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Abstract. A leakage-resilient circuit for f : {0, 1}n → {0, 1}m is a randomized Boolean circuit C
mapping a randomized encoding of an input x to an encoding of y = f(x), such that applying any
leakage function L ∈ L to the wires of C reveals essentially nothing about x. A leakage-tolerant circuit
achieves the stronger guarantee that even when x and y are not protected by any encoding, the output
of L can be simulated by applying some L′ ∈ L to x and y alone. Thus, C is as secure as an ideal
hardware implementation of f with respect to leakage from L.
Leakage-resilient circuits were constructed for low-complexity classes L, including (length-t output)
AC0 functions, parities, and functions with bounded communication complexity. In contrast, leakage-
tolerant circuits were only known for the simple case of probing leakage, where L outputs the values of
t wires in C.
We initiate a systematic study of leakage-tolerant circuits for natural classes L of global leakage func-
tions, obtaining the following main results.
– Leakage-tolerant circuits for depth-1 leakage. Every circuit Cf for f can be efficiently com-

piled into an L-tolerant circuit C for f , where L includes all leakage functions L that output either
t parities or t disjunctions (alternatively, conjunctions) of any number of wires or their negations.
In the case of parities, our simulator runs in 2O(t) time. We provide partial evidence that this may
be inherent.

– Application to stateful leakage-resilient circuits. We present a general transformation from
(stateless) leakage-tolerant circuits to stateful leakage-resilient circuits. Using this transformation,
we obtain the first constructions of stateful t-leakage-resilient circuits that tolerate a continuous
parity/disjunction/conjunction leakage in which the circuit size grows sub-quadratically with t.
Interestingly, here we can obtain poly(t)-time simulation even in the case of parities.

1 Introduction

A dream goal in cryptography is to design hardware that can perform general computations on secret inputs
while resisting arbitrary side-channel attacks that reveal partial information about the computation. An
extreme version of this goal requires ideal (and unrealizable) flavors of obfuscation. However, when settling
for security against limited classes of side channels, this goal becomes realizable and has been the topic of a
large body of theoretical and applied work.

A simple formal model for studying this problem is a leakage-resilient circuit (LRC) [ISW03]. Let L be
a class of leakage functions with t-bit output. A (stateless) LRC for a function f : {0, 1}n → {0, 1}m is a
randomized Boolean circuit C : {0, 1}n̂ → {0, 1}m̂ mapping a randomized encoding (or secret-sharing) x̂ of
an input x to an encoding ŷ of y = f(x), such that applying any leakage function L ∈ L to the wires of C
reveals essentially nothing about x in an information-theoretic sense. Assuming the availability of an ideal
(leak-free) input encoder and output decoder4, this gives an end-to-end solution to the problem of protecting
the computation of f against leakage class L.
4 To avoid trivial solutions in which the computation is carried out by the input encoder or the output decoder, it is

required that the encoding of the inputs and outputs be universal in the sense that it depends only on their length
and not on C.



There is a long line of works studying different flavors of the LRC question. The vast majority of these
works focus on the simple class L of probing leakage, where L can only output the values of t (physical) wires
in C. This baseline model has been extended in two orthogonal ways:

From local to global leakage. While the “local” leakage resilience captured by the probing model is practi-
cally relevant and implies resilience against certain kinds of noisy leakage [DDF19], it does not capture global
leakage that applies jointly to an unbounded number of wires. This type of leakage may arise in realistic side-
channels attacks such as timing or power analysis that measure global information about the computation.
The study of such global leakage functions was initiated in [MR04,FRR+14]. Most relevant to the current
work are constructions of LRCs against AC0 leakage, consisting of constant-depth polynomial-size circuits
over AND,OR,NOT gates with unbounded fan-in [FRR+14,Rot12,BIS21,BDF+22], and LRCs against parity
leakage and (more broadly) bounded-communication leakage [GR15,GIM+16,GIW17]. See Section 1.2 for
more work in this direction.

From stateless to stateful circuits. The simplicity of the LRC model makes it an attractive object of study.
However, this model is limited in two significant ways. First, it assumes leak-free input encoder and output de-
coder. Second, it is limited to a one-shot scenario where a single computation is performed and is subject to a
small amount of leakage. In contrast, real-world computers or embedded devices need to maintain a persistent
secret state, and are subject to continuous leakage which may be unbounded over time. The stateful variant
of LRCs [ISW03,DP08,FRR+14] addresses both limitations by considering circuits with memory that can be
initialized with an encoded secret state, and can then “refresh” the encoded state in each invocation. The main
challenge in converting stateless LRCs into stateful ones is to ensure sufficient independence between the
encoded input and the encoded output conditioned on the leakage. While there is a variety of techniques for
achieving this in the case of probing leakage [RP10,CPRR13,BBD+16,CGPZ16,GPRV21], it is much harder
to extend them even to very simple types of global leakage. Indeed, most stateless LRCs are not known to
have stateful analogues without relying on leak-free components [FRR+14,DF12,MV13,GIM+16,BDF+22].

Leakage-Tolerant Circuits. In this work we focus on a different extension of the baseline LRC model,
which is strongly motivated by the combination of the two extensions discussed above. Recall that the basic
LRC model does not address the question of protecting the input encoding and output decoding steps, which
are assumed to be leak-free. A more desirable goal is to obtain a leakage-tolerant circuit (LTC), where C
maps an unprotected input x to an unprotected output y = f(x) while providing the following best-possible
security guarantee: the output of any leakage function L ∈ L can be simulated (up to a negligible statistical
distance) by applying a similar leakage L′ ∈ L to (x, y). Thus, C is “as secure” as an ideal (leak-free) hardware
implementation of f .

Note that an LTC against L can be readily converted into an LRC against L by using an arbitrary L-
resilient encoding to protect the input x and the output y. More interestingly, the strong security guarantee
of LTCs allows them to serve as a general-purpose replacement for ideal hardware with respect to leakage
class L. Jumping ahead, this may help bridge the gap between stateless and stateful LRCs for natural classes
L of global leakage.

The starting point for the current work is the observation that we currently know virtually nothing
about LTCs for general leakage classes. While LTCs are quite easy to realize in the baseline case of probing
leakage [IKL+13,AIS18], this goal seems much more challenging even for simple classes of global leakage.
Indeed, no such results are currently known. We thus ask:

Is leakage tolerance possible for any nontrivial class of global leakage?

1.1 Our Results

We initiate a systematic study of leakage-tolerant circuits for natural classes L of global leakage functions.
Concretely, we focus on the case of depth-1 leakage, which consists of two distinct classes L that strictly
generalize t-probing:

– Depth-1 AC0 leakage. This includes all leakage functions L that output t disjunctions (alternatively, con-
junctions) of any number of wires or their negations. This simple kind of leakage is motivated by selective
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failure attacks (such as buffer overflows), where a system fails if at least one of several components fail.
Existing LRCs for this class that do not rely on trusted hardware either incur a high asymptotic over-
head, increasing the circuit size by a factor of Ω(t2) [Rot12,GR15,BIS21] (in fact, this is known even for
higher-depth AC0 leakage), or alternatively are restricted to the stateless case [BDF+22].

– Parity leakage. Here L may output t parities of any number of wires. In theoretical computer science,
parities often serve as the natural next step beyond probing: for instance, whereas a t-wise independent
PRG fools t-probing distinguishers, a small-bias PRG [NN90] fools a parity distinguisher. From a more
applied perspective, parity leakage can be viewed as going “half way” towards more realistic classes
of global leakage, such as leaking the Hamming weight of subsets of wires. Finally, from a technical
perspective this case seems challenging, because the standard LRC construction of [ISW03] completely
breaks down in the presence of parity leakage. Nevertheless, efficient LRCs for this class (in fact, for
broader classes of bounded-communication leakage) were obtained in [GR15,GIM+16,GIW17]. Similarly
to the case of AC0, the only known stateful construction [GR15]5 increases the circuit size by (at least)
a factor of Ω(t2).

We note that the question of obtaining LTCs for these classes is nontrivial even for simple functions f ,
such as the mod-2 inner-product of two input vectors.

