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Abstract

Non-malleable codes are fundamental objects at the intersection of cryptography and coding
theory. These codes provide security guarantees even in settings where error correction and
detection are impossible, and have found applications to several other cryptographic tasks. One
of the strongest and most well-studied adversarial tampering models is 2-split-state tampering.
Here, a codeword is split into two parts which are stored in physically distant servers, and
the adversary can then independently tamper with each part using arbitrary functions. This
model can be naturally extended to the secret sharing setting with several parties by having
the adversary independently tamper with each share. Previous works on non-malleable coding
and secret sharing in the split-state tampering model only considered the encoding of classical
messages. Furthermore, until recent work by Aggarwal, Boddu, and Jain (IEEE Trans. Inf.
Theory 2024 & arXiv 2022), adversaries with quantum capabilities and shared entanglement
had not been considered, and it is a priori not clear whether previous schemes remain secure in
this model.

In this work, we introduce the notions of split-state non-malleable codes and secret sharing
schemes for quantum messages secure against quantum adversaries with shared entanglement.
Then, we present explicit constructions of such schemes that achieve low-error non-malleability.
More precisely, we construct efficiently encodable and decodable split-state non-malleable codes
and secret sharing schemes for quantum messages preserving entanglement with external systems
and achieving security against quantum adversaries having shared entanglement with codeword

length n, any message length at most nΩ(1), and error ε = 2−nΩ(1)

. In the easier setting of
average-case non-malleability, we achieve efficient non-malleable coding with rate close to 1/11.
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1 Introduction

Non-Malleable Codes (NMCs), introduced in the work of Dziembowski, Pietrzak, and Wichs
[DPW18], are now considered fundamental cryptographic primitives that provide security guar-
antees even in adversarial settings where error correction and detection are impossible. Informally,
NMCs guarantee that an adversary cannot change the encoding of a message into that of a related
message. They encode a classical message M into a codeword C in such a way that tampering
C into f(C) using an allowed tampering function f results in the decoder either outputting the
original message M or a message that is unrelated/independent of M . Note that it is impossible to
construct NMCs that protect against arbitrary tampering functions. This is because an adversary
could simply apply the decoder to C, recovering the message M , and then output the encoding of
a related message M +1 as the tampered version of C. Therefore, previous work on non-malleable
coding has focused on constructing NMCs for restricted, but still large and meaningful, classes of
tampering functions.

One of the strongest and most studied tampering models is split-state tampering, introduced
by Liu and Lysyanskaya [LL12]. In the 2-state version of this model (which is the hardest), we
view a codeword C as being composed of two parts, E1 and E2, and an adversary is allowed to
independently tamper with each part using an arbitrary tampering function. In other words, a split-
state tampering adversary consists of a pair of arbitrary functions (f, g), and a codeword (E1, E2)
is tampered to (f(E1), g(E2)) (see Figure 1 for a diagram of this model). The split-state model
is meaningful because we can imagine that the two parts of the codeword are stored in different
physically isolated servers, making communication between tampering adversaries infeasible.

The notion of non-malleable secret sharing has also been widely studied as a strengthening of
non-malleable codes. Secret sharing, dating back to the work of Blakley [Bla79] and Shamir [Sha79],
is a fundamental cryptographic primitive where a dealer encodes a secret into p shares and dis-
tributes them among p parties. Each secret sharing scheme has an associated monotone1 set
Γ ⊆ 2[p], usually called an access structure, whereby any set of parties T ∈ Γ, called authorized
sets, can reconstruct the secret from their shares, but any unauthorized set of parties T ̸∈ Γ gains
essentially no information about the secret. One of the most natural and well-studied types of
access structures are threshold access structures, where a set of parties T is authorized if and only
if |T | ≥ t for some threshold t.

Non-Malleable Secret Sharing (NMSS), generalizing non-malleable coding, was introduced by
Goyal and Kumar [GK18a] and has received significant interest in the past few years in the classical
setting. NMSS schemes additionally guarantee that an adversary who is allowed to tamper all the
shares (according to some restricted tampering model) cannot make an authorized set of parties
reconstruct a different but related secret. Non-malleable secret sharing is particularly well-studied
in the context of the split-state tampering model described above, whereby an adversary can in-
dependently tamper with each share. Once again, the motivation is that shares are being held
in physically distant devices, making communication between the several tampering adversaries
infeasible.

The split-state and closely related tampering models for codes and secret sharing schemes have
witnessed a flurry of work in the past decade [LL12, DKO13, CG16, CG14, ADL18, CGL20, Li15,
Li17, GK18a, GK18b, ADN+19, BS19, FV19, Li19, AO20, BFO+20, BFV21, GSZ21, AKO+22,
CKOS22, Li23], culminating in recent explicit constructions of classical split-state NMCs of rate

1A set Γ ⊆ 2[p] is monotone if A ∈ Γ and A ⊆ B imply that B ∈ Γ.
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1/3 [AKO+22] and constructions with a smaller constant rate but also smaller error [Li23] (with
a known upper bound on the rate being 1/2 [CG16]). Split-state NMCs and NMSS schemes and
related notions have also found applications in other cryptographic tasks, such as non-malleable
commitments, secure message transmission, and non-malleable signatures [GPR16, GK18a, GK18b,
ADN+19, SV19, CKOS22].

Split-state tampering and quantum computing. Given the rapid development of quantum
technologies, it is natural to consider NMCs and NMSS schemes in the quantum setting and examine
how adversaries with quantum capabilities affect previous assumptions made about tampering
models. For instance, all known NMCs are tailored to classical messages, but it is equally important
to design non-malleable coding schemes that allow us to encode quantum states as well. Moreover,
the possibility of attackers with quantum capabilities challenges the independence assumption made
in the split-state models described earlier. Although servers holding different parts of the codeword
(or different secret shares) may be physically isolated from each other, the tampering adversaries
attacking each server may have pre-shared a large amount of entangled quantum states. Access to
such shared entanglement can provide non-trivial advantages to these adversaries beyond what has
been considered in the classical tampering models. For example, in the Clauser-Horne-Shimony-
Holt (CHSH) game [CHSH69], non-communicating parties can use local measurements on both
halves of an EPR state to achieve a higher success probability than what is possible using fully
classical strategies. Therefore, it is not clear whether any of the existing classical NMCs and
NMSS schemes remain secure in the augmented split-state tampering models where the adversary
is allowed to make use of arbitrary shared entanglement across multiple states (see Figure 2 for
a diagram of the split-state tampering model for two states). The only exception to this are the
recent work of Aggarwal, Boddu, and Jain [ABJ24] and the concurrent work of Batra, Boddu, and
Jain [BBJ23]. The former constructs explicit NMCs for classical messages that are secure in the
2-split-state tampering model, while the latter focuses on explicit quantum-secure non-malleable
randomness encoders (NMRE) with a higher rate in the same tampering model, and uses these
objects to non-malleable codes in the 3-split-state model2 for quantum messages.

The shortcomings of existing split-state non-malleable coding schemes in the face of quantum
messages and adversaries raise the following natural question:

Can we design efficient 2-split-state NMCs and split-state NMSS schemes for quantum
messages secure against quantum adversaries with shared entanglement?

We resolve this question in the affirmative.

1.1 Our contributions

1.1.1 Split-state non-malleable codes for quantum messages

As our first contribution, we propose a definition of split-state non-malleability for quantum mes-
sages against adversaries with shared entanglement. Our definition is a natural extension of the
one considered for classical messages in the literature [DPW18]. Here, we present it specifically for
the 2-split-state case, which is our main setting of interest.

Let σM be an arbitrary state in a message registerM , and σMM̂ be its canonical purification. We
consider a (2-split-state) coding schemes given by an encoding Completely Positive Trace-Preserving

2Meaning that the codeword is divided into three parts and the adversary tampers each part independently.
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Figure 1: Classical split-state tampering model.
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Figure 2: Split-state tampering model with shared entanglement. This shared entanglement is
stored in registers W1 and W2.
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(CPTP) map Enc : L(HM ) → L(HE1 ⊗HE2) and a decoding CPTP map Dec : L(HE1 ⊗HE2) →
L(HM ), where L(H) is the space of all linear operators in the Hilbert space H.

The most basic property we require of this coding scheme (Enc,Dec) is correctness (which
includes preserving entanglement with external systems), i.e.,

Dec(Enc(σMM̂ )) = σMM̂ ,

where we use the shorthand T to represent the CPTP map T ⊗I whenever the action of the identity
operator I is clear from context.

Before we proceed to define split-state non-malleability, we describe the split-state adversar-
ial tampering model in the quantum setting. Let ρE1E2 = Enc(σM ) be the split-state encod-
ing of message σM . A split-state tampering adversary A is specified by two tampering maps3

U : L(HE1 ⊗ HW1) → L(HE1 ⊗ HW1) and V : L(HE2 ⊗ HW2) → L(HE2 ⊗ HW2) along with a
quantum state |ψ⟩W1W2 that captures the shared entanglement between the non-communicating
tampering adversaries. Finally, the decoding procedure Dec is applied to the tampered codeword.
Figure 2 presents a diagram of this tampering model. Let

η = Dec
(
(U ⊗ V )

(
Enc(σMM̂ )⊗ |ψ⟩⟨ψ|

)
(U † ⊗ V †)

)
be the final state after applying the split-state tampering adversary A followed by the decoding
procedure.

We are now ready to define split-state non-malleability of the coding scheme (Enc,Dec).

Definition 1 (Worst-case and average-case non-malleable codes for quantum messages). We say
that the coding scheme (Enc,Dec) is a (worst-case) ε-non-malleable code for quantum messages if
for every split-state adversary A = (U, V, |ψ⟩W1W2) and every quantum message σM (with canonical
purification σMM̂ ) it holds that

ηMM̂ ≈ε pAσMM̂ + (1− pA)γAM ⊗ σM̂ , (1)

where pA ∈ [0, 1] and γAM depend only4 on the split-state adversary A, and ≈ε denotes that the two
states are ε-close in trace distance.

If Equation (1) is only guaranteed to hold when σM is the maximally mixed state, then we say
that (Enc,Dec) is an average-case ε-non-malleable code for quantum messages.

Remark 1. Intuitively, our definition of average-case non-malleability for quantum messages in
Definition 1 is analogous to requiring that the average non-malleability error of a given classical
code is small when averaged over a uniformly random message. Later, in Lemma 9, we show that
every average-case non-malleable code for quantum messages is also a worst-case non-malleable
code, though with a larger error.

3Tampering maps are assumed to be unitary without any loss of generality. This is because, in the presence
of unbounded arbitrary shared entanglement, tampering with unitary maps is equivalent to tampering with CPTP
maps. More precisely, consider a tampering adversary that uses two CPTP maps Φ1 and Φ2 acting on registers
E1W1 and E2W2, respectively. Then, the action of this adversary is equivalent to another adversary who tampers
using Stinespring isometry extensions U and V of Φ1 and Φ2, respectively, which act on E1W1A1 and E2W2A2,
respectively, where A1 and A2 are unentangled ancilla registers set to |0⟩ without loss of generality and can be seen
as part of the shared entanglement.

4By this, we mean that pA can be computed and the state γA
M can be prepared without the knowledge of the

input message σMM̂ .
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Definition 1 can be readily extended to encompass arbitrary classes of tampering adversaries.
However, for the sake of readability, we do not provide the generalization here. In the context of
split-state tampering, we present the following two results.

Our first result gives an explicit average-case 2-split-state NMC for quantum messages with rate
arbitrarily close to 1/11.

Theorem 1 (Average-case 2-split-state NMC for quantum messages with constant rate). For any
fixed constant δ > 0 there exist an integer n0 > 0 and c ∈ (0, 1) such that the following holds:
There exists a family of coding schemes (Cn)n∈N where each Cn has codeword length n and message
length ⌊

(
1
11 − δ

)
n⌋ such that Cn is average-case ε-non-malleable for quantum messages with error

ε = 2−n
c
for all integers n ≥ n0. Furthermore, there exist encoding and decoding procedures for the

family (Cn)n∈N running in time poly(n).

Our second result, which builds on Theorem 1, gives an explicit construction of a worst-case
2-split-state NMC for quantum messages.

Theorem 2 (Worst-case 2-split-state NMC for quantum messages). There exist constants c ∈ (0, 1)
and n0 ∈ N such that the following holds: There exists a family of coding schemes (Cn)n∈N where
each Cn has codeword length n and message length ⌊nc⌋ such that Cn is ε-non-malleable for quantum
messages with error ε = 2−n

c
for all integers n ≥ n0. Furthermore, there exist encoding and

decoding procedures for the family (Cn)n∈N running in time poly(n).

In fact, we show something stronger: The explicit code from Theorem 2 is actually a 2-out-
of-2 non-malleable secret sharing scheme for quantum messages with share size n, any message of
length at most nΩ(1), and error ε = 2−n

Ω(1)
. We refer the reader to Section 1.1.2 for more details

on non-malleable secret sharing.

1.1.2 Split-state non-malleable secret sharing schemes for quantum messages

We begin by defining threshold non-malleable secret sharing schemes for quantum messages. This
is an extension of our definition of 2-split-state non-malleable codes in Section 1.1.1, and it is
analogous to the definition in the classical setting [GK18a]. We focus on threshold schemes for
simplicity, but the definition can be easily generalized to other access structures.

Let σM be an arbitrary state in a message register M , and σMM̂ be its canonical purification.
An NMSS scheme for p parties is composed of two CPTP maps (nmShare,nmRec). nmShare is a
sharing procedure nmShare : L(HM )→ L(HS1⊗HS2⊗· · ·⊗HSp), where Si is the share register for
the i-th party, and nmRec is a reconstruction procedure nmRec : L(

⊗
i∈T HSi) → L(HM ), where

L(H) is the space of all linear operators in the Hilbert space H. The reconstruction procedure
nmRec acts on any authorized subset of shares T to reconstruct the original message.

Before we proceed to define non-malleability, we describe the adversarial tampering model
for secret sharing. This is a simple extension of the 2-split-state tampering model described in
Section 1.1.1. Fix an authorized subset T of parties. A tampering adversary AT is specified by
|T | tampering maps5 Ui : L(HSi ⊗ HWi) → L(HSi ⊗ HWi) for i ∈ T along with a quantum state
|ψ⟩W1W2...Wp which captures the shared entanglement between non-communicating local tampering

5Tampering maps are assumed to be unitary without any loss of generality.
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adversaries. We denote the overall tampered state by τAT , which may be written as

τAT =

(⊗
i∈T

Ui

)
⊗

⊗
j ̸∈T

I

(nmShare(σMM̂ )⊗ |ψ⟩⟨ψ|W1W2...Wp

)(⊗
i∈T

U †i

)
⊗

⊗
j ̸∈T

I

 .

Let the final state of the tampering experiment be

η = nmRec
(
τAT
ST

)
.

We are now ready to define split-state NMSS schemes, in a similar manner to Definition 1 for
split-state NMCs.

Definition 2 (Threshold non-malleable secret sharing scheme for quantum messages). The coding
scheme (nmShare,nmRec) is said to be a t-out-of-p (εpriv, εnm)-non-malleable secret sharing scheme
for quantum messages if for any quantum message σM ∈ D(HM ) (with canonical purification σMM̂ )
the following properties are satisfied:

• Correctness: For any T ⊆ [p] such that |T | ≥ t it holds that

nmRec(nmShare(σMM̂ )ST
) = σMM̂ ,

where we write ST = (Si)i∈T .

• Statistical privacy: For any T ⊆ [p] such that |T | ≤ t− 1 it holds that

nmShare(σ)M̂ST
≈εpriv σM̂ ⊗ ζST

,

where ζST
is a fixed quantum state independent of σMM̂ .

• Non-malleability: For any T ⊆ [p] such that |T | = t, it holds that

ηMM̂ ≈εnm pAT
σMM̂ + (1− pAT

)γAT
M ⊗ σM̂ , (2)

where pAT
∈ [0, 1] and γAT

M depend only6 on the threshold tampering adversary AT , and ≈ε

denotes that the two states are ε-close in trace distance.

If Equation (2) is only guaranteed to hold when σM is the maximally mixed state, then we say
that (nmShare,nmRec) is an average-case t-out-of-p (εpriv, εnm)-non-malleable secret sharing
scheme for quantum messages.

As our main result in this direction, which builds on Theorem 2, we construct efficient split-state
NMSS schemes for quantum messages realizing more general threshold access structures with low
privacy and non-malleability errors.

Theorem 3 (Split-state threshold NMSS schemes for quantum messages). There exist constants
c, C > 0 and an integer n0 ∈ N such that the following holds for any number of parties p and
threshold t ≥ 3 such that t ≤ p ≤ 2t − 1 and for any n ≥ n0: There exists a family of t-out-
of-p (εpriv = ε, εnm = ε)-non-malleable secret sharing schemes for quantum messages with shares
of size at most (pn)C , message length ⌊nc⌋, and error ε = 2−n

c
. Furthermore, the sharing and

reconstruction procedures of this scheme can be computed in time polynomial in p and n.

6By this, we mean that pAT can be computed and the state γAT
M can be prepared without the knowledge of the

input message σMM̂ .
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Combined with our previously discussed 2-out-of-2 non-malleable secret sharing scheme for
quantum messages, Theorem 3 covers all remaining threshold access structures for which secret
sharing is possible in the quantum setting (i.e., those which do not violate no-cloning) except
2-out-of-3. We leave constructing a 2-out-of-3 non-malleable secret sharing scheme for quantum
messages as a very interesting open problem.

Finally, an analogous realization of the approach behind Theorem 3 using the same techniques
allows us to obtain classical threshold non-malleable secret sharing schemes secure against quantum
adversaries with shared entanglement. See Section 4.7 for more details, including a formal result.

1.2 Other related work

In this section, we discuss relevant prior work on classical NMCs and on quantum non-malleability
beyond what we covered above.

Classical NMCs. The first work on NMCs by Dziembowski, Pietrzak, and Wichs [DPW18]
showed that, surprisingly, there exists a (possibly inefficient) NMC against any family of at most
22

αn
tampering functions, where α < 1 is an arbitrary constant, and n is the message length. The

best possible rate of (possibly inefficient) NMCs was studied by Cheraghchi and Guruswami [CG16],
who showed that split-state NMCs can have a rate of at most 1/2. To complement the above,
[DPW18] constructed efficient NMCs in the bitwise tampering model, a strictly weaker model than
split-state tampering, where each bit of the codeword is tampered independently. As discussed
before, this spurred a deep line of work which recently culminated in explicit constructions of
constant-rate NMCs in the split-state model [AO20, AKO+22].

Several works have also studied NMCs against computationally-bounded adversaries from var-
ious hardness assumptions and setups, such as a common reference string. Naturally, in such re-
stricted settings, it is possible to achieve a better rate while allowing the adversary to perform many
adaptive tamperings in a row. Computationally-restricted tampering models include polynomial-
time algorithms [FMNV14], split-state polynomial-time adversaries [AAG+16], bounded-depth cir-
cuits [BDKM16, BDKM18, BFMV22], low-degree polynomials [BCL+20], decision trees [BDKM18,
BGW19], and streaming space-bounded algorithms [FHMV17, BDKM18]. Some other works
have studied constructions of short NMCs based on conjectured properties of practical block ci-
phers [FKM18, BFRV22] or extractable hash functions [KLT16].

We note that existing works in these settings only consider classical messages and adversaries.

Classical NMSS schemes. The notion of non-malleable secret sharing first appeared implicitly
in the work of Aggarwal, Dziembowski, Kazana, and Obremski [ADKO15], where it was shown
that every classical 2-split-state NMC is also a 2-out-of-2 secret sharing scheme with statistical
privacy. NMSS schemes were then studied explicitly and in much greater generality by Goyal and
Kumar [GK18a, GK18b], leading to a long line of research on classical split-state non-malleable
secret sharing, as mentioned above.

Classical NMSS schemes have also been studied in tampering models beyond split-state tam-
pering. For example, the original works of Goyal and Kumar [GK18a, GK18b] also consider a
”joint” tampering model where, under certain restrictions, tampering adversaries may tamper with
subsets of multiple shares, instead of only a single share. Stronger joint tampering models have
been considered in the computational [BFO+20] and information-theoretic settings [GSZ21].

10



In an orthogonal direction, other notions of non-malleability where the adversary learns the
reconstruction of tampered secrets with respect to multiple authorized subsets of parties have also
been studied [ADN+19, BFO+20].

