
An Efficient Adaptive Attack Against FESTA

Guoqing Zhou and Maozhi Xu

School of Mathematical Sciences, Peking University, Beijing, China
zgqsms@pku.edu.cn

Abstract. At EUROCRYPT’23, Castryck and Decru, Maino et al.,
and Robert present efficient attacks against supersingular isogeny Diffie-
Hellman key exchange protocol (SIDH). Drawing inspiration from these
attacks, Andrea Basso, Luciano Maino, and Giacomo Pope introduce
FESTA, an isogeny-based trapdoor function, along with a correspond-
ing IND-CCA secure public key encryption (PKE) protocol at ASI-
ACRYPT’23. FESTA incorporates either a diagonal or circulant matrix
into the secret key to mask torsion points.
In this paper, we employ a side-channel attack to construct an auxil-
iary verification oracle. By querying this oracle, we propose an adaptive
attack strategy to recover the secret key in FESTA when the secret ma-
trix is circulant. Compared with existing attacks, our strategy is more
efficient and formal. Leveraging these findings, we implement our at-
tack algorithms to recover the circulant matrix in secret key. Finally, we
demonstrate that if the secret matrix is circulant, then the adversary
can successfully recover FESTA’s secret key with a polynomial num-
ber of decryption machine queries. Consequently, our paper illustrates
that FESTA PKE protocol with secret circulant matrix does not achieve
IND-CCA security.

Keywords: Isogeny-based Cryptography · Cryptanalysis · FESTA · Adap-
tive Attack · Side-channel Attack

1 Introduction

With the rapid advancement of quantum computing, the traditional pubic key
cryptosystems are increasingly unable to guarantee digital security [24,26]. To
counter the threat posed by quantum computation, post-quantum cryptogra-
phy has received extensive attention. Isogeny-based cryptography is one of the
candidates for post-quantum cryptography. Compared with other post-quantum
cryptosystems (e.g., lattice-based [23] and code-based [1]), isogeny-based cryp-
tosystems have the advantage of smaller size of public keys [6], making them
more suitable for applications with limited bandwidth (e.g., RS and IoT).

In 2011, Jao and De Feo [14] introduced a supersingular isogeny Diffie-
Hellman key exchange protocol (SIDH), relying on isogenies between supersin-
gular elliptic curves. As the endomorphism ring of a supersingular elliptic curve
is non-commutative, SIDH is believed to be quantum-resistant [14]. SIDH plays
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a crucial role in various post-quantum applications, such as PKE scheme [8],
signature scheme [13] and key encapsulation protocol SIKE [2].

Prior to 2022, attacks against SIDH were only viable under special scenarios
[12,27] and unbalanced parameters [20,21]. However, at EUROCRYPT’23, the
underlying hard problem of SIDH has been thoroughly addressed, paving the
way for a series of efficient attacks [4,16,22]. The main idea of these attacks is
taking advantage of extra torsion points revealed by the participants Alice and
Bob and applying Kani’s theorem.

Meanwhile, these attacks result in the development of other isogeny-based
protocols. Pierrick Dartois, Antonin Leroux, Damien Robert, and Benjamin
Wesolowski [7] introduce a new digital signature scheme SQISignHD inspired
by SQISign and Kani’s theorem. Compared to classic SQISign, SQISignHD is
more efficient and compact. Andrea Basso, Luciano Maino, and Giacomo Pope
[3] construct an isogeny-based trapdoor function named FESTA and a corre-
sponding IND-CCA secure PKE protocol. To mask the torsion points, FESTA
introduces a secret diagonal matrix or circulant matrix in secret key.

There exist several adaptive attacks against isogeny-based cryptography. A
classical one is the attack against SIDH protocol [12], where Galbraith et al.
demonstrate its insecurity when the participants use static secret keys. The
countermeasures of this attack are relatively expensive. To reduce costs and
enable static-static secret keys, Fouotsa and Petit [10] construct a public key
validation mechanism and proposed the HealSIDH protocol. Subsequently, Gal-
braith and Lai [11] point out that the validation mechanism aids in recovering
secret keys, and they present an adaptive attack against HealSIDH and corre-
sponding PKE protocol. Against FESTA trapdoor function, Moriya [18] propose
a possible adaptive attack under certain assumptions.

It is common to construct an auxiliary oracle in adaptive attacks. The main
idea of attack is to substitute honest script with malicious information and de-
liver the modified script to oracle. Through the output of oracle, the adversary
can recover secret information. To attack the FESTA PKE protocol, the oracle
should be constructed in actual scenario.

Related work. There are currently two known attacks against FESTA. The
first is a polynomial-time attack put forth by Castryck and Vercauteren [5].
Their attack additionally requires that at least one of the basis points in public
parameters spans an eigenspace of Frobenius, of an endomorphism of low degree,
or of a composition of both. However, the current implementation of FESTA does
not choose such a basis.

The second is a possible adaptive attack proposed by Moriya [18]. He con-
struct an auxiliary oracle assuming that the validity of matrix is not checked
during the protocol process, but this assumption does not hold in the actual
FESTA PKE protocol. Our attack is inspired by Moriya, so we will introduce
his work in Sect. 2.4.

Overall, these two attacks prove ineffective against the actual implementation
of FESTA. As a consequence, the FESTA PKE protocol is still secure.
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Contributions. In this work, we consider a practical adaptive attack against
FESTA PKE protocol, and make the following contributions.

(1). We use side-channel attack to distinguish between two exceptions in the
decryption algorithm of FESTA PKE protocol. This leads to the construc-
tion of an auxiliary verification oracle, aiding in recovering the secret key
in protocol.

(2). We introduce a simper method to recover the secret key and prove that
FESTA PKE protocol with secret circulant matrix is not IND-CCA secure.
Using the attack against SIDH, we find that only a portion of the secret key
needs to be recovered for complete key recovery. Additionally, we propose
a more efficient and formal adaptive attack designed for secret circulant
matrix. In comparison to existing attack, our approach only demands ap-
proximately one-eighth of the queries to the decryption machine.

(3). We present our attack algorithms and an implementation in SageMath.
Two methods for implementing the verification oracle are available, with
the choice of these methods considered as a flag. On a single performance
core of an AMD Ryzen 7 7840H CPU, we successfully recover the secret
matrix of FESTA with 128-bit security in 2791.565s.

