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Abstract. Incremental Verifiable Computation (IVC) allows a prover to prove to a ver-
ifier the correct execution of a sequential computation. Recent works focus on improving
the universality and efficiency of IVC Schemes, which can be categorized into Accumulation
and Folding-based IVCs with Folding-based ones being more efficient (due to their deferred
proof generation until the final step). Unfortunately, both approaches satisfy only heuristic
security as they model the Random Oracle (RO) as a circuit in their non-constant depth
recursive composition of the base Scheme. Such drawback is two-fold: to connect the con-
secutive execution step the RO is recursively modeled as a circuit during the folding or the
accumulating process, and again in the final SNARK wrapper circuit (a common practice
in Folding-based IVCs). As a consequence, cycle of curves are usually necessary for efficient
instantiation of such IVC schemes.
We revisit this problem, with a focus on the Folding-based IVCs due to their efficiency, and
propose the detachment of RO invocation from the folding circuit. We can instead accumulate
such invocations, yielding the so-called Conditional Folding (CF) Scheme to overcome the
first drawback. One can consider our CF Scheme a hybrid Folding-Accumulation Scheme
with provable security. We provide a non-trivial practical construction for our CF scheme
that is natively parallelizable, which offers great efficiency. We rigorously prove the security
of our CF scheme (also for the case of folding in parallel; and our scheme can be made non-
interactive using Fiat-Shamir). Our CF scheme is generic and does not require trusted setup.
It can be adapted to construct the first IVC for RAM programs, i.e. Parallelizable Scalable
Transparent Arguments of Knowledge for RAM Programs that we dub RAMenPaSTA, that
can be used to build zero-knowledge virtual machines (zkVMs). Both our CF Scheme and
RAMenPaSTA can be of independent research interests.
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1 Introduction

Incremental Verifiable Computation (IVC) [Val08] allows a powerful server to continuously execute
a sequential and delegated (possibly private) computation on some inputs (with some from the
client and also potentially some server-owned private inputs) that results in some output and later
cryptographically prove to the weak client that the claimed output is the result of the delegated
task.
IVC Applications. IVC is particularly relevant in the context of scaling the blockchain such as
Bitcoin or Ethereum by executing the transactions in the off-chain layer Layer-2 (L2) and only use
the on-chain layer Layer-1 (L1, i.e. the Bitcoin or Ethereum blockchain itself) as a settlement layer,
i.e. to commit only the claimed new state of the transactions applied on the last state.5. In this
case, the powerful server is called the operator of the L2 and the weak client is every node in L1.
Yet, scalable verifiable computation is not the only application of IVC, there are more fundamental
applications such as Verifiable Delay Function [BBBF18] or Verifiable Replicated State-Machines
such as TinyRAM [BCG+13].6

IVC Realizations. IVC can be realized in two different paradigms, the first one is called Proof-
Carrying-Data (PCD) [CT10] where mutually distrusted parties can perform pipelined efficiently
verifiable private computation. PCD can be achieved via composing Zero-Knowledge Succinct Non-
Interactive Argument of Knowledge (zk-SNARK) [BCI+13,GGPR13] or similar succinct primitive
(such as Accumulation Scheme, AS [BCMS20]) in a recursive manner, i.e. at the n-th step of the
computation the statement is that there exists a valid statement that the (n− 1)-th step has been
executed correctly and the n-th step is carried out consistently as well (using the outcome from
the (n − 1)-th step and with the operation of the n-th-step). In fact, PCD generalizes IVC as
the powerful prover can be distributed as opposed to the central operator of IVC. A more recent
approach to realize IVC is to use Folding Scheme (FS) such as Nova [KST22] that avoid using
SNARKs (except for the final proof). FS can be considered as a relaxed primitive of SNARK
and AS, i.e. instead of accumulating the verification of the (expensive) arguments intermediate
steps, FS accumulates the instances and defers the verification until the very end, hence the name
Folding Scheme where NP instances are folded to a single one to be verified only once at the
end, resulting in significantly lower prover cost. Specifically, a Folding Scheme is defined for an
NP relation and it allows two mutually distrusted prover and verifier to compute a single folded
instance from an N-sized NP instances. In addition, the prover obtains a folded witness from the
witnesses of these instances. FS has gained tremendous traction due to its practical impact in
significantly improving the prover cost of IVC and resulted in a long line of published research
work [KST22,KS22,KS23,ZGGX23,LXZ+24].
Problematic modeling of RO as a circuit and Conditional Folding Scheme for IVC.
All the aforementioned work are proven secure in the Random Oracle Model (ROM) which is
problematic due to its heuristic security when instantiated with a cryptographic hash function.
This drawback is two fold: (i) for “connecting” the input and output of two consecutive steps
while folding a RO invocation is necessary (as shown in the left diagram of Fig. 1), such “connec-
tion” is recursively formed along the execution of the program which cause non-constant depth
recursion heuristic; and (ii) the final proof is “wrapped” in a SNARK for succinctness. Thus,
folding/accumulation-based IVC fails to obtain provable security. Interestingly, this problem has
been precedented in the past in [KVV16], as pointed out by [FMNV22,BDD20]. In [KVV16], the
authors compute the result of a RO based commitment inside an MPC protocol. However, this
means the RO itself must be computed by MPC, which is impossible since ROs cannot be rep-
resented by a circuit. This problem is also recently formalized in [CCS22,CGSY23] in which the
authors propose an orthogonal fix to the problem via by proposing special RO with additional
properties. However, such approach could suffer from inefficiency since these ROs still need to
be instantiated with hash functions (SHA-256, Poseidon [GKR+21]) or hardware tokens [CCS22],
making the circuits for realizing such ROs become expensive.

While the final wrap is somewhat unavoidable if one aims for succinct verifier, the recursion
heuristic in the connections is not the case. Such heuristic can be avoided meaning we can obtain a
construction of provable security and can be made non-interactive using the Fiat-Shamir heuristic.

5 https://ethereum.org/en/developers/docs/scaling/zk-rollups/
6 TinyRAM just facilitates verification, not a VRSM, but still can be used as one.
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In IVC we want to show that in step S1, using input in0 and the state transition function F we obtain the
output out0 and in step S2, using input in1 and the state transition function F we obtain the output out1.
It is also necessary to connect S1 and S2 by showing in1 = out0.
Folding-based IVC, such as Nova and Nova-ish IVC, has problematic of recursive invocation of RO when
verifying π01 when connecting S1 and S2 for IVC; whereas in Conditional-Folding-based IVC, such as
RAMenPaSTA, we accumulate instead and deferred verification of π01 till the very end. As such, our CF
scheme can be considered as a new paradigm dubbed “Hybrid Folding-Accumulation Scheme”.

Fig. 1. Folding Scheme (left) vs Conditional Folding Scheme (right) for IVC.

Observe that the problem is due to the verification of a SNARK proof (e.g. π01 in Fig. 1) being
encoded as a part of the circuit that requires invoking a query to the RO. We can ‘detach’ the
verification part out of the circuit, as shown in Fig. 1 (right). Instead such proof of the connection
can be accumulated and verified at the end and outside of the folding scheme. We call this new
scheme Conditional Folding Scheme (CF). One can consider our scheme follow a hybrid folding-
accumulate paradigm which is itself of independent research interest.

Non-trivial design and generic construction of CF Scheme CFgnr and parallelizable
IVC. The proposed fix, seemingly simple (just the detachment of the verification of the connec-
tion), yet the construction requires careful design in the forms of instance and witness pairs for
folding computation steps. Such careful design allows us to define and construct efficient paral-
lelizable IVC. Concretely, we achieve the following advantages. First, since our construction is
generic, with homomorphic commitment schemes and ZKAoKs as building blocks, we can apply
any ZKAoK instantiations in our scheme, not solely relying on a specific paradigm, as well as its
security assumption. Second, by achieving parallelism, our CF scheme incurs very low proving and
verification time asymptotically, with only O(|W | logN) time complexity, where N is the number
of instance-witness pairs and |W | is the size of each witness.

Our CF Scheme further allows Parallelizable and Verifiable RAM programs (that we dub
pvRAM, a.k.a. IVC with associated memory). Specifically, a pvRAM is a proof/argument for
RAM programs that enables parallelism natively. As it is a proof, we hence call it verifiable. On
one hand, parallelizability is an important property in the context of scaling blockchain as L2
operator is commonly a set of powerful servers and parallelization can significantly bring down
the finality time of the block generated by L2. On the other hand, supporting RAM programs
(RAM-based machine executions) in a native manner yields efficient verifiable virtual machines
such as zkEVMs.7 As we want our CF scheme to be as flexible in usage as possible we support
incomplete binary folding structure (meaning the number of leaves in the folding tree can be less
than 2L where L is the tree depth). Such hierarchy’s flexibility is two fold: (1) one do not need 2L

steps of execution to not waste folding effort (no need to pad with dummy steps), and (2) in the
case of parallelization, the vCPUs scheduler can easily fit the folding tasks to workers of various
different clock cycles; and it also does not require doubling of computing units in case of horizontal
scaling of the infrastructure.

RAMenPaSTA and Concrete Instantiations. We observe that one can treat a RAM program
as an IVC with an associated memory. We can transform each step of such RAM program into an
instance-witness pair that fits the CF scheme CFgnr for folding all such instance-witness pairs into
a single one that testifies the correctness of the entire computation. Particularly, we employ the

7 Verifiable execution of the Ethereum Virtual Machine which consists of state storage and memory.
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technique for handling memory from [FKL+21] and transform the technique for proving correct
execution of RAM programs, with PLONK structure lookup8 and memory handling techniques
from [FKL+21], into the compatible instance-witness pairs forms. Finally, we can fold all such
instance-witness pairs, in parallel, into a single pair s.t. its satisfaction to some relation implies a
correct computation of all steps of the RAM program.

To this end, we apply the above-mentioned CF scheme CFgnr as a building block to con-
struct a generic construction for pvRAM, namely Parallelizable Scalable Transparent Arguments
of Knowledge for RAM Programs (RAMenPaSTA). We trade efficiency for native parallelization
and memory support. Unlike previous non-uniform IVC constructions [KS22, BC23], where the
instruction index is set to be public, our construction manages to perfectly hide the index of each
instruction in each step by applying the technique for proving the satisfiability of hidden circuit.

Our scheme handles memory consistency check via folding the witnesses and then proves in the
end. Hence, the final circuit for proving memory consistency in our scheme only depends on the
witness size |W | of a single execution trace. This is better compared to previous works [FKL+21,
dSGOTV22,YH24], where the size of the circuit for memory consistency check is proportional to
the number N of execution steps multiplying the witness size |W |. Finally, our scheme incurs only
O(|W | logN) prover time, dominated by the cost of executing the CF schemes in parallel plus
proving the validity of the final instance-witness pair in the last step.

We show in Table 1 the comparison between our work and previous state-of-the-art results
in constructing (ZK) proofs/arguments for correct machine executions. Here, our construction is
generic and achieves native parallelization. See Sec. 1.2 for detailed related work.

Table 1. Comparison with previous works for proving correct machine execution regarding: no recur-
sion heuristic (no recur. heur.), memory support (mem. supp.), folding (fold.), genericity (generic), no
trusted setup (no trust. setup), and hidden program counter or instruction (hidden pc/instr.). (See more
in Sec. 1.2.) SuperNova [KS22] employs Merkle tree for committing and proving memory consistency.
Such approach has been pointed out to be impractical as in [ZSZG23]. Moreover, RAMenPaSTA supports
HVZK for program counter in RAM program, while SuperNova and ProtoStar [BC23] do not. Franseze
et al. [FKL+21] and Guilhem et al. [dSGOTV22] provided generic ZK constructions for RAM programs.
However, they are not known to be natively parallelizable and cannot defer proving by folding. Moreover,
we also do not know whether they hide program counter. To the best of our knowledge, we are the first
to support oblivious executions of RAM-based program in the sense that the program counter and its
associated instruction are hidden.

Protocol No
Recur.
Heur.

Mem.
Supp.

Fold. Generic No
Trust.
Setup

Hidden
PC/Instr.

Sublonk [CGG+23] ✓ - - - - ✓

SuperNova [KS22] - ✓(Merkle) ✓ ✓ ✓ -
ProtoStar [BC23] - - ✓ ✓ ✓ -
KiloNova [ZGGX23] - - ✓ - ✓ -
MUXProof [DXNT23] ✓ ✓ - - - ✓

Franseze et al. [FKL+21] ✓ ✓ - ✓ - -
Guilhem et al. [dSGOTV22] ✓ ✓ - ✓ ✓ -

Ours (Parallel) ✓ ✓ ✓ ✓ ✓ ✓

1.1 Our Contributions

We summarize our main contributions of this paper as follows:

Conditional Folding Scheme. We propose Contitional Folding (CF) Scheme, a new primitive
acting as a building block for constructing pvRAM that avoids recursion heuristic. A CF scheme
is an interactive protocol between a prover and verifier. Informally, for two NP relations R and
Rcond, the protocol allows prover to fold two instance-witness pairs into a single pair and to
convince verifier in a way that, the folded pair satisfies R if and only if each of the original
pairs also satisfies R, and these two pairs are related, i.e., satisfying Rcond. Concrete syntax
and security properties of CF Scheme are presented in Sec. 4.

8 The notion of Proof of Proving Hidden-Circuit Satisfiability from PLONK is employed by [CGG+23].
Here we only require Folding Plonk Structure.

5



Generic CF Scheme Construction. We propose a generic construction of CF scheme (Sec. 5)
with security proof (Appdx. B). We design a CF scheme where both relations R and Rcond are
chosen to capture relaxed R1CS (rR1CS) constraints, introduced in [KST22]. Our construction
is both generic and parallelizable by folding all the instance-witness pair following a binary-
tree-like structure.

Security Proof for Generic CF Scheme Construction. We are required to analyze the knowl-
edge soundness property for our CF scheme construction when folding the instance-witness
pairs in parallel (recalling that we also support incomplete binary folding structure). The secu-
rity analysis is non-trivial and becomes one of the main technical contributions in this work.9

RAMenPaSTA: Generic, Parallizable and Zero-Knowledge. We propose a generic construc-
tion of pvRAM, which employs CF scheme as a sub-protocol, named RAMenPaSTA. Un-
like many previous works [BGH19,COS20,BCMS20,BCL+21,KS22,BC23], by leveraging CF
scheme, RAMenPaSTA manages to avoid the heuristic recursion issue. Our construction is
generic, since we only require CF scheme as the sole building block.

1.2 Related Work

RAMenPaSTA is closely related to the problem of IVC construction and Argument of Correct
RAM programs as RAMenPaSTA is IVC with associated memory itself.
Memory Consistency Check. Memory consistency check is one of the required steps in proving
the correctness of RAM program, and several solutions for handling memory have been proposed.
Braun et al. [BFR+13] proposed a solution to memory using Merkle tree, which has been pointed
out to be impractical [WSR+15,ZSZG23]. Another solution is to use the sorting technique which
is based on routing networks [BCG+13,BCTV14,WSR+15,BBC+17]. While the sorting approach
outperforms its Merkle tree approach counterpart [ZSZG23], the sorting-based constructions above
still incur at least O(N logN) prover cost due to the cost of routing network.

Nevertheless, the sorting technique is a promising approach and thus, there have been several
attempts to reduce the cost. Franzese et al. [FKL+21] proposed a construction based on sorting
technique for proving memory consistency. Instead of sorting network, they employ polynomial
equality check for permutation argument. Their work is further optimized by [dSGOTV22,YH24]
with additional properties such as linear prover and verifier costs in public coin setting. All these
constructions are generic and offer better efficiency than the previous works above which remove
the O(logN) overhead, as analyzed in [FKL+21, Sec. 1.1]. However, they still suffer from several
efficiency problems. More specifically, in all these constructions, to perform the memory consistency
check, they require invoking a circuit whose size is proportional to the number of execution steps.
For instance, in [FKL+21, Sec. 3.2], to verify memory consistency, they need to construct an
arithmetic circuit of length Θ(N), which used to check whether two arrays of lengths N are
permutation of each other. In addition, the circuit size of [YH24] also depends on the size of the
memory, which is not desirable because in several applications memory can be extremely large,
e.g., 256-bit addressable memory in EVM [W+14].

Recently, [ZSZG23] proposed another method, called address cycle method to reduce the online
communication cost between the prover and the verifier in the sorting approach. They also proposed
two instantiations for memories with full address space (the space of the address is 𝔽 ) and linear
size address space (the address space is [M ], where M is the memory size), respectively. However,
for memories with full address space (which is our consideration), their protocol inevitably incurs
O(S log2 S) prover cost due to multi-point evaluation, where S is the number of distinct addresses
in the execution trace. This cost is not desirable because in the worst case, S could be as large
as N . In addition, since their protocol do not consider the zero-knowledge property, it is hard to
concretely analyze the total complexity of their protocol against those achieving zero-knowledge
in term of N .

9 At the first glance, the extraction for tree-like folding process might seems easy. However, traditional
extraction techniques [AC20,AFR23] consider the tree structure as a line (only one path from top to
bottom) and then extract with trees of challenges (multi-round special soundess), meaning the instance-
witness pairs at some level ℓ only affect the pairs at level ℓ − 1. Differently we have incomplete binary
structure (pairs at level ℓ might affect pairs at some level below ℓ − 1) therefore we cannot have this
consideration. We overcome this obstacle with a new technique that make use of L + 1 extractors and
an additional extractor that we call Eprf . Such technique could also be of independent research interest.

6



IVC from Accumulation/Folding Scheme. Since IVC allows us to prove the correctness of
incremental computation, they are one of the main components in proving the correct execution
of RAM programs, demonstrated by [BCTV14]. Due to these applications and the development
of zkVMs, the progress of realizing IVC has rapidly developed. Historically, IVC was constructed
using recursive SNARK [BCCT13, BCTV14] where in each step the prover need to employs a
SNARK to prove the correctness of the current step and recursively verifies the SNARK produced
in the previous step. Such approach has been pointed out to be impractical [CCDW20]. Recently, a
new approach called accumulation/folding has been employed to construct IVC/PCD with reduced
complexity overhead. Starting with [BGH19], this approach has been studied intensively by many
subsequent works. At a high level, these constructions employ an accumulation scheme [BCMS20,
BCL+21,CCS22,CCG+23,BC23] or folding schemes [KST22,KS22,KS23,LGZX23,ZGGX23] with
the idea of accumulation the instance-witness pairs of a NP relation into a single instance-witness
pair of the same relation. IVC from accumulation schemes are similar to those from SNARK,
except that it recursively verifies the previous proof from the accumulation scheme verifier instead
of SNARK. IVC from folding scheme instead fold instances (where each instance also includes a
folding verifier) recursively into a single one. Then, checking the validity of final step implies that
all the previous steps are valid. Among these constructions, [KS22, BC23, ZGGX23] manage to
realize non-uniform IVC, i.e, a generalization of IVC where the number of possible instructions in
each step is more than one, and function/instruction in the next computation step is determined
from the input of the current step.

IVCs from folding schemes are more efficient than the traditional SNARK-based IVCs since
one only need to prove the correctness of the whole execution in the final step with a sin-
gle folded instance-witness pair, which greatly reduces prover cost. Unfortunately, the majority
the accumulating/folding-based constructions above share a common drawback: except [CCS22,
CCG+23], all these constructions require modeling the random oracle as an arithmetic circuit,
which is problematic since random oracles are ideal functionality and thus cannot be represented by
any circuit. In addition, the random oracle (or low degree random oracle in the case of [CCS22] and
arithmetic random oracle in the case of [CCG+23]) has to be instantiated via some cryptographic
hash functions, making the realized circuit become expensive due to the number of constraints
of hash functions. Moreover, when applying non-uniform IVC to prove the correctness of RAM
program, [KS22,BC23,ZGGX23] do not keep program counter (or the structure corresponding to
the current instruction in the case of [ZGGX23]) private, for instance, SuperNova [KS22] must at
least reveal the program counter of the current computation step.
Other Works. Several other works [IOS23,DXNT23,CGG+23] also proposed different solutions
for proving the correctness of machine execution that avoid the IVC approach and thus, manage to
avoid the recursion heuristic problem above. However, these constructions have efficiency issue as
they both incur heavy cost O(N |W | · log(N |W |)) on prover side, where |W | is the witness size. In
addition, since the constructions in [DXNT23] and [CGG+23] are built upon Marlin [CHM+20] and
PLONK [GWC19] respectively, the security of the protocol must rely on a trusted setup because
Marlin and PLONK require trusted setups for public parameters.

1.3 Paper Organization

The paper is organized in the following structure:

– Sec. 1 is the introduction of the paper.
– In Sec. 2, we present the necessary backgrounds including commitment scheme, interactive

protocol for folding relaxed R1CS instance-witness pairs and hierarchical structures. Extended
preliminaries can be found in Appdx. A.

– In Sec. 3, we describe the technical overview of our result.
– In Sec. 4, we formally define the syntax and security properties of conditional folding schemes

(CF schemes).
– In Sec. 5, we propose a generic construction CFgnr of CF schemes that supports parallelizable

incremental computations with memory, namely, pvRAM. Its security proof can be found in
Appdx. B.

– In Sec. 6, we propose a generic pvRAM construction Πpvr employing the CF scheme described
in Sec. 5. Its security proof can be found in Appdx. C.

– In Sec. 7, we discuss potential instantiations of Πpvr described in Sec. 6.
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2 Preliminaries

Notations. We denote by ℤ, ℕ and ℤ+ to be the sets of integers, natural numbers {0, 1, 2, . . . }
and positive integers, respectively. For a, b ∈ ℤ s.t. a ≤ b, we write [a, b] and [a] to indicate
{a, a+1, . . . , b} and {1, . . . , a}, respectively. Let 𝔽 be a finite field. For two vectors a,b, we denote
(a∥b) to be the vector (a⊤|b⊤)⊤. We use negl(λ) to denote a function that is o(λ−n) for all
n ∈ ℕ. We say an algorithm is probabilistic polynomial time (PPT) if this algorithm runs within
polynomial time in the size of its inputs. For any relation R in this paper, if there exist two parties,
namely, prover and verifier, jointly execute a interactive proof/argument for prover’s knowledge of
some witness wit with respect to statement st and relation R, then we may write (st; wit) ∈ R
where “;” is to separate the common input st and prover’s input wit. Moreover, we usually call
“pair”, “iff”,“s.t.” to indicate “instance-witness pair”, “if and only if” and “such that”, respectively
throughout this paper.

2.1 Commitment Scheme

We recall the syntax of commitment scheme, denoted by C, in Def. 1. C should satisfy two security
properties: binding and hiding. Additionally, we require C in our construction to be additively
homomorphic (see Appdx. A.6).

Definition 1 (Syntax of Commitment Scheme). A commitment scheme C is a tuple of algo-
rithms C = (C.Setup,C.Commit,C.Verify) defined as follows:

C.Setup(1λ)→ ck: On input 1λ, output a commitment key ck and determine randomness distribu-
tion Rck.

C.Commit(ck,M,R)→ C: On input key ck, message M and randomness R sampled from some
randomness distribution Rck, output commitment C.

C.Verify(ck,M,R,C)→ {0, 1}: On input commitment key ck, messageM , randomness R and com-
mitment C, output a bit b ∈ {0, 1}.

Define relation Rcom s.t., for ĉ sampled from Rck, it holds that (ck, c̃; c, ĉ) ∈ Rcom ⇐⇒ c̃ =
C.Commit(ck, c, ĉ).

Remark 1. For ease of writing and developing ideas in this result, for a vector c over 𝔽 , we usually
write JcKck to indicate the tuple (ck, c̃; c, ĉ) containing the commitment c̃ and randomness ĉ. Here,
writing JcKck does not imply that (ck, c̃; c, ĉ) ∈ Rcom. However, when writing JcKck ∈ Rcom, we
equivalently understand (ck, c̃; c, ĉ) ∈ Rcom. In executing protocol between prover and verifier, it
is understood that verifier only knows ck, c̃ while prover knows ck, c̃, c and ĉ. Hence, for a vector
c held by prover, we define protocol in (1) for prover to commit to c and send commitment to
verifier so that both parties achieve JcKck.

Πcom(ck; c)→ JcKck (1)

Remark 2. Following Rmk. 1, in some place, we may write a tuple mixing commitments and
public values, e.g., (a, JbKck1 , c, JdKck2) for some commitment keys ck1, ck2. Here, we understand
that verifier knows a, c and commitments to b,d while prover knows everything including b,d and
commitment randomness. In some case, we may write (a, JbKck1 , c, JdKck2 ; e) to imply that prover
additionally has a secret e since e is after “;” according to notations in begin of Sec. 2.

Remark 3 (Homomorphism). In this result, the commitment scheme is assumed to be homomor-
phic. For two commitment tuples (ck, c̃i; ci, ĉi) ∀i ∈ {0, 1}, for any α ∈ 𝔽 , we can achieve
the commitments to c2 = α · c0 and c3 = c0 + c1 by computing the tuples (ck, c̃2; c2, ĉ2) =
(ck, α · c̃0; c0+c1, α · ĉ0) and (ck, c̃3; c3, ĉ3) = (ck, c̃0+ c̃1; c0+c1, ĉ0+ ĉ1), respectively. For short-
ening purpose, we can write Jc2K := α · Jc0K and Jc3K := Jc0K+ Jc1K which can be understood that,
in executing protocols with prover and verifier, verifier computes ĉ2 and ĉ3 while prover computes
c̃2, c2, ĉ2, c̃3, c3 and ĉ3.

Remark 4. Sometimes, we need to compute the commitment for public vectors, e.g., the zero
vector 0k ∈ 𝔽 k for some k ∈ ℕ. Hence, for the rest of the paper, we always commitment
these public vectors with randomness 0. For example, in the case of the zero vector 0 we have
J0Kck = (ck,C.Commit(ck,0, 0); 0, 0) for any ck. In this case, the commitments to these public
vectors can be publicly determined by verifier without having to interact with prover.
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2.2 Interactive Folding Protocol for Folding Relaxed R1CS Instance-Witness Pairs

We recall the notion of relaxed R1CS (rR1CS) and its corresponding folding scheme (recalled in
Appdx. A.7), as an interactive protocol, from [KST22].
rR1CS. Let 𝔽 be a finite field. Let c,m1, . . . ,mc, n ∈ ℤ+, m = 1 +

∑c
i=1mi. Assume that

𝕩 = (𝕩.u,𝕩.pub,𝕩.z1, . . . ,𝕩.zc,𝕩.e). Let tck = (ck1, . . . , ckc, cke) be a tuple of commitment keys.
Then, we write

J𝕩Ktck = (𝕩.u,𝕩.pub, J𝕩.z1Kck1 , . . . , J𝕩.zcKckc , J𝕩.eKcke) (2)

to indicate instance-witness pair after committing to 𝕩.z1, . . . ,𝕩.zc and 𝕩.e by ck1, . . . , ckc and cke,
respectively. See Rmk. 2 for the use of this notation.

Let S = (A,B,C) ∈ (𝔽n×m)
3
be a tuple of three matrices, together called rR1CS structure.