Other notions of quantum non-malleability. Some other notions of non-malleability for
quantum messages have been studied in the context of keyed coding schemes by Ambainis, Bouda,
and Winter [ABW09] and Alagic and Majenz [AM17]. In the keyed setting, quantum authentication
schemes [BW16] also provide non-malleability, since they allow one to detect tampering on the
encoded quantum data.

We can view the setting studied in [ABW09, AM17] for keyed coding schemes in the split-state
model as follows (see Figure 3 for a diagram of the model): Let σM be the quantum message, and
R be the key shared between the encoder and decoder. Let σM be encoded to ρZ = EncR(σM ).
Then, the adversary tampers ρZ → τZ , and the decoder outputs ηM = DecR(τZ). Since the key
R is available at both the encoder and decoder, we can view R as being the second part of the
codeword, with the register Z being the first part of the codeword. Observe that in this model,
the adversary is only allowed to tamper with the first part of the codeword, while our split-state
tampering model allows the adversary to simultaneously but independently tamper with both parts
of the codeword. Alagic and Majenz [AM17] used unitary 2-designs in their protocol for encoding
and decoding. However, we note that their security definition involving mutual information appears
a priori different from our Definition 1.

The question of whether one can even build split-state non-malleable coding schemes for quan-
tum messages when there is no shared key and when the split-state adversary can tamper with
both registers (with or without shared entanglement) remained open. In this work, we resolve this
question in the affirmative.

Table 1 summarizes the main properties of known constructions of split-state NMCs and related
constructions of keyed quantum schemes.

Concurrent work. In concurrent and independent work, Bergamaschi [Ber23] introduces, among
other things, a natural quantum analogue of the bitwise tampering model [DPW18], where each
qubit of the encoding is tampered independently, and constructs high-rate codes in this setting
satisfying a restricted form of keyless authentication called tamper detection which is somewhat
stronger than non-malleability. We note that this result is incomparable to ours. First, we consider
tampering adversaries with access to shared entanglement, while Bergamaschi [Ber23] only studies
the weaker setting where the various tampering adversaries are unentangled. In fact, tamper-
detection codes (where the receiver either recovers the original message or aborts if they detect the
adversary) are impossible to construct against adversaries with access to shared entanglement. This
is because such adversaries can replace the quantum ciphertext with a fixed valid codeword. Second,
the split-state tampering adversaries we study are much more powerful than bitwise tampering
adversaries.

As already discussed above, in another concurrent work Batra, Boddu, and Jain [BBJ23] con-
structed a classical 2-split-state non-malleable randomness encoder secure against quantum ad-
versaries having shared entanglement with rate close to 1/2. They use it to build constant-rate
quantum secure 3-split-state NMCs for quantum messages.
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Figure 3: Quantum NMC with shared key.

Work by Rate Messages Adversary Shared key

[CGL20] 1
poly(n) classical classical No

[Li17] Ω
(

1
logn

)
classical classical No

[Li19] Ω
(
log logn
logn

)
classical classical No

[AO20] Ω(1) classical classical No

[Li23] Ω(1) classical classical No

[AKO+22] 1/3 classical classical No

[ABJ24] 1
poly(n) classical quantum No

[BBJ23] ≈ 1/5 (average-case) classical quantum No

[AM17] Ω(1) quantum quantum Yes

This work ≈ 1/11 (average-case) quantum quantum No

This work 1
poly(n) quantum quantum No

Table 1: Comparison between the best known explicit constructions of 2-split-state NMCs. Here,
n denotes the codeword length.
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1.3 Technical overview

1.3.1 Split-state NMCs for quantum messages

We follow a high-level strategy similar to that of Aggarwal, Agrawal, Gupta, Maji, Pandey, and
Prabhakaran [AAG+16], who used authenticated encryption to transform any (augmented) split-
state non-malleable code into a high-rate split-state non-malleable code resilient to computationally-
bounded tampering in the classical setting. The main challenge we have to deal with, and which is
not considered in [AAG+16], is that our tampering adversaries have quantum capabilities and are
allowed to a priori share arbitrary entangled quantum states.

As a warm-up to our main construction, let us consider a simpler and natural approach that
yields a 3-split-state non-malleable code for quantum messages. First, we observe that if we have a
shared classical secret key R between the encoder and decoder, then we can detect whether arbitrary
tampering has occurred by encoding the quantum message σM with a quantum authentication
scheme (AuthR,VerR) [BCG

+02, BW16]. Therefore, a reasonable approach would be to first encode
the message using this quantum authentication scheme, then encode the key R using an existing
split-state non-malleable code for classical messages, and lastly output the split-state encoding of
R as part of the final codeword.

Fortunately, sinceR is a classical string, we can use the split-state non-malleable code (cEnc, cDec)
of Aggarwal, Boddu, and Jain [ABJ24], which protects against quantum adversaries! Less fortu-
nately, cEnc(R) yields a codeword with two parts, call them R1 and R2, that cannot be stored
together.

To elaborate on this approach, let’s define a quantum authentication scheme as (AuthR,VerR),
where AuthR is a quantum encoding procedure that takes a quantum state σM and a classical
secret key R and outputs an authenticated state ψ = AuthR(σM ). The verification procedure VerR
takes an authenticated state ψ′ and the secret key R as input, and outputs either 1 (accept) or
0 (reject). The overall encoding procedure Enc(σM ) for our 3-split-state non-malleable code is as
follows:

1. Sample a classical secret key R uniformly at random from an appropriate keyspace.

2. Compute the authenticated state ψ = AuthR(σM ) using the quantum authentication scheme.

3. Compute the classical split-state encoding (R1, R2) = cEnc(R).

4. Output the 3-state codeword (ψ,R1, R2).

To decode a possibly tampered codeword (ψ′, R′1, R
′
2), the decoding procedure Dec works as

follows:

1. Use the classical decoder cDec(R′1, R
′
2) to obtain a candidate key R′.

2. Run the verification procedure VerR′(ψ′) to check the authenticity of the quantum state ψ′

using the candidate key R′.

3. If the verification procedure outputs 1 (accept), then output Dec(ψ′, R′1, R
′
2). Otherwise,

output a special symbol to indicate tampering.

This approach leverages the quantum authentication scheme to detect any tampering of the
quantum message, and the classical split-state non-malleable code to protect the classical key R
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against tampering. Intuitively, if we consider quantum adversaries without shared entanglement,
the non-malleability of the 3-state coding scheme can be understood as follows: If the adversary
attempts to tampering with R1 and R2, then the properties of the classical split-state non-malleable
code (cEnc, cDec) guarantee that either the candidate key R′ remains unchanged (R′ = R) or that
it becomes independent of R. In the former case, when the decoder Dec calls VerR(ψ

′), the quantum
authentication scheme will, with high probability, detect whether ψ′ ̸= ψ, indicating tampering, and
Dec will abort the decoding process. In the latter case, the decoder calls VerR′(ψ′) with R′ being
independent of R and, consequently, independent of ψ′ as well. Choosing a quantum authentication
scheme, such as Clifford-based authentication, it is possible to show that VerR′(ψ′) will output a
state independent of (and thus unrelated to) the message σ with high probability.

Overall, this approach combines the strength of quantum authentication to detect tampering
with the quantum message and the non-malleability property of the classical split-state code to
protect the classical key R against tampering. By leveraging these properties together, we obtain a
3-split-state non-malleable code for quantum messages. Although the coding scheme above already
gives some non-malleability guarantees for quantum messages, it features some major shortcomings.
First, it requires dividing the codeword into three parts which must be stored separately. Ideally,
we would like to construct efficient coding schemes that only need to be divided into two parts.
Second, our argument above only works against quantum adversaries without shared entanglement.
However, as we move to the more powerful setting with adversaries having shared entanglement,
we need to develop more sophisticated techniques to ensure non-malleability.

Split-state non-malleable codes for average-case quantum messages. Perhaps the most
natural approach to building a split-state non-malleable code secure against quantum adversaries
with shared entanglement would be to take our 3-state code above and merge two of the parts.
More precisely, we could attempt to analyze the code which outputs

(ψ,R1) and R2

as its two parts, where we recall that ψ is the authenticated state via the secret key R and (R1, R2) =
cEnc(R) is the classical split-state non-malleable encoding of R.

This matches the approach taken in [AAG+16]. However, as already mentioned above, they
did not have to handle quantum adversaries with shared entanglement. Although this is also
essentially the approach we successfully undertake, establishing non-malleability of this modified
coding scheme is significantly more involved than the intuitive argument laid out above, and also
requires some small further changes to the scheme. Indeed, one of the first difficulties arises due to
the use of trap flags7 in the authentication schemes, as we will discuss subsequently. We note that,
unlike in an authentication scheme, the decoder need not output ⊥ in a non-malleable code, since
error detection is not required. We therefore get rid of the trap flags used in the authentication
scheme specified in the 3-split argument above, and this is one of the first insights that allows our
analysis to work.

We first describe a sub-optimal version of our approach in the setting of average-case non-
malleability, and then discuss how its rate can be optimized. Per Definition 1, this corresponds

7Clifford-based quantum authentication schemes apply a random (secret) Clifford operator to the message plus
several additional “trap registers” initialized to |0⟩. Verifying whether tampering of the authenticated state occurred
consists of checking whether the trap registers all return to the |0⟩ state after applying the inverse Clifford operator.
If this does not hold, then the verification procedure outputs the special symbol ⊥, which we call the “trap flag”.
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to the scenario where the message σM is assumed to be a maximally mixed quantum state with
canonical purification σMM̂ . To construct our split-state non-malleable code for quantum messages,

we use random Clifford unitaries {(Cr, C
†
r)}r←R with underlying classical randomness R, along with

the classical split-state coding scheme (cEnc, cDec) designed in [ABJ24] as a quantum-secure non-
malleable code for the classical string R.

Inspired by the 3-state approach above, we use (cEnc, cDec) to protect the key R in a non-
malleable manner, and then use the random Clifford CR to protect the quantum message σM . This
yields the following encoding procedure Enc(σM ), where we use slightly different notation than
the above to facilitate our analysis (see also Figure 5 for a diagram of our encoding and decoding
procedures):

1. Sample a classical secret key R uniformly at random (independent of σMM̂ ) from an appro-
priate keyspace;

2. Compute the state (σ1)Z = CR(σM )C†R;

3. Compute the split-state encoding cEnc(R) = (σ1)XY ;

4. Output the 2-part codeword ((σ1)ZX , (σ1)Y ).

The message σM = UM , along with its purification register M̂ , is thus encoded into (σ1)M̂ZXY .
As our first observation, note that the register Z, which holds the Clifford-protected message,

may carry information about the classical key R, since (σ1)Z = CR(σM )C†R. Fortunately, since
σM = UM , where UM is a maximally mixed state, we have

(σ1)ZXY = (σ1)Z ⊗ (σ1)XY .

One may then expect that we can use the argument of [ABJ24] for classical messages to argue that
the key R remains secure even if the adversary sees the register Z when tampering one of the parts
of cEnc(R). Unfortunately, the argument of [ABJ24] does not go through in this scenario. Namely,
for (cEnc, cDec) to protect the key R in a non-malleable manner after adversarial tampering we
need that

(σ1)M̂ZXY = (σ1)M̂Z ⊗ (σ1)XY .

However, it can be verified that the registers M̂Z are not independent of XY in state σ1. To
circumvent this issue, we use the transpose method (see Fact 18) for state σMM̂ , and note that
the application of the random Clifford gate CR and the adversarial operations commute in σ1 (see
Figures 5 and 6). This allows us to delay the operation CR on register M̂ (see Figure 7). Crucially,
we could not have used the transpose method in the presence of flag registers as employed in
quantum authentication.

Carefully combining the above with arguments from [ABJ24], we conclude that (cEnc, cDec)
can protect the key R after adversarial tampering on state θ1 (which corresponds to the state prior
to applying the CR operation on register M̂ in Figure 7), since

(θ1)M̂ZXY = (θ1)M̂Z ⊗ (θ1)XY .

Let θ2 be the state obtained after adversarial tampering on θ1. By the properties of (cEnc, cDec),
we are essentially guaranteed that either R′ = R or that R′ is independent of R in θ2. However,
this is not enough, and we observe that (cEnc, cDec) actually guarantees something even stronger!
More precisely, in state θ2 we have either:
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• R = R′ and R is independent of registers ZM̂ ;

• R is independent of R′ZM̂ .

In the case where R is independent of R′ZM̂ , applying the delayed operation CR on register M̂
decouples the registers R′Z ⊗ M̂ , and so we are done. We are thus left to analyze the case where
R = R′ and R is independent of registers ZM̂ . Here, we make use of the 2-design properties of
the Clifford scheme (CR, C

†
R). Roughly speaking, first suppose that the adversary applied IZ on

register Z. Then, since the message was maximally mixed, we conclude that we get an EPR state as
the outcome of the tampering experiment (after the decoding procedure is applied). Now, suppose
that the adversary applied some P ̸= IZ on register Z. We make use of Clifford randomization and
the twirl property to handle this scenario. To elaborate, first note that the state

(I⊗ P )(θ1)M̂Z(I⊗ P
†)

is in a subspace orthogonal to an EPR state in M̂Z. Consider the state after applying the delayed
operation CR on register M̂ and C†R on register Z. Here, Clifford randomization and the twirl

property ensure that any state orthogonal to an EPR state in registers M̂Z is exactly maximally

mixed in a subspace (of dimension 4|M̂ | − 1) orthogonal to this EPR state in registers M̂Z (see
Lemma 8). As a result, the outcome of the tampering experiment after the decoding procedure is
applied is close in trace distance to UM̂⊗UM . Our proof overall crucially uses interesting properties
of the Pauli and Clifford unitaries including Pauli twirl, Clifford twirl, and Clifford randomization.

Improving the rate from sub-constant to constant in the average-case setting. An
important quantity associated with a (non-malleable code) is its rate – the ratio between the
size of a message and the size of its corresponding encoding. Looking at the proposed approach
we discussed above, we conclude that its rate is sub-constant, i.e., the size of the encoding is a
superlinear function of the message size. The main reasons behind this are as follows: First, the
classical key R that we use to sample the Clifford operator CR is much longer than the message
σM (In fact |R| = O(|M |2)). Second, the rate of the underlying non-malleable code for classical
messages (cEnc, cDec) from [ABJ24] is already sub-constant.

We now explain how our approach above can be modified to yield a constant-rate average-case
non-malleable code for quantum messages. First, instead of using the whole Clifford group, we can
use a shorter random key R to sample a Clifford operator from a smaller subgroup with special
properties that suffice for our needs. A result of Cleve, Leung, Liu, and Wang [CLLW16] guarantees
that this can be done efficiently with a classical key R of length at most 5|M |. Second, observe that
we only care about obtaining a split-state non-malleable encoding of a uniformly random classical
key R. This means that we can replace the classical split-state non-malleable code (cEnc, cDec)
from [ABJ24] by a Non-Malleable Randomness Encoder (NMRE), an object originally introduced
by Kanukurthi, Obbattu, and Sekar [KOS18] and whose known constructions enjoy much better
rates than non-malleable codes. Batra, Boddu, and Jain [BBJ23] recently constructed a classical
NMRE secure against quantum adversaries having shared entanglement with a rate close to 1/2.8 In

8For the experienced reader, Batra, Boddu, and Jain [BBJ23] construct an explicit quantum-secure 2-source non-
malleable extractor nmExt with a large output length. We can then sample classical bitstrings X and Y uniformly
at random with appropriate lengths and set the classical key R to be R = nmExt(X,Y ); this is the quantum-secure
classical NMRE that we use in our optimized coding scheme.
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contrast, as mentioned above, the NMC for classical messages from [ABJ24] only has a sub-constant
rate.

Using these two results in our previously described approach allows us to improve the rate of
our average-case NMC for quantum messages from sub-constant to close to 1/11.

From average-case to worst-case NMCs for quantum messages. In the discussion above
we assumed that the quantum message was maximally mixed. However, we would like to show that
our code is a worst-case NMC, i.e., it is non-malleable for any fixed quantum message.

Consider an arbitrary quantum message ρM with canonical purification ρMM̂ . Recall that
σM̂M is the canonical purification of σM = UM . Using a quantum rejection sampling argument

(see Fact 7), we obtain a measurement acting on register M̂ of σ such that the state conditioned
on “success” is exactly ρ. Moreover, this measurement on the register M̂ commutes with Enc,
Dec, and the adversarial operations, and it succeeds with probability 2−|M |. If the error of the
underlying average-case NMC is ε, then this measurement allows us to argue non-malleability of
the same NMC for any message ρM (i.e., worst-case non-malleability) with larger error ε′ = 2|M | ·ε,
and we can easily handle this blow-up in the error at the expense of dropping the rate of the code
from constant to sub-constant. Intuitively, this happens because of the following: Suppose that
there is a fixed message ρ for which Equation (1) (with ρ in place of σ) holds only with error
larger than ε′. Therefore, when faced with a maximally mixed message σMM̂ , we can apply the

measurement above to M̂ and, if the measurement succeeds and the resulting state is ρ, distinguish
with advantage larger than ε′. Since the measurement succeeds with probability at least 2−|M |, the
overall distinguishing advantage is larger than 2−|M | · ε′ = ε, which contradicts the average-case
ε-non-malleability of the NMC.

1.3.2 Threshold split-state NMSS schemes for quantum messages

At a high level, in order to construct our threshold NMSS schemes for quantum messages, we
combine our split-state NMC for quantum messages above with the approach of Goyal and Ku-
mar [GK18a] used to construct NMSS schemes in the classical setting. However, as we will discuss,
following this approach in the quantum setting poses various challenges.

Roughly speaking, the approach of Goyal and Kumar [GK18a] for building NMSS schemes
proceeds as follows for p parties and a threshold 3 ≤ t ≤ p. On input a message m, first encode it
with the split-state NMC to generate two states, L and R. Now, apply a standard t-out-of-p secret
sharing scheme to L (say, Shamir’s secret sharing), yielding shares L1, . . . , Lp. Furthermore, apply
a 2-out-of-p leakage-resilient secret sharing scheme to R, yielding shares R1, . . . , Rp. Intuitively,
a secret sharing scheme is leakage-resilient if the input remains private even when the adversary
learns an unauthorized subset of shares plus bounded side information from every other share.
Finally, set the resulting i-th share Si as Si = (Li, Ri) for each i ∈ [p].

To argue the non-malleability of this construction, Goyal and Kumar showed how to transform
any tampering attack on the resulting secret sharing scheme into an essentially-as-good tampering
attack on the underlying 2-split-state NMC. The main challenge in designing such a reduction
is that the two tampering functions for the underlying NMC must act independently – we must
tamper L without knowledge of R, and vice versa. On the other hand, the i-th tampering func-
tion for the secret sharing scheme tampers (Li, Ri) into (L′i, R

′
i), and so potentially has access to

some information from both L and R. For simplicity, let L′ and R′ denote the tampered secrets
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reconstructed from (L′1, . . . , L
′
t) and (R′1, R

′
2), respectively.

Showing that we can obtain R′ from R without knowing L is easy. This follows because R′ is
fully determined by R′1 and R

′
2, which in turn only depend on L1 and L2. Since the Li’s are a t-out-

of-p Shamir secret sharing of L with threshold t ≥ 3, the two shares L1 and L2 are independent of
L. However, arguing that we can (up to small error) obtain L′ from L without knowledge of R is a
lot trickier. The previous argument clearly does not immediately work since the t shares L′1, . . . , L

′
t

depend on R1, . . . , Rt, respectively, which determineR. This is where the leakage-resilience property
kicks in – if we see the L′is as bounded leakage on the Ris, then leakage-resilience guarantees that
R is (close to) independent of the leakages L′1, . . . , L

′
t, and so is independent of L′.

Realizing this approach in the quantum setting. We follow the same high-level approach
for a quantum message σM . To that end, we first replace the classical split-state NMC by our
NMC for quantum messages discussed previously. We use additional key properties of our NMC:
(1) The resulting left state L is quantum, but the right state R is classical, and (2) we prove that it
is actually a 2-out-of-2 split-state NMSS scheme, and so, in particular, learning only one of L and
R reveals nothing about σM . Since L is quantum, we now apply a standard t-out-of-p (for p < 2t)
secret sharing scheme for quantum messages, such as “quantum” Shamir secret sharing [CGL99],
to get quantum shares (L1, . . . , Lp). And, since R is classical, we secret-share it using a 2-out-of-p
scheme satisfying a special leakage-resilience property that we will determine later.

