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Abstract. In differential-like attacks, the process typically involves ex-
tending a distinguisher forward and backward with probability 1 for some
rounds and recovering the key involved in the extended part. Particularly
in rectangle attacks, a holistic key recovery strategy can be employed
to yield the most efficient attacks tailored to a given distinguisher. In
this paper, we treat the distinguisher and the extended part as an inte-
grated entity and give a one-step framework for finding rectangle attacks
with the purpose of reducing the overall complexity or attacking more
rounds. In this framework, we propose to allow probabilistic differential
propagations in the extended part and incorporate the holistic recovery
strategy. Additionally, we introduce the “split-and-bunch technique” to
further reduce the time complexity. Beyond rectangle attacks, we ex-
tend these foundational concepts to encompass differential attacks as
well. To demonstrate the efficiency of our framework, we apply it to
Deoxys-BC-384, SKINNY, ForkSkinny, and CRAFT, achieving a series of
refined and improved rectangle attacks and differential attacks. Notably,
we obtain the first 15-round attack on Deoxys-BC-384, narrowing its
security margin to only one round. Furthermore, our differential attack on
CRAFT extends to 23 rounds, covering two more rounds than the previous
best attacks.

Keywords: Rectangle attack · Differential attack · Key recovery attack ·
Deoxys-BC· SKINNY· ForkSkinny· CRAFT

1 Introduction

Differential cryptanalysis, proposed by Biham and Shamir [BS91] in 1991, is
one of the most efficient and powerful cryptanalysis for symmetric ciphers. In
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differential cryptanalysis, the adversary aims to discover the in-homogeneity in
high-probability occurrences of plaintext and ciphertext differences, i.e., high-
probability differentials. For a certain block cipher, if an r-round high-probability
differential is found, one could add some outer rounds and extract the information
of the key in the outer rounds using the differential.

However, it is a challenging task to find a long differential trail with high prob-
ability for most ciphers. To this, Wanger proposed the boomerang attack [Wag99]
in 1999 as an extension of differential cryptanalysis. In a boomerang attack, two
short differential trails are combined to form a long one. The basic boomerang
attack requires adaptive chosen plaintexts and ciphertexts. In [KKS00], Kelsey et
al. converted it into a chosen-plaintext variant, which was named the amplified
boomerang attack. Later, Biham et al. [BDK01] made further improvements on
the amplified boomerang attack by proposing the rectangle attack, which takes
into account as many differences as possible in the middle of the distinguisher to
estimate the probability more accurately. Since then, the boomerang and rect-
angle attacks have been extensively studied and applied to many block ciphers.
For example, boomerang attacks on full AES-192 and AES-256 in the related-key
setting were proposed in [BK09,DEFN22]; the best cryptanalysis results so far
on Deoxys [BL23], SKINNY [SZY+22], and GIFT [DQSW22] were all based on
boomerang attacks or rectangle attacks.

In either differential attacks or rectangle attacks, it is common to take two
steps to mount key recovery attacks. The first step is to find a high-probability
distinguisher covering a large number of rounds. To this end, many approaches
have been proposed in the literature [Mat94,MP13,SHW+14,HBS21,DDV21].
Once a high-probability distinguisher is obtained, then in the second step, the dis-
tinguisher is extended backward and forward over some rounds with probability 1
for the key recovery attack. In recent years, many studies focused on achieving key
recovery attacks as efficiently as possible for a given distinguisher. For differential
attacks, Boura et al. [BDD+23] introduced a novel method that recovers the key in
a meet-in-the-middle manner, which brought out improved results on block ciphers
SKINNY-128-384 and AES-256. For rectangle attacks, various algorithms have
been proposed for the key recovery [BDK01,BDK02,ZDJ19,DQSW21,SZY+22],
each of which follows a different strategy for guessing the key. Among them,
the unified key recovery algorithm proposed in [SZY+22] supports any strategy
for guessing the key and covers all the previous algorithms. Most notably, this
algorithm is able to produce the most efficient key recovery attack for a given
distinguisher. As a result, it led to the state-of-the-art results of rectangle key
recovery attack on Serpent [ABK98], CRAFT [BLMR19], SKINNY [BJK+16] and
Deoxys [JNPS16].

However, prior research has demonstrated that the best distinguisher does
not necessarily yield the most effective key recovery attack [LGS17, ZDC+21,
QDW+21]. This phenomenon is even not limited to differential attacks and rectan-
gle attacks [SSD+18,HSE23]. These studies have revealed that distinguishers are
more conducive to key recovery attacks when their input and output differences
exhibit sparsity and slow diffusion in the extended rounds. In [ZDC+21], the
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authors specifically sought differentials that were more favorable for key recovery,
while [QDW+21] incorporated both the rectangle distinguisher and the extended
part in their modeling to find better attacks.

Motivation. Previous research offers valuable insights that inform our work.

– The effectiveness of a key recovery attack hinges not only on the probability
of the distinguisher but also on the differential propagation in the outer
rounds. Slower diffusion of differences in the outer rounds tends to yield
better results.

– The key recovery is likely to be more efficient when the outer rounds involve
fewer key bits.

– The choice of key guessing strategy significantly influences the complexity of
the key recovery attack.

Despite the key recovery algorithm in [SZY+22] offering the best rectangle attacks
for a given distinguisher, we are prompted to explore whether there is room
for improving rectangle attacks further when we treat the distinguisher and the
extended part as a whole and meanwhile incorporate the lessons mentioned above.
Additionally, we are curious whether similar advancements can be applied to
differential attacks.

Our contributions. In this work, we treat the distinguisher and the extended
part as a whole and present a one-step framework for finding rectangle attacks.
Instead of extending the distinguisher forward and backward with probability 1,
we introduce probabilistic differential propagations in the extended part. Tradi-
tionally, the extended part only contained deterministic truncated differentials,
but now it can include probabilistic (truncated) differential propagations as well.
Since the probability of the extended part may be smaller than 1, we refer to the
part relevant to the key recovery phase as the outer part and the remaining part
as the inner part.

The effects of probabilistic extensions are multifaceted

– Probabilistic extensions help make differences in the outer part sparse, which
potentially reduces the time complexity or covers more rounds.

– The boundaries separating the inner part and the outer part are no longer
predefined and not necessarily well-aligned. Instead, they are dynamically
determined in conjunction with the probabilistic extensions

– The data complexity is then determined by the overall probability.

To further optimize the time complexity, we propose the split-and-bunch
technique. When probabilistic extensions are used, differences in the outer part
become sparse and certain key bits may form intricate connections with the
inner part. In cases where we can identify a compressed representation of these
connections, we can isolate and replace these key bits with this compressed
version. As a result, the actual number of involved key bits decreases, leading to
reduced time complexity.
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Table 1: Summary of the cryptanalytic results. Rect./ D/ ZC/ ID=rectangle,
differential, zero-correlation, impossible differential. RTK/ SK/ ST/ WK/
WT=related-tweakey, single key, single tweak, weak-key, weak-tweak.

Cipher Rounds Data Memory Time Approach Setting Ref.

Deoxys-BC-384

14 2125.2 2140 2260 Rect. RTK [DQSW22]
14 2115.7 2160 2260.59 Rect. RTK Sect. 4.1
14 2115.7 2128 2242.7 Rect. RTK Sect. 4.1
15 2115.7 2128 2371.7 Rect. RTK Sect. 4.1

SKINNY-128-256
26 2126.53 2128.44 2254.4 Rect. RTK [DQSW22]
26 2126.53 2136 2241.38 Rect. RTK [SZY+22]
26 2121.93 2136 2219.93 Rect. RTK Sect. 4.2

ForkSkinny 28 2118.88 2118.88 2224.76 Rect. RTK [DQSW22]
-128-256 28 2123.89 2123.89 2212.89 Rect. RTK Sect. D

CRAFT

23 274 251 294 D WK&ST [LR22]
26 273 260 2105 D WK&WT [LR22]
20 262.89 249 2120.43 ZC SK&ST [HSE23]
21 260.99 2100 2106.53 ID SK&ST [HSE23]
19 260.99 268 294.59 D SK&WT [GSS+20]
21 260.99 292 287.60 D SK&WT Sect. 4.3
23 260.99 2120 2111.46 D SK&WT Sect. 4.3

Moreover, our framework incorporates the holistic key recovery strategy, i.e.,
the method of finding the best key recovery attack by choosing a proper key
guessing strategy.

The main ideas of this framework are not limited to rectangle attacks but
can also be applied to differential attacks. We apply the framework to several
block ciphers and obtain the following results, which are summarized in Table 1.

– We provide improved 14-round rectangle attacks on Deoxys-BC-384 and
introduce the first attack on 15 rounds, reducing the security margin to just
one round.

– The data and time complexities of the 26-round rectangle attack on SKINNY-
128-256 are reduced. Similar improvements can be made on the 28-round
attack on ForkSkinny-128-256.

– We propose differential attacks on CRAFT with up to 23 rounds in the single-key
setting, which is two rounds more than the previous best attacks.