Feasibility of LTCs. Our main technical contribution is a general construction of LTCs for depth-1 leakage,
establishing the first feasibility result for leakage-tolerance with respect to nontrivial global leakage classes.
Concretely, we show that every circuit Cf computing a function f can be efficiently compiled into an LTC C
for f in which any t disjunctions/conjunctions/parities of the wires of C or their negations can be simulated,
with negligible statistical error, by making t queries of the same kind to the inputs and outputs of C.

A limitation of our parity-tolerant circuit compiler is that the associated simulator runs in time 2O(t).
We give a (weak) partial evidence for the necessity of inefficient simulation, showing that a related leakage-
tolerant encoding scheme requires inefficient simulation assuming the hardness of the learning parity with
noise (LPN) problem.

Application to stateful LRCs. Finally, we observe that LTCs can be used to bridge the gap between
stateless and stateful LRCs. Extending a technique of Faust et al. [FRR+14], we show how to obtain a
stateful LRC for L by combining two ingredients: (1) an LTC for L, and (2) a leakage-resilient encod-
ing for L that resists two adaptive leakage queries. Using this general transformation, we apply our LTC
constructions to obtain the first constructions of stateful t-leakage-resilient circuits that resist continuous
parity/disjunction/conjunction leakage in which the circuit size grows sub-quadratically with t. Somewhat
surprisingly, we show how to ensure that the stateful LRC has an efficient simulator even if the underlying
LTC does not. In particular, our stateful LRC for parities has a poly(t)-time simulator.

Future directions. Several natural questions are left open for future work.

– Can we narrow the gap between LRCs and LTCs by obtaining LTC constructions for other classes?
While our construction for parity leakage is closely related to the LRC against bounded-communication
leakage from [GIM+16] (see Section 2 for an overview), we are unable to extend our results to this class,
or even to the subclass of leakage functions that output the Hamming weight of a subset of wires. In
particular, our LTC for the parity case crucially relies on a technique for reducing any parity query to a
small number of probing queries, which we are not able to extend to the case of Hamming weight leakage.
The LTC question is also still open for depth-2 AC0 (capturing polynomial-size CNF/DNF formulas) and
other classes for which LRCs are known to exist (see Section 1.2).

– Is there a t-parity-tolerant circuit with a poly(t)-time simulator? Our simulator needs to find a short
vector in a linear code defined by the parity queries, and we are only able to show that this is inherent
for a related encoding problem. Note, however, that we can get around this limitation in the context of
the application to stateful LRCs.

5 The initial version of this paper overlooked the fact that such stateful LRCs are implied by [GR15]. See Section 1.2
for a more detailed discussion.
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1.2 Related Work

We survey here some related works on leakage-resilient circuits. While in this work we focus on information-
theoretic security, we are not aware of computationally secure constructions that achieve our goals. See [DLZ15]
and references therein for constructions with computational security.

Global leakage. Simple classes L of global leakage considered in the literature include AC0 leakage
[FRR+14,Rot12,BIS21,BDF+22], “only computation leaks” (OCL) leakage [MR04,DF12,GR15] and the re-
lated notion of bounded-communication leakage [GIM+16,GIW17], and even NC1 leakage [MV13]. Some
of these constructions require trusted hardware components in the stateful case or input encoder which is
as big as the circuit for f in the stateless case [FRR+14,DF12,MV13] and some rely on unproven conjec-
tures [Rot12,MV13,BDF+22]. Another class of global leakage that was previously studied is captured by the
noisy leakage model [PR13], where a small amount of information about every wire is independently leaked.
However, the independence assumption makes this type of global leakage reducible to local leakage [DDF19].

Composable probing resilience. The notion of LTC provides general-purpose composition guarantees.
However, more refined notions of composable security can suffice in specific application scenarios. Such
notions for the relatively simple case of probing leakage have been considered in several previous works
(see [BGR18,GPRV21,CGLS21,BCRT23] and references therein), with the primary goal of improving the
practical efficiency of t-probing resilient circuits for small values of t.

Comparison with [GR15]. Goldwasser and Rothblum [GR15] constructed stateful LRCs with information-
theoretic security against so-called “only-computation leaks” (OCL) leakage [MR04]. At a high level, for
a circuit C, an OCL leakage is defined by a partition of C into (possibly many) sub-circuits, and the
leakage may output for each sub-circuit any t-bit function of its wires. Since OCL is strictly stronger than
disjunction/conjunction/parity leakage, the result of [GR15] gives an alternative derivation of our application
to LRCs against these leakage classes, though with inferior parameters.6 Note that the construction in [GR15]
is specifically tied with OCL leakage, whereas our compiler from LTCs to stateful LRCs can be applied to
more general leakage classes. Morevover, The results of [GR15] do not imply LTCs against OCL leakage or
any of its sub-classes considered in our work.

2 Technical Overview

This work initiates a systematic study of leakage-tolerant circuits (LTCs). We start by describing the appli-
cation of LTCs to building stateful leakage-resilient circuits (LRCs) that achieve security against continuous
leakage. This application serves as a primary motivation behind this work.

2.1 Application: Stateful Leakage-Resilient Circuits

The notion of a stateful LRC aims to protect a general-purpose computing device, which can be invoked
any number of times and possibly update the contents of its memory in each invocation. What makes this
problem challenging is that the total amount of information leaked across multiple invocations is unbounded,
and in particular is higher than the entropy of the secret state used to initialize this. This explains the fact
that stateful LRCs are often much more challenging to construct than stateless ones.

We consider here the model of stateful LRCs that was introduced by Ishai et al. [ISW03] for the special
case of “probing” leakage and later extended by Faust et al. [FRR+14] to general leakage classes. In this
6 Unlike our constructions, the construction in [GR15] requires the input encoder to be as large as the circuit size and

only considers the case where the secret state remains unchanged in all invocations. While these limitations may not
be inherent, overcoming them seems to require non-trivial changes to the construction and the analysis in [GR15].
An additional quantitative difference is that the overhead of the construction from [GR15] grows quadratically
with t whereas in our constructions it can be made sub-quadratic.
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model, the ideal computation is defined by a stateful circuit C[s] that starts with a secret initial state
s = s0. In the i-th invocation, given its current secret state si−1 and an external public input xi, the circuit
C updates its secret state to si and produces an external public output yi, where (si,yi) are a function of
(si−1,xi). For example, consider a stateful AES circuit in which the internal state is the AES secret key,
and in each invocation the circuit takes a plaintext xi as input and outputs the corresponding ciphertext
yi. In this example, the state in different invocations remains the same.

For an ideal stateful circuit C[s] as above, a leakage-resilient implementation consists of a randomized
stateful circuit C ′[s′] along with a randomized mapping from an initial secret state s0 of C to the initial state
s′0 of C ′, satisfying the following correctness and security requirements: (1) C ′[s′0] has the same (reactive)
functionality as C[s0], and (2) any adversary who interacts with the stateful circuit C ′[s′0], adaptively
choosing inputs xi and leakage queries Li ∈ L to the circuit wires for each invocation, should learn essentially
nothing about the secret state (in any invocation) of the stateful circuit C[s0]. In other words, the view of
such an adversary should be simulatable given the public inputs xi and public outputs yi alone. Note that
we do not protect external inputs and outputs and in fact the adversary may arbitrarily choose the external
inputs in each invocation of C ′[s′0].

The simpler notion of a stateless LRC considers a one-shot computation of a function f on a secret input
x. To avoid a direct leakage on the input x or output y = f(x), the inputs and outputs are protected by an
input encoder and an output decoder, respectively. Concretely, a stateless leakage-resilient circuit is defined
by a triple (I, C,O), where I is a randomized input encoder, C is a randomized circuit mapping the encoded
input to an encoded output, and O is an output decoder. Here we assume that the (single) leakage function
L ∈ L applies only to the wires in C but not to the wires in I or O, and require that the output of L reveals
essentially nothing about the private input.

Note that LTCs are in a sense strictly stronger than (stateless) LRCs. Indeed, we can use LTCs to
construct LRCs by having the input encoder I encode the input x using a leakage-resilient encoding (which
is typically easy to construct), then use an LTC C to map the encoded input to a leakage-resilient encoding
of the output, and finally let the output decoder O apply the decoding function of the leakage-resilient
encoding. It turns out, however, that the stronger leakage-tolerance property plays a crucial role in the
context of composition. One primary example is the construction of stateful LRCs. We start by discussing
the challenges in converting stateless LRCs into stateful ones, and then explain how LTCs give rise to a
conceptually simple transformation.