Establishing correctness and privacy of the resulting t-out-of-p secret sharing scheme is not
difficult using property (2) of our NMC above. It remains to prove non-malleability. Arguing that
R′ can be obtained from R without knowledge of L still follows easily from the fact that R is shared
using a 2-out-of-p scheme, while L is shared using a t-out-of-p scheme with t ≥ 3. Here, it is crucial
that R is classical. Otherwise, a 2-out-of-p scheme would not exist when p ≥ 4, and this means that
we would not be able to, say, construct (p/2 + 1)-out-of-p split-state NMSS schemes for quantum
messages for any even p using this approach.

We also want to argue that L′ can be obtained from L without knowledge of R. As before, we
would like to see L′1, . . . , L

′
p as leakages on the secret shares R1, . . . , Rp, and then exploit the leakage-

resilience of the scheme used to share R to conclude that R is independent of L′1, . . . , L
′
p, and hence

of L′. However, realizing this in our quantum setting requires stronger leakage-resilience properties:
First, the tamperings L′1, . . . , L

′
p are now quantum states. Second, the tampering functions in our

setting share arbitrary entangled states. This means that the i-th tampering function now sees
(Li, Ri,Wi), where W1, . . . ,Wp are quantum registers holding an arbitrary state. To overcome
these barriers, we introduce augmented leakage-resilient secret sharing schemes. This corresponds
to a setting where there are p local adversaries A1, . . . ,Ap sharing an arbitrary entangled state
spread across registers W1, . . . ,Wp, respectively, and each one having access to a share R1, . . . , Rp.
We require that R remains hidden even if Ai knows the share Ri, local bounded quantum leakages
Leak1(R1,W1), . . . , Leaki−1(Ri−1,Wi−1), Leaki+1(Ri−1,Wi+1), . . . , Leakp(Rp,Wp) from every other
share, and also the entangled state Wi (hence the “augmented” adjective). We prove that the
2-out-of-2 secret sharing scheme whereby R is shared into X and Y sampled uniformly such that
⟨X,Y ⟩ = R is augmented leakage-resilient with good parameters. This relies on the randomness
extraction properties of the inner product function and the formalism of “qpa-states”9 [BJK21].
We can then extend this scheme to a 2-out-of-p augmented leakage-resilient scheme for classical
messages in a standard manner. Although notions of leakage-resilience against quantum adversaries

9qpa-state stands for quantum purified adversary state.
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with shared entanglement have been studied in other recent work [CGLR23], these do not cover
augmented leakage-resilience.

Besides the above, proving non-malleability requires dealing with additional subtleties specific
to the quantum setting. The original non-malleability argument in [GK18a] proceeds by fixing
the values of certain components (e.g., shares, leakages). However, we cannot fully emulate this
approach in the quantum setting: The left state L is quantum, and so are the bounded leakages that
show up in the analysis. Therefore, we cannot fix them. Moreover, again because L is quantum, it
is modified after the tampering functions are applied, but we still need to access the “original” L in
the analysis. For this, with some work, we can use the message’s canonical purification register M̂
to generate a new register L̂ which can be thought of as a coherent copy of the original left state
L.

1.4 Open problems

We list here some interesting directions for future research:

• Can we design (worst-case) split-state NMCs for quantum messages with a constant rate?
This is open even for classical messages against quantum adversaries with shared entangle-
ment. More ambitiously, can we construct (worst-case) split-state NMSS schemes for quantum
messages with a constant rate?

• Can we construct 2-out-of-3 split-state non-malleable secret sharing schemes for quantum
messages?

• Can we design NMSS schemes for quantum messages that are secure against joint tampering
of shares?

• What can we achieve if we consider computationally-bounded adversaries instead?
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2 Preliminaries

This section collects basic notation and conventions alongside useful facts and lemmas that we use
in the proofs of our main results. In this work, facts denote results already known from prior work,
and lemmas denote auxiliary results that we prove here.
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2.1 Basic general notation

All the logarithms are evaluated to the base 2. We denote sets by uppercase calligraphic letters such
as X and use uppercase roman letters such as X and Y for both random variables and quantum
registers. The distinction will be clear from context. The set {1, . . . , n} may be written as [n],
and we may also more generally write [t, n] for the set {t, t + 1, . . . , n}. We denote the uniform
distribution over {0, 1}d by Ud. For a random variable X ∈ X , we use X to denote both the random
variable and its distribution, whenever it is clear from context. We use x← X to denote that x is
drawn according to X, and, for a finite set X , we use x← X to denote that x is drawn uniformly at
random from X . For two random variables X,Y we use X⊗Y to denote their product distribution.
We call random variables X and Y copies of each other if and only if Pr[X = Y ] = 1.

2.2 Quantum information theory

In this section we cover some important basic prerequisites from quantum information theory
alongside some useful lemmas and facts.

2.2.1 Conventions and notation

Consider a finite-dimensional Hilbert spaceH endowed with an inner-product ⟨·, ·⟩ (we only consider
finite-dimensional Hilbert-spaces). A quantum state (or a density matrix or a state) is a positive
semi-definite operator on H with trace value equal to 1. It is called pure if and only if its rank is
1. Let |ψ⟩ be a unit vector on H, that is ⟨ψ,ψ⟩ = 1. With some abuse of notation, we use ψ to
represent the state and also the density matrix |ψ⟩⟨ψ|, associated with |ψ⟩. Given a quantum state
ρ on H, the support of ρ, denoted by supp(ρ), is the subspace of H spanned by all eigenvectors of
ρ with non-zero eigenvalues.

A quantum register A is associated with some Hilbert space HA. Define |A| := log (dim(HA)).
For a sequence of registers A1, . . . , An and a set T ⊆ [n], we define the projection according to T as
AT = (Ai)i∈T . Let L(HA) represent the set of all linear operators on the Hilbert space HA. For an
operator O ∈ L(HA), we use O

T to represent the transpose of O. For operators O,O′ ∈ L(HA), the
notation O ≤ O′ represents the Löwner order, that is, O′ − O is a positive semi-definite operator.
We denote by D(HA) the set of all quantum states on the Hilbert space HA. The state ρ with
subscript A indicates that ρA ∈ D(HA). If two registers A,B are associated with the same Hilbert
space, we shall represent the relation by A ≡ B. For two states ρ and σ, we write ρ ≡ σ if they
are identical as states (potentially in different registers). Composition of two registers A and B,
denoted AB, is associated with the Hilbert space HA ⊗HB. For two quantum states ρ ∈ D(HA)
and σ ∈ D(HB), ρ ⊗ σ ∈ D(HAB) represents the tensor product (Kronecker product) of ρ and σ.
The identity operator on HA is denoted IA. Let UA denote the maximally mixed state in HA. Let
ρAB ∈ D(HAB). Define

ρB
def
= TrAρAB

def
=
∑
i

(⟨i| ⊗ IB)ρAB(|i⟩ ⊗ IB),

where {|i⟩}i is an orthonormal basis for the Hilbert space HA. The state ρB ∈ D(HB) is referred
to as the marginal state of ρAB on the register B. Unless otherwise stated, a missing register from
subscript in a state represents partial trace over that register. Given ρA ∈ D(HA), a purification
of ρA is a pure state ρAB ∈ D(HAB) such that TrBρAB = ρA. Purification of a quantum state
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is not unique. Suppose A ≡ B. Given {|i⟩A} and {|i⟩B} as orthonormal bases over HA and

HB respectively, the canonical purification of a quantum state ρA is a pure state ρAB
def
= (ρ

1
2
A ⊗

IB) (
∑

i |i⟩A|i⟩B).
A quantum map E : L(HA) → L(HB) is a completely positive and trace preserving (CPTP)

linear map. A CPTP map E is described by the Kraus operators {Mi : HA → HB}i such that

E(ρ) =
∑

iMiρM
†
i and

∑
iM

†
iMi = IA. A Hermitian operator H : HA → HA is such that H = H†.

A projector Π ∈ L(HA) is a Hermitian operator such that Π2 = Π. A unitary operator VA : HA →
HA is such that V †AVA = VAV

†
A = IA. The set of all unitary operators on HA is denoted by U(HA).

An isometry V : HA → HB is such that V †V = IA. A POVM element is an operator 0 ≤M ≤ I. We

use the shorthand M̄
def
= I −M , where I is clear from context. We use shorthand M to represent

M ⊗ I, where I is clear from context.

2.2.2 Registers, quantum maps, and isometries

This section collects definitions of certain registers and operations on them.

Definition 3 (Classical register in a pure state). Let X be a set. A classical-quantum (c-q) state
ρXE is of the form

ρXE =
∑
x∈X

p(x)|x⟩⟨x| ⊗ ρxE ,

where ρxE are states.
Let ρXEA be a pure state. We call X a classical register in ρXEA if ρXE (or ρXA) is a c-q

state. Whenever it is clear from context, we identify the random variable X with the register X via
Pr[X = x] = p(x).

Definition 4 (Copy of a classical register). Let ρXX̂E be a pure state with X being a classical

register in ρXX̂E taking values in X . Similarly, let X̂ be a classical register in ρXX̂E taking values

in X . Let ΠEq =
∑

x∈X |x⟩⟨x| ⊗ |x⟩⟨x| be the equality projector acting on the registers XX̂. We

call X and X̂ copies of each other (in the computational basis) if Tr
(
ΠEqρXX̂

)
= 1.

Definition 5 (Conditioning). Let

ρXE =
∑

x∈{0,1}n
p(x)|x⟩⟨x| ⊗ ρxE ,

be a c-q state. For an event S ⊆ {0, 1}n, define

Pr[S]ρ
def
=
∑
x∈S

p(x) and (ρ|X ∈ S) def
=

1

Pr[S]ρ

∑
x∈S

p(x)|x⟩⟨x| ⊗ ρxE .

We sometimes shorthand (ρ|X ∈ S) as (ρ|S) when the register X is clear from context.

Let ρAB be a state with |A| = n. We define (ρ|A ∈ S) def
= (σ|S), where σAB is the c-q state

obtained by measuring the register A in ρAB in the computational basis. In the case where S = {s}
is a singleton set, we shorthand (ρ|A = s)

def
= TrA(ρ|A = s).
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Definition 6 (Safe maps). We call an isometry V : HX⊗HA → HX⊗HB, safe on X if and only if
there is a collection of isometries Vx : HA → HB such that for all states |ψ⟩XA =

∑
x αx|x⟩X |ψx⟩A

we have that
V |ψ⟩XA =

∑
x

αx|x⟩XVx|ψx⟩A.

Definition 7 (Extension). Let

ρXE =
∑
x∈X

p(x)|x⟩⟨x| ⊗ ρxE ,

be a c-q state. For a function Z : X → Z, define the following extension of ρXE,

ρZXE
def
=
∑
x∈X

p(x)|Z(x)⟩⟨Z(x)| ⊗ |x⟩⟨x| ⊗ ρxE .

For a pure state ρXEA (with X classical and X ∈ X ) and a function Z : X → Z, define ρZẐXEA
to be a pure state extension of ρXEA generated via a safe isometry V : HX → HX ⊗HZ ⊗HẐ (Z

classical with copy Ẑ). We use the notationMA(ρAB) to denote measurement in the computational
basis on register A in state ρAB.

All isometries considered in this paper are safe on classical registers that they act on. Isometries
applied by adversaries can be assumed without loss of generality as safe on classical registers, by the
adversary first making a (safe) copy of classical registers and then proceeding as before. This does
not reduce the power of the adversary. The following notion of a Stinespring isometry extension
will also be useful at times.

Fact 1 (Stinespring isometry extension [Wat11, Theorem 5.1]). Consider a CPTP map Φ : L(HX)→
L(HY ). There exists an isometry V : HX → HY ⊗HZ (called the Stinespring isometry extension
of Φ) such that Φ(ρX) = TrZ(V ρXV

†) for every state ρX .

Fact 2 (Stinespring isometry extension for a classical map). Let Φ : L(HX) → L(HY ) be a
classical map such that for every X = x we have a fixed function f acting on register Y such
that Pr(f(Φ(x)) = x) = 1. There exists an isometry VΦ : HX → HY ⊗HŶ (called the Stinespring
isometry extension of Φ) such that Φ(ρX) = TrŶ (V ρXV

†) for every state ρX . Furthermore, for a

classical register ρX , we also have Pr(Y = Ŷ )V ρXV † = 1.

2.2.3 Norms, trace distance, and divergences

This section collects definitions of some important quantum information-theoretic quantities and
related useful properties.

Definition 8 (Schatten p-norm). For p ≥ 1 and a matrix A, the Schatten p-norm of A, denoted

by ∥A∥p, is defined as ∥A∥p
def
= (Tr(A†A)

p
2 )

1
p .

Definition 9 (Trace distance). The trace distance between two states ρ and σ is given by ∥ρ−σ∥1.
We write ρ ≈ε σ if ∥ρ− σ∥1 ≤ ε.

Definition 10 (Fidelity). The fidelity between two states ρ and σ, denoted by F(ρ, σ), is defined
as

F(ρ, σ) = ∥√ρ
√
σ∥1.
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Definition 11 (Bures metric). The Bures distance between two states ρ and σ, denoted by ∆B(ρ, σ),
is defined as

∆B(ρ, σ) =
√

1− F(ρ, σ).

Definition 12 (Max-divergence ([Dat09], see also [JRS02])). Given states ρ and σ such that
supp(ρ) ⊆ supp(σ), the max-divergence between ρ and σ, denoted by Dmax(ρ∥σ), is defined as

Dmax(ρ∥σ) = min{λ ∈ R : ρ ≤ 2λσ}.

Definition 13 (Max-information [Dat09]). Given a state ρAB, the max-information between A and
B, denoted by Imax(A : B)ρ, is given by

Imax(A : B)ρ
def
= inf

σB∈D(HB)
Dmax(ρAB∥ρA ⊗ σB) .

We state a useful fact about max-information.

Fact 3 ([BJL23, Fact 5]). Let ρXBD be a c-q state (X classical) such that ρXB = ρX ⊗ ρB. Then,

Imax(X : BD)ρ ≤ 2|D|.

For the facts stated below without citation, we refer the reader to standard textbooks [NC00,
Wat18]. The following facts state some basic properties of trace distance.

Fact 4 (Data-processing inequality). Let ρ, σ be states and E be a CPTP map. Then,

• ∥E(ρ)− E(σ)∥1 ≤ ∥ρ− σ∥1;

• ∆B(E(ρ), E(σ)) ≤ ∆B(ρ, σ).

The inequality above is an equality whenever E is a CPTP map corresponding to an isometry.

Fact 5. Let ρ, σ be states. Let Π be a projector. Then,

Tr(Πρ)

∥∥∥∥ ΠρΠ

Tr(Πρ)
− ΠσΠ

Tr(Πσ)

∥∥∥∥
1

≤ ∥ρ − σ∥1.

Fact 6. Let ρ, σ be states such that ρ =
∑

x pxρ
x, σ =

∑
x pxσ

x, {ρx, σx}x are states and
∑

x px = 1.
Then,

∥ρ− σ∥1 ≤
∑
x

px∥ρx − σx∥1.

The next result is useful for the rejection sampling step in the analysis of our candidate code.

Fact 7 ([JRS02]). Let ρA′B, σAB be pure states such that Dmax (ρB∥σB) ≤ k. Let Alice and Bob
share σAB. There exists an isometry V : HA → HA′ ⊗HC such that:

1. (V ⊗ IB)σAB(V ⊗ IB)† = ϕA′BC , where C is a single qubit register.

2. Let C be the outcome of measuring ϕC in the standard basis. Then Pr[C = 1] ≥ 2−k.

3. Conditioned on outcome C = 1, the state shared between Alice and Bob is ρA′B.
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The following fact connects the fidelity, trace distance, and the Bures metric.

Fact 8 (Fuchs-van de Graaf inequalities [FvdG06] (see also [Wat11, Theorem 4.10])). Let ρ, σ be
two states. Then,

1− F(ρ, σ) ≤ 1

2
∥ρ− σ∥1 ≤

√
1− F(ρ, σ)2 and ∆B(ρ, σ)

2 ≤ 1

2
∥ρ− σ∥1 ≤

√
2∆B(ρ, σ).

In the above fact, the second set of inequalities follows by noting that

1− F(ρ, σ)2 ≤ 2− 2F(ρ, σ) = 2∆B(ρ, σ)
2.

We now state Uhlmann’s Theorem, which relates the closeness of any two mixed states ρ, σ to
the closeness of two purification states |ρ⟩, |σ⟩, respectively.

Fact 9 (Uhlmann’s Theorem [Uhl76]). Let ρA, σA ∈ D(HA) and let ρAB ∈ D(HAB) be a purification
of ρA and σAC ∈ D(HAC) be a purification of σA. Then, there exists an isometry V (from a subspace
of HC to a subspace of HB) such that

∆B (|ρ⟩⟨ρ|AB, |θ⟩⟨θ|AB) = ∆B(ρA, σA) ,

where |θ⟩AB = (IA ⊗ V )|σ⟩AC .

2.2.4 Pauli and Clifford operators

We proceed to define Pauli operators and the associated Pauli and Clifford groups.

Definition 14 (Pauli operators). The single-qubit Pauli operators are given by

I =

(
1 0
0 1

)
X =

(
0 1
1 0

)
Y =

(
0 −i
i 0

)
Z =

(
1 0
0 −1

)
.

An n-qubit Pauli operator is given by the n-fold tensor product of single-qubit Pauli operators.
We denote the set of all |A|-qubit Pauli operators on HA by P(HA), where |P(HA)| = 4|A|. Any
linear operator L ∈ L(HA) can be written as a linear combination of |A|-qubit Pauli operators with
complex coefficients as L =

∑
P∈P(HA) αPP . This is called the Pauli decomposition of a linear

operator.

Definition 15 (Pauli group). The single-qubit Pauli group is given by

{+P,−P, iP, −iP : P ∈ {I,X, Y, Z}}.

The Pauli group on |A|-qubits is the group generated by the operators described above applied to
each of |A|-qubits in the tensor product. We denote the |A|-qubit Pauli group on HA by P̃(HA).

Definition 16 (Clifford group). The Clifford group C(HA) is defined as the group of unitaries that
normalize the Pauli group P̃(HA), i.e.,

C(HA) = {V ∈ U(HA) : V P̃(HA)V
† = P̃(HA)}.

The Clifford unitaries are the elements of the Clifford group.
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We will also need to work with subgroups of the Clifford group with certain special properties.
The following fact describes these properties and guarantees the existence of such subgroups.

Fact 10 (Subgroup of the Clifford group [CLLW16]). There exists a subgroup SC(HA) of the
Clifford group C(HA) such that given any non-identity Pauli operators P,Q ∈ P(HA) we have that

|{C ∈ SC(HA)|C†PC = Q}| = |SC(HA)|
|P(HA)| − 1

and |SC(HA)| = 25|A| − 23|A|.

Informally, applying a random Clifford operator from SC(HA) (by conjugation) maps P to a Pauli
operator chosen uniformly at random over all non-identity Pauli operators. Furthermore, we have
that P(HA) ⊂ SC(HA).

Additionally, there exists a procedure Samp which when given as input a uniformly random string
R ← {0, 1}5|A| outputs in time poly(|A|) the classical description Samp(R) of a Clifford operator
CR ∈ SC(HA) with the following property: Let USC(HA) denote the uniform distribution over the
classical descriptions of Clifford operators in SC(HA). Then, it holds that

Samp(R) ≈2−2|A| USC(HA), (3)

where, as before, ≈2−2|A| means that the statistical distance between the two distributions is at most
2−2|A|.

Pauli twirling and related facts. The analysis of our construction will require the use of several
facts related to Pauli twirling. We collect them below, beginning with the usual version of the Pauli
twirl.

Fact 11 (Pauli twirl [DCEL09]). Let ρ ∈ D(HA) be a state and P, P ′ ∈ P(HA) be Pauli operators
such that P ̸= P ′. Then, ∑

Q∈P(HA)

Q†PQρQ†P ′†Q = 0.

Fact 12 (Subgroup Clifford twirl [BBJ23]). Let ρ ∈ D(HA) be a state and P, P ′ ∈ P(HA) be Pauli
operators such that P ̸= P ′. Let SC(HA) be the subgroup of Clifford group as defined in Fact 10.
Then, ∑

C∈SC(HA)

C†PCρC†P ′†C = 0.

