call polyDet the procedure returning the polynomial
det(x0IDI − T0) using Lemma 2. This step has a complexity Õ(DID

ω−1
H ) =

Õ(α0D
ω
H) with the algorithm of [40]. Note that this is precisely the complexity

that was obtained with the algorithm of [12] for systems satisfying the stability
and shape position properties. In order to estimate the logarithmic factors in
the complexity formula, we bound the complexity with [34, Theorem 4.4], using
a polynomial matrix multiplication algorithm of complexity O(Dω

H log(α0) +
D2
H log(α0) log(log(α0))) [20]. This way, we bound the number of operations of

polyDet with (when DH is large):

O
(
α0 log(α0)

2Dω
H + α0 log(α0)

2 log(log(α0))D
2
H

)
≈ O(α0 log(α0)

2Dω
H) . (2)

The remaining task to show Theorem 1 is to recover the roots of a univari-
ate polynomial of degree DI , a step we refer to as uniSol. This costs Õ(DI)
operations and is thus negligible in comparison with the polyDet step.

We want to highlight that the complexity of the matGen step is hard to
estimate precisely (recall that T0 is assumed known in Theorem 1). This step
can be upper bounded by O

(
nD3

I

)
operations [29, Proposition 3.1] using the

FGLM algorithm. However, this is likely to be a loose upper bound, as it does
not take into account any of the underlying structure. Indeed, we have observed
this in our experiments by naively taking some of this structure into account
(see Appendix G). Still, as we will see later, the matGen step can sometimes be
costlier than polyDet.

3.3 Ordering a FreeLunch

Having seen how to e�ciently �nd solutions for FreeLunch systems, we will focus
in the next two subsections on the problem of actually �nding them. Recall that
FreeLunch systems rely on the existence of speci�c monomial orders. How can
we �gure out if such an order exists (and thus, if a system is a FreeLunch)? In

12



general, answering this question is not trivial. However, the systems we will be
concerned with in Sections 4 and 5 naturally have a deeper structural property
that allows for a procedural approach to this problem.

De�nition 9 (Triangular System). Let P = (p1, . . . , pn−1, g) be a poly-
nomial system in F[x0, x1, . . . , xn−1]. We say that P is a triangular sys-

tem if there exists polynomials q0, q1, . . . , qn−1, integers α0, α1, . . . , αn−1, and
c0, . . . , cn−1 ∈ F \ {0} such that{

pi = cix
αi
i + qi(x0, . . . , xi−1) for 1 ≤ i ≤ n− 1 ,

g = c0x
α0
0 + q0(x0, . . . , xn−1) .

A triangular system P can be assigned the following monomial order that is
naturally motivated by the FreeLunch de�nition.

Construction 1 For a triangular system P , we de�ne its triangular order, ≺T ,
as the monomial order from Def. 2 associated with the weight vector de�ned
recursively by:{

wt(x0) = 1 ,

wt(xi) = wt (LM≺T (qi(x0, x1, . . . , xi−1))) /αi for 1 ≤ i ≤ n− 1 .

The recursion is well-de�ned since the leading monomial of qi and its associated
weight are only dependent on the weights of xj for j < i. The de�nition ensures
that LM≺T (pi) = xαii for 1 ≤ i ≤ n − 1. Hence, a triangular system P is a
FreeLunch system with respect to ≺T if the leading monomial of g is univariate
in x0, which gives the following Proposition:

Proposition 5 (Ordering a FreeLunch). Let P be a triangular system, and
≺T be its triangular order. If α0 > wt(LM≺T (q0(x0, . . . , xn−1))) then P is a
FreeLunch system and ≺T is one of its FreeLunch orders.

As we will see below, such systems naturally occur when investigating some
cryptographic permutations.

3.4 FreeLunch Systems From Iterated Functions

The permutations we target share the same structure: a composition of a num-
ber of round functions. The input and output of every round is a state of t
elements8 from F and the round functions typically consist of a limited number
of multiplications and α-th roots in F. Writing them out directly as polynomial
functions yields polynomials of high degree, owing to the α-th root operations.
A natural modeling strategy introduces a new variable for each of them to keep
the degree growth manageable, as x = yα is of much lower degree than y = x1/α

when α ∈ {3, 5, ..., 257} and |F| is large. In this section, we take inspiration from
an encoding suggested by the authors of Griffin [35] and show how to model
this class of primitives as polynomials that form a low degree FreeLunch system.

8 We say that the permutation has t branches, or as we like to think of them, brunches.
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Fig. 1: Triangular system for a simple SPN with two branches and two rounds.

Toy Example. Let us start with a toy SPN of two rounds, where the round
function F is given by F = S ◦ A : F2 → F2, for an invertible a�ne layer A
and a non-linear layer S. Moreover, we write S = (S1, S2) where S1(y) = yd,
for a small integer d, and S2(y) = y1/α. This simple construction is shown in
Figure 1, where we also label the branches with variables and polynomials at
di�erent points. We consider a CICO problem with input (0, x0).

As we assume d � p, we note that the round function F can only achieve
a high degree as a polynomial function F2 → F2 due to the map S2. Thus, we
introduce new variables x1 and x2 for the output of S2 in the �rst and second
rounds, respectively. The polynomials p1, p2 relate the symbolic input and output
of the two S2-functions, where q1 is an a�ne polynomial in x0 that is input to
S2 in the �rst round, and q2(x0, x1) is the input to S2 in the second round and
has degree d in the x0-variable and degree 1 in the x1-variable. Finally, we let
g(x0, x1, x2) represent the �rst output of the construction that is required to be
0 by the CICO-problem. We can now write g as

g(x0, x1, x2) = c0x
d2

0 + q0(x0, x1, x2),

for a suitable constant c0 ∈ F, and where q0(x0, x1, x2) has degree < d2 in x0,
degree d in x1 and degree 1 in x2. If c0 6= 0 we observe that P = {p1, p2, g}
forms a triangular system (De�nition 9), whose solutions yield a solution to
the speci�ed CICO-problem. The weight vector of ≺T from Construction 1 is
(1, 1/α, d/α), and it is straightforward to verify that P satis�es the condition of
Proposition 5. Hence, P is a FreeLunch system.

General Case. The above example shows the core idea for how a FreeLunch
system can be made from a round function that relies on the functional inverse
of low degree function to achieve a high degree. Let us generalize this insight.
Let Fi : Ft → Ft, zi−1 7→ zi, denote the i-th round of a primitive, where
zi−1 = (zi−1,0, . . . , zi−1,t−1) is the state after i − 1 rounds. Recall that Fi may
itself have a high degree (in zi−1), but suppose there exists a set of variables
xi = {xi,0, . . . , xi,`i−1} satisfying

x
αi,j
i,j = Li,j(zi−1), for 0 ≤ j < `i, (3)
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where αi,j is an integer and Li,j an a�ne function. Moreover, suppose that there
exists a polynomial function Gi : Ft+`i → Ft of low degree di, satisfying

Fi(zi−1) = {Gi(zi−1,xi) | xi satis�es (3)}. (4)

In other words, while Fi and Gi are di�erent as polynomial functions, they yield
the same output when xi is restricted by (3). For instance, in the toy example
above, we used

G1(z0, x1) =
(
(A1(z0))

d
, x1

)
, G2(z1, x2) =

(
(A1(z1))

d
, x2

)
,

where A1 denotes the �rst output of A.

Polynomial Modeling. We now have an iterated function of t branches where
each round can be described using the functions G = {G1, . . . , Gr} satisfying
(3) and (4), and where Gi is of degree di. We introduce the shorthand d≤i =
d1d2 · · · di, and we require that the exponents di are small enough to ensure that
their composition will not exceed the maximal degree determined by the �nite
�eld, i.e. d≤r < |F| − 1.

With this in place, we give the following blueprint for constructing a poly-
nomial system. Recall that we focus on the variant of the CICO-problem where
a single input in F is unknown, which we will symbolically denote by x0, and
the output of the �rst branch should be 0. The initial state is written as z0(x0),
which consists of t a�ne polynomials in x0. The proceeding state is de�ned
as z1(x0,x1) = G1(z0,x1), where we note that z1 is now t polynomials of
at most degree d1 in the variables x0,x1. Furthermore, we create functions
p1 = {p1,0, . . . , p1,`1−1} to encode the relations (3) that we encounter in this
step. That is, for x1 = {x1,0, . . . , x1,`1−1}, we construct the polynomials

p1,j = x
α1,j

1,j − L1,j(z0), for 0 ≤ j < `1 .

This process of updating the state zi and constructing polynomials9 pi is re-
peated for all rounds up to r− 1. In the last round, we generate polynomials pr
as before, but instead of updating the state, we compute the �nal polynomial

g(x0,x1, . . . ,xr) = [Gr(zr−1,xr)]1,

where [·]1 means the �rst polynomial of Gr(zr−1,xr). This construction yields
the polynomial system PG = {p1, . . . ,pr, g} over the ring F[x0,x1, . . . ,xr].

PG as a FreeLunch system. It is easy to verify that PG is a triangular system
if g contains a univariate monomial in x0. In fact, this is a stronger case than
the generic triangular systems considered in Section 3.3, since we are also able

9 If a single variable is introduced in a round, we will ease notation by writing xi = xi,
pi = pi and αi.
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to bound the degrees of the polynomials in PG by round degrees d1, . . . , dr.
This allows us to give an analogous variant of Proposition 5 for PG . Instead of
a condition on the entire system that could be computationally expensive to
verify, we reduce the assumption to the condition of a single monomial in g.