Organization. This paper is organized as follows. In Sect. 2, we introduce pre-
liminary information related to basic knowledge. Section 3 presents an auxiliary
verification oracle from side channel. We describe our attack strategy in Sect.
4. Section 5 gives an outline of our implementation. Finally, we conclude this
paper in Sect. 6.

2 Preliminaries

In this section, we introduce some mathematical concepts and facts about isoge-
nies and provide a concise overview of necessary isogeny-based cryptosystems.

2.1 Abelian varieties and isogenies

This subsection presents some knowledge about abelian varieties and isogenies,
For concrete definitions and rigorous proofs, readers can refer to [25,17,19].

An abelian variety is a complete group variety. For any abelian variety A,
there is a unique dual variety A∨ up to isomorphism. An isogeny between abelian
varieties is a surjective homomorphism with finite kernel. The polarization of A is
the isogeny λA = ϕL : A→ A∨ induced by the ample divisor L. The polarization
is principal if it is an isomorphism.

The Weil pairing on a principally polarized abelian variety (PPAV) is a non-
degenerate alternating pairing

en : A[n]×A[n]→ µn,

where A[n] is the group of all n-torsion points on A and µn is the n-th root
group of unity.
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Abelian variety A defined over Fq is denoted by A/Fq. If A/Fq is a dimension
g abelian variety and gcd(n, q) = 1, then A[n] ∼= (Z/nZ)2g. An n-isogeny ϕ :
A → B between PPAVs is an isogeny such that ϕ∨ ◦ λB ◦ ϕ = [n] ◦ λA, where
ϕ∨ : B∨ → A∨ is the dual isogeny and [n] is a scalar multiplication. Denote
ϕ̂ = λ−1A ϕ∨λB : B → A, then ϕ̂ ◦ ϕ = [n]. For simplicity, we also call ϕ̂ the
dual isogeny of ϕ. An n-isogeny between PPAVs defined over Fq is separable
if and only if gcd(n, q) = 1. Every separable isogeny between PPAVs can be
characterized by its kernel up to isomorphism. If ϕ is a separable n-isogeny from
dimension g PPAV A, then kerϕ is a maximal isotropic subgroup of A[n] with
respect to Weil pairing en. It holds that

kerϕ ∼= ker ϕ̂ ∼=
g∏

i=1

(Z/niZ× Z/
n

ni
Z),

where ni | n, i = 1, 2, · · · , g. It follows that #kerϕ = ng.
PPAVs of dimension one are just elliptic curves. Let E/Fpk be an elliptic

curve. If E[p] = {0}, then E is a supersingular elliptic curve. The endomorphism
ring of supersingular elliptic curve is non-commutative, which makes isogeny-
based cryptography resistant to quantum attacks. In the case of dimension two,
every principally polarized abelian surface (PPAS) is isomorphic to the product
of two elliptic curves or the jacobian of a hyperelliptic curve of genus two.

2.2 Polynomial-time attack against SIDH
SIDH is a well-known key exchange protocol proposed by Jao and De Feo in [14].
It has been extensively studied over the past decade [12,27,20,21]. But SIDH
protocol is completely broken in polynomial time at EUROCRYPT’23 [4,16,22].

SIDH protocol uses isogenies between supersingular elliptic curves, and it
can be summarized as follows. In set-up, we select prime p = 2a3bf − 1 where
2a ≈ 3b and f is a small factor, select a supersingular elliptic curve E0/Fp2 ,
and generate the basis {P1, Q1} of E0[2

a] and the basis {P2, Q2} of E0[3
b]. Then

Alice and Bob perform the key exchange as shown in Figure 1. The red lines are
computed by Alice and the blue lines are computed by Bob.

EA

E0 EAB

EB

ϕ ′
B

kerϕ ′
B =ϕ

A (kerϕ
B )

skA
=ϕA

(2
a -isogeny)

pkA
=(EA

,ϕA
(P2

),ϕA
(Q2

))

sk
B=ϕ

B (3 b-isogeny)

pk
B=(E

B ,ϕ
B (P

1 ),ϕ
B (Q

1 ))

ϕ
′
A

ker
ϕ
′
A
=ϕB

(ke
rϕA

)

Fig. 1. SIDH protocol.
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In order for Alice to generate ϕ′A and Bob to generate ϕ′B , the public keys
contain four extra torsion points. It is a leakage of secret information. All the
attacks in [4,16,22] are based on following Kani’s theorem[15, Theorem 2.3].

Theorem 1 (Kani’s theorem). Suppose that E0 is an elliptic curve, ϕB :
E0 → EB is an NB-isogeny, and γ : E0 → EC is an (NA −NB)-isogeny, where
NA and NB are coprime. There is a commutative diagram

E0 EB

EC EBC .

ϕB

γ γ′

ϕ′
B

Then the following map is an NA-isogeny between PPAS:

F : EB × EC → E0 × EBC(
R
S

)
7→
(
ϕ̂B(R) + γ̂(S)
γ′(R)− ϕ′B(S)

)
.

The kernel of the isogeny is kerF = 〈 (ϕB(P ), γ(P )), (ϕB(Q), γ(Q))〉, where
{P,Q} is a basis of E0[NA].

Without loss of generality, suppose that 2a > 3b in the SIDH protocol. At-
tacker possesses knowledge of the action of ϕB on E0[NA] from pkB . If the
attacker has ability to construct a (2a − 3b)-isogeny γ, then Kani’s theorem re-
veals that through its kernel attacker can generate an isogeny F between PPAS,
where the isogeny ϕ̂B is a component. Once recovering the isogeny ϕ̂B , the secret
kernel kerϕB = ϕ̂B(EB [NB ]) can be computed directly. Robert [22] improved
this method, eliminating the requirement that NA > NB and making it sufficient
that N2

A > NB .
Therefore, SIDH attacks can be abstracted as a generic algorithm that re-

covers an isogeny ϕ : E0 → E1 of degree d when it receives the curve E0, E1, the
degree d, a basis {P0, Q0} of E0[n] where n2 ⩾ d, and points {P1 = ϕ(P0), P2 =
ϕ(Q0)}. We denote this algorithm as

TorAtk(E0, P0, Q0, E1, P1, Q1, d).