As an immediate corollary, we conclude that for any normal operatorM ∈ L(HA) such thatM †M =
MM † we have that ∑

C∈SC(HA)

C†PCMC†P ′†C = 0,

since M has an eigen-decomposition.

Fact 13 (Modified twirl [BBJ23]). Let ρÂA be the canonical purification of ρA. Let P ∈ P(HA), P
′ ∈

P(HA) be Pauli operators such that P ̸= P ′. Let SC(HA) be the subgroup of Clifford group as defined
in Fact 10. Then, ∑

C∈SC(HA)

(I⊗ C†PC)ρÂA(I⊗ C
†P ′C) = 0.
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Fact 14 (Uniform Pauli conjugation). Let P ∈ P(HA) be a Pauli operator. If P = IA, then

1

|P(HA)|
∑

Q∈P(HA)

QPQ† = IA,

else if P ̸= IA
1

|P(HA)|
∑

Q∈P(HA)

QPQ† = 0.

Proof. If P = IA, the statement trivially follows. If P ̸= IA, the statement follows from Fact 11 by
considering (P, P ′, ρ) in Fact 11 to be (P, IA, UA).

Similarly, the following result is a consequence of Fact 12.

Fact 15 (Uniform conjugation). Let P ∈ P(HA) be a Pauli operator. If P = IA, then

1

|SC(HA)|
∑

C∈SC(HA)

CPC† = IA.

Else, if P ̸= IA, then
1

|SC(HA)|
∑

C∈SC(HA)

CPC† = 0.

The following fact is folklore. We provide a proof for completeness.

Fact 16 (Pauli 1-design). Let ρAB be a state. Then,

1

|P(HA)|
∑

Q∈P(HA)

(Q⊗ I)ρAB(Q
† ⊗ I) = UA ⊗ ρB.

Proof. Let

ρAB =
∑

P∈P(HA),Q∈P(HB)

αPQ(P ⊗Q)

=
∑

P∈P(HA)

P ⊗
 ∑

Q∈P(HB)

αPQQ


=

∑
P∈P(HA)

(
P ⊗MP

)
,

where MP def
=
∑

Q∈P(HB) αPQQ. It is easily seen that

ρB = TrA(ρAB) = Tr(IA)M IA . (4)
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Then, we have that

1

|P(HA)|
∑

Q∈P(HA)

(Q⊗ I)

 ∑
P∈P(HA)

(
P ⊗MP

) (Q† ⊗ I)

=
∑

P∈P(HA)

 1

|P(HA)|
∑

Q∈P(HA)

(QPQ†)⊗MP


=

∑
P∈P(HA)\IA

 1

|P(HA)|
∑

Q∈P(HA)

(QPQ†)⊗MP


+
∑
P=IA

 1

|P(HA)|
∑

Q∈P(HA)

(QPQ†)⊗MP


= IA ⊗M IA (Fact 14)

= UA ⊗ ρB. (Equation (4))

The proof of the next fact follows similarly to that of Fact 16 using Fact 15.

Fact 17 (1-design). Let ρAB be a state. Let SC(HA) be the subgroup of Clifford group as defined
in Fact 10. Then,

1

|SC(HA)|
∑

C∈SC(HA)

(C ⊗ I)ρAB(C
† ⊗ I) = UA ⊗ ρB.

2.2.5 The transpose method

The transpose method (see, e.g., [Ozo16]) is one of the most important tools for manipulating
maximally entangled states. Note that the canonical purification of a maximally mixed state
ρA = UA, denoted ρAÂ, is a maximally entangled state. Roughly speaking, the transpose method
corresponds to the statement that some local action on one half of the maximally entangled state
(say register A) is equivalent to performing the transpose of the same action on the other half of
that state (register Â). We now state this formally.

Fact 18 (Transpose method). Let ρAÂ be the canonical purification of ρA = UA. For any M ∈
L(HA) it holds that

(M ⊗ IÂ)ρAÂ(M
† ⊗ IÂ) = (IA ⊗MT )ρAÂ(IA ⊗ (MT )†).

2.3 Quantum-secure randomness extractors

Randomness extractors are key objects in our constructions of non-malleable codes and secret
sharing schemes. We introduce the relevant notions and auxiliary results here.
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2.3.1 Min-entropy and weak sources

This section introduces information-theoretic formalism useful for our definitions of randomness
extractors.

Definition 17 (Min-entropy). Given a state ρXE, the min-entropy of X conditioned on E, denoted
by Hmin(X|E)ρ, is defined as

Hmin(X|E)ρ = − inf
σE∈D(HE)

Dmax(ρXE∥IX ⊗ σE) .

We will require the following fact about the min-entropy.

Fact 19 ([CLW14, Lemma 2.14]). Let Φ : L(HM )→ L(HM ′) be a CPTP map and define σXM ′ =
(I⊗ Φ)(ρXM ). We have that

Hmin

(
X
∣∣M ′)

σ
≥ Hmin(X|M)ρ .

The formalism of qpa-states from [BJK21] will be useful when building leakage-resilient secret
sharing schemes.

Definition 18 (qpa-state). A pure state σXX̂Y Ŷ W1W2
with XY classical and X̂ and Ŷ copies of X

and Y , respectively, is a (k1, k2)-qpa-state if

Hmin

(
X
∣∣∣W2Y Ŷ

)
σ
≥ k1 and Hmin

(
Y
∣∣∣W1XX̂

)
σ
≥ k2.

2.3.2 Quantum-secure 2-source extractors

A 2-source extractor transforms any two independent weak sources of randomness into an unbiased
random string, provided that the input sources contain enough min-entropy. We will use the fact
that the inner product function IP : FN

q × FN
q → Fq given by

IP(x, y) =
N∑
i=1

xiyi,

with operations performed over Fq, is a 2-source extractor for qpa-states with good properties. This
is captured in the following fact.

Fact 20 ([BJK21, Claim 5]). Let ρXX̂Y Ŷ W1W2
be an arbitrary (k1, k2)-qpa-state with X,Y ∈ FN

q

and
k1 + k2 ≥ (N + 1) log q + 8 log(1/ε) + 40.

Set Z = IP(X,Y ). We have that

∥ρZXW1 − UZ ⊗ ρXW1∥1 ≤ ε and ∥ρZYW2 − UZ ⊗ ρYW2∥1 ≤ ε,

where UZ is uniformly distributed over Fq.
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2.3.3 Quantum-secure 2-source non-malleable extractors

Roughly speaking, a 2-source non-malleable extractor nmExt takes as input two (not necessarily)
uniformly random and independent strings X and Y and outputs a string R = nmExt(X,Y )
that is statistically close to uniform distribution. It is called non-malleable because learning
nmExt(f(X), g(Y )) for any known tampering functions f and g (without fixed points) reveals
essentially nothing about R = nmExt(X,Y ), in the sense that R should still be close to uniformly
random given the tampered version nmExt(f(X), g(Y )). We may thus see (X,Y ) as a form of
split-state encoding of R. Since our split-state tampering adversaries have quantum capabilities
and access to shared quantum entanglement, we cannot use an arbitrary classical 2-source non-
malleable extractor to generate R. Instead, we make use of an explicit quantum-secure 2-source
non-malleable extractor recently constructed by Batra, Boddu, and Jain [BBJ23], which remains
secure against such quantum adversaries and whose properties we detail below.

Fact 21 (Quantum-secure 2-source non-malleable extractor [BBJ23]). Consider the split-state tam-
pering experiment in Figure 4 with a split-state tampering adversary A = (U, V, |ψ⟩W1W2). Based
on this figure, define psame = Pr[(X,Y ) = (X ′, Y ′)]ρ̂ and the conditioned quantum states

ρsame = (nmExt⊗ nmExt)(ρ̂|(X,Y ) = (X ′, Y ′))

and
ρtamp = (nmExt⊗ nmExt)(ρ̂|(X,Y ) ̸= (X ′, Y ′)).

For any given constant δ > 0, there exists an explicit function nmExt : {0, 1}n × {0, 1}δn → {0, 1}r
with output length r = (1/2− δ)n such that for independent sources X ← {0, 1}n and Y ← {0, 1}δn
and any such split-state tampering adversary A = (U, V, |ψ⟩W1W2) it holds that

1. ∥nmExt(X,Y )X − Ur ⊗ Un∥1 ≤ ε and ∥nmExt(X,Y )Y − Ur ⊗ Uδn∥1 ≤ ε,

2. psame∥ρsame
RW2
− Ur ⊗ ρsame

W2
∥1 + (1− psame)∥ρtamp

RR′W2
− Ur ⊗ ρtamp

R′W2
∥1 ≤ ε,

with ε = 2−n
Ωδ(1). Furthermore, nmExt(x, y) can be computed in time poly(n).

R

W2

nmExt

|ψ⟩W1W2

σ ρ̂ ρ

X X ′

R′

Y
Y ′

U

V

A = (U, V, ψ)

W1 W1

W2 W2

nmExt

Figure 4: Split-state tampering experiment for quantum-secure 2-source non-malleable extractors.
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Intuitively, Item 1 in Fact 21 guarantees that R = nmExt(X,Y ) remains close to uniformly
random even when one of the input sources X and Y is revealed. This property is usually called
strong extraction. Item 2 spells out the non-malleability guarantees of nmExt: If the tampering
attack does not change X and Y (i.e., (X ′, Y ′) = (X,Y )), then R should be close to uniformly
random even given one of the updated entangled states shared by the adversaries attacking each
source. On the other hand, if the tampering attack changed X and Y (i.e., (X ′, Y ′) ̸= (X,Y )),
then R should be close to uniformly random even given the additional output R′ = nmExt(X ′, Y ′)
and one of the updated entangled states.

2.4 Secret sharing schemes for quantum messages

Secret sharing schemes for quantum messages were first introduced in [HBB99, CGL99, KKI99].
As in the classical case, they allow a dealer to share a quantum message among p parties in a way
that only authorized subsets of parties can reconstruct the quantum message, while unauthorized
subsets of parties learn nothing about it. The no-cloning theorem imposes constraints on the type
of access structures that can be realized by a secret sharing scheme for quantum messages. For
example, there exists a t-out-of-p secret sharing scheme for quantum messages if and only if t > p/2.
Conversely, it is known that any access structure that does not violate no-cloning10 can be realized
by a secret sharing scheme for quantum messages [Got00, Smi00].

We proceed to define secret sharing schemes for quantum messages and then state a known effi-
cient construction of such threshold schemes due to Cleve, Gottesman, and Lo [CGL99] (a quantum
analogue of Shamir’s secret sharing scheme). We define secret sharing schemes for threshold access
structure for simplicity, but this definition can be generalized to any access structure that does not
violate no-cloning.

Let qShare : L(HM ) → L(HS1 ⊗HS2 ⊗ · · · ⊗ HSp) and qRec : L(
⊗

i∈T HSi) → L(HM ), be the
sharing and reconstruction procedures respectively, where L(H) is the space of all linear operators
in the Hilbert space H. The reconstruction procedure qRec acts on any authorized subset of shares
T to reconstruct the original message.

Definition 19 (Threshold secret sharing scheme for quantum messages). The coding scheme
(qShare, qRec) is said to be a t-out-of-p secret sharing scheme for quantum messages if for any
quantum message σM ∈ D(HM ) (with canonical purification σMM̂ ) the following two properties are
satisfied:

• Correctness: For any T ⊆ [p] such that |T | ≥ t it holds that

qRec(qShare(σMM̂ )ST
) = σMM̂ ,

where we recall that ST = (Si)i∈T .

• Perfect privacy: For any T ⊆ [p] such that |T | ≤ t− 1 it holds that

(qShare(σ))M̂ST
≡ σM̂ ⊗ ζST

.

where ζST
is a fixed quantum state for every σMM̂ .

10This amounts to requiring that if T ⊆ [p] is authorized, then its complement [p] \ T must be unauthorized.

30



Fact 22 ([CGL99]). For any number of parties p and threshold t such that p/2 < t ≤ p, there exists
a t-out-of-p secret sharing scheme (qShare, qRec) for quantum messages of length b with share size
at most 2max(p, b), where both the sharing and reconstruction procedures run in time poly(p, b).

The following results state some useful properties satisfied by the threshold secret sharing
scheme for quantum messages from Fact 22. The first fact states that the shares corresponding to
any unauthorized set of parties are jointly uniformly distributed.

Fact 23 ([CGL99]). Let (qShare, qRec) be the t-out-of-p secret sharing scheme from Fact 22. Let
σM be a state such that |M | = b and ρ = qShare(σM ). For any T ⊆ [p] such that |T | ≤ t − 1 it
holds that

ρST
= UST

.

Lemma 1. Let (qShare, qRec) be the t-out-of-p secret sharing scheme from Fact 22. Let P ∈
P(HM ) be any non-identity Pauli operator. For any T ⊆ [p] such that |T | ≤ t − 1 it holds that
(qShare(P ))ST

= 0.

Proof. Consider the spectral decomposition of P . Let P =
∑2|M|

i=1 ai|ψ⟩⟨ψ|i. Note that half of the
ai’s are exactly equal to 1, while the other half is −1. Since qShare(|ψ⟩⟨ψ|i)ST

= UST for every i
in [2|M |], we arrive at the desired result that (qShare(P ))ST

= 0.

The next lemma captures privacy properties in the presence of entangled quantum side infor-
mation.

Lemma 2. Let (qShare, qRec) be the t-out-of-p secret sharing scheme from Fact 22. Let σEM be a
state such that |M | = b and ρ = qShare(σEM ). For any T ⊆ [p] such that |T | ≤ t− 1 it holds that

ρEST
≡ ρE ⊗ UST

≡ σE ⊗ UST
.

Proof. For each Q ∈ P(HM ) and Q′ ∈ P(HE) there exist coefficients αQ′Q such that we may write

σEM =
∑

Q∈P(HM ),Q′∈P(HE)

αQ′Q(Q
′ ⊗Q)

=
∑

Q∈P(HM )

 ∑
Q′∈P(HE)

αQ′QQ
′

⊗Q


=
∑

Q∈P(HM )

(
GQ ⊗Q

)
,

where
GQ def

=
∑

Q′∈P(HE)

αQ′QQ
′.

In particular, this implies that
σE = GIM 2|M |. (5)
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Then, we conclude that

ρEST
=

∑
Q∈P(HM )

(
GQ ⊗ (qShare(Q))ST

)
=
∑

Q=IM

(
GQ ⊗ (qShare(Q))ST

)
+

∑
Q ̸=IM∧Q∈P(HM )

(
GQ ⊗ (qShare(Q))ST

)
= GIM ⊗

(
qShare

(
2|M | · IM

2|M |

))
ST

= GIM ⊗ 2|M |UST

= σE ⊗ UST
.

The third equality above follows from Lemma 1. The fourth equality holds because of Fact 23.
The final equality is a consequence of Equation (5).

3 Split-state non-malleable codes for quantum messages

In this section, we describe and analyze our split-state non-malleable coding scheme for quantum
messages. We begin by describing the encoding and decoding procedures Enc and Dec. In the
analysis, we first show that (Enc,Dec) is an average-case non-malleable code with low error for
quantum messages. This yields Theorem 1. Then, to conclude the argument and obtain Theorem 2,
we show that every such average-case non-malleable code is also worst-case split-state non-malleable
at the price of a blow-up in the error as a function of the input quantum message length.

3.1 Our candidate coding scheme for quantum messages

We proceed to describe our explicit candidate coding scheme for quantum messages. Suppose that
we wish to encode a quantum state σM with canonical purification σMM̂ . Let b = |M | denote the
message length and fix an arbitrary constant δ > 0. We will invoke the explicit quantum-secure
2-source ε-non-malleable extractor nmExt : {0, 1}ℓ × {0, 1}δℓ → {0, 1}r guaranteed by Fact 21 with
output length r satisfying

r = (1/2− δ)ℓ ≥ 5b (6)

and error
ε = 2−ℓ

Ωδ(1) ,

where Ωδ(·) hides constants which depend only on δ.
The encoding CPTP map Enc works as follows on input σM :

1. Sample classical bitstrings X ← {0, 1}ℓ and Y ← {0, 1}δℓ;

2. Compute the classical key R = nmExt(X,Y ) ∈ {0, 1}r;

3. Let SC(HM ) be the subgroup of the Clifford group described in Fact 10 and Samp be the asso-

ciated sampling procedure. Compute CR = Samp(R) and the masked state ψZ = CRσMC
†
R.

Note that the constraint in Equation (6) guarantees that R is long enough to sample such a
Clifford operator as per Fact 10.
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4. Output registers X and (Y, Z) as the two parts of the split-state encoding. Note that X and
Y are classical strings while Z is a quantum state.

It is clear that Enc can be computed efficiently if nmExt is explicit. The decoding procedure Dec
is straightforward, and proceeds as follows on input possibly tampered registers (X,Y )→ (X ′, Y ′)
and ψZ → τZ :

1. Compute the candidate key R′ = nmExt(X ′, Y ′);

2. Let τZ denote the possibly tampered quantum state stored in register Z. Then, compute
the candidate message ηM = C†R′τZCR′ where, as in the encoding procedure Enc above,
CR′ = Samp(R′) with Samp the sampling procedure corresponding to the subgroup SC(HM )
of the Clifford group from Fact 10;

3. Output ηM .

It is easy to check that this coding scheme (Enc,Dec) satisfies the basic correctness property

Dec(Enc(σMM̂ )) = σMM̂ .

3.2 Average-case non-malleability

In this section, we show that the coding scheme (Enc,Dec) described in Section 3.1 is average-case
non-malleable with low-error. More precisely, we prove the following result.

Theorem 4 (Average-case non-malleable codes with constant rate). For any fixed constant δ > 0,
the coding scheme (Enc,Dec) described in Section 3.1 with codewords of length n and message size

b ≤
(

1
11 − δ

)
n is average-case ε′-non-malleable with ε′ = 2−n

Ωδ(1). Moreover, both Enc and Dec
can be computed in time poly(n).

The claim about the computational complexity of Enc and Dec in Theorem 4 can be easily
verified from the description in Section 3.1, using the fact that the codeword length n satisfies
n = O(ℓ).

We prove the remainder of Theorem 4 through a sequence of lemmas. Throughout this proof
we assume that CR, the Clifford operator sampled from R via the sampling procedure Samp from
Fact 10 used in Step 3 of Enc(σ) in Section 3.1, is uniformly distributed over SC(HM ). Based
on Equation (3) in Fact 10, this assumption will lead to an additive factor of 2−2b in the final
non-malleability error, which we add at the end of our argument.

For ease of readability, a detailed diagram of the complete split-state tampering experiment on
(Enc,Dec) in Figure 5.

Taking into account the notation from Figure 5, in order to prove Theorem 4 it suffices to show
that for any split-state adversary A = (U, V, ψ) and σMM̂ maximally entangled it holds that

(σ3)M̂M ≈ε′=2−nΩδ(1) pAσM̂M + (1− pA)(UM̂ ⊗ γ
A
M ), (7)

where (pA, γ
A
M ) depend only on the split-state adversary A.

We begin by noting that in order to establish Equation (7) we can equivalently consider the
modified tampering experiment described in Figure 6, where the (transposed) Clifford operator is
applied to σM̂ instead. More precisely, we have the following lemma.
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Lemma 3. For any fixed split-state adversary A it holds that the states ρ, ρ1, ρ2, ρ3 in Figure 6 are
equal to σ, σ1, σ2, σ3 in Figure 5.

Proof. The desired statement follows if we show that σ1 and ρ1 are equal. This is a direct conse-
quence of the transpose method (Fact 18).

We can further note that delaying the generation of R and the application of the corresponding
Clifford operator CT

R on the M̂ register until the very end has no effect on the final state. Therefore,
we can focus on the modified tampering experiment described in Figure 7. We capture this formally
in the next brief lemma statement.

Lemma 4. For any fixed split-state adversary A it holds that the final state θ4 in Figure 7 is equal
to the final state ρ3 in Figure 6.