Then, J𝕩Ktck is a valid rR1CS pair if it satisfies the relation

RS
rr1cs =

J𝕩Ktck

∣∣∣∣∣∣
𝕩.u ∈ 𝔽 ∧ 𝕩.pub ∈ 𝔽 ∧ (𝕩.zi ∈ 𝔽mi ∀i ∈ [c]) ∧ 𝕩.e ∈ 𝔽n
∧J𝕩.ziKcki ∈ Rcom ∀i ∈ [c] ∧ J𝕩.eKcke ∈ Rcom

∧A · z′ ◦B · z′ = 𝕩.u ·C · z′ + 𝕩.e

 (3)

where z′ = (𝕩.pub∥𝕩.z′1∥ . . . ∥𝕩.z′c) and ◦ is the entry-wise multiplication.
Folding Two rR1CS Instance-Witness Pairs. We recall the technique in [KST22] for fold-
ing two pairs into a single satisfying pair with respect to RS

rr1cs in (3). Let J𝕩0Ktck, J𝕩1Ktck be
two pairs satisfying J𝕩0Ktck, J𝕩1Ktck ∈ RS

rr1cs. We show how to fold J𝕩0Ktck and J𝕩1Ktck to obtain
the new pair J𝕩Ktck ∈ RS

rr1cs. With random α, the idea is to compute 𝕩.u = 𝕩0.u + α · 𝕩1.u,
𝕩.pub := 𝕩0.pub + α · 𝕩1.pub, 𝕩.zi = 𝕩0.zi + α · 𝕩1.zi ∀i ∈ [c] and 𝕩.e := 𝕩0.e + α · 𝕩1.e. Let
z′i := (𝕩i.pub∥𝕩.z1∥ . . . ∥𝕩i.zc) ∀i ∈ {0, 1} and z′ := (𝕩.pub∥𝕩.z1∥ . . . ∥𝕩.zc). Define

garb(S, J𝕩0Ktck, J𝕩1Ktck) = A·z′0 ◦B·z′1 +A·z′1 ◦B·z′0 −C·(𝕩1.u·z′0 + 𝕩0.u·z′1).

Then, one can check that
A · z′ ◦B · z′ = 𝕩.u ·C · z′ + 𝕩.e (4)

where 𝕩.e = 𝕩0.e + α · garb(S, J𝕩0Ktck, J𝕩1Ktck) + α2 · 𝕩1.e. From (4), we obtain a new pair J𝕩Ktck
satisfying J𝕩Ktck ∈ RS

rr1cs. Hence, we present protocol Πrr1cs (in Cstr. 1) for folding two pairs with
extractability discussed in Lm. 1.

Construction 1 (Protocol Πrr1cs.). We first parse

J𝕩iKtck = (𝕩i.u, 𝕩i.pub, J𝕩i.z1Kck1 , . . . , J𝕩i.zcKckc , J𝕩i.eKcke) ∀i ∈ {0, 1},
J𝕩Ktck = (𝕩.u, 𝕩.pub, J𝕩.z1Kck1 , . . . , J𝕩.zcKckc , J𝕩.eKcke )

to follow the form (2). We recall protocol Πrr1cs for folding two satisfying pairs of rR1CS into a
new satisfying pair. Let C be a homomorphic commitment scheme (Sec. 2.1). Protocol Πrr1cs works
as follows.
Πrr1cs(tck = (ck1, . . . , ckc, cke),S, J𝕩0Ktck, J𝕩1Ktck)→ J𝕩Ktck

1. Prover: g← garb(S, J𝕩0Ktck, J𝕩1Ktck).
2. Both parties run JgKcke ← Πcom(cke; g) where Πcom is defined in (1).

3. Verifier: α
$← 𝔽 and send α to prover.

4. This step folds J𝕩0Ktck and J𝕩1Ktck with α. Specifically, both parties compute:

𝕩.u := 𝕩0.u+ α · 𝕩1.u, J𝕩.ziKcki := J𝕩0.ziKcki + α·J𝕩1.ziKcki ∀i ∈ [c],

𝕩.pub := 𝕩0.pub+ α·𝕩1.pub, J𝕩.eKcke := J𝕩0.eKcke + α·JgKcke + α2 ·J𝕩1.eKcke.

Lemma 1 ((3; |𝔽 |)-Special Soundness of Πrr1cs). Let C be a secure and homomorphic commit-
ment scheme. Assume that Πrr1cs in Cstr. 1 are rewinded thrice, with the same g̃ (commitment
in JgKcke) and distinct challenges {α(i)}i∈[3] to produce {𝕩̃(i)}i∈[3], respectively. If we have have

corresponding witnesses to recover {J𝕩(i)Ktck}i∈[3] satisfying J𝕩(i)Ktck ∈ RS
rr1cs ∀i ∈ [3], then we can

extract witnesses to construct (J𝕩iKtck)i∈{0,1} s.t. J𝕩iKtck ∈ RS
rr1cs ∀i ∈ {0, 1}.

The proof of Lemma 1 will be presented in Appdx. A.9.

9



2.3 Hierarchical Structures

As our result focuses on folding an N -step computation in parallel which can be done by following
a tree-like structure, in this section, we define the family of hierarchical structures that helps
formalize the parallel folding process above. Intuitively, suppose we have two tree-like structures,
representing the folding process from steps l + 1 to j and from steps j + 1 to r. Then we can
combine these two to obtain a tree-like structure that represents the folding process from step l+1
to r. We formally define the family hierarchical structures in Def. 2.

Definition 2 (Hierarchical Structures). For any l, r ∈ ℤ+, l < r, a family HSlr is a set of
hierarchical structures s.t. each HS ∈ HSlr satisfies:

– If l + 1 = r, then HS contains only (l, r).
– If l+1 < r, then there exists uniquely j ∈ [l+1, r−1] s.t. there exist HS0 ∈ HSlj, HS1 ∈ HSjr

satisfying HS = HS0 ∪ HS1 ∪ {(l, r)}.

3 Technical Overview

We discuss technical overview of our result. This is split intro three parts including a definition of CF
scheme, generic constructions of CF scheme and pvRAM, and security proof of these constructions
in Sec.3.1, 3.2 and 3.3, respectively.

3.1 Defining CF Schemes

The Challenges. Let R be some NP relation. We would like to define the CF scheme that fold
two instance-witness pairs (Z0; W0), (Z1; W1) ∈ R into (Z; W ) ∈ R s.t. the folding process
is successful iff certain conditions between (Z0; W0) and (Z1; W1) are met. This condition is
captured by relation Rcond informally defined as follows. The pairs (Z0; W0) and (Z1; W1) together
satisfy this condition if there exists an auxiliary witness W ′ satisfying (Z0, Z1; W0,W1,W

′) ∈
Rcond. Regarding auxiliary witness W ′, for example, when comparing a, b ∈ ℤ, we may need to
decompose a and b into binary. Those binary forms are considered to be included in W ′. In other
words, a CF scheme is defined s.t. the membership of folded pair holds, i.e., (Z; W ) ∈ R, iff the
memberships of (Z0; W0) and (Z1; W1) in R hold and there exists some auxiliary witness W ′

satisfying (Z0, Z1; W0,W1,W
′) ∈ Rcond.

Previous works [BCMS20, BCL+21, BC23, KST22, KS22, KS23, LXZ+24, ZGGX23], especially
Nova [KST22], employ cycle of curves and recursion heuristic. The usage of cycle of curve is due
to the fact that Nova’s IVC witness contains both group (elements over a group 𝔾) and scalar
elements (elements over a field 𝔽 s.t. |𝔽 | = |𝔾|), whose base fields are different. To ensure all the
components of the witness are represented and computed in the same field, Nova must perform
the folding steps in a cycle of curve. Since Nova needs its instance to be short and fixed, it has
to realize verifier’s work, having random oracle call realized by a hash function, as a circuit. This
method is called recursion heuristic, which incurs a violation to random oracle model (ROM) since
random oracle (RO) is an idealized object and cannot be realized by any circuit with the following
drawbacks. (i) Recursion heuristic is not a standard method for making a proof although many
constructions employed this strategy. (ii) As RO is heuristically instantiated by a hash (e.g, SHA-
256, Poseidon [GKR+21]), realizing a hash function as a circuit is actually expensive, in terms
of efficiency, for prover. (iii) Since they apply recursion heuristic to prove IVC sequentially, they
suffer the issue of linear-depth recursion.

We now consider CF scheme. Our proposed CF scheme allows us to avoid those mentioned
issues. Moreover, it also enables a generic construction of RAM program, as a non-uniform IVC
with an associated memory, that is natively parallelizable and can be instantiated from different
paradigms and assumptions. These positivities will be clarified later in this section.

We now consider specifying syntax and defining security of a CF scheme. This is a challenging
task. In fact, as discussed above, verifier only knows Z0, Z1 and Z, impossible for verifier to check
whether there exists W s.t. (Z; W ) ∈ R. Therefore, to ensure this, prover and verifier need to
conduct a proof/argument for (Z; W ) ∈ R since prover knows W . However, as we apply this
CF scheme for folding not only two, but N instance-witness pairs, we hence cannot proceed a
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proof/argument after each folding since this way incurs a huge overhead of communication. Inspired
by Nova, we instead fold all pairs into a single pair for proceeding the proof/argument checking the
membership in R. In Nova [KST22], they sequentially fold an N -step computation and informally
said that the process can be adapted to fold in parallel. Paranova [ZV23] also attempted modifying
Nova to make it parallel. However, detail specification and security proof of Nova and Paranova for
parallel folding are not carefully considered. Moreover, it is not known whether their approaches
are generic.

In our consideration, the folding process can be done by folding all those instance-witness pairs
following a (not necessarily complete) binary tree, called hierarchical structure HS (see Sec. 2.3).
In this way, we enable the parallelism of this folding process which results in a reduced time of
execution. To fold N instance-witness pairs into a single pair, we assume that each of these N
pairs corresponds to a leaf of HS. By following a topological order of HS, we can obtain a folded
pair at the root of HS. This pair is hence considered the folded pair of those N pairs at the leaf
nodes. Finally, prover and verifier proceed an (interactive) argument for the validity of the final
pair, namely, belonging to R.
Definition of CF Schemes - Syntax and Security. With the above folding strategy, we can
define the syntax of a CF scheme CF , for two parties, namely, prover and verifier, to contain an
algorithm CF.Setup, for returning public parameters, and two protocols, namely, CF.Fold for folding
two instance-witness pairs into a new pair and CF.Prove for proving the satisfaction, in R, of a
pair.

We discuss correctness and security of CF . Correctness ensures that, if both parties honestly
follow protocols CF.Fold and CF.Prove, CF.Prove always returns 1 indicating the satisfaction of
the respective instance-witness pair. Security of CF includes soundness and honest-verifier zero-
knowledge (HVZK). Regarding soundness, for an N -step computation represented by instance-
witness pairs {(Zi; Wi)}i∈[N ] folded into a single pair (Z; W ), if there exists some i ∈ [N ] s.t.
(Zi; Wi) ̸∈ R or, in case that i ∈ [2, N ], condition between (Zi−1; Wi−1) and (Zi; Wi) is not
satisfied, i.e., no W ′ s.t. (Zi−1, Zi; Wi−1,Wi,W

′) ∈ Rcond, then prover has negligible probability
to convince verifier when executing CF.Prove. In our definition of CF schemes in Sec. 4, we define
a stronger version of soundness, namely, knowledge soundness, in a way that there exists some
extractor to extract back the witnesses (Wi)i∈[N ] and auxiliary witnesses, supporting the conditions
between those pairs, satisfying all required constraints w.r.t. R and Rcond. Regarding HVZK, by
following traditional definitions from ZK proofs/arguments, we capture the fact that no information
about witnesses is compromised beyond the validity of the prover’s statement.

3.2 Generic Constructions of CF Scheme and pvRAM

Recall that a pvRAM is a parallelizable proof/argument for RAM programs. We use the model of
RAM program from [FKL+21] that contains

– an instruction set F containing T instructions denoted by F = {F ′
j}j∈[T ],

– a register containing creg addresses for some small constant creg,
– a memory mem = (memi)i∈[M ] of M addresses (cells),
– a program counter for determining the next instruction, among F .

When executing an N -step RAM program, for the step i, we need inputs including a program
counter pci−1, register regi−1 and an input value vali−1, where subscript “i − 1” is to indicate
the current state of the program counter and register before executing step i (or after step i− 1).
Initially we assume that pc0 = 1, reg0 is set to be some initial input to RAM program, and val0 is
some initial dummy value. The program counter pci−1 determines instruction Fi := F ′

pci−1
from F ,

which executes on input (regi−1, vali−1) and returns output (pci, regi, ℓi, vali,mopi) where ℓi ∈ [M ]
is an address in memory and mopi is a memory access operation which is either READ or WRITE.
Here, pci, regi and vali are used for the next step while ℓi, vali and mopi determine the action for
modifying the memory. If mopi = WRITE, set memℓi := vali. Otherwise, set vali = memℓi . The
output of the computation is written to register at the end, namely, regN . See Appdx. A.1 for a
detailed description of RAM programs.

By viewing RAM program as an execution involving N sub-executions, where the i-th sub-
execution receives (pci−1, regi−1) and returns (pci, regi, ℓi, vali,mopi), we can construct a (ZK)
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pvRAM for proving the execution by realizing CF scheme discussed above. Specifically, we construct
an instance-witness pair for each step and then fold all these pairs into a single pair by following
a hierarchical structure. Finally, we proceed a ZK proof/argument, namely, CF.Prove, for the
validity of the final pair. Knowledge soundness and ZK of CF.Prove implies the validity of the
entire execution according to security of CF scheme.

We now discuss our brief design of instance-witness pairs to capture the N steps of RAM
program. We then show obstacles and how we deal with them.
Obstacles for Designing Instance-Witness Pairs. An instance to a step of computation is a
tuple containing public inputs and commitments to the secrets (components need to be protected
by ZK property) while a witness contains secrets and randomness of the commitments. However,
we face some obstacles:

1. Since we would like to enable ZK of the computation, (pci)i∈[0,N ] should not be compromised.
Therefore, Fi = F ′

pci−1
∀i ∈ [N ] must be private, requiring us to deal with the proof of

hidden function executions. Moreover, we need to ensure that the selection of Fi = F ′
pci−1

from

{F ′
j}j∈[T ] is correct.

2. Memory and register are two types of storage in RAM program. Since register is of constant
size, it is viewed as a direct input to each instruction. However, memory is extremely huge. We
can apply the memory check technique in [FKL+21]. Adapting this technique into the scope
of CF scheme is not a direct approach.

3. The connection between consecutive instance-witness pairs must be ensured, e.g., memory
accesses and outputs after step i and inputs before step i+1 must be consistent. This connection
can be captured by relation Rcond of our notion of CF scheme. However, realizing this is a non-
trivial task.

We now elaborate our solution to the above obstacles.
Universally Realizing Instructions by PLONK Structures. There are two approaches uni-
versally realizing instructions, in the forms of arithmetic circuits, by using either R1CS or PLONK’s
arithmetization. However, R1CS matrices usually take quadratic size on the number of circuit gates.
There are some optimizations [Set20, CHM+20,DXNT23] to reduce the size, based on sumcheck
arguments [LFKN90,BCR+19], to be linear in the number of gates. However, these optimizations
seem to be not applicable to our approach since we would like a generic approach to reach other
assumptions and proof techniques, e.g., MPC-in-the-head, dual-mode NIWIs, not relying solely
on sumcheck. On the other hand, PLONK’s arithmetization [GWC19] has two main components,
i.e., (i) selectors and (ii) a permutation, for capturing correct gate computations and correct wire
connections. A formal description of PLONK’s arithmetization is discussed in Appdx. A.3. To
universally ensure the correct computation of a function F ′ in the instruction set F , we realize by
using a public circuit to check that corresponding selectors of F ′ and the secrets are consistent. This
public circuit requires two additional inputs, namely, γ and δ, for guaranteeing copy constraints
(connections among wires). Then, we use a grand product argument, with γ, δ, to universally en-
sure that the permutation argument is satisfied (see (38)). Hence, we encode each instruction F ′

j

in F to have a PLONK structure plkst′j in the form of a fixed-length vector over 𝔽 containing
corresponding selectors and permutation.
Correctly Selecting Instruction with Program Counter. As we need to choose Fi = F ′

pci−1
,

with PLONK structure denoted by plksti (for Fi), according to pci, for each i ∈ [N ], we need
to show that plksti = plkstpci−1

is correctly picked from {plkst′j}j∈[T ]. This can be captured by

showing that
{(pci−1∥plksti)} ⊆ {(j∥plkst

′
j)}j∈[T ]. (5)

We can encode each vector in {(pci−1∥plksti)}i∈[N ] and {(j∥plkst′j)}j∈[T ] by hashing each (pci−1∥
plksti) and (j∥plkst′j) into plkcpi ∈ 𝔽 and plkcp′j ∈ 𝔽 , respectively. Then, we apply lemma for

lookup problem from [Hab22] (recalled in Appdx. A.4) to show that {plkcpi}i∈[N ] ⊆ {plkcp′j}j∈[T ]

implying (5) with overwhelming probability. In brief, to show that {plkcpi}i∈[N ] ⊆ {plkcp′j}j∈[T ], we

can compute {plkivi}i∈[N ], {plkiv′j}j∈[T ] from {plkcpi}i∈[N ] and {plkcp′j}j∈[T ] and alternatively show

that
∑
i∈[N ] plkivi =

∑
j∈[T ] mulj ·plkiv′j where {mulj}j∈[T ] are additional inputs to support lookup

argument. Transforming into checking this grand sum, i.e.,
∑
i∈[N ] plkivi =

∑
j∈[T ] mulj · plkiv′j , is

highly compatible with our proposed CF schemes since we can delegate additions to folded pairs.
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Attaching Memory Accesses to Each Instance-Witness Pair. Random-access memory can
be extremely large, e.g., 256-bit addressable memory in EVM [W+14]. We hence cannot prove
by viewing entire memory as input to an instruction in each step. However, each instruction in
machines (or architectures), e.g., EVM [W+14] or RISC-V [WLP+14], may access to a limited
number of addresses in the memory. There exist solutions for memory handling including Verkle
trees [Kus19] and memory checking techniques from [FKL+21]. However, Verkle trees seem do
not suitable with our folding scheme. In this result, we follow the memory checking technique
from [FKL+21] (recalled in Appdx. A.2). Technically, in [FKL+21], the i-th access to the memory,
can be captured by a constant-length vector, denoted by macsi = (ℓi, timei, vali,mopi) ∈ 𝔽 4 in
this paper. To show (macsi)i∈[N ] is formed correctly, they show the existence of (macs′i)i∈[N ] =
(ℓ′i, time′i, val

′
i,mop′i) s.t.

(i) 1 ≤ ℓi ≤M ∧mopi ∈ {0, 1} ∀i ∈ [N ];
(ii) (macs′i)i∈[N ] is a permutation of (macsi)i∈[N ]; and

(iii) ∀i ∈ [2, N ]: timei−1 < timei, (ℓ
′
i−1 < ℓ′i) ∨ ((ℓ′i−1 = ℓ′i) ∧ (time′i−1 < time′i)), (macsi−1 =

0) ∨ (i− 1 > 1), (ℓ′i−1 = ℓ′i) ∨ (mop′i = 0) and (ℓ′i−1 ̸= ℓ′i) ∨ (val′i−1 = val′i) ∨ (mop′i = 0).

Then, they show that there exists constraints between consecutive memory accesses, namely,
(macsi−1,macs′i−1) and (macsi,macs′i), as in step (iii) above, hold for all i ∈ [N ]. Proving permu-
tations can be done by applying [Hab22] (see Appdx. A.4). Specifically, we hash macsi,macs′i ∈ 𝔽 4

into mcpi,mcp′i ∈ 𝔽 , respectively, and apply [Hab22] to compute their respective inverses mivi,miv′i.
Then, we can check permutation by alternatively check that

∑
i∈[N ] macsi =

∑
i∈[N ] macs′i, which

is highly compatible with our proposed CF schemes since we can delegate additions to folded pairs.
Realizing Conditions by Accumulating. From above discussions, we now see that a compu-
tation step i involves to the components

pci, regi,macsi, plksti, pci, regi,macsi,macs′i, plkivi,mivi,miv′i. (6)

where pci = pci−1, regi = regi−1,macsi = macsi−1. Assume that we can pack these components into
a tuple 𝕫(i−1)i, viewed as witness of a step. Here, the index “(i− 1)i” is to indicate a computation
receiving as inputs the output from step i − 1 and returning outputs after step i. In general we
write 𝕫ij , for i < j, to represent the witness for a computation from step i+1 to the end of step j.

To make 𝕫ij into an instance-witness pair, we can commit to those components in 𝕫ij by using
a homomorphic commitment scheme C. By exploiting homomorphism property as in Rmk. 3, for
the same commitment key, any actions on components of 𝕫ij can be done homomorphically in
their corresponding commitments and randomness. Therefore, in this Sec. 3.2, we simply discuss
manipulation on 𝕫ij . Manipulations in commitments and randomness will be understood implicitly
and will be presented in detail in Sec. 5 and 6.

Since we consider an N -step computation, we require that the output of the i-th step is
equal to the input of i + 1-th step, which can be captured by enforcing (pci, regi,macsi) =
(pci+1, regi+1,macsi+1), for each i ∈ [N −1]. Hence, when applying folding technique from Sec. 2.2
to fold 𝕫(i−1)i and 𝕫i(i+1) into the pair 𝕫(i−1)(i+1), we are unable to capture this connection. More-
over, if we continue to fold, e.g., 𝕫(i−1)(i+1) and 𝕫(i+1)(i+2) into 𝕫(i−1)(i+2), the components needed
in 𝕫(i−1)(i+1) are not preserved to ensure the connection with 𝕫(i+1)(i+2).

Additionally, we need to guarantee
∑
i∈[N ] plkivi =

∑
j∈[T ] mulj · plkiv′j and

∑
i∈[N ] mivi =∑

i∈[N ] miv′i for plonk structure lookup and memory accesses.
Hence, from the above issues, we need a strategy to fold while simultaneously ensuring condi-

tions of folding hold. To this end, we do as follows:
Capturing Conditions. Define R1CS structure S′ = (A′,B′,C′) that captures the condition

when folding. Specifically, for i ∈ [N−1], by defining w′
i to contain necessary components involving

conditions for folding pairs i and i+1, we can guarantee that the condition hold iff A′ ·w′
i◦B′ ·w′

i =
C′ ·w′

i.
Designing Witnesses. Design 𝕫(i−1)i, for i ∈ [N ], to contain

𝕩(i−1)i, i(i−1)i,o(i−1)i,𝕩⋆(i−1)i, s(i−1)i,a(i−1)i (7)

as follows:

– 𝕩(i−1)i contains those above mentioned components in (6).
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– i(i−1)i contains pci, regi,macsi, macs′i as inputs to step i and o(i−1)i contains pci, regi, macsi,
macs′i as outputs of step i. Here, both i(i−1)i and o(i−1)i contain macs′i because of conditions
between macs′i−1 and macs′i (resp., macs′i and macs′i+1) via o(i−2)(i−1) and i(i−1)i (resp., o(i−1)i

and ii(i+1)).
– s(i−1)i and a(i−1)i serve as additional components for checking the grand sums

∑
i∈[N ] mivi=∑

i∈[N ] miv′i and
∑
i∈[N ] plkivi=

∑
j∈[T ] mulj · plkiv′j . In particular, for each i ∈ [N ], we assume

that s(i−1)i contains mivi. Then, later in our design, we will fold sij and sjk into sik by
computing sik := sij + sjk. Hence, one sees s0N contains

∑
i∈[N ] mivi. However, to ensure

extraction, we additionally design later that aik := aij + α2 · ajk + α2
2 · (sij − sjk) so that we

can extract back aij ,ajk, s
′
ik = sij − sjk by rewinding with 3 different choices of α2. With s′ik

and sik, we can solve equations to compute back sij and sjk. Detail of this way of extraction
is discussed in Lm. 11 in Appdx. B.1.

Here, we notice that 𝕩(i−1)i contains both i(i−1)i and o(i−1)i. However, this only holds true with
witnesses representing the computation steps. In general, if we fold those N pairs following some
hierarchical structure HS ∈ HS0N , specified in Sec. 2.3, then the fact that 𝕩ij contains both iij
and oij only holds with pairs corresponding to leaf nodes of HS0N , namely, i+ 1 = j.

Folding Witnesses. We sketch the strategy for folding two witnesses, e.g., folding 𝕫ij and 𝕫jk
into 𝕫ik for 0 ≤ i < j < k ≤ N as follows.

– Apply Nova folding from Sec. 2.2 to obtain 𝕩ik by folding, with respect to S, from 𝕩ij and 𝕩jk.
– Accumulate the condition by first computing a vector 𝕩′ containing both oij and ijk in 𝕫ij and

𝕫jk, respectively, and applying Nova folding twice to fold 𝕩⋆ij , 𝕩⋆jk and 𝕩′ into 𝕩⋆ik.
– Set iik := iij , namely, input of 𝕫ij , and oik := ojk, namely, output of 𝕫jk.
– Compute sik := sij + sjk and aik := aij + α2 · ajk + α2

2 · (sij − sjk) where α2 is chosen by
verifier.

This folding process then suggests us to split the construction into two parts:

– We present in Sec. 5 a generic CF scheme CFgnr without taking care of components of RAM
programs, i.e., without those in (6).

– Then, we construct RAMenPaSTA (protocolΠpvr) in Sec. 6 as a generic construction of pvRAM
that employs CFgnr as a building block. Moreover, instantiations of Πpvr are deferred to Ap-
pdx. 7.

3.3 Security Proof of Generic CF Scheme

The security of generic CF scheme discussed above includes correctness, knowledge soundness and
zero-knowledge (ZK). Completeness is straightforward. ZK of our generic CF scheme follows ZK
of CF.Prove and hiding property of employed homomorphic commitment scheme.

For knowledge soundness, the extraction is non-trivial because one needs to deal with extraction
for all nodes in a hierarchical structure. Technically, we divide the hierarchical structure HS, not
necessarily of a complete binary tree, that prover and verifier follow in generic CF scheme into
multiple levels (see Def. 21) from 0 (bottom) to L (top). State-of-the-art special-sound extraction
techniques [AC20,AFR23] consider this tree structure as a line (only one path from top to bottom)
and then extract with trees of challenges. Moreover, since HS is not necessarily complete, extracting
witnesses is much harder. In fact, for complete binary-tree structure, when extracting pairs in layer
ℓ ∈ [L], these pairs only affect level ℓ− 1. However, for non-complete binary tree, these pairs may
affect multiple levels below layer ℓ. To this end, we construct L + 1 extractors {Eℓ}ℓ∈[0,L] and an
extractor Eprf . Here, Eℓ, for ℓ < L, uses Eℓ+1 as a subroutine to extract witnesses at level ℓ and
these witnesses are unable to be extracted by Eℓ+1. EL extracts witnesses by call Eprf of protocol
CF.Prove of the CF scheme. This extraction technique is presented in Lm. 12 in Appdx. B.1.