Proposition 6. Let PG be a polynomial system as constructed above, where all
αi,j from (3) are at least 2, and the functions G = {G1, . . . , Gr} are of degrees

d1, . . . , dr ≥ 2. Then PG is a FreeLunch system if g contains the monomial x
d≤r
0 .

Before proving the proposition, we start by de�ning ≺G , which is the monomial
order from De�nition 2 whose weight vector is given by{

wt(x0) = 1 ,

wt(xi,j) = d≤i−1/αi,j for 1 ≤ i ≤ r and 1 ≤ j ≤ `i ,

where we de�ne d≤0 = 1. Recall that zi denotes the i-th state represented by t
polynomials in x0,x1, . . . ,xi. We will write wt(LM(zi)) for the maximal weight
among the monomials of these t polynomials.

Lemma 3. Let zi be the i-th state associated with a system G that satis�es the
conditions of Proposition 6. Then the following inequality holds for ≺G:

wt (LM(zi)) ≤ d≤i .

Proof. We proceed by induction. The base case of i = 0 is immediate since z0
is a�ne in x0, and d≤0 = 1 by de�nition. For the induction step, we recall that
zi = Gi(zi−1,xi), where Gi has degree di. Thus we have

wt(LM(zi)) ≤ di ·max{wt(LM(zi−1)),wt(xi,1), . . . ,wt(xi,`i)} .

Now we have wt(xi,j) < d≤i−1, and wt(LM(zi−1)) ≤ d≤i−1 by the induction
hypothesis. Hence

wt(LM(zi)) ≤ did≤i−1 = d≤i . ut

The proof of this lemma also implies that ≺G coincides with ≺T from Construc-
tion 1 if all functions Li,j(zi−1) achieve their maximal weight d≤i−1. We now
have all we need to show Proposition 6.

Proof. (Proposition 6). From Lemma 3 we observe

wt
(
x
αi,j
i,j

)
= αi,jwt (xi,j) = d≤i−1

≥ wt(LM(zi−1)) ≥ wt(LM(Li,j (zi−1))).

Hence LM(fi,j) = x
αi,j
i,j . Moreover, Lemma 3 also guarantees that

wt (LM(g)) ≤ wt(LM(zr)) ≤ d≤r.

Due to the fact that αi,j ≥ 2, the factor 1/αi,j that appears in the weight of all
variables xi, i ≥ 1, the above equality can only be achieved by the monomial

x
d≤r
0 . It then follows from the assumption that LM(g) = x

d≤r
0 , which makes PG

a FreeLunch system. ut
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Computing a reduced Gröbner Basis for 〈PG〉 (sysGen). We have just
seen that computing a Gröbner basis for a given FreeLunch system PG is � as
the name suggests � free. There are, however, two practical concerns worth ad-
dressing. Firstly, while PG is itself a Gröbner basis, it is generally not the unique
reduced Gröbner basis w.r.t. any of its FreeLunch orders. Secondly, generating
the polynomials in PG may itself be hard.

In practice we do not generate the polynomials in PG in the direct manner
outlined earlier. Rather, we will use the fact that pi and g are constructed by
composing certain round functions. This allows us to reduce by the polynomials
p1, . . . ,pi−1 introduced earlier in the process in order to suppress the growth
of the number of monomials. This is detailed in Appendix A, where we show
that when PG satis�es the conditions of Proposition 6, the polynomial system
generated in this manner is also a FreeLunch system that is the unique reduced
Gröbner basis for 〈PG〉 w.r.t. ≺G . In [10, App. A] a complexity estimate for
generating this latter polynomial system is also provided, under the assumption
that reductions following every multiplication of multivariate polynomials can
be done e�ciently.

3.5 Summary of the FreeLunch Attack

The strategy of the attack presented in this section is summarized in Algo-
rithm 1. The initial condition is that there exists a FreeLunch system associated

1. sysGen: Generate a FreeLunch system (Section 3.4).

2. matGen: Compute the multiplication matrix T0 (Section 3.2).

3. polyDet: Compute f(x0) = det

(
xα0
0 IDH +

α0−1∑
i=0

xi0Mi

)
(Section 3.2).

4. uniSol: Solve f(x0) = 0.

Algorithm 1: Overview of the FreeLunch Attack.

with the target primitives. Methods for constructing this FreeLunch system were
presented in Section 3.3 and 3.4, and the complexities for sysGen using these
methods are discussed in Appendix A. A di�erent way of generating a FreeLunch
system will also be shown in Section 5. We will estimate the complexity of
polyDet by (2), but we do not have a clear estimate for matGen. The �nal step
uniSol recovers the roots of a univariate polynomial of degree DI . This costs
Õ(DI) operations and is thus negligible in comparison with the earlier steps.
We expect the complexity of the attack as a whole to be dominated by either
matGen or polyDet for the primitives we have investigated. This is in line with
our experiments (see Section 6.1), where matGen seems to be the dominating
step for larger instances.
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The numbers for the complexity of the polyDet step in our attacks against
several AOPs are shown in10 Table 1. Details of how we obtained the complexities
for the speci�c ciphers will be provided further in the paper. While we do not have
a rigorous complexity estimate for the matGen step, recall that the complexity
O(nD3

I ) of the FGLM algorithm serves as a loose upper bound. This upper
bound is already su�cient to break a few instances of Griffin and α-Arion.
For Griffin we have FGLM complexities of 2108 and 2122 for t ≥ 12 and α = 3, 5,
respectively, and 2127 for t = 8 and α = 3. For α-Arion with α = 121 and e = 3
we get 2117 and 2127 for t = 4, 5 and for e = 5 we get complexities of 2114 and
2124 for t = 3, 4.

Name α/e
Number of branches

2 3 4 5 6 8 ≥ 12

Griffin
3 ∅ 120 (16) 112 (15) ∅ ∅ 76 (11) 64 (10)

5 ∅ 141 (14) 110 (11) ∅ ∅ 81 (9) 74 (9)

Arion
3 ∅ 128 (6) 134 (6) 114 (5) 119 (5) 98 (4) ∅
5 ∅ 132 (6) 113 (5) 118 (5) 122 (5) 101 (4) ∅

α-Arion
3 ∅ 104 (5) 84 (4) 88 (4) 92 (4) 98 (4) ∅
5 ∅ 83 (4) 87 (4) 91 (4) 94 (4) 101 (4) ∅

Anemoi

3 118 (21) ∅ - ∅ - - -

5 156 (21) ∅ - ∅ - - -

7 174 (20) ∅ - ∅ - - -

11 198 (19) ∅ - ∅ - - -

Table 1: Time complexity (log2) of polyDet in FreeLunch-based attacks against
some full-round algorithms (aiming at 128-bit security). Number of rounds in
parentheses, ∅ corresponds to unde�ned algorithms. The α/e column reports α
for Griffin and Anemoi; and e for the Arion variants.

4 Using FreeLunch Systems Directly

Experimental Veri�cation In this section and in Section 5, we support theo-
retical attacks with practical experiments on reduced-round versions. All exper-
iments are performed on 1 core of AMD EPYC 7352 (2.3GHz) with 250 GB of
memory, and on Fp with p = 0x64ec6dd0392073. The sysGen step is performed
with SageMath [48], Magma [14] or the NTL [49] and Flint [38] libraries, the
matGen step is performed with Flint, and the polyDet step is perfomed with the
Polynomial Matrix Library [47,39].

4.1 A Detailed Example: Griffin

Speci�cation of Griffin. Griffin [35] is a family of sponge hash and com-
pression functions proposed by Grassi et al. at Crypto 2023 designed to be used

10 The complexities correspond to the number of basic Fp operations; writing them as
number of calls to the primitive would yield lower but hard to compute numbers.
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in Zero-Knowledge applications. As such, it makes use of the internal permuta-
tion Griffin-π, which is de�ned over the �nite �eld F.

Each round function of Griffin-π is composed of a non-linear layer, the
addition of a round constant, and a linear layer de�ned by multiplication by an
MDS matrix.The speci�c features of Griffin impose that the primitive is only
suitable for Ft where t = 3 or t is a multiple of four.

De�nition 10 (Non-linear layer of Griffin-π). Let α ∈ {3, 5, 7, 11} be the
smallest integer such that gcd(α, p− 1) = 1, p > 263 and let t be the number of
branches. For 0 ≤ i ≤ t − 1, let (δi, µi) ∈ F2 \ {(0, 0)} be pairwise distinct such
that δ2i − 4µi is a quadratic nonresidue modulo p. Then, the non-linear layer of
Griffin-π is S(x0, . . . , xt−1) = (y0, . . . , yt−1), where each yi is de�ned by the
equations:

yi :=


x
1/α
0 if i = 0

xα1 if i = 1

x2 · (L2(y0, y1, 0)
2 + δ2 · L2(y0, y1, 0) + µ2) if i = 2

xi · (Li(y0, y1, xi−1)2 + δi · Li(y0, y1, xi−1) + µi) otherwise,

for Li(z0, z1, z2) = (i− 1) · z0 + z1 + z2.

De�nition 11 (Griffin-π). Let r be the number of rounds, and for 1 ≤ i ≤
r − 1 let c(i) ∈ Ft be a constant vector (we assume c(r) = 0). Then Griffin-π
Gπ : Ft → Ft is de�ned as

Gπ(·) := Fr ◦ · · · ◦ F2 ◦ F1(M × ·),

where for 1 ≤ i ≤ r, the i-th round function Fi is de�ned as

Fi(·) = c(i) +M × S(·),

for M ∈ Ft×t a matrix, and S the non-linear layer of Griffin-π.