If the input to TorAtk is invalid, then the algorithm is configured to output ⊥.

2.3 FESTA PKE protocol

This subsection introduces an overview of FESTA PKE protocol, which is the
target of our cryptanalysis. Based on the polynomial-time attack against SIDH
mentioned in Section 2.2, Basso et al. [3] propose a FESTA trapdoor function
and obtain a FESTA PKE protocol using the OAEP transform [9].

Now we introduce the construction of FESTA trapdoor function.
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– Public parameters. Let d1, d2, dA be odd integers such that they are pair-
wise coprime. Let m1,m2 be integers such that m2

1+m
2
2d1d2dA = 2b. Define

a prime p = 2bd1d2dAf − 1 where f is a small integer. Let E0/Fp2 be a
supersingular elliptic curve with j(E0) 6= 0, 1728. Let {Pb, Qb} be a basis of
E0[2

b]. Define Mb as a commutative subgroup of GL(2,Z/2bZ).
– Key generation. Compute a dA-isogeny ϕA : E0 → EA. Take a random

matrix A ∈Mb and compute(
RA

SA

)
= A

(
ϕA(Pb)
ϕA(Qb)

)
.

Finally, set (EA, RA, SA) as public key and keep (ϕA,A) as secret key.
– FESTA trapdoor function. Input a subgroup 〈K1〉 ⊆ E0[d1] of order d1,

a subgroup 〈K2〉 ⊆ EA[d2] of order d2, and a matrix B ∈ Mb. Compute
isogenies ϕ1 : E0 → E0/〈K1〉 = E1, ϕ2 : EA → EA/〈K2〉 = E2, and(

R1

S1

)
= B

(
ϕ1(Pb)
ϕ1(Qb)

)
,

(
R2

S2

)
= B

(
ϕ2(RA)
ϕ2(SA)

)
.

Output (E1, (R1, S1), E2, (R2, S2)), i.e.,

f(EA,RA,SA)(〈K1〉, 〈K2〉,B) = (E1, (R1, S1), E2, (R2, S2)).

– Inverse function. Input a tuple (E1, (R1, S1), E2, (R2, S2)). Using matrix
A in secret key, compute (

R′2
S′2

)
= d1A

−1
(
R2

S2

)
.

Compute the isogeny ψ = ϕ2 ◦ϕA ◦ ϕ̂1 : E1 → E2 through TorAtk(E1, R1, S1,
E2, R′2, S′2, d1dAd2). Recover the kernel 〈K1〉 of isogeny ϕ1 and the kernel
〈K2〉 of isogeny ϕ2 from ψ using ϕA in secret key. Compute B ∈ Mb such
that (

R1

S1

)
= B

(
ϕ1(Pb)
ϕ1(Qb)

)
.

Output (〈K1〉, 〈K2〉,B), i.e.,

f−1(ϕA,A)(E1, (R1, S1), E2, (R2, S2)) = (〈K1〉, 〈K2〉,B).

Anyone with knowledge of the public key can compute the trapdoor function,
but only the individual with the secret key possesses the capability to compute
the inverse function. The construction of FESTA trapdoor function can be sum-
marized in Fig. 2.
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E0 EA

E1 E2

(
Pb

Qb

) (
RA

SA

)
= A

(
ϕA(Pb)
ϕA(Qb)

)

(
R1

S1

)
= B

(
ϕ1(Pb)
ϕ1(Qb)

) (
R2

S2

)
= B

(
ϕ2(RA)
ϕ2(SA)

)

ϕA

ϕ1 ϕ2

ψ

Fig. 2. The FESTA trapdoor function

Using the OAEP transform on FESTA trapdoor function, we obtain FESTA
PKE protocol. Given two random oracles G : Z/d2Z ×Mb → Z/d1Z and H :
Z/d1Z→ Z/d2Z×Mb. The encrpytion algorithm and decryption algorithm are
outlined as follows.

– Encryption. Bob chooses a plaintext m ∈ Z/d1Z. He randomly chooses
r ∈ Z/d2Z and R ∈ Mb and computes s = m + G(r,R), (x,X) = H(s),
t = x + r, T = XR. Then, he generates the points K1 = P1 + [s]Q1 and
K2 = P2+[t]Q2, where {Pi, Qi} is the canonical basis of Ei[di], i = 1, 2. The
ciphertext ct = f(EA,RA,SA)(〈K1〉, 〈K2〉, T )

– Decryption. Receiving the cipertext ct, Alice computes (s, t, T ) = f−1(ϕA,A)(ct).
She computes (x,X) = H(s), r = t−x, R = X−1T . Then, she gets the plain-
text m = s−G(r,R).

Basso et al. claim that FESTA PKE protocol is IND-CCA secure. That is
to say, given two messages, any probabilistic polynomial-time adversary cannot
distinguish which message has been encrypted even if they can ask to decrypt
some ciphertexts different from the challenge ciphertext at any point during the
attack.

Remark 1. To generate suitable parameter sets in concrete instantiation, the se-
cret isogeny ϕA is split as a composition of two isogenies: ϕA : E0

ϕA,1−−−→ ẼA
ϕA,2−−−→

EA, where the degrees of of ϕA,1 and ϕA,2 are dA,1 and dA,2 respectively. The
actual parameters satisfy m2

1dA,1d1 + m2
2dA,2d2 = 2b. The inverse function in

concrete instantiation is a variant of that described above, but it doesn’t affect
our attack in Section 3 and Section 4.

2.4 Possible adaptive attack against FESTA trapdoor function

Moriya [18] shows that an adaptive attack can be considered if the FESTA
trapdoor function was used in the wrong way. He presents a possible adaptive
attack against FESTA trapdoor function under the following assumption:
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1. The adversary has access to a decryption machine.
2. The recipient does not check matrix B ∈Mb in the decryption process.