Transforming Stateless LRCs into Stateful LRCs? In [ISW03], the authors consider t-probing attacks, where
the leakage class L includes all t-projection functions that output t fixed input bits. To construct a stateful
LRC, they first augment a stateless LRC (I, C,O) to support additional public input and output, and then
simply concatenate such LRCs together. In more detail: (1) The initial state is first encoded under the input
encoder I. (2) Then in each invocation, an LRC C takes the encoded input and a public input, and computes
the encoded secret output and the public output. (3) The encoded output corresponds to an encoding of the
current state, which is used as the encoded input in the next invocation.7

It is important to highlight the fact that the security of the above transformation relies on specific
properties of the underlying stateless LRC and does not work in general. To illustrate this, consider a
stateful LRC that has no public input or output and simply keeps its state unchanged. That is, the ideal
stateful circuit C simply computes the identity function on the state. A trivial stateless LRC for the identity
function can simply output the encoded input. However, applying the ad-hoc transformation from [ISW03]
does not yield a secure stateful LRC since in each invocation the attacker may probe t wires of the same
encoding and eventually learn the whole encoding, which reveals the secret state.

This problem is inherent when using stateless LRCs because there is no separation between the random-
ness used in the input encoding and the randomness used in the output encoding. When using a general
stateless LRC to construct a stateful LRC, the same randomness may be under attack in different invocations
and eventually revealed to the attacker. In this case, the encoding no longer gives any protection to the secret

7 One can use an encoded output as an encoded input since I and O are compatible, in the sense that inputs and
outputs are encoded in the same way.
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state. While there are several formulations of sufficient “separation” requirements for the simple case of prob-
ing leakage [CPRR13,BBD+16,GPRV21], it is not clear how to meaningfully extend them to more powerful
leakage classes. Indeed, most previous works on stateful LRCs for global leakage classes could only address
this problem by assuming an ideal trusted hardware that helps perform “refreshing” operations to guarantee
the required separation [FRR+14,DF12,MV13,BDF+22], or alternatively settling for computational security
and relying on indistinguishability obfuscation [DLZ15].

From LTCs to Stateful LRCs. We now describe a general approach for obtaining stateful LRCs via a black-
box combination of LTCs and a suitable type of leakage-resilient encoding, extending a previous approach
from [FRR+14] for constructing stateful LRCs using small trusted hardware components.

Suppose we are given a randomized encoding function Enc which is secure against two adaptive leakage
queries in the following sense: for all pairs of messages m0,m1, any (computationally unbounded) adversary
who can adaptively choose L0, L1 ∈ L and learn L0(Enc(mb)), L1(Enc(mb)), where b is a random bit, cannot
guess b with non-negligible advantage. Given such an encoding, the construction starts by letting s′0 =
Enc(s0). Then, in the i-th invocation, we use an LTC C̃ ′ to decode the internal state si−1 from s′i−1, invoke
the ideal stateful circuit C[si−1], and encode the new state si using a fresh invocation of Enc. Relying on
the leakage tolerance of C̃ ′, the leakage queries made by the adversary to the wires in C̃ ′ can be reduced
to leakage queries to the encoded states. Since the states are protected by fresh leakage-resilient encodings,
the leakage queries to the encoded states can be simulated without knowing the states. This concludes the
stateful LRC construction.

Note that we need Enc to provide security against two adaptive leakage queries since an encoded state
s′i is under attack in both the (i− 1)-th invocation and the i-th invocation, and moreover the leakage query
made in the i-th invocation can depend on the result of the leakage query made in the (i− 1)-th invocation.
We summarize this transformation by the following informal theorem; see Appendix A for the formal version.

Theorem 1 (Stateful LRC via LTC, Informal). Let L be a leakage class. Suppose there is a 2-adaptive
L-leakage-resilient encoding, and an efficient compiler transforming any (stateless) circuit C to an equivalent
L-LTC C ′. Then, there is an efficient compiler transforming any stateful circuit C[s0] to an equivalent stateful
L-LRC C ′[s′0].

Combining the above theorem with the LTC constructions we describe next, together with simple leakage-
resilient encoding schemes, we obtain the first feasibility results for stateful LRCs against parity leakage, as
well as the first efficient constructions of stateful LRCs against depth-1 AC0 leakage.

On Efficient Simulation. We note that the simulation efficiency of the stateful LRC construction described
above is inherited from the underlying LTC C̃ ′. If C̃ ′ requires inefficient simulation (in the output length of
the leakage query), then the LRC C ′[s′0] also requires inefficient simulation. This will be the case when using
our construction for t-parity-tolerant circuits to build a stateful t-parity-resilient circuit. In Appendix H
we provide evidence that the inefficient simulation of our t-parity-tolerant circuits may be inherent; see
Section 2.4 for an overview.

Fortunately, in the context of the stateful LRC application, we can still obtain efficient simulation regard-
less of the efficiency of the LTC simulator. At a high level, our idea is to include a control bit b in the initial
state. We modify the functionality computed in each invocation by taking an auxiliary input: If b = 0, then
we ignore the auxiliary input and compute the output by using the internal state and the public input as the
original stateful circuit. Otherwise, we keep the state unchanged and output the decoding of the auxiliary
input. To achieve the same functionality as the original stateful circuit, the control bit is set to be 0 by
default and we just use random bits as the auxiliary input. Now the construction of the L-leakage-resilient
stateful circuit is applying the above compiler to the modified stateful circuit.

To obtain efficient simulation, the simulator will set the initial state to some default value and the control
bit to 1. In each invocation, after learning the public input and output, the simulator will replace the auxiliary
input by an encoding of the public output. In this way, the simulator can simply evaluate the L-leakage-
resilient stateful circuit with a fake initial state and compute the leakage queried by the adversary. This
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can be viewed as an information-theoretic analogue of the technique from [FLS99] for converting witness-
indistinguishability to zero knowledge. See Appendix A.3 for a formal treatment.

2.2 Overview of Feasibility Results

Motivated in part by the application discussed above, our main technical contribution is establishing the
feasibility of LTCs for simple classes of global leakage. We focus on the following two “depth-1” leakage classes:

– The first contains all depth-1 AC0 functions. That is, every leakage function L has t output bits, each
obtained by choosing a subset S of its inputs and computing the OR (alternatively AND) of bits in S or
their negations.

– The second leakage class contains all parity functions. That is, each of the t output bits of L is obtained
by choosing a subset S of input bits and computing their XOR.

We will give feasibility results of these two leakage classes separately in the following two subsections.
But to illustrate the non-triviality of the question, we start by showing a counter-intuitive result for the

OR leakage class, where L outputs the OR of a subset of input bits without negating them.

Negative Result for the ISW Construction. The standard ISW construction [ISW03] implements an LRC
against t-probing leakage (i.e., the adversary can learn any t chosen wires) using the following natural
approach. Given a circuit C that computes the function f : {0, 1}n → {0, 1}m, each wire w in C is transformed
to a bundle of wires wi whose parity is equal to value of w. One may interpret this as generating an additive
secret sharing for each wire value. This ensures that learning t wires gives no information about the wire
values in C.

It turns out that the same construction achieves leakage resilience against AC0 leakage when setting t
to be a security parameter κ [BIS21]. This intuitively follows from the well-known fact that AC0 cannot
compute parities (though the actual proof is much more subtle). Given this result, it is natural to conjecture
that the κ-probing-tolerant variant of the ISW construction also achieves leakage tolerance against the OR

leakage class, which is much weaker than the AC0 leakage class. Surprisingly, we show that this is not the
case even for a linear function f .

Counterexample. Consider the function f(x1, x2, x3) = x1 ⊕ x2 ⊕ x3. The probing-tolerant variant of
the ISW construction for f works as follows.

1. Input Encoding Phase: For all i ∈ {1, 2, 3}, do the following.
– Prepare κ random bits xi,0, . . . , xi,κ−1.
– Compute xi,κ = xi ⊕ xi,0 ⊕ . . .⊕ xi,κ−1 in order.
– Set [xi] = (xi,0, . . . , xi,κ). Note that the parity of bits in [xi] is xi.