Organization. The rest of the paper is organized as follows. In Section 2, we
review differential attacks, rectangle attacks, and the key recovery algorithms.
In Section 3, probabilistic extensions will be introduced via examples, and the
one-step framework will be given. In Section 4, we apply our framework to several
block ciphers. We conclude this paper in Section 5.
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2 Preliminaries

2.1 Differential Attacks

Differential cryptanalysis [BS91] is a technique used to analyze the propagation
of difference through a cipher E : Fn

2 → Fn
2 . Typically, an attacker aims to

find a differential (α, δ) ∈ Fn
2 × Fn

2 such that the probability Pr(α → δ) =
Pr

[
E(x) ⊕ E(x ⊕ α) = δ

]
is high. Since E is a permutation, it follows that

Pr(α → δ) = Pr(α ← δ). A truncated differential [Knu95] is characterized
by a set of input differences Di and a set of output differences Do and the
probability Pr(Di → Do) is defined as Avgα∈Di

Pr
[
E(x)⊕E(x⊕α) ∈ Do

]
. Note

that Pr(Di → Do) and Pr(Di ← Do) are usually not equal. Typical sets for
truncated differentials often involve patterns where some bits can take on all
possible values, while others are constrained to be zero.

In differential-like attacks, a distinguisher is extended backward and forward
with probability 1 over some rounds. The goal of these attacks is to recover the key
used in the extended rounds. Essentially, the differential in the extended rounds
is actually truncated differentials with probability 1. These types of attacks are
designed to understand how differences propagate with a high degree of certainty,
allowing for the identification of key bits used in those rounds.

Key Recovery Attacks. Suppose a differential α → δ over Ed is of high
probability P . Suppose Eb and Ef are added around Ed, as shown in Fig. 1.

Eb

Pb

Ed Ef

Pf

α δα′ δ
′

rb
rf

mb

kb
︸ ︷︷ ︸

mf

︸ ︷︷ ︸
kf

Fig. 1: Outline of the key recovery attack

The input difference of Ed α propagates back over E−1
b with probability

Pb = 1 to α′. Let Vb be the space spanned by all possible α′ where rb = log2 |Vb|.
The output difference δ of Ed propagates forward over Ef with probability Pf = 1
to δ′. Let Vf be the space spanned by all possible δ′ where rf = log2 |Vf |. Let kb

be the subset of subkey bits that are employed in Eb and affect the propagation
α′ → α. Let kf be the subset of subkey bits which are employed in Ef and affect
the propagation δ ← δ′. Let mb = |kb| and mf = |kf | be the number of the bits
in kb and kf .
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In a key recovery attack, some key bits may be guessed in advance to sieve
the data faster. Suppose a part of kb and kf , denoted by k′

b, k′
f , is guessed at first.

Let m′
b = |k′

b| and m′
f = |k′

f | and 0 ≤ m′
b ≤ mb, 0 ≤ m′

f ≤ mf . Suppose under
the guessed subkey bits a r′

b-bit condition on the top and a r′
f -bit condition on

the bottom can be verified. Finally, let r∗
b = rb − r′

b and r∗
f = rf − r′

f . Note that
the other parameters are determined when k′

b, k′
f are chosen.

In [SYL23], a unified key recovery algorithm for differential attack was pro-
posed and we recall it in Appendix A.1. With k′

b, k′
f being guessed at first, the

complexities of the differential attack are as follows.

Complexities. A plaintext structure takes all possible values for the rb bits and
chooses a constant for the remaining n−rb bits. For one structure, there are 22rb−1

pairs of plaintext and 2rb−1 of them satisfy α difference by meeting the rb-bit
condition. Suppose the number of the structures needed is y which y structures
can constitute y · 2rb−1 pairs that satisfy α difference. Set s to be the number of
right pairs, then y ·2rb−1 = s ·P −1 and the data complexity D = y ·2rb = 2s ·P −1.
The memory complexity is M = max{D, 2t+mb+mf −m′

b−m′
f } for storing the data

and key counters where 0 ≤ t ≤ m′
b + m′

f .
The time complexity of the differential attack contains four parts:

– T0 = 2m′
b+m′

f ×D for partial encryption and decryption under the guessed
key bits;

– T1 = 2m′
b+m′

f ×D× 2rb−1+rf −n−r′
b−r′

f for getting the pairs that satisfy some
filtering conditions;

– T2 = D · 2mb+mf −n−1 · ϵ, ϵ ≥ 1 for extracting all the D · 2mb+mf −n−1 key
candidates where ϵ depends on the concrete situation;

– T3 = 2k−h, where h ≤ t + mb + mf −m′
b −m′

f for the exhaustive search.

2.2 Rectangle Attacks

In a boomerang attack, the target cipher is treated as a composition of two sub-
ciphers E0 and E1, i.e., E = E1 ◦E0. As illustrated in Fig. 2, the differential trail
α→ β travels in E0 with probability p, and the differential trail γ → δ travels
in E1 with probability q, respectively. Then the probability of the boomerang
distinguisher is

Pr
[
E−1(

E(x)⊕ δ
)
⊕ E−1(

E(x⊕ α)⊕ δ
)

= α
]

= p2q2.

The basic boomerang attack requires adaptive chosen plaintexts and cipher-
texts. As a refinement of the boomerang attack, the rectangle attack requires only
chosen plaintexts and considers as many differences as possible in the middle.

Since the boomerang attack was proposed, a series of studies have emerged
focusing on the analysis of the connection probability. The probability p2q2

of a boomerang distinguisher is obtained under the assumption that the two
differentials are independent. However, the probability may deviate from p2q2

on some concrete ciphers [BK09,Mur11], which demonstrates the dependency
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Fig. 2: Boomerang distinguisher

between the two differentials for boomerang attack. Instead of splitting the target
cipher into two sub-ciphers, Dunkelman et al. [DKS10,DKS14] proposed to split it
into three sub-ciphers and estimate the probability as p2q2r where r is the exact
probability of the middle part, i.e., the connection probability. That is also known
as the sandwich attack. Later in [CHP+18], the dependency issue in boomerang
distinguishers was revisited, and a tool named Boomerang Connectivity Table
(BCT) was proposed. Immediately after, a generalized framework of BCT is given
in [SQH19], which allows the probability r to be calculated systematically.

2.3 Key Recovery of Rectangle Attacks

The key recovery of rectangle attacks has been extensively studied in [BDK01,
BDK02,ZDM+20]. Each of these works proposed its own key recovery algorithm
that uses a fixed strategy for guessing key bits and the performance varies from
cipher to cipher.

Recently in [SZY+22], a unified framework was put forward for finding the
best rectangle attack for a given distinguisher. It contains a generic key recovery
algorithm and a strategy for finding the best attack. The algorithm covers all
the previous key recovery algorithms, as it supports any strategies for guessing
key bits or utilizing the filters. Among all the strategies, there will be a certain
one leading to an optimal attack. We call this method of finding the best key
recovery attack by choosing a proper strategy the holistic key recovery strategy.

Suppose we treat a target cipher as E = Ef ◦ Ed ◦ Eb, where there is a
boomerang distinguisher over Ed of probability P 2. As in differential attacks,
a part of kb and kf , denoted by k′

b, k′
f , is guessed at first, and m′

b = |k′
b| and

m′
f = |k′

f |. Similarly, with the guessed subkey bits, a r′
b-bit condition on the top

and a r′
f -bit condition on the bottom can be verified. Following the generic key

recovery algorithm, which is recalled in Appendix A.2, the complexities of the
rectangle attack are as follows.

Complexities. The data complexity is D =
√

s2n/2+1/P where s is the expected
number of right quartets. The memory complexity is M = fM (D, k′

b, k′
f ) =
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D + min{D · 2r∗
b −1, D2 · 2r∗

f −n−1}+ 2t+mb+mf −m′
b−m′

f for storing the data, the
pairs and the key counters, where 0 ≤ t ≤ m′

b + m′
f . The time complexity

T = fT (D, k′
b, k′

f ) is composed of four parts. The time complexity of collecting
data is T0 = D, the time complexity of doing partial encryption and decryption
under guessed key bits is

T1 = 2m′
b+m′

f ·D,

the time complexity of generating pairs is

T2 = 2m′
b+m′

f ·D ·min{2r∗
b −1, D · 2r∗

f −n−1},
the time complexity of generating and processing quartet candidates is

T3 = 2m′
b+m′

f ·D2 · 22r∗
b · 22r∗

f · 2−2n−2 · ϵ,

where ϵ is a factor that depends on the cipher, and the time complexity of the
exhaustive search is T4 = 2k−h, where h ≤ t + mb + mf −m′

b −m′
f .

Remark. In essence, the holistic key recovery strategy is to find a proper choice
for k′

b, k′
f such that the four parts of the time complexity are balanced and that

the overall time complexity is minimized under constraints for data and memory.