4 Conditional Folding Scheme

In this section, we present the definition of conditional folding (CF) scheme CF for NP relation
R with respect to condition relation Rcond. Informally speaking, such a CF scheme allows to fold
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the instance-witness pairs satisfying relation R into a new instance-witness pair satisfying relation
R if both to-be-folded instance-witness pairs satisfy Rcond. In Sec. 4.1, we define the syntax of
a conditional folding scheme. Then, in Sec. 4.2, we define its correctness and security properties
including knowledge soundness and (honest-verifier) zero-knowledge. See Sec. 3.1 for an overview
of syntax and security definitions of CF schemes.

4.1 Syntax

Definition 3 (Syntax of CF Schemes). Let P, Z and W be the sets of public parameters,
instances and witnesses, respectively. Let Waux be the set of auxiliary witnesses supporting con-
ditions for folding. Let R ⊆ P × Z × W and Rcond ⊆ P × Z × Z × W × W × Waux be re-
lations. A CF scheme CF for relation R and associated condition relation Rcond, is a tuple
CF [R,Rcond] = (CF.Setup,CF.Fold,CF.Prove) of algorithm CF.Setup, interactive protocols CF.Fold
and CF.Prove run as follows:

CF.Setup(1λ)→ pp: Run public parameter generator, on input a security parameter 1λ, it returns
a public parameter pp.

CF.Fold(pp, Z0, Z1; W0,W1,W
′)→ (Z; W ): This is an interactive protocol between prover, hold-

ing (Z0,W0), (Z1,W1) ∈ Z ×W and auxiliary W ∈ Waux supporting the condition for folding,
and verifier, holding instances Z0, Z1 ∈ Z. In the end, prover and verifier receive the folded
pair (Z,W ) and folded instance Z ∈ Z, respectively.

CF.Prove(pp, Z; W )→ {0, 1}: This is an interactive protocol between prover, holding an instance-
witness pair (Z,W ) ∈ Z×W, and verifier, holding instance Z ∈ Z, s.t. prover tries to convince
verifier that he knows W ∈ W satisfying (pp, Z; W ) ∈ R. In the end, verifier returns a bit
b ∈ {0, 1} for deciding whether to accept (b = 1) or reject (b = 0).

4.2 Security Requirements

Before defining security requirements of CF scheme, we first introduce the notion of transcript of
a CF scheme. For any N ∈ ℤ+, assume that HS ∈ HS0N is a hierarchical structure as defined in
Def. 2. We denote by

b← ΠCF (HS, pp, {Z(i−1)i}i∈[N ]; sec) (8)

the protocol between prover and verifier, both holding instances {Z(i−1)i}i∈[N ]. In addition, prover
holds secret information sec allowing them to compute witnesses during folding and proving. Both
parties follow the structure HS to obtain final instance-witness pair (Z0N ; W0N ) and prove its
membership in R. It then returns a bit b indicating whether verifier accepts. Specifically, ΠCF runs
as follows:

1. For any (l, j), (j, r) ∈ HS, if prover and verifier already achieved the pairs ((Zlj ,Wlj), (Zjr,Wjr))
∈ (Z ×W)2 and (Zlj , Zjr) ∈ Z2, respectively, prover can compute W ′

j ∈ Waux, from sec, satis-
fying (pp, Zlj , Zjr, Wlj ,Wjr,W

′
j) ∈ Rcond and both parties run

(Zlr; Wlr)← CF.Fold(pp, Zlj , Zjr; Wlj ,Wjr,W
′
j)

to obtain Zlr for verifier and (Zlr,Wlr) for prover.
2. After obtaining (Z0N ; W0N ), prover and verifier together execute the protocol

b← CF.Prove(pp, Z0N ; W0N ).

Defining Transcript. Define the public transcript

tr← View(ΠCF (HS, pp, (Z(i−1)i)i∈[N ]; sec)) (9)

of ΠCF between prover and verifier to contain all public inputs and exchanged messages between
them during executing protocols CF.Fold and CF.Prove in ΠCF .

We now define the security properties including perfect correctness, knowledge soundness
and honest-verifier zero-knowledge (HVZK) in Def. 4, 5 and 6, respectively, for a CF scheme
CF [R,Rcond], with syntax defined in Def. 3:
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pp← CF.Setup(1λ).
((Z(i−1)i)i∈[N ], sec)← A(pp).(
(W(i−1)i)i∈[N ], (W

′
j)j∈[N−1]

)
← EA

(
pp, (Z(i−1)i)i∈[N ]

)
.

b0 := ¬
∧

i∈[N ]

((
pp, Z(i−1)i; W(i−1)i

)
∈ R

)
.

b1 := ¬
∧

i∈[N−1]

((
pp, Z(i−1)i, Zi(i+1); W(i−1)i,Wi(i+1),W

′
i

)
∈ Rcond

)
.

Return b0 ∨ b1.

Fig. 2. Experiment Expcf-knwlg-sound
A (λ).

Definition 4 (Perfect Correctness of CF). Let pp← CF.Setup(1λ). For any {(pp, Zi; Wi)}i∈{0,1}
⊆ R and any W ′ ∈ Waux s.t. (pp, Z0, Z1; W0,W1,W

′) ∈ Rcond, it holds that

Pr
[
(pp, Z; W ) ∈ R

∣∣(Z; W )← CF.Fold(pp, Z0, Z1; W0,W1,W
′)
]
= 1.

Moreover, for any (pp, Z; W ) ∈ R, Pr
[
b = 1

∣∣b← CF.Prove(pp, Z; W )
]
= 1.

We now briefly discuss the intuition for modeling knowledge soundness property in Def. 5. To
model this property, we use a PPT extractor E having oracle access to the potential adversary
playing the role of a prover, to extract the witnesses given the instances Z(i−1)i for all i ∈ [N ].
It should hold that extracted witnesses contain (W(i−1)i)

N
i=1 corresponding to (Z(i−1)i)

N
i=1 and,

moreover, capture all conditions between W(i−1)i and Wi(i+1) for all i ∈ [N − 1].

Definition 5 (Knowledge Soundness of CF). CF is said to satisfy knowledge soundness if for
any positive integer N , any (PPT) algorithm A, there exists a PPT extractor E, with rewindable

oracle access to A, it holds that Pr[Expcf-knwlg-sound
A (λ) = 1] ≤ negl(λ) where Expcf-knwlg-sound

A (λ) is
described in Fig. 2. A CF scheme CF is statistically (resp., computationally) knowledge-sound if A
is computationally unbounded (resp., bounded). CF has soundness error ϵ if A can break knowledge
soundness with probability at most ϵ.

Remark 5. In Fig. 2, we write EA(pp, (Z(i−1)i)i∈[N ]) to indicate that E (having oracle access to
A) and A, playing the roles of verifier and prover, respectively, to run ΠCF on common inputs
(pp, (Z(i−1)i)i∈[N ]). Moreover, E has an ability to rewind A to any previous state of A and run
other instances of ΠCF with different randomness. Finally, if all instances of ΠCF return 1 after
interacting with A with rewinding, E can return the valid witnesses (W(i−1)i)i∈[N ], (W

′
j)j∈[N−1]

s.t. (Zi,Wi)i∈[N ] forms a correct N -step computation with each witness W ′
j , for all j ∈ [N − 1]

captures the condition between steps j and j + 1.

Definition 6 (HVZK of CF). CF is HVZK if there exists a PPT simulator S s.t., for any dis-
tinguisher A, any valid (HS, pp, {Z(i−1)i}i∈[N ], sec) s.t., with sec induce the corresponding witnesses
corresponding to {Z(i−1)i}i∈[N ] for a correct N -step computation, it holds that∣∣Pr [A(tr) = 1

∣∣pp← CF.Setup(1λ), tr← View(ΠCF (HS, pp, (Z(i−1)i)i∈[N ]; sec))
]

−Pr
[
A(tr) = 1

∣∣pp← CF.Setup(1λ), tr← S(HS, pp, (Z(i−1)i)i∈[N ])
]∣∣ ≤ negl(λ)

where sec is some secret of prover. CF is statistically (resp., computationally) HVZK if A is
computationally unbounded (resp., bounded).

5 A Generic CF Scheme

In this section, we propose a generic CF scheme CFgnr, following technical overview sketched in
Sec. 3.2, that supports constructing pvRAM, to be discussed in Sec. 6. In Sec. 5.1, we design
the form of instance-witness pairs such that each pair contains sufficient information regarding the
trace of one computation step or conditions between consecutive computation steps. In Sec. 5.2, we

define the relations for the pairs defined in Sec. 5.1. These include RS,S′

gnr-inst for constraints inside a

single pair and RS′

gnr-cond for conditions required for folding. Then, in Sec. 5.3, we construct protocol
Πfold-gnr for folding two instance-witness pairs specified in Sec. 5.1 with respect to relations defined
in Sec. 5.2.
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5.1 Designing Forms of Instances and Witnesses for Folding Computation Steps

Letm1, . . . ,m5, n,m
′
1,m

′
2,m

′
3, n

′ ∈ ℤ+. Letm = 1+
∑5
i=1mi andm

′ = 1+
∑3
i=1m

′
i. For anN -step

computation, discussed in Sec. 3.2, letS = (A,B,C) ∈ (𝔽n×m)3 andS′ = (A′,B′,C′) ∈ (𝔽n′×m′
)3

s.t.

– S contains R1CS matrices for constraining the witness of a satisfying computation step; and
– S′ has R1CS matrices for capturing conditions between consecutive steps.

Let C be a homomorphic commitment scheme defined in Sec. 2.1. We define instance-witness
pair J𝕫Kpp (see Rmk. 2 for use of notation), where pp and 𝕫 are of the forms (10) and (11),
respectively.

pp = ( tck, tck′ ), (10)

𝕫 = (lt, rt, 𝕩, i, o, 𝕩⋆, s, a ), (11)

J𝕫Kpp = (lt, rt, J𝕩Ktck, JiKck1 , JoKck2 , J𝕩⋆Ktck′ , JsKck5 , JaKck5 ) (12)

where ck1, . . . , ck5, cke, ck
′
1 = ck2, ck

′
2 = ck1, ck

′
3, cke

′ are commitment keys for committing mes-
sages over 𝔽 of lengths m1, . . . ,m5, n, m

′
1,m

′
2,m

′
3, n

′, respectively, lt, rt ∈ ℕ are indices; tck =
(ck1, . . . , ck5, cke) and tck′ = (ck′1, . . . , ck

′
3, cke

′); i, o, s, a are vectors over 𝔽 ;

𝕩 = (𝕩.u, 𝕩.pub, 𝕩.z1, . . . , 𝕩.z5, 𝕩.e ),

J𝕩Ktck = ( J𝕩.z1Kck1 , . . . , J𝕩.z5Kck5 , J𝕩.eKcke ), (13)

𝕩⋆ = (𝕩⋆.u, 𝕩⋆.pub, 𝕩⋆.z1, . . . , 𝕩⋆.z3, 𝕩⋆.e ),

J𝕩⋆Ktck′ = ( J𝕩⋆.z1Kck′1 , . . . , J𝕩⋆.z3Kck′3 , J𝕩⋆.eKcke′ ). (14)

Here, the pairs J𝕩Ktck, J𝕩⋆Ktck′ satisfy J𝕩Ktck, J𝕩⋆Ktck′ ∈ RS
rr1cs (see (3)).

5.2 Defining Relations

Notice that, since we are constructing CF scheme CFgnr, for an instance-witness pair J𝕫Kpp of the
form (12), we now define the relations supporting our construction of CF scheme CFgnr.

Let pp of the form (10), S,S′ be fixed in advance. Recall the discussion of N -step computation

in Sec. 3 and Appdx. A.1. We define the relationRS,S′

gnr-inst, in (16), andRS′

gnr-cond, in (17), respectively,
with respect to the following intuition.

– RS,S′

gnr-inst captures the constraints for each pair in a single computation step.

– RS′

gnr-cond captures the condition between the two to-be-folded pairs in order to perform the
folding from CF scheme CFgnr.

Before defining RS,S′

gnr-inst, we need to specify relation Rgnr-com, for public parameter pp of the
form (10), to capture the relationship between components in J𝕫Kpp:

Rgnr-com=
{
J𝕫Kpp

∣∣J𝕫Kpp of form (12)∧(JiKck1 , JoKck2 , JsKck5 , JaKck5 ∈Rcom)
}
. (15)

Next, we define relation RS,S′

gnr-inst to be

RS,S′

gnr-inst =

{
J𝕫Kpp

∣∣∣∣ lt, rt ∈ ℕ ∧ (lt < rt) ∧ J𝕫Kpp ∈ Rgnr-com

∧J𝕩Ktck ∈ RS
rr1cs ∧ J𝕩⋆Ktck′ ∈ RS′

rr1cs

}
. (16)

We now define the condition relation RS′

gnr-cond with associated set Wpvr-aux defined to be the set
containing all auxiliary witnesses in the forms of fixed-length vectors over 𝔽 s.t. we can fold J𝕫0Kpp
and J𝕫1Kpp with auxiliary witness w ∈ Wpvr-aux. Parse

𝕫i = (lti, rti, J𝕩iKtck, JiiKck1 , JoiKck2 , J𝕩⋆i Ktck′ , JsiKck5 , JaiKck5)

as in (12) for all i ∈ {0, 1}. Relation RS′

gnr-cond is defined to be

RS′

gnr-cond =

{
(J𝕫0Kpp, J𝕫1Kpp; w)

∣∣∣∣w ∈ Wpvr-aux ∧ rt0 = lt1
∧A′ · c ◦B′ · c = C′ · c

}
(17)
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where c = (1∥o0∥i1∥w). Relation RS′

gnr-cond specifies the condition in the form of a computation of
R1CS equation with respect to matrices A′,B′ and C′ in S′. Specifically, it specifies the condi-
tions between consecutive computation steps,i.e, J𝕫0Kpp and J𝕫1Kpp by enforcing certain constraints
between o0 and i1. Since J𝕫iKpp, for i ∈ {0, 1}, represents the computation from the steps lti+1 to
rti, by folding J𝕫0Kpp and J𝕫1Kpp, we enforce rt0 = lt1 in order to obtain folded J𝕫Kpp that represents
consecutive computation steps from lt0 + 1 to rt1.

5.3 Protocol Πfold-gnr and Construction of CF Scheme CFgnr

We first describe protocol Πfold-gnr for folding J𝕫0Kpp and J𝕫1Kpp into J𝕫Kpp. Then, we describe the
CF scheme CFgnr employing Πfold-gnr as a building block.
Overview of Πfold-gnr. We describe in high level the protocol Πfold-gnr for folding J𝕫0Kpp and J𝕫1Kpp,
where, ∀i ∈ {0, 1}, by following (12) to parse

J𝕫iKpp = (lti, rti, J𝕩iKtck, JiiKck1 , JoiKck2 , J𝕩⋆i Ktck′ , JsiKck5 , JaiKck5),

into J𝕫Kpp as follows:

– Assume J𝕫Kpp = (lt, rt, J𝕩Ktck, JiKck1 , JoKck2 , J𝕩⋆Ktck′ , JsKck5 , JaKck5) as in (12).

– It is assumed that rt0 = lt1 according to RS′

gnr-cond in (17). Hence, the public indices lt and rt
of folded instance 𝕫 are set to be lt0 and rt1, respectively, to represent the computation from
steps (lt0 + 1) to rt1. Similarly, set input JiKck1 := Ji0Kck1 and output JoKck2 := Jo1Kck2 .

– Obtain folded rR1CS instance-witness pair by folding J𝕩0Ktck and J𝕩1Ktck into J𝕩K with respect
to a challenge α1 ∈ 𝔽 . This can be done by running protocol Πrr1cs defined in Cstr. 1 with
respect to tck and S.

– Obtain the accumulated relaxed R1CS instance-witness pair J𝕩⋆Ktck′ for condition by first
forming the rR1CS instance-witness pair J𝕪Ktck′ where 𝕪 contains o0, i1 and some auxiliary
witness w ∈ Wpvr-aux s.t. J𝕪Ktck′ ∈ RS′

rr1cs. Then, fold the three pairs J𝕩⋆0Ktck′ J𝕩⋆1Ktck′ and J𝕪Ktck′ ,
into J𝕩⋆Ktck′ by first running protocol Πrr1cs, described in Cstr. 1, with challenge α1 ∈ 𝔽 to fold
J𝕩⋆0Ktck′ and J𝕩⋆1Ktck′ into J𝕪 ′Ktck′ . Then, fold J𝕪 ′Ktck′ and J𝕪Ktck′ into J𝕩⋆Ktck′ by again running
protocol Πrr1cs with challenge α2 ∈ 𝔽 .

– Finally, compute JsKck5 := Js0Kck5 + Js1Kck5 and JaKck5 := Ja0Kck5 + α1 · Ja1Kck5 + α2
1 · (Js0Kck5 −

Js1Kck5).

Description of protocol Πfold-gnr. Assuming pp, S ∈ (𝔽n×m)3, S′ ∈ (𝔽n′×m′
)3 are publicly

determined by prover and verifier. We present the protocol Πfold-gnr in Cstr. 2 for folding J𝕫0Kpp
and J𝕫1Kpp, with supporting secret vector w ∈ Wpvr-aux for condition, into J𝕫Kpp.

Construction 2 (Protocol Πfold-gnr). We first parse

J𝕫iKpp =(lti,rti,J𝕩iKtck,JiiKck1 ,JoiKck2 ,J𝕩⋆i Ktck′ ,JsiKck5 ,JaiKck5) ∀i ∈ {0, 1},
J𝕫Kpp =(lt, rt, J𝕩Ktck, JiKck1 , JoKck2 , J𝕩⋆Ktck′ ,JsKck5 , JaKck5 ).

We formally describe protocol Πfold-gnr as follows:
Πfold-gnr(pp,S,S

′, J𝕫0Kpp, J𝕫1Kpp; w)→ J𝕫Kpp

1. Prover:
(a) g← garb(S, J𝕩0Ktck, J𝕩1Ktck) (see Sec. 2.2 for use of garb).
(b) g1 ← garb(S′, J𝕩⋆0Ktck′ , J𝕩⋆1Ktck′).

2. Both parties run JgKcke←Πcom(cke; g), JwKck′3←Πcom(ck
′
3; w) and Jg1Kcke′←Πcom(cke

′; g1)
where Πcom is defined in (1). Form the pair for condition

J𝕪Ktck′ = (𝕪.u, 𝕪.pub, J𝕪.z1Kck′1 , J𝕪.z2Kck′2 , J𝕪.z3Kck′3 , J𝕪.eKcke′ )

:= (1, 1, Jo0Kck2 , Ji1Kck1 , JwKck′3 , J0n
′
Kcke′ ).

Notice that ck′1 = ck2 and ck′2 = ck1 as designed in Sec. 5.1 and the commitment J0n
′
Kcke′ can

be determined by verifier alone, as in Rmk. 4.

3. Verifier: Abort if rt0 ̸= lt1. Otherwise, α1
$← 𝔽 and send α1 to prover.
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4. Both parties run step 4 in Πrr1cs (see Cstr. 1) to

– fold J𝕩0Ktck, J𝕩1Ktck into J𝕩Ktck with α1, and
– fold J𝕩⋆0Ktck′ , J𝕩⋆1Ktck′ into J𝕪 ′Ktck′ with α1.

5. Prover: Compute g2 ← garb(S′, J𝕪 ′Ktck′ , J𝕪Ktck′).
6. Both parties run Jg2Kcke′ ← Πcom(cke

′; g2).

7. Verifier: α2
$← 𝔽 and send α2 to prover.

8. Both parties run step 4 in Πrr1cs to fold J𝕪 ′Ktck′ , J𝕪Ktck′ into J𝕩⋆Ktck′ with α2.
9. Finally, both parties compute the following

JiKck1 := Ji0Kck1 , JsKck5 := Js0Kck5 + Js1Kck5 ,

JoKck2 := Jo1Kck2 , JaKck5 := Ja0Kck5 + α1 · Ja1Kck5 + α2
1 · (Js0Kck5 − Js1Kck5).

CF Scheme CFgnr. The construction of CF scheme CFgnr can be constructed from this protocol
Πfold-gnr straightforwardly. Let S = (A,B,C), S′ = (A′,B′,C′) be described as above. Let C be a

homomorphic commitment scheme. We now construct the CF scheme CFgnr[RS,S′

gnr-inst,RS′

gnr-cond] =

(CF.Setup,CF.Fold,CF.Prove) for relationRS,S′

gnr-inst with respect to condition relationRS′

gnr-cond, based
on protocol Πfold-gnr above. Its description is as follows:

Construction 3 (CF Scheme CFgnr). CFgnr is constructed as follows:

CF.Setup(1λ)→ pp: This algorithm works as follows:

1. Sample ck1, . . . , ck5, cke, ck
′
3, cke

′ from C.Setup. Set ck′1 :=ck2, ck
′
2 :=ck1.

2. Form tuples tck := (ck1, . . . , ck5, cke) and tck′ := (ck′1, ck
′
2, ck

′
3, cke

′).
3. Return pp := (tck, tck′).

CF.Fold(pp, J𝕫0Ktck, J𝕫1Ktck; w)→ J𝕫Ktck: Both parties run Πfold-gnr (see Cstr. 2) as follows: J𝕫Ktck ←
Πfold-gnr(pp,S,S

′, J𝕫1Ktck; w).

CF.Prove(pp, J𝕫K)→ {0, 1}: Prover runs a proof/argument for J𝕫Kpp ∈ RS,S′

gnr-inst.

This CF scheme CFgnr has an associated protocol

b← ΠCFgnr(HS, pp, {J𝕫(i−1)iKpp}i∈[N ]; sec) (18)

that is described similarly to ΠCF in (8) where HS ∈ HS0N .

Remark 6. In Sec. 6.3, CF.Prove will be implemented by Πpvr-prf for relation RS,S′

pvr-prf while implies

satisfaction of relation RS,S′

gnr-inst.

Theorem 1 (Security of CFgnr). If CF.Prove is an (HV)ZKAoK/PoK and C is a secure ho-
momorphic commitment scheme, then CFgnr satisfies perfect completeness, HVZK and knowledge
soundness with soundness error O(N/|𝔽 |+ serrprf(pp) + negl(λ)) where serrprf(pp) is the soundness
error of CF.Prove.

Proof (Sketch). Completeness is straightforward. HVZK is implied from hiding property of C and
HVZK from the employed protocol realizing CF.Prove. Knowledge soundness follows the security
proof sketched in Sec. 3.3. The full security proof is presented in Appdx. B.1. ⊓⊔

Efficiency. Let c(k) be the size of commitments to messages in 𝔽 k and p be the communication
cost of CF.Prove. The total communication cost of ΠCFgnr is O (N · (c(n) + c(m′

3) + c(n′)) + p).
Note that our CFgnr can be made to fold in parallel, i.e, following a binary tree of depth

O(logN). This incurs proving time O(|W | logN) for prover when executing CF.Fold where |W |
is the size of witness in an instance-witness pair. Here, we assume that witness size is at least
linear in instance size since instances in our scheme are a collection of commitments. Finally, let
tp denote the prover time of CF.Prove. Then the total prover time, when minimizing folding time
by parallelism, is O(|W | logN + tp).

The same argument can be applied for verifier cost. Let tv denote the verifier time when
executing CF.Fold. Then the total verifier cost, when minimizing folding time by parallelism, is
O(|W | logN + tv).
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6 RAMenPaSTA: pvRAM from CF Scheme CFgnr

In this section, we describe RAMenPaSTA in Cstr. 4, a generic construction of pvRAM by em-
ploying the CF scheme CFgnr from Sec. 5. Intuitively, observe that one can treat a RAM pro-
gram [FKL+21] as an IVC with an associated memory, an instruction set F = {F ′

j}j∈[T ] of T
instructions and a program counter pc for determining the next instruction. We show how to
transform each computation step of such RAM program into an instance-witness pair of a relation
that allows one to employ CF scheme CFgnr in Cstr. 2 for folding all such instance-witness pairs
into a single one that testifies the correctness of the entire computation.

In Sec. 6.1, we describe a method to transform witnesses regarding each computation step of an
execution of a RAM program into the forms of instance-witness pairs suitable for applying the CF
scheme in CFgnr. Then, in Section 6.2, we show partition the components introduced in Sec. 6.1 to
fit the design of CFgnr in Sec. 5. Finally, in Sec. 6.3, we describe a generic construction built upon
CFgnr.

6.1 Handling Computation Steps

We present the technique for handling the components of RAM programs that, later in Sec. 6.2,
we can partition these components and adapt to CF scheme CFgnr. Let N,T ∈ ℤ+. To construct
pvRAM for an N -step RAM program, we recall the components mentioned in Sec. 3.2 for handling
(i) correct execution of each instruction, (ii) correctly selecting instruction by program counter
and (iii) memory consistency (Sec. A.2). The RAM program has an instruction set F = {F ′

j}j∈[T ]

representable by the PLONK structures {plkst′j}j∈[T ], initial values pc0 := 1. For step i ∈ [N ],
from (6), the components for its execution include

pci, regi,macsi, plksti, pci, regi,macsi,macs′i, plkivi,mivi,miv′i (19)

where pci = pci−1, regi = regi−1,macsi = macsi−1. Here, pci and macsi are output program
counter and memory access from step i − 1. plksti is the PLONK structure determined by se-
lecting plksti := plkst′pci from the set {plkst′j}j∈[T ]. The outputs of step i include the program
counter pci and memory access macsi indicating the access to memory after step i. The sequence
(macs′j)j∈[N ] is a permutation of (macsj)j∈[N ] for supporting proving memory consistency. Finally,

(plkivj)j∈[N ], (mivj)j∈[N ] and (miv′j)j∈[N ] are to support proving PLONK structure lookup and
permutation in memory consistency analyzed below.
Universally Realizing Instructions by PLONK Structures. As discussed in Sec. 3.2 (and
Appdx. A.3), we universally realize each instruction by PLONK structures. Then, to verify com-
putations of instructions work correctly, we apply system (38) in Appdx. A.3 with additional

challenges, namely, γ, δ
$← 𝔽 for checking copy constraints.