In FESTA trapdoor function, there is a relationship between torsion points
(R1, S1) and (R2, S2):(

R2

S2

)
= B · ϕ2 ◦A · ϕA

(
Pb

Qb

)
= BA · ϕ2 ◦ ϕA ◦

1

d1
◦ ϕ̂1 ◦B−1

(
R1

S1

)
= A · 1

d1
ϕ2 ◦ ϕA ◦ ϕ̂1

(
R1

S1

)
. (1)

This relationship serves as a proof of the correctness of the inverse function,
and it also means that as long as the torsion points satisfy equation (1), then
the inverse function will compute correct isogeny ψ = ϕ2 ◦ ϕA ◦ ϕ̂1 and output
the kernel groups of isogenies ϕ1 and ϕ2. Dishonest torsion points can lead to
an invalid matrix B. Assuming that the validity of matrix is not checked during
the protocol process, the decryption machine will determine whether equation
(1) holds. Hence, Moriya introduces an auxiliary verification oracle as follows:

O(E1, (R1, S1), E2, (R2, S2)) =

1 , if
(
R2

S2

)
= A · 1

d1
ϕ2 ◦ ϕA ◦ ϕ̂1

(
R1

S1

)
,

0 , otherwise.

Another observation is that if the secret matrix A is leaked, then the adver-
sary can compute (

ϕA(Pb)
ϕA(Qb)

)
= A−1

(
RA

SA

)
and recover the secret isogeny ϕA through the algorithm TorAtk( E0, Pb, Qb,
EA, ϕA(Pb), ϕA(Qb), dA). Therefore, the adversary only needs to recover matrix
A to get the complete secret key.

In the concrete instantiation of FESTA,Mb is the diagonal matrix group or
circulant matrix group. If Mb represents circulant matrix group, then Moriya
gives a strategy to recover secret matrix A in at most 8b − 1 queries to the
verification oracle O. The main method of Moriya’s attack is to replace the
honest ciphertext with malicious torsion points and deliver the script to oracle
O. Through the output of oracle, the information of secret matrix A can be
recovered.

But unfortunately, Moriya’s second assumption does not hold in actual FESTA
PKE protocol. To be specific, if the the matrix B 6∈ Mb, then the inverse func-
tion algorithm [3, Algorithm 7] will return ⊥. Hence, even though the torsion
points (R1, S1) and (R2, S2) satisfy equation (1), there is no output in the in-
verse function. It means that verification oracle O doesn’t work in the actual
attack scenario. Therefore, FESTA PKE protocol is still secure under Moriya’s
adaptive attack.
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3 Revalidated Oracle From Side Channel

In this section, we show that it is feasible to revalidate the verification oracle O
proposed by Moriya via side channel. This revalidation renders Moriya’s attack
and our simpler attack effective against actual FESTA PKE protocol.

First, we study the check process of matrix B in the FESTA inverse function.
Suppose that we have a honest script (E1, (R1, S1), E2, (R2, S2)) and choose
malicious torsion points(

P1

Q1

)
= M

(
R1

S1

)
,

(
P2

Q2

)
= N

(
R2

S2

)
.

If
(
P2

Q2

)
= A · 1

d1
ϕ2 ◦ ϕA ◦ ϕ̂1

(
P1

Q1

)
, then honest isogenies ϕ1 and ϕ2 will

be generated in the inverse function, and recipient will compute B′ such that(
P1

Q1

)
= B′

(
ϕ1(Pb)
ϕ1(Qb)

)
. We know that

(
P1

Q1

)
= M

(
R1

S1

)
= MB

(
ϕ1(Pb)
ϕ1(Qb)

)
, so

recipient will get matrix B′ = MB. Mb is a group and B ∈ Mb, so B′ ∈ Mb

if and only if M ∈ Mb. Therefore, the check process of matrix B passes if and
only if malicious matrix M ∈Mb.

It is hard to attack FESTA if we require malicious matrix M ∈ Mb, so we
need to skip this check of matrix B in some sense. We find that in the concrete
implementation of FESTA decryption algorithm,

1. the program will throw a ’ValueError’ if the malicious torsion points satisfy(
P2

Q2

)
6= A · 1

d1
ϕ2 ◦ ϕA ◦ ϕ̂1

(
P1

Q1

)
,

2. and the program will return ’False’ if the malicious torsion points satisfy(
P2

Q2

)
= A · 1

d1
ϕ2 ◦ ϕA ◦ ϕ̂1

(
P1

Q1

)
, but M 6∈ Mb.

Therefore, given a FESTA decryption machine, we can distinguish between
these two exceptions through catching ’ValueError’. It means that we revalidate
the verification oracle O. This gives a straightforward implementation of oracle
O as Algorithm 1.

Algorithm 1: Straightforward implementation of verification oracle O
Input: A well-formatted script (E1, (P1, Q1), E2, (P2, Q2)), and FESTA

decryption machine Dec.
Output: 1 or 0.

1 if Dec(E1, (P1, Q1), E2, (P2, Q2)) throws a ’ValueError’ then return 0;
2 else return 1;



10 Guoqing and Maozhi

Note that there are many steps in decryption algorithm [3, Algorithm 7] be-
tween the above two exceptions. Even though the program returns same symbol
in the above two exceptions, we can still infer the output of oracle through the
running time in decryption process. For instance, on a single performance core
of an AMD Ryzen 7 7840H CPU, the average running time in decryption process
of exception 1 is 6.682s, while that of exception 2 is 10.474s. It is feasible to dis-
tinguish between these two exceptions. This gives a time-based implementation
of oracle O as outlined in Algorithm 2.

Algorithm 2: Time-based implementation of verification oracle O
Input: A well-formatted script (E1, (P1, Q1), E2, (P2, Q2)), an honest

ciphertext (E1, (R1, S1), E2, (R2, S2)), and FESTA decryption machine
Dec.

Output: 1 or 0.
1 Record the average running time T1 of

Dec(E1, (R1 + [2b−1]S1, S1), E2, (R2 + [2b−1]S2, S2)); (2)

2 Record the average running time T2 of

Dec(E1, (R1, S1 + [2b−1]R1), E2, (R2 + [2b−1]S2, S2)); (3)

3 Compute T = (T1 + T2)/2;
4 if the running time of Dec(E1, (P1, Q1), E2, (P2, Q2)) is smaller than T then
5 return 0
6 else return 1;

Remark 2. The torsion points in formula (2) and formula (3) lead to different
exceptions, which will be explained in Section 4.2.