3 A One-Step Framework for Finding Rectangle Attacks

In this section, we present our one-step framework for finding rectangle attacks.
To begin, we use some examples from a toy cipher to convey the essential notions
of the probabilistic extensions and the split-and-bunch technique. Subsequently,
we provide a concise overview of the holistic key recovery strategy. By leveraging
these concepts, we present a one-step framework for rectangle attacks, which is
likewise applicable to differential attacks.

3.1 Probabilistic Extensions
In a classical differential key recovery attack, some rounds are added around the
differential distinguisher α→ δ, as shown in Fig. 1. The α difference propagates
to α′ via E−1

b with probability 1, and the δ difference propagates to δ′ via Ef with
probability 1. It is natural to consider what occurs when difference propagates
probabilistically in the outer parts. The following are examples to illustrate
the impact of probabilistic extensions on the data and time complexities. For
simplicity, none of the key bits are guessed in advance and the analysis of the
memory complexity is omitted in the examples.

We suppose that the round function of the 128-bit toy cipher is the same as
AES and the key schedule is rather simple. Each round uses the 128-bit master
key K as the round key RKi. The ordering of the bytes in the state matrix is as
follows. 

0 4 8 12
1 5 9 13
2 6 10 14
3 7 11 15


8



Example 1. Suppose the probability of the inner part is Pd, and append 3 rounds.
These three rounds are depicted in Fig. 3. The parameters of the attack are
n = 128, k = 128, mb = rb = 0, mf = rf = 128.

According to Section 2.1, the data complexity is D = 2s · P −1
d . From D

plaintexts, there are D · 2rb+rf −n−1 pairs satisfying the plaintext difference
and ciphertext difference. Thus the time complexity for constructing pairs is
T1 = 2−1 ·D. As there will be 2−1 ·D · 2mf −rf = 2−1 ·D suggestions for kf in
total, the time complexity for extracting key candidates is T2 = D · 2−1 · ϵ. We
pre-compute several tables as illustrated in Table 2, so that ϵ is equivalent to
about 224 memory accesses. As the time complexity for the exhaustive search is
flexible, we assume it is not dominant. Therefore, the overall time complexity is
T = T2 = 2−1 ·D · 224 = 224 · s · P −1

d memory accesses.

Xi

SB SR

Yi

MC

Zi Wi

⊕

Ki+1 Round

r + 1

SB SR MC ⊕ r + 2

SB SR MC ⊕

C

r + 3

Zero difference Arbitrary difference Fixed difference

Fig. 3: The toy example of differential attack in the related-key model

Table 2: Precomputation tables for Example 1 where eqk = SR−1 ◦ MC−1(K)
Tables Involved key Filters Remaining pairs

1 eqk[4, 5, 6, 7] ∆Zr+2[6] = 0 224 · 2−1 · D

2 eqk[3, 9] ∆Xr+2[3, 9] = ∆Kr+1[3, 9] 224 · 2−1 · D

3 eqk[0, 1, 2] ∆Zr+2[0, 2, 3] = 0 224 · 2−1 · D

4 eqk[8, 10, 11] ∆Zr+2[8, 9, 10] = 0 224 · 2−1 · D

5 eqk[12, 13, 14, 15] ∆Zr+2[12, 13, 15] = ∆Zr+1[5] = 0 2−1 · D
∆Xr+1[3, 4, 9]

Example 2. Different from Example 1, in this example the δ difference propagates
to δ′ via Ef with probability Pf = 2−16. As shown in Fig. 4, the probability
comes from two inactive bytes of Wr+1, i.e., Wr+1[6, 7]. The effect is that fewer
bytes are activated afterward. The parameters of the attack are n = 128, k =
128, mb = rb = 0, mf = 128, rf = 72.
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The data complexity is D = 2s · (PdPf )−1. The time complexities are T1 =
D · 20+72−128−1 = 2−57 ·D, T2 = D · 2−57 · ϵ. We pre-compute several tables as
illustrated in Table 3, so that ϵ is equivalent to about 240 memory accesses. The
overall time complexity is T2 = 2−57 ·D · 240 = s · P −1

d memory accesses.

Xi

SB SR

Yi

MC

p

Zi Wi

⊕

Ki+1 Round

r + 1

SB SR MC ⊕ r + 2

SB SR MC ⊕

C

r + 3

Zero difference Arbitrary difference

Fixed difference Zero difference but value is needed

Fig. 4: The toy example of differential attack in the related-key model with probabilistic
extension

Table 3: Precomputation tables for Example 2 where eqk = SR−1 ◦ MC−1(K)
Tables Involved key Filters Remaining pairs

1 eqk[9] ∆Xr+3[9] = ∆Kr+2[9] 2−57 · D

2 eqk[0, 1, 2, 3] ∆Zr+2[0, 2, 3] = 0 2−49 · D

3 eqk[4, 5, 6, 7] ∆Zr+2[6] = ∆Zr+1[6] = 0 2−49 · D
∆Xr+2[3, 9] = ∆Kr+1[3, 9]

4 eqk[8, 10 ∼ 15] ∆Xr+1[3, 4, 9] 2−17 · D

Comparison between Example 1 and Example 2. Example 1 uses tradi-
tional deterministic extensions in which the δ difference propagates to δ′ via Ef

with probability 1. On the contrary, Example 2 uses probabilistic extensions in
which the δ difference propagates to δ′ via Ef with probability Pf = 2−16.

Increasing the data complexity. The data complexity for the case with probabilistic
extensions is P −1

f = 216 times the data complexity with deterministic extensions.
In other words, the data complexity of the attack is determined by the overall
probability PdPf rather than by the probability Pd only.
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Decreasing the time complexity. The time complexity of Example 1 is 224 · s ·P −1
d

and it is s · P −1
d for Example 2. By using the probabilistic extensions, the time

complexity is reduced by a factor of 224. Thus, probabilistic extensions are a
technique that not only trades off data against time but may also have a gain as
224 > 216.

Flexible boundaries. Different from the classical attack in which the boundaries
between the inner and outer parts are fixed and well-aligned, the boundaries
are flexible when probabilistic extensions are allowed. For a specified round,
it is possible that some S-boxes belong to the inner part while others belong
to the outer part. More interestingly, probabilistic differential transitions and
deterministic differential transitions may occur simultaneously in the outer part
and they may be even interleaved, see the attack on SKINNY-128-256 in Section
4.2. Thus, there are no predefined boundaries. The boundaries will depend on
differential transitions.

Increasing the number of filters and earlier usage. On one hand, the utilization
of probabilistic extensions leads to an expansion of the total number of filter bits,
growing from n to n + log2 P −1

f . On the other hand, the filters appear earlier
than before in the key recovery attack. The ability to employ filters at an earlier
stage significantly enhances the efficiency of key candidate extraction, providing
a reduction in the time complexity.

Remarks. Allowing probabilistic extensions essentially enables probabilistic
differential propagations in the outer parts, which is the focus of key recovery.

– It is clear that the data complexity is related to the overall probability. Prob-
abilistic extensions can strike a harmonious balance between data complexity
and time complexity. However, it is important to note that probabilistic
extensions do not necessarily increase data complexity in the search for a
globally optimal attack, as exemplified by the attack on Deoxys-BC-384 in
Section 4.1.

– Employing probabilistic extensions has the potential to reduce the density of
active cells in the outer parts while simultaneously increasing the number of
available filters. Notably, the probabilistic differential transitions are flexibly
distributed in the outer parts and they do not have to connect to the
differential trail over the inner part directly. This flexibility facilitates the
adaptable selection of filters, ultimately resulting in improved time complexity.

– These extensions can be applied to Eb as well. Setting Pb ≥ 1, Pf ≥ 1 makes
the probabilistic extensions cover the traditional deterministic extensions.
Different extensions lead to different placements of filters. Among all possible
extensions, there may be some that lead to more efficient key recovery attacks,
in terms of time complexity or the number of rounds that can be attacked,
compared to what deterministic extensions can achieve. Our applications to
concrete ciphers will confirm this. Importantly, although our examples in
this section primarily pertain to differential attacks, these same principles
are applicable to rectangle attacks as well.
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3.2 The Split-and-Bunch Technique

From Example 2, it is known that using probabilistic extensions brings the filters
closer to the ciphertext, but the involved keys are the same. In this example, the
last step is to verify ∆Xr+1[3, 4, 9]. To compute this 3-byte difference, one has to
know the values of Wr+1[6, 7]. However, another 56 key bits, i.e., eqtk[8, 10 ∼ 15]
are required to compute Wr+1[6, 7] from the ciphertext. In other words, the 56-bit
key brings the final 24-bit filter. Therefore, the remaining pairs expand by a
factor of 232 as shown in Table 3. A question arises: Does the 56-bit key have to
be traversed? To answer this question, we start with an observation on Example
2.

Observation 1 Let kf = k1
f ||k2

f with m1
f = 72 and m2

f = 56. For one pair of
ciphertexts, if we traverse all possible values of the 16-bit Wr+1[6, 7] without
trying all possible values of the 56-bit k2

f , we can find that:

– For the right k1
f , when a right pair takes the right values in the two bytes, it

makes the counter plus one. Traversal must cause the right value to be taken,
so the number of suggestions for the right subkey is the same.