In particular, combining Lemmas 3 and 4 implies that to establish Equation (7) it suffices to
show that for any split-state adversary A = (U, V, ψ) and θMM̂ maximally entangled it holds that

(θ4)M̂M ≈ε′ pAθM̂M + (1− pA)(UM̂ ⊗ γ
A
M ), (8)

where (pA, γ
A
M ) depend only on the split-state adversary A. Here, the states θ, θ1, θ2, θ3, θ4 corre-

spond to the intermediate states of the modified tampering experiment in Figure 7.
We now set up some helpful definitions before proceeding to the next lemma. We may write θ2

as
θ2 = (U ⊗ V )(θ1 ⊗ |ψ⟩⟨ψ|W1W2)(U ⊗ V )†.

Our analysis will proceed by cases, depending on whether the X and Y registers are modified
by the tampering experiment in Figure 7 (i.e., XY ̸= X ′Y ′) or not. To this end, we consider
two different conditionings of θ2 based on these two cases. More precisely, taking into account
Definition 5, we define

θtamp
2 = θ2|(XY ̸= X ′Y ′)

and
θsame
2 = θ2|(XY = X ′Y ′).

Note that we may write θ2 = psameθ
same
2 + (1− psame)θ

tamp
2 , where psame = Pr[XY = X ′Y ′]θ2 is the

probability that XY are not modified in the tampering experiment from Figure 7.
Further taking into account that

θ3 = (nmExtXY ⊗ nmExtX′Y ′)θ2,

let
θtamp
3 = (nmExtXY ⊗ nmExtX′Y ′)θtamp

2

and
θsame
3 = (nmExtXY ⊗ nmExtX′Y ′)θsame

2 .

Let DRM̂ denote the controlled Clifford operator CT
R acting on register M̂ . Similarly, let D̃R′Z

denote the controlled Clifford operator C†R′ acting on register Z. We can then write

(θ4)M̂M = (DRẐ ⊗ D̃R′Z)(θ3)RR′ZM̂ (D†
RẐ
⊗ D̃†R′Z).
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Analogously to the previous cases, we define

(θtamp
4 )M̂M

def
= (DRẐ ⊗ D̃R′Z)(θ

tamp
3 )RR′ZM̂ (D†

RẐ
⊗ D̃†R′Z) (9)

and
(θsame

4 )M̂M

def
= (DRẐ ⊗ D̃R′Z)(θ

same
3 )RR′ZM̂ (D†

RẐ
⊗ D̃†R′Z). (10)

Recall from Equation (8) that, based on Lemmas 3 and 4, our end goal is to show that

(θ4)M̂M ≈ε′ pAθM̂M + (1− pA)(UM̂ ⊗ γ
A
M )

for some quantity pA ∈ [0, 1] and state γAM depending only on the split-state adversary A. Towards
establishing this, we begin by writing

(θ4)M̂M = psame(θ
same
4 )M̂M + (1− psame)(θ

tamp
4 )M̂M .

We will focus on each of the two terms on the right-hand side of this equation separately. We
invoke the two lemmas below, whose proofs we defer to later dedicated sections.

The first lemma is relevant for handling θtamp
4 , and intuitively states that when tampering occurs

and X ′Y ′ ̸= XY the outcome of the tampering experiment is close (in trace distance) to being an
unentangled message.

Lemma 5. We have that

(1− psame)
∥∥(θtamp

4 )M̂M − UM̂ ⊗ (θtamp
4 )M

∥∥
1
≤ ε.

The second lemma is relevant for handling θsame
4 , and intuitively states that when X ′Y ′ = XY

the outcome of the tampering experiment is close (in trace distance) to being either the original
message or a completely independent and unentangled message.

Lemma 6. There exists a constant pepr ∈ [0, 1] depending only on the split-state adversary A such
that

psame ·
∥∥(θsame

4 )M̂M −
(
pepr · θM̂M + (1− pepr)(UM̂ ⊗ UM )

)∥∥
1
≤ ε+ 2 · 4−b.

Proofs of Lemmas 5 and 6 can be found in Sections 3.2.1 and 3.2.2, respectively. We now show
how to wrap up the argument and establish Equation (8) using Lemmas 5 and 6. We have

(θ4)M̂M = psame(θ
same
4 )M̂M + (1− psame)(θ

tamp
4 )M̂M

≈ε+2·4−b psame

(
peprθMM̂ + (1− pepr)(UM̂ ⊗ UM )

)
+ (1− psame)(θ

tamp
4 )M̂M (11)

≈ε psame

(
pepr · θMM̂ + (1− pepr)(UM̂ ⊗ UM )

)
+ (1− psame)(UM̂ ⊗ (θtamp

4 )M ), (12)

where Equation (11) follows from Lemma 6 and Equation (12) follows from Lemma 5. Combining
Equations (11) and (12) with a triangle inequality shows that

(θ4)M̂M ≈2(ε+4−b) psame

(
pepr · θMM̂ + (1− pepr)(UM̂ ⊗ UM )

)
+ (1− psame)(UM̂ ⊗ (θtamp

4 )M )

= psame · pepr · θMM̂

+ (1− psame · pepr)
(
UM̂ ⊗

(
psame(1− pepr)
1− psame · pepr

· UM +
1− psame

1− psame · pepr
· (θtamp

4 )M

))
. (13)
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Consider setting
pA = psame · pepr

and

γAM =
psame(1− pepr)
1− psame · pepr

· UM +
1− psame

1− psame · pepr
· (θtamp

4 )M

in Equation (13). We claim that pA and γAM depend only on the split-state adversary A. This holds
because:

• psame = Pr[XY = X ′Y ′]θ2 is a function of A and (X,Y ), which are sampled independently of
the message σM ;

• Lemma 6 guarantees that pepr is a function of A only;

• The state (θtamp
4 )M is a function of (θtamp

3 )ZX′Y ′ , and one can prepare the latter by running
an independent tampering experiment on registers XY Z = Ul ⊗ Uδl ⊗ UZ .

Therefore, we conclude that both pA and γAM only depend on A. In this case, we can write

(θ4)M̂M ≈2(ε+4−b) pA · θMM̂ + (1− pA)
(
UM̂ ⊗ γ

A
M

)
.

By Lemmas 3 and 4, this implies that we have

(σ3)M̂M ≈2(ε+4−b) pA · σMM̂ + (1− pA)
(
UM̂ ⊗ γ

A
M

)
(14)

in the original tampering experiment from Figure 5.

Setting parameters for Theorem 4. To conclude the proof of Theorem 4, it remains to argue
that, given any constant δ > 0, the coding scheme (Enc,Dec) is average-case (ε′ = 2−n

Ωδ(1))-non-
malleable for message length b ≤ ( 1

11 − δ)n.
Note that the total codeword length is

n = |X|+ |Y |+ |Z| = ℓ+ δℓ+ b = (1 + δ + 1/10 + δ/5)ℓ

and that the error ε of nmExt satisfies ε = 2−ℓ
Ωδ(1) = 2−n

Ωδ(1) , since n = O(ℓ). Furthermore,
recall from Equation (6) in Section 3.1 that we may set the message length to be as large as

r/5 = (1/2−δ)ℓ
5 . In fact, even if b < r/5 we may always extend a message so that its length is

exactly b′ = r/5 by appending dummy independent uniformly random bits to it. Since the length-b
message σM is maximally mixed, the resulting extended length-b′ message will also be maximally
mixed. Therefore, taking into account Equation (14) and recalling that our argument in this
section assumed that the Clifford operator CR is sampled uniformly at random from SC(HA) while
Fact 10 only guarantees that CR ≈2−b′ USC(HA) with USC(HA) uniformly distributed over SC(HA),
the resulting coding scheme is average-case ε′-non-malleable with

ε′ = 2(ε+ 4−b
′
) + 2−2b

′
= 2−n

Ωδ(1) ,

as desired.
Finally, simple algebraic manipulation yields

r/5 =
(1/2− δ)ℓ

5
≥
(

1

11
− c
)
n

for some constant c = O(δ). This means that we may encode messages of length at least
(

1
11 − c

)
n,

and the constant c > 0 can be made arbitrarily small. This concludes the proof of Theorem 4.
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Figure 5: Split-state tampering experiment.
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Figure 6: Split-state tampering experiment after applying the transpose method.
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Figure 7: Split-state tampering experiment after applying the transpose method and delaying
both the generation of register R and the application of the corresponding Clifford operator.
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3.2.1 Proof of Lemma 5

We begin by writing

(θ3)RR′W2ZM̂ = psame(θ
same
3 )RR′W2ZM̂ + (1− psame)(θ

tamp
3 )RR′W2ZM̂ .

Observe that (θ1)M̂M is a pure state (thus independent of other registers in θ1). We invoke Item 2
of Fact 21 with the assignment of states/registers (the states/registers on the left below are from
the statement of Fact 21, while the states/registers on the right are those from this proof)(

σ, ρ̂, ρ, ρsame, ρtamp,W1,W2, X, Y
)
←
(
θ1, θ2, θ3, θ

same
3 , θtamp

3 ,W1,W2MM̂,X, Y
)

to conclude that

psame∥(θsame
3 )RW2ZM̂ − Ur ⊗ (θsame

3 )W2ZM̂∥1+

(1− psame)∥(θtamp
3 )RR′W2ZM̂ − Ur ⊗ (θtamp

3 )R′W2ZM̂ )∥1 ≤ ε. (15)

In particular, it holds that

(1− psame)∥(θtamp
3 )RR′W2ZM̂ − Um ⊗ (θtamp

3 )R′W2ZM̂∥1 ≤ ε. (16)

As a result, we have that

(1− psame)∥(θtamp
4 )M̂M − UM̂ ⊗ (θtamp

4 )M∥1
= (1− psame)∥(I⊗D)(D̃ ⊗ I)(θtamp

3 )RR′ZM̂ (D̃† ⊗ I)(I⊗D)

− (I⊗D)
(
Ur ⊗ (D̃ ⊗ I)(θtamp

3 )R′ZM̂ (D̃† ⊗ I)
)
(I⊗D)∥1

≤ (1− psame)∥(D̃ ⊗ I)(θtamp
3 )RR′ZM̂ (D̃† ⊗ I)− Ur ⊗ (D̃ ⊗ I)(θtamp

3 )R′ZM̂ (D̃† ⊗ I)∥1 (Fact 17 and Fact 4)

≤ (1− psame)∥(θtamp
3 )RR′ZM̂ − Ur ⊗ (θtamp

3 )R′ZM̂∥1 (Fact 4)

≤ (1− psame)∥(θtamp
3 )RR′W2ZM̂ − Ur ⊗ (θtamp

3 )R′W2ZM̂∥1 (Fact 4)

≤ ε. (Equation (16))

The first inequality invokes Fact 17 with the assignment of registers (A,B, ρ) ←− (M̂,M, θtamp
4 ),

where the registers on the left hand side correspond to those in the statement Fact 17 and the
registers on the right hand side are those used in this proof.

3.2.2 Proof of Lemma 6

Before we proceed to the proof of Lemma 6, we prove two auxiliary lemmas.

Lemma 7. Let ρAÂ be the canonical purification of ρA = UA, SC(HA) be the subgroup of Clifford
group as defined in Fact 10, and P,Q ∈ P(HA) be any two Pauli operators. If P ̸= Q, then

1

|SC(HA)|
∑

C∈SC(HA)

(CT ⊗ C†)(I⊗ P )ρAÂ(I⊗Q
†)((CT )† ⊗ C) = 0.
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Else, if P = Q = IA, then
1

|SC(HA)|
∑

C∈SC(HA)

(CT ⊗ C†)(I⊗ P )ρAÂ(I⊗ P
†)((CT )† ⊗ C) = ρAÂ.

Else, if P = Q ̸= IA, then
1

|SC(HA)|
∑

C∈SC(HA)

(CT ⊗ C†)(I⊗ P )ρAÂ(I⊗ P
†)((CT )† ⊗ C) ≈ 2

|P(HA)|
ρA ⊗ ρÂ.

Proof. We have that

1

|SC(HA)|
∑

C∈SC(HA)

(CT ⊗ C†)(I⊗ P )ρAÂ(I⊗Q
†)((CT )† ⊗ C)

=
1

|SC(HA)|
∑

C∈SC(HA)

(I⊗ C†P )(CT ⊗ I)ρAÂ((C
T )† ⊗ I)(I⊗Q†C)

=
1

|SC(HA)|
∑

C∈SC(HA)

(I⊗ C†P )(I⊗ C)ρAÂ(I⊗ C
†)(I⊗Q†C) (Fact 18)

=
1

|SC(HA)|
∑

C∈SC(HA)

(I⊗ C†PC)ρAÂ(I⊗ C
†Q†C).

When P ̸= Q we can invoke Fact 13 to conclude that

1

|SC(HA)|
∑

C∈SC(HA)

(I⊗ C†PC)ρAÂ(I⊗ C
†Q†C) = 0.

When P = Q = IA, it holds that
1

|SC(HA)|
∑

C∈SC(HA)

(I⊗ C†PC)ρAÂ(I⊗ C
†P †C)

=
1

|SC(HA)|
∑

C∈SC(HA)

(I⊗ C†C)ρAÂ(I⊗ C
†C)

= ρAÂ. (C†C = I)

Finally, when P = Q ̸= IA we have that

1

|SC(HA)|
∑

C∈SC(HA)

(I⊗ C†PC)ρAÂ(I⊗ C
†P †C)

=
1

|P(HA)| − 1

∑
Q∈P(HA)\I

(I⊗Q)ρAÂ(I⊗Q
†) (Fact 10)

=
|P(HA)|(ρA ⊗ ρÂ)− ρAÂ

|P(HA)| − 1
. (Fact 16)

The desired result follows since∥∥∥∥ |P(HA)|(ρA ⊗ ρÂ)− ρAÂ

|P(HA)| − 1
− (ρA ⊗ ρÂ)

∥∥∥∥
1

≤ 2

|P(HA)|
.
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Lemma 8. Let |ψ⟩ÂA be the canonical purification of ψA = UA, ρÂA be any state, and SC(HA) be
the subgroup of Clifford group as defined in Fact 10. Define Π = |ψ⟩⟨ψ|. Then, we have that

1

|SC(HA)|
∑

C∈SC(HA)

(CT ⊗ C†)ρÂA((C
T )† ⊗ C)

= Tr(Πρ)ψ + (1− Tr(Πρ))
|P(HA)|(UÂ ⊗ UA)− ψAÂ

|P(HA)| − 1

≈ 2

4|A|
Tr(Πρ)ψ + (1− Tr(Πρ))(UÂ ⊗ UA). (17)

Proof. Let |ϕ⟩ÂA be an eigenvector of ρÂA. Consider the decomposition

|ϕ⟩ÂA =
∑

P∈P(HA)

αP (I⊗ P )|ψ⟩ÂA,

where
∑

P∈P(HA) |αP |2 = 1. Define

τ(P,Q)
def
= (I⊗ P )|ψ⟩⟨ψ|(I⊗Q†).

Then, we have that

1

|SC(HA)|
∑

C∈SC(HA)

(CT ⊗ C†)|ϕ⟩⟨ϕ|((CT )† ⊗ C)

=
1

|SC(HA)|
∑

C∈SC(HA)

(CT ⊗ C†)

 ∑
P,Q∈P(HA)

αPα
∗
Qτ(P,Q)

 ((CT )† ⊗ C)

=
∑

P,Q∈P(HA)

αPα
∗
Q

 1

|SC(HA)|
∑

C∈SC(HA)

(CT ⊗ C†)τ(P,Q)((CT )† ⊗ C)


=

∑
P,Q∈P(HA)∧(P ̸=Q)

αPα
∗
Q

 1

|SC(HA)|
∑

C∈SC(HA)

(CT ⊗ C†)τ(P,Q)((CT )† ⊗ C)


+

∑
P,Q∈P(HA)∧(P=Q=IA)

αPα
∗
Q

 1

|SC(HA)|
∑

C∈SC(HA)

(CT ⊗ C†)τ(P,Q)((CT )† ⊗ C)


+

∑
P,Q∈P(HA)∧(P=Q̸=IA)

αPα
∗
Q

 1

|SC(HA)|
∑

C∈SC(HA)

(CT ⊗ C†)τ(P,Q)((CT )† ⊗ C)


= |αIA |

2|ψ⟩⟨ψ|

+
∑

P∈P(HA)\IA

|αP |2
 1

|SC(HA)|
∑

C∈SC(HA)

(CT ⊗ C†)τ(P, P )((CT )† ⊗ C)


= |αIA |

2|ψ⟩⟨ψ|+ (1− |αIA |
2)

( |P(HA)|(UA ⊗ UÂ)− ψAÂ

|P(HA)| − 1

)
.
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The last equality follows from Lemma 7. Now, the first equality in Equation (17) from the lemma
statement follows by observing that ρÂA is a convex combination of its eigenvectors, and the
approximation in Equation (17) follows from Fact 6 by observing that∥∥∥∥ |P(HA)|(UA ⊗ UÂ)− ψAÂ

|P(HA)| − 1
− (UA ⊗ UÂ)

∥∥∥∥
1

≤ 2

|P(HA)|
.

We are now ready to prove Lemma 6.

Proof of Lemma 6. Recall from Equation (15) that, in particular,

psame∥(θsame
3 )RW2ZM̂ − Ur ⊗ (θsame

3 )W2ZM̂∥1 ≤ ε. (18)

Recall also that D̃R′Z denotes the controlled Clifford unitary C†R′ acting on register Z and that

DRM̂ denotes the controlled Clifford operator CT
R acting on register M̂ .

By the conditioning in θsame
3 , we have that

Pr[R = R′](θsame
3 ) = 1.

Let Π denote the maximally entangled state in registers ZM̂ and write pepr = Tr(Π(θsame
3 )ZM̂ )).

Consider the state τRR′ such that Pr[R = R′]τ = 1 and τR = Ur, and for ease of readability define

β
def
= τRR′ ⊗ (θsame

3 )ZM̂ ; γ
def
= (D̃ ⊗D)β(D̃† ⊗D†).

Intuitively, the states β and γ are “approximate” versions of (θsame
3 )RR′ZM̂ and (θsame

4 )M̂M which
are easier to reason about. Our argument proceeds in two steps. First, we show that γM̂M is close
in trace distance to (

peprΠ+ (1− pepr)(UM̂ ⊗ UM )
)
.

Then, we argue that (θsame
4 )M̂M and γM̂M are close in trace distance, and an application of the

triangle inequality to these two statements finishes the proof (after arguing that pepr depends only
on A). More formally, we have that

psame∥(θsame
4 )M̂M −

(
peprΠ+ (1− pepr)(UM̂ ⊗ UM )

)
∥1

≤ psame∥(θsame
4 )M̂M − γM̂M∥1

+ psame∥γM̂M −
(
peprΠ+ (1− pepr)(UM̂ ⊗ UM )

)
∥1

≤ psame∥(θsame
4 )M̂M − γM̂M∥1 + 2 · 4−|M | (19)

≤ psame∥(D̃ ⊗D)(θsame
3 )RR′M̂M (D̃† ⊗D†)− γ∥1 + 2 · 4−|M | (20)

≤ psame∥(θsame
3 )RR′ZM̂ − τRR′ ⊗ (θsame

3 )ZM̂∥1 + 2 · 4−|M | (21)

≤ psame∥(θsame
3 )RZM̂ − Ur ⊗ (θsame

3 )ZM̂∥1 + 2 · 4−|M | (22)

≤ psame∥(θsame
3 )RW2ZM̂ − Ur ⊗ (θsame

3 )W2ZM̂∥1 + 2 · 4−|M | (23)

≤ ε+ 2 · 4−|M |. (24)
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Equation (19) follows from Lemma 8 with the assignment of registers (the registers on the left
below are from Lemma 8 and the registers on the right are the registers in this proof)

(Â, A, ρ)←− (M̂, Z, θsame
3 ).

Equations (20) to (23) follow from Fact 4. We provide some more detail on Equation (22). The
difference between the expressions in Equations (21) and (22) is that the (classical) register R′ is
removed. The stated inequality (which is even an equality) follows from data-processing because
in the states θsame

3 and τ we have that R′ is a copy of R, and so can be generated based on R. This
is because in these states we have R = nmExt(X,Y ), R′ = nmExt(X ′, Y ′), and (X,Y ) = (X ′, Y ′).
The final Equation (24) follows from Equation (18).

To conclude the proof, it remains to argue that pepr depends only on the split-state adversary
A. This holds because pepr is a function of the state (θsame

3 )ZM̂ , which can be prepared by running
an independent tampering experiment with another maximally entangled state independent of the
original input message.