PLONK Structure Lookup. For each i ∈ [N ], to guarantee that plksti is correctly determined
from pci = pci−1, namely, plksti = plkst′pci , we establish the set {(j∥plkst′j)}j∈[T ] and show that

(pci∥plksti) ∈ {(j∥plkst
′
j)}j∈[T ]. Hence, we need to apply a tuple lookup argument to guarantee

that {(pci∥plksti)}i∈[N ] ⊆ {(j∥plkst′j)}j∈[T ]. By applying [Hab22], adapted to polynomial version

(see Appdx. A.4), we see that {(pci∥plksti)}i∈[N ] ⊆ {(j∥plkst′j)}j∈[T ] iff

N∑
i=1

1

X+
〈
(pci∥plksti), (Y k)k=[0,nplk]

〉 =

T∑
j=1

mulj

X+
〈
(j∥plkst′j), (Y k)k∈[0,nplk]

〉 (20)

where eachmulj is determined by prover by counting multiplicity of (j∥plkst′j) in {(pci, plksti)}i∈[N ].
By sampling (χ, ψ) uniformly from 𝔽×𝔽 and setting (X,Y ) := (χ, ψ), we see that, if {(pci∥plksti)}i∈[N ]

̸⊆ {(j∥plkst′j)}j∈[T ], then (20) holds with probability at most errlookup(𝔽 , nplk+1, N, T ) = O(nplk(N+
T )/ |𝔽 |), analyzed in Appdx. A.4. However, in (20), we may face division by zero for some bad
choice of (χ, ψ). To avoid this, sample ψ, set ψ =

(
ψk

)
k∈[0,nplk]

and

plkcpi := ⟨(pci∥plksti),ψ⟩ ∀i ∈ [N ], plkcp′j :=
〈
(j∥plkst′j),ψ

〉
∀j ∈ [T ]. (21)

One sees that (20) is reduced to show that
∑N
i=1

1
X+plkcpi

=
∑T
j=1

mulj
X+plkcp′j

, equivalent to proving

{−plkcpi}i∈[N ] ⊆ {−plkcp′j}j∈[T ]. Hence, by sampling χ
$← 𝔽 \({−plkcpi}i∈[N ]∪{−plkcp′j}j∈[T ]), we
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can avoid division by zero. However, in executing protocol, verifier determines ψ and only knows
{−plkcp′j}j∈[T ]. Moreover, since prover tries to prove {−plkcpi}i∈[N ] ⊆ {−plkcp′j}j∈[T ], it suffices

for verifier to sample χ
$← 𝔽 \ {−plkcp′j}j∈[T ] avoiding division by zero. By setting

plkivi = (χ+ plkcpi)
−1 ∀i ∈ [N ], plkiv′j = mulj · (χ+ plkcp′j)

−1 ∀j ∈ [T ], (22)

testing {(pci∥plksti)}i∈[N ] ⊆ {(j∥plkst′j)}j∈[T ] can be deduced to checking that

N∑
i=1

plkivi =
T∑
j=1

plkiv′j (23)

holds with error probability at most errlookup(𝔽 , nplk + 1, N, T ).
Finally, as we introduced plkcpi ∀i ∈ [N ], we also need to make sure that plkivi · (χ+plkcpi) = 1

when specify constraints.
Memory Access Permutation. Recall that, ∀i ∈ [N ],macsi,macs′i ∈ 𝔽 4. We sketch the technique
for proving that (macsi)i∈[N ] is a permutation of (macs′i)i∈[N ]. This can be done by extending
[Hab22] to show that

N∑
i=1

1

X + ⟨macsi, (Y k)3k=0⟩
=

N∑
i=1

1

X + ⟨macs′i, (Y
k)3k=0⟩

. (24)

See Appdx. A.4 for the use of (24). By sampling (τ, ω) uniformly from 𝔽 × 𝔽 and setting (X,Y ) :=
(τ, ω), if (macs′i)i∈[N ] is not a permutation of (macsi)i∈[N ], then (24) holds with probability at
most errperm(𝔽 , 4, N) = O(N/ |𝔽 |). As of the case of PLONK structure lookup, we may face the
issue of division by zero. However, in this case, both (macsi)i∈[N ] and (macs′i)i∈[N ] are unknown to

verifier. Hence, verifier cannot sample challenges avoiding division by zero. To this end, let ω
$← 𝔽

be determined first. Then, set

mcpi := ⟨macsi,ω⟩ , mcp′i := ⟨macs′i,ω⟩ ∀i ∈ [N ]. (25)

If we sample τ
$← 𝔽 , with probability at most 2N/|𝔽 |, −τ ∈ {mcpi}i∈[N ] ∪ {mcp′i}i∈[N ] incurring

division by zero. We call τ in this case to be bad τ . This restrains prover to prove and hence
compromises HVZK property. To avoid this, we need to devise a way to allow prover to continue
proving even bad τ occurs. Observe that b = a−1 ⇐⇒ b ∈ 𝔽 ⋆ ∧ a · b ∈ {0, 1} ∀a ∈ 𝔽 ⋆ where

𝔽 ⋆ = 𝔽 \ {0}. Therefore, by enforcing prover to firstly sample iv
$← 𝔽 ⋆ and then setting

mivi := iv if τ +mcpi = 0 and mivi := (τ +mcpi)
−1, otherwise, (26)

testing
∑N
i=1 mivi =

∑N
i=1 miv′i probabilistically deduces that (macsi)i∈[N ] is a permutation of

(macs′i)i∈[N ] without making prover stop in the middle when bad τ occurs. Let us precisely explain
this fact. Obviously, it is straightforward to see that, for any i ∈ [N ] satisfying mcpi ̸= −τ , one
has the equivalence

mivi = (τ +mcpi)
−1 ⇐⇒ mivi ̸= 0 ∧ (τ +mcpi) ·mivi ∈ {0, 1}. (27)

Showing RHS of (27) implies that mivi is exactly the inverse of τ +mcpi. If mcpi = −τ , showing
RHS of (27) only implies that mivi is some value in 𝔽 ⋆. A similar process applies to computing
{miv′i}i∈[N ] from τ and {mcp′i}i∈[N ]. One sees that, in case that bad τ occurs, prover can still
continue to prove even soundness does not hold anymore. This helps protect HVZK of protocol.
Moreover, as discussed previously, bad τ occurs with negligible probability, namely, O(N/ |𝔽 |).
Therefore, bad τ only affects to soundness error of the protocol.
Sampling Global Challenges. Regarding the use of challenges χ, ψ, τ and ω, we define the the
distributions CHcp and CHtest s.t.

(ψ, ω)← CHcp ⇐⇒ (ψ, ω)
$← 𝔽 × 𝔽 , and

(χ, τ)← CHψtest ⇐⇒ (χ, τ)
$←
(
𝔽 \ {−plkcp′j}j∈[T ]

)
× 𝔽

(28)
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where {−plkcp′j}j∈[T ] can be computed according to (21) when ψ is known.
Putting Everything Together. With global challenges γ, δ, χ, ψ, τ and ω, pre-computed values
(muli)i∈[T ] ∈ 𝔽 and the witness defined in (6), whose components are described in detail above, we
now partition these components in a way that we can devise a CF scheme CFgnr for folding the
computation steps of the RAM program.

Global challenges. Set gchal=(γ, δ, χ, ψ, τ, ω) to contain global challenges.
Constraints for single computation steps. For each i ∈ [N ], one must satisfy

– correct computation of Fi involving regi,macsi,auxi,plksti,pci,regi,macsi,γ,δ;
– constraints in macsi hold, e.g., access index is in allowed range [M ];
– the correct computation of plkivi from (pci, plksti), χ and ψ, as in (22); and
– the correct computation of mivi and miv′i from macsi,macs′i, τ and ω, i.e., satisfying the RHS

of (27).

Therefore, the constraints for a single computation step involve pci, regi, macsi, auxi, plksti, pci,
regi, macsi, plkivi, mivi and miv′i for all i ∈ [N ] and global challenges γ, δ, χ, ψ, τ and ω.

Constraints for pairs of consecutive computation steps. These constraints involve the consistency
checking of memory in (34) with respect to the tuples (macsi−1,macs′i−1) and (macsi,macs′i) for
all i ∈ [2, N ]. Moreover, we guarantee (pci−1, regi−1,macsi−1) = (pci, regi,macsi) for all i ∈ [2, N ].

Constraints for all computation steps. These constraints involve checking that

– the correct use of plksti with respect to pci = pci−1 by checking the lookup {(pci∥plksti)}i∈[N ] ⊆
{(j∥plkst′j)}j∈[T ] as in (23); and

– (macs′i)i∈[N ] is a permutation of (macsi)i∈[N ], as in discussion above.

6.2 Partitioning Components and Adapting to CF Scheme CFgnr

In this section, we first discuss how to put those components Sec. 6.1 into instance-witness pairs
suitable for applying CF scheme in Sec. 5.3 as a building block. Then, we specify the necessary
relations folding, as required in Sec. 5.2.

For step i ∈ [N ], recall the components discussed above including:

pci, regi,macsi, auxi, plksti, pci, regi,macsi,macs′i, plkivi,mivi,miv′i.

Hence, we partition these components into vectors zi1, . . . , zi5 over 𝔽 s.t.

zi1 = (pci∥regi∥macsi∥macs′i), zi2 = (pci∥regi∥macsi∥macs′i),

zi3 = plksti, zi4 = auxi, zi5 = (plkivi∥mivi∥miv′i)
(29)

for all i ∈ [N ]. Here, zi1 and zi2 represent the input and output of the computation, respectively.
Moreover, as macs′i supports the consistency of memory, we put macs′i into zi2. The vector zi3
represents the PLONK structure for the corresponding instruction while zi4 is the auxiliary witness
supporting the computation from zi1 to zi2 with respect to PLONK structure zi3. Finally, zi5 is to
support tuple lookup and permutation testings. Notice that, zi5 cannot be determined directly from
zi1, . . . , zi4. As clarified in Section 6.1, we need additional challenges χ, ψ, τ, ω in gchal determined
in advance s.t. relationship between zi5 and zi1, . . . , zi4 is captured.
Putting into Instance-Witness Pairs for CF Scheme. Let HS0N be a hierarchical structure.
Since our final goal is to construct pvRAM for an N -step RAM program, by employing generic CF
scheme in Sec. 5.3 as a subroutine and by using indices, e.g., subscript “(i − 1)i”, corresponding
to leaf nodes of HS0N , we need to appropriately design

𝕫(i−1)i = (lt(i−1)i, rt(i−1)i,𝕩(i−1)i, i(i−1)i,o(i−1)i,𝕩⋆(i−1)i, s(i−1)i,a(i−1)i),

of the form (11), with those components in (29) in the following way:

lt(i−1)i := i−1, rt(i−1)i := i, i(i−1)i := zi1, o(i−1)i := zi2,

s(i−1)i := zi5,a(i−1)i := 03,

𝕩(i−1)i = (𝕩(i−1)i.u, 𝕩(i−1)i.pub, 𝕩(i−1)i.z1, . . . , 𝕩(i−1)i.z5, 𝕩(i−1)i.e)

:= (1, 1, zi1, . . . , zi5, 0
n)
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while the design of 𝕩⋆(i−1)i is set to be any random tuple such that combination of components

satisfies rR1CS specified by matrices A′,B′,C′ defined later. This acts as a accumulator for condi-
tions when folding. We defer the detailed setting of this 𝕩⋆(i−1)i to Cstr. 4 in Sec. 6.3. Hence, with

pp = (tck, tck′) defined as in (10), we can establish J𝕫(i−1)iKpp of the form (12).

Determining Matrices for rR1CS. To specify necessary relations, e.g., RS,S′

gnr-inst and RS′

gnr-cond

in (16) and (17), respectively, for folding, we need to specify the tuple of matrices S = (A,B,C),
after global challenges in gchal are determined, for capturing constraints for single computation
steps, discussed in Sec. 6.1. In particular, for each i ∈ [N ], by defining zi = (1∥zi1∥ . . . ∥zi5), we
would like to capture that A · zi ◦ B · zi = C · zi iff all constraints in computation step i hold.
Similarly, based on constraints for pairs of consecutive computation steps, discussed in Sec. 6.1,
we can specify tuple S′ = (A′,B′,C′) capturing conditions between o(i−1)i and ii(i+1) for all
i ∈ [N − 1]. See Appdx. C.1 for more concrete constraints that S and S′ capture.

With S and S′ determined and all 𝕫(i−1)i, for all i ∈ [N ], specified above, in this section,

namely, Sec. 6.2, we can directly use relations RS,S′

gnr-inst and RS′

gnr-cond in (16) and (17), respectively.
Realizing CF Scheme CFgnr for pvRAM. As we discussed all instance-witness pairs, tuples of

matrices S,S′ and relations RS,S′

gnr-inst and RS′

gnr-cond above, we can realize CF scheme in Cstr. 3 for
pvRAM.

We are ready to discuss the complete construction of pvRAM in Sec. 6.3.

6.3 Description of Generic Construction of pvRAM

In this section, we present our construction of pvRAM by protocol Πpvr constructed in Cstr. 4.
The problem statement is as follow. Let pp be the tuple of commitment keys, described in (10).
Let F = {F ′

j}j∈[T ] be an instruction set of T instructions describable by the PLONK structures

Fstruct = {plkst′j}j∈[T ]. Given an output register regout and commitment tuple JreginKcki to secret
input register regin with commitment key cki, prover proceeds a interactive argument with verifier
for the statement that regout is the output of an N -step execution of the RAM program with
instruction set F on committed input register regin. See Sec. 3.2 and Appdx. A.1 for description
of RAM program. This problem statement can be formalized by relation Rram in (30) below.

Rram=
{
(cki,Fstruct, JreginKcki, regout)

∣∣JreginKcki∈Rcom∧RAM(regin)= regout
}

(30)

where Fstruct = {plkst′j}j∈[T ] and RAM is an N -step RAM program and with instruction set F s.t.
RAM takes as input regin and returns regout.

We discuss the intuition regarding the construction of Πpvr. Notice that, since prover’s input
is the execution trace of RAM , prover can compute (zij)i∈[N ],j∈[3], of the form (29). Let creg be
the register length. Parsing z11 = (pc1∥reg1∥macs1) and zN2 = (pcN∥regN∥macsN∥macs′N ), let
regin = reg1, regout = regN ∈ 𝔽 creg to be the input and output of RAM as the input to the first and
output to the last instructions, respectively. At this point, prover has no global challenges, namely,
γ, δ, χ, ψ, τ and ω. Prover hence cannot compute zi4 and zi5 for all i ∈ [N ].

On the other hand, for ensuring the correct lookup of PLONK structures, prover can compute
(muli)i∈[T ], as in (20), for supporting the lookup argument. Hence, with pp (see (10)) determined
in advance, we first force prover and verifier to run Πcom (see Rmk. 1) to obtain {Jzi1Kck1 , Jzi2Kck2 ,
Jzi3Kck3}i∈[N ], (JmuljKckmj )j∈[T ] where ck1, ck2 and ck3 belong to pp and (ckmj)j∈[T ] are commit-
ment keys employed for committing to multiplicities {ckmj}j∈[T ].

Then, verifier samples global challenge gchal = (γ, δ, χ, ψ, τ, ω) from distribution CHglobal, de-
fined according to the equivalence

gchal← CHglobal ⇐⇒ (γ, δ
$←𝔽 ) ∧ ((ψ, ω)←CHcp) ∧ ((χ, τ)←CHψtest) (31)

where CHcp and CHψtest are defined in (28). Verifier then sends gchal to prover.
With gchal, prover can compute (zi4, zi5)i∈[N ] of the form (29). Prover and verifier then run

Πcom to obtain {Jzi4Kck4 , Jzi5Kck5}i∈[N ] where ck4 and ck5 belong to pp. Moreover, both parties can
independently determine (plkiv′j)j∈[T ], as in (21) and (22), since (plkst′j)j∈[T ] is public and ψ, χ in
gchal are determined. Prover now has sufficient information to construct (J𝕫(i−1)iKpp)i∈[N ] discussed
in Sec. 6.2 above since they have {Jzi1Kck1 , . . . , Jzi5Kck5}i∈[N ].
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Finally, both parties start folding (J𝕫(i−1)iKpp)i∈[N ] by running protocol CF.Fold in CFgnr follow-
ing a common hierarchical structure HS ∈ HS0N in Def. 2 to obtain a final folded tuple J𝕫0N Kpp.
Finally, prover conducts a proof/argument Πpvr-prf for the statement that

(pp, cki, (ckmj)j∈[T ], JreginKcki, regout, (JmuljKckmj
)j∈[T ], J𝕫0N Kpp) ∈ RS,S′

pvr-prf

defined to be

RS,S′

pvr-prf =


(pp, cki, (ckmj)j∈[T ],

JreginKcki, regout,
(JmuljKckmj

)j∈[T ],
J𝕫Kpp)

∣∣∣∣∣∣∣∣∣∣∣

J𝕫Kpp ∈ RS,S′

gnr-inst ∧ JreginKcki ∈ Rcom

∧pc = 1 ∧ reg = regin ∧ reg = regout
∧(JmuljKckmj ∈ Rcom ∀j ∈ [T ])

∧plkiv=
∑
j∈[T ]

mulj
χ+plkcp′j

∧miv=miv′

∧macs⋆ = macs′


(32)

where

– 𝕫 = (lt, rt,𝕩, i,o,𝕩⋆, s,a), of the form (11), and s = (plkiv∥miv∥miv′) in 𝕫;
– i = (pc∥reg∥macs∥macs⋆) and o = (pc∥reg∥macs∥macs′) in 𝕫;
– regin and regout are input and output registers of RAM program;
– plkcp′j =

〈
(j∥plkst′j), (ψk)k∈[0,nplk]

〉
∀j ∈ [T ] (see (21)) from public {plkst′j}j∈[T ].

We are now ready to construct protocol Πpvr in the following Cstr. 4.

Construction 4 (RAMenPaSTA as Protocol Πpvr). With the parameters m1, . . . ,m5, n,
m′

1, . . . ,m
′
5, n

′ and

pp = (tck, tck′) = ((ck1, . . . , ck5, cke), (ck
′
1, . . . , ck

′
3, cke

′)),

satisfying ck′1 = ck2 and ck′2 = ck1, determined as in Sec. 5.1, protocol Πpvr runs as follows:
Πpvr

(
pp, cki, (ckmj)j∈[T ],Fstruct, JreginKcki, regout; (zij)i∈[N ],j∈[3], (mulj)j∈[T ]

)
→ {0, 1}

1. Both parties run protocols

JzijKckj ← Πcom(ckj ; zij) ∀i ∈ [N ],∀j ∈ [3],

J0nKcke ← Πcom(cke; 0n), J0n
′
Kcke′ ← Πcom(cke

′; 0n
′
),

J03Kck5 ← Πcom(ck5,0
3), JmuljKckmj

← Πcom(ckmj ; mulj) ∀j ∈ [T ]

where committing to 0n, 0n
′
, 03 by cke, cke′, cke5, respectively can be done locally and inde-

pendently by each party according to Rmk. 4.
2. Verifier: gchal← CHglobal and send gchal to prover.
3. Each party determines S = (A,B,C),S′ = (A′,B′,C′) from gchal.
4. Prover:

– Determine (zi4, zi5)i∈[N ] from (zi1, zi2, zi3)i∈[N ] and gchal.

– Find arbitrary {z′i}i∈[3] s.t. z
′
i ∈ 𝔽m′

i and A′ · z′ ◦B′ · z′ = C · z′ where z′ = (1∥z′1∥z′2∥z′3).
5. Both parties run Jz′jKck′j ← Πcom(ck

′
j ; z′j) ∀ j ∈ [3].

6. ∀i ∈ [N ], both parties form tuple J𝕫(i−1)iKpp, of the form (12), by setting

lt(i−1)i := i− 1, rt(i−1)i := i,

Ji(i−1)iKck1 := Jzi1Kck1 , Jo(i−1)iKck2 := Jzi2Kck2 ,
J𝕩(i−1)iKtck := (1, 1, Jzi1Kck1 , . . . , Jzi5Kck5 , J0

nKcke),

J𝕩⋆(i−1)iKtck′ := (1, 1, Jz′i1Kck′1 , . . . , Jz
′
i3Kck′3 , J0

n′
Kcke′),

Js(i−1)iKck5 := Jzi5Kck5 , Ja(i−1)iKck5 := J03Kck5

where J𝕩(i−1)iKtck and J𝕩⋆(i−1)iKtck′ are of the forms (13) and (14), respectively.

7. Both parties run ΠCFgnr(HS, pp, {J𝕫(i−1)iKpp}i∈[N ]; sec) → {0, 1} defined in (18) to obtain
J𝕫0N Kpp and run CF.Prove as a ZKAoK Πpvr-prf for showing

(pp, cki, (ckmj)j∈[T ], JreginKcki, regout, (JmuljKckmj )j∈[T ], J𝕫0N Kpp) ∈ RS,S′

pvr-prf .
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Theorem 2 (Security of Πpvr). If C is secure homomorphic commitment scheme and Πpvr-prf is

an HVZKAoK/HVZKPoK for relation RS,S′

pvr-prf then Πpvr is an HVZKAoK/HVZKPoK for relation
Rram in (30) with soundness error

O(nplk · (N + T )/|𝔽 |+ serrpvr-prf(pp) + negl(λ))

where serrpvr-prf(pp) is soundness error of Πpvr-prf .

The security ofΠpvr follows from the security of the underlying commitment scheme, CF scheme
CFgnr and HVZKAoK/HVZKPoK. For knowledge soundness, we can extract the witnesses of Πpvr

from the extractor of CFgnr according to Thm 1 and analyze the extracted components matching
required constraints of RAM programs. The full proof of Thm 2 will be presented in Appdx. C.2.
Efficiency. Let c(k) be the size of commitments to messages in 𝔽 k and p be the communication
cost of Πpvr-prf . The total communication cost of Πpvr is

O (N · ((c(mi) + · · ·+ c(m5)) + c(n) + c(m′
3) + c(n′)) + T · c(1) + p) .

Regarding prover time, we assume that prover already sorted memory accesses, in witness, to
satisfy condition (33). It can be seen that prover time is O(T · tp1 +N · tp2 + tp) where tp1 is the
time for computing and committing to each mulj in {mulj}j∈[T ], tp2 is the time for each folding in
ΠCFgnr and tp is the proving time of CF.Prove in CFgnr. Moreover, since each mulj can be computed
and committed independently and the foldings are following a hierarchical structure HS ∈ HS0N ,
if HS is of the form of depth O(logN), then, when parallelizing into max{N,T} prover threads,
prover time can be optimized to O(log T · tp1+logN · tp2+ tp), which is sub-linear in computation
time.

A similar argument applies to verifier time O(T · tv1 +N · tv2 + tv) where tv1 and tv2 are time
for verifier’s tasks related to committing each mulj in {mulj}j∈[T ] and folding, respectively, while
tv is verifier time when verifying in CF.Prove. When minimizing time by parallelism, verifier’s time
achieves O(log T · tv1 + logN · tv2 + tv).
Instantiations. We also discuss possible instantiations of our RAMenPaSTA in Sec. 7 including
those from Σ-protocol theory [AC20], dual-mode NIWIs [GS08] and MPC-in-the-Head paradigm
[IKOS07, IKOS09].

7 Instantiations

We provide potential instantiations of pvRAM presented in Cstr. 4 including instantiations from
compressedΣ-protocol theory (Sec. 7.1), dual-mode NIWIs (Sec. 7.2) and MPC-in-the-Head paradigm
(Sec. 7.3).

7.1 Instantiation From Compressed Σ-Protocol Theory

Recall that, in [AC20], they construct a succinct ZKAoK for circuit satisfiability in [AC20, Sec.
6] by applying Lagrange interpolation to transform the witness of computation, through an affine
transformation, into a single check of multiplication of two finite field elements. Their construc-
tion employs Pedersen commitment scheme [Ped92] (recalled in Appdx. A.6) as a building block.
Moreover, Pedersen commitment scheme is doubly homomorphic [BMM+21] (homomorphic not
only in commitment, message, and randomness, but also in commitment key), perfectly hiding
and computationally binding, and succinct ZKAoK of [AC20] (recalled in Appdx. A.12) for circuit
satisfiability meets required properties in Thm. 2. Therefore, it is expected that RAMenPaSTA in
Cstr. 4 can be instantiated by Pedersen commitment scheme to achieve a sub-linear10 statistical
ZKAoK for RAM programs.

Nevertheless, applying ZKAoK for circuit satisfiability in [AC20] is not direct. In fact, for
proving C(x) = 0 given the public circuit C, the authors transform the witness of the computation
C(x) into a witness vector w ∈ 𝔽w for some positive integer w ∈ ℕ. Then, they commit to w
to obtain a commitment c ∈ 𝔾 for some group 𝔾. Notice that to commit such a vector w, they

10 The proof size is linear only in N , and hence sub-linear in N · |W |.
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employ a grand commitment key ck = (g1, . . . , gw′) ∈ 𝔾w′
for some w′ ≥ w such that each entry of

ck is sampled independently and uniformly from 𝔾. Nevertheless, commitments in RS,S′

pvr-prf may be

computed from the same keys, e.g., ck′1 = ck2 as specified in Sec. 5.1. Hence, we cannot perform

the proof for RS,S′

gnr-inst at once because some keys, e.g., ck′1 and ck2 satisfying ck′1 = ck2, are not
independently generated.

To overcome the issue, we can split constraints in relation RS,S′

pvr-prf into L split-relations of

RS,S′

pvr-prf , for some constant L ∈ ℕ, such that

– with respect to the same statement and witness, RS,S′

pvr-prf is satisfied if and only if all split-
relations are satisfied, and

– any two commitments involving constraints of a split-relation do not have the same commitment
keys.

Then, we devise a sufficiently long commitment key ck ∈ 𝔾w′
, for some w′ ∈ ℕ, that contains

commitment keys of each split-relation. To commit components of any split-relation, we simply
use entries of ck that are related to those components. Other unrelated entries of ck are used
to commit to 0 to become 1 ∈ 𝔾. Moreover, verifier can compute commitments with respect to
those split-relations and grand commitment key ck by simply manipulating on the commitments
to components of each split-relation.

Now we need to construct a proof/argument that simultaneously proves all L split-relations.
However, each split-relation has a specific affine transform to checking multiplication of two single
field elements. Therefore, prover and verifier proceed all L parallel proofs/arguments, for those L-
split-relations, independently in 2µ+1 rounds, where µ = O(logw′), in a way that the transcript of

proof/argument for the i-th split-relation is represented by the sequence (a
(i)
1 , b

(i)
1 , . . . , a

(i)
µ , b

(i)
µ , a

(i)
µ+1)

where a
(i)
1 , . . . , a

(i)
µ+1 are prover’s messages while b

(i)
1 , . . . , b

(i)
µ ∈ 𝔽 are verifier’s challenges. Notice

that, to simplify the proof of knowledge soundness and reduce the communication cost, we can

enforce b
(1)
i = · · · = b

(L)
i , for all i ∈ [µ], since those L proofs/arguments are independent with the

same commitment key ck.