– For a wrong pair, the number of suggestions for the wrong key is equal to
expanding the number of pairs by a factor of 216.

We call this technique a split-and-bunch technique. Let e be the average number
of suggestions for a wrong key kf when the split-and-bunch technique is not used.
When it is used, the number of suggestions for a wrong k1

f is expanded by a factor
of 2me = 216 from e, i.e., it is e · 2me , while the number of suggestions for the
right k1

f is s + e · 2me = s + e · 216.

In Example 2, the whole key is involved in Ef , i.e., mf = 128. In total we will
get D · 2mf −n−1 = D · 2−1 suggestions for 128-bit kf . On average, the number of
suggestions for a wrong subkey is e = D · 2−129 = P −1

d · s · 2−128 ≤ 1, while it is
s + e for the right subkey.

When we use the split-and-bunch technique and set counters only for the
m1

f = 72 key bits, we will get D · 2−57 · 216 = D · 2−41 suggestions for 72-bit kf .
Thus the number of suggestions for a wrong k1

f is e′ = 2−41−72 ·D = P −1
d ·s ·2−112,

while it is s + e′ for the right k1
f , where e′ = 2me · e. Thus, me = 16 is called

the number of expansion bits. When e and e′ are enough small, one could use
the split-and-bunch technique to decrease the time complexity. The following
example gives a better illustration.

Example 3. we use the split-and-bunch technique for this attack, as shown in
Fig. 4. The number mf of the involved key kf in Ef is 72. The other parameters
are n = 128, k = 128, mb = rb = 0, rf = 72, me = 16.

The data complexity is D = 2s · (PdPf )−1. The time complexities are T1 =
D · 272−128−1 = 2−57 · D, T2 = D · 2−57 · ϵ. We pre-compute several tables as
illustrated in Table 4, so that ϵ is equivalent to about 28 memory accesses. The
overall time complexity is T = T2 = 2−49 ·D = 2−32 · s · P −1

d memory accesses.
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Table 4: Precomputation tables for Example 3 where eqk = SR−1 ◦ MC−1(K)
Tables Involved key Filters Remaining pairs

1 eqk[9] ∆Xr+3[9] = ∆Kr+2[9] 2−57 · D

2 eqk[0, 1, 2, 3] ∆Zr+2[0, 2, 3] = 0 2−49 · D

3 eqk[4, 5, 6, 7] ∆Zr+2[6] = ∆Zr+1[6] = 0 2−49 · D
∆Xr+2[3, 9] = ∆Kr+1[3, 9]

4 Wr+1[6, 7] ∆Xr+1[3, 4, 9] 2−57 · D

Comparisons between Example 2 and Example 3. Example 3 uses the
split-and-bunch technique and the time complexity is T = 2−49 ·D = 2−32 ·s ·P −1

d ,
which reduces the time complexity of Example 2 by a factor 2−32.

Decreasing the time complexity. The split-and-bunch technique reduces the time
complexity further. This technique splits the key bits into two distinct categories:
friendly key bits and unfriendly key bits. The former facilitates the efficient
application of filters, while the latter, albeit intricately connected to some filters,
can map to values comprising only a limited number of bits (i.e., me bits). Rather
than directly trying all possibilities of the unfriendly key bits themselves, we
streamline the process by traversing the me-bit value, ensuring that the correct
key is not overlooked. Consequently, the split-and-bunch technique results in an
expansion of the counter value for incorrect keys but simultaneously reduces the
overall number of key suggestions. This deliberate trade-off effectively minimizes
the overall time complexity.

When counters are not used. Differential attacks are possible without using
counters in some cases, for example, using enumeration [Din14]. The split-and-
bunch can also be used and may provide an improvement. Suppose we split at an
me-bit state, after which key extraction becomes two parts. If the complexity of
key extraction for each part is reduced by more than 2me , then split-and-bunch
can provide an improvement.

3.3 Holistic Key Recovery Strategy

Probabilistic extensions fit well with the unified key recovery algorithm from
[SZY+22]. However, the situation for the holistic key recovery strategy is different.
Previously, the holistic key recovery strategy was considered in cases where a
boomerang distinguisher was given. Hence, the boundaries between the inner and
outer parts are clear and well-aligned. The only task is to find a proper set of key
bits to be guessed in advance so that the overall time complexity is optimized.

On the contrary, the boundaries are not predetermined when probabilistic
extensions are allowed. Instead, the boundaries and the set of guessed key bits
should be determined together. That is, the situation for the holistic key recovery
strategy is more generic in the presence of probabilistic extensions. To apply the
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holistic key recovery strategy, one needs to determine the involved key bits kb, kf

from the boundaries, the guessed key bits k′
b, k′

f , and other parameters affected
by k′

b, k′
f , including the obtained filters.

3.4 The Framework for Rectangle Attacks

Previously, one looked for the best rectangle attack for a given distinguisher. In
this subsection, we present the one-step framework for rectangle attacks where
the distinguisher and the extended part are considered together as a whole. The
framework has four components: the unified key recovery algorithm, the holistic
key recovery strategy, the core part, and the probabilistic extensions. In practice,
we search for a cell-wise active pattern with the overall time complexity of the
attack as the objective function and then instantiate it. As the treatment of the
core part remains as in previous rectangle attacks, we focus on the upper and
lower parts where probabilistic extensions occur and the determination of the
boundaries is needed. Next, we present a constraint programming model for these
parts.

Suppose the boomerang distinguisher α → δ over the middle part Ed has
probability P 2

d . Suppose α propagates backward to α′ with probability Pb ≤ 1
and δ propagates backward to δ′ with probability Pf ≤ 1. The data complexity
depends on these probabilities. Besides the probabilities, another important factor
is the boundaries between the inner and outer parts since they mark the positions
the key recovery phase has to reach and also determine the involved keys kb, kf .

Data Complexity. The probability for the whole attack is P 2 = P 2
b P 2

d P 2
f . We

will show the formula for the data complexity remains as D =
√

s2n/2+1/P .
Each plaintext structure takes all possible values for the rb bits and chooses
a constant for the remaining n − rb bits. For each structure, there are 22rb−1

pairs of plaintext with difference in Vb and Pb · 2rb−1 of them satisfy α difference.
That is equal to a (log2 P −1

b + rb)-bit condition. The distinguisher over the inner
part has probability P 2

d , the number of quartets satisfying the input difference
α should be at least sP −2

d 2n for a rectangle attack, where s is the expected
number of right quartets. Suppose the number of structures needed is y. These
structures can constitute 2 ·

(
y·Pb·2rb−1

2
)

quartets that satisfy α difference. Due
to the output difference of Ed δ propagating forward over Ef with probability
Pf to δ′, a right quartet propagates forward over Ef with probability P 2

f . Thus
we get 2 ·

(
y·Pb·2rb−1

2
)
· P 2

f = sP −2
d 2n. Then y =

√
s2n/2−rb+1/P and the data

complexity is D = y · 2rb =
√

s2n/2+1/P .

Labels. Due to the probabilistic extensions, there is a mix of concrete differences
and truncated differences in the extended parts. For each cell of the internal
state, we use two labels to describe its difference: (x, y) ∈ {(0, 0), (1, 0), (1, 1)},
where

– inactive, denoted by (x, y) = (0, 0) or ;
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– active with a fixed non-zero difference, denoted by (x, y) = (1, 0), or ;
– active with an arbitrary (truncated) difference, denoted by (x, y) = (1, 1) or

.

Additionally, we use a label v to denote if the value of the cell is needed to verify
the distinguisher. If it is, we denote by v = 1 and v = 0 otherwise. Then the
labels will help to identify the boundaries as well as the probabilities Pb, Pf of
the extension.

Boundaries and Pb, Pf . We take the forward extension as an example. The same
techniques apply to the backward extension but in a reverse direction. There are
several cases that happen with a probability.

– For the S-box layer, the probabilistic extension involves two cases: →
and → . The number of such cases can be computed by∑

i

(Oi.x−Oi.y), (1)

where Oi.x, Oi.y are labels for the output cells of the S-box layer.
If the transition is → , then the output of the S-box is needed for the
verification, i.e., O.v = 1 for the output. Besides, O.v = I.v. Meanwhile, the
fixed input difference acts as a one-cell filter.

– For the linear layer, where each output cell is a linear combination of some
input cells, the probabilistic extension happens when truncated differences
exist in the input but the output is a fixed difference. This fixed difference
happens with a probability. Let T = 1 if some Ii.y = 1 and T = 0 if all
Ii.y = 0. The number of such cases can be obtained by∑

(T −O.y). (2)

Conversely, each input cell is a linear combination of some output cells. If
v = 1 for the input cell, then the values for the involved output cells are also
needed.

Now Pb, Pf can be computed (or estimated) by considering Eqs. (1) and
(2) together. The outer parts are composed of those internal state cells with
label v = 1 as well as the operations and functions on them. This implies the
boundaries. Then kb, kf are those key bits that are needed for determining the
internal state cell with label v = 1.