The �rst round function of Griffin-π for t = 4 is depicted in Fig. 2 where,
to simplify the construction, we denote by Fi the last two equations of De�ni-
tion 10. The authors proposed various instances with a 128-bit security claim.
The number of branches varies from 3 to 24 (though not all values are possible),
and the number of rounds is computed for di�erent degrees α based on the com-
plexity of �nding a Gröbner basis using the basic encoding as it was the most
e�cient attack they could �nd.

FreeLunch system for Griffin. We observe that the round function of
Griffin readily lends itself to a naive construction of the system PG , as described
in Section 3.4. Indeed, for each round i we can simply de�ne zi = Gi(zi−1, xi) by
zi = c

(i)+M×z′i, where z′i,0 = xi and z
′
i,j given as yj , for 1 ≤ j < t, in De�nition

10 of the i-th round. Note that Gi will be of degree at most di = 2α+ 1. Under
the assumption that the polynomial g in PG satis�es the monomial property of
Proposition 6, we get an associated ideal degree of (α (2α+ 1))

r
.
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Fig. 2: First round function of Griffin-π with t = 4.

Remark 1. Note that the naive modeling PG given above for Griffin is not new;
in fact, it was proposed by the authors of this algorithm for their initial security
analysis [35, Section 6.2]. However, the authors did not attempt to compute a
Gröbner basis for 〈PG〉 in a FreeLunch order, but rather in the usual grevlex
order. They estimate that computing a Gröbner basis in this latter monomial
order well exceeds the security level for the suggested number of rounds.

Bypassing Several Rounds. A further improvement is constructing an a�ne
input in x0 for the CICO problem that is tailored to bypass the inversion oper-
ation for a few initial rounds. This e�ectively means that fewer variables xi are
necessary, which in turn has a signi�cant impact on the resulting ideal degree.
Observe that bypassing inversions �ts seamlessly with the machinery introduced
in Section 3.4. The only di�erence is that we choose a di�erent sequence of poly-
nomial functions G∗, where G∗1 e�ectively spans several rounds but only depends
on z0. The ensuing functions G

∗
i , i ≥ 2, can still be constructed as described for

the naive method above (though there will now be fewer of them). The exact
number of initial rounds we can bypass will depend on t, where a larger t gener-
ally allows us to bypass more rounds11. All underlying details are given in [10,
App. B].

For t = 3, 4, we can bypass one round with linear functions in z0. For t = 8,
we are able to bypass two rounds with cubic functions in z0, and three rounds
can be bypassed with deg(z0) = 6α+ 3 for t ≥ 12. Assuming all systems satisfy

11 A similar observation of bypassing rounds was already considered in [35, Section
6.2]. However, the authors only describe a method for bypassing a single round for
t = 3 and do not consider the e�ect of having a larger t.
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Table 2: Expected time complexity (log2) of polyDet for the di�erent full-round
instances of Griffin, where ω = 2.81. Number of rounds in parentheses.

Branches
Complexity (log2)
α = 3 α = 5

3 120 (16) 141 (14)
4 112 (15) 110 (11)
8 76 (11) 81 (9)

12,16,20,24 64 (10) 74 (9)

Proposition 6, we get the following parameters:

DI,t =


(α (2α+ 1))

r−1
, for t = 3, 4,

3 (α (2α+ 1))
r−2

, for t = 8,

(6α+ 3) (α (2α+ 1))
r−3

, for t ≥ 12 .

(5)

DH,t =


αr−1, for t = 3, 4,

αr−2, for t = 8,

αr−3, for t ≥ 12 .

(6)

Complexity Analysis and Experimental Results. We can now use the
machinery described in Section 3.2 to solve the FreeLunch system for Griffin.
As noted in Section 3.2, it is hard to theoretically estimate the complexity of
matGen where one computes the multiplication matrix T0. On the other hand,
based on previous analysis, we estimate the complexity of polyDet by computing
DI,tD

ω−1
H,t = DI,t(DI,t/α0)

ω−1 for the di�erent values of DI,t. As a consequence,
the running time for polyDet becomes

Õ(DI,tD
ω−1
H,t ) =


Õ((αω (2α+ 1))

r−1
), for t = 3, 4,

Õ(3 (αω (2α+ 1))
r−2

), for t = 8,

Õ((6α+ 3) (αω (2α+ 1))
r−3

), for t ≥ 12 .

(7)

The resulting estimated time complexities of running polyDet for the proposed
instances of Griffin are listed in Table 2. Experimental results are presented in
Table 3 and discussed in Section 6.1. One example of concrete input and output
values solving the CICO problem for 7 rounds of Griffin can be found in [10,
App. C].

4.2 Applicability Beyond Griffin: the Example of ArionHash

Speci�cation of ArionHash. ArionHash [45] is an arithmetization-oriented
hash function proposed by Roy et al. that, much like Griffin, uses a permutation
as its core primitive. Called Arion-π, this permutation utilizes in each round a
polynomial of very high degree in one branch and low degree polynomials in the
remaining branches to signi�cantly decrease the number of necessary rounds to
achieve the desired security.
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Table 3: Experimental results on Griffin with (t, α) = (12, 3). sysGen uses Flint
and NTL with the fast multivariate multiplication algorithm of App. A .

Number of Complexity Time (s) Memory
rounds of polyDet sysGen matGen polyDet (MB)

5 26 0.17 0.02 0.53 14
6 34 4.0 6.67 50.78 471
7 41 2, 558 3, 361 5, 727 27, 600

De�nition 12 (Non-linear layer of Arion-π). Let p ≥ 5 be a prime, t the
number of branches, e the smallest positive integer be such that gcd(e, p−1) = 1,
and 121 ≤ α ≤ 257 an integer such that gcd(α, p− 1) = 1.

For 0 ≤ i ≤ t−2, let δi,1, δi,2, µi ∈ Fq be such that gi(x) = x2+ δi,1 ·x+ δi,2
is a quadratic function without zeroes in Fq and de�ne hi(x) = x2 +µi ·x. Then
the non-linear layer of Arion-π is S = {f0, . . . , ft−1}, where each fi is de�ned
�from-right-to-left� by the equations:

ft−1(y0, . . . , yt−1) = y
1/α
t−1 ,

fi(y0, . . . , yt−1) = yei · gi(σi,t) + hi(σi,t), t− 2 ≥ i ≥ 0,

where σi,t represents the sum of all previously computed inputs and outputs

σi,t =

t−1∑
j=i+1

yj + fj(y0, . . . , yt−1) .

De�nition 13 (Arion-π). Let r be the number of rounds, and for 1 ≤ i ≤
r let ci ∈ Ft be a constant vector. Then Arion-π is de�ned as the following
composition over Ft:

Arion-π : (y0, . . . , yt−1) 7→ (Lcr ◦ Sr) ◦ · · · ◦ (Lc1 ◦ S1) ◦ L0(y0, . . . , yt−1),

where Lci is the a�ne map of [45, De�nition 3] and Si is the non-linear layer
of Arion-π, for 1 ≤ i ≤ r.

We illustrate the construction of the �rst round of Arion-π in Fig. 3 for t = 4
where, for the sake of clarity, we only represent the function fi of the non-linear
layer of Arionwithout the details of gi and hi.

We provide the parameters for Arion-π and ArionHash as well as for their
additionally proposed aggressive versions α-Arion and α-ArionHash with e =
3, 5 and α = 121 in Table 4 (number of rounds are in parenthesis). The authors
claim 128-bit security for each parameter set.

FreeLunch system for ArionHash. Due to the similarities in construction be-
tween Arion-π and Griffin-π, it comes as no surprise that the round function of
Arion-π also �ts the naive construction of the system PG described in Section 3.4.
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Fig. 3: First round function of Arion-π with t = 4.

In this case, we start with a constrained input z0 depending linearly on a vari-
able x0, and for each round i we de�ne zi = Gi(zi−1, xi) by zi = Lci(z

′
i), where

z′i,t−1 = xi and z
′
i,j = fj(zi−1,0, . . . , zi−1,t−2, x

α
i ) for t−2 ≥ j ≥ 0. Note that each

component of z′i (and thus of zi) will have degree at most di = (2t−1(e+1)−e)i
in x0. Assuming that the polynomial g in PG satis�es the monomial property of
Proposition 6, we get an associated ideal degree of

(
α
(
2t−1(e+ 1)− e

))r
.

In addition, one can further improve this technique by generating a set of
input states constructed so that the inversion operation for the �rst round is
bypassed, reducing the number of necessary variables and, consequently, the
associated ideal degree. This is done analogously to Griffin, and all underlying
details can be found in Appendix B. For Arion we are only able to bypass a
single round with deg(z0) = 3e, independent of t. Assuming all systems satisfy
Proposition 6, we get the following parameters:

DI = 3e
(
α
(
2t−1(e+ 1)− e

))r−1
,

DH = αr−1 .

Complexity Analysis and Experimental Results. We can now apply the
new methods introduced in Section 3.2 to solve the FreeLunch system for
ArionHash. Based on the general complexity analysis of the attack, we list the
estimated time complexities of polyDet for the di�erent proposed ArionHash

parameters in Table 4. Note that here DH = DI/α0 = αr−1, so that the running
time for polyDet becomes

Õ(DID
ω−1
H ) = Õ

(
3e
(
αω
(
2t−1(e+ 1)− e

))r−1)
.

Experimental results are presented in Table 5 and discussed in Section 6.1.