3.3 From average-case to worst-case non-malleability

In this section, we show that every average-case non-malleable code is also worst-case non-malleable
with larger error, provided that the message length is not too large. More precisely, we have the
following.

Lemma 9. If (Enc,Dec) is an average-case ε-non-malleable code for quantum messages of length
b, then it is also a (worst-case) ε′-non-malleable code for quantum messages of length b, where
ε′ = 2b · ε.

Combining Theorem 4 with Lemma 9 immediately implies the following result.

Theorem 5. There exists a constant c ∈ (0, 1) such that the following holds: The coding scheme
(Enc,Dec) described in Section 3.1 with codewords of length n and message size b ≤ nc is (worst-

case) ε-non-malleable with ε = 2−n
Ω(1)

. Moreover, both Enc and Dec can be computed in time
poly(n).

Note that the only barrier towards obtaining a constant rate code in Theorem 5 is the fact
that the average-case non-malleable code from Theorem 4 has error ε = 2−n

Ω(1)
, where n is the

codeword size. Therefore, Lemma 9 only allows for quantum messages of length up to nΩ(1), as
otherwise the resulting error (2b · ε) becomes trivial.

We now proceed to prove Lemma 9.

Proof of Lemma 9. Fix a split-state adversary A = (U, V, |ψ⟩W1W2). Let ρMM̂ be the canonical
purification of ρM = UM , and denote by η the outcome of the tampering experiment of A on the
encoding of ρ, i.e.,

η = Dec((U ⊗ V )(Enc(ρM̂M )⊗ |ψ⟩⟨ψ|)(U † ⊗ V †)).

Since (Enc,Dec) is an average-case ε-non-malleable code and ρMM̂ is maximally entangled (and so
ρM is maximally mixed), we know that

ηM̂M ≈ε pAρM̂M + (1− pA)ρM̂ ⊗ γ
A
M , (25)
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where (pA, γ
A
M ) depend only on the split-state adversary A. Note also that ηM̂ = ρM̂ = UM̂ .

Towards showing that (Enc,Dec) is also worst-case non-malleable, consider an arbitrary quan-
tum message σM of size b with canonical purification σMM̂ . If

ζ = Dec((U ⊗ V )(Enc(σM̂M )⊗ |ψ⟩⟨ψ|)(U † ⊗ V †))

is the outcome of the tampering experiment of A on message σ, to derive the theorem statement
it suffices to show that

ζM̂M ≈2bε pAσM̂M + (1− pA)(σM̂ ⊗ γ
A
M ), (26)

where (pA, γ
A
M ) depend only on A and come from Equation (25).

Recalling the definition of max-divergence (Definition 12), we have that

Dmax(σM∥ρM ) ≤ b,

since σM ≤ IM and ρM = IM/2b. Therefore, by Fact 7 there exists a measurement {Π, Π̄} on
register M̂ in state ρ with success probability Tr(Πρ) ≥ 2−b such that conditioned on success we
have that

σM̂M =
ΠρΠ

Tr(Πρ)
.

First, note that Π commutes with the operations of (Enc,Dec) and A, since it is applied on register
M̂ . Consequently, again conditioned on the measurement being successful, we have that

ζM̂M =
ΠηM̂MΠ

Tr(Πρ)
,

and so

ζM̂M =
ΠηM̂MΠ

Tr(Πρ)

≈2bε pA
ΠρM̂MΠ

Tr(Πρ)
+ (1− pA)

ΠρM̂Π

Tr(Πρ)
⊗ γAM

= pAσM̂M + (1− pA)(σM̂ ⊗ γ
A
M ).

The approximation above follows from Fact 5 and by noting that

ηM̂M ≈ε pAρM̂M + (1− pA)ρM̂ ⊗ γ
A
M .

This completes the proof.

3.4 Privacy of our split-state NMC for quantum messages

We show that our split-state (worst-case) non-malleable code for quantum messages is also a 2-out-
of-2 secret sharing scheme for quantum messages.

Theorem 6. Let (Enc,Dec) be the (ε′ = 2−n
Ω(1)

)-non-malleable code described in Section 3.1.

Then, (Enc,Dec) is also an (εpriv = 2−n
Ω(1)

, εnm = 2−n
Ω(1)

)-2-out-of-2 non-malleable secret sharing
scheme for quantum messages.

43



Proof. Since (Enc,Dec) is already known to be (ε′ = 2−n
Ω(1)

)-non-malleable by Theorem 2, it

remains to show that it also satisfies statistical privacy with error εpriv = 2−n
Ω(1)

.
Let σM be an arbitrary message. Recall that Enc(σM ) is composed of two parts X and

(Y,CRσMC
†
R), where X ← {0, 1}ℓ, Y ← {0, 1}δℓ are independent and R = nmExt(X,Y ) with

nmExt being the explicit function described in Fact 21. Additionally, we have CR = Samp(R) with
Samp being the sampling procedure for the special Clifford subgroup from Fact 10.

First, note that X, the first part of Enc(σM ), is clearly sampled independently of the message
σM , and so statistical privacy trivially holds when an adversary only has access to this first part.
Therefore, we only need to focus on the case where an adversary holds the second part (Y,CRσMC

†
R)

of Enc(σM ). Item 1 of Fact 21 guarantees that

RY = nmExt(X,Y )Y ≈
2−nΩ(1) Ur ⊗ Uδn.

This means that we can from here onwards assume in our argument that R and Y are independent
and both uniformly distributed (i.e., RY = Ur ⊗ Uδn) at the expense of an extra additive factor

2−n
Ω(1)

in the final statistical privacy error εpriv.

Observe that, for a fixed message σM , the state (Y,CRσMC
†
R) corresponding to the second part

of Enc(σM ) is a (randomized) function of RY only. Since we are assuming that Y is independent
of R, it suffices to argue that

CRσM̂MC
†
R ≈2−nΩ(1) σM̂ ⊗ UM (27)

for any message σM̂M . If CR was uniformly distributed over the Clifford subgroup SC(HM ), then
Fact 17 would guarantee that

CRσM̂MC
†
R = σM̂ ⊗ UM . (28)

Although CR is not uniformly distributed over the Clifford subgroup SC(HM ), we know from
Fact 10 that

Samp(R) ≈
2−nΩ(1) USC(HM ), (29)

where Samp(R) is the classical description of CR and USC(HM ) is uniformly distributed over classical
descriptions of Clifford operators in SC(HM ). Combining Equations (28) and (29) yields Equa-
tion (27). Finally, summing the various trace distances along the way yields the final statistical

privacy error εpriv = 2−n
Ω(1)

via the triangle inequality.

4 Threshold non-malleable secret sharing schemes for quantum
messages

In this section, we present and analyze our non-malleable threshold secret sharing schemes for
quantum messages. Before doing so, we must first introduce auxiliary objects, which we call
quantum-secure augmented leakage-resilient secret sharing schemes for classical messages.

Our final construction of a non-malleable secret sharing scheme will combine our split-state
non-malleable code for quantum messages from Theorem 1 with a standard secret sharing scheme
for quantum messages and a quantum-secure leakage-resilient secret sharing scheme for classical
messages. This overall approach can be seen as the quantum analogue of the argument by Goyal
and Kumar [GK18a].
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4.1 Quantum-secure augmented leakage-resilient secret sharing schemes for
classical messages

Roughly speaking, a (locally) leakage-resilient secret sharing scheme allows a dealer to share a
secret among p parties in such a way that authorized subsets of parties can reconstruct the secret,
but unauthorized subsets of parties gain almost no information about the secret even when they
learn bounded quantum leakage from other shares.

We proceed to define what we call, quantum-secure augmented leakage-resilient secret sharing
schemes for classical messages. Let σM be a classical message in a registerM , and let σMM̂ be such

that M̂ is a copy of M . We wish to share σM among p parties in a way that any subset of at least
t parties can reconstruct the secret, but subsets of at most t− 1 parties gain almost no information
about the secret, even if they learn some quantum leakage from every other share, and even when
these t− 1 parties share arbitrary entangled states with the leakage adversaries for the remaining
shares.

Towards this end, we consider a coding scheme given by a classical encoding map lrShare :
L(HM )→ L(HS1 ⊗HS2 ⊗· · ·⊗HSp) and a classical decoding map lrRec : L(

⊗
i∈T HSi)→ L(HM ),

where L(H) is the space of all linear operators in the Hilbert spaceH. The reconstruction procedure
lrRec acts on any authorized subset of shares T to reconstruct the original message M .

We now describe the adversarial leakage model we work under. Let ρS1S2...Sp = lrShare(σM ) be
the secret sharing of message σM and fix a subset T of parties. An ℓ-bounded local leakage adversary
AT is specified by p− |T | leakage maps Φj : L(HSj ⊗HWj )→ L(HZj ) for j ∈ [p] \ T along with a
quantum state |ψ⟩W1W2...Wp which captures the shared entanglement between non-communicating
local leakage adversaries. The outcome of the leakage operation on the j-th share Sj , is stored
in register Zj with Zj being the leakage register, is obtained by applying Φj to the contents of
registers Sj and Wj . We assume that the leakage Zj is bounded, in the sense that |Zj | ≤ ℓ for
every j ∈ [p] \ T , where ℓ is some leakage bound parameterizing the leakage adversary. We denote
the outcome of the leakage experiment against AT by τAT , which may be written as

τAT =

(⊗
i∈T

I

)
⊗

⊗
j ̸∈T

Φj

(lrShare(σMM̂ )⊗ |ψ⟩⟨ψ|W1W2...Wp

)
.

We are now ready to define quantum-secure augmented leakage-resilient secret sharing schemes
for classical messages. It is easy to extend this definition to more general access structures. For
simplicity and because it suffices for our needs, we focus on threshold access structures only.

Definition 20 (Quantum-secure threshold augmented leakage-resilient secret sharing). We say
that the coding scheme (lrShare, lrRec) is an (ℓ, ε)-quantum-secure t-out-of-p augmented leakage-
resilient secret sharing scheme if the following properties hold:

• Correctness: For any set T ⊆ [p] of size |T | ≥ t it holds that

lrRec(lrShare(σ)M̂T ) = σM̂M .

• Leakage-resilience: For any set T ⊆ [p] of size |T | = t − 1, every ℓ-bounded local leakage
adversary

AT = ((Φj)j ̸∈T , |ψ⟩W1W2...Wp),
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and every classical message σM (with the register M̂ being a copy of M) it holds that

τAT

M̂STWT (Zj)j ̸∈T
≈ε σM̂ ⊗ γ

AT

STWT (Zj)j ̸∈T
,

where γAT

STWT (Zj)j ̸∈T
is a fixed state depending only11 on the adversary

AT = ((Φj)j ̸∈T , |ψ⟩W1W2...Wp).

Moreover, we say that the coding scheme (lrShare, lrRec) is an (ℓ, ε)-quantum-secure average-
case t-out-of-p augmented leakage-resilient secret sharing scheme if the above holds for a uniformly
random message σM = UM .

As was the case for our non-malleability definitions, our notion of average-case leakage-resilience
is akin to requiring that the average leakage-resilience error over the uniform choice of input message
be small.

We use the adjective “augmented” because we consider a leakage experiment where the distin-
guisher learns not only the shares ST corresponding to the parties in T and the leakage (Zj)j ̸∈T ,
but (crucially) also the entangled states WT corresponding to parties in T . Note that every (ℓ, ε)-
quantum-secure t-out-of-p augmented leakage-resilient secret sharing scheme is also average-case
with the same parameters.

4.1.1 A 2-out-of-2 scheme

On the way to constructing a quantum-secure 2-out-of-p augmented leakage-resilient secret sharing
scheme, we first focus on the special case where t = p = 2. We show that a well-known secret
sharing scheme based on the inner product extractor is a quantum-secure augmented leakage-
resilient scheme with good parameters.

Suppose that we wish to share a b-bit classical message. Let q = 2b and recall the inner product
function IP : FN

q × FN
q → Fq given by

IP(x, y) =
N∑
i=1

xiyi,

where operations are performed over Fq. Consider the following coding scheme (2lrShare, 2lrRec).
On input a message s ∈ Fq, the sharing procedure 2lrShare(s) works as follows:

1. Sample (X,Y )← IP−1(s) = {(x, y) ∈ FN
q × FN

q : IP(x, y) = s};

2. Set the two shares as S1 = X and S2 = Y .

To reconstruct the secret, we set lrRec(S1, S2) = IP(S1, S2). Note that both the sharing and
reconstruction procedures run in time poly(N, b). The following theorem, proved using the extractor
properties of IP (see Fact 20), states the main properties of this scheme.

11By this, we mean that the state γAT
STWT (Lj)j ̸∈T

can be prepared without the knowledge of the input message
σMM̂ .
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Theorem 7. The coding scheme (2lrShare, 2lrRec) defined above is an (ℓ, ε)-quantum-secure 2-out-
of-2 augmented leakage-resilient secret sharing scheme provided that the share size N · b (in bits)
satisfies

N · b ≥ 9b+ 2ℓ+ 8 log(1/ε) + 40.

Moreover, the sharing and reconstruction procedures run in time poly(N, b).

Proof. The correctness and runtime of this coding scheme are straightforward. We focus on estab-
lishing leakage-resilience. We briefly discuss the intuition behind the proof. First, we consider an
“ideal” case where the message σM is uniformly random. This corresponds to the two shares, X and
Y , being independent and uniformly random. In this unrealistic case we can invoke the randomness
extraction properties of IP from Fact 20 to conclude that IP(X,Y ) will still be extremely close to
uniformly random even when conditioned on, say, X along the entangled state W1 and the leakage
Z2 from Y . Then, we move to the real case where IP(X,Y ) = s for an arbitrary fixed message s by
conditioning the ideal distribution above on this event, which happens with probability 2−b. This
incurs a blowup factor of 2b on the final statistical error when moving from the ideal case to the
real case, which we can survive.

Without loss of generality, fix T = {1} and some leakage adversary A = (Φ2, |ψ⟩W1W2). First,
we consider the “ideal” case where X and Y are independent and uniformly distributed over FN

q .

Define ρ = ρXX̂⊗ρY Ŷ , where X̂ and Ŷ are canonical purification registers of X and Y , respectively.
Let Z2 be the leakage register after applying the leakage function Φ2 to the contents of registers Y
and W2. Invoking Fact 1, let VΦ2 : HY ⊗ HW2 → HY ⊗ HZ2 ⊗ HW ′

2
be the Stinespring isometry

corresponding to the leakage map Φ2. Denote by γ the state ρ⊗|ψ⟩⟨ψ| and τ by the state obtained
by applying the leakage attack defined by A to registers (Y,W2), i.e.,

τ = VΦ2γV
†
Φ2
.

We begin by lower bounding the min-entropy of certain random variables in order to be able to
apply the extractor properties of IP. By independence of X and Y , we have that

Hmin

(
X
∣∣∣Y Ŷ W2

)
γ
≥ N log q and Hmin

(
Y
∣∣∣XX̂W1

)
γ
≥ N log q. (30)

In fact, we claim that we actually have the inequalities

Hmin

(
X
∣∣∣Y Ŷ W ′2)

τ
≥ N log q and Hmin

(
Y
∣∣∣XX̂W1Z2

)
τ
≥ N log q − 2ℓ. (31)

The leftmost inequality of Equation (31) follows by combining the leftmost inequality of Equa-

tion (30) with Fact 19, since τY Z2W ′
2
= VΦ2γYW2V

†
Φ2
. To see the rightmost inequality of Equa-

tion (31), first note that τY XX̂W1
= τY ⊗ τXX̂W1

= UY ⊗ τXX̂W1
. Furthermore, we have that

Imax(Y : XX̂W1Z2)τ ≤ 2|Z2| ≤ 2ℓ, (32)

where we recall that Imax is the max-information and the inequality follows from Fact 3. The
rightmost inequality of Equation (31) now follows from Definition 13 and Definition 17 after noting
that τY = UY .

Now, set Z = IP(X,Y ) and store this string in register M . Taking into account Equation (31),
we invoke Fact 20 with the assignment of states/registers (the states/registers on the left below are
from the statement of Fact 20, while the states/registers on the right are those from this proof)

(ρ,W1,W2, X, Y )←
(
τ,W1Z2,W

′
2, X, Y

)
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to conclude that
τMXW1Z2 ≈ε′=ε·2−b UM ⊗ τXW1Z2 , (33)

provided that N log q = N · b ≥ 9b+ 2ℓ+ 8 log(1/ε) + 40.
To conclude the proof, we would like to show that Equation (33) holds not only when X and

Y are uniformly random over FN
q , but also when X and Y are sampled uniformly at random from

any preimage IP−1(s) with σM = s ∈ Fq any fixed message. Let τ ′ denote the state τ conditioned
on the event that τM = σM . Then, τ ′ corresponds exactly to the state obtained by sharing s using
2lrShare and then applying the leakage attack defined by A above on the resulting shares. Since
Pr[UM = σM ] = 2−b, conditioning both sides of Equation (33) on the event that τM = σM yields

τ ′MXW1Z2
≈ε′·2b=ε σM ⊗ τXW1Z2 ,

as desired.

4.1.2 A 2-out-of-p scheme

We now use our 2-out-of-2 augmented leakage-resilient secret sharing scheme to obtain a 2-out-of-p
scheme for any number of parties p ≥ 3. This is accomplished by following the high-level approach
of Goyal and Kumar [GK18a] in the classical setting.

Let (2lrShare, 2lrRec) be our secret sharing scheme from Theorem 7 for b-bit messages with share
size N ·b. Then, we define our 2-out-of-p secret sharing scheme (lrShare, lrRec) for b-bit messages as
follows. To share a message s ∈ {0, 1}b among p parties, the sharing procedure lrShare(s) proceeds
as follows:

1. For each pair (i, j) ∈ [p] × [p] with i < j, compute the 2-out-of-2 secret sharing (Xj
i , X

i
j) ←

2lrShare(s).

2. Set the final i-th share as Si = (X1
i , X

2
i , . . . , X

i−1
i , Xi+1

i , . . . , Xp
i ) for each i ∈ [p].

For an authorized subset of parties T (i.e., |T | ≥ 2), the reconstruction procedure lrRec(ST ) works
as follows: Pick any two indices i, j ∈ T such that i < j. Then, output s = 2lrRec(Xj

i , X
i
j).

Note that (lrShare, lrRec) above has share size (p− 1) ·N · b. The following theorem states the
secret sharing and leakage-resilience properties of (lrShare, lrRec).

Theorem 8. The coding scheme (lrShare, lrRec) is an (ℓ, ε)-quantum-secure 2-out-of-p augmented
leakage-resilient secret sharing scheme whenever the share size (p− 1) ·N · b satisfies

(p− 1) ·N · b ≥ (p− 1)(9b+ 2ℓ+ 8 log(1/ε) + 16 log p+ 40).

Moreover, the sharing and reconstruction procedures run in time poly(p,N, b). Furthermore, the
fixed leaked state in the leakage-resilience property of Definition 20 can be obtained by running the
leakage tampering experiment for a uniform input message.

Proof. The correctness of this coding scheme is straightforward. Therefore, we focus on showing
leakage-resilience, which follows via a hybrid argument analogous to that of [GK18a, Theorem 6].

Without loss of generality we may set T = {1}. Fix a secret s ∈ Fq and an arbitrary leakage
adversary A = (Φ2, . . . ,Φp, |ψ⟩W1W2...Wp), where Φi : L(HSi ⊗ HWi) → L(HZi) with Zi being the
leakage register for every i ∈ [2, p].
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Let σsS1S2...Sp
where Si ≡ X1

i . . . X
i−1
i Xi+1

i . . . Xp
i be the p shares corresponding to the encoding

of secret s, and let

ρsS1W1Z2...Zp
= (Φ2 ⊗ . . .⊗ Φp)(σ

s
S1S2...Sp

⊗ |ψ⟩⟨ψ|W1W2...Wp).

Let Hs
0,0 denote the original leakage experiment when run on σsS1S2...Sp

, which outputs ρsS1W1Z2...Zp
.