Guessing the key and filters. The holistic key recovery strategy uses the guess-
and-determine logic, which can be modeled as follows. For each key addition, if
the key is guessed (a key cell in kf ) and the output is known, then the input
can be determined. Therefore, we introduce another label d for each state cell to
denote if it is determined. For each key cell, we introduce a label g to denote if it
is guessed. We then have I.d = 1 when (K.g = 1) ∧ (O.d = 1) for I ⊕K = O.
Then the determination can proceed backward naturally. For a linear operation, a
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filter is reached under the following conditions: (1) its output contains truncated
cells, (2) the difference of an input cell can be determined, and (3) this input
difference has a fixed difference. For the S-box, if the input can be determined
and the input difference is fixed, then we have a filter. Finally, the number of
filters r′

f can be computed by recording such cases and the number of guessed
keys k′

f can be computed by counting distinct key cells with g = 1.

Constraints for the complexities. The constraints for the data and memory
complexities are also added, such as D < 2n. The objective is to minimize the
overall time complexity as described in Section 2.3. The source codes for the
constraint programmind model are available here.

3.5 The Framework for Differential Attacks

Similar to the framework for rectangle attacks, a framework for differential attacks
can be built, because the basic ideas and all the involved parameters are the
same. The only difference lies in the computation of complexities.

4 Applications

In this section, we apply our new framework to Deoxys-BC-384, SKINNY-128-256,
and CRAFT block ciphers. For Deoxys-BC-384, using the one-step framework for
rectangle attacks obtains a 15-round rectangle attack for the first time, containing
a 10-round inner part rather than the longest 11-round one. For SKINNY-128-256,
we get a new 26-round rectangle attack with reduced data and time complexities.
For CRAFT, we obtain a 21-round differential attack and a 23-round differential
attack by the new framework.

4.1 Application to Deoxys-BC-384

Specification. Deoxys-BC is an AES-based tweakable block cipher [JNPS16],
based on the tweakey framework [JNP14]. The Deoxys authenticated encryp-
tion scheme makes use of two versions of the cipher as its internal primitive:
Deoxys-BC-256 and Deoxys-BC-384. Both versions are ad-hoc 128-bit tweak-
able block ciphers which besides the two standard inputs, a plaintext P (or
a ciphertext C) and a key K, also take an additional input called a tweak T .
The concatenation of the key and tweak states is called the tweakey state. For
Deoxys-BC-384, the tweakey size is 384 bits.

Deoxys-BC is an AES-like design, i.e., it is an iterative substitution-permutation
network (SPN) that transforms the initial plaintext (viewed as a 4× 4 matrix
of bytes) using the AES round function, with the main differences with AES
being the number of rounds and the round subkeys that are used every round.
Deoxys-BC-384 has 16 rounds.

Similarly to the AES, one round of Deoxys-BC has the following four transfor-
mations applied to the internal state in the order specified below:
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– AddRoundTweakey – XOR the 128-bit round subtweakey to the internal state.
– SubBytes – Apply the 8-bit AES S-box to each of the 16 bytes of the internal

state.
– ShiftRows – Rotate the 4-byte i-th row left by ρ[i] positions, where ρ =

(0, 1, 2, 3).
– MixColumns – Multiply the internal state by the 4× 4 constant MDS matrix

of AES.

After the last round, a final AddRoundTweakey operation is performed to produce
the ciphertext.

We denote the concatenation of the key K and the tweak T as KT , i.e., KT =
K||T . For Deoxys-BC-384, the size of KT is 384 bits, and we denote the first,
second and third 128-bit words of KT by W3, W2 and W1, respectively. Finally, we
denote by STKi the 128-bit subtweakey that is added to the state at round i during
the AddRoundTweakey operation. For Deoxys-BC-384, a subtweakey is defined as
STKi = TK1

i ⊕TK2
i ⊕TK3

i ⊕RCi. The tweakey schedule algorithm is defined as
TK1

i+1 = h(TK1
i ), TK2

i+1 = h(LFSR2(TK2
i )) and TK3

i+1 = h(LFSR3(TK3
i )),

where the byte permutation h is defined as(
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 6 11 12 5 10 15 0 9 14 3 4 13 2 7 8

)
,

with the 16 bytes of a tweakey word numbered by the usual AES byte ordering.

14-Round rectangle attack on Deoxys-BC-384. By our new one-step frame-
work, we get a 14-round rectangle attack on Deoxys-BC-384 with a 10-round
inner part in Ed, 1-round in Eb and 3-round in Ef , as shown in Fig. 5. De-
tailed of the 10-round inner part refers to Fig. 11. The probability of Eb

is 1, the probability of Ed is P 2
d = 2−14×2−11.4−7×2−14×2 = 2−81.4 and the

probability of Ef is P 2
f = 2−8×2. Thus the probability of the whole rectan-

gle attack is P 2 = P 2
b P 2

d P 2
f = 2−97.4, and other parameters of the attack are:

n = 128, k = 384, mb = rb = 80, mf = 8×(16+7+3) = 208 and rf = 8×13 = 104.
The best guessing parameters are m′

b = 8 × 10 = 80, r′
b = 8 × 10 = 80,

m′
f = 8× (5 + 1) = 48, r′

f = 32, r∗
b = 0 and r∗

f = 72, which means guessing 10
bytes of kb and 6 bytes of kf . The 6 bytes of kf are eqtk14[8, 9, 10, 11, 12] and
eqtk13[13] respectively. The complexities of our new attack are as follows6.

- The data complexity is DR = 4 · D = 4 · y · 2rb = 4 ·
√

s · 2n/2/P =
4 ·
√

s · 248.7+64 =
√

s · 2114.7.
- The memory complexity is MR = DR + D · 2rb∗ + 2t+mb+mf −m′

b−m′
f =√

s · 2114.7 +
√

s · 2112.7 + 2t+160.
- The time complexity T1 = 2m′

b+m′
f ·DR =

√
s · 2128+114.7 =

√
s · 2242.7;

- T2 = 2m′
b+m′

f ·D =
√

s · 2128+112.7 =
√

s · 2240.7;
6 We use a variant of formulas from Section 2.3 in the related-key setting for ciphers

with a linear key schedule.
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- T3 = 2m′
b+m′

f · D2 · 22r∗
b · 22r∗

f · 2−2n · ϵ = s · 2128+112.7×2+72×2−2×128 · ϵ =
s · 2241.4 · ϵ;

- T4 = 2m′
b+m′

f −t · 2k+t−m′
b−m′

f −h = 2k−h.

Processing a candidate quartet to retrieve the rest kf can be realized by looking
up tables. We pre-compute several tables as illustrated in Table 5, detailed refers
to [SZY+22], so that ϵ is equivalent to about 225 memory accesses which is around
225 × 1

14 ×
1

16 = 217.19 encryption. The time complexity and memory complexity
of the tables are related to the involved state bits, the involved subkeys and the
filters. The time complexity and memory complexity of the tables are all 2128. If
we set s = 4, t = 0, then the data, memory, and time complexities of our attack
are 2115.7, 2160 and 2260.59 respectively.

Table 5: Precomputation tables for the 14-round attack on Deoxys-BC-384 where
eqtki = SR−1 ◦ MC−1(tki) (let Q = s · 2241.4)
Tables Involved key Filters Remaining quartets

1 eqtk14[0, 1, 2, 3] ∆Z12[0, 1] = 0 Q

2 eqtk13[15] ∆Y12[15] = 0xed Q · 2−8

3 eqtk14[4, 5, 6, 7] ∆Z12[4, 7] = 0 Q · 2−8

4 eqtk13[14] ∆Y12[14] = 0xba Q · 2−16

5 eqtk13[8, 9, 10] ∆Z11[10] = 0 Q · 2−8

6 eqtk14[13, 14, 15], eqtk13[11] - Q · 224

7 eqtk12[2, 7, 8] ∆Y12[2, 7, 8] = 0x8f, 0xca, 0x45 Q

Improved 14-round rectangle attack by the split-and-bunch technique.
From the time complexity of the 14-round rectangle attack above, we can find
that in subtable 6 there are 4 bytes involved subkeys and 0 filter. The number of
quartets in this subtable reaches the maximum, making the time complexity of
this step dominant.

With the same guessing strategy, by using the split-and-bunch technique, the
number of the involved subkeys bits in Ef is mf = 8×(13+6+3) = 176. And the
number of the counts for a wrong key is e = D2 · 2me−2n−16 = s · 2225.4+8−272 =
s · 2−38.6 ≪ s. We get the new ϵ as illustrated in Table 6. The time complexity
and memory complexity of the tables are 2128. It is shown ϵ is equivalent to about
2 memory accesses which is around 2× 1

14 ×
1

16 = 2−6.81 encryption. The memory
complexity is

√
s · 2114.7 +

√
s · 2112.7 + 2t+(176+80)−80−48. If we set s = 4, t = 0,

then the data, memory and time complexities of our attack are 2115.7, 2128 and
2243.7 respectively.