A Transformation into L Split-Relations for Constant L. Above we claimed that L is

constant. Here, we provide a proof for this fact. We first take out all constraints in relation RS,S′

pvr-prf

in (32) as follows: 

J𝕫Kpp ∈ RS,S′

gnr-inst, JreginKcki ∈ Rcom,

pc = 1 ∧ reg = regin ∧ reg = regout,

JmuljKckmj
∈ Rcom ∀j ∈ [T ],

plkiv =
∑T
j=1 mulj ·

(
χ+ plkcp′j

)−1
,

miv = miv′ ∧macs⋆ = macs′

where

– pp = (tck, tck′) = ((ck1, . . . , ck5, cke), (ck
′
1, . . . , ck

′
3, cke

′));

– 𝕫 = (lt, rt,𝕩, i,o,𝕩⋆, s,a);
– J𝕫Kpp = (lt, rt, J𝕩Ktck, JiKck1 , JoKck2 , J𝕩⋆Ktck′ , JsKck5 , JaKck5) as in (12);

– pc, reg, reg, macs⋆, macs′ are obtained by parsing i = (pc∥reg∥macs∥macs⋆) and o = (pc∥reg∥
macs∥macs′);

– regin and regout are input and output registers of RAM program;

– gchal = (γ, δ, χ, ψ, τ, ω) as described in equivalence (31);

– values plkiv,miv and miv′ are obtained by parsing vector s = (plkiv∥miv∥miv′), and plkcp′j , for
j ∈ [T ], is computed by

plkcp′j :=
〈
(j∥plkst′j), (ψk)

nplk

k=0

〉
according to (21).
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Moreover, from (16), J𝕫Kpp ∈ RS,S′

gnr-inst is equivalent to
lt, rt ∈ ℕ ∧ lt < rt,

J𝕫Kpp ∈ Rgnr-com,

J𝕩Ktck ∈ RS
rr1cs,

J𝕩⋆Ktck′ ∈ RS′

rr1cs

and J𝕫Kpp ∈ Rgnr-com (see (15)) is equivalent to
J𝕫Kpp of the form (12),

JiKck1 , JoKck2 ∈ Rcom,

JsKck5 , JaKck5 ∈ Rcom.

Recall, from Sec. 5.1, that tck = (ck1, . . . , ck5, cke) and tck′ = (ck′1, ck
′
2, ck

′
3, cke

′) where ck′1 = ck2
and ck′2 = ck1. Notice that cki, ckm1, . . . , ckmT , ck1, . . . , ck5, ck

′
3 and cke′ are generated indepen-

dently. We now split the above constraints into the following sets of constraints:

– Constraint set 1: J𝕩Ktck ∈ RS
rr1cs involving commitment keys ck1, . . . , ck5 and cke;

– Constraint set 2: J𝕩⋆Ktck′ ∈ RS′

rr1cs involving commitment keys ck1, ck2, ck
′
3 and cke′;

– Constraint set 3:

JiKcki ∈ Rcom,

JmuljKckmj
∈ Rcom ∀j ∈ [T ],

JiKck1 ∈ Rcom,

JoKck2 ∈ Rcom,

JsKck5 ∈ Rcom,

pc = 1 ∧ reg = i ∧ reg = o,

plkiv =
∑T
j=1 mulj ·

(
χ+

〈
(j∥plkst′j), (ψk)

nplk

k=0

〉)−1
,

miv = miv′ ∧macs⋆ = macs′

where
i = (pc∥reg∥macs∥macs⋆),o = (pc∥reg∥macs∥macs′), s = (plkiv∥miv∥miv′),

involving commitment keys cki, ckm1, . . . , ckmT , ck1, ck2 and ck5;
– Constraint set 4: JaKck5 ∈ Rcom involving ck5.

Thus, with L = 4, we can split RS,S′

pvr-prf into 4 split-relations with respect to those above constraints.
Efficiency. Since Pedersen commitments have constant commitment size, i.e., O(1), the commu-
nication cost of protocol Πpvr is O (N + T + p) where p is the communication cost Πpvr-prf . Notice
that the communicate cost in Πpvr before executing ΠCFgnr is O(N + T ).

7.2 Instantiation From Dual-Mode NIWIs

Dual-mode NIWIs [GS08] allow to set up the system in one of the two modes, namely, hiding
and binding modes. If the system is initiated with hiding mode, the resulting NIWI proof system
satisfies statistical witness indistinguishability while, in the binding mode, the resulting proof
satisfies statistical extractability.

In [GS08], this dual-mode NIWI proof system can be instantiated from bilinear pairings with
respect to the bilinear map F : 𝔾×𝔾→ 𝔾⋆ such that 𝔾 and 𝔾⋆ are ℤq-modules and 𝔾 has a gener-
ator g ∈ 𝔾. The commitment scheme employed in [GS08] allows committing to each value v ∈ ℤq
for some prime q to obtain a commitment c in 𝔾. Moreover, this commitment scheme is additively
homomorphic. The commitment c is either perfectly hiding or perfectly binding depending on the
mode of setup of the commitment scheme, namely, hiding and binding modes, respectively. More-
over, both setups, namely, hiding and binding, are indistinguishable. However, extracting elements
in ℤq is not possible in [GS08]. To overcome this issue, as suggested in [LNPY21,NGSY22], we
can parse v into binary and commit to each bit of v, i.e., committing to either 1 ∈ 𝔾 or g where 1
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here is understood to be the identity element of 𝔾. The technique for parsing elements in ℤq into
binary can be found in [LNSW13]. Specifically, by setting k = ⌊log2 v⌋+1, this technique specifies
a basis {Bi}i∈[k] ⊂ ℤ such that

{⟨b,x⟩ : b = (B1, . . . , Bk) ∧ x ∈ {0, 1}k} = [0, q − 1].

In other words, the set of linear combinations of B1, . . . , Bk by vectors in {0, 1}k spans the set
[0, q − 1].

With the above commitment scheme, the dual-mode NIWIs in [GS08] allow to prove linear and
pairing relations between elements of 𝔾 which implies the relations between elements in ℤq that are
maps to those group elements in 𝔾. Witness indistinguishability is guaranteed by perfect hiding
and knowledge soundness is guaranteed perfect binding of the dual-mode commitment scheme
discussed above.

Efficiency. Since commitment size is linear in message size and each element in ℤq is split into
O(log q) elements, the communication cost ofΠpvr when instantiated by dual-mode NIWIs in [GS08]
for bilinear pairings is O(Nw + T ) · log |𝔽 | where w is the witness size of execution of a single
instruction.

7.3 Instantiation From MPC-in-the-Head Paradigm

MPC-in-the-Head paradigm [IKOS07, IKOS09] are constructed by having a prover simulating
the execution of an MPC protocol “in his head” for computing some function and transform-
ing this execution into zero-knowledge proofs for satisfaction of such a function. A line of works
[GMO16,CDG+17,KKW18,BN20,DOT21] constructed post-quantum zero-knowledge proofs for
circuit satisfiability with linear proof size, linear prover and verifier time. However, commitment
scheme employed in these works can be instantiated by collision-resistant hash functions, in prac-
tice, and are not required to be additively homomorphic.

To be able to instantiate by the above zero-knowledge proofs, as required from Thm. 2, we
employ additively homomorphic commitment schemes instead. The strategy is similar to protocol
Πpvr specified in Cstr. 4 except the last proof, i.e., Πpvr-prf . Here, prover has commitments to nec-

essary witnesses, including randomness, for relation RS,S′

pvr-prf . Since commitment scheme employed
is homomorphic and prover knows all randomness, prover can split the witnesses, including ran-
domness, behind the commitments into commitments to shares that sum up to those witnesses.
Specifically, for a commitment m̃ to m with respect to commitment key ckm and randomness m̂,
split (m, m̂) into k shares, i.e., (m1, m̂1), . . . , (mk, m̂k), such that

∑k
i=1 mi = m and

∑k
i=1 m̂i = m̂.

It can be seen that
∑k
i=1 C.Commitckm(mi, m̂i) = m̃. Here, prover can simulate the MPC-in-the-

head paradigm as specified in those works, namely, [GMO16, CDG+17, KKW18, BN20, DOT21].
Hence, the i-th share also belongs to the i-th view of the MPC “in the head” of prover. When being
required by verifier to open the i-th view, prover opening all witnesses in the i-th view including
witnesses and randomness of the i-th share. Verifier also needs to check witnesses of the i-th view
are consistent with the i-th share.

Efficiency. Let c(k) be the size of commitments to messages in 𝔽 k and p be the communication cost
of Πpvr-prf instantiated by a ZKAoK from MPC-in-the-head paradigm. The total communication
cost of Πpvr is

O (N · (c(m1) + · · ·+ c(m5) + c(n) + c(m′
3) + c(n′)) + T · c(1) + p) .
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A Preliminaries (Extended)

We recall the necessary preliminaries in complement to Sec. 2.

A.1 RAM Program

We model RAM program as a combination of the Non-Uniform Incremental Computation [KS22]
and RAM Program [FKL+21]. This model of computation contains a memory mem, a register reg,
a program counter pc, an initial value val and an instruction set F of cardinality T described as
follows:

– The memory mem can be viewed as a sequence of M elements, i.e., mem = (memi)i∈[M ]. For
each i ∈ [M ], memi belongs to the set 𝔽 ∪ {⊥} where ⊥ is understood to be an uninitialized
value which cannot be read by the instructions. At the beginning, every memi is set to be ⊥.

– The register reg contains a constant number of elements in 𝔽 , i.e., reg ∈ 𝔽 creg for some constant
creg ∈ ℤ+. This register can be viewed as a small temporary memory for the instructions to
receive all of its elements and to perform the computations.

– The instruction set F is a set of T instructions containing F1, . . . , FT . There exists a pro-
gram counter pc ∈ [T ] that determines the next instruction Fpc to be executed. Specifically,
instruction Fpc receives as input the tuple (reg, val) including the register reg and the value
val ∈ 𝔽 . It then returns a new tuple (pc′, reg′, ℓ, val′,mop) containing a new program counter
pc′, new register reg′, an index ℓ ∈ [M ], new value val′ and a memory access operation
mop ∈ {WRITE,READ}. Then, it updates the state of the system as follows:
• Set reg := reg′ and pc := pc′.
• If mop = WRITE, set memℓ := val′ and val := val′. Otherwise, if mop = READ, set
val := memℓ.

A.2 Memory Consistency Check

We recall the technique for checking memory consistency in [FKL+21]. Roughly speaking, let
N ∈ ℤ+, for each i ∈ [N ], the i-th memory access is represented by a tuple

macsi = (ℓi, timei, vali,mopi) ∈ 𝔽 4,

where ℓi is the index of the accessed memory cell memℓi , timei is the time logged for this access,
vali is the access value and mopi is either READ or WRITE

A sequence of memory access (macsi)i∈[N ] is valid if for each memory cell, during the course
of time, the first access is of type WRITE and the value val achieved from any READ access
must be equal to the previous value read from or written to the same cell. To capture the above
condition, [FKL+21] shows that there exists a sequence (macs′i)i∈[N ] such that (i) (macs′i)i∈[N ]

is a permutation of (macsi)i∈[N ] and (ii) (macs′i)i∈[N ] is sorted lexicographically. Mathematically
speaking, it suffices compute a sequence (macs′i)i∈[N ] where macs′i = (ℓ′i, time′i, val

′
i,mop′i), and show

that {
1 ≤ ℓi ≤M ∧mopi ∈ {0, 1} ∀i ∈ [N ],

(macs′i)i∈[N ] is a permutation of (macsi)i∈[N ]

(33)

and 

timei−1 < timei ∀i ∈ [2, N ],(
ℓ′i−1 < ℓ′i

)
∨
(
(ℓ′i−1 = ℓ′i) ∧ (time′i−1 < time′i)

)
∀i ∈ [2, N ],

(macsi−1 = 0) ∨ (i− 1 > 1) ∀i ∈ [2, N ],

(ℓ′i−1 = ℓ′i) ∨ (mop′i = 0) ∀i ∈ [2, N ],

(ℓ′i−1 ̸= ℓ′i) ∨ (val′i−1 = val′i) ∨ (mop′i = 0) ∀i ∈ [2, N ].

(34)

Note that, the system (34) contains all the sufficient conditions to check whether the sequence
(macs′i)i∈[N ] is sorted lexicographically. It also check that timei−1 < timei for all i ∈ [2, N ] to
ensure that the the original memory access sequence is computed chronically.
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A.3 PLONK’s Arithmetization

We recall PLONK’s arithmetization [GWC19] for representing a circuit in the form of gate con-
straints and copy constraints. Let C be an arithmetic circuit representing the computation of a
function F : 𝔽nin → 𝔽nout that maps an input vector x = (x1, . . . , xnin) ∈ 𝔽nin to an output vector
y = (y1, . . . , ynout) ∈ 𝔽nout . Each gate in C is of the following four types:

– Addition. An addition gate takes as inputs a, b ∈ 𝔽 and returns a+ b ∈ 𝔽 .
– Addition with constant d. This gate takes as input a ∈ 𝔽 and return a+ d ∈ 𝔽 .
– Multiplication. This gate takes as inputs a, b ∈ 𝔽 and returns a · b ∈ 𝔽 .
– Multiplication with constant d. This gate takes as input a ∈ 𝔽 and returns a · d ∈ 𝔽 .

We denote by ngate to be the total number of gates in C. Hence, by indexing each gate of C to be
a number in [ngate], we denote by ai, bi, ci to be the values on the left, right, and output wires,
respectively, of the i-th gate. For addition and multiplication with constant, we assume that bi
can be any value in 𝔽 since it does not affect the computation following structure of circuit C.
Moreover, the i-th gate is associated with the selectors slefti , srighti , smul

i , sconsti such that the relation
between ai, bi and ci is captured by the equation

slefti · ai + srighti · bi + smul
i · (ai · bi) + sconsti − ci = 0. (35)

Each equation in the form of (35) is a gate constraint. Hence, we define a witness satisfying circuit
C to be

wplk = (x1, . . . , xnin , a1, . . . , angate , b1, . . . , bngate , c1, . . . , cngate , y1, . . . , ynout)

= (w1, . . . , wnwit) ∈ 𝔽nwit

where nwit = nin + nout + 3ngate and cngate is value of output wire.

In addition, we would require constraints to ensure that the wires are connected. For example,
in some circuit we would require that the output of the first wire is equal to the left input of
the second wire, which can be captured by the constraint c1 = a2. We name these constraints
copy constraint. To guarantee the connection between wires, namely, copy constraint, there exists
a public permutation φ : [nwit] → [nwit] based on C such that the copy constraint is satisfied if
and only if ((1, w1), . . . , (nwit, wnwit)) is a permutation of ((φ(1), w1), . . . , (φ(nwit), wnwit)). According

to [GWC19], for value γ, δ
$← 𝔽 , if

nwit∏
i=1

(γ + i · δ + wi) =

nwit∏
i=1

(γ + φ(i) · δ + wi) (36)

holds, then it would imply that ((1, w1), . . . , (nwit, wnwit)) is a permutation of ((φ(1), w1), . . . , (φ(nwit), wnwit))
with probability at least 1− nwit

|𝔽 | by Schwartz-Zippel lemma [Zip79,Sch80].

In summary, the structure of circuit C can be compactly represented by PLONK structure

plkst = (sleft1 , sright1 , smul
1 , sconst1 , . . . , sleftngate

, srightngate
, smul
ngate

, sconstngate
,

φ(1), . . . , φ(nwit)) ∈ 𝔽nplk
(37)

where nplk = 4ngate + nwit = nin + nout + 7ngate.

From (35) and , by sampling γ, δ
$← 𝔽 , if the system{

slefti · ai + srighti · bi + smul
i · (ai · bi) + sconsti − ci = 0 ∀i ∈ [ngate],∏nwit

i=1(γ + i · δ + wi) =
∏nwit

i=1(γ + φ(i) · δ + wi)
(38)

is satisfied, we see that wplk is a valid witness of C with respect to the compact PLONK structure
plkst with probability at least 1 − nwit

|𝔽 | . Notice that (38) can be represented under the form of an

R1CS constraint system with public matrices determined based based on γ and δ. The witness
vector for this R1CS constraint system contains both PLONK structure plkst and witness vector
wplk specified above.
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A.4 Logarithmic Derivative Supporting Permutation and Lookup Arguments

Permutations. We recall the following lemma from [Hab22] for supporting checking permutation
arguments.

Lemma 2 (Consequence of Lemma 3 of [Hab22]). Let n be a positive integer. Let (ai)
n
i=1

and (bi)
n
i=1 be sequence over a field 𝔽 with characteristic p > n. Then (ai)

n
i=1 and (bi)

n
i=1 are

permutation of each other if and only if

n∑
i=1

1

X + ai
=

n∑
i=1

1

X + bi
(39)

in the rational function field 𝔽 (X).

Permutations of Sequences of Tuples. We adapt the above lemma to support permutations
of sequences of tuples in the following sense. We say that a = (ai)

n
i=1 ∈ (𝔽 s)n is a permutation of

b = (bi)
n
i=1 ∈ (𝔽 s)n for some positive integers s and n if and only if there exists some φ ∈ Sn,

where Sn is a symmetric group over [n], satisfying ai = bφ(i) for all i ∈ [n]. We have the following
Lm. 3:

Lemma 3 (Permutations of Sequences of Tuples). Given sequences a = (ai)
n
i=1,b = (bi)

n
i=1 ∈

(𝔽 s)n where s and n are positive integers. Then, a is a permutation of of b if and only if

n∑
i=1

1

X +
〈
ai, (Y k)

s−1
k=0

〉 =
n∑
i=1

1

X +
〈
bi, (Y k)

s−1
k=0

〉 (40)

in the rational function field 𝔽 (X,Y ) where X and Y are variables over 𝔽 .

Proof. If (ai)
n
i=1 is a permutation of (bj)

n
j=1 then (40) trivially holds.

We consider the other direction. Let a′1, . . . ,a
′
u be distinct vectors satisfying {a′i}ui=1 = {ai}ni=1

for some positive integer u ≤ n and consider muli =
∑n
j=1(a

′
i = aj), for all i ∈ [u]. Similarly, let

{b′
i}vi=1 = {bi}ni=1 for some positive integer v ≤ n and consider mul′i =

∑n
j=1(b

′
i = bj), for all

i ∈ [v]. It suffices to prove the following:{
u = v,

∃σ ∈ Su s.t. a′i = b′
σ(i) ∧muli = mul′σ(i) ∀ i ∈ [u]

(41)

where Su is the symmetric group over [u].
For a vector v ∈ 𝔽 s, define fv(Y ) =

〈
v, (Y k)s−1

k=0

〉
. Let

f(X,Y ) =

n∑
i=1

1

X + fai(Y )
−

n∑
i=1

1

X + fbi(Y )

=

u∑
i=1

muli
X + fa′

i
(Y )
−

v∑
j=1

mul′j
X + fb′

j
(Y )

.

We can see that (40) holds if and only if f(X,Y ) = 0 ∈ 𝔽 (X,Y ). Since we are assuming that (40)
holds, we have f(X,Y ) = 0. We define

g(X,Y ) = f(X,Y ) ·
u∏
i=1

(X + fa′
i
(Y )) ·

v∏
i=1

(X + fb′
i
(Y )).

Then it holds that g(X,Y ) = 0 ∈ 𝔽 (X,Y ). We see that the the explicit form of g(X,Y ) can be
written to be

g(X,Y ) =

u∑
i=1

muli ·
∏

j∈[u] s.t. j ̸=i

(X + fa′
j
(Y )) ·

v∏
j=1

(X + fb′
j
(Y ))

−
v∑
i=1

mul′i ·
u∏
j=1

(X + fa′
j
(Y )) ·

∏
j∈[v] s.t. j ̸=i

(X + fb′
j
(Y )).
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For each k ∈ [u] by replacing X by −fa′
k
(Y ), we see that

g(−fa′
k
(Y ), Y ) = mulk ·

∏
j∈[u] s.t. j ̸=k

(−fa′
k
(Y ) + fa′

j
(Y )) ·

v∏
j=1

(−fa′
k
(Y ) + fb′

j
(Y )).

Since we assumed that g(X,Y ) = 0, mulk ̸= 0 and a′1, . . . ,a
′
u are pairwise distinct, thus fa′

k
(Y ) ̸=

fa′
j
(Y ) in 𝔽 (X,Y ) for any j ̸= k and thus

mulk ·
∏

j∈[u] s.t. j ̸=k

(−fa′
k
(Y ) + fa′

j
(Y )) ̸= 0.

Hence, it can be seen that
∏v
j=1(−fa′

k
(Y ) + fb′

j
(Y )) = 0 ∈ 𝔽 (X,Y ) for each k ∈ [u]. This means

that each a′k(Y ) is equal to b′
h(Y ) for some h ∈ [v] and each value k gives a distinct value h. Hence,

u ≤ v.
Similarly, by replacing X with b′

k(Y ) for each k ∈ [v], we see that each b′
k(Y ) is equal to a′h(Y )

for some h ∈ [u], each value k gives a distinct value h as well. Hence, v ≤ u.
Therefore, for two equalities happen, we must have u = v and there exists a permutation σ ∈ Su

such that a′k = b′
σ(k) for all k ∈ [u].

Finally, we need to prove that muli = mul′σ(i) for all i ∈ [u]. We see that f(X,Y ) can now be
written as

f(X,Y ) =

u∑
i=1

muli −mul′σ(i)
X + fa′

i
(Y )

.

We define

g′(X,Y ) = f(X,Y ) ·
u∏
i=1

(X + fa′
i
(Y )).

Since we assumed that f(X,Y ) = 0, it implies that g′(X,Y ) = 0 ∈ F [X,Y ]. For each k ∈ [u], by
letting X = −fa′

k
(Y )), we see that

g′(−fa′
k
(Y ), Y ) = (mulk −mul′σ(k)) ·

∏
j∈[1,u] s.t. j ̸=k

(−fa′
k
(Y ) + fa′

j
(Y )).

Since we have assumed that a′i ̸= a′j for all i, j ∈ [u] satisfying i ̸= j thus fa′
i
(Y ) ̸= fa′

j
(Y ),

consequently we must have
mulk = mul′σ(k).

Hence, it holds that (ai)
n
i=1 is indeed a permutation of (bi)

n
i=1, as desired, according to (41). ⊓⊔

Testing Permutations of Sequences of Tuples. If a and b are not permutation of each other,

then by sampling (τ, ω)
$← 𝔽 × 𝔽 and setting X = τ and Y = ω, then (40) holds with probability

at most

errperm(𝔽 , s, n) =
(s− 1)(2n− 1)

|𝔽 |
. (42)

according the following Lm. 4.

Lemma 4 (Tuple Permutation Error Probability). Given sequences a = (ai)
n
i=1 ∈ (𝔽 s)n

and b = (bi)
n
i=1 ∈ (𝔽 s)n where s and n are positive integers. For a vector v ∈ 𝔽 s, define fv(Y ) =〈

v, (Y k)s−1
k=0

〉
. Assume that

n∑
i=1

1

X + fai
(Y )
̸=

n∑
i=1

1

X + fbi
(Y )

.

Then,

Pr
[
f(τ, ω) = 0

∣∣∣τ $← 𝔽 ∧ ω $← 𝔽
]
≤ (s− 1)(2n− 1)

|𝔽 |
where

f(X,Y ) =

n∑
i=1

1

X + fai(Y )
−

n∑
i=1

1

X + fbi(Y )
.
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Proof. Define

g(X,Y ) = f(X,Y )

n∏
i=1

(X + fai
(Y ))

n∏
i=1

(X + fbi
(Y ))

=

n∑
i=1

∏
j∈[n] s.t. j ̸=i

(X + faj (Y )) ·
n∏
j=1

(X + fbj (Y ))

−
n∑
i=1

n∏
j=1

(X + faj
(Y )) ·

∏
j∈[n] s.t. j ̸=i

(X + fbj
(Y )).

Notice that each term (X + fai(Y )) and (X + fbi(Y )) has degree at most s − 1 for all i ∈ [n],
hence g(X,Y ) has of total degree at most (s− 1)(2n− 1). We see that if f(X,Y ) ̸= 0 if and only
if g(X,Y ) ̸= 0.

Notice that there are some bad pair (τ, ω) such that f(τ, ω) cannot be computable, i.e., τ +
faj

(ω) = 0 for some j ∈ [n]. However, in such cases, g(τ, ω) is still computable since there is no
denominator in g(X,Y ) ∈ 𝔽 (X,Y ). We see that, for any (τ, ω) ∈ 𝔽 × 𝔽 , if f(τ, ω) is computable
and f(τ, ω) = 0, then g(τ, ω) = 0. We deduce that

Pr
[
f(τ, ω) = 0

∣∣∣τ $← 𝔽 ∧ ω $← 𝔽
]

≤ Pr
[
g(τ, ω) = 0

∣∣∣τ $← 𝔽 ∧ ω $← 𝔽
]

≤
∣∣{τ ∈ 𝔽 ∧ ω ∈ 𝔽

∣∣g(τ, ω) = 0
}∣∣

|𝔽 |2

≤
(s−1)(2n−1)

|𝔽 | · |𝔽 |2

|𝔽 |2
(Schwartz–Zippel lemma)

=
(s− 1)(2n− 1)

|𝔽 |

as desired. ⊓⊔

Lookup. We recall the following lemma from [Hab22] for supporting lookup arguments.

Lemma 5 (Lm. 5 of [Hab22] and Lm. 4 of [BC23]). Let n and t be a positive integers. Let
(ai)

n
i=1 and (bi)

t
i=1 be sequence over a field 𝔽 with characteristic p > max(n, t). Then, {ai}ni=1 ⊆

{bi}ti=1 if and only if there exists (mulj)
t
j=1 over 𝔽 satisfying

n∑
i=1

1

X + ai
=

t∑
j=1

muli
X + bj

(43)

in the rational function field 𝔽 (X).

Remark 7. In Lm. 5, it suffices to choose a random γ ∈ 𝔽 and check if both sides are equal for
X = γ. By multiplying

∏n
i=1(X + ai)

∏t
j=1(X + bi) and subtracting the two sides, we see that the

check of Lm. 5 is reduced into proving that a certain polynomial p(X) of degree d = n + t − 1 is
equal to zero. By Schwartz-Zippel lemma, if p(X) is not equal to zero, then the probability that
p(γ) = 0 is at most d

𝔽 , which is negligible. We can argue the same way for Lm. 2.

Tuple Lookup. We may encounter tuple lookup argument in our construction. Specifically, let
s, n, t be positive integers. Given list a = (ai)

n
i=1 and b = (bj)

t
j=1 where ai ∈ 𝔽 s for all i ∈ [n] and

bj ∈ 𝔽 s for all j ∈ [t], we would like to establish necessary and sufficient conditions to guarantee
that every ai is equal to some bj in b. We adapt the above lemma, namely, Lm. 5, to achieve the
following Lm. 6:

Lemma 6. Given sequences a = (ai)
n
i=1 ∈ (𝔽 s)n and b = (bj)

t
j=1 ∈ (𝔽 s)t where s, n and t are

positive integers. Then, {ai}ni=1 ⊆ {bj}tj=1 if and only if there exists mul1, . . . ,mult ∈ 𝔽 satisfying

n∑
i=1

1

X +
〈
ai, (Y k)

s−1
k=0

〉 =

t∑
j=1

mulj

X +
〈
bi, (Y k)

s−1
k=0

〉 (44)
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in the rational function field 𝔽 (X,Y ) where X and Y are variables over 𝔽 .

Proof. If {ai}ni=1 ⊆ {bj}tj=1, then it can be seen that (44) trivially holds.
Now we consider the other direction. Assume that a′1, . . . ,a

′
m be distinct vectors satisfying

{a′i}mi=1 = {ai}ni=1 for some positive integer m ≤ n.
For a vector v ∈ 𝔽 s, define fv(Y ) =

〈
v, (Y k)s−1

k=0

〉
. By defining mul′i =

∑n
j=1(a

′
i = aj), for all

i ∈ [m], we see that
m∑
i=1

mul′i
X + fa′

i
(Y )

=

n∑
i=1

1

X + fai(Y )
.