For all pairs (i, j) ∈ [p] × [p] with i < j, let Y j
i and Y i

j be independent and uniformly distributed

over FN
q . We consider hybrids Hs

i,j where for all pairs (i′, j′) up to (i, j) in lexicographic order we

replace Xj
i and Xi

j by Y j
i and Y i

j , respectively.
Note that the output of Hs

p−1,p is independent of the secret s, since it can be obtained by
running the leakage tampering experiment for a uniform input message. Furthermore, there are(
p
2

)
< p2 hybrids. Therefore, the theorem statement will follow if we show that the outputs of any

two consecutive hybrids are (ε/p2)-close in trace distance and then repeatedly apply the triangle
inequality. We show here that

Hs
0,0 ≈ε/p2 H

s
1,2. (34)

The desired analogous statement for any given pair of consecutive hybrids follows in exactly the
same manner. Recall that the only thing that changes from Hs

0,0 to Hs
1,2 is that X2

1 and X1
2 are

replaced by Y 2
1 and Y 1

2 , respectively. Furthermore, observe that, since s is fixed, we may sample
any other pair (Xj

i , X
i
j) ← IP−1(s) for index pairs (i, j) ̸= (1, 2) using randomness independent of

(X2
1 , X

1
2 , Y

2
1 , Y

1
2 ). Consider an arbitrary fixing (Xj

i , X
i
j) = (xji , x

i
j) of all pairs (i, j) ̸= (1, 2) with

i < j such that IP(xji , x
i
j) = s. Let us denote the arbitrary fixing as fix, and σfixrest to mean that the

rest of the registers except (X2
1 , X

1
2 ) are set to fix. Let Hs,fix

0,0 be the original tampering experiment
when run after fixing fix. Then, we have that

Hs,fix
0,0 = (Φ2 ⊗ . . .⊗ Φp)(σ

s
X2

1X
1
2
⊗ σfixrest ⊗ |ψ⟩⟨ψ|W1···Wp)

and
Hs,fix

1,2 = (Φ2 ⊗ . . .⊗ Φp)(UY 2
1
⊗ UY 1

2
⊗ σfixrest ⊗ |ψ⟩⟨ψ|W1···Wp).

Furthermore, it holds that

Hs
0,0 = EfixH

s,fix
0,0 and Hs

1,2 = EfixH
s,fix
1,2 ,

where Efix stands for expectation taken over all the fixings. If we show that for every fixing fix,
Hs,fix

0,0 ≈ε/p2 H
s,fix
1,2 , we will be done as this implies Hs

0,0 ≈ε/p2 H
s
1,2 by invoking Fact 6. We now

proceed to show that Hs,fix
0,0 ≈ε/p2 H

s,fix
1,2 .

By post-processing of trace distance (Fact 4) it suffices to show that

Φ2(σ
s
X2

1X
1
2
⊗ σfixrest ⊗ |ψ⟩⟨ψ|W1···Wp) ≈ε/p2 Φ2(UY 2

1
⊗ UY 1

2
⊗ σfixrest ⊗ |ψ⟩⟨ψ|W1···Wp). (35)

Noting that Φ2 is an ℓ-bounded leakage function we see that Equation (35) follows from Theorem 7
and the definition of quantum-secure augmented leakage-resilient secrete sharing, provided that
N log q = N · b ≥ 9b+ 2ℓ+ 8 log(1/ε) + 16 log p+ 40. This completes the proof.
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4.2 Our candidate non-malleable secret sharing scheme for quantum messages

We proceed to leverage our split-state non-malleable code for quantum messages from Theorem 1
and quantum-secure augmented leakage-resilient secret sharing scheme for classical messages from
Theorem 8 to construct non-malleable threshold secret sharing schemes for quantum messages. The
high-level approach we follow can be seen as the quantum analogue of the construction of classical
non-malleable secret sharing schemes due to Goyal and Kumar [GK18a]. We exploit two crucial
properties of our split-state non-malleable code for quantum messages: First, one of its states is
fully classical. Second, it is also a 2-out-of-2 secret sharing scheme for quantum messages.

Fix a threshold t ≥ 3 and a number of parties p such that t ≤ p ≤ 2t − 1. We will require the
following objects:

• A 2-out-of-2 (εnm = ε, εpriv = ε)-non-malleable secret sharing scheme (2nmShare, 2nmRec)
for quantum messages of length b with a quantum left share of length b1 and a classical right
share of length b2, guaranteed by Theorem 6;

• A t-out-of-p secret sharing scheme (qShare, qRec) for quantum messages of length b1 with
shares of length at most ℓ, guaranteed by Fact 22;

• A 2-out-of-p (ℓ, εleak)-quantum-secure augmented leakage-resilient secret sharing scheme (lrShare, lrRec)
for classical messages of length b2, guaranteed by Theorem 8.

We proceed to describe our candidate t-out-of-p scheme (nmShare,nmRec). On input a quan-
tum message σM with canonical purification σMM̂ , the sharing algorithm nmShare(σ) proceeds as
follows:

1. Compute the split-state encoding ρLR = 2nmShare(σM ), where R is a classical register;

2. Apply qShare to the contents of register L to obtain p quantum shares stored

3. Apply lrShare to the contents of register R to obtain p classical shares stored in registers
R1, . . . , Rp;

4. Form the i-th final share Si = (Li, Ri).

The correctness and runtime of this coding scheme are clear. In the following sections we
establish its statistical privacy and non-malleability.

4.3 Statistical privacy

Consider an arbitrary message σM with canonical purification σMM̂ . Let ρM̂LR = 2nmShare(σMM̂ )
be the split-state encoding of σ with L the quantum register and R the classical register. Let
γ = qShare(ρ) denote the state after encoding the contents of register L using the t-out-of-p secret
sharing scheme (qShare, qRec) for quantum messages, and let θ = nmShare(σMM̂ ) = lrShare(γ)
denote the final state after encoding σ. In order to establish the desired privacy property for
(nmShare, nmRec), we must show that for any subset of parties T ⊆ [p] of size |T | ≤ t− 1 it holds
that

θM̂ST
≈εpriv σM̂ ⊗ ζST

,

for a fixed state ζST
(recall the notation ST = (Si)i∈T ).
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Since γ = qShare(ρ), invoking Lemma 2 with the assignment of registers (where the registers
on the left are those from the statement of Lemma 2 and the registers on the right are the registers
used in this proof)

(ρ, σ, σE , σM )← (γ, ρ, ρM̂R, ρL)

ensures that
γM̂RLT

≡ ρM̂R ⊗ ULT
. (36)

Since (2nmShare, 2nmRec) satisfies εpriv-privacy, we also have that

ρM̂R ≈εpriv σM̂ ⊗ UR. (37)

Thus, combining Equations (36) and (37) with the triangle inequality yields

γM̂RLT
≈εpriv σM̂ ⊗ UR ⊗ ULT

.

Since θ = lrShare(γ), the post-processing property of trace distance (Fact 4) implies that

θM̂RTLT
≈εpriv σM̂ ⊗ lrShare(UR)RT

⊗ ULT
. (38)

We conclude that
θM̂ST

≡ θM̂RTLT
≈εpriv σM̂ ⊗ ζST

,

where ζST
= lrShare(UR)RT

⊗ ULT
is the fixed state.

4.4 Average-case non-malleability

We proceed to show average-case non-malleability for our coding scheme (nmShare,nmRec). In this
case we take σM = UM , and so the canonical purification σMM̂ is maximally entangled. Without
loss of generality, we may take T = {1, . . . , t}.

Fix an arbitrary tampering adversary A = (U1, U2, . . . , Ut, |ψ⟩⟨ψ|E1E2...Ep), where the quantum
registers E1, . . . , Ep store an arbitrary quantum state to be used as shared entanglement across the
several tampering adversaries. Our goal is to reduce the non-malleability of (nmShare, nmRec) to
the non-malleability of (2nmShare, 2nmRec). In order to do this, we show that if A breaks the
(εnm + 2

√
εleak)-non-malleability of (nmShare, nmRec) via the authorized subset T , then we can

build, using A, a split-state adversary A′ = (U, V, |γ⟩⟨γ|W1W2) that breaks the εnm-non-malleability
of (2nmShare, 2nmRec). Since we know that (2nmShare, 2nmRec) is εnm-non-malleable, the desired
result follows.

To build the 2-split-state tampering adversary A′ from our original adversary A, we would like
to follow the high-level approach of Goyal and Kumar [GK18a] in the classical setting and extend
it to the quantum setting. However, as already mentioned in Section 1.3.2, naively replicating this
argument in the quantum setting is not possible since the quantum side information cannot be
fixed. We require a quantum-secure augmented leakage-resilient secret sharing scheme to overcome
this issue. Another thing that complicates the approach in the quantum setting is that the register
L in the split-state encoding (L,R) of the message σM is quantum and so is lost after tampering.
We get around this issue by considering “coherent copies” of L and R which we will be able to
access in our analysis even after L has been destroyed.

To be more precise and because it will be useful during the following argument to generate
coherent copies of registers, we recall some properties of (2nmShare, 2nmRec). First, 2nmShare(σM )
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is composed of two parts, R and L = (L1, L2), where R = UR and L1 = UL1 are classical registers,

and L2 is the quantum register. Moreover, we have that L2 = CKσMC
†
K = UL2 with K =

nmExt(R,L1), where nmExt is the explicit quantum-secure 2-source non-malleable extractor from
Fact 21, and CK is an appropriate Clifford gate. It follows from the procedure that

2nmShare(σM ) = UL ⊗ UR. (39)

Note that 2nmShare is a CPTP map and not an isometry – to access “coherent copies” of L
and R, we will have to consider the Stinespring isometry extention of 2nmShare. Let V2nmShare :
HM → (HL ⊗ HR ⊗ HF ) be the Stinespring isometry extension (see Fact 1) of 2nmShare, where
the register F in the definition of V2nmShare is the external ancilla register required to implement
the operation 2nmShare as an isometry. Let ν = V2nmShareσMM̂V

†
2nmShare. Observe that ν is a pure

state and 2nmShare(σM ) = TrM̂F

(
V2nmShareσMM̂V

†
2nmShare

)
. Combining this with Equation (39),

we have that
TrM̂F (ν) = UL ⊗ UR. (40)

Let ρLL̂RR̂ be the canonical purification of ρLR = UL⊗UR. We now invoke Uhlmann’s theorem
(Fact 9) with the following assignment of registers (where the registers on the left are those from
the statement of Fact 9 and the registers on the right are the registers used in this proof):

(σA, ρA, σAC , ρAB)← (νLR, ρLR, νLRFM̂ , ρLRL̂R̂).

This guarantees the existence of an isometry Uhlmann : HM̂ ⊗HF → HL̂ ⊗HR̂ such that

∆B

(
ρLRL̂R̂, (Uhlmann)νLRFM̂ (Uhlmann†)

)
= ∆B(ρLR, νLR) = 0,

where the rightmost inequality holds because ρLR = νLR = UL ⊗ UR. Thus, we conclude that the
state ρ as depicted in Figure 8 satisfies

ρLL̂RR̂ = ρLL̂ ⊗ ρRR̂ and ρLR = UL ⊗ UR. (41)

With access to coherent copies of L̂, R̂ in state ρ, we now move on to consider the two relevant
tampering experiments are described in Figures 8 and 9 for some adversaries A′ and A, respectively.
We will refer to states in those figures throughout our argument. First, observe that the state ρ is
the same in Figures 8 and 9. Moreover, the procedures applied to the states τ ′ and τ in Figures 8
and 9, respectively, are also the same. This means that in order to prove the desired result it suffices
to show that given any adversary A in Figure 9 we can come up with a corresponding 2-split-state
adversary A′ = (U, V, |γ⟩⟨γ|W1W2) (which transforms the state ρ into τ ′ in Figure 8) such that τ ′

in Figure 8 is appropriately close (in trace distance) to the state τ in Figure 9.
As a stepping stone towards defining A′, we begin by studying the state θ in Figure 9, which

is obtained from ρ through an application of the qShare and lrShare procedures. Note that θ is
not pure – to facilitate the analysis, we will from here onwards work with the pure state extension
of θ, which, because the context is clear, we will also call θ. More precisely, let VqShare : HL →
(HL1 ⊗ · · · ⊗ HLp ⊗ HL̃) be the Stinespring isometry extension (see Fact 1) of qShare, and let
VlrShare : HR → (HR1 ⊗ · · · ⊗ HRp ⊗ HR̃1

⊗ · · · ⊗ HR̃p
) be the Stinespring isometry extension

(see Fact 2) of lrShare. The registers L̃ and R̃1, . . . , R̃p in the definitions of VqShare and VlrShare,
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respectively, are the external ancilla registers required to implement the operations lrShare and
qShare (which are CPTP maps) as isometries. Then, we define

θ
def
= (VqShare ⊗ VlrShare)ρ(V †qShare ⊗ V

†
lrShare).

We also consider the following intermediate state θ′ obtained from θ by tampering with the first
t− 1 shares according to A, i.e.,

θ′
def
= (U1 ⊗ . . .⊗ Ut−1 ⊗ It ⊗ . . . Ip)(θ ⊗ |ψ⟩⟨ψ|E1...Ep)(U

†
1 ⊗ . . .⊗ U

†
t−1 ⊗ I†t ⊗ . . . I†p).

The registers associated with θ′ are found in Figure 9 after applying U1, . . . , Ut−1 to θ. In what
follows we will need to refer to several registers of θ′. To help with readability, we define

W ′1 ≡ RtL[t−1]E[t,p]L̃L[t,p] and W ′2 ≡ R[t−1]E[t−1]R[t+1,p]R̃[p]

as shorthand, where we recall that [t, p] denotes the set {t, t+ 1, . . . , p}. The notation W ′1 and W ′2
is justified by the fact that we will use γW1W2 ≡ θ′W1W2

with

W1 ≡ RtL[t−1]E[t,p]L̂L̃L[t,p] and W2 ≡ R[t−1]E[t−1]R̂R[t+1,p]R̃[p],

obtained by adding R̂ to W ′2 and L̂ to W ′1, respectively, as the shared entanglement for the 2-split-
state adversary A′.

We now present some important properties of the state θ′. Their proofs appear later in Sec-
tions 4.4.1 and 4.4.2. The first claim states that the coherent copy L̂ defined above is independent
of R̂ even when W ′2 is revealed as side information.

Claim 1. We have that
θ′
L̂R̂W ′

2
= θ′

L̂
⊗ θ′

R̂W ′
2
.

The second claim states that R̂ is close to being independent of L̂ given the side information
W ′1. This uses the augmented leakage-resilience property of the (lrShare, lrRec) scheme.

Claim 2. We have that
θ′
R̂L̂W ′

1
≈εleak θ

′
R̂
⊗ θ′

L̂W ′
1
.

We use these claims as starting points towards constructing the tampering maps U and V of
the 2-split-state adversary A′. First, we show that there exist maps U ′ : HL ⊗ HW1 → HW ′

1
and

V ′ : HR⊗HW2 → HW ′
2
and a pure state γW1W2 that depends only on (U1, U2, . . . , Ut−1, |ψ⟩⟨ψ|E1...Ep)

such that
θ′W1W2

≈2
√
εleak (U

′ ⊗ V ′)(ρ⊗ γW1W2)((U
′)† ⊗ (V ′)†). (42)

Equation (42) is a consequence of a careful instantiation of the following fact. A variation of the
fact below in terms of mutual information already appears in [JPY14, Lemma II.15]. For the sake
of completeness, we provide a proof of the version we need in Section 4.4.3.

Fact 24. Let ϕXABY be a pure state such that

ϕXBY ≈ε1 ϕX ⊗ ϕBY and ϕY AX ≈ε2 ϕY ⊗ ϕAX .
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Furthermore, let κ be a pure state such that

κX1X̂1Y1Ŷ1
= κX1X̂1

⊗ κY1Ŷ1
,

where X̂1 and Ŷ1 are the canonical purification registers of X1 and Y1, respectively, and

κX1 ≡ ϕX and κY1 ≡ ϕY .

Then, there exist two isometries U ′ : HX̂1
⊗ HA ⊗ HX → HA and V ′ : HŶ1

⊗ HB ⊗ HY → HB

alongside a pure state γXABY such that

ϕXABY ≈2(
√
ε1+
√
ε2) (U

′ ⊗ V ′)(κ⊗ γ)((U ′)† ⊗ (V ′)†).

To be precise, we obtain Equation (42) from Fact 24 via the assignment of registers (below the
registers on the left are from Fact 24 and the registers on the right are the registers in this proof)

(ϕ, ϕX , ϕY , ϕA, ϕB, κ, κX1 , κX2 , κX̂1
, κX̂2

)← (θ′, θ′
L̂
, θ′

R̂
, θ′W ′

1
, θ′W ′

2
, ρ, ρL̂, ρR̂, ρL, ρR),

and by setting ε1 = 0 and ε2 = εleak, which is justified by Claims 1 and 2, respectively. Furthermore,
we have used Claims 1 and 2 to satisfy the conditions of state ϕ (which will be state θ′ in this proof)
in Fact 24.

We use U ′ and V ′ to construct the CPTP 2-split-state tampering maps U : L(HL ⊗ HW1) →
L(HL) and V : L(HR ⊗HW2)→ L(HR) of A′ as follows:

• On input the contents of registers ρL and γW1 , the map U first applies the unitary U ′ :
HL ⊗ HW1 → HW ′

1
to generate the contents of register θ′W ′

1
(approximately). In particular,

note that registers L[t−1]RtLtEt are part of W ′1. Then, it uses the unitary Ut followed by
qRec to generate τL and traces out the remaining registers of W ′1.

• On input the contents of registers ρR and γW2 , the map V first applies the unitary V ′ :
HR ⊗ HW2 → HW ′

2
to generate the contents of register θ′W ′

2
(approximately). In particular,

note that R[2] is part of W ′2 (this crucially uses the fact that t > 2). Then, it uses lrRec to
generate τR from θ′R[2]

and traces out the remaining registers of W ′2;

Let τ ′
L̂R̂LR

= (U⊗V )(ρ⊗γW1W2) be the state obtained after applying the 2-split-state tampering

attack defined by A′ = (U, V, γW1W2) on ρ in Figure 8. By inspecting the definition of θ′ above,
the state τL̂R̂LR obtained after applying the tampering attack defined by A on ρ in Figure 9 can
be written as

τL̂R̂LR = (qRec⊗ lrRec)

((
Utθ
′U †t

)
L̂R̂L[t]R[2]

)
. (43)

Recall from our discussion above that our main goal is to show that these two states τ and τ ′

are appropriately close in trace distance. Combining Equation (43) with Equation (42) and the
postprocessing property of trace distance (Fact 4) yields

τL̂R̂LR ≈2
√
εleak τ

′
L̂R̂LR

, (44)

To see this, first note that registers θ′L1...Lt−1LtRtEt
are obtained by applying U ′ to ρL⊗γW1 . Then,

the register τL is generated using qRec(Utθ
′
L1...Lt−1LtRtEt

U †t ). On the other hand, the register τR is
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Figure 8: Tampering experiment for average-case 2-out-of-2 NMSS.

generated using lrRec with input the registers θ′R[2]
, which are themselves generated from ρR and

γW2 via V ′.
Recalling that the operations applied to τ ′ and τ in Figures 8 and 9, respectively, are the same,

we conclude from Equation (44) and postprocessing (Fact 4) that the final decoded tampered state
η in Figure 9 satisfies

ηM̂M ≈2
√
εleak TrF

(
(Uhlmann† ⊗ 2nmRec)((U ⊗ V )(ρ⊗ γW1W2))

)
. (45)

Moreover, from the εnm-non-malleability of (2nmShare, 2nmRec) we get that

TrF

(
(Uhlmann† ⊗ 2nmRec)((U ⊗ V )(ρ⊗ γW1W2))

)
≈εnm pAσM̂M + (1− pA)σM̂ ⊗ ζ

A
M , (46)

where (pA, ζ
A
M ) depend only on (U, V, γW1W2), which further depend only on the initial adversary

A = (U1, U2, . . . , Ut, |ψ⟩⟨ψ|E1...Ep). Finally, combining Equations (45) and (46) with the triangle
inequality leads to

ηM̂M ≈εnm+2
√
εleak pAσM̂M + (1− pA)σM̂ ⊗ ζ

A
M ,

which completes the proof of average-case non-malleability.

4.4.1 Proof of Claim 1

For convenience, we restate the relevant claim.

Claim 1. We have that
θ′
L̂R̂W ′

2
= θ′

L̂
⊗ θ′

R̂W ′
2
.

Proof. From Equation (41), we have that ρLL̂RR̂ = ρLL̂ ⊗ ρRR̂. Further we have θ = (VqShare ⊗
VlrShare)ρ(V

†
qShare ⊗ V †lrShare). Since VqShare and VlrShare act on two different registers L and R,

respectively, we have that

θL̂L̃L[p]R̂R[p]R̃[p]
= θL̂L̃L[p]

⊗ θR̂R[p]R̃[p]
. (47)
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Figure 9: Tampering experiment for average-case t-out-of-p quantum NMSS.