4 A More Efficient Strategy for Circulant Matrix

In this section, we present a more efficient and formal strategy to recover the
secret circulant matrix. Our strategy only needs at most b − 2 queries to the
oracle O.

4.1 Main idea

The first idea is that only half of the bits of secret matrix A is sufficient for
attack. From the public parameters m2

1+m
2
2d1dAd2 = 2b, we know that 2b ≥ dA,

i.e., (2 b
2 )2 ≥ dA. Using TorAtk algorithm, we only need to recover the action of

isogeny on 2
b
2 -torsion basis. In key-generation of FESTA,

(
RA

SA

)
= A

(
ϕA(Pb)
ϕA(Qb)

)
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are the torsion points in public key. Thus,(
[2

b
2 ]RA

[2
b
2 ]SA

)
= A

(
ϕA([2

b
2 ]Pb)

ϕA([2
b
2 ]Qb)

)
= A1

(
ϕA([2

b
2 ]Pb)

ϕA([2
b
2 ]Qb)

)
,

where {[2 b
2 ]Pb, [2

b
2 ]Qb} is a basis of E0[2

b
2 ] and A1 ≡ A mod 2

b
2 . If we recover

matrix A1, then we can directly compute(
ϕA([2

b
2 ]Pb)

ϕA([2
b
2 ]Qb)

)
= A−11

(
[2

b
2 ]RA

[2
b
2 ]SA

)
and recover ϕA from TorAtk(E0, [2

b
2 ]Pb, [2

b
2 ]Qb, EA, ϕA([2

b
2 ]Pb), ϕA([2

b
2 ]Qb), dA).

So the matrix A1 is sufficient for attack. In contrast to Moriya’s attack, only
half of the bits of matrix A need to be recovered.

The second idea is that malicious torsion points can be represented by matrix
formally. Suppose we get a honest receipt (E1, (R1, S1), E2, (R2, S2)), and we
write malicious points(

P1

Q1

)
= M

(
R1

S1

)
,

(
P2

Q2

)
= N

(
R2

S2

)
,

where matrices M ,N ∈ GL(2,Z/2bZ) represent our malicious choice. Then(
P2

Q2

)
= N

(
R2

S2

)
= NA · 1

d1
ϕ2 ◦ ϕA ◦ ϕ̂1

(
R1

S1

)
(▷ formula (1))

= NA · 1
d1
ϕ2 ◦ ϕA ◦ ϕ̂1 M−1 ·

(
P1

Q1

)
= NAM−1 · 1

d1
ϕ2 ◦ ϕA ◦ ϕ̂1

(
P1

Q1

)
.

Hence, O(E1, (P1, Q1), E2, (P2, Q2)) = 1 if and only if NAM−1 = A. By se-
lecting appropriate malicious matrices M and N , the equality NAM−1 = A
can reveal information about secret matrix A.

Suppose the secret circulant matrix A =

(
γ δ
δ γ

)
, where detA = γ2 − δ2 ∈

(Z/2bZ)×. It follows that the parity of γ and δ is opposite. To recover matrix
A1 ≡ A mod 2

b
2 , we need to recover the first b

2 bits of γ and δ.

4.2 The first bits of γ and δ

In this subsection, we recover the fisrt bits of γ and δ. We choose malicious

matrices M0 = N0 =

(
1 2b−1

0 1

)
, then

N0AM−1
0 =

(
1 2b−1

0 1

)(
γ δ
δ γ

)(
1 2b−1

0 1

)
=

(
γ + 2b−1δ δ

δ γ + 2b−1δ

)
.
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Thus, N0AM−1
0 = A if and only if 2b−1δ = 0 in Z/2bZ, equivalently, δ is even.

So we choose (
P1

Q1

)
= M0

(
R1

S1

)
,

(
P2

Q2

)
= N0

(
R2

S2

)
,

then O(E1, (P1, Q1), E2, (P2, Q2)) = 1 if and only if δ is even. That is to say,
after querying the verification oracle once, we can recover the first bits of γ and
δ. We summarize this step in Algorithm 3.

Algorithm 3: The fisrt bits of secret matrix
Input: The public parameter and public key (p,E0, Pb, Qb, EA, RA, SA), an

honest ciphertext (E1, (R1, S1), E2, (R2, S2)), and the verification
oracle O.

Output: The first bits of γ and δ.

1 Set
(
P1

Q1

)
←
(
1 2b−1

0 1

)(
R1

S1

)
,

(
P2

Q2

)
←
(
1 2b−1

0 1

)(
R2

S2

)
;

2 if O(E1, (P1, Q1), E2, (P2, Q2)) = 1 then set γ ← 1, δ ← 0;
3 else set γ ← 0, δ ← 1;
4 return γ, δ;

Note that if we choose M0 =

(
1 0

2b−1 1

)
and N0 =

(
1 2b−1

0 1

)
, then

N0AM−1
0 =

(
1 2b−1

0 1

)(
γ δ
δ γ

)(
1 0

2b−1 1

)
=

(
γ δ + 2b−1γ

δ + 2b−1γ γ

)
.

Thus, O(E1, (P1, Q1), E2, (P2, Q2)) = 1⇔N0AM−1
0 = A⇔ γ is even. Exploit-

ing the fact that only one of γ and δ is even, these two selections of torsion points
will lead to distinct outputs in verification oracle O. It follows that formula (2)
and formula (3) in Algorithm 2 correspond to different exceptions.

4.3 The other bits of γ and δ

Now we can recover the other bits of γ and δ by induction. Similar to the GPST
attack [12], we write γ = γi + ai · 2i + γ′ and δ = δi + bi · 2i + δ′, where γi and
δi are known and 2i+1 | γ′, 2i+1 | δ′. To recover ai and bi in every iteration, we
need the following two lemmas.

Lemma 1. Let γ, δ ∈ Z/2bZ. ξ = γ2 − δ2. Write γ = γi + ai · 2i + γ′ and
δ = δi + bi · 2i + δ′, where i ⩽ b− 1. It holds that when 2 ⩽ i ⩽ b− 2,

ξ − γ2i + δ2i ≡
{
2i+1 · ai (mod 2i+2), if γ is odd and δ is even,
2i+1 · bi (mod 2i+2), if γ is even and δ is odd.
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Proof. When i ⩾ 2, (2i)2 ≡ 0 mod 2i+2, so

ξ ≡ γ2i+2 − δ2i+2 mod 2i+2

= (γi + ai2
i + ai+12

i+1)2 − (δi + bi2
i + bi+12

i+1)2

≡ (γ2i + aiγi2
i+1)− (δ2i + biδi2

i+1) mod 2i+2

≡ γ2i − δ2i + aiγi · 2i+1 + biδi · 2i+1 mod 2i+2.