Hence, it is sufficient for us to prove that

m∑
i=1

mul′i
X + fa′

i
(Y )

=

t∑
j=1

mulj
X + fbj

(Y )

which implies {ai}ni=1 ⊆ {bj}tj=1.
Define

f(X,Y ) =

n∑
i=1

mul′i
X + fa′

i
(Y )
−

t∑
j=1

mulj
X + fbj (Y )

and

g(X,Y ) = f(X,Y )

m∏
i=1

(X + fa′
i
(Y ))

t∏
j=1

(X + fbj (Y )).

We can see the followings are equivalent:

– (44) is satisfied,
– f(X,Y ) = 0 ∈ 𝔽 (X,Y ) and
– g(X,Y ) = 0 ∈ 𝔽 (X,Y ).

Notice that, the explicit form of g(X,Y ) can be written to be

g(X,Y ) =

m∑
i=1

mul′i ·
∏

j∈[m] s.t. j ̸=i

(X + fa′
j
(Y )) ·

t∏
j=1

(X + fbj
(Y ))

−
t∑
i=1

muli ·
m∏
j=1

(X + fa′
j
(Y )) ·

∏
j∈[t] s.t. j ̸=i

(X + fbj (Y )).

Notice that the total degree of g(X,Y ) is at most n+ t− 1. Assume that g(X,Y ) = 0 ∈ 𝔽 (X,Y ).
Then, we see that, for each k ∈ [m], by replacing X by −fa′

k
(Y ), we see that

g(−fa′
k
(Y ), Y )

=

m∑
i=1

mul′i ·
∏

j∈[m] s.t. j ̸=i

(−fa′
k
(Y ) + fa′

j
(Y )) ·

t∏
j=1

(−fa′
k
(Y ) + fbj

(Y ))

−
t∑
i=1

muli ·
m∏
j=1

(−fa′
k
(Y ) + fa′

j
(Y )) ·

∏
j∈[t] s.t. j ̸=i

(−fa′
k
(Y ) + fbj

(Y ))

= mul′k ·
∏

j∈[m] s.t. j ̸=k

(−fa′
k
(Y ) + fa′

j
(Y )) ·

t∏
j=1

(−fa′
k
(Y ) + fbj (Y )).

Since we assumed that g(X,Y ) = 0, mul′k ̸= 0 and a′1, . . . ,a
′
m are distinct, we see that

mul′k ·
∏
j ̸=k

(−fa′
k
(Y ) + fa′

j
(Y )) ̸= 0.

Hence, it can be seen that
∏t
j=1(−fa′

k
(Y ) + fbj

(Y )) = 0. Therefore,
∏t
j=1(X + fbj

(Y )) contains

a factor X + fa′
k
(Y ) which implies a′k ∈ {bj}tj=1, and this holds for all k ∈ [m]. ⊓⊔
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Testing Tuple Lookup. If sequences a and b do not satisfy Lm. 6, i.e., exists ai ̸∈ {bj}tj=1, by

sampling ψ
$← 𝔽 and χ

$← 𝔽 \ {
〈
bi, (ψ

k)s−1
k=0

〉
}ti=1, and setting X = χ and Y = ψ, we can see that

(44) holds with probability at most

errlookup(𝔽 , s, n, t) =
(s− 1)(n+ t− 1)

|𝔽 | − t
(45)

according to the following Lm. 7

Lemma 7 (Tuple Lookup Error Probability). Given sequences a = (ai)
n
i=1 ∈ (𝔽 s)n and

b = (bj)
t
j=1 ∈ (𝔽 s)t where s, n and t are positive integers. For a vector v ∈ 𝔽 s, define fv(Y ) =〈

v, (Y k)s−1
k=0

〉
. Assume that

n∑
i=1

1

X + fai
(Y )
̸=

t∑
j=1

mulj
X + fbj

(Y )

for some mul1, . . . ,mult ∈ 𝔽 . Then,

Pr
[
f(χ, ψ) = 0

∣∣∣ψ $← 𝔽 ∧ χ $← 𝔽 \ {−fbi
(ψ)}ti=1

]
≤ (s− 1)(n+ t− 1)

|𝔽 | − t

where

f(X,Y ) =
n∑
i=1

1

X + fai
(Y )
−

t∑
j=1

mulj
X + fbj

(Y )
.

Proof. Define

g(X,Y ) = f(X,Y )

n∏
i=1

(X + fai
(Y ))

t∏
j=1

(X + fbj
(Y ))

=

n∑
i=1

∏
j∈[n] s.t. j ̸=i

(X + faj
(Y )) ·

t∏
j=1

(X + fbj
(Y ))

−
t∑
i=1

muli ·
n∏
j=1

(X + faj
(Y )) ·

∏
j∈[t] s.t. j ̸=i

(X + fbj
(Y ))

of total degree at most (s− 1)(n+ t− 1). We see that if f(X,Y ) ̸= 0 if and only if g(X,Y ) ̸= 0.
Notice that there are some bad χ such that f(χ, ψ) cannot be computable, i.e., χ+ faj

(ψ) = 0
for some j ∈ [n]. However, in such cases, g(χ, ψ) is still computable since there is no denominator in
g(X,Y ) ∈ 𝔽 (X,Y ). Now, let us denoteDψ = 𝔽 \{−fbi

(ψ)}ti=1. We see that, for any (χ, ψ) ∈ 𝔽×Dψ,
if f(χ, ψ) is computable and f(χ, ψ) = 0, then g(χ, ψ) = 0. We deduce that

Pr
[
f(χ, ψ) = 0

∣∣∣ψ $← 𝔽 ∧ χ $← Dψ

]
≤ Pr

[
g(χ, ψ) = 0

∣∣∣ψ $← 𝔽 ∧ χ $← Dψ

]
≤

∣∣{ψ ∈ 𝔽 ∧ χ ∈ Dψ

∣∣g(χ, ψ) = 0
}∣∣

|𝔽 | · (|𝔽 | − t)

≤
∣∣{ψ ∈ 𝔽 ∧ χ ∈ 𝔽

∣∣g(χ, ψ) = 0
}∣∣

|𝔽 | · (|𝔽 | − t)

≤
(s−1)(n+t−1)

|𝔽 | · |𝔽 |2

|𝔽 | · (|𝔽 | − t)
(Schwartz–Zippel lemma)

=
(s− 1)(n+ t− 1)

|𝔽 | − t

as desired. ⊓⊔
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A.5 Schwartz-Zippel Lemma

We recall the Schwartz-Zippel lemma [Zip79,Sch80] in the following Lm. 8.

Lemma 8 (Schwartz-Zippel Lemma). Let 𝔽 be a field and multivariate polynomial f ∈ 𝔽 [X1, X2, . . . , Xn]
be non-zero and of total degree d. Let S be a finite subset of 𝔽 and suppose |S| > d, then it holds
that

Pr
[
f(x1, x2, . . . , xn) = 0

∣∣∣(x1, x2, . . . , xn) $← Sn
]
≤ d

|S|
.

A.6 Commitment Scheme (Extended)

We formally describe the security properties of commitment scheme defined in Section 2.1, namely
binding and hiding in Def. 7, 8 and 9, respectively.
Security of Commitment Schemes. Let C be a commitment scheme with syntax in Def. 1. We
now define the completeness, binding and hiding of C in the following Def. 7, 8 and 9, respectively.

Definition 7 (Perfect Correctness of C). C satisfies correctness if for all message M , random-
ness R, it holds that

Pr

[
C.Verify(ck,M,R,C) = 1

∣∣∣∣ck← C.Setup(1λ)
C ← C.Commit(ck,M,R)

]
= 1.

Definition 8 (Binding of C). C is binding if for all (PPT) adversaries A, it holds that

Pr

M1 ̸=M2

∧C.Verify(ck,M1, R1, C) = 1
∧C.Verify(ck,M2, R1, C) = 1

∣∣∣∣∣∣ck← C.Setup(1λ)
(M1, R1,M2, R2, C)← A(ck)

 ≤ negl(λ).

If A is PPT, we say that C is computationally binding. Otherwise, in case that A is computationally
unbounded, we say that C is statistically binding.

Definition 9 (Hiding of C). A commitment scheme satisfies hiding if for any messages M and
M ′, then the two following distributions are close:{

C

∣∣∣∣∣R $← Rck

C ← C.Commit(ck,M,R)

}
and

{
C ′

∣∣∣∣∣R′ $← Rck

C ′ ← C.Commit(ck,M ′, R′)

}
.

If the above two distribution are computationally close, we say that C is computationally hiding.
Otherwise, if they are statistically close, we say that C is statistically hiding.
Homomorphic Commitment Schemes. A commitment scheme C, with syntax defined in Def. 1,
is said to be homomorphic if

C.Commit(ck,M1, R1) + C.Commit(ck,M2, R2)

= C.Commit(ck,M1 +M2, R1 +R2).

Remark 8. By using notation in Rmk. 1, for two commitment tuples, e.g., Jc0Kck and Jc1Kck. If
either Jc0Kck /∈ Rcom or Jc1Kck /∈ Rcom, then, in many situations in this paper, we may face the form
JcKck := Jc0Kck + α · Jc1Kck for some α chosen uniformly from 𝔽 . Here, due to binding property of
commitment schemes, the probability that JcKck ∈ Rcom is negligible.

An Instantiation of Homomorphic Commitment Schemes. Let n ∈ ℤ+. Below we describe
the Pedersen commitment scheme [Ped92], which is a secure and homomorphic commitment for
committing to length-n vectors. As a remark, just for this instantiation, the addition “+” is group
operation between group elements in 𝔾 while multiplication “·” is an action between a scalar and
a group element in 𝔾.

C.Setup(1λ)→ ck: Sample g1, . . . , gn, h
$← 𝔾 and return ck = (g1, . . . , gn, h).

C.Commit(ck,x = (x1, . . . , xn))→ (C,R): Sample R uniformly and output C = R ·h+
∑n
i=1 xi ·gi.

C.Verify(ck,x = (x1, . . . , xn)), R, C)→ {0, 1}: Output 1 if C = R ·h+
∑n
i=1 xi ·gi and 0 otherwise.
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pp← FS.Setup(1λ).
(Z0, Z1, ρ)← A(pp).
(Z,W )← ΠFS(HS, pp, (Z0, Z1; W0,W1))
(W0,W1)← EA (pp, Z0, Z1, ρ).
b0 = ((pp, Z,W ) ∈ R)
b1 = ((pp, Z0,W0) /∈ R) ∨ ((pp, Z1,W1) /∈ R)
Return b0 ∧ b1.

Fig. 3. Experiment Expfs-knwlg-sound
A (λ).

A.7 Folding Scheme

We recall the definition and security properties of folding scheme [KST22] in Def. 11, 12 and 13
respectively.

Definition 10 (Syntax of Folding Scheme). Let P, Z and W be the sets of public param-
eters, instances and witnesses, respectively. Let R ⊆ P × Z × W be a NP relation. A fold-
ing scheme FS for relation R, is a tuple FS[R] = (FS.Setup,FS.Fold,FS.Verify) of algorithms
FS.Setup,FS.Fold,FS.Verify, run as follows:

FS.Setup(1λ)→ pp: Run public parameter generator, on input a security parameter 1λ, it returns
a public parameter pp.

FS.Fold(pp, Z0, Z1; W0,W1)→ (Z; W ) : This algorithm is run by prover. On inputs public param-
eter pp and instance-witness pairs (Z0,W0), (Z1,W1) ∈ Z ×W, it returns an instance-witness
pair (Z,W ) ∈ Z ×W.

FS.Verify(pp, Z0, Z1)→ Z: This algorithm is run by verifier. On inputs public parameter pp and
instances Z0, Z1 ∈ Z, it returns an instance Z ∈ Z.

Defining Transcript. For common public inputs pp, Z0, Z1, we denote

(Z,W )← ΠFS(pp, (Z0, Z1; W0,W1))

the output of prover and verifier when prover executes FS.Fold with inputs pp, Z0, Z1,W0,W1 while
verifier executes FS.Verify with inputs pp, Z0, Z1. Define the public transcript

tr← View(ΠFS(pp, (Z0, Z1; W0,W1))

to contains all the inputs, outputs and public messages between prover and verifier when executing
ΠFS .

Definition 11 (Perfect Correctness of FS). Let pp← FS.Setup(1λ). Then for any {(pp, Zi; Wi)}i∈{0,1} ⊆
R, it holds that

Pr

[
Z = Z ′∧
(pp, Z; W ) ∈ R

∣∣∣∣(Z; W )← FS.Fold(pp, Z0, Z1; W0,W1,W
′)

Z ′ ← FS.Verify(pp, Z0, Z1)

]
= 1.

Definition 12 (Knowledge Soundness of FS). FS is said to satisfy knowledge soundness if
for any positive integer N , any (PPT) algorithm A, there exists a PPT extractor E, with rewindable

oracle access to A, it holds that Pr[Expfs-knwlg-sound
A (λ) = 1] ≤ negl(λ) where Expfs-knwlg-sound

A (λ) is
described in Fig. 3. A folding scheme FS is statistically (resp., computationally) knowledge-sound
if A is computationally unbounded (resp., bounded). FS has soundness error ϵ if A can break
knowledge soundness with probability at most ϵ.

Definition 13 (HVZK of FS). FS is HVZK if there exists a PPT simulator S s.t., for any
distinguisher A, any valid instance-witness pairs (Z0,W0), (Z1,W1), it holds that∣∣Pr [A(tr) = 1

∣∣pp← FS.Setup(1λ), tr← View(ΠFS(, pp, Z0, Z1; W0,W1))
]

−Pr
[
A(tr) = 1

∣∣pp← FS.Setup(1λ), tr← S(pp, Z0, Z1)
]∣∣ ≤ negl(λ)
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A.8 Special Soundness

We recall the special soundness property for multi-round protocols [ACK21]. We first recall the
special soundness property for 3-move protocols in Def. 14, then we recall the generalization for
multi-round protocols in Def. 16.

Definition 14 ((k;n)-Special Soundness). Let k, n ∈ ℕ. Let CH be a set such that |CH| = n.
Let Π be public-coin 3-move protocol for a relation R with challenge set CH. Then Π is (k;n)-
special sound if there exists a PPT extractor E, such that, given an instance Z and k accepting
transcripts (a, ci, zi)

k
i=1 with the same first message a and pairwise distinct challenges ci ∈ CH,

extractor E can output a witness W such that (Z,W ) ∈ R.

To generalize the above property for multi-round protocols, we recall the notion of tree of
transcripts [ACK21] in Def. 15. Then we state the special soundness property for multi-round
protocols in Def. 16.

Definition 15 (Tree of Transcripts). Let Π be a public-coin (2µ+1)-move protocol. A (k1, . . . , kµ)-
tree of transcript is a set of transcripts arranged in the following tree format: Each node corresponds
to a message of prover and each edge corresponds to a challenge of V. For each i < µ, each node
of depth i has exactly ki children, corresponding to ki pairwise distinct challenges of V. Every
transcript corresponds to exactly one path from the root to a leaf of the tree.

Definition 16 ((k1, . . . , kµ;n1, . . . , nµ)-Special Soundness). Let k1, . . . , kµ, and n1, . . . , nu be
positive integers in ℤ+. Let CH1,CH2, . . . ,CHµ be sets such that |CHi| = ni for each 1 ≤ i ≤ µ. Let
Π be a public-coin (2µ+1)-move protocol for a relation R where the i-th challenge is sampled from
CHi. Then Π satisfies (k1, . . . , kµ;n1, . . . , nµ)-special soundness if there exists a PPT algorithm E,
such that, given an instance 𝕫 and a (k1, . . . , kµ)-tree of accepted transcripts, outputs a witness W
such that (Z,W ) ∈ R.

A.9 Interactive Folding Protocol for Folding rR1CS Instance-Witness Pairs
(Extended)

Explanation of Equations in Sec. 2.2. We now explain in details the equations in Sec. 2.2.
First, Eq. (4) is fully written to be

A · z′ ◦B · z′

= A · z′0 ◦B · z′0 + α(A · z′0 ◦B · z′1 +A · z′1 ◦B · z′0)
+ α2(A · z′1 ◦B · z′1)

= (𝕩0.u ·C · z′0 + 𝕩0.e) + α(A · z′0 ◦B · z′1 +A · z′1 ◦B · z′0)
+ α2(𝕩1.u ·C · z′1 + 𝕩1.e)

= (𝕩0.u+ α · 𝕩1.u) ·C · (z′0 + r · z′1)
− α · 𝕩1.u ·C · z′0 − α · 𝕩0.u ·C · z′1 + 𝕩0.e
+ α(A · z′0 ◦B · z′1 +A · z′1 ◦B · z′0) + α2 · 𝕩1.e

= 𝕩.u ·C · z′ + 𝕩.e

and the error 𝕩.e, as show in (2.2), can be written in details to be

α(−𝕩1.u ·C · z′0 − 𝕩0.u ·C · z′1) + 𝕩0.e
+ α(A · z′0 ◦B · z′1 +A · z′1 ◦B · z′0) + α2 · 𝕩1.e

= 𝕩0.e+ α2 · 𝕩1.e
+ α(A · z′0 ◦B · z′1 +A · z′1 ◦B · z′0 − 𝕩1.u ·C · z′0 − 𝕩0.u ·C · z′1︸ ︷︷ ︸

garbage term

).

Proof of Lm. 1. Here, we provide a proof of Lm. 1. We recall Lm. 1 for readability purpose as
following Lm. 9.
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Lemma 9 (Recall of Lm. 1). Let C be a secure and homomorphic commitment scheme. Assume
that Πrr1cs in Cstr. 1 are rewinded thrice, with the same g̃ (commitment in JgKcke) and distinct
challenges {α(i)}i∈[3] to produce {𝕩̃(i)}i∈[3], respectively. If we have have corresponding witnesses

to recover {J𝕩(i)Ktck}i∈[3] satisfying J𝕩(i)Ktck ∈ RS
rr1cs ∀i ∈ [3], then we can extract witnesses to

construct {J𝕩iKtck}i∈{0,1} s.t. J𝕩iKtck ∈ RS
rr1cs ∀i ∈ {0, 1}.

As a remark, this lemma satisfies (3; |𝔽 |)-special soundness defined in Appdx. A.8.
Before going to the proof, we first recall the notations. Recall in Sec. 2.2, for a vector 𝕩, we can

parse
𝕩 = (𝕩.u,𝕩.pub,𝕩.z1, . . . ,𝕩.zc,𝕩.e) (46)

where 𝕩.u and 𝕩.pub are scalars and 𝕩.z1, . . . ,𝕩.zc,𝕩.e are vectors. Also, for a tuple commitment
key tck = (ck1, . . . , ckc, cke), from (2), we can parse J𝕩Ktck as

J𝕩Ktck = (𝕩.u,𝕩.pub, J𝕩.z1Kck1 , . . . , J𝕩.zcKckc , J𝕩.eKcke)

According to Rmk. 1, we additionally parse

J𝕩.ziKcki = (cki,𝕩.z̃i; 𝕩.zi,𝕩.ẑi) ∀i ∈ [c] and J𝕩.eKcke = (cke,𝕩.ẽ; 𝕩.e,𝕩.ê)

where 𝕩.z̃i and 𝕩.ẑi are the commitment and randomness, respectively, to vector 𝕩.zi for all i ∈ [c].
We denote by

𝕩̃ = (𝕩.u,𝕩.pub,𝕩.z̃1, . . . ,𝕩.z̃c,𝕩.ẽ) (47)

to contains all public information and commitments,

𝕩̂ = (𝕩.ẑ1, . . . ,𝕩.ẑc,𝕩.ê) (48)

to contain all associated randomness to the component vectors of 𝕩 employed for the commitments,
such that we can write J𝕩Ktck = (tck, 𝕩̃; 𝕩, 𝕩̂). Finally, recall in (3), 𝕩 is a valid pair of rR1CS if it
satisfies the relation

RS
rr1cs =

J𝕩Ktck

∣∣∣∣∣∣
𝕩.u ∈ 𝔽 ∧ 𝕩.pub ∈ 𝔽 ∧ (𝕩.zi ∈ 𝔽mi ∀i ∈ [c]) ∧ 𝕩.e ∈ 𝔽n
∧J𝕩.ziKcki ∈ Rcom ∀i ∈ [c] ∧ J𝕩.eKcke ∈ Rcom

∧A · z′ ◦B · z′ = 𝕩.u ·C · z′ + 𝕩.e


where z′ = (𝕩.pub∥𝕩.z′1∥ . . . ∥𝕩.z′c) and ◦ is the entry-wise multiplication.

Proof (Proof of Lm. 1 (recalled in Lm. 9)). First, consider the system

𝕩(i).pub = 𝕩0.pub+ α(i) · 𝕩1.pub ∀i ∈ [2],

𝕩(i).zj = 𝕩0.zj + α(i) · 𝕩1.zj ∀i ∈ [2],∀j ∈ [c],

𝕩(i).e = 𝕩0.e+ α(i) · g + (α(i))2 · 𝕩1.e ∀i ∈ [3],

𝕩(i).ẑj = 𝕩0.ẑj + α(i) · 𝕩1.ẑj ∀i ∈ [2],∀j ∈ [c],

𝕩(i).ê = 𝕩0.ê+ α(i) · ĝ + (α(i))2 · 𝕩1.ê ∀i ∈ [3].

(49)

As each α(i), for i ∈ [3], has powers at most 3 in system (49) and we have 3 distinct challenges
{α(i)}i∈[3], hence, we can solve system (49). By solving (49), we can extract 𝕩i.pub, 𝕩i.zj and 𝕩i.ẑj
for all i ∈ [2] and all j ∈ [c]. Hence, we can extract 𝕩0 and 𝕩1 of the form (46), 𝕩̂0 and 𝕩̂1 of
the form (48), vector g and randomness ĝ and thus form the pairs J𝕩0Ktck = (tck, 𝕩̃0; 𝕩0, 𝕩̂0) and
J𝕩1Ktck = (tck, 𝕩̃1; 𝕩1, 𝕩̂1).

It suffices to prove that the extracted vectors 𝕩0,𝕩1 above are valid, i.e., they satisfy J𝕩0Ktck ∈
RS

rr1cs and J𝕩1Ktck ∈ RS
rr1cs. We proceed as follows.

First, let us prove that J𝕩i.zjKckj , J𝕩i.eKcke ∈ Rcom ∀i ∈ {0, 1},∀j ∈ [c]. From the statement of

this lemma, notice that, we have J𝕩(i).zjKckj ∈ Rcond for all i ∈ [3] and j ∈ [c]. In addition, according
to Πrr1cs in Cstr. 1 and due to the homomorphic and binding properties of the commitment scheme,
for each i ∈ [2], it implies that

𝕩0.z̃j + α(i) · 𝕩1.z̃j = C.Commit(𝕩0.zj ,𝕩0.ẑj) + α(i) · C.Commit(𝕩1.zj ,𝕩1.ẑj)

= C.Commit(𝕩0.zj + α(i) · 𝕩1.zj ,𝕩0.ẑj + α(i) · 𝕩1.ẑj) = C.Commit(𝕩(i).zj ,𝕩(i).ẑj)

= 𝕩(i).z̃j .
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Since the equation above holds for three distinct {α(i)}i∈[3], we must have 𝕩i.z̃j = C.Commit(𝕩i.zj ,𝕩i.ẑj)
for all j ∈ {0, 1}, or equivalently, J𝕩i.zjKckj ∈ Rcom ∀i ∈ {0, 1},∀j ∈ [c]. In fact, by binding property
of C, if prover does not have J𝕩i′ .zjKckj ∈ Rcom for some i′ ∈ {0, 1}, j ∈ [c], then the case that all

J𝕩(i).zjK ∈ Rcom ∀i ∈ [3] hold is with negligible probability according to Rmk. 8.

Similarly, by considering 𝕩(i).ẽ = 𝕩0.ẽ+α(i) ·g̃+
(
α(i)

)2 ·𝕩1.ẽ, we must have J𝕩i.eKcke ∈ Rcom ∀i ∈
{0, 1} and JgKcke ∈ Rcom.

Finally, we need to prove that A · z′i ◦ B · z′i = 𝕩i.u · C · z′i + 𝕩i.e for all i ∈ {0, 1} where
z′i = (𝕩i.pub∥𝕩i.z1∥ . . . ∥𝕩i.zc). Note that, since

C.Commit(𝕩(3).zj ,𝕩(3).ẑj) = 𝕩(3).z̃j = 𝕩0.z̃j + α(3) · 𝕩1.z̃j
= C.Commit(𝕩0.zj ,𝕩0.ẑj) + α(3) · C.Commit(𝕩1.zj ,𝕩1.ẑj)

= C.Commit(𝕩0.zj + α(3) · 𝕩1.zj ,𝕩0.ẑj + α(3) · 𝕩1.ẑj)

and
𝕩(3).pub = 𝕩0.pub+ α(3) · 𝕩1.pub.

Hence, we must have 𝕩(3).zj = 𝕩0.zj+α(3) ·𝕩1.zj with overwhelming probability due to the binding
property of commitment scheme. Thus we have that

z′(i) = z′0 + α(i) · z′1 ∀i ∈ [3].

In addition, since, for each i ∈ [3], J𝕩(i)Ktck ∈ RS
rr1cs and the following equations holds, due to the

statement of this lemma:
A · z′(i) ◦B · z′(i) = 𝕩(i).u ·C · z′(i) + 𝕩(i).e ∀i ∈ [3]

z′(i) = z′0 + α(i) · z′1 ∀i ∈ [3]

𝕩(i).u = 𝕩0.u+ α(i) · 𝕩1.u ∀i ∈ [3]

𝕩(i).e = 𝕩0.e+ α(i) · g + (α(i))2 · 𝕩1.e ∀i ∈ [3].

From the system above, by replacing z′(i), 𝕩(i) and 𝕩(i).e with z′0 + α(i) · z′1, 𝕩0.u + α(i) · 𝕩1.u
and 𝕩0.e+ α(i) · g+ (α(i))2 · 𝕩1.e, respectively, in the first equation of the system, then expanding
everything and considering that the first equation holds for three dinstinct values α(i) for all i ∈ [3],
it holds that A · z′i ◦B · z′i = 𝕩i.u ·C · z′i + 𝕩i.e for all i ∈ {0, 1} and hence J𝕩iKtck ∈ RS

rr1cs for all
i ∈ {0, 1} as desired. ⊓⊔

A.10 Honest-Verifier Zero-Knowledge Argument/Proof of Knowledge

We recall the syntax of honest-verifier zero-knowledge arguments/proofs of knowledge (ZKAoKs/ZKPoKs)
in Def. 17 and their security properties in Def. 18, 19 and 20.

Definition 17 (Syntax of Honest-Verifier ZKAoK/ZKPoK). Let Z and W denotes the
instance and witness set, respectively. Let R ⊆ Z ×W be a relation. A ZKAoK for R is a tuple

ZK = (ZK.Setup,ZK.Prove)

consists of the algorithm ZK.Setup and interactive protocol ZK.Prove, working as follows:

ZK.Setup(1λ)→ pp : On input a security parameter 1λ, this PPT algorithm returns a public pa-
rameter pp.