Furthermore, using the fact that VqShare is a t-out-of-p secret sharing scheme and invoking Lemma 2,
we have that

θL̂L[t−1]
= θL̂ ⊗ θL[t−1]

= θL̂ ⊗ UL[t−1]
.

This means that
θL̂L[t−1]R̂R[p]R̃[p]

= θL̂ ⊗ θL[t−1]
⊗ θR̂R[p]R̃[p]

,

and so by postprocessing (Fact 4) it follows that

θ′
L̂L[t−1]R[t−1]E[t−1]E[t,p]R̂R[t,p]R̃[p]

= θ′
L̂
⊗ θ′

L[t−1]R[t−1]E[t−1]E[t,p]R̂R[t,p]R̃[p]
,

which, again by postprocessing (Fact 4) and by the definition of W ′2, implies the desired statement.

4.4.2 Proof of Claim 2

For convenience, we restate the relevant claim here.

Claim 2. We have that
θ′
R̂L̂W ′

1
≈εleak θ

′
R̂
⊗ θ′

L̂W ′
1
.

Proof. We use the 2-out-of-p (ℓ, εleak)-quantum-secure augmented leakage-resilient secret sharing
property of lrShare to conclude that

θ′
R̂RtL[t−1]E[t,p]L̂L̃L[t,p]

≈εleak θ
′
R̂
⊗ θ′

RtL[t−1]E[t,p]L̂L̃L[t,p]
. (48)

Recalling the definition of W ′2, this corresponds exactly to the statement of Claim 2.
To see why Equation (48) holds, first recall that

θ′ = (U1 ⊗ . . .⊗ Ut−1 ⊗ It ⊗ . . . Ip)(θ ⊗ |ψ⟩⟨ψ|E1...Ep)(U
†
1 ⊗ . . .⊗ U

†
t−1 ⊗ I†t ⊗ . . . I†p),

with θ illustrated in Figure 9. We now consider the following leakage attack on the R[p] registers:
Taking into account the notation from Section 4.1, we set T = [t − 1] and for each i ∈ [t − 1] we
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see Wi = (Li, Ei) as the entangled register for the local leakage adversary attacking Ri. Recall
that the i-th tampering map Ui is applied to (Si, Ei) = (Li, Ri, Ei), yielding tampered registers
(Li, Ri, Ei). Given this, we see Li, which satisfies |Li| ≤ ℓ, as the ℓ-bounded leakage on the i-
th share Ri produced by the i-th local leakage adversary for lrShare with access to Ri and the
entangled registers (Li, Ei). Furthermore, we set the entangled register associated with the share
Rt as Wt = (E[t,p], L̂, L̃, L[t,p]), and for i > t we set the entangled registers Wi to be empty. Note
that from Equation (47) we have that

θL̂L̃L[p]R̂R[p]R̃[p]
= θL̂L̃L[p]

⊗ θR̂R[p]R̃[p]
,

and so the selected shared entangled state stored in registers W1, . . . ,Wn does not depend on
the contents of R and R̂. Invoking Theorem 8 and the augmented leakage-resilience property of
(lrShare, lrRec) under this leakage attack yields Equation (48), which completes the proof.

4.4.3 Proof of Fact 24

For convenience, we restate the relevant fact here.

Fact 24. Let ϕXABY be a pure state such that

ϕXBY ≈ε1 ϕX ⊗ ϕBY and ϕY AX ≈ε2 ϕY ⊗ ϕAX .

Furthermore, let κ be a pure state such that

κX1X̂1Y1Ŷ1
= κX1X̂1

⊗ κY1Ŷ1
,

where X̂1 and Ŷ1 are the canonical purification registers of X1 and Y1, respectively, and

κX1 ≡ ϕX and κY1 ≡ ϕY .

Then, there exist two isometries U ′ : HX̂1
⊗ HA ⊗ HX → HA and V ′ : HŶ1

⊗ HB ⊗ HY → HB

alongside a pure state γXABY such that

ϕXABY ≈2(
√
ε1+
√
ε2) (U

′ ⊗ V ′)(κ⊗ γ)((U ′)† ⊗ (V ′)†).

Proof. We are given a state ϕXABY such that

ϕXBY ≈ε1 ϕX ⊗ ϕBY and ϕY AX ≈ε2 ϕY ⊗ ϕAX .

We intend to show that we can generate a state close to ϕ using only κX1Y1 ≡ ϕX ⊗ ϕY , shared
entanglement γ, and isometries U, V . We use an independent copy of ϕ as shared entanglement,
i.e., γXABY ≡ ϕXABY . We first correlate registers κX1X̂1

and shared entanglement γXABY using
the isometry U to obtain state ϕ′. We next correlate registers κY1Ŷ1

and state ϕ′ using the isometry
V to obtain ϕ′′. Then, we show that state ϕ′′ is the final state which will be close to ϕ in trace
distance, as desired. We use Uhlmann’s theorem (Fact 9) to argue closeness in trace distance.

Consider the pure state
η = κX1X̂1

⊗ γXABY .

Using the fact that κX1 ≡ ϕX , we have that ηX1BY ≡ ϕX ⊗ ϕBY . Moreover, since ϕX ⊗ ϕBY ≈ε1

ϕXBY by hypothesis, it follows that ηX1BY ≈ε1 ϕXBY .
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We invoke Uhlmann’s theorem (Fact 9) with the following assignment of registers (where the
registers on the left are those from the statement of Fact 9 and the registers on the right are the
registers used in this proof):

(σA, ρA, σAC , ρAB)← (ηX1BY , ϕXBY , ηX1BY X̂1XA, ϕXBY A).

This guarantees the existence of an isometry U : HX̂1
⊗HA ⊗HX → HA such that

∆B

(
ϕ′X1BY A, ϕXBY A

)
= ∆B(ηX1BY , ϕXBY ) ≤

√
ε1/2 (49)

with ϕ′X1AY B = U
(
κX1X̂1

⊗ γXABY

)
U † and where the rightmost inequality follows from Fact 8

and the fact that ηX1BY ≈ε1 ϕXBY .
Now, consider the state η′ = ϕ′X1AY B ⊗ κY1Ŷ1

. Observe that

η′X1AY1
= ϕ′X1A ⊗ κY1 ≡ ϕ′X1A ⊗ ϕY . (50)

Using Fact 8 and the fact that ϕY ⊗ ϕAX ≈ε2 ϕY AX (by hypothesis), we get

∆B(ϕY ⊗ ϕAX , ϕY AX) ≤
√
ε2/2. (51)

From Equation (49) and Fact 4, we get ∆B(ϕ
′
X1A

, ϕXA) ≤
√
ε1/2. This further implies that

∆B(ϕ
′
X1A ⊗ ϕY , ϕXA ⊗ ϕY ) ≤

√
ε1/2. (52)

Combining Equations (50) to (52) along with the triangle inequality, we have that

∆B(η
′
X1AY1

, ϕXAY ) ≤
√
ε1/2 +

√
ε2/2.

We use Fact 9 with the following assignment of registers (below the registers on the left are
from Fact 9 and the registers on the right are the registers in this proof),

(σA, ρA, σAC , ρAB)← (η′X1AY1
, ϕXAY , ηX1AY1Ŷ1Y B, ϕXAY B).

From Fact 9 we get an isometry V : HŶ1
⊗HB ⊗HY → HB such that

∆B

(
ϕ′′X1AY1B, ϕXAY B

)
= ∆B(ϕ

′
X1AY1

, ϕXAY ) ≤
√
ε1/2 +

√
ε2/2, . (53)

where,

ϕ′′X1AY1B = V
(
ϕ′X1AY B ⊗ κY1Ŷ1

)
V † = (U ⊗ V )(κ⊗ γ)(U † ⊗ V †).

From Equation (53) and Fact 8, we obtain the desired statement.

4.5 From average-case to worst-case non-malleability

In Section 4.4, we showed that our secret sharing scheme (nmShare,nmRec) for quantum messages
described in Section 4.2 is average-case (εnm+2

√
εleak)-non-malleable. To obtain our Theorem 3, we

would like to upgrade from average-case to worst-case non-malleability. This can be done in exactly
the same manner as was done for our 2-split-state NMC for quantum messages in Section 3.3, and
so we avoid repeating the argument here. More precisely, the following easy extension of Lemma 9
holds in the secret sharing setting.
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Lemma 10. If (Share,Rec) is an average-case (εpriv, εnm)-non-malleable secret sharing scheme for
quantum messages of length b, then it is also a worst-case (εpriv, ε

′
nm)-non-malleable secret sharing

scheme for quantum messages of length b, where ε′nm = 2b · εnm.

Combining Lemma 10 with the statistical privacy property shown in Section 4.3 and the average-
case non-malleability property shown in Section 4.4 yields the following result.

Theorem 9. Given a threshold t ≥ 3 and a number of parties p such that t ≤ p ≤ 2t− 1, it holds
that the scheme (nmShare, nmRec) described in Section 4.2 is a t-out-of-p (εpriv, ε

′
nm)-non-malleable

secret sharing scheme for quantum messages of length b with ε′nm = 2b(εnm + 2
√
εleak).

It remains to set the parameters in Theorem 9 (which come from the underlying objects used
to define our secret sharing scheme in Section 4.2) appropriately so that we can obtain Theorem 3.

4.6 Setting the parameters

To conclude our argument, we now show how to instantiate the objects used to define our secret
sharing scheme in Section 4.2 to get Theorem 3. First, due to Theorem 6, the underlying 2-out-of-2
(εpriv, εnm)-non-malleable scheme (2nmShare, 2nmRec) can be set so that εpriv = εnm = 2−n

Ω(1)
and

that the quantum left share and classical right share have lengths b1 and b2, respectively, satisfying
b1 + b2 = n, provided that the input quantum message has length b ≤ nc for some sufficiently
small absolute constant c > 0. Since b1 ≤ n, the scheme (qShare, qRec) produces shares of length
ℓ = poly(p, n) by Fact 22. Finally, by Theorem 8, the scheme (lrShare, lrRec) can be set so that

it is (ℓ = poly(p, n), εleak = 2−n
Ω(1)

)-augmented leakage-resilient with shares of length poly(p, n).
Additionally, all of these procedures run in time poly(p, n). Combining this with Theorem 9 yields
the desired Theorem 3, provided that the input quantum message length b is at most nc for a
sufficiently small absolute constant c > 0. We restate the resulting theorem here for convenience.

Theorem 3 (Split-state threshold NMSS schemes for quantum messages). There exist constants
c, C > 0 and an integer n0 ∈ N such that the following holds for any number of parties p and
threshold t ≥ 3 such that t ≤ p ≤ 2t − 1 and for any n ≥ n0: There exists a family of t-out-
of-p (εpriv = ε, εnm = ε)-non-malleable secret sharing schemes for quantum messages with shares
of size at most (pn)C , message length ⌊nc⌋, and error ε = 2−n

c
. Furthermore, the sharing and

reconstruction procedures of this scheme can be computed in time polynomial in p and n.

4.7 Quantum-secure classical non-malleable secret sharing schemes

In this section, we present and analyze non-malleable threshold secret sharing schemes for classical
messages secure against quantum adversaries with shared entanglement. Here, both the sharing and
reconstruction procedures are classical, and we call these schemes quantum-secure non-malleable.
We obtain such schemes via a simpler and entirely analogous realization of the approach laid out
earlier in this Section 4, combining a known split-state non-malleable code for classical messages
from [BBJ23] with Shamir’s secret sharing scheme and a quantum-secure leakage-resilient secret
sharing scheme for classical messages.

We begin by defining threshold quantum-secure non-malleable secret sharing schemes. This
definition follows along the lines of Definition 2 specialized to classical messages and with a different
definition of the register M̂ . Let σM be a classical message, and set M̂ to contain a copy of this
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message.12 We consider a classical scheme (nmShare, nmRec) with a classical sharing procedure
nmShare : L(HM )→ L(HS1 ⊗HS2 ⊗ · · · ⊗ HSn) and a classical reconstruction procedure nmRec :
L(
⊗

i∈T HSi) → L(HM ), where L(H) is the space of all linear operators in the Hilbert space H
and the reconstruction procedure nmRec acts on any authorized set T .

Let ρ = nmShare(σMM̂ ) be the classical sharing of σM , and denote by S1, S2, . . . , Sp the classical
registers corresponding to the p resulting shares. The most basic property we require of this scheme
is correctness, i.e., for any subset of shares T ⊆ [p] such that |T | ≥ t, we must have that

nmRec(ρM̂ST
) = σMM̂ .

A split-state tampering adversary AT for some authorized subset T of size |T | = t is specified as

AT =

(⊗
i∈T

Ui, |ψ⟩W1W2...Wp

)
,

where |ψ⟩W1W2...Wp represents the entangled quantum state shared among tampering adversaries
and Ui : L(HSi)⊗L(HWi)→ L(HSi)⊗⊗L(HWi) are the tampering maps. We denote the resulting
tampered state by

τAT =

(⊗
i∈T

Ui

)
⊗

⊗
j ̸∈T

I

(nmShare(σ)⊗ |ψ⟩⟨ψ|W1···Wp

)(⊗
i∈T

U †i

)
⊗

⊗
j ̸∈T

I†
 .

We are now ready to define threshold quantum-secure non-malleable secret sharing schemes.

Definition 21 (Threshold quantum-secure non-malleable secret sharing scheme). The coding scheme
(nmShare,nmRec) is said to be a t-out-of-p (εpriv, εnm)-quantum-secure non-malleable secret sharing
scheme, if for any classical message σM ∈ D(HM ) (with copy σM̂ in σMM̂ ) the following properties
are satisfied:

• Correctness: For any T ⊆ [p] such that |T | ≥ t it holds that

nmRec(nmShare(σMM̂ )ST
) = σMM̂ ,

where we write ST = (Si)i∈T .

• Statistical privacy: For any T ⊆ [p] such that |T | ≤ t− 1 it holds that

nmShare(σMM̂ )M̂ST
≈εpriv σM̂ ⊗ ζST

,

where ζST
is a fixed state independent of σM .

• Non-malleability: For any T ⊆ [p] such that |T | = t and for every split-state tampering
adversary AT as above, it holds that

nmRec(τAT

M̂ST
) ≈εnm pAT

· σM̂M + (1− pAT
)σM̂ ⊗ γ

AT
M , (54)

where pAT
∈ [0, 1] and γAT

M depend only on the adversary AT .

If Equation (54) is only guaranteed to hold when σM = UM , we say that (nmShare,nmRec) is
an average-case t-out-of-p (εpriv, εnm)-quantum-secure non-malleable secret sharing scheme.

12Here, the register M̂ is a classical copy of M , while in our definition of NMSS schemes for quantum messages M̂
is the canonical purification register of M .
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We will require the following known quantum-secure 2-out-of-2 non-malleable secret sharing
scheme from [BBJ23], along with standard Shamir’s threshold secret sharing scheme.

Theorem 10 (Average-case 2-out-of-2 quantum-secure non-malleable secret sharing scheme with
constant rate [BBJ23]). For any fixed constant c > 0, there exists an average-case 2-out-of-2
(εpriv, εnm)-quantum-secure non-malleable secret sharing scheme for classical messages with code-

word length n, message length at most
(
1
5 − c

)
n, εpriv = 2−n

Ωc(1)
and εnm = 2−n

Ωc(1)
, where Ωc(·)

hides constants which depend only on c. Furthermore, the sharing and reconstruction procedures
can be computed in time poly(n).

Fact 25 (Classical Shamir’s secret sharing [Sha79]). For any number of parties p and threshold t
such that t ≤ p, there exists a t-out-of-p secret sharing scheme (Share,Rec) for classical messages
of length b with share size at most max(p, b), where both the sharing and reconstruction procedures
run in time poly(p, b).

4.7.1 Our candidate quantum-secure non-malleable secret sharing scheme

We leverage the 2-out-of-2 quantum-secure non-malleable secret sharing scheme from Theorem 10
and our quantum-secure augmented leakage-resilient secret sharing scheme for classical messages
from Theorem 8 to construct quantum-secure non-malleable threshold secret sharing schemes. As
mentioned before, we accomplish this via the same techniques we used to construct our NMSS
schemes for quantum messages earlier in this section.

Fix a threshold t ≥ 3 and a number of parties p such that t ≤ p. We will require the following
objects:

• A 2-out-of-2 (εnm = ε, εpriv = ε)-quantum-secure non-malleable secret sharing scheme, which
we denote by (2nmShare, 2nmRec), for messages of length b with a left share of length b1 and
a right share of length b2, guaranteed by Theorem 10;

• A t-out-of-p secret sharing scheme (Share,Rec) for messages of length b1 with shares of length
at most ℓ, guaranteed by Fact 25;

• A 2-out-of-p (ℓ, εleak)-quantum-secure augmented leakage-resilient secret sharing scheme, which
we denote by (lrShare, lrRec), for classical messages of length b2, guaranteed by Theorem 8.

We proceed to describe our candidate t-out-of-p scheme (nmShare,nmRec). On input a classical
message σM (with a copy M̂ in σMM̂ ), the classical sharing algorithm nmShare(σ) proceeds as
follows:

1. Compute the encoding ρLR = 2nmShare(σM );

2. Apply Share to the contents of register L to obtain p shares stored in registers L1, . . . , Lp;

3. Apply lrShare to the contents of register R to obtain p shares stored in registers R1, . . . , Rp;

4. Form the i-th final share Si = (Li, Ri).

The corresponding reconstruction algorithm nmRec is straightforward. The differences between
our quantum-secure NMSS scheme considered here and the NMSS scheme for quantum messages
from Section 4.2 are the following:
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• The NMSS scheme for quantum messages from Section 4.2 uses (2nmShare, 2nmRec) guar-
anteed by Theorem 6, while we use (2nmShare, 2nmRec) guaranteed by Theorem 10.

• The NMSS scheme for quantum messages from Section 4.2 uses quantum Shamir’s secret
sharing (qShare, qRec) guaranteed by Fact 22, while we use classical Shamir’s secret sharing
(Share,Rec) guaranteed by Fact 25. This ensures that for classical messages we get t-out-of-p
NMSS schemes for any t ≤ p and t ≥ 3.

• In the non-malleability argument for our NMSS scheme for quantum messages in Section 4.4,
we have used the Uhlmann isometry to create the coherent copies of quantum registers. For
the non-malleability argument of our quantum-secure NMSS scheme we can completely ignore
such an argument and just copy the classical registers and proceed with the rest of argument.

We have the following result.

Theorem 11 (Average-case t-out-of-p quantum-secure non-malleable secret sharing scheme). The
coding scheme (nmShare,nmRec) as described in Section 4.7.1 is an average-case (εpriv, εnm +
2
√
εleak)-quantum-secure non-malleable secret sharing scheme.

Proof. The correctness and runtime of this coding scheme are clear. Establishing the statistical
privacy and average-case non-malleability of our scheme follows analogously to the arguments
in Section 4.3 and Section 4.4, respectively, and we opt to not repeat them.

As before, it remains to upgrade average-case non-malleability to worst-case non-malleability.
This is also generically possible in the present setting, as captured by the following lemma whose
proof is analogous to those of Lemmas 9 and 10.

Lemma 11. If (Share,Rec) is an average-case (εpriv, εnm)-quantum-secure non-malleable secret
sharing scheme for messages of length b, then it is also a worst-case (εpriv, ε

′
nm)-quantum-secure

non-malleable secret sharing scheme for messages of length b, where ε′nm = 2b · εnm.

Finally, the choices of parameters used to instantiate our construction in this section are anal-
ogous to those of Section 4.6. We obtain the following final result by combining Theorem 11 with
Lemma 11.

Theorem 12 (Threshold quantum-secure NMSS schemes). There exists a constant c ∈ (0, 1) such
that the following holds: Given a threshold t ≥ 3 and a number of parties p such that t ≤ p, there
exists a (εpriv = ε, εnm = ε)-t-out-of-p quantum-secure non-malleable secret sharing scheme for

messages with shares of size at most poly(p, n), any message length at most nc, and ε = 2−n
Ω(1)

.
Furthermore, the sharing and reconstruction procedures of this scheme can be computed in time
poly(p, n).
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