2. Circuit Emulation Phase: Compute [y] = [x1]⊕ [x2]⊕ [x3] coordinate by coordinate in order.
3. Output Decoding Phase: Set (y0, . . . , yκ) = [y]. Compute y = yκ ⊕ yκ−1 ⊕ . . .⊕ y0 in order.

One can show that the above construction achieves κ-probing tolerance for f .
Consider the following attack: (x1 ⊕ x1,0) ∨ (x2 ⊕ x2,0) ∨ (x1,0 ⊕ x2,0), where x1 ⊕ x1,0, x2 ⊕ x2,0 are the

inner wires in the input encoding phase when computing x1,κ and x2,κ, and x1,0 ⊕ x2,0 is the inner wire in
the circuit emulation phase when computing [y]. Using Boolean algebra identities, we have

(x1 ⊕ x1,0) ∨ (x2 ⊕ x2,0) ∨ (x1,0 ⊕ x2,0) = (x1 ⊕ x1,0) ∨ (x2 ⊕ x2,0) ∨ (x1 ⊕ x2).

Let r1 = x1 ⊕ x1,0 and r2 = x2 ⊕ x2,0. Then the above attack reveals r1 ∨ r2 ∨ (x1 ⊕ x2), which is equal
to 1 with probability 3/4 and leaks x1 ⊕ x2 with probability 1/4. If the construction were OR-tolerant, then
such an attack could be simulated by computing the OR of a subset of x1, x2, x3, y = x1 ⊕ x2 ⊕ x3. However,
intuitively, the OR operation is not able to compute x1 ⊕ x2 from the above, which leads to a contradiction.
See Appendix B.4 for the details.
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2.3 Leakage Tolerance Against Depth-1 AC0 Leakage

It turns out that if we extend the OR leakage class to depth-1 AC0, by allowing both the real and the ideal
leakage to apply negations, then the ISW construction becomes leakage-tolerant.

The reason for this unexpected phenomenon is that when we switch to a richer leakage class, we strengthen
not only the “real” leakage L that applies to all wires, but also the “ideal” leakage L′ that applies only to the
input and output bits. Thus, for two leakage classes L ⊂ L̂, an L̂-LTC is not necessarily an L-LTC.

Single Bit of Depth-1 AC0 Leakage. Consider a linear function f(x1, . . . , xn) = (y1, . . . , ym) where each yj
is a linear combination of {xi}ni=1. Let κ be the security parameter. Recall the κ-probing-tolerant variant of
the ISW construction for the linear function f :

1. Input Encoding Phase: For all i ∈ {1, . . . , n}, do the following.
– Prepare κ random bits xi,0, . . . , xi,κ−1.
– Compute xi,κ = xi ⊕ xi,0 ⊕ . . .⊕ xi,κ−1 in order.
– Set [xi] = (xi,0, . . . , xi,κ).

2. Circuit Emulation Phase: The circuit computes [yj ] via a proper linear combination of [x1], . . . , [xn].
3. Output Decoding Phase: For all j ∈ {1, . . . ,m}, set (yj,0, . . . , yj,κ) = [y] and compute yj = yj,κ⊕yj,κ−1⊕

. . .⊕ yj,0 in order.

For all j ∈ {0, . . . , κ}, let Ij be the set of wires that are non-zero linear combinations of {xi,j}ni=1 in
the circuit emulation phase. We note that if we arbitrarily pick a variable wj ∈ Ij for all j ∈ {0, . . . , κ},
then any κ variables in {wj ∈ Ij}κj=0 are uniformly random. This is because for all S ⊂ {0, . . . , κ} with
|S| = κ, {xi,j}j∈S,i∈{1,...,n} are uniformly random bits. Then for all j ∈ S, each wj is uniformly random
given {xi,j′}j′∈S,j′ ̸=j,i∈{1,...,n}.

Now consider a single bit of depth-1 AC0 leakage, obtained as follows.

1. An adversary first chooses an arbitrary set W of wires in C.
2. Then the adversary may arbitrarily flip some wires in W . Denote the resulting set of literals (wire

variables or their negations) by W̃ .
3. Finally, the leakage is defined to be OR(W̃ ), where OR(S) denotes the result of OR of all bits in S.

Our main observation is that, if for all j ∈ {0, . . . , κ}, W ∩ Ij ̸= ∅, then there are at least κ variables
in W̃ that are uniformly random. In this case OR(W̃ ) = 1 with probability at least 1 − 2−κ. Thus, we may
simply output 0 as the simulation of OR(W̃ ).

It is therefore sufficient to focus on the case where there is j⋆ ∈ {0, . . . , κ} such that W ∩ Ij⋆ = ∅. We
observe that in this case, every wire in W only depends on a single input or output bit. In this way, OR(W̃ )
naturally corresponds to a depth-1 AC0 leakage on the input and output bits. At a high level, this can be
achieved by the following two steps.

1. Simulate all wire values in
⋃

j ̸=j⋆ Ij . We note that this can be done without knowing the input and
output bits.

2. Given wire values in
⋃

j ̸=j⋆ Ij , every intermediate wire in the input encoding phase and the output
decoding phase only depends on a single input or output bit.

In Appendix B.2, we show how to extend the above idea to handle multiple bits of depth-1 AC0 leakage.

Towards General Functions. Based on the positive result of the ISW construction for linear functions against
depth-1 AC0 leakage, we show how to construct leakage-tolerant circuits for general functions.

Let f : {0, 1}n → {0, 1}m be an arbitrary binary function with circuit implementation C. At a high level,
for each wire w in C, we will compute an additive secret sharing of w. Then we will use the ISW construction
to compute every XOR gate and every AND gate.
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1. For each input bit xi, we sample κ random bits (xi,0, . . . , xi,κ−1). To obtain [xi], we want to compute
xi,κ = xi ⊕ (

⊕κ−1
ℓ=0 xi,ℓ). We view the computation of xi,κ as a linear function and apply the ISW

construction to it.
2. For each XOR gate with two input additive sharings [a], [b], we sample random bits c0, . . . , cκ−1. To obtain

[c] = [a+ b], we want to compute cκ = (
⊕κ

ℓ=0 aℓ)⊕ (
⊕κ

ℓ=0 bℓ)⊕ (
⊕κ−1

ℓ=0 cℓ). We view the computation of
cκ as a linear function and apply the ISW construction to it.

3. For each AND gate with two input additive sharings [a], [b], we sample random bits c0, . . . , cκ−1. Then we
compute aℓ1 · bℓ2 for all ℓ1, ℓ2 ∈ {0, . . . , κ}. Our goal is to compute cκ = (

⊕κ
ℓ1,ℓ2=0 aℓ1 · bℓ2)⊕ (

⊕κ−1
ℓ=0 cℓ).

We view the computation of cκ as a linear function and apply the ISW construction to it.
4. After obtaining an additive secret sharing [yj ] for each output yj , we want to reconstruct yj =

⊕κ
ℓ=0 yj,ℓ.

We view the computation of yj as a linear function and apply the ISW construction to it.

Intuitively, by using the ISW construction for every linear function, it is sufficient to focus on an adversary
which only has access to the input and output wires of the linear functions. These wires can be summarized
as follows:

– The input and output bits of f : (x1, . . . , xn) and (y1, . . . , ym)
– A random additive secret sharing for every wire w: [w] = (w0, w1, . . . , wκ).
– For each AND gate with two input additive sharings [a], [b], the cross multiplications between shares:
{aℓ1 · bℓ2}κℓ1=0,ℓ2=0.

Note that 1 bit of depth-1 AC0 leakage on these wires can be viewed as the OR of two separated bits of
depth-1 AC0 leakage: the first part is depth-1 AC0 leakage on the input and output bits, and the second
part is depth-1 AC0 leakage on the random additive secret sharings and the cross multiplications between
shares. We note that the second part can be further viewed as a depth-2 AC0 leakage on the random additive
secret sharings. Since we know that an AC0 leakage cannot distinguish a random additive secret sharing of
0 from a random additive secret sharing of 1, we may just replace random additive secret sharings for wire
values in C by random additive secret sharings of 0 and compute the cross multiplications between shares
accordingly. In this way, the second part can be computed directly while the first part is just a depth-1 AC0
leakage on the input and output bits of the function. Thus, we have the following theorem.