If γ is odd and δ is even, then γi is odd and δi is even,

ξ − γ2i + δ2i ≡ 2i+1 · ai (mod 2i+2).

If γ is even and δ is odd, then similarly ξ − γ2i + δ2i ≡ 2i+1 · bi (mod 2i+2). □

Lemma 2. Let γ, δ ∈ Z/2bZ. Write γ = γi + ai · 2i + γ′ and δ = δi + bi · 2i + δ′,
where i ⩽ b− 1. It holds that in Z/2bZ,

−2b−i−1δi · γ + 2b−i−1γi · δ =
{
2b−1 · bi , if γ is odd and δ is even,
2b−1 · ai , if γ is even and δ is odd.

Proof. In Z/2bZ, it holds that

−2b−i−1δi · γ + 2b−i−1γi · δ = 2b−i−1[−δi · (γi + ai · 2i + γ′) + γi · (δi + bi · 2i + δ′)]

= 2b−i−1(−δi · ai · 2i + γi · bi · 2i)
= 2b−1(biγi − aiδi).

If γ is odd and δ is even, then γi is odd and δi is even, 2b−1(biγi−aiδi) = 2b−1 ·bi.
If γ is even and δ is odd, then similarly 2b−1(biγi − aiδi) = 2b−1 · ai. □

For simplicity, we write Ti = −2b−i−1δi · γ + 2b−i−1γi · δ. It will be used in
subsequent steps.

Case 1: γ is odd and δ is even. In this case, γi is odd and δi is even for every
i ⩽ b− 1. The public keys of FESTA trapdoor function are defined by following
set:

Apk =

(EA, RA, SA)

∣∣∣∣∣∣
ϕA : E0 → EA, deg(ϕA) = dA,

A ∈Mb,

(
RA

SA

)
= A

(
ϕA(Pb)
ϕA(Qb)

)  .

Through Weil pairing

e2b(RA, SA) = e2b(ϕA(Pb), ϕA(Qb))
detA = e2b(Pb, Qb)

dA·detA,

we can solve a discrete logarithm to get detA = ξ ∈ Z/2bZ. When 2 ⩽ i ⩽ b−2,
from Lemma 1, we know that ξ − γ2i + δ2i ≡ 2i+1 · ai (mod 2i+2). γi and δi are
known, which follows that we can recover ai directly when 2 ⩽ i ⩽ b− 2.
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Remark 3. It should be noted that a1 is still unknown using the strategy above.
We can guess a1 = 0 and a1 = 1 respectively and then recover other bits.

To recover bi, we need to query the verification oracle. Let

Mi =

(
1 + 2b−i−2δi 2b−i−1γi

0 1− 2b−i−2δi

)
and Ni =

(
1− 2b−i−2δi 2b−i−1γi

0 1 + 2b−i−2δi

)
.

When i ⩽ b
2 − 1, equivalently, (2b−i−1)2 = 0 in Z/2bZ, it can be computed that

NiAM−1
i =

(
1− 2b−i−2δi 2b−i−1γi

0 1 + 2b−i−2δi

)(
γ δ
δ γ

)(
1− 2b−i−2δi −2b−i−1γi

0 1 + 2b−i−2δi

)
=

(
γ + Ti δ
δ γ − Ti

)
Lemma 2
======

(
γ + 2b−1 · bi δ

δ γ − 2b−1 · bi

)
,

thus, NiAM−1
i = A if and only if bi = 0. We choose(

P1

Q1

)
= Mi

(
R1

S1

)
,

(
P2

Q2

)
= Ni

(
R2

S2

)
,

then O(E1, (P1, Q1), E2, (P2, Q2)) = 1 if and only if bi = 0. It means that we can
recover bi through querying the verification oracle when i ⩽ b

2−1. We summarize
these steps as Algorithm 4 in Appendix A.

Case 2: γ is even and δ is odd. In this case, γi is even and δi is odd for
every i ⩽ b− 1.

We can recover bi when 2 ⩽ i ⩽ b − 2 similar to Case 1. b1 is still unknown
and we should assume b1 = 0 and b1 = 1 respectively.

To recover ai, we also need to query the oracle. Let

Mi =

(
1 + 2b−i−2γi 0
2b−i−1δi 1− 2b−i−2γi

)
and Ni =

(
1 + 2b−i−2γi 2b−i−1δi

0 1− 2b−i−2γi

)
.

When i ⩽ b
2 − 1, equivalently, (2b−i−1)2 = 0 in Z/2bZ, it can be computed that

NiAM−1
i =

(
γ δ + Ti

δ − Ti γ

)
Lemma 2
======

(
γ δ + 2b−1 · ai

δ − 2b−1 · ai γ

)
,

thus, NiAM−1
i = A if and only if ai = 0. We choose(

P1

Q1

)
= Mi

(
R1

S1

)
,

(
P2

Q2

)
= Ni

(
R2

S2

)
,

then O(E1, (P1, Q1), E2, (P2, Q2)) = 1 if and only if ai = 0. It means that we
can recover ai through querying the verification oracle when i ⩽ b

2 − 1. We
summarize these steps as Algorithm 5 in Appendix A.

Remark 4. This attack strategy is not applicable to a secret diagonal matrix. The
determinant and verification oracle provide the same information in this case.
Exploring an attack strategy for diagonal matrix is a topic for future research.
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4.4 Analysis

Using the strategy above, we can recover the matrix A1 ≡ A mod 2
b
2 through

querying verification oracle. It should be noted that the determinants of all
malicious matrices {Mi, Ni}

b
2−1
i=0 equal one in Z/2bZ. Thus,

e2b(P1, Q1) = e2b(R1, S1)
detMi = e2b(R1, S1),

e2b(P2, Q2) = e2b(R2, S2)
detNi = e2b(R2, S2).