15-Round rectangle attack on Deoxys-BC-384. Using our new framework,
we get a 15-round rectangle attack which is equal to add one round after the
14-round rectangle attack, as shown in Fig. 6.

In order to get an effective attack, we also use the split-and-bunch technique
in the 15-round rectangle attack. The parameters of the attack are: mb = rb =
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Table 6: Precomputation tables for the improved 14-round attack on Deoxys-BC-384
where eqtki = SR−1 ◦ MC−1(tki) (let Q = s · 2241.4)

Tables Involved key Filters Remaining quartets
1 eqtk14[0, 1, 2, 3] ∆Z12[0, 1] = 0 Q

2 eqtk13[15] ∆Y12[15] = 0xed Q · 2−8

3 eqtk14[4, 5, 6, 7] ∆Z12[4, 7] = 0 Q · 2−8

4 eqtk13[14] ∆Y12[14] = 0xba Q · 2−16

5 eqtk13[8, 9, 10] ∆Z11[10] = 0 Q · 2−8

6 eqtk12[2, 7, 8], W11[11] ∆Y12[2, 7, 8] = 0x8f, 0xca, 0x45 Q · 2−24
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80, mf = 8×(16+13+6+3) = 304 and rf = 128. Due to the key schedule, kb∪kf

contains 376 information bits. The best guessing parameters are m′
b = 80, r′

b = 80
and m′

f = 8× (16 + 5 + 1) = 176, r′
f = 8× (4 + 3) = 56, which means guessing

the whole subkey of kb, 16 bytes of tk15, 5 bytes of the equivalent subkey eqtk14
and 1 bytes of the equivalent subkey eqtk13. The complexities of our 15-round
attack are as follows:

- The data complexity is DR = 4 · D = 4 · y · 2rb = 4 ·
√

s · 2n/2/P̃ =
4 ·
√

s · 248.7+64 =
√

s · 2114.7.
- The memory complexity is MR = DR + D · 2rb∗ + 2t+mb+mf −m′

b−m′
f =√

s · 2114.7 +
√

s · 2112.7 + 2t+120.
- The time complexity T1 = 2m′

b+m′
f ·DR =

√
s · 2256+114.7 =

√
s · 2370.7;

- T2 = 2m′
b+m′

f ·D =
√

s · 2256+112.7 =
√

s · 2368.7;
- T3 = 2m′

b+m′
f · D2 · 22r∗

b · 22r∗
f · 2−2n · ϵ = s · 2256+112.7×2+72×2−2×128 · ϵ =

s · 2369.4 · ϵ;
- T4 = 2m′

b+m′
f −t · 2k+t−m′

b−m′
f −h = 2k−h.

Similar to the improved rectangle attack on 14-round Deoxys-BC-384, for
s · 2369.4 quartets, ϵ is equivalent to about 2 memory accesses which is around
2× 1

14 ×
1

16 = 2−6.81 encryption. The time complexity and memory complexity
of the tables both are 2128. If we set s = 4, t = 0 then the data, memory, and
time complexities are 2115.7, 2128 and 2371.7, respectively.

Table 7: Comparisons of rectangle attacks on Deoxys-BC-384

P 2 Rounds mb, mf m′
b, m′

f Data Memory Time Reference

2−118.4 14 88, 168 88, 24 2125.2 2140 2260 [DQSW22]

2−97.4 14 80, 208 80, 48 2115.7 2160 2260.59 This

2−97.4 14 80, 176 80, 48 2115.7 2128 2243.7 This

2−97.4 15 80, 304 80, 176 2115.7 2128 2371.7 This

The comparison with the previous rectangle attacks is presented in Table 7.

Note: For Deoxys-BC, we search for the active patterns of the whole attack with
the total time complexity of the attack as the objective function in one step and
then instantiate these patterns. In order to balance the time complexity and data
complexity, we impose some restrictions on the data complexity in the model.
These two attacks are the instances with the optimal time complexity found
under the restriction of data complexity.

4.2 Application to SKINNY

Specification. SKINNY [BJK+16] is a family of lightweight block ciphers which
adopt the substitution-permutation network and elements of the TWEAKEY
framework [JNP14]. Members of SKINNY are denoted by SKINNY-n-tk, where
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n ∈ {64, 128} is the block size and tk ∈ {n, 2n, 3n} is the tweakey size. The
internal states of SKINNY are represented as 4× 4 arrays of cells with each cell
being a nibble in case of n = 64 bits and a byte in case of n = 128 bits. The
tweakey state is seen as a group of z 4×4 arrays, where, z = tk/n. The arrays are
marked as TK1, (TK1, TK2) and (TK1, TK2, TK3) for z = 1, 2, 3 respectively.

SKINNY iterates a round function for Nr rounds and each round consists of
the following five steps.

1. SubCells (SC) - A 4-bit (resp. 8-bit) S-box is applied to all cells when n is 64
(resp. n is 128).

2. AddConstants (AC) - This step adds constants to the internal state.
3. AddRoundTweakey (ART) - The first two rows of the internal state absorb the

first two rows of TK, where TK =
⊕z

i=1 TKi.
4. ShiftRows (SR) - Each cell in row j is rotated to the right by j cells.
5. MixColumns (MC) - Each column of the internal state is multiplied by matrix

M whose branch number is only 2.

The tweakey schedule of SKINNY is a linear algorithm. The tk-bit tweakey
is first loaded into z 4 × 4 tweakey states. After each ART step, a cell-wised
permutation P is applied to each tweakey state, where P is defined as: P =
[9, 15, 8, 13, 10, 14, 12, 11, 0, 1, 2, 3, 4, 5, 6, 7]. Then cells in the first two rows of all
tweakey states but TK1 are individually updated using LFSRs. For complete
details of the tweakeys scheduling algorithm, one can refer to [BJK+16].

26-Round rectangle attack on SKINNY-128-256. We obtain a new 26-round
rectangle attack with the inner part is modified by the original 18-round dis-
tinguisher in [DQSW22], as depicted in Fig. 7. The probability of the whole
rectangle attack is P 2

d = 2−115.86. The other parameters of the attack are
n = 128, k = 256, mb = 64, rb = 56, mf = 168 and rf = 96. The best-guessing
parameters are m′

b = 64, r′
b = 56 and m′

f = 32, r′
f = 32. The complexities of our

26-round rectangle attack are as follows:

– The data complexity is DR = 4 · y · 2rb =
√

s · 2n/2+2/P =
√

s · 2123.93.
– The memory complexity is MR = DR + D · 2r∗

b + 2t+mb+mf −m′
b−m′

f =√
s · 2123.93 +

√
s · 2121.93 + 2136+t.

– The time complexity T1 = 2m′
b+m′

f ·DR =
√

s · 212×8+123.93 =
√

s · 2219.93;
– T2 = 2m′

b+m′
f ·D · 2rb−r′

b =
√

s · 212×8+121.93 =
√

s · 2217.93;
– T3 = 2m′

b+m′
f · D2 · 22r∗

b +2r∗
f −2n · ϵ = s · 212×8+121.93×2+2×64−2×128 · ϵ =

s · 2211.86 · ϵ;
– T4 = 2256−h, h < 136 + t.

The remaining step is similar to [SZY+22], the ϵ is equivalent to about 35
memory access which is around 35 × 1

26 ×
1

16 ≈ 2−3.57 encryption. If we set
s = 1, t = 0, then the data, memory, and time complexities of our attack are
2123.93, 2136, and 2219.93.

The comparison with the previous rectangle attacks is presented in Table 8.
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Fig. 7: 26-round Rectangle Attack on SKINNY-128-256
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Table 8: Comparisons of key recovery attacks on SKINNY-128-256
P 2 mb, mf m′

b, m′
f Data Memory Time Reference

2−121.07 88, 168 88, 24 2126.53 2128.44 2254.4 [DQSW22]

2−121.07 88, 168 72, 32 2126.53 2136 2241.38 [SZY+22]

2−115.86 64,168 64,32 2123.93 2136 2219.93 This

4.3 Application to CRAFT

Specification. CRAFT is a lightweight tweakable block cipher that was introduced
by Beierle et al. [BLMR19]. It supports 64-bit plaintexts, 128-bit keys, and 64-bit
tweaks. Its round function is composed of involutory building blocks. The 64-bit
input is arranged as a state of 4× 4 nibbles. The state is then going through 32
rounds Ri, i ∈ 0, · · · , 31, to generate a 64-bit ciphertext. As depicted in Fig. 8,
each round, excluding the last round, has five functions, i.e., MixColumn (MC),
AddRoundConstants (ARC), AddTweakey (ATK), PermuteNibbles (PN), and S-box
(SB). The last round only includes MC, ARC and ATK, i.e., R31 = ATK31 ◦ARC31 ◦MC,
while for any 0 ≤ i ≤ 30, Ri = SB ◦ PN ◦ ATKi ◦ ARCi ◦ MC.