4.3 Last Example: XHash8

XHash8 is a permutation proposed by Ashur, Kindi and Mahzoun in [6]. Along
with XHash12, it is a follow-up of RPO [7], itself a follow-up of Rescue-Prime [46].
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Arion-π & ArionHash α-Arion& α-ArionHash

Branches Complexity (log2) Complexity (log2)
e = 3 e = 5 e = 3 e = 5

3 128 (6) 132 (6) 104 (5) 83 (4)
4 134 (6) 113 (5) 84 (4) 87 (4)
5 114 (5) 118 (5) 88 (4) 91 (4)
6 119 (5) 122 (5) 92 (4) 94 (4)
8 98 (4) 101 (4) 98 (4) 101 (4)

Table 4: Expected time complexity (log2) of polyDet for the di�erent full-round
instances of ArionHash, where α = 121 and ω = 2.81. Number of rounds in
parentheses.

Number of Complexity Time (s) Memory
branches of polyDet sysGen matGen polyDet (MB)

3 32 1.31 < 0.01 6.8 3, 387
4 33 1.46 0.07 18.7 7, 551
5 35 9.54 0.08 64.5 15, 903
6 36 247 0.31 215 32, 626
8 39 24, 872 4.86 2, 545 134, 165

Table 5: Experimental results on 2-round Arion, with (e, α) = (3, 121). sysGen is
performed using SageMath. polyDet uses an evaluation/interpolation algorithm
of pml [47] since the algorithm of [40] implemented in pml does not work for the
non-generic polynomial matrix in input of polyDet.

XHash8 features a layer with inversion operations in eight out of twelve branches.
Thus we need to introduce polynomials pi = (pi,0, . . . , pi,7) and variables
xi = (xi,0, . . . , xi,7) in these layers. We can, by adjusting for this minor dif-
ference, directly de�ne a FreeLunch system as we have seen in the previous two
subsections. Since this is very similar to what we saw for Griffin and Arion,
we will give the details for this analysis in Appendix F and only limit ourselves
to a short discussion of the highlights in the immediate following. We note that
the related constructions XHash12, RPO and Rescue-Prime all contain a layer
of inversion operations in all branches, and hence we cannot directly obtain a
FreeLunch from them.

Complexity and Impact on Security Analysis. In contrast to the �exible
constructions of Griffin-π and Arion-π, XHash8 is only de�ned for a �xed prime
p ≈ 264 and a �xed sponge setting with state size t = 12, where the rate is 8 and
capacity 4. Although this does not directly lend itself to a CICO problem with
a single zero in input and output, we applied the FreeLunch approach to this
setting. We generate a FreeLunch system with α0 = 76,DH = 724, andDI = 730,
whose time complexity of polyDet is approximately 2214 for ω = 2.81. As this is
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signi�cantly higher than brute force for the chosen p, we conclude that XHash8
seems very secure against the techniques presented in this paper.

That said, we note that the current security estimates for XHash8 are (con-
servatively) extrapolated from scaled-down experiments with t = 3 using a single
unknown input [6, App. B]. While the FreeLunch framework cannot currently
be extrapolated in a similar manner for the full construction, we still hope it
could provide a basis for future insights into the security of XHash8.

5 Forcing the Presence of a FreeLunch for Anemoi

We have just seen three examples where the FreeLunch machinery of Section 3.4
could be readily applied. Anemoi is another class of permutations that rely on the
inverse of low degree monomials in a �nite �eld to achieve a high degree and so it
would, a-priori, seem like another candidate where we can apply the FreeLunch
techniques. However, we will see that this is not as straightforward as it may
appear because a direct application of the technique creates a polynomial system
PG where g does not satisfy the assumption of Proposition 6. Instead, we will
show how to compute a modi�ed polynomial system PG∗ that retains the valid
solution to the CICO problem, which will turn out to be a FreeLunch system.
This comes at the cost of a somewhat larger, yet still comparable, ideal degree
than what was given in Conjecture 2 of [15]. We start by describing Anemoi.

Description of Anemoi. The Anemoi permutations [15] operate on F2`
q for ` ≥ 1,

and either q = 2n with n odd, or q = p for any prime p ≥ 3. There are di�erences
between the operations for the odd and even characteristic cases that will impact
our later modeling. Thus, we focus on the setting of ` = 1 and p prime, leaving
the even case as future work. In odd characteristic, Anemoi takes a parameter α
such that x 7→ xα is a permutation of Fp, usually α = 3, 5, 7 or 11. The original
paper gives two speci�c hash function instances based on Anemoi with ` = 1:
AnemoiSponge-BN-254, with a 254-bit prime p, AnemoiSponge-BLS12-381, with
a 381-bit prime p. 127 bits of security are claimed for both of these.

De�nition 14 (Odd Anemoi with ` = 1). For a given p, α and number of
rounds r, Anemoi is a permutation of F2

p de�ned as

Anemoip,α,r(x, y) =M◦ Rr ◦ · · · ◦ R1(x, y).

For 1 ≤ i ≤ r, the i-th round function Ri is de�ned as

Ri(x, y) = H ◦M(x+ ci, y + di) and M(x, y) = (2x+ y, x+ y),

for constants ci, di ∈ Fp. H is the nonlinear operation over F2
p that is described

in Figure 4b for a non-zero constant a ∈ F.
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zi,0 zi,1

(a) Anemoi round function.

Pi−1 Qi−1

zi,0 = −2axiQi−1

+ax
2
i + Pi−1 − a−1

zi,1 = Qi−1 − xi

a(·)2 + a
−1�

(·)1/α �

a(·)2�

xi

(b) H in odd characteristic.

Fig. 4: Description of Anemoi over prime �elds with ` = 1.

Failure of the Direct FreeLunch Approach. As a starting point, we consider
the following slight modi�cation12 of the polynomial system PG for Anemoi, for
1 ≤ i ≤ r.

pi(x0, . . . , xi) = xαi + aQi−1(x0, . . . , xi−1)
2 − Pi−1(x0, . . . , xi−1) + a−1, (8)

g(x0, . . . , xr) = Pr(x0, . . . , xr) . (9)

A �rst observation is that zi,0 must have a larger leading term than zi,1 under any
monomial order. Since this leading term gets distributed to both branches under
M (without the possibility of cancelling the leading term), we have LM(Qi) =
LM(Pi). Now note from the output shown in Figure 4b that in the computation
of zi,0, the terms aQ2

i−1 and −aQ2
i−1 will both occur and cancel each other.

Hence, the leading monomial of g must be either xrLM(Qr−1) or x
2
r, so there is

no possible choice of monomial order where g will have a leading monomial in
only x0.

In order to circumvent this issue, we will multiply g by suitable monomials in
x1, . . . , xr that leads to a reduction by the polynomials p1, . . . , pr. This process
will ultimately lead to a new polynomial g∗, whose leading monomial will be
univariate in x0. To brie�y illustrate the idea, we consider the �rst step of this
procedure. Writing out g in terms of Pr−1, Qr−1 and xr, we have

g(Pr−1, Qr−1, xr) = (1− 4axr)Qr−1 + (2axr − 1)xr + 2(Pr−1 − a−1)
= (−4aQr−1 + 2axr − 1)xr +Qr−1 + 2Pr−1 − 2a−1 ,

12 The only di�erence from the description in Section 3.4 is that we allow Li,j from (3)
to be quadratic, due to the term Q2

i−1.
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taking into account the �nalM-transformation. In order to cancel out the prod-
uct xrQr−1 using pr, we construct the following polynomial:

g′ = xα−1r g + (4aQr−1 − 2axr + 1)pr

= xαr (−4aQr−1 + 2axr − 1) + xα−1r (Qr−1 + 2Pr−1 − 2a−1)

+ (4aQr−1 − 2axr + 1)(xαr + aQ2
r−1 − Pr−1 + a−1)

= xα−1r (Qr−1 + 2Pr−1 − 2a−1) + 4a2Q3
r−1 + aQ2

r−1

+ 4Qr−1(1− aPr−1)− Pr−1 + a−1 − 2xr(a
2Q2

r−1 − aPr−1 + 1) .

Hence, we have successfully eliminated xr from the leading monomial of g′ under
any monomial order that satis�es

wt
(
LM

(
Q3
r−1
))
> wt

(
LM

(
xα−1r Qr−1

))
,

wt
(
LM

(
Q3
r−1
))
> wt

(
LM

(
xα−1r Pr−1

))
,

wt
(
LM

(
Q3
r−1
))
> wt

(
LM

(
xrQ

2
r−1
))

,

wt
(
LM

(
Q3
r−1
))
> wt (LM (xrPr−1)) ,

which, since α ≥ 3 and LM(Pr−1) = LM(Qr−1), can be simpli�ed further to:

wt
(
LM

(
Q2
r−1
))
> wt

(
xα−1r

)
= (α− 1)wt(xr) .

Constructing FreeLunch Systems From Anemoi. We now turn our atten-
tion to the general construction of g∗ that will allow us to apply the FreeLunch
machinery for solving the CICO problem for Anemoi. Here, we will not only be
interested in the leading monomials of the intermediate states and pi, but also in
the second and third monomials. To this end, we de�ne ≺A to be the monomial
order associated with the weight vector de�ned recursively by wt(x0) = 1,

wt(xi) =
2

α
wt(x0 · · ·xi−1), for 1 ≤ i ≤ r .

Indeed, this choice of monomial order allows us to prove the following two lem-
mas. For a polynomial h, we let Monj(h) denote the j-th monomial of h accord-
ing to ≺A. As usual, we write LM(h) = Mon1(h). To avoid pathological cases,
we always consider an a�ne input in x0 for the CICO-problem such that x0 is
not eliminated after the initial linear operationM. Finally, remember that two
monomials may have equal weight, and only get sorted by their lexicographic
order.