ZK.Prove(pp, Z; W )→ {0, 1} This is an interactive protocol between prover and verifier, where
the prover holds an instance-witness pair (Z,W ) ∈ Z ×W and the verifier holds an instance
Z ∈ Z, such that the prover tries to convince the verifier that he knows W ∈ W satisfying
(Z,W ) ∈ R. At the end of the interaction, the verifier outputs a bit b ∈ {0, 1} for deciding
whether to accept (b = 1) or reject (b = 0).

Security of Honest-Verifier ZKAoK/ZKPoK. Let ZK be a system with syntax defined in
Def. 17. We now recall the completeness, knowledge soundness and (honest-verifier) zero-knowledge
for ZK in the following Def. 18, 19 and 20, respectively.
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Definition 18 (Completeness of ZK). ZK satisfies completeness if for any (Z; W ) ∈ R it
holds that

Pr

[
b = 1

∣∣∣∣pp← ZK.Setup(1λ)
b← ZK.Prove(pp, Z; W )

]
= 1

Definition 19 (Knowledge Soundness of ZK). ZK satisfies knowledge soundness if for any
(PPT) adversary A, there exists a PPT extractor E with rewindable oracle access to A such that

Pr

b = 1 ∧ (Z,W ) /∈ R

∣∣∣∣∣∣∣∣
pp← ZK.Setup(1λ),
(pp, Z)← A(pp),
W ← EA(pp, Z),
b← ZK.Prove(pp, Z;W )

 ≤ negl(λ)

We write EA(pp, Z) to indicate E (having oracle access to A) and A, playing the roles of verifier
and prover, respectively, to run CF.Prove on common inputs (pp, Z). In addition, E has an ability
to rewind A to any previous state and run other instances of CF.Prove with different randomness.
Finally, if all instances of ZK.Prove return 1 after interacting with A with rewinding, E can return
the valid witnessesW satisfying (Z,W ) ∈ R. We call this system an argument of knowledge (AoK)
if A is PPT. Otherwise, if A is of unbounded computation, we call this system a proof of knowledge
(PoK).

Definition 20 (Statistical Honest-Verifier Zero-Knowledge of ZK). ZK satisfies statistical
(honest-verifier) zero-knowledge if there exists a PPT simulator S such that for any (Z,W ) ∈ R
and for any (PPT) adversary A, then the two following distributions are indistinguishable from
the view of A: {

tr
∣∣ tr← View(ZK.Prove(pp, Z; W ))

}
and

{
tr∗

∣∣ tr∗ ← S(pp, Z)} .
where tr ← View(ZK.Prove(pp, Z;W )) denotes the public transcript which contains all the public
inputs and exchanged messages between prover and verifier during the execution of ZK.Prove. We
say that ZK is computationally zero-knowledge if A is PPT. Otherwise, if A is of unbounded
computation, ZK is statistically zero-knowledge.

A.11 Lagrange Interpolation

We recall the Lagrange interpolation theorem in the following Thm. 3

Theorem 3 (Lagrange Interpolation). Let 𝔽 be a field. Given a set X = {x0, x1, . . . , xm} of
m+1 pairwise distinct values in 𝔽 , then for any set Y = {y0, y1, . . . , ym} ⊆ 𝔽 , there exists an unique
polynomial f(X) ∈ 𝔽 [X] of degree at most m satisfying f(xi) = yi for all i ∈ [0,m]. Moreover, the
exact formula of f(X) is given by

f(X) =

m∑
i=0

yi · ℓi(X)

where {ℓ0(X), ℓ1(X), . . . , ℓm(X)} is the Lagrange basis of X , given by the formula ℓi(X) =
∏

j∈[0,m]
s.t. j ̸=i

X − xj
xi − xj

.

A.12 Basic Circuit Satisfiability From Compressed Σ-Protocol Theory

We recall the technique for handling basic circuit satisfiability from compressed Σ-protocol theory
(Sec. 6 in [AC20], adapted from [CDP12]) to ensure statistical (honest-verifier) zero-knowledge.

Let n ∈ ℤ+. Assume that C(x) = 0 for some x = (x1, . . . , xn) ∈ 𝔽n and C is some arithmetic
circuit of m multiplication gates. Let w1, . . . , wm be the outputs of those m multiplication gates.
Moreover, let ui ∈ 𝔽 and vi ∈ 𝔽 , for all i ∈ [m], be the left and right inputs to each multiplication
gate such that ui · vi = wi.

Assume that q = |𝔽 | is a prime and there is an isomorphism from ℤq to 𝔽 . Hence, when saying
that 0, . . . ,m ∈ 𝔽 , these values are understood to be the output of the mentioned isomorphism from
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inputs 0, . . . ,m ∈ ℤq. By sampling u0, v0
$← 𝔽 , applying Lagrange interpolation we can achieve

polynomials fu(X), fv(X) ∈ 𝔽 [X] of degrees at most m such that

fu(i) = ui and fv(i) = vi

for all i ∈ [0,m] ⊆ 𝔽 . Specifically, we have a Lagrange basis {ℓ0(X), . . . , ℓm(X)} ⊆ 𝔽 [X] of
polynomials in 𝔽 [X] of degree m such that

fu(X) =

m∑
i=0

ui · ℓi(X) and fv(X) =

m∑
i=0

vi · ℓi(X).

By setting f(X) := fu(X) · fv(X) and setting w0 := u0 · v0, we see that f(X) is of degree 2m
and wi = f(i) = fu(i) · fv(i) for all i ∈ [0,m]. Define wm+1 := f(m + 1), . . . , w2m := f(2m). We
have a Lagrange basis {ℓ′0(X), . . . , ℓ′2m(X)} ⊆ 𝔽 [X] of polynomials in 𝔽 [X] of degree 2m such that

f(X) =

2m∑
i=0

wi · ℓ′i(X).

Thus, we can test whether ui · vi = wi for all i ∈ [m] by testing whether fu(X) · fv(X) = f(X).

This can be done by sampling ζ
$← 𝔽 and check whether fu(ζ) · fv(ζ) = f(ζ), by revealing

fu(ζ), fv(ζ) and f(ζ), with error probability at most 2m
|F | according to Schwartz-Zippel lemma (see

Appdx. A.5).
However, when conducting the proof, if ζ is among [m], the values uζ = fu(ζ), vζ = fv(ζ) and

wζ = f(ζ) must be revealed compromising zero-knowledge or witness indistinguishability of the
proof. Moreover, if ζ ∈ 𝔽 \ [m], the values ui, vi and wi, for all i ∈ [m], are secured. In fact, since
u0 and v0 are uniformed sampled from 𝔽 , we know that

fu(ζ) = u0 · ℓ0(ζ) +
m∑
i=1

ui · ℓi(ζ) and fv(ζ) = v0 · ℓ0(ζ) +
m∑
i=1

vi · ℓi(ζ).

and ℓ0(ζ) ̸= 0. Hence, fu(ζ) and fv(ζ) are uniform in 𝔽 . Thus, by sampling ζ
$← 𝔽 \ [m], revealing

fu(ζ), fv(ζ) and f(ζ) for checking fu(ζ) · fv(ζ) = f(ζ) does not compromise ui, vi and wi, for all
i ∈ [m].

Strategy for Making the Proofs/Arguments. To proceed the proofs, [AC20] indicates that

ui = f (i)u (x1, . . . , xn, u0, v0, w0, . . . , w2m) and

vi = f (i)v (x1, . . . , xn, u0, v0, w0, . . . , w2m),

for all i ∈ [1,m], where f
(i)
u (·) and f

(i)
v (·) are pre-determined affine functions. Hence, for a given

challenge ζ, the values fu(ζ) and fv(ζ) are obtained by affine mappings from

(x1, . . . , u0, v0, w0, . . . , w2m, ζ).

Since [AC20] supports protocols for nullity checks of affine maps, we hence can deduce the design
of interactive proofs/arguments for basic circuit satisfiability.

B Generic CF Scheme CFgnr Supporting pvRAM (Extended)

We provide a proof of Thm. 1 in Appdx. B.1.

B.1 Proof of Thm. 1

We first recall Thm. 1 in the following Thm. 4.
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Theorem 4 (Recall of Thm. 1). If CF.Prove is an (HV)ZKAoK/PoK and C is a secure ho-
momorphic commitment scheme, then CFgnr satisfies perfect completeness, HVZK and knowledge
soundness with soundness error O(N/|𝔽 |+ serrprf(pp) + negl(λ)) where serrprf(pp) is the soundness
error of CF.Prove.

Before going to the proof, let us define the notations that will be used in the proof. First, recall
that Sec. 5.1, for a witness vector

𝕫 = (lt, rt,𝕩, i,o,𝕩⋆, s,a)

having the form of (11), we can parse

J𝕫Kpp = (lt, rt, J𝕩Ktck, JiKck1 , JoKck2 , J𝕩⋆Ktck′ , JsKck5 , JaKck5)

where, for 𝕩̃ and 𝕩̃⋆ of the form (47), and for 𝕩̂ and 𝕩̂⋆ of the form (48),

J𝕩Ktck = (tck, 𝕩̃; x, 𝕩̂), J𝕩⋆Ktck′ = (tck′, 𝕩̃⋆; 𝕩⋆, 𝕩̂⋆)

JiKck1 = (ck1, ĩ; , i, î) JoKck2 = (ck2, õ; ,o, ô)

JsKck5 = (ck5, s̃; , s, ŝ) JaKck5 = (ck5, ã; ,a, â)

We denote 𝕫̃ to define its public instance part that contain all the public information and
commitments of the components in 𝕫, i.e,

𝕫̃ = (lt, rt, 𝕩̃, ĩ, õ, 𝕩̃⋆, s̃, ã), (50)

and 𝕫̂ to define the corresponding randomness used for committing the components in 𝕫 i.e,

𝕫̂ = (𝕩̂, î, ô, 𝕩̂⋆, ŝ, â). (51)

The notation J𝕫Kpp is the same as (12).
The proof of Thm. 1 (recalled in Thm. 4) is as follows.

Proof (Proof of Thm. 1). The proof follows Lm. 10, 12 and 13 for correctness, knowledge soundness
and HVZK, respectively. ⊓⊔

Correctness of CFgnr. Correctness follows the following Lm. 10.

Lemma 10 (Correctness of CFgnr). CFgnr is perfectly correct if C is a homomorphic and per-

fectly correct commitment scheme and CF.Prove, for relation RS,S′

gnr-inst, is perfectly complete for

relation RS,S′

gnr-inst.

Proof. The proof is straightforward. ⊓⊔

Knowledge Soundness of CFgnr. Notice that protocolΠCFgnr (in (18)) usesΠfold-gnr (in Cstr. 2) as
a building block to fold following a binary-tree-like hierarchical structure HS ∈ HS0N . Therefore, we
first analyze the extraction in each folding by Πfold-gnr according Lm. 11. Then, we formalize Lm. 12
the knowledge soundness of CFgnr by extracting following a binary-tree-like HS and employing
Lm. 11 as a building block. Details are as follows.

Lemma 11 ((3, 3; |𝔽 | , |𝔽 |)-Special Soundness of Πfold-gnr). Assume that C, with respect to re-
lation Rcom, is homomorphic and binding. Assume that, on inputs J𝕫0Kpp and J𝕫1Kpp of the forms

J𝕫iKpp = (lti, rti, J𝕩iKtck, JiiKck1 , JoiKck2 , J𝕩⋆i Ktck′ , JsiKck5 , JaiKck5) ∀i ∈ {0, 1},

protocol Πfold-gnr in Cstr. 2 are rewinded 9 times following a (3, 3)-tree of transcripts, w.r.t. chal-

lenges {α(i1)
1 }i1∈[3] and {α

(i1,i2)
2 }i1∈[3],i2∈[3], into

J𝕫(i1,i2)Kpp = (lt, rt, J𝕩(i1)Ktck, JiKck1 , JoKck2 ,

J(𝕩⋆)(i1,i2)Ktck′ , JsKck5 , Ja(i1)Kck5 ),

as follows:
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– J𝕪Ktck′ = (1, 1, Jo0Kck2 , Ji1Kck1 , JwKck′3 , J0
n′

Kcke′) (step 2 in Cstr. 2).

– {α(i1)
1 }i1∈[3] are distinct and, for each i1 ∈ [3], by running step 4 of Πrr1cs,

• J𝕩0Ktck and J𝕩1Ktck are folded into J𝕩(i1)Ktck w.r.t. α
(i1)
1 , and

• J𝕩⋆0Ktck′ and J𝕩⋆1Ktck′ are folded into J𝕪 ′(i1)Ktck′ w.r.t. α
(i1)
1 .

(The above process is similar to step 4 in Cstr. 2.)

– For each i1 ∈ [3], {α(i1,i2)
2 }i2∈[3] are distinct, and for each i2 ∈ [3], by running step 4 of Πrr1cs,

• J𝕪 ′(i1)Ktck′ and J𝕪Ktck′ are folded into J(𝕩⋆)(i1,i2)K w.r.t. α
(i1,i2)
2 .

(The above process is similar to step 8 in Cstr. 2.)
– JiKck1 = Ji0Kck1 , JoKck2 = Jo1Kck2 , JsKck5 = Js0Kck5 + Js1Kck5 , and Ja(i1)Kck5 = Ja0Kck5 + α1 ·

Ja1Kck5 + α2
1 · (Js0Kck5 − Js1Kck5) (step 9 in Cstr. 2).

Assume that we have all witnesses and randomness of all J𝕫(i1,i2)Kpp, for all i1 ∈ [3] and all i2 ∈ [3],

such that J𝕫(i1,i2)Kpp ∈ RS,S′

gnr-inst. Then, we can compute 𝕫0, 𝕫1 and w such that

J𝕫0Kpp, J𝕫0Kpp ∈ RS,S′

gnr-inst and (J𝕫0Kpp, J𝕫1Kpp; w) ∈ RS′

gnr-cond

where relations RS,S′

gnr-inst and RS′

gnr-cond are defined in (16) and (17), respectively.

Proof. We split the proof into two steps: (i) extracting all witnesses of J𝕫iKpp ∀i ∈ {0, 1} and (ii)

showing the existence of w such that (J𝕫0Kpp, J𝕫1Kpp; w) ∈ RS′

gnr-cond. These steps are proceeded as
follows.
Extracting all Witnesses and Randomness of J𝕫iKpp ∀i ∈ {0, 1}. We proceed as follows:

– Extracting witnesses and randomness of JiKck1 and JoKck2 . As we have all witnesses and ran-
domness of all J𝕫(i1,i2)Kpp for all i1 ∈ [3] and all i2 ∈ [3], we know (from the statement of this
lemma) that JiKck1 = Ji0Kck1 and JoKck2 = Jo1Kck2 . Therefore, we also achieve all witnesses and
randomness of JiKck1 and JoKck2 according to Rmk. 3.
As in the statement of this lemma, for all i1 ∈ [3] and i2 ∈ [3],

J𝕫(i1,i2)Kpp ∈ RS,S′

gnr-inst =⇒ J𝕫(i1,i2)Kpp ∈ Rgnr-com =⇒ (JiKck1 , JoKck2 ∈ Rcom).

Hence, we deduce that JiKck1 , JoKck2 ∈ Rcom.
– Extracting witnesses and randomness of J𝕩0Ktck and J𝕩1Ktck. Since there are 3 distinct challenges
{α(i1)

1 }i1∈[3], and, for each i1 ∈ [3], J𝕩0Ktck and J𝕩1Ktck are folded into J𝕩(i1)Ktck w.r.t. α
(i1)
1 .

Moreover, we also have witnesses and randomness of J𝕫(i1,i2)Kpp, for all i1 ∈ [3] and all i2 ∈ [3],
containing those of J𝕩(i1)Ktck, for all i1 ∈ [3]. We hence can apply Lm. 1 (recalled in Lm. 9) to
extract witnesses and randomness of J𝕩0Ktck and J𝕩1Ktck.
As in the statement of this lemma, for all i1 ∈ [3] and i2 ∈ [3],

J𝕫(i1,i2)Kpp ∈ RS,S′

gnr-inst =⇒ J𝕩(i1)Ktck ∈ RS
rr1cs.

Hence, by Lm 1, we deduce that J𝕩0Ktck, J𝕩1Ktck ∈ RS
rr1cs.

– Extracting witnesses and randomness of J𝕪Ktck′ , J𝕩⋆0Ktck′ and J𝕩⋆1Ktck′ . For each i1 ∈ [3], since

there are 3 distinct challenges {α(i1,i2)
2 }i2∈[3], and, for each i2 ∈ [3], J𝕪 ′(i1)Ktck′ and J𝕪Ktck′ are

folded into J(𝕩⋆)(i1,i2)K w.r.t. α
(i1,i2)
2 . Moreover, we also have all witnesses and randomness of

all {J𝕫(i1,i2)Kpp}i1∈[3],i2∈[3] containing those of {J(𝕩⋆)(i1,i2)K}i1∈[3],i2∈[3]. For each i1 ∈ [3], we
hence can apply Lm. 1 (recalled in Lm. 9), we can extract all witnesses and randomness of
J𝕪 ′(i1)Ktck′ and J𝕪Ktck′ . Moreover, from the statement of this lemma, for all i1 ∈ [3], J𝕩⋆0Ktck′ and
J𝕩⋆1Ktck′ are folded into J𝕪 ′(i1)Ktck′ w.r.t. α

(i1)
1 . Since {α(i1)

1 }i1∈[3] are distinct, we again apply
Lm. 1 to extract all witnesses and randomness of J𝕩⋆0Ktck′ and J𝕩⋆1Ktck′ .
As in the statement of this lemma, for all i1 ∈ [3] and i2 ∈ [3],

J𝕫(i1,i2)Kpp ∈ RS,S′

gnr-inst =⇒ J(𝕩⋆)(i1,i2)Ktck′ ∈ RS′

rr1cs.

By Lm. 1, the extracted witnesses and randomness J𝕪 ′(i1)Ktck′ and J𝕪Ktck′ satisfy J𝕪 ′(i1)Ktck′ , J𝕪Ktck′ ∈
RS′

rr1cs. Again, by Lm. 1, J𝕩⋆0Ktck′ , J𝕩⋆1Ktck′ ∈ RS′

rr1cs as desired.
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– Extracting all witnesses and randomnesses of Ja0Kck5 , Ja1Kck5 , Js0Kck5−Js1Kck5 . For each i1 ∈ [3],

Ja(i1)Kck5 = Ja0Kck5 + α
(i1)
1 · Ja1Kck5 + (α

(i1)
1 )2 · (Js0Kck5 − Js1Kck5)

has α
(i1)
1 of degree 3. Moreover, we have distinct {α(i1)

1 }i1∈[3] and all witnesses and random-

ness of J𝕫(i1,i2)Ki1∈[3],i2∈[3] containing those of {Ja(i1)Kck5}i1∈[3]. Therefore, we can extract all
witnesses and randomnesses of Ja0Kck5 , Ja1Kck5 and Js′Kck5 = Js0Kck5 − Js1Kck5 by solving the

system of equations w.r.t. all {α(i1)
1 }i1∈[3].

As in the statement of this lemma, for all i1 ∈ [3] and i2 ∈ [3],

J𝕫(i1,i2)Kpp ∈ RS,S′

gnr-inst =⇒ J(a)(i1)Kck5 ∈ Rcom

=⇒ Ja0Kck5 , Ja1Kck5 , Js
′Kck5 ∈ Rcom.

– Extracting all witnesses and randomness of Js0Kck5 and Js1Kck5 . We have JsKck5 = Js0Kck5 +
Js1Kck5 in the problem statement, and Js′Kck5 = Js0Kck5 − Js1Kck5 . Moreover, we also have all
witnesses and randomness of JsKck5 and Js′Kck5 . Therefore, by solving equations, we can obtain
all witnesses and randomness of Js0Kck5 and Js1Kck5 .
As in the statement of this lemma, for all i1 ∈ [3] and i2 ∈ [3],

J𝕫(i1,i2)Kpp ∈ RS,S′

gnr-inst =⇒ JsKck5 = Js0Kck5 + Js1Kck5 ∈ Rcom.

Since Js′Kck5 = Js0Kck5 − Js1Kck5 ∈ Rcom as proved above, hence the extracted Js0Kck5 , Js1Kck5 ∈
Rcom.

Thus, we already achieve all witnesses and randomness of J𝕫iKpp for all i ∈ {0, 1}. By collecting
those extracted witnesses and randomness, we achieve

J𝕫iKpp = (lti, rti, J𝕩iKtck, JiiKck1 , JoiKck2 , J𝕩⋆i Ktck′ , JsiKck5 , JaiKck5) ∈ R
S,S′

gnr-inst.

Existence of w s.t. (J𝕫0Kpp, J𝕫1Kpp; w) ∈ RS′

gnr-cond. Notice that, from the statement of this

lemma, J𝕪Ktck′ = (1, 1, Jo0Kck2 , Ji1Kck1 , JwKck′3 , J0
n′

Kcke′). Since we have all witnesses and randomness
of J𝕪Ktck′ .

As proved above, J𝕪Ktck′ ∈ RS′

rr1cs. By the binding property of C, it implies that 𝕪.u = 1, 𝕪.e = 0n
′

and
A′ · c′ ◦B′ · c′ = C′ · c′

where c′ = (1∥o0∥i1∥w). Hence, it holds that the witness w in 𝕪 satisfies (J𝕫0Kpp, J𝕫1Kpp; w) ∈
RS′

gnr-cond. ⊓⊔

Before proceeding the proof of knowledge soundness of CFgnr, we additionally define the notion
of levels in hierarchical structures in the following Def. 21.

Definition 21 (Levels in Hierarchical Structures). We view each hierarchical structure HS ∈
HSlr, according to Def. 2, for any l, r ∈ ℕ satisfying l < r, as a binary tree such that

– Each node is labeled by (i, j) for all (i, j) ∈ HS;
– For all i ∈ [0, N − 1], (i, i+ 1) is a leaf node; and
– For all (i, j) ∈ HS satisfying i + 1 < j, by definition of HS, there exists a unique k such that

(i, k), (k, j) ∈ HS are direct child nodes of (i, j).

We denote the level of a node (i, j) ∈ HS to be level(i, j) = 0 if (i, j) is a leaf node, and level(i, j) =
max{level(i, k), level(k, j)}+ 1 if i+ 1 < j and (i, j), (i, k), (k, j) ∈ HS.

Lemma 12 (Knowledge Soundness of CFgnr). CFgnr is knowledge-sound if C is an additively

homomorphic and binding commitment scheme, protocol CF.Prove of CFgnr, for relation RS,S′

gnr-inst,

is knowledge-sound, by constructing extractor rewinding 9L times where L is the depth of HS ∈
HS0N . If L = O(logN), then 9L = poly(N) implying that extractor is PPT. Moreover, CFgnr has
soundness error

O
(
N

|𝔽 |
+ serrprf(pp) + negl(λ)

)
where serrprf(pp) is the soundness error of CF.Prove, with respect to relation RS,S′

gnr-inst.
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Proof. Assume that prover and verifier fold N instance-witness pairs, namely, (J𝕫(i−1)iKpp)Ni=1,
following a hierarchical structure HS ∈ HS0N to obtain the final instance-witness pair J𝕫0N Kpp and

proceed CF.Prove for J𝕫0N Kpp ∈ RS,S′

pvr-prf . The entire process can be summarize by writing

ΠCFgnr(HS, pp, {J𝕫(i−1)iKpp}i∈[N ]; sec)→ 1

as in (18) where sec is some prover’s secret. Let L be the depth of HS, namely, L = level(0, N)
where level : [0, N ]× [0, N ]→ ℤ+ is defined in Def. 21. We now show how to extract witnesses for
each level from L to 0 by constructing a sequence of extractors (Eℓ)Lℓ=0. Intuitively, when Eℓ, for
ℓ ∈ [0, L], finishes its job, all witnesses 𝕫ij , satisfying level(i, j) ≥ ℓ, are extracted.

Before extracting, we recall some important notations: For the notation

J𝕫Kpp = (lt, rt, J𝕩Ktck, JiKck1 , JoKck2 , J𝕩⋆Ktck′ , JsKck5 , JaKck5),

its public instance 𝕫̃ and corresponding randomness 𝕫̂ are defined in (50) and (51) respectively.
The public instance 𝕫̃ and randomness 𝕫̂ will be used throughout the proof.

We proceed the proof of this lemma in three steps: (i) extracting at top level, (ii) extracting
from below levels and (iii) analyzing soundness error.
Extracting at Top Level. At level L, we denote by EL to be the extractor at level L that,
on inputs pp and 𝕫̃0N of the form of (50), returns 𝕫0N and 𝕫̃0N . This extractor runs by calling
Eprf of CF.Prove, since CF.Prove is knowledge-sound, to obtain the witnesses and randomness for

J𝕫0N Kpp ∈ RS,S′

gnr-inst.
Extracting from Below Levels. For each level ℓ ∈ [0, L− 1], we construct extractor Eℓ for level
ℓ in a way that Eℓ first collects all nodes at level ℓ, such that corresponding witnesses are unable
to be extracted by Eℓ+1, into the setM′

ℓ. From here, we denote by Nℓ the nodes in higher levels
(from ℓ+ 1 to L) that nodes inM′

ℓ are direct children. Then, we additionally defineMℓ to be set
of nodes that are direct children of those in Nℓ. It can be seen that M′

ℓ ⊆ Mℓ. We refer readers
to check Fig. 4 for an example of making these sets, namely,M′

ℓ,Nℓ,Mℓ for all ℓ ∈ [0, L− 1].
Since each node n in Nℓ has direct pair of children m0,m1 in Mℓ, according to Lm. 11, if we

can repeat 9 times to

– rewind by folding pairs, e.g., J𝕫m0
Kpp and J𝕫m1

Kpp, at nodes m0,m1 into pair, e.g., J𝕫(i1,i2)n Kpp,
at node n by following (3, 3)-tree of transcript w.r.t. constraints for challenges {α(i1)

1 }i1∈[3] and

{α(i1,i2)
2 }i1∈[3],i2∈[3] specified in Lm. 11, and

– obtain witnesses and randomness for J𝕫(i1,i2)n Kpp (which is done by extractor Eℓ+1),

then we can extract witnesses and randomness for J𝕫m0Kpp ∈ R
S,S′

gnr-inst and J𝕫m1Kpp ∈ R
S,S′

gnr-inst with

conditions between them hold according to relation RS′

gnr-cond.
Notice that, since HS is a binary-tree structure, and any node n ∈ Nℓ has exactly 2 direct child

nodes inMℓ, we see thatMℓ partitions into |Nℓ| pairs such that each pair has a common parent
node in Nℓ. Hence, in the folding context, the foldings of |Nℓ| pairs are independent. Therefore,
we instruct extractor Eℓ to do the above process for all nodes in Nℓ with their respective pairs
of children in the following sense: Eℓ devises independently each (3, 3)-tree of challenges for each
folding among those |Nℓ| foldings. Eℓ finishes its job when all rewindings w.r.t. all those |Nℓ| (3, 3)-
trees of challenges finish. Then, we can extract all witnesses and randomness for pairs corresponding
to nodes inMℓ. Notice that, by working simultaneously, we only need 9 times of rewinding.