The tweakey schedule of CRAFT is rather simple. Given the secret key K =
K0∥K1 and the tweak T ∈ {0, 1}64, where Ki ∈ {0, 1}64, four round tweakeys
TK0 = K0 ⊕ T , TK1 = K1 ⊕ T , TK2 = K0 ⊕Q(T ) and TK3 = K1 ⊕Q(T ) are
generated, where Q is a nibble-wise permutation. Then at the round Ri, TKi%4
is used as the subtweakey.

Fig. 8: A round of CRAFT

21-Round differential attack on CRAFT. By using our new framework, we
obtain a 21-round differential attack on CRAFT, as depicted in Fig. 9, which
contains a 14-round inner part, 3-round in Eb and 4-round in Ef . The input
difference is 0a00000000a000a0 and the output difference is 0a0000?000x000x0.
The probability of the inner part is P = 2−54 and for a random permutation, the
probability is 2−56. This inner part uses a 2-round invariant property of CRAFT
proposed in [GSS+20] when the tweak T satisfies the conditions T [6]⊕K[12] ∈
{0x0, 0xa} and T [12]⊕K[12] ∈ {0x0, 0xa} the difference 0xa propagates 2-round
to 0xa with probability 1, detailed shows in Appendix C. This is a single-key
model with some conditions in tweak T .
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In this attack, we build 2x structures for each value of T [6] with the tweak T
satisfying T [6] = T [12]. For each T [6], we perform the following steps.

1. We build 2x structures that Y0[0, 3, 4, 8, 11, 12, 13, 14] traverse all possible
values while the other cells are fixed to some random constants. The data
complexity is D0 = 2x+32. By using 2x+32 plaintexts, there are N0 = 2x ·
232×2−1 = 2x+63 pairs of plaintexts. The expected number of the remaining
pairs of ciphertexts are N1 = N0 · 2−4×8 = 2x+31. The time complexity of
this step is T0 = D = 2x+32.

2. For each of N1 = 2x+31 pairs, determine the key candidates and increase the
corresponding counters. We pre-compute several tables as shown in Table
9, so that the time complexity of this step is T1 = 236 ·N1 = 2x+67 which is
about 2x+67 × 1

21 ×
1

16 ≈ 2x+58.61 encryption.
3. Exhaustively the remaining keys.

Table 9: Precomputation tables for the 21-round attack on CRAFT.
Tables Involved key Filters Remaining pairs

1 K0[12] = T [12] ∆X1[1] = ∆W19[12] = a 2−8 · N1

2 K0[0, 8, 11, 14] ∆Y1[3, 7] = ∆X19[3, 7] = 0 2−8 · N1

3 K0[13, 4, 3, 15] ∆Y1[2, 6] = ∆X19[2] = 0 2−4 · N1

4 K0[1, 2, 5, 6, 9, 10] - 220 · N1

5 K1[1], K1[9] ⊕ K1[13] - 228 · N1

6 K1[6, 14, 10, 15] ∆X2[0] = ∆X18[0] = 0, ∆X3[10] = a 232 · N1

7 K1[0, 7], K1[8] ⊕ K1[12] ∆X3[14] = a, ∆W17[3] = ∆W17[4] 236 · N1

Set x = 24.99, then the data, memory, and time complexities are 24+24.99+32 =
260.99, 292 and 287.60, respectively.

23-Round differential attack on CRAFT. Expending one round before and
one round after the 21-round differential attack, we obtain a 23-round differential
attack on CRAFT. As for the 21-round attack, we perform the following steps for
each T [6]. For 23-round attack, K1[12] = T [6] = T [12].

1. We build 2x structures that Y0[2, 3, 6, 7, 8, 9, 10, 12, 13, 14, 15] traverse all
possible values while the other cells are fixed to some random constants.
The data complexity is D0 = 2x+44. By using 2x+44 plaintexts, there are
N0 = 2x · 244×2−1 = 2x+87 pairs of plaintexts. The expected number of the
remaining pairs of ciphertexts are N1 = N0 · 2−4×5 = 2x+67 pairs. The time
complexity of this step is T0 = D = 2x+44.

2. For each of N1 = 2x+87 pairs, determine the key candidates and increase the
corresponding counters. We pre-compute several tables as shown in Table 10,
so that the time complexity of this step is T1 = 240 ·N1 = 2x+107 which is
about 2x+107 × 1

23 ×
1

16 ≈ 2x+98.47 encryption.
3. Exhaustively the remaining keys.
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Set x = 12.99, then the data, memory, and time complexities are 24+12.99+44 =
260.99, 2120 and 2111.46, respectively.

Table 10: Precomputation tables for the 23-round attack on CRAFT.
Tables Involved keys Filters Remaining pairs

1 K0[9, 2, 10, 14, 12] ∆X21[1, 5] = ∆Y1[1, 5] = 0 24 · N1

2 K0[8, 13, 3, 11, 15] ∆X21[2, 6] = ∆Y1[2, 6] = 0 28 · N1

3 K0[0, 1, 4, 5, 6, 7] - 232 · N1

4 K1[0, 8, 11, 14] ∆Y2[3, 7] = ∆X20[3, 7] = 0 232 · N1

5 K1[13, 4, 3, 15] ∆Y2[2, 6] = ∆X20[2] = 0 236 · N1

6 K1[2, 5, 9, 10] ∆Y3[1] = ∆X19[0] = 0, ∆X4[10] = a 240 · N1

7 K1[1, 6] ∆X4[14] = a, ∆W18[3] = ∆W18[4] 240 · N1

The comparison with the previous attacks is presented in Table 11.

Table 11: Comparison of attacks on CRAFT

Rounds Data Memory Time Attack Setting Reference

23 274 251 294 D WK(16-bit) & ST [LR22]

26 273 260 2105 D WK(20-bit) & WT(12-bit) [LR22]

20 262.89 249 2120.43 ZC SK & ST [HSE23]

21 260.99 2100 2106.53 ID SK & ST [HSE23]

19 260.99 268 294.59 D SK & WT(4-bit) [GSS+20]

21 260.99 292 287.60 D SK & WT(4-bit) This

23 260.99 2120 2111.46 D SK & WT(4-bit) This

5 Conclusion

In this paper, we propose a one-step framework for finding the rectangle attacks
with the purpose of reducing the overall complexities or attacking more rounds.
Instead of extending the distinguisher forward and backward with probability 1,
we propose to allow probabilistic propagations in the extended part. We treat the
distinguisher and the extended part as a whole with a more flexible selection of
propagation and involved keys to get better attacks. Moreover, we incorporate the
holistic key recovery strategy into our one-step framework. Further, we introduce
a technique, which is called the split-and-bunch technique, to reduce the time
complexity. Applying our framework to Deoxys-BC-384, we obtain the first 15-
round rectangle attack for Deoxys-BC-384, narrowing its security margin to only
one round. Applying to SKINNY and ForkSkinny, we obtain a new rectangle
attack with reduced data and time complexities. We also apply the main ideas
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of the framework to differential attacks on CRAFT block cipher, which achieves 2
more rounds than the previous best attacks.

Further works. In this paper, we only apply the new framework to rectangle
attacks and differential attacks. It would be a potential future work to explore
the application of these ideas to other attacks.
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A Unified Key Recovery Algorithms

A.1 Unified Key Recovery Algorithm for Differential Attacks

This subsection recalls the unified key recovery algorithm from [SYL23]. Suppose
Eb and Ef are added around the distinguisher where Eb and Ef can be identity
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functions. Suppose the probability of the distinguisher is P = 2−p. Then the
unified key recovery algorithm proceeds as follows with k′

b, k′
f guessed at first.

Unified key recovery algorithm for differential attacks
1. S ← 2p−rb+1 structures, each of 2rb plaintexts
2. Guess k′

b and k′
f , 0 ≤ m′

b ≤ mb, 0 ≤ m′
f ≤ mf :

3. For S∗ ∈ S:
4. Do partial encryption and decryption for elements in S∗ if m′

b + m′
f ≠ 0.

5. // Additional r′
b, r′

f filtering bits are obtained, respectively.
6. Store the data into a hash table indexed by the filtering bits.
7. Get 22rb−1+rf −n−r′

b−r′
f pairs having fixed difference on the filtering bits.

8. For each of such pairs:
9. Extract 2m∗

b −r∗
b candidates for k∗

b , under which α can be reached.
10. Extract 2m∗

f −r∗
f candidates for k∗

f , under which δ can be reached.
11. Update the key counters.
12. Repeat Step 1∼11 for s times where s is the expected number of right pairs.

A.2 Unified Key Recovery Algorithm for Rectangle Attacks

In the following, we recall the unified algorithm for the rectangle key recovery
attack from [SZY+22]. This algorithm works for any number of guessed key bits
and uses the traditional deterministic extensions.

Like most key recovery algorithms, this algorithm also employs the counting
method. Namely, one sets counters for the involved subkey bits and searches for
the correct one among the subkey candidates with a large number of suggestions.
Suppose m′

b-bit k′
b and m′

f -bit k′
f are to be guessed. For these guessed subkey

bits, one may or may not set counters for them. To enjoy such flexibility, set
counters for t bits of the guessed subkey bits, 0 ≤ t ≤ m′

b + m′
f . Then the specific

steps of the algorithm are as follows.