Theorem 2 (LTC Against Depth-1 AC0, Informal). Let L denote the leakage class that contains all
depth-1 AC0 leakage functions. For all binary function f : {0, 1}n → {0, 1}m with circuit implementation C,
there exists an L-leakage-tolerant circuit for C.

Using General Linear Secret Sharing Schemes. In Section 4, we show that our construction can be modified
slightly to support any linear secret sharing scheme. In particular, we can use packed Shamir sharings to
achieve a better circuit complexity for computing SIMD circuits. Relying on [DIK10], which transforms a
general circuit to a SIMD circuit, we obtain the following corollary.

Corollary 1 (Informal). Let L denote the leakage class that contains all depth-1 AC0 leakage functions.
For all binary function f : {0, 1}n → {0, 1}m with circuit implementation C of size s and depth h, there exists
an L-leakage-tolerant circuit for C with circuit size Õ(κs+κ2h+κ3), where Õ omits logarithmic factors and
κ is the security parameter.

2.4 Leakage Tolerance Against Parity Leakage

Unlike the depth-1 AC0 leakage, one cannot hope the ISW construction to be parity-tolerant (i.e., leakage-
tolerant against parity leakage) since we can easily recover an intermediate wire value by XOR. At a high
level, our result is obtained in two steps.

Step 1. We first define a new notion which we refer to as parity-to-probing circuits. Very informally,
given a circuit C̃ representing the function we want to compute, a (t, k)-parity-to-probing implementation of
C̃ is a triple (I, C,O), where I is a randomized input encoder, C is a randomized circuit, and O is an output
decoder, such that the following properties hold.

9



– For any input x, we have O(C(I(x))) = C̃(x) (with probability 1).
– Any t parity queries to the wires of C can be simulated by k probing queries to the wires of C̃. We refer

to this property as parity-to-probing security.
– I and O admit circuit implementations in which any inner wire is a linear combination of the input

and output wires. We refer to this property as trivial parity tolerance. Note that this property can be
satisfied even by nonlinear functions, such as x1 · x2.

We observe that when C̃ is a k-probing-tolerant circuit, any t parity queries to the wires of C can be
simulated by k probing queries to the inputs and outputs of C̃. We utilize this property and show that a
t-parity-tolerant circuit can be constructed from a (t, k)-parity-to-probing circuit.

We remark that without the last property, a parity-to-probing circuit is strictly weaker than a parity-
resilient circuit since the latter requires that any parity query to the wires in C should give essentially no
information about the inputs and outputs of C̃. However, our construction relies on the property of trivial
parity tolerance for the input encoder and the output decoder. On the other hand, we show that the input
encoder and the output decoder of a parity-resilient circuit cannot be trivially parity-tolerant (see Claim 1).

Step 2. Then, we show how to construct a parity-to-probing circuit for any underlying circuit C̃. Our
construction is inspired by the construction of [GIM+16]. We observe that the construction in [GIM+16]
implies a (t, k)-parity-to-probing circuit with the aid of a secure NAND gadget. In this step, we construct a
circuit that realizes the secure NAND gadget and show that after replacing the NAND gadget by our construc-
tion in [GIM+16], the (t, k)-parity-to-probing security remains. Combining with the first step, we obtain a
feasibility result for t-parity-tolerant circuits.

In the following we give a more detailed exposition of the above 2 steps.

Step 1: Parity-to-Probing Implies Parity Tolerance

Parity Tolerance vs. Parity Resilience. A natural attempt of constructing a parity-tolerant circuit is to use
a parity-resilient circuit (I, C,O) and implement I and O by parity-tolerant circuits. However there are two
issues with this attempt:

– Constructing parity-tolerant circuits for I and O is not trivial.

The only previous construction of parity-resilient circuits is from [GIM+16]. While the input encoder and
the output decoder in this construction are not complicated, it is still not clear how to implement them in a
parity-tolerant way. In fact, even constructing a parity-tolerant circuit for the mod-2 inner-product function
f(x1, x2, y1, y2) = x1 · y1 + x2 · y2 is not an easy task. The naive implementation, which first computes
x1 · y1, x2 · y2 and then computes their sum, is not parity-tolerant. This is because the inner wire x1 · y1
cannot be simulated by one parity query to the input wires (x1, x2, y1, y2) and the output wire x1 ·y1+x2 ·y2.

– There is a quantitative loss when composing two parity-tolerant circuits.

Even if we have constructed t-parity-tolerant circuits for I and O (meaning that any t parities of the
wires can be simulated by t parities of the circuit inputs and outputs), the implementation of (I, C,O) may
not achieve t-parity tolerance. Consider the following natural simulation strategy: For each parity query, we
view it as the summation of three parity queries, the first one for the wires in I, the second one for the wires
in C, and the last one for the wires in O. The t parity queries to the wires in C are not a problem, since
(by parity resilience) they can be simulated independently of the function inputs and outputs. However, to
simulate the t parity queries to the wires in I, we need to make t parity queries to the inputs and outputs of
I, which translate to t parity queries to the function inputs and outputs. Similarly, to simulate the t parity
queries to the wires in O, we need to make another t parity queries to the function inputs and outputs. These
add up to 2t parity queries to the function inputs and outputs. In summary, to simulate t parity queries to
the implementation of (I, C,O), we may have to make 2t parity queries to the function inputs and outputs.
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Constructing Parity-Tolerant Circuits from Parity-to-Probing Circuits. Let f be a function. Our goal is to
construct a parity-tolerant circuit implementation of f . We focus on a single parity query for simplicity.

Our first attempt is to start with a k-probing-tolerant implementation C̃ of f and then consider the
(1, k)-parity-to-probing circuit (I, C,O) of C̃. Now consider the parity of a set W of wires of the circuit
implementation of (I, C,O). Recall that for a parity-to-probing circuit, its input encoder and output decoder
satisfies the trivial parity tolerance. Therefore, parity(W ) can be computed by some parity of (1) the
function inputs and outputs, and (2) the wires in C. (Here and in the following, parity(W ) denotes the
parity of all wires in W .) Now by the parity-to-probing security, the parity of wires in C can be simulated by
k wires in C̃, which can be simulated by k inputs and outputs of C̃ due to the property of probing tolerance.

In summary, parity(W ) can be simulated by (1) a parity of the function inputs and outputs and (2)
k wires of the function inputs and outputs. This requires us to not only make one parity query but also k
probing queries.

To address this issue, for each bit x of the function inputs and outputs, we split it to k + 1 random
additive shares with parity x. Then we apply the above idea to compute f̂ which maps additive sharings of
the inputs of f to additive sharings of the outputs of f . We note that

– The k probings of additive sharings of the function inputs and outputs can be simulated by choosing k
random values.

– Given the k probings, any parity query to the additive sharings of the function inputs and outputs can be
reduced to a parity query to the function inputs and outputs. Furthermore, the encoding and decoding
processes of an additive sharing achieve parity tolerance for free, since every inner wire can be computed
by a linear combination of the additive shares.

Thus, our construction of a parity-tolerant circuit C⋆ is as follows (See Figure 2 for the complete descrip-
tion):

1. The circuit C⋆ first encodes each bit of the input x of f by a random additive sharing. Let x̂ denotes
the encoding of x.

2. Then let f̂ be the (randomized) function that maps an encoded input x̂ to a freshly encoded output ŷ.
Let C̃ be a k-probing-tolerant implementation of f̂ , and let (I, C,O) be a (1, k)-parity-to-probing circuit
implementation of C̃. Then C⋆ runs (I, C,O) on x̂ and outputs ŷ.

3. Finally, the circuit C⋆ decodes ŷ by computing the parity of each additive sharing and obtains y.

The above idea is naturally extended to constructing t-parity-tolerant circuits from (t, k)-parity-to-
probing circuits and k-probing-tolerant circuits. We refer the readers to Section 5.1 for more details.

Step 2: Constructing Parity-to-Probing Circuits Now we turn our focus to parity-to-probing circuits.
Our starting point is the construction in [GIM+16], which implicitly gives a (t, k)-parity-to-probing circuit
with the aid of a secure NAND gadget. We first give an overview of the construction in [GIM+16].