Lemma 4. Let Qi(x0, . . . , xi) be as de�ned in Figure 4a and ordered according
to ≺A. Then the following holds for α ≥ 3.

LM(Qi) = x0 · · ·xi, and wt(LM(Qi)) > wt(Mon(Qi)) .
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Proof. We proceed by induction. The statements are clearly true for i = 0, as Q0

is an a�ne polynomial in x0 by our CICO setting. Now assume it holds for i−1.
As mentioned above, leading terms cannot be canceled underM, and the leading
terms come from the �rst output ofM. Thus, we can restrict ourselves to the two
largest monomials in the �rst output fromM, that is 2axiQi−1+ax

2
i+Pi−1−a−1.

From the induction hypothesis we have LM(xiQi−1) = x0 · · ·xi, and it follows
from the de�nition of ≺A that this has a strictly higher weight than x2i when
α ≥ 3. ut

Lemma 5. Let pi(x0, . . . , xi) be as de�ned in (8) and ordered according to ≺A,
and let α ≥ 3. Then for all 1 ≤ i ≤ r the following holds.

1. LM(pi) = xαi .
2. Mon2(pi) = (x0 · · ·xi−1)2.
3. wt(LM(pi)) = wt(Mon2(pi)) > wt(Mon3(pi)) .

Proof. We see from the de�nition of pi that LM(pi)must be either x
α
i or LM(Q2

i ).
From Lemma 4, we have wt(LM(Q2

i )) = 2wt(x0 · · ·xi−1), so these two monomi-
als have the same weight by de�nition of ≺A. LM(pi) = xαi then follows from
De�nition 2. Finally, Mon3(pi) = Mon2(Q

2
i ) and thus has a strictly smaller

weight than the initial two monomials (Lemma 4). ut

Before we can de�ne g∗, we also need a way to predict the powers of xi we
will use in the multiplication of g prior to the reductions by p1, . . . , pr. This is
handled by the following integer sequences.

De�nition 15. We de�ne two integer sequences {ui}0≤i≤r and {kj}1≤j≤r,
where ur = 1, and the remaining sequences are recursively de�ned as follows:

� ki is the unique integer 0 ≤ ki < α such that ki ≡ −ui mod α;
� ui−1 = ui + 2(ui + ki)/α.

In the following, we will denote u = u0.

Note that in the above de�nition, ui + ki is always a multiple of α; hence ui−1
is indeed an integer.

For a polynomial h and sequence of polynomials H, we write Red(h,H) to
denote the reduction of h by H w.r.t. ≺A. More speci�cally, Red(h,H) is the
remainder after performing multivariate division of h by H (see [22, Ch. 2, �3]).
We are now in a position to de�ne g∗. Let g′r = g, and recursively de�ne

g′i−1 = Red(xkii g
′
i, {pi, pi+1, . . . , pr}), for i = r, r − 1, . . . , 1 .

We set g∗ = g′0, and IA = 〈PG∗〉, where PG∗ = {p1, . . . , pr, g∗}. It is clear from
the construction that IA is a subideal of 〈PG〉. The following result guarantees
that PG∗ is a FreeLunch system generating this subideal.

Proposition 7. The polynomial system PG∗ is a FreeLunch system, where
LM≺A(g

∗) = xu0 . Moreover, the variety of the associated ideal IA contains all
valid solutions of the underlying instance of Anemoi.
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Proof. By Lemma 5 we have LM(pi) = xαi , so we need only show that LM(g∗)
is a univariate monomial in x0 to guarantee that PG∗ is a FreeLunch system. To
this end, we will show by induction on descending i that LM(g′i) = (x0 · · ·xi)ui ,
and wt(LM(g′i)) > LM(Mon2(g

′
i)).

For i = r, we have g′r = g = Qr, and the statement holds by Lemma 4.
Suppose the hypothesis holds for a given i and consider i − 1. If we denote
si = (ui + ki)/α, we have LM(xkii g

′
i) = (x0 · · ·xi−1)uixαsii . We now reduce this

monomial by pi. Write c for the leading coe�cient of xkii g
′
i. From Lemma 5, we

have that the �rst two monomials in pi have the same weight, while all other
monomials have smaller weights. Moreover, the induction hypothesis ensures
that Monj(x

ki
i g
′
i) will a have smaller weight than LM(xkii g

′
i) for j ≥ 2. Hence,

LM
(
xkii g

′
i − c(x0 · · ·xi−1)uix

α(si−1
i )pi

)
= (x0 · · ·xi−1)ui+2x

α(si−1)
i ,

following from the fact that wt((x0 · · ·xi−1)ui+2x
α(si−1)
i ) = wt(LM(xkii g

′
i)) =

wt (LM((x0 · · ·xi−1)uipi)), and the weight of all other monomials are guaranteed
to be strictly smaller. Repeating this process si − 1 times, we get LM(g′i−1) =
(x0 · · ·xi−1)ui+2si , which proves the induction statement. Since this implies that
LM(g∗) = LM(g′0) = xu0 , it also concludes the proof of the �rst part of the
proposition. The second part holds since IA is a subideal of 〈PG〉, where the
variety of the latter ideal will contain all solutions of Anemoi. ut

Ideal Degree. Based on experiments, the authors of Anemoi conjectured a tight
upper bound on the ideal degree of one modeling of the CICO-problem to be
(α + 2)r [15, Conjecture 2]. As IA is a FreeLunch system, we have DIA = αru,
where we recall that u is an integer depending on r and α. As IA is a subideal of
〈PG〉, we generally expect DIA to be strictly larger than (α+ 2)r. The following
result proved in Appendix E guarantees that DI can at most di�er by a factor
close to α, which in practical instances will be a small constant.

Proposition 8. Let u be as de�ned in De�nition 15 for integers r, α ≥ 1. Then(
α+ 2

α

)r
≤ u ≤ (α+ 1)

(
α+ 2

α

)r
− α .

From experiments for α = 3 and large r, we �nd u ≈ 2.1 (5/3)
r
.

Summary. For Anemoi, we get a polynomial system with r equations of respec-
tive leading terms xα1 , . . . x

α
r and one equation of leading term xu0 . This gives the

following parameters:

DI = αru,

DH = αr.
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Security claim α = 3 α = 5 α = 7 α = 11

128 118 (21) 156 (21) 174 (20) 198 (19)
256 203 (37) 270 (37) 307 (36) 358 (35)

Table 6: Expected time complexity (log2) of polyDet against di�erent full-round
instances of Anemoi over Fp, where ` = 1 and ω = 2.81. Number of rounds in
parentheses.

Number of Complexity Time (s) Memory
rounds of polyDet sysGen matGen polyDet (MB)

3 20 < 0.01 < 0.01 0.02 < 400
4 26 < 0.01 0.34 0.24 < 400
5 32 0.07 23.3 7.6 < 400
6 37 2.52 2, 127 292 2, 863
7 43 128 156, 348 10, 725 42, 337

Table 7: Experimental results on Anemoi with (`, α) = (1, 3). sysGen is performed
with Magma and refers to the generation of the polynomial system PG∗ from
scratch, including the computation of PG .

Complexity Analysis and Experimental Results. The FreeLunch system
PG∗ consists of r polynomials of degree α and one polynomial of degree u. The
algorithm of Section 3.2 has a complexity of Õ(αrωu). We plugged in the numbers
for odd Anemoi (` = 1), see Table 6. We also ran experiments for Anemoi with
(`, α) = (1, 3) and di�erent number of rounds to verify the theory presented
above. The results are presented in Table 7.

6 Conclusions

We have presented the FreeLunch approach, an algebraic attack particularly
e�cient against arithmetization-oriented permutations. We conclude this paper
with some comments regarding our experiments as well the consequences of
our results, in particular regarding the areas we believe are worth investigating
further.

6.1 Discussion on Experimental Results

Figure 5 depicts the runtimes of each step of our attack that we obtained ex-
perimentally when targeting Griffin and Anemoi. A �rst observation is that
the running time of a full FreeLunch-based attack is hard to predict: there are
three steps (sysGen, matGen, and polyDet), and we experimentally found situ-
ations where each of them was the slowest. The case of sysGen is a bit pecu-
liar: using SageMath, Magma or Flint/NTL yields very di�erent results and a
deeper understanding seems out of our grasp. We nevertheless would argue (see
Appendix A) that, should their implementations use similar tools, sysGen will
always be of lower complexity than that of the rest of the attack.
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Assuming that the dominating step is either matGen or polyDet, it then
seems easy to extrapolate: as we can see in Figure 5, their logarithm increases
linearly with the number of rounds. Even better: for Griffin, Equation (7)
predicts that adding a round multiplies the complexity of polyDet by αω(2α+
1) ≈ 109.5, which closely matches our observations as 5727/50.79 ≈ 112.7. For
matGen, we see that adding a round multiplies the time complexity by about
500. Extrapolating from this, an attack against full-round Griffin should take
about 4.2 · 1011s on a single CPU (around 13, 000 years), or around 270 clock
cycles at 2.3 GHz. Similarly, for Anemoi with Fp and (l, α) = (1, 3), adding
a round multiplies the time complexity of matGen by about 75. Extrapolating
gives respectively 2104 seconds (or 2135 clock cycles) and 2204 seconds (2235 clock
cycles) for full-round Anemoi with 128 and 256 bits of security.

(a) Griffin complexity (from table 3). (b) Anemoi complexity (from table 7).

Fig. 5: Experimental time complexity of our attacks on Griffin and Anemoi.