It means that Weil pairing is unable to detect our choices of malicious torsion
points. We conclude our adaptive attack in the following theorem.

Theorem 2. Suppose the secret matrix in FESTA is circulant. Given FESTA’s
public parameter and public key (p,E0, Pb, Qb, EA, RA, SA), a honest ciphertext
(E1,(R1, S1),E2,(R2,S2)), and a decryption machine, we can recover FESTA’s
secret key (A, ϕA) in either b

2 or b− 2 queries to the decryption machine using
ciphertexts different from the challenge one. Moreover, FESTA PKE protocol
with secret circulant matrix is not IND-CCA secure.

Proof. From the analysis in Section 3, we can construct a verification oracle

O(E1, (R1, S1), E2, (R2, S2)) =

1 , if
(
R2

S2

)
= A · 1

d1
ϕ2 ◦ ϕA ◦ ϕ̂1

(
R1

S1

)
,

0 , otherwise

from the decryption machine via side channel. Querying the verification oracle
once will call the decryption machine once.

From algorithm 3, 4, 5 and the analysis in Section 4.2 and 4.3, we know that
matrix A1 ≡ A mod 2

b
2 can be recovered through querying verification oracle.

In this step we replace the honest cipertext with malicious torsion points, which
means that we query the decryption machine with ciphertexts different from the

challenge one. Write
(
PA

QA

)
= A−11

(
[2

b
2 ]RA

[2
b
2 ]SA

)
, then the secret isogeny ϕA can

be recovered using

TorAtk(E0, [2
b
2 ]Pb, [2

b
2 ]Qb, EA, PA, QA, dA).

Since
(
RA

SA

)
= A

(
ϕA(Pb)
ϕA(Qb)

)
, the circulant matrix A can be recovered. Hence,

we can recover FESTA’s secret key (A, ϕA).
Now, let’s tally the number of queries to the decryption machine, which

is equivalent to the number of queries to the verification oracle. Write matrix

A =

(
γ δ
δ γ

)
, γ =

b−1∑
i=0

ai2
i, δ =

b−1∑
i=0

bi2
i. The verification oracle is queried to

recover A1, equivalently, ai and bi for 0 ⩽ i ⩽ b
2 − 1. To recover a0 and b0, we

need one query to the oracle. Without loss of generality, suppose that γ is odd
and δ is even, which is consistent with Case 1 in Section 4.3. To recover b1, we
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need one query to the oracle. Then we guess a1 = 0 and a1 = 1 respectively to
recover other bits. For 2 ⩽ i ⩽ b

2 − 1, we need one query to the oracle to recover
(ai, bi). Thus, if the first guess of a1 is right, then we only need 2 + ( b2 − 2) = b

2

queries in total. Otherwise, we need 2 + 2( b2 − 2) = b− 2 queries in total. Note
that b < log p.

Therefore, given two messages and a cipertext encrypted by one of them, we
can recover the secret key of FESTA in polynomial time. Then we can decrypt
the cipertext directly to get corresponding message in polynomial time, because
we have known the secret key. It follows that FESTA PKE protocol with secret
circulant matrix is not IND-CCA secure. □

5 Implementation

We provide an implementation of our adaptive attack against FESTA PKE pro-
tocol in SageMath and make it available in the zip file:

attack-FESTA.zip

The TorAtk algorithm used in FESTA PKE protocol is limited to specific pa-
rameters, and there is no complete implementation of TorAtk algorithm. There-
fore, our program focuses solely on recovering the matrix A1 ≡ A mod 2

b
2 in

our program, where A is the matrix in secret key. Note that in algorithm 4 and
algorithm 5, we utilize the TorAtk algorithm to check the correctness of our sec-
ond bit guesses. As an alternative, we introduce a comparison algorithm where
we directly compare the recovered bits with the actual bits of the secret matrix.

Our implementation consists of two source files. All the following tests are
conducted on a single performance core of an AMD Ryzen 7 7840H CPU.

– In the ’exception_time.py’ file, we record the running time of two excep-
tions and define a function to compute the intermediate running time of two
exceptions. The test results are presented in Table 1.

Table 1. Average running time of two exceptions

Exception 1 Exception 2
6.768s 10.540s
6.634s 10.463s

Running time 6.658s 10.479s
6.704s 10.545s
6.648s 10.345

Average time 6.682s 10.474s

– In the ’attack_festa.sage’ file, we recover the secret matrix in FESTA PKE
protocol. There are two implementations of verification oracle presented in
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Algorithm 1 and Algorithm 2, and we allow the choice of these two imple-
mentations as flag. Through a straightforward test outlined in Table 2, we
know that average time to recover one bit is approximately 9 seconds. The
number of bits to recover can be specified when running this file. If we choose
b
2 bits, then we recover the matrix A1 ≡ A mod 2

b
2 . Against FESTA with

128-bit security, we successfully recover the secret matrix A1 in 2791.565s.

Table 2. Running time of attack algorithm

Number of bits recovered Time
5 48.255s
10 87.869s
15 139.657s
20 183.680
25 230.195s

6 Conclusion

In this paper, We distinguished between two exceptions in the FESTA decryption
algorithm through a side channel, constructing an effective verification oracle.
By querying this oracle, we proposed a practical adaptive attack against FESTA
PKE protocol, demonstrating its vulnerability to not being IND-CCA secure
when the secret matrix is assumed to be circulant. Finally, we presented our
attack algorithm and implemented it in SageMath.

We acknowledge the limitations of our attack strategy when dealing with
secret diagonal matrices and propose future research directions, including the
development of a constant-time implementation of the FESTA PKE protocol
and the exploration of adaptive attacks targeting secret diagonal matrices.
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A Algorithms

Algorithm 4: The other bits of secret matrix when γ is odd and δ is
even

Input: The public parameter and public key (p,E0, Pb, Qb, EA, RA, SA),
an honest ciphertext (E1, (R1, S1), E2, (R2, S2)), and the
verification oracle O.

Output: γ mod 2
b
2 , δ mod 2

b
2 .