Overview of [GIM+16]. Let C̃ denote the input circuit. The goal is to construct a (t, k)-parity-to-probing
circuit implementation of C̃. Without loss of generality, we assume that C̃ only contains NAND gates. The idea
in [GIM+16] is to encode each wire in C̃ by a small-bias encoding scheme. Very informally, an ϵ-bias encoding
scheme ensures that the parity of any non-empty subset bits of the encoding has bias (i.e., difference from a
uniform bit) at most ϵ. An example of a 1/2-bias encoding is presented in Figure 1. In the following, we will
stick to the small-bias encoding scheme in Figure 1. The construction of (Î , Ĉ, Ô) is as follows:

– Î takes x ∈ {0, 1}ni as input and computes a small-bias encoding for each input bit: {Enc(xi)}ni
i=1.

– Ĉ takes {Enc(xi)}ni
i=1 as input. Then Ĉ computes a small-bias encoding for each wire value in C ′.

Concretely, for each NAND gate in C ′ with input x0, x1, Ĉ uses a secure NAND gadget to compute
Enc(x0 NAND x1) from Enc(x0), Enc(x1).

– Ô takes {Enc(yi)}no
i=1 as input and outputs {yi = Dec(Enc(yi))}no

i=1.
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1/2-Bias Encoding Scheme (Enc, Dec)

Enc(x; r0, r1) = (r0, r1, r0 · r1 ⊕ x)

Dec(x̂0, x̂1, x̂2) = x̂0 · x̂1 ⊕ x̂2.

Fig. 1: An Example of Small-bias Encoding Scheme

We first verify that this construction achieves parity-to-probing security. Consider a parity query which
chooses a set W of wires in Ĉ. Intuitively, if W touches more than k different small-bias encodings in Ĉ,
then parity(W ) would have bias at most 2−k, indicating that parity(W ) is statistically close to a uniform
bit. On the other hand, if W touches at most k different small-bias encodings in Ĉ, then parity(W ) can be
perfectly simulated by probing the underlying k wires in C ′. In Section 5.2, we show that the above analysis
can be extended to t parity queries.

As for the trivial parity tolerance, one can easily verify that this property is satisfied in the following two
circuit constructions for Î and Ô respectively.

– For Î, which computes a 1/2-bias encoding of each bit x, the encoding is computed by first computing
r0 · r1, and then computing (r0 · r1)⊕ x.

– For Ô, which decodes a 1/2-bias encoding for each output bit, the decoding is computed by first computing
x̂0 · x̂1, and then computing (x̂0 · x̂1)⊕ x̂2.

Instantiating NAND Gadgets. Our initial attempt is to utilize the instantiation in [GIM+16]. We note that the
construction in [GIM+16] only focuses on parity-resilient circuits. Unfortunately, we do not know whether the
(t, k)-parity-to-probing property remains after applying their instantiation for NAND gadgets. In Appendix D,
we discuss their solution in details and show that:

– By using the parity-simulation lemma, the construction in [GIM+16] is a (1, k)-parity-to-probing circuit.
Together with our main theorem in Step 1, we can compile their construction into a 1-parity-tolerant
circuit. The parity-simulation lemma and its proof may be of independent interest.

– On the other hand, we show that the parity-simulation lemma cannot handle more than 1 bit of parity
leakage. We also give a counter example which shows that in general, a 1-parity-tolerant circuit may not
achieve 2-parity tolerance.

In the following, we discuss our solution that gives a (t, k)-parity-to-probing circuit. Our solution is
specific to the use of the small-bias encoding presented in Figure 1. Let (Î , Ĉ, Ô) be the (t, k)-parity-to-
probing circuit with the aid of a secure NAND gadget from [GIM+16]. Recall that Ĉ computes a small-bias
encoding for every wire of the underlying circuit C̃. Suppose w = (w1, . . . , w|C̃|) are the wires in C̃ and

u,v ∈ {0, 1}|C̃| are two vectors of random bits. Then, the wires in Ĉ are

(u1, v1, u1 · v1 ⊕ w1), . . . , (u|C̃|, v|C̃|, u|C̃| · v|C̃| ⊕ w|C̃|),

or equivalently, (u,v,u ∗ v ⊕w).
Our main observation is that, the (t, k)-parity-to-probing property is preserved even if the adversary

knows v and can do any computation on v. To be more precise: For all subset W of wires in Ĉ, the joint
view of (parity(W ),v) can be simulated with statistical error negligible in k by probing k wires in C̃.

Intuitively, it follows the fact that parity(W ) is masked by ⊕i∈Iui · vi for some set I. When |I| ≥ k, as
long as one of vi is not 0, which happens with probability 1− 2−k the mask value is uniformly distributed.
As long as v is sampled uniformly random and the adversary only learns v after choosing W , learning v does
not help the adversary to learn any information about w. This observation allows us to do any computation
on v when instantiating NAND gadgets while preserving the parity-to-probing property.
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Example: Using Our Observation to Instantiate XOR Gadgets. To explain our high level idea, we show how
our observation allows us to instantiate XOR gadgets. Our instantiation for NAND gadgets follows a similar
idea which is discussed later. Given two encodings (u1, v1, z1 = u1 · v1 ⊕ w1), (u2, v2, z2 = u2 · v2 ⊕ w2),
we want to compute an encoding (u0, v0, z0 = u0 · v0 ⊕ w1 ⊕ w2). Since u0, v0 are random bits, we just
need to compute z0 = u0 · v0 ⊕ u1 · v1 ⊕ u2 · v2 ⊕ z1 ⊕ z2. The main observation is that, given v0, v1, v2,
this equation becomes a linear combination of (u0, u1, u2, z1, z2), which can be implemented directly since
the intermediate results can also be obtained under parity attack on (u0, u1, u2, z1, z2). Therefore, we first
compute z0 under all possible assignments of (v0, v1, v2) = (a0, a1, a2). In the meantime, we also compute a
bit indicating whether (v0, v1, v2) = (a0, a1, a2). Note that the computation of indicating bits only depends
on v. As we argued above, these intermediate wires do not break the parity-to-probing security. Finally, we
use the indicating bits to choose the proper z0. In the actual construction, we will first prepare a random bit
ρ and compute z0 + ρ using the above approach to protect the secrecy of w1 ⊕w2. The overall construction
is as follows:

1. We first sample a random bit ρ. Let f(v0, v1, v2) = u0 · v0 ⊕ u1 · v1 ⊕ u2 · v2 ⊕ z1 ⊕ z2 ⊕ ρ, which is just
z0 ⊕ ρ.

2. For all (a0, a1, a2) ∈ {0, 1}3, compute f(a0, a1, a2) by a linear combination of (u0, u1, u2, z1, z2, ρ).
3. For all (a0, a1, a2) ∈ {0, 1}3, compute

∏2
i=0(vi⊕ai⊕1), which indicates whether (v0, v1, v2) = (a0, a1, a2).

4. Compute z0 ⊕ ρ =
∑

a∈{0,1}3 f(a0, a1, a2) ·
∏2

i=0(vi ⊕ ai ⊕ 1).
5. Compute z0 = (z0 ⊕ ρ)⊕ ρ.

Note that the intermediate wires introduced in Step 2 are linear combination of the input and output bits.
The intermediate wires introduced in Step 3 only depends on v. As for the intermediate wires introduced in
Step 4, let ρ′ = z0 ⊕ ρ. We may sample a random bit as ρ′ and compute ρ = z0 ⊕ ρ′. Then the intermediate
wires introduced in Step 4 only depends on random bits v and ρ′, which does not break the parity-to-probing
security.

Moving to NAND gadgets. For NAND gadgets, what we need to compute becomes z0 = u0 · v0 ⊕ (u1 · v1 ⊕ z1) ·
(u2 · v2 ⊕ z2). Even if given v0, v1, v2, this equation is not a linear combination of (u0, u1, u2, z1, z2), which
means that computing z0 given (v0, v1, v2) is no longer for free under parity attacks. To address this issue,
our idea is to also fix (u1, z1) (or (u2, z2)) so that z0 is a linear combination of (u0, u2, z2) (or (u0, u1, z1)).
To be more concrete, we first refresh the encoding of w1 (and w2), i.e., computing (u′

1, v
′
1, z

′
1 = u′

1 · v′1 ⊕w1)
from (u1, v1, w1). This can be viewed as a Refresh gadget and can be instantiated in a similar way to XOR

gadgets. In this way, when analyzing the intermediate wires related to (u2, z2), we fix the refreshed encoding
(u′

1, v
′
1, z

′
1) and now the computation of z0 is linear as that in XOR gadgets. We refer readers to Section 5.2

for more details.
In Appendix G, we show that our construction maintains the (t, k)-parity-to-probing security of (Î , Ĉ, Ô).