6.2 Preventing the FreeLunch Attack

Our attack breaks full-round instances of symmetric primitives built using state-
of-the-art security arguments, which consequently must be revisited: one must
learn how to prevent the relevant applicability of the FreeLunch approach.

At the Primitive Level. An obvious but perhaps costly countermeasure consists
of simply adding more rounds. This is particularly tempting as we are able to
tightly estimate the complexity of polyDet, a step which we have found to often
be the most expensive in practice. Choosing a number of rounds high enough to
prevent it would be a simple yet convincing argument. Primitive designers must
also be mindful of �classical� tricks, i.e., symmetric cryptanalysis techniques (a
priori) unrelated to root �nding that can be used to enhance its e�ciency. In
the case of 12-branch Griffin, the fact that we can bypass 3 out of 10 rounds
using some kind of subspace trail is a problem we deem worth studying.

At the Mode of Operation Level. The FreeLunch systems are multivariate, but
a single variable (x0) plays an inherently di�erent role. This makes them par-
ticularly well suited to CICO instances whereby a single output word has to be
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set to 0, but they will not work if more 0's are needed in the output. Thus, a
simple countermeasure against the FreeLunch approach (and univariate ones)
consists of forcing the capacity of the sponge to have at least two words set to
0, even if one word would a priori be enough. Still, while easy to implement, the
e�ciency of this countermeasure in the long term is uncertain. Indeed, as argued
below, inventing a variant of the FreeLunch that can handle multiple words is
an interesting open problem.

6.3 Open Problems for Future Work

Time Taken by Polynomial Reductions. A roadblock in our complexity estimates
is the number of operations needed to perform certain reductions of a polynomial
modulo an ideal. This is crucial for understanding the complexity of the matGen
step and, to a lesser degree, sysGen (see Appendix A). A tighter estimate for
these computations would greatly bene�t our analysis: we would be able to
�gure out which step of our attack is the actual bottleneck without the need
for experiments or assumptions, and designers could then be able to use fewer
rounds to achieve a given security level against FreeLunch-based attacks. For
instance, estimating the complexity of a reduction by a FreeLunch triangular
system (De�nition 9) would be a big step forward.

Other Custom Approaches. The FreeLunch approach is, to the best of our knowl-
edge, the �rst �custom� root �nding method designed speci�cally for use in sym-
metric cryptanalysis. There is, of course, no reason to believe that it is the only
one possible, and we consider it a direction worth pursuing. As a �rst step, a
multivariate variant of FreeLunch where several variables play the role of x0,
and where several words need to be set to 0, would be an interesting target.
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A Computing a Reduced Gröbner Basis for 〈PG〉

As noted at the end of Section 3.4, we do not generate the polynomial system PG
directly in practice. Rather, we construct a related polynomial system iteratively
while reducing as many monomials as possible along the way. More formally, for
a polynomial h and an ordered sequence of polynomials H, we let Red(h,H)
denote the operation of reducing h by H (according to a speci�ed monomial
order). That is, Red(h,H) is the remainder after performing multivariate division
of h by H (see [22, Ch. 2, �3]). For a tuple of polynomials h = (h1, . . . , ht), we
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write Red(h, H) = (Red(h1, H), . . . ,Red(ht, H)). Now �x a monomial order,
and de�ne z′0 = z0. We generate p′i = (p′i,1, . . . , p

′
i,li) and the reduced states z′i

recursively as follows for 1 ≤ i ≤ r and 1 ≤ j ≤ li.

p′i,j = Red
(
x
αi,j
i,j − Li,j(z

′
i−1), {p′1 . . . ,p′i−1}

)
,

z′i = Red
(
Gi(z

′
i−1,xi), {p′1, . . . ,p′i}

)
,

where Li,j is the polynomial from (3). Finally, we de�ne

g′ = Red
(
[Gr(z

′
r−1,xr)]1, {p1, . . . ,pr}

)
,

and write P ′G = {p′1, . . . ,p′r, g′}. Since the construction of P ′G only di�ers from
that of PG by reductions with generators in the ideal IG = 〈PG〉 their ideals
should, intuitively speaking, be identical. This intuition is con�rmed by the
following lemma.

Lemma 6. For any �xed monomial order we have

IG = 〈PG〉 = 〈P ′G〉 .

Proof. For any polynomial h and polynomial sequence H, we can write the
reduction operation as Red(h,H) = h + W , for some polynomial W ∈ 〈H〉.
Since the Gi's used in the construction of p′i and z

′
i are polynomial functions,

one can show by induction that

p′i,j ∈ pi,j + 〈{p1 . . . ,pi−1}〉, z′i,j ∈ zi,j + 〈{p1, . . . ,pi}〉 (10)

holds for all 1 ≤ i ≤ r and 1 ≤ j ≤ li. In particular, we have g′ ∈ g +
〈{p1, . . . ,pr}〉. Thus it is clear that PG and P ′G generate the same polynomial
ideal. ut

The following result relates P ′G and PG when Proposition 6 holds. Recall that we
write d≤i = d1 · · · di, where di = deg(Gi).

Proposition 9. Let PG satisfy the condition of Proposition 6. Then constructing
P ′G w.r.t. ≺G is also a FreeLunch system. Moreover, replacing g′ in P ′G with
g′/LC(g′) yields the unique reduced Gröbner basis for IG w.r.t. ≺G.

Proof. By de�nition of polynomial division, we have wt(LM(Red(h,H))) ≤
wt(LM(h)). Since LM(pi,j)

′ cannot be reduced by {p′1 . . . ,p′i−1} under ≺G , it
follows from (10) and the prior discussion that LM(p′i,j) = LM(pi,j). For the

similar statement on LM(g′), we note that the condition LM(g) = x
d≤r
0 can only

hold if for every i there exist a ji such that LM(zi,ji) = x
d≤i
0 . By construction of

≺G , this monomial will not be reduced by {p′1 . . . ,p′i−1}. Again, it follows from
(10) that LM(z′i,ji) = x

d≤i
0 . In particular, LM(g′) = LM(g), hence P ′G is also a

FreeLunch system.
For the last assertion, one observes from the way pi,j only depends on the

variables x0,x1, . . . ,xi−1, xi,j that

Red(p′i,j , P
′
G \ {p′i,j}) = Red(p′i,j , {p1 . . . ,pi−1}) ,
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holds for ≺G . Hence P ′G is already fully reduced, and replacing g′ with g′/LC(g′)
makes all polynomials monic. ut
Remark 2. Recall from Proposition 2 that if H is a Gröbner basis for 〈H〉, then
Red(h,H) does not depend on the order of the sequence H. It follows from
Proposition 9 that if PG satis�es the condition of Proposition 6, then the reduc-
tions in the construction of p′i,j , z

′
i and g

′ are independent of the order of the
sequence {p1, . . .pi}, w.r.t. ≺G .

Complexity of computing P ′
G. We are left with bounding the complexity of

computing P ′G , which will yield our estimate for the sysGen step. In the setting
we will be interested in, this is expected to be dominated by the cost of applying
the last round function Gr to compute g′, and its reduction by {p′1 . . . ,p′r}. Our
insight is that the reductions involved in the sysGen process are cheaper than the
reductions required in matGen, since the reductions are performed on a smaller
Gröbner basis; but we do not have a proof for such a statement. However, it is
possible to bound the cost of the multiplications performed on the state z′r−1
when applying Gr. Let m denote the number of these multiplication, where
we recall that m is typically small by design. We reduce by {p′1 . . . ,p′r} after
each multiplication, and will assume that this reduction is negligible compared
to the cost of the multiplications themselves. Thus we have m multiplications
of multivariate polynomials of maximal degree d≤r in x0 and αi,j − 1 in xi,j ,
for 1 ≤ i ≤ r, 1 ≤ j ≤ li. We can then use the Kronecker trick presented by
Moenck [43, Section 3.4] to perform these multiplications in an e�cient manner.
In short, the Kronecker trick starts by transforming the multivariate polynomials
to univariate polynomials. This allows us to perform the multiplication using an
e�cient univariate multiplication algorithm, before converting the result back
to a multivariate polynomial. Moenck describes the algorithm and proves its
correctness for any bound on the degree of each variable in both polynomials
in the input of multiplication, but only gives a complexity estimate when all
bounds are equal. It is, however, easy to verify that the complexity formula for
the multivariate multiplication algorithm in our setting will be:

Õ(d≤r
∏

1≤i≤r
1≤j≤li

2αi,j) ,

when applying either the Fast Fourier Transform, or Schönhage & Strassen's
algorithm to perform the univariate multiplication [50, Chapter 8]. Repeating
this m times yields our estimate for cost of multiplications in the sysGen step:

Õ(md≤r
∏

1≤i≤r
1≤j≤li

2αi,j) .

In comparison, recall that the polyDet step of our analysis is expected by
Theorem 1 to require

Õ(d≤r(
∏

1≤i≤r
1≤j≤li

αi,j)
ω)
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operations in F. Thus, when m remains small, we do not expect the multiplica-
tions in sysGen to be the bottleneck of the overall attack.

Use in Experiments. We implemented the Kronecker trick for the experiments
we ran with the Flint library [38], using the NTL library [49] for the univariate
multiplication; the mapping between �int and NTL polynomial representations
was performed by hand. The multivariate multiplications performed for experi-
ments with Magma and SageMath used their own built-in functionalities.

B Bypassing the �rst rounds of Griffin

The number of rounds that can be bypassed before we need to introduce x1
depends on the number of branches. For t ≥ 12 branches we can �nd an easily
computable set of input states that allows to bypass the �rst three rounds of
Griffin, so x1 only appears in the fourth round. We explain in detail how this
can be done for t = 12. After that it will become clear that three rounds can
also be bypassed for t ∈ {16, 20, 24}, and how to determine how many rounds
can be bypassed for t < 12.