1 Compute the determinant ξ ← d−1A · dlog(e2b(RA, SA), e2b(Pb, Qb));
2 Set γ ← 1, δ ← 0;
3 Set

(
P1

Q1

)
←

(
1 + 2b−3δ 2b−2γ

0 1− 2b−3δ

)(
R1

S1

)
,

(
P2

Q2

)
←

(
1− 2b−3δ 2b−2γ

0 1 + 2b−3δ

)(
R2

S2

)
;

4 if O(E1, (P1, Q1), E2, (P2, Q2)) = 1 then set b1 ← 0;
5 else set b1 ← 1, δ ← δ + b1 · 2;
6
7 Set a1 ← 0; ▷ guess a1 = 0

8 for i = 2→ b
2 − 1 do

9 if ξ − γ2 + δ2 ≡ 0 (mod 2i+2) then set ai ← 0;
10 else set ai ← 1;
11 Set

(
P1

Q1

)
←

(
1 + 2b−i−2δ 2b−i−1γ

0 1− 2b−i−2δ

)(
R1

S1

)
,

(
P2

Q2

)
←

(
1− 2b−i−2δ 2b−i−1γ

0 1 + 2b−i−2δ

)(
R2

S2

)
;

12 if O(E1, (P1, Q1), E2, (P2, Q2)) = 1 then set bi ← 0;
13 else set bi ← 1;
14 Set γ ← γ + ai · 2i, δ ← δ + bi · 2i;

15 Set A1 ←
(
γ δ
δ γ

)
,

(
PA

QA

)
← A−11

(
[2

b
2 ]RA

[2
b
2 ]SA

)
;

16 Set ϕ← TorAtk(E0, [2
b
2 ]Pb, [2

b
2 ]Qb, EA, PA, QA, dA);

17 if ϕ 6=⊥ then return γ, δ;
18
19 Set a1 ← 1, γ ← γ + a1 · 2; ▷ guess a1 = 1

20 for i = 2→ b
2 − 1 do

21 if ξ − γ2 + δ2 ≡ 0 (mod 2i+2) then set ai ← 0;
22 else set ai ← 1;
23 Set

(
P1

Q1

)
←

(
1 + 2b−i−2δ 2b−i−1γ

0 1− 2b−i−2δ

)(
R1

S1

)
,

(
P2

Q2

)
←

(
1− 2b−i−2δ 2b−i−1γ

0 1 + 2b−i−2δ

)(
R2

S2

)
;

24 if O(E1, (P1, Q1), E2, (P2, Q2)) = 1 then set bi ← 0;
25 else set bi ← 1;
26 Set γ ← γ + ai · 2i, δ ← δ + bi · 2i;

27 Set A1 ←
(
γ δ
δ γ

)
,

(
PA

QA

)
← A−11

(
[2

b
2 ]RA

[2
b
2 ]SA

)
;

28 Set ϕ← TorAtk(E0, [2
b
2 ]Pb, [2

b
2 ]Qb, EA, PA, QA, dA);

29 if ϕ 6=⊥ then return γ, δ;
30 else return ⊥;
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Algorithm 5: The other bits of secret matrix when γ is even and δ is
odd

Input: The public parameter and public key (p,E0, Pb, Qb, EA, RA, SA), an
honest ciphertext (E1, (R1, S1), E2, (R2, S2)), and the verification
oracle O.

Output: γ mod 2
b
2 , δ mod 2

b
2 .

1 Compute the determinant ξ ← d−1
A · dlog(e2b(RA, SA), e2b(Pb, Qb));

2 Set γ ← 0, δ ← 1;
3 Set

(
P1

Q1

)
←

(
1 + 2b−3γ 0

2b−2δ 1− 2b−3γ

)(
R1

S1

)
,

(
P2

Q2

)
←

(
1 + 2b−3γ 2b−2δ

0 1− 2b−3γ

)(
R2

S2

)
;

4 if O(E1, (P1, Q1), E2, (P2, Q2)) = 1 then set a1 ← 0;
5 else set a1 ← 1, γ ← γ + a1 · 2;
6

7 Set b1 ← 0; ▷ guess b1 = 0

8 for i = 2→ b
2
− 1 do

9 if ξ − γ2 + δ2 ≡ 0 (mod 2i+2) then set bi ← 0;
10 else set bi ← 1;
11 Set

(
P1

Q1

)
←

(
1 + 2b−i−2γ 0

2b−i−1δ 1− 2b−i−2γ

)(
R1

S1

)
,

(
P2

Q2

)
←

(
1 + 2b−i−2γ 2b−i−1δ

0 1− 2b−i−2γ

)(
R2

S2

)
;

12 if O(E1, (P1, Q1), E2, (P2, Q2)) = 1 then set ai ← 0;
13 else set ai ← 1;
14 Set γ ← γ + ai · 2i, δ ← δ + bi · 2i

15 Set A1 ←
(
γ δ
δ γ

)
,

(
PA

QA

)
← A−1

1

(
[2

b
2 ]RA

[2
b
2 ]SA

)
;

16 Set ϕ← TorAtk(E0, [2
b
2 ]Pb, [2

b
2 ]Qb, EA, PA, QA, dA);

17 if ϕ ̸=⊥ then return γ, δ;
18

19 Set b1 ← 1, δ ← δ + b1 · 2; ▷ guess b1 = 1

20 for i = 2→ b
2
− 1 do

21 if ξ − γ2 + δ2 ≡ 0 (mod 2i+2) then set bi ← 0;
22 else set bi ← 1;
23 Set

(
P1

Q1

)
←

(
1 + 2b−i−2γ 0

2b−i−1δ 1− 2b−i−2γ

)(
R1

S1

)
,

(
P2

Q2

)
←

(
1 + 2b−i−2γ 2b−i−1δ

0 1− 2b−i−2γ

)(
R2

S2

)
;

24 if O(E1, (P1, Q1), E2, (P2, Q2)) = 1 then set ai ← 0;
25 else set ai ← 1;
26 Set γ ← γ + ai · 2i, δ ← δ + bi · 2i

27 Set A1 ←
(
γ δ
δ γ

)
,

(
PA

QA

)
← A−1

1

(
[2

b
2 ]RA

[2
b
2 ]SA

)
;

28 Set ϕ← TorAtk(E0, [2
b
2 ]Pb, [2

b
2 ]Qb, EA, PA, QA, dA);

29 if ϕ ̸=⊥ then return γ, δ;
30 else return ⊥;
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