Therefore, combining our result in the first step, we obtain a t-parity-tolerant circuit for any function f .

On the Overhead of Our Construction. To obtain negligible error, our compiler for (t, k)-parity-to-probing
circuits requires k = O(t · (t + κ)). We note that our compiler for (t, k)-parity-to-probing circuits only
increases the size of the input circuit by a constant factor. As a result, the size of our t-parity-tolerant circuit
is dominated by the size of the k-probing-tolerant circuit used in the first step. In Section 5.1, we show that
for any function f with circuit size s and circuit depth h, there exists a k-probing-tolerant implementation
of f with circuit size Õ(s+ kh+ k2). Thus, we obtain the following corollary.

Corollary 2. Let L denote the leakage class that contains all t-parity leakage functions. For every f :
{0, 1}n → {0, 1}m with circuit implementation C of size s and depth h, there exists an L-leakage-tolerant
circuit for f with circuit size Õ(s) + poly(n,m, h, t, κ), where κ is a statistical security parameter.

On the Need for Inefficient Simulation. A limitation of our construction of (t, k)-parity-to-probing
circuits is that the running time of the simulation is exponential in t. This implies that our construction of
t-parity tolerant circuits also has exponential-time simulation. We demonstrate this problem by taking the
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parity-to-probing circuit (Î , Ĉ, Ô) constructed in [GIM+16] as an example. To simplify the description, for two
sets W1,W2, we define W1⊕W2 = W1∪W2\(W1∩W2). Then parity(W1)⊕parity(W2) = parity(W1⊕W2).

Recall that for a set W of wires in Ĉ, if W touches more than k small-bias encodings, then parity(W )
can be simulated by a random bit. Otherwise, we need to probes the set of wires of the underlying circuit C̃
whose encodings are touched by W to simulate parity(W ). We denote this set by V(W ). Given W , we can
find V(W ) efficiently.

When we have t sets W1, . . . ,Wt, only finding the sets V(W1), . . . ,V(Wt) is not sufficient since we have to
consider the joint distribution of all parities. For example, if W1 and W2 both touches more than k encodings,
then V(W1) = V(W2) = ∅. On the other hand W1 ⊕W2 may only touch less than k encodings. In this case,
we have to find the set V(W1⊕W2) to simulate parity(W1)⊕parity(W2). In general, to simulate t parities,
we have to compute the set V = ∪S⊂{1,...,t}V(⊕i∈SWi) which takes time exponential in t. (A remark about
the size of V : Although it is a union set of 2t subsets, we show that the size of V is bounded by kt. See more
details in Section 5.2 and the proof of Theorem 5 in Appendix G.)

In Appendix H, we consider a relaxed notion of t-parity tolerance which we refer to as (t, t′)-parity-
tolerant functions. Concretely, a (t, t′)-parity-tolerant function requires that any t parities of the output of
the function can be simulated by t′ parities of the input of the function. Intuitively, one may view a parity-
tolerant circuit as a special kind of parity-tolerant function where the function’s input is the circuit input
and output, and the function’s output is the wires of the circuit.

We give an example of a (t, t′)-parity-tolerant function that requires super-polynomial simulation time
in t under the standard LPN assumption. This may serve as partial evidence that inefficient simulation may
be inherent for parity tolerance as well.

3 Preliminaries

In this section, we define the notion of leakage-resilient circuits and leakage-tolerant circuits for general
leakage classes. We assume that the leakage classes considered in this work are closed under restrictions,
i.e., for all L : {0, 1}n → {0, 1}m in L, for all S ⊂ {1, . . . , n}, and for all xS ∈ {0, 1}|S|, we require that
L(x) given xS is also in L. We note that all natural leakage classes (or their simple variants8) considered in
the literature satisfy this property. We borrow the definition of leakage-resilient circuits from [GIM+16] as
follows.

Definition 1 ([GIM+16]). For a (possibly randomized) function f : {0, 1}ni → {0, 1}no , a leakage-resilient
circuit for f is defined by (I, C,O), where

– I : {0, 1}ni → {0, 1}n̂i is a randomized input encoder, which maps an input x to an encoded input x̂,
– C is a randomized circuit, mapping an encoded input x̂ ∈ {0, 1}n̂i to an encoded output ŷ ∈ {0, 1}n̂o ,
– O : {0, 1}n̂o → {0, 1}no is a deterministic output decoder, mapping ŷ to an output y.

Let L be a class of leakage functions. We say C is an (L, ϵ)-leakage-resilient implementation of f if

– Correctness: For any input x ∈ {0, 1}ni , the following two distributions are identical:

f(x) ≡ O(C(I(x))).

– Leakage Resilience: For all L ∈ L with input size |C| and for all x,x′ ∈ {0, 1}ni , the statistical distance
between the distributions L(τ(C, I(x))) and L(τ(C, I(x′))) is at most ϵ, where τ(C, x̂) denotes the wire
values of C when taking x̂ as input.

For leakage-tolerant circuits for general leakage classes, we generalize the notion of t-probing-tolerant
circuits from [ISW03,AIS18,GIS22].
8 For example, for parity leakage, we may include functions that compute the flip of the parity of a subset of input

bits. For probing leakage, we may include the constant functions that always output 0 or 1. These expansions of
the leakage classes do not bring more power to the adversary.
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Definition 2 (Leakage-Tolerant Circuit). For a (possibly randomized) function f : {0, 1}ni → {0, 1}no , a
leakage-tolerant circuit for f is defined by a randomized circuit C mapping an input x ∈ {0, 1}ni to an output
y ∈ {0, 1}no . Let L be a class of leakage functions. We say C is an (L, ϵ)-leakage-tolerant implementation of
f if

– Correctness: For any input x ∈ {0, 1}ni , the following two distributions are identical:

f(x) ≡ C(x).

– Leakage Tolerance: There exists a simulator Sim = (Sim1, Sim2) with the following syntax:
• Sim1 takes as input a leakage function L ∈ L with input size |C| and outputs a state st as well as a

leakage function L′ ∈ L with input size ni + no,
• Sim2 takes as input a state st and the output of the ideal leakage L′(·) on the input and output of f ,

and outputs a string b,
such that for all input x ∈ {0, 1}ni and for all L ∈ L, the following two distributions are ϵ-close (in
statistical distance):

(L(τ(C,x)), C(x)) ≈ϵ (Sim2(st, L
′(x,y)),y) : y ← f(x), (st, L′)← Sim1(L)

where τ(C,x) denotes the random variables of the wire values of C when the input is x.

In this work, we are interested in three different leakage classes.

– Probing Leakage Class: This leakage class contains all leakage functions L : {0, 1}n → {0, 1} defined by
i ∈ {1, . . . , n} such that L(x) = xi.

– Depth-1 AC0 Leakage Class (D1 Leakage Class for short): This leakage class contains all leakage functions
L : {0, 1}n → {0, 1} defined by S0, S1 ⊂ {1, . . . , n} such that L(x) = (

∨
i∈S0

xi) ∨ (
∨

i∈S1
(xi ⊕ 1)).

– Parity Leakage Class: This leakage class contains all leakage functions L : {0, 1}n → {0, 1} defined by
S ⊂ {1, . . . , n} such that L(x) =

⊕
i∈S xi.

We say L is the t-leakage class of L′ (denoted by (L′)⊗t) if L contains all leakage functions L such that there
exists L′

1, . . . , L
′
t ∈ L′ with the same input length as L and L(x) = (L′

1(x), . . . , L
′
t(x)). Thus, the above three

leakage classes can be naturally extended to their t-leakage versions: t-probing leakage class, t-D1 leakage
class, and t-parity leakage class.