Denote the input state to Griffin as

(a0x0 + b0, a1x0 + b1, a2x0 + b2, . . . , a10x0 + b10, 0).

The ai and bj are constants in F that we now proceed to determine. Once the
ai and bj are �xed the variable x0 can be varied freely over F, generating a set

of input states for the CICO problem that all have constant input to the x1/α

function in the three �rst rounds. Figure 6 illustrates the evolution of one of the
chosen input states up to the start of round 3.

The values of ai and bj in Figure 6 can be determined as follows. After the
initial linear transformation before the �rst round, all branches can be expressed
as li(a)x0 + li(b) for 0 ≤ i ≤ 11, where li(·) is a known linear combination. To
get 0 on the branches indicated in Figure 6, the ai's and bj 's need to satisfy the
following linear equations

l0(a) = 0 l0(b) = 0
l1(a) = 0 l1(b) = 0
l3(a) = 0 l3(b) = 0
l5(a) = 0 l5(b) = 0
l7(a) = 0 l7(b) = 0
l9(a) = 0 l9(b) = 0
l10(a) = 0 l10(b) = 0.

With 0 on any two adjacent branches, the input to F will either be all 0,
with F (0, 0, 0) being equal to a constant, or the output of F will be multiplied
with 0, making sure the value on the branch remains 0. This ensures that the
algebraic expressions on the branches stay linear in x0,a and b after the a�ne
transformation at the start of the second round. The need to have input 0 to
x1/α and xα in the second round gives four more linear constraints
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Fig. 6: Evolution of chosen set of input states to Griffin with 12 branches. Red
values give conditions on the ai and bj such that the input of x1/α in the third
round becomes a known constant independent of x0.
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l17(a) = 0 l17(b) = 0
l18(a) = 0 l18(b) = 0,

where the γi are known constants.
Before the a�ne transformation in the second round, most branches will have

cubic polynomials in x0 as their values (the hi(x0) in Figure 6). These are again
linearly mixed in the a�ne transformation at the end of round two, producing
the cubic polynomial

h9(x0) = c3(a, b)x
3
0 + c2(a, b)x

2
0 + c1(a, b)x0 + c0(a, b)

on the �rst branch. We want to enforce that c3(a, b) = c2(a, b) = c1(a, b) = 0
such that the input to the x1/α function in round three becomes a known constant
independent from x0. The expressions for the coe�cients are cubic in the ai and
bj , but note that all the polynomials hi(x0) for 0 ≤ i ≤ 8 are made as products
of linear factors as

(li(a)x0 + li(b))(lj(a)x0 + lj(b))(lk(a)x0 + lk(b)),

and that h9(x0) is a sum of these. By calculating the coe�cients for the x30, x
2
0,

and x0 terms, we see that c3(a, b) is cubic in a, but does not contain b at all.
Similarly, c2(a, b) is quadratic in a and linear in b and c1(a, b) is linear in a
and quadratic in b.

We can now use the 9 linear equations in a introduced above to eliminate
a2, . . . , a10 from c3(a). This leaves c3 as c3(a0, a1), a cubic expression in a0 and
a1. Next we �x a1 to an arbitrary non-zero value (to avoid the trivial solution
a0 = . . . = a10 = 0) and solve for c3(a0) = 0 using a root-�nding algorithm for
univariate polynomials. With a0 and a1 �xed, all the other ai gets �xed as well
from the linear constraints from rounds 1 and 2.

Once all ai have been found, c2(a, b) = 0 just becomes a linear equation in
b. Using this linear equation together with the 9 from above, we can eliminate
b1, . . . , b10 from the last coe�cient c1(a, b). With all the ai �xed, c1 then just
becomes c1(b0), a quadratic expression in b0 and we easily solve c1(b0) = 0. This
determines all the values for the bi.

With the ai and bj now �xed, we know that the input state from our chosen
set will generate polynomials in x0 of degree 6α+3 on the branches at the start
of round 4. We can then start the basic attack from there, adapting the weighted
order of the variables accordingly. When the number of xi-variables is reduced
by 3 and with the degree of x0 bounded to 6α + 3 until the fourth round, the
dimension of the Gröbner basis ideal becomes much smaller, which again reduces
the overall attack complexity signi�cantly.

When there are more than 12 branches we can do the exact same trick as
explained above. The only di�erence is that there will be more values of ai and bj
that can be chosen arbitrarily when solving for c3(a, b) = c2(a, b) = c1(a, b) =
0. When there are less than 12 branches, there is not enough degrees of freedom
to make it through the third round. For t = 8 we can bypass the two �rst rounds,
so x1 only needs to be introduced in round 3, and for t = 3, 4 it is possible to
bypass the �rst round and introduce x1 in round 2.
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C Solutions to the CICO problem with respect to Griffin

In this section we give explicit solutions to the CICO problem related to a
Griffin permutation whose characteristics are speci�ed below. Everything dis-
cussed here can be checked by the reviewers using the supplementary material
provided in verify.zip.

Parameters of Griffin instances

• Prime number: p = 28407454060060787 (55 bits);

• Exponent: α = 3;

• Number of rounds: r ∈ {5, 6, 7};

• Number of branches: t = 12 (corresponds to 10 rounds in the real version);

• Parameters of the quadratic functions: δi = 4(i + 1), µi = 7(i + 1)2, i =
0, . . . , r − 1;

• Round constants13 (up to 7 rounds):

13 Our Griffin with r ≤ 7 rounds will use constants (c0, . . . , cr−2, c6).

42



c0 = (24948861045225956, 21203603017242449, 5137804740880040,

17203989140901077, 15884693750499599, 202426034695061,

21925627314327927, 14915791625715646, 2270637844838412,

19287066862534400, 23053628619630528, 20205234482325465)

c1 = (1953994697959081, 13694436956212586, 2244645965787647,

20803493439220167, 13296675195272853, 18296898451764242,

20376008308269607, 10239947264048958, 1116873941458788,

19425600591729552, 20854422412323996, 10085561279368253)

c2 = (16905640598099854, 25230133406843513, 8957962046730991,

14294289436907403, 10949906559535418, 28179662462119909,

20848690834284278, 5962920227944130, 15129107418293752,

6002695762195648, 6114627516150292, 22521669951514122)

c3 = (13008050022403386, 28091350245684079, 23189230572909585,

8101795236077784, 3593606052472638, 11330866710107896,

9840541134611106, 13915746912957553, 19822110644988410,

24750875289653592, 25496607366081073, 2269647499797729)

c4 = (15770582149454036, 4472996328290429, 8197094411507273,

14151116175893923, 19977244056516294, 22071066831282832,

10912395968228633, 28293903648852908, 15600461636809584,

16248565278833955, 23850742575902912, 12384888390231181)

c5 = (24731271392756981, 4234794164011219, 5709721189329773,

23115678305163655, 11185048660199721, 21406367947811616,

14929808901464726, 14209993563715217, 19373914823111461,

12307896526346864, 16319890415782340, 19440350754040851)

c6 = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

The round constants listed above were generated randomly using the following
code in SageMath:

p = 28407454060060787
Fp = F in i t eF i e l d (p)
R = 6
b = 12
set_random_seed ( i n t . from_bytes (b" G r i f f i n " , " l i t t l e " ) )
RC = [ random_vector (Fp , b) f o r _ in range (R) ]
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Solutions to the CICO problem

Solutions of the CICO problem for r ∈ {5, 6, 7} are presented here. Griffinr
denotes r-round Griffin.

Griffin5(0, 3490692521816093, 23601145558450866,

12269607430774150, 9967688977125539, 6082447726448232,

5654276540748670, 3202643372242143, 14009612926527540,

18297056060918841, 3219981769736554, 1403954519004962)

= (0, 5621630451433068, 19970363721022544,

26741918912648639, 19340983417234439, 703450676999922,

28208520610521445, 25436703150515389, 27364572020087999,

24554342355067488, 12423823785589327, 9583319713824981)

Griffin5(0, 20508905520120247, 23936168820965785,

23455122418677455, 17553236564762600, 3639182016432478,

17868020430519088, 3713757452078792, 5123533774106823,

15978370877576178, 18526890154199809, 7146019784219766)

= (0, 398957666284762, 14158444455164092,

23271855932022231, 21234778660794826, 254005063154066,

20580021469733731, 20943402370356289, 5582293336098692,

4611071270038675, 18302255515509522, 26476200309584297)

Griffin6(0, 15940424764849354, 15734551202904841,

2252716448242183, 24464738475171520, 22965208929786740,

9160692692879124, 10856186368261439, 8227155735266026,

27520010287112407, 2695459349798501, 26535488466949249)

= (0, 28084819548111304, 27440009447766981,

18719426192325148, 15867588640423583, 21846560125606713,

6096085299560336, 3230042720230543, 8933226700213982,

16946922076875842, 4787108825372316, 24658818061833687)

Griffin6(0, 13453267118668680, 16821847582014700,

16088365946216368, 5399506335051336, 27388226484505332,

23347730487451583, 17984517745797377, 8860239602618916,

21421104166559501, 2200106791585633, 4277034158946419)

= (0, 15056970863769267, 16790578228924700,

8672008243997393, 19887571512638539, 26391726423500753,

20727079056917053, 20813391870109600, 20843251064205404,

18441611384455618, 7490737291933204, 20355381094708976)
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Griffin7(0, 471901030567494, 19368389705049758,

6207658171606065, 13611402711597287, 12429039749894833,

22884233714242756, 18540641300363820, 25230426657954964,

17547513396056919, 15871260254068404, 5181585218256522)

= (0, 24311659110177349, 24245222836079936,

1360999973748497, 25535756342488541, 10834064085568113,

2487598456547217, 22567275155120838, 2042666706826108,

694695024982032, 10782435475712749, 20264250160050251)

D Bypassing the �rst round of Arion-π

We can use a trick similar to that used for Griffin to bypass the �rst round of
Arion-π such that the variable x1 is only �rst introduced in the second round.
Unlike Griffin, this method can be applied to any number of branches in Arion-
π. However, we can only bypass a single round.