Since extract Eℓ uses Eℓ+1 as a subroutine with 9 times of rewinding, hence, in general, to
extract the full L-level hierarchical HS, we need 9L times of rewinding. Specifically, E0 calls E1 for
9 times and, for each call to E1, E1 again calls E2 for 9 times. This deduces that E0 calls E2 for 92

times. By generalizing, E0 calls EL for 9L times. Here, E0 is the one mentioned in the statement of
this lemma.

Thus, by rewinding 9L times with the above strategy, we can obtain all witnesses {wi}i∈N−1

and all witnesses and randomness for J𝕫(i−1)iKpp, for all i ∈ [N ], such that

N∧
i=1

(
J𝕫(i−1)iKpp ∈ RS,S′

gnr-inst

)
and

N−1∧
i=1

((
J𝕫(i−1)iKpp, J𝕫i(i+1)Kpp; wi

)
∈ RS′

gnr-cond

)
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For example, in Fig. 5, we describe a hierarchical structure HS ∈ HS03 for folding. This tree has depth
L = 3 such that level 0 is the set {(0, 1), (1, 2), (2, 3)}, level 1 is the set {(0, 2)} and level 2 is the set
{(0, 3)}. By using our strategy, extractor E2 extracts witness at node (0, 3). Then, extractor E1 extracts
witnesses at nodes (0, 2) and (2, 3). Notice that, (2, 3) is in level 0. Therefore, extractor E0 only needs to
extract witnesses at nodes (0, 1) and (1, 2) at level 0 since witness at (2, 3) is already extracted. Hence,

– E2 (extractor of CF.Prove) can extract at node (0, 3).
– E1 collectsM′

1 = {(0, 2)}. Then, we deduce

N1 = {(0, 3)} =⇒ M1 = {(0, 2), (2, 3)} =⇒ M′
1 ⊆M1.

– E0 collectsM′
0 = {(0, 1), (1, 2)}. Then, we deduce

N0 = {(0, 2)} =⇒ M0 = {(0, 1), (1, 2)} =⇒ M′
0 ⊆M0.

Fig. 4. An example for collectingM′
ℓ,Nℓ andMℓ for ℓ ∈ {0, 1} with a HS ∈ HS03.

(0,3)

(0,2)

(0,1) (1,2) (2,3)Level 0

Level 1

Level 2

Fig. 5. An example of HS ∈ HS03.

by calling extractor E0.

Soundness error analysis. An adversary breaking knowledge soundness of CFgnr either breaks
binding property of commitment scheme C or luckily receives bad challenges, namely, challenges
that benefits cheating prover, from verifier. We analyze the case of receiving bad challenges from
verifier.

By Lm. 11, having valid witnesses for three transcripts with respect to (3, 3)-tree of challenges(
α
(i1)
1 , α

(i1,i2)
2

)
i1,i2∈[3]

is sufficient to extract back valid witnesses 𝕫i for all i ∈ {0, 1}. Hence, we

see that the probability that α1
$← 𝔽 is bad is at most 2

|𝔽 | . Moreover, the probability that α2 is

bad is also at most 2
|𝔽 | given a good α1. Hence, the probability that (α1, α2) is bad is at most

2
|𝔽 | +

(
1− 2

|𝔽 |

)
· 2
|𝔽 | ≤

4
|𝔽 | .

Now recall that, at level ℓ ∈ [0, L − 1], there are |Nℓ| independent foldings. By using union

bound, the probability that bad challenges appear among those |Nℓ| foldings is at most 4·|Nℓ|
|𝔽 | .

By denoting Pℓ, for ℓ ∈ [0, L− 1], to be the probability that bad challenges appear among the
foldings from levels 0 to ℓ, we see

P0 = |N0| ·
4

|𝔽 |
and

Pℓ ≤ Pℓ−1 + (1− Pℓ−1) ·
4 · |Nℓ|
|𝔽 |

= Pℓ−1 +
4 · |Nℓ|
|𝔽 |

− 4 · |Nℓ| · Pℓ−1

|𝔽 |

≤ Pℓ−1 +
4 · |Nℓ|
|𝔽 |

≤
ℓ∑
i=0

4 · |Ni|
|𝔽 |

=
4 ·

∑ℓ
i=0 |Ni|
|𝔽 |

∀ℓ ∈ [1, L− 1].
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Hence, we see that PL−1 =
4·
∑L−1

i=0 |Ni|
|𝔽 | = 4·(N−1)

|𝔽 | since there are exactly N − 1 such foldings.

Finally, since we denoted serrprf(pp) to be the soundness error of protocol CF.Prove, with respect

to relation RS,S′

gnr-inst. We see that soundness error of ΠCFgnr is upper bounded by

PL−1 + (1− PL−1) · serrprf(pp) + negl(λ)

≤ PL−1 + serrprf(pp) + negl(λ)

= O
(
N

|𝔽 |
+ serrprf(pp) + negl(λ)

)
where negl(λ) stands for the probability of breaking binding property of C. Hence, we conclude the
proof. ⊓⊔

HVZK of CFgnr. HVZK follows the following Lm. 13.

Lemma 13 (HVZK of CFgnr). CF scheme CFgnr is HVZK if C is an additively homomorphic and

hiding commitment scheme and CF.Prove, for relation RS,S′

gnr-inst, is (honest-verifier) zero-knowledge.

Proof. Let tr be the transcript

tr← View(ΠCFgnr(HS, pp, (𝕫̃(i−1)i)
N
i=1; sec))

as defined in (9) with respect to CF scheme CFgnr where 𝕫̃(i−1)i is defined in (50). Notice that
tr contains the transcript of all executions of CF.Fold, the final instance 𝕫̃0N and execution of
CF.Prove. Hence, we can write

tr = (trfold∥𝕫̃0N∥trprf)
where trfold is the transcript of all executions of CF.Fold and trprf is the transcript of CF.Prove when
𝕫̃0N is achieved after all foldings.

Assume that Sprove is the simulator for CF.Prove, namely, simulator of ZAKoK argument

CF.Prove for relation RS,S′

gnr-inst. To show that CFgnr satisfies HVZK, we first call simulator Sprove on
inputs (pp, 𝕫̃0N ) to obtain transcript

tr′ =
(
trfold∥𝕫̃0N∥tr′prf

)
where tr′prf is simulated transcript output by Sprove. By HVZK of CF.Prove, we see that tr and tr′

are indistinguishable.
We now show how to construct

tr⋆ = (tr⋆fold∥𝕫̃⋆0N∥tr⋆prf),

namely, the simulated transcript by simulating not only CF.Prove, but also CF.Fold. Then, we will
show that tr′ and tr⋆ are indistinguishable. Consequently, tr and tr⋆ are indistinguishable implying
HVZK of CFgnr.
Constructing tr⋆. Notice that, for each folding, prover needs to send (g̃, w̃, g̃1), namely, commit-
ments in JgKcke, JwKck′3 and Jg1Kcke′ as in Cstr. 2, before receiving challenge α1, and g̃2, namely,
commitment in Jg2Kcke′ in Cstr. 2, before receiving α2. Therefore, simulator simply commits to
zero vectors with randomness sampled appropriately, namely, following the correct distribution of
randomness sampling, to obtain those dummy commitments g̃, w̃, g̃1 and g̃2. By hiding property
of C, these dummy commitments are indistinguishable from the real ones in the real transcripts.
Hence, when simulating, simulator S of CF.Prove only computes dummy commitments and send
to verifier to obtain (tr⋆fold∥𝕫̃⋆0N ). Then, it calls simulator Sprove, on input (pp, 𝕫̃⋆0N ), of CF.Prove to
get the simulated transcript tr⋆prf . Finally, form the simulated transcript tr⋆ = (tr⋆fold∥𝕫̃⋆0N∥tr⋆prf).

We now analyze how tr⋆ is indistinguishable from tr′. We first notice that (tr⋆fold∥𝕫̃⋆0N ) and
(trfold∥𝕫̃0N ) are indistinguishable according to the hiding property of commitment scheme C. Then,
(pp, 𝕫̃⋆0N ) is passed to Sprove for producing simulated proof. Notice that, if Sprove is unable to
produce tr⋆prf , then we can construct a distinguisher to employ Sprove as a sub-routine to distinguish
(tr⋆fold∥𝕫̃⋆0N ) and (trfold∥𝕫̃0N ), since simulator Sprove can produce simulated proof on input (pp, 𝕫̃0N ),
contradicting the hiding property of C. Similarly, if the output tr⋆prf is distinguishable from tr′prf ,
then it also contradicts hiding property of commitment scheme C.

Therefore, tr⋆ and tr′ are indistinguishable implying indistinguishability between tr⋆ and tr.
Thus, HVZK is guaranteed. ⊓⊔
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Remark 9. A variant of Lm. 13 is witness indistinguishabibility of CFgnr which can be formalized
that CFgnr is (statistically) witness-indistinguishable if C is an additively homomorphic and (sta-

tistically) hiding commitment scheme and CF.Prove, for relation RS,S′

gnr-inst, is (statistically) witness-
indistinguishable.

The proof of the above fact is straightforward since the two transcripts corresponding to the two
witness mainly contains commitments and the final proof which ensure witness indistinguishability
by hiding of commitments and witness indistinguishability of the final proof.

C pvRAM From CF Scheme CFgnr (Extended)

In Appdx. C.1, we discuss the set of constraints that S = (A,B,C) and S′ = (A′,B′,C′) capture
as said in Sec. 6.2. Then, in Appdx. C.2, we provide the proof of Thm. 2.

C.1 Detailed Description of Public Matrices for Construction of Πpvr

In this section, we provide a detail description of the public matrices S = (A,B,C) and S′ =
(A′,B′,C′) for the construction of Πpvr in Sec. 6. Recall (29) from Section 6.2 that, for all i ∈ [N ],

zi1 = (pci∥regi∥macsi∥macs⋆i ), zi2 = (pci∥regi∥macsi∥macs′i), zi3 = plksti,

zi4 = auxi, zi5 = (plkivi∥mivi∥miv′i)

Here, we slightly change notation for zi1 to contain macs⋆i instead of macs′i so that, below, we use
A,B,C to enforcemacs⋆i = macs′i. Moreover, we also have global challenge gchal = (γ, δ, χ, ψ, τ, ω) ∈
𝔽 6. By denoting zi = (1∥zi1∥ . . . ∥zi5), we now describe the meaning of matrices A,B and C for
the conditions of a single computation step below:

A · zi ◦B · zi = C · zi

⇐⇒



macs⋆i = macs′i,

(pci, regi,macsi) = Fpci(regi,macsi, auxi)

macsi and macsi

are related through constraints in (34)

by viewing macsi−1 as macsi

macsi satisfies first equation in (33)

plksti is the PLONK structure of Fpci

w.r.t randomness γ, δ

plkivi(χ+ plkcpi) = 1 where plkcpi = ⟨(pci∥plksti),ψ⟩
mivi(τ +mcpi) ∈ {0, 1} where mcpi = ⟨macsi,ω⟩
miv′i(τ +mcp′i) ∈ {0, 1} where mcp′i = ⟨macs′i,ω⟩

Next recall that for all i ∈ [N ]

ii = (pci∥regi∥macsi∥macs⋆i ) oi = (pci∥regi∥macsi∥macs′i),

ci = (1∥oi−1∥ii∥wi)

where wi is a supporting witness. We describe the meaning of matrices A′,B and C′ for the
conditions of consecutive computation steps below:

A′ · ci ◦B′ · ci = C′ · ci ⇐⇒



macsi = macsi−1

macs′i−1 and macs⋆i
are related through constraints in (34)

by viewing macs′i as macs⋆i
regi = regi−1, pci = pci−1
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C.2 Proof of Thm. 2

For readability, we recall Thm. 2 in the following Thm. 5.

Theorem 5 (Recall of Thm. 2). If C is secure homomorphic commitment scheme and Πpvr-prf is

an HVZKAoK/HVZKPoK for relation RS,S′

pvr-prf then Πpvr is an HVZKAoK/HVZKPoK for relation
Rram in (30) with soundness error O(nplk · (N + T )/|𝔽 |+serrpvr-prf(pp)+negl(λ)) where serrpvr-prf(pp)
is soundness error of Πpvr-prf .

Proof (Proof of Thm. 2). The proof follows Lm. 14, 15 and 16. Specifically, we present Lm. 14,
15 and 16 for proving the security of Πfold-gnr in Thm. 2. Specifically, Lm. 14, 16 and 16 are for
correctness, knowledge soundness and HVZK of Πpvr, respectively, hence together they imply the
proof of Thm. 2. ⊓⊔

Correctness of Πpvr. Correctness follows Lm. 14.

Lemma 14 (Completeness of Πpvr). If C is perfectly correct and Πpvr-prf , for relation RS,S′

pvr-prf ,
is perfectly complete, then Πpvr is perfectly complete.

Proof. The proof is straightforward. ⊓⊔

Knowledge Soundness of Πpvr. Knowledge soundness follows Lm. 15 below. It employs Lm. 15
for extracting the witnesses and prove that the extracted witnesses together satisfy (i) the con-
straints of a single computation step, (ii) the constraints of consecutive computational steps and
(iii) constraints of all computation steps, as specified in Sec. 6.1. Details are as follows.

Lemma 15 (Knowledge Soundness of Πpvr). If C is an additively homomorphic and binding

and Πpvr-prf , for relation RS,S′

pvr-prf , is knowledge-sound, then Πpvr is knowledge-sound. Moreover, Πpvr

has soundness error

O
(
nplk · (N + T )

|𝔽 |
+ serrpvr-prf(pp) + negl(λ)

)
where serrpvr-prf(pp) is soundness error of Πpvr-prf .

Proof. Since Πpvr-prf is knowledge-sound, it is also a knowledge-sound proof for relation RS,S′

gnr-inst

because it is implied by relation Πpvr-prf as specified in (32). By Lm. 12, we see that knowledge
soundness of step 7 implies knowledge soundness protocol ΠCFgnr defined in (18). Hence, we can

extract 𝕫ij , for all (i, j) ∈ HS such that J𝕫ijKpp ∈ RS,S′

gnr-inst. By Πpvr-prf , it also holds that J𝕫0N Kpp ∈
RS,S′

pvr-prf . Moreover, all of the conditions between to-be-folded instance-witness pairs also hold, i.e.,∧
i,k,j s.t.

(i,k),(k,j)∈HS

(
(J𝕫ikKpp, J𝕫kjKpp; wk) ∈ RS′

gnr-cond

)

implying (J𝕫(i−1)iKpp, J𝕫i(i+1)Kpp; wi) ∈ RS′

gnr-cond for all i ∈ [N − 1].

Moreover, we also can extract (mulj)
T
j=1 and randomness (m̂j)

T
j=1 by the extractor of Πpvr-prf

for relation RS,S′

pvr-prf such that

(ckmj , m̃j ; mulj , m̂j) ∈ Rcom

for all j ∈ [T ]. Below, it suffices that our extracted witnesses 𝕫(i−1)i together satisfy the constraints
of a single computation step, constraints between consecutive computation steps, and constraints
for all computation steps for a RAM program, as specified in Sec. 6.1 and we are done.
Extracting components for single computation steps. Recall that in Sec. 6.2, we can parse S =
(A,B,C) and A,B and C are public matrices that can be publicly determined from global chal-

lenge gchal = (γ, δ, χ, ψ, τ, ω). Since J𝕫(i−1)iKpp ∈ RS,S′

gnr-inst, it captures the fact that

J𝕩(i−1)iKtck ∈ RS
rr1cs
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where J𝕩(i−1)iKtck is a component in J𝕫(i−1)iKpp according to the form (12). Hence, for each i ∈ [N ],
by following Sec. 2.2, we can define ui = 𝕩(i−1)i.u, zi = (𝕩(i−1)i.pub∥𝕩(i−1)i.z1∥ . . . ∥𝕩(i−1)i.z5) and
ei = 𝕩(i−1)i.e such that

A · zi ◦B · zi = ui ·C · zi + ei.

According to protocolΠpvr in Cstr. 4, it holds that 𝕩(i−1)i.pub = 1 and 𝕩(i−1)i.ẽ = C.Commitcke(0
n, 0),

i.e., 𝕩(i−1)i.ẽ is commitment in J𝕩(i−1)i.eKcke, since these public values are computed by verifier.
By the binding property of commitment scheme C, it should hold that 𝕩(i−1)i.e = 0n. Hence, we
see that

A · z′i ◦B · z′i = C · z′i (52)

where z′i = (1∥𝕩(i−1)i.z1∥ . . . ∥𝕩(i−1)i.z5). By following (29) in Sec. 6.2, we parse

𝕩(i−1)i.z1 = (pci∥regi∥macsi∥macs′i),

𝕩(i−1)i.z2 = (pci∥regi∥macsi∥macs′i),

𝕩(i−1)i.z3 = plksti,

𝕩(i−1)i.z4 = auxi, and

𝕩(i−1)i.z5 = (plkivi∥mivi∥miv′i)

Here, the fact that both 𝕩(i−1)i.z1 and 𝕩(i−1)i.z2 contain the same macs′i is due to the constraints
in S = (A,B,C), specified in Appdx. C.1. Hence, we have

z′i = (1∥pci∥regi∥macsi∥pci∥regi∥macsi∥macs′i
∥plksti∥auxi∥plkivi∥mivi∥miv′i)

(53)

for all i ∈ [N ]. By (52), we deduce that the computation of the i-th execution step is sound with
respect to the above detailed parsing of z′i in (53).

Since A,B,C realize the testing of hidden evaluation of hidden circuits by employing PLONK’s
arithmetization with respect to plksti, for all i ∈ [N ], by employing challenges γ and δ, according

to Appdx. A.3, the error probability for this test is at most
N(nplk−4ngate)

|𝔽 | ≤ N ·nplk

|𝔽 | , by using union

bound over the N computation steps, where ngate is the number of gates in circuit corresponding
to plksti for all i ∈ [N ].
Extracting components for conditions. For each i ∈ [N − 1], by parsing S′ = (A′,B′,C′), where
A′,B′,C′ are public matrices defined in Sec. 6.2, recall that our extracted witnesses 𝕫(i−1)i and
auxiliary witnesses wi satisfy

(J𝕫(i−1)iKpp, J𝕫i(i+1)Kpp; wi) ∈ RS′

gnr-cond,

it holds that
A′ · ci ◦B′ · ci = C′ · ci

where ci = (1∥o(i−1)i∥ii(i+1)∥wi). However, since õ(i−1)i = 𝕩(i−1)i.z̃2 and ĩi(i+1) = 𝕩i(i+1).z̃1, where

õ(i−1)i, 𝕩(i−1)i.z̃2, ĩi(i+1), 𝕩i(i+1).z̃1 are commitments in Jo(i−1)iKck2 , J𝕩(i−1)i.z2Kck2 , Jii(i+1)Kck1 ,
J𝕩i(i+1).z1Kck1 , respectively, according to the settings

Ji(i−1)iKck1 := Jzi1Kck1 ,
Jo(i−1)iKck2 := Jzi2Kck2 ,
J𝕩(i−1)iKtck := (1, 1, Jzi1Kck1 , . . . , Jzi5Kck5 , J0

nKcke)

in Cstr. 4. By the binding property of C, it holds that

ci = (1∥pci∥regi∥macsi∥macs′i∥pci+1∥regi+1∥macsi+1∥macs′i+1∥wi).

Hence, constraints between two consecutive steps holds with respect to matrices A′,B′ and C′ and
relation RS′

gnr-cond.
Guaranteeing constraints for all computation steps. For all i, k, j ∈ ℕ satisfying (i, k), (k, j) ∈ HS,
our extracted witnesses satisfy sij = sik + skj according to the proof of Lm. 12, we deduce that

N∑
i=1

s(i−1)i = s0N .
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According to step 6 in Cstr. 4, since verifier has computed s̃(i−1)i = 𝕩(i−1)i.z̃5, by the binding
property of C, it holds that

s(i−1)i = (plkivi∥mivi∥miv′i).

By parsing s0N = (plkiv∥miv∥miv′), we see that
∑N
i=1 plkivi = plkiv,∑N
i=1 mivi = miv,∑N
i=1 miv′i = miv′.

Since Πpvr-prf for relation RS,S′

pvr-prf guarantees that

plkiv =

T∑
j=1

mulj · (χ+ plkcp′j)
−1 and miv = miv′,

we hence see that{∑N
i=1 plkivi =

∑T
j=1 mulj ·

(
χ+

〈
(j∥plkst′j),

(
ψk

)nplk

k=0

〉)−1
, and∑N

i=1 mivi =
∑N
i=1 miv′i

according to (21) for using plkcp′j =
〈
(j∥plkst′j),

(
ψk

)nplk

k=0

〉
. By (52) and (53), we know that

plkivi =
(
χ+

〈
(pci−1∥plksti),

(
ψk

)nplk

k=0

〉)−1

,

according to (22), and{
mivi ̸= 0 ∧

(
τ +

〈
macsi, (ω

k)3k=0

〉)
·mivi ∈ {0, 1}, and

miv′i ̸= 0 ∧
(
τ +

〈
macs′i, (ω

k)3k=0

〉)
·miv′i ∈ {0, 1},

according to (25), (26) and (27). We now divide the proof into two cases, namely, testing tuple
lookup and testing tuple permutation, as follows:

– Testing tuple lookup. By the above extractions, we know that

N∑
i=1

(
χ+

〈
(pci−1∥plksti),

(
ψk

)nplk

k=0

〉)−1

=

T∑
j=1

mulj ·
(
χ+

〈
(j∥plkst′j),

(
ψk

)nplk

k=0

〉)−1

.

By employing (45) and Lm. 7, if {(pci−1∥plksti)}Ni=1 ̸⊆ {(j∥plkst
′
j)}Tj=1, then the above equality

holds with probability at most

nplk(N + T − 1)

|𝔽 | − T
= O

(
nplk · (N + T )

|𝔽 |

)
.

– Testing tuple permutation. Recall that{
mivi =

(
τ +

〈
macsi, (ω

k)3k=0

〉)−1 ∀i ∈ [N ],

miv′i =
(
τ +

〈
macs′i, (ω

k)3k=0

〉)−1 ∀i ∈ [N ]

if the case that τ +
〈
macsi, (ω

k)3k=0

〉
= 0 or τ +

〈
macs′i, (ω

k)3k=0

〉
= 0, for some i ∈ [1, N ],

does not happen. Since τ
$← 𝔽 and ω

$← 𝔽 , such a case happens with probability at most 6N
|𝔽 |

by Schwartz-Zippel lemma and union bound. In case that such a case does not happen, by
employing (42) and Lm. 4, if (macsi)

N
i=1 and (macs′i)

N
i=1 are not permutation of each other,

then
N∑
i=1

mivi =
N∑
i=1

miv′i
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if the case that there exists some i ∈ [N ] satisfying τ+
〈
macsi, (ω

k)3k=0

〉
= 0 or τ+

〈
macs′i, (ω

k)3k=0

〉
=

0 does not happen. Since τ
$← 𝔽 and ω

$← 𝔽 , such a case happens with probability at most
6N
|𝔽 | by Schwartz-Zippel lemma and union bound. In case that such a case does not happen,

by employing (42) and Lm. 4, if (macsi)
N
i=1 and (macs′i)

N
i=1 are not permutation of each other,

then
N∑
i=1

mivi =
N∑
i=1

miv′i

happens with probability at most 3(2N−1)
|𝔽 | . Hence, the error probability for checking tuple

permutation is at most
12N − 3

|𝔽 |
= O

(
N

|𝔽 |

)
by using union bound.

– Testing copy constraints in PLONK. Since we need two additional challenges γ, δ
$← 𝔽 for

testing the copy constraints of each computation step, by union bound, the error probability
for checking copy constraints for all steps is at most nwit ·N/ |𝔽 | ≤ nplk ·N/ |𝔽 | which is equal
to

O
(
nplk ·N
|𝔽 |

)
where error probability of each step is O

(
nplk

|𝔽 |

)
according to Appdx. A.3.

Correct input and output. Parse

i0N = (pc∥reg∥macs∥macs⋆) and o0N = (pc∥reg∥macs∥macs′).

Notice that relation Πpvr enforces pc = 1, reg = i, reg = o and (cki, ĩ; i, î) ∈ Rcom, by the binding
property of C.

For all i, k, j ∈ ℕ satisfying (i, k), (k, j) ∈ HS, since verifier has computed ĩij = ĩik and õij = õkj
according to step 9 of ΠCFgnr in Cstr. 2, by the binding property of C, it holds that i0N = i01 and
o0N = o(N−1)N .

Moreover, according to step 6 of Cstr. 4, since verifier has set ĩ(i−1)i = 𝕩(i−1)i.z̃1 and õ(i−1)i =
𝕩(i−1)i.z̃2 for all i ∈ [N ], by binding property of C, it also holds that i0N = i01 = 𝕩01.z1 and
i0N = o(N−1)N = 𝕩(N−1)N .z2.

Hence, i = reg and o = reg are the input and output, respectively, of the first and last computa-
tion steps, respectively. Moreover, pc = 1 implies that the first instruction is the starting instruction

in the instruction set. By using Πpvr-prf for relation RS,S′

pvr-prf in (32), we know that reg = regin and
reg = regout implying that RAM program receives as input regin and returns output regout correctly.
Analysis of soundness error. In summary, soundness error of Πpvr is upper bounded by soundness
error of ΠCFgnr plus the probability that testing correct executions of hidden circuits, testing tuple
lookup, testing tuple permutation or testing copy constraints is error is at most

N · nplk
|𝔽 |

+
nplk(N + T − 1)

|𝔽 | − T
+

12N − 3

|𝔽 |
= O

(
nplk · (N + T )

|𝔽 |

)
.

Notice that the proof ΠCFgnr has soundness error

O
(
N − 1

|𝔽 |
+ serrpvr-prf(pp) + negl(λ)

)
according to Lm. 12 where serrpvr-prf(pp) is soundness error of Πpvr-prf . Hence, soundness error of
Πpvr is

O
(
nplk · (N + T )

|𝔽 |

)
+O

(
N − 1

|𝔽 |
+ serrpvr-prf(pp) + negl(λ)

)
= O

(
nplk · (N + T )

|𝔽 |
+ serrpvr-prf(pp) + negl(λ)

)
.

Thus, we conclude the proof. ⊓⊔
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HVZK of Πpvr. HVZK of Πpvr follows Lm. 16.

Lemma 16 (HVZK of Πpvr). If C is an additively homomorphic and hiding commitment scheme

and Πpvr-prf , for relation RS,S′

pvr-prf , is HVZK, then Πpvr is HVZK.

Proof. Since Πpvr-prf is HVZK, it implies that ΠCFgnr is HVZK according to Lm. 13. Since Πpvr

employs ΠCFgnr as a sub-routine, we can straightforwardly conclude that Πpvr is HVZK. ⊓⊔
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