1. Collect and store y structures of 2rb plaintexts. Hence, the data complexity
is D = y · 2rb . The time and memory complexities of this step are also D.

2. Split (m′
b + m′

f )-bit k′
b∥k′

f into two parts: GL∥GR where GL has t bits.
3. Guess GR:

(a) Initialized a list of key counters for GL and the unguessed key bits of
kb, kf . The memory complexity in this step is 2t+mb+mf −m′

b−m′
f .

(b) Guess the t-bit GL:
i. For each data (P1, C1), partially encrypt P1 and partially decrypt

C1 under the guessed subkey bits. Let P ∗
1 = Enck′

b
(P1) and C∗

1 =
Deck′

f
(C1). For each structure, we will get 2r′

b sub-structures, each of
which includes 2rb−r′

b = 2r∗
b plaintexts which take all possible values

for the active bits. In other words, there are y∗ = y · 2r′
b structures of

2r∗
b plaintexts. The time complexity of this step is D.
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ii. Let 2−µ = D · 2−n. If r∗
b ≤ r∗

f − µ7, it turns to step (A); else if
r∗

b > r∗
f − µ, it turns to step (D).

A. Insert all the obtained (P ∗
1 , C∗

1 ) into a hash table according to
n− r∗

b bits of P ∗
1 . Then construct a set as S = {(P ∗

1 , C∗
1 , P ∗

2 , C∗
2 ) :

P ∗
1 and P ∗

2 have difference only in r∗
b bits}. The size of S is

y · 2r′
b · 22(rb−r′

b)−1 = D · 2r∗
b −1. Hence, the time and memory

complexities of this step are both D · 2r∗
b −1.

B. Insert S into a hash table by n− (rf − r′
f ) = n− r∗

f inactive bits
of C∗

1 and n− (rf − r′
f ) = n− r∗

f inactive bits of C∗
2 .

C. For each 2(n−r∗
f )-bit index, we pick two distinct (P ∗

1 , C∗
1 , P ∗

2 , C∗
2 ),

(P ∗
3 , C∗

3 , P ∗
4 , C∗

4 ) to generate the quartet. We will get

2 ·
( |S|

2
2(n−r∗

f
)

2

)
· 22(n−r∗

f ) = D2 · 22r∗
b · 22r∗

f · 2−2n−2

quartets. Then go to step (iii).
D. Insert all the obtained (P ∗

1 , C∗
1 ) into a hash table according to

n− r∗
f bits of C∗

1 . Then construct a set as S = {(P ∗
1 , C∗

1 , P ∗
3 , C∗

3 ) :
C∗

1 and C∗
3 are colliding in n − r∗

f bits}. The size of S is D2 ·
2rf −r′

f −n−1 = D · 2r∗
f −1−µ. Hence, the time and memory com-

plexities of this step are both D · 2r∗
f −1−µ.

E. Insert S into a hash table by n− r∗
b inactive bits of P ∗

1 and n− r∗
b

inactive bits of P ∗
3 .

F. There are at most 22(n−r∗
b −µ) possible values for the 2(n− r∗

b )-bit
index. For each index, we pick two distinct entries (P ∗

1 , C∗
1 , P ∗

3 , C∗
3 ),

(P ∗
2 , C∗

2 , P ∗
4 , C∗

4 ) to generate the quartet. We will get

2 ·
( |S|

22(n−r∗
b

−µ)

2

)
· 22(n−r∗

b −µ) = D2 · 22r∗
b · 22r∗

f · 2−2n−2

quartets.
iii. Determine the key candidates involved in Eb and Ef and increase the

corresponding counters. Denote the time complexity for processing
one quartet as ϵ. Then the time complexity in this step is D2 · 22r∗

b ·
22r∗

f · 2−2n−2 · ϵ.

(c) Select the top 2t+mb+mf −m′
b−m′

f −h hits in the counters to be the can-
didates, which delivers a h-bit or higher advantage, where 0 < h ≤
t + mb + mf −m′

b −m′
f .

(d) Guess the remaining k −mb −mf unknown key bits according to the
key schedule algorithm and exhaustively search over them to recover the
correct key. The time complexity of this step is 2k+t−m′

b−m′
f −h.
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Fig. 11: 10-round Rectangle distinguisher of Deoxys-BC-384
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B The Rectangle Distinguisher of Deoxys-BC-384

C The property proposed in [GSS+20]

Property 1. Let S be the involutory S-box of CRAFT, and τk : F4
2 → F4

2 be a
function mapping x to S(S(x)⊕k), where x and k ∈ F4

2. Then τ0(x⊕δ)⊕τ0(x) = δ,
and τ0xa(x⊕0xa)⊕τ0xa(x) = 0xa that is, τk preserves the input difference δ with
probability 1 when k = 0 and preserves the input difference 0xa with probability
1 when k = 0xa.

D Application to ForkSkinny

Specification of ForkSkinny. ForkSkinny is designed by Andreeva et al.
[ALP+19], which is the internal primitive of ForkAE, a 2nd round candidate
in the NIST lightweight authenticated encryption standardization project. It is a
forked variant of SKINNY. The encryption of ForkSkinny is split into two steps.
The first step applies the round function of SKINNY Rinit times. Then it forks the
state into SKINNY0 with RI rounds and SKINNY1 with RII rounds. The subkeys
are generated by extending the tweakey schedule to produce Rinit + RI + RII
subkeys, detailed refers to [ALP+19].

28-Round rectangle attack on ForkSkinny-128-256 with 256-bit key.
With our framework to ForkSkinny, we get a new 28-round rectangle attack
(Rinit = 20, RI = 27, RII = 8) to reduce the time complexity and decrease the
data complexity of the previous attack proposed in [DQSW22] with 256-bit key.
The probability of the rectangle attack is P 2 = 2−113.77. The other parameters
are n = 128, k = 256, rb = 8 × 8 = 64, mb = 8 × 8 = 64, rf = 12 × 8 = 96 and
mf = 17× 8 = 136. The best-guessing parameters are m′

b = 64, r′
b = 64, m′

f = 24
and r′

f = 24. The complexities of the 28-round rectangle attack are as follows:

– The data complexity is DR = 4 · y · 2rb =
√

s · 2n/2+2/P =
√

s · 2122.885.
– The memory complexity is MR = DR + D · 2r∗

b + 2t+mb+mf −m′
b−m′

f =√
s · 2122.885 +

√
s · 2120.885 + 2112+t.

– The time complexity T1 = 2m′
b+m′

f ·DR =
√

s · 211×8+122.885 =
√

s · 2210.885;
– T2 = 2m′

b+m′
f ·D · 2rb−r′

b =
√

s · 211×8+120.885 =
√

s · 2208.885;
– T3 = 2m′

b+m′
f ·D2 · 22r∗

b +2r∗
f −2n · ϵ = s · 211×8+120.885×2+2×0+2×72−2×128 · ϵ =

s · 2217.77 · ϵ;
– T4 = 2256−h, h < 136 + t.

We pre-compute several tables as illustrated in Table 12, so that the ϵ is
equivalent to about 1 memory access which is around 1× 1

28 ×
1

16 ≈ 2−8.80. Set
s = 4, t = 0, the data, memory and time complexities are 2123.89, 2123.89 and
2212.89.

The comparison with the previous rectangle attacks is presented in Table 13.
7 The number of filters for plaintext pairs is n − r∗

b − µ while it is n − r∗
f for ciphertext

pairs.
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Table 12: Precomputation tables for the 28-round attack on ForkSkinny (ST K25[2, 6]
can be deduced by ST K0[1, 2] and ST K27[4, 5], Q = s · 2217.77)

Tables Involved key Filters Remaining quartets
1 ST K27[2] ∆W26[14] = 0 Q · 2−8

2 ST K27[6], ST K26[5] ∆X26[5] = 0x5e Q · 2−8

3 ST K27[3] ∆W25[4] = 0 Q · 2−16

4 ST K26[0] ∆W25[12] = 0 Q · 2−24

5 ST K27[1, 7], ST K26[2, 6] ∆W25[10, 14] = 0 Q · 2−24

6 ST K26[1, 4], (ST K25[2]) ∆W24[6, 14] = 0 Q · 2−40

7 ST K26[7], (ST K25[6]) ∆X24[8] = 0x35 Q · 2−48
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Fig. 12: 28-round Rectangle Attack on ForkSkinny-128-256
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Table 13: Comparisons of key recovery attacks on ForkSkinny-128-256
P 2 mb, mf m′

b, m′
f Data Memory Time Reference

2−105.77 80, 176 80, 24 2118.88 2136 2246.98 [QDW+21]

2−105.77 80, 176 64, 24 2118.88 2118,88 2224.76 [DQSW22]

2−113.77 64,176 64,24 2124.89 2124.89 2212.89 This
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