Denote the input state to Arion as

(a0x0 + b0, a1x0 + b1, a2x0 + b2, . . . , at−2x0 + bt−2, 0).

The ai and bj are constants in F that will be determined. Once the ai and bj
are �xed, the variable x0 can be varied freely over F, generating a set of input
states for the CICO problem that all have input 0 to the x1/α function in the
�rst round. Figure 7 illustrates the evolution of one of the chosen input states
up to the start of round 2.

The values of ai and bj can, in general, be determined as follows. After the
initial matrix multiplication, all branches can be expressed as li(a)x0 + li(b) for
0 ≤ i ≤ t − 1, where li(a) and li(b) are known linear combinations. To get 0
on the last t − 2 branches, the ai's and bj 's need to satisfy the following linear
equations

l2(a) = 0 l2(b) = 0
...

...
lt−1(a) = 0 lt−1(b) = 0.

With 2t−4 equations on 2t−2 variables, these constraints leave two degrees
of freedom for the variables in a and b. Naively, one could think of additionally
imposing the constraints l1(a) = 0 and l1(b) = 0 such that only the �rst branch
is nonzero and the degree on x0 is further reduced. However, the unique solution
to this system is the trivial solution (a, b) = (0, 0), which is not of interest. Thus,
we avoid this by instead imposing arbitrary conditions for two variables ak and
bl (as long as ak is set to be a non-zero value to avoid the trivial solution). With
ak and bl �xed, all the other variables get �xed, too, from the previous linear
constraints. For simplicity, one could �x the values a0 = 1 and b0 = 0, leading
to an input state of the form (x0, a1x0, a2x0, . . . , at−2x0, 0), where all ai's are
�xed.
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Fig. 7: Evolution of chosen set of input states to Arion-π with 4 branches. Red
values give conditions on the ai and bj .

With 0 on the last t − 2 input branches, the output of the non-linear layer
of Arion-π will be of the form (A(x0), B(x0), 0, . . . , 0), where A and B are poly-
nomials in x0 of degree 3e and e, respectively. Thus, the input state from our
chosen set will generate polynomials in x0 of degree 3e on the branches after the
a�ne transformation in round 1. We can then start the basic attack from there,
adapting the weighted order of the variables accordingly. When the number of
xi-variables is reduced by 1 and with the degree of x0 bounded to 3e until the
second round, the dimension of the Gröbner basis ideal becomes smaller, which
again reduces the overall attack complexity.

E Proof of Proposition 8

Proof. Recall from De�nition 15 that u is de�ned as u = u0 through the sequence
{ui}0≤i≤r. To simplify the exposition, we will work with the sequence {vi}0≤i≤r
de�ned by v0 = 1, and

vi+1 = vi + 2
⌈vi
α

⌉
, for 0 ≤ i < r.

Note that vi = ur−i and, in particular, vr = u. De�ne two more integer sequences
{ai}0≤i≤r and {bi}0≤i≤r de�ned by a0 = b0 = 1 and for 0 ≤ i < r

ai+1 =
α+ 2

α
ai, bi+1 =

α+ 2

α
bi + 2.

As a �rst step, we will prove ai ≤ vi ≤ bi. This is clearly true for i = 0. Supposing
it holds up to some i, then using the identity x ≤ dxe < x+ 1, we have

α+ 2

α
vi ≤ vi + 2

⌈vi
α

⌉
<
α+ 2

α
vi + 2,
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Thus, using the induction hypothesis and the de�nitions of {ai} and {bi},

ai+1 ≤ vi+1 ≤ bi+1.

Observe that ai =

(
α+ 2

α

)i
, which proves the left-hand side of the inequality

in the proposition. For the right-hand side we note that {bi} can be written as

bi = (α + 1)

(
α+ 2

α

)i
− α, when i ≥ 1. Indeed, this can be veri�ed for i = 1.

Supposing it holds up to some i, then

bi+1 =
α+ 2

α
bi + 2

= (α+ 1)

(
α+ 2

α

)i+1

− α(α+ 2)

α
+ 2

= (α+ 1)

(
α+ 2

α

)i+1

− α,

and the bounds on u stated in Proposition 8 follows. ut

F FreeLunch Systems for XHash8

Description of XHash8. XHash8 is an SPN with nonlinear S-boxes, multiplica-
tion by a �xed MDS matrix M , and addition by round constants Ci. Its state
contains t = 12 elements in Fp where p = 264 − 232 + 1. The rate is �xed to
8 and capacity 4. There are 3 rounds in total, and each round consists of 3
steps, for a total of 9 steps (plus the initial a�ne layer (I)). With the cipher
state denoted as z = (z0, . . . , z11), one round of XHash8 is constructed from the
following functions (excluding (P3)(k) which is speci�ed below):

(I) : z 7→M × (C0 + z),

(F )(k) : z 7→ C3k +M × (z70 , . . . , z
7
11),

(B′)(k) : z 7→ C3k+1 + (z
1
7
0 , z1, z

1
7
2 , z

1
7
3 , z4, z

1
7
5 , z

1
7
6 , z7, z

1
7
8 , z

1
7
9 , z10, z

1
7
11).

The last step of a round, (P3)(k), consists of naturally mapping z to a state
of four elements in a cubic expansion Fp3 , denoted (S0,1,2, S3,4,5, S6,7,8, S9,10,11),
and then computing S7

i,i+1,i+2 and mapping the result back to Fp. After that,
like with (F )(k), an MDS layer is applied, and the round constant C3k+2 is
added. E�ectively, (P3)(k) is equivalent to mapping each z3q+r to a multivariate
polynomial of degree 7 in z3q, z3q+1, z3q+2 (see also the detailed description in
[6, Appendix A]), which is the way we modelize it.

The steps are applied in the following order, from left to right:

(I) (F )(1)(B′)(1)(P3)(1)(F )(2)(B′)(2)(P3)(2)(F )(3)(B′)(3)(P3)(3).

One round preceded by (I) is shown in �gure 8, taken from [6].
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Fig. 8: Round i of XHash8 preceded by an (I) step: (I)(F )(i)(B′)(i)(P3)(i).

FreeLunch System for XHash8 Our resolution allows us to solve the CICO
problem on one branch. However, since the size of one branch is roughly 64
bits, this CICO problem could simply be solved by making 264 queries to the
permutation, for which our solving algorithm does not give us an advantage. On
top of that, the real capacity of XHash8 is c = 4 for a security claim of 128 bits.
Rather than claiming a full attack on XHash8, we show a special case where a
FreeLunch system can be easily extracted. However, the later solving steps, in
particular the polyDet step, will still have a very high complexity.

Following the construction of FreeLunch systems from Section 3 we de�ne the
initial state as z0 = (x0, 0, . . . , 0) and add a new variable xi,j for 0 ≤ i ≤ 2 and

j ∈ {0, 2, 3, 5, 6, 8, 9, 11} after every (·)1/7. All other nonlinear operations can
be represented as polynomials of degree 7, �xing the weights of the introduced
variables to

wt(x0) = 1, wt(xi,j) = 72i + 1 .

We end up with 25 polynomials in 25 variables; 24 of these polynomials have x7i,j

as leading monomials and the last polynomial has x7
6

0 as a leading monomial.

The coe�cient of the x7
6

0 -term in the last polynomial will be non-zero with a
very high probability, ensuring we get a FreeLunch system, with DH = 724 and
α0 = 76.

Complexity of solving the system. We can solve the system using the al-
gorithm described in Section 3. The complexity of matGen is hard to estimate
precisely. The complexity of the polyDet step is:

O(Dω
1 α0 log(α0)

2) ≈ 2240

when ω = 2.81. Note that this is signi�cantly higher than 264, the brute force
complexity for solving this CICO problem.

48



G Implementation of the matGen Step

To the best of our knowledge, the matGen step has not been studied in the litera-
ture beyond [29]. Let φi, i ∈ {1, . . . D1}, denote the elements in the standard basis
of R/I that is not divisible by x0. Then, naively, matGen requires the reductions
of xα0

0 φi by the FreeLunch system (which is a Gröbner basis). The bound on the
number of steps in a reduction by a Gröbner basis in a weighted monomial order
is not clear, but experiments suggest that the complexity grows with the degree
of the polynomial to reduce. In order to give an estimation of the complexity of
this step, we implemented matGen along with the FreeLunch attack in section 4
and section 5, and benchmarked it. We implemented a variant of the naive ap-
proach: we observed that the computation of NormalForm(xα0

0 φi) can be sped
up if φi is not a single variable xi. If φi = a×b (a and b being non-trivial monomi-
als), compute NormalForm(xα0

0 a), and then NormalForm(NormalForm(xα0
0 a)b).

The intermediary normal form corresponds to another columns of T0 and can
be considered free if the columns of T0 are computed in the right order. In our
implementations, we chose b = xi with αi as low as possible; this seemed to be
the fastest approach.
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