In the following, we use (t, ϵ)-D1 tolerance to denote leakage tolerance against t-D1 leakage with error
ϵ. Similarly, we use (t, ϵ)-parity tolerance to denote leakage tolerance against t-parity leakage with error ϵ.
Since there are known results [ISW03,AIS18] that can achieve leakage tolerance against t-probing leakage
without error, we simply write t-probing tolerance for probing leakage.

4 Sketch of Depth-1 AC0 Leakage Tolerance

In this section, we give a sketch of our construction for leakage tolerant circuits against depth-1 AC0 leakage
(D1 leakage for short). We follow the overview in Section 2.3 and show that the ISW construction [ISW03] for
linear functions achieves D1 tolerance. Then D1-tolerant circuits for general functions can be easily obtained
following the compiler in Section 2.3. We give the formal description in Appendix B.

Recall that in Section 2.3, we show that the ISW construction for linear functions achieve 1-D1 tolerance.
The high-level idea is to separate the wires in the computation phase to κ + 1 disjoint sets I0, . . . , Iκ such
that if we arbitrarily pick a variable wj ∈ Ij for all j ∈ {0, . . . , κ}, then any κ variables in {wj ∈ Ij}κj=0 are
uniformly random. Based on this fact, if the leakage query touches wires in all κ + 1 sets, then the output
is 1 with overwhelming probability. Otherwise, say Ij⋆ is not touched. Then every wire in C except those in
Ij⋆ only depends on a single input or output bit. So the D1-leakage query to the wires in the circuit is also
a D1-leakage query to the input and output bits.

When considering t-D1 leakage, we use a (tκ+1)-probing tolerant construction. We may similarly separate
the wires in the computation phase to {Ij}tκj=0. The observation is that for each D1-leakage query, if it
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touches wires in more than κ sets, then the output of this leakage bit is 1 with overwhelming probability. By
a standard hybrid argument, it is sufficient to only focus on leakage queries that touch at most κ sets. Then
at most tκ sets are touched by all D1-leakage queries, and there is one set, say Ij⋆ , which is not touched by
and D1-leakage query. Since every wire in C except those in Ij⋆ only depends on a single input or output
bit, the t D1-leakage queries to the wires in the circuit become t D1-leakage queries to the input and output
bits.

Supporting General Linear Secret Sharings. We note that our construction for general functions can be
modified slightly to support any linear secret sharing scheme that is tκ-wise independent. On one hand, it is
known from [Bra11] that a tκ-wise independent secret sharing scheme is t-D1-resilient. On the other hand,
reconstructing secrets and computing a fresh random secret sharing can be done by linear circuits for a linear
secret sharing scheme. Note that for a general linear secret sharing scheme, the multiplication of two secret
sharings can still be done by multiplying every two shares, one from each secret sharing. Reconstructing the
secrets of the multiplication result can be done by a linear circuit.

When using (packed) Shamir sharings, the multiplication of two secret sharings can be done by multiplying
two vector of shares coordinate-by-coordinate, which reduces the overhead from O(k2) to O(k), where k is
the number of shares. What’s more, the packed Shamir secret sharing scheme allows to multiply a vector of
O(k) secrets in parallel. Thus, our construction with packed Shamir secret sharing scheme allows efficient
evaluation of SIMD circuits that compute O(k) copies of the same sub-circuits. In [DIK10], a general boolean
circuit C with size s and depth h can be transformed to a SIMD circuit with size Õ(s+ kh+ k2), where the
Õ notation omits logarithmic factors. Since the ISW construction for linear circuits blows up the circuit size
by O(tκ), we have the following corollary.

Corollary 3. Let κ denote the security parameter. For all positive integer t and for all f : {0, 1}n → {0, 1}m
that admits a circuit of size s and depth h, there exists a (t, t(s + 1)2−κ)-D1-tolerant implementation with
size Õ(tκs+ t2κ2h+ t3κ3).

5 Parity Leakage Tolerance

5.1 Parity-to-Probing Implies Parity Tolerance

In this subsection, we focus on the first step discussed in Section 2.4. We first define the notions of trivial
parity tolerance and parity-to-probing circuits. Then we give a general transformation from parity-to-probing
circuits to parity-tolerant circuits.

In Appendix D, we review the construction in [GIM+16] and show that their construction is a parity-to-
probing circuit against 1 parity query. We also give an example showing that in general 1-parity tolerance
does not imply 2-parity tolerance in Appendix D.3.

Definition 3 (Trivial Parity Tolerance). We say a randomized circuit C is trivially parity-tolerant if
every wire of C can be expressed as a linear combination of its inputs and outputs. We say a function
f : {0, 1}ni → {0, 1}no is trivially parity-tolerant if it admits a trivially parity-tolerant implementation.

Definition 4 (Parity-to-Probing Circuits). For a (possibly randomized) circuit C̃ : {0, 1}ni → {0, 1}no ,
a parity-to-probing circuit implementation of C̃ is a tuple (I, C,O) with the same syntax as leakage-resilient
circuits defined in Definition 1 such that

– Correctness: For all input x ∈ {0, 1}ni , the following distributions are identically distributed:

C̃(x) ≡ O(C(I(x))).

– Trivial Parity Tolerance: The input encoder I and the output decoder O are trivially parity-tolerant.
– Parity-to-Probing Security: There exists a simulator Sim = (Sim1, Sim2) with the following syntax:
• Sim1 takes as input t sets W1, . . . ,Wt of wires in C and outputs a state st as well as a set V of at

most k wires in C̃,
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• Sim2 takes as input a state st and the wire values in V and outputs t bits (b1, . . . , bt),
such that for all input x ∈ {0, 1}ni and for all sets W1, . . . ,Wt of wires in C, the following two distribu-
tions are statistically close with error ϵ:

(parity(W1), . . . , parity(Wt), O(C(I(x))))

≈ϵ (Sim2(st, val(V )), C̃(x)) : (st, V )← Sim1(W1, . . . ,Wt).

Here val(V ) denotes the values of the wires of C̃ in V .

As we mentioned in Section 2.4, without requiring I,O to be trivially parity-tolerant, the notion of parity-
to-probing circuits is strictly weaker than parity-resilient circuits as the latter requires to hide all the wires
of the input circuit C̃. On the other hand, a parity-resilient circuit usually requires more complicated input
encoder and output decoder. In fact, we have the following claim stating that any encoding scheme (Enc, Dec)
cannot be both trivially parity-tolerant and parity-resilient. To be more concrete, for a randomized function
Enc : {0, 1} → {0, 1}n,

– We say Enc is an encoding function if {Enc(0; r)}r and {Enc(1; r)}r have disjoint support sets.
– We say Enc is ϵ-parity-resilient if for all subset W of the output of Enc, parity(W (Enc(0))) and

parity(W (Enc(1))) are statistically close with distance ϵ.

Claim 1 Let Enc : {0, 1} → {0, 1}n be an encoding function. If Enc admits a trivially parity-tolerant imple-
mentation C, then Enc is not ϵ-parity-resilient, where ϵ = 1

4|C| .

We refer the readers to Appendix E for the proof of Claim 1.

Theorem 3. Let t, k be integers. Assume that

– For all function f , there is a k-probing-tolerant implementation of f ;
– For all circuit C̃, there is a (t, k, ϵ)-parity-to-probing circuit implementation of C̃.

Then for all function f : {0, 1}ni → {0, 1}no , there is a (t, ϵ)-parity-tolerant implementation of f .

Proof. Let f : {0, 1}ni → {0, 1}no be the input function. Let n = max{ni, no}. Our construction works for
all encoding scheme (Enc, Dec) with the following properties:

– Enc : {0, 1}n → {0, 1}n̂ is a randomized function such that (1) Enc outputs its random tape, (2) each
output bit is a linear combination of its input and random tape, and (3) when the random tape of Enc
are sampled uniformly, any k bits of the output of Enc are independent and uniformly distributed.

– Dec : {0, 1}n̂ → {0, 1}n is a deterministic function such that (1) for all x ∈ {0, 1}n, Pr[Dec(Enc(x)) =
x] = 1, where the probability is over the randomness of Enc, and (2) each output bit of Dec is a linear
combination of its input.

A direct instantiation of (Enc, Dec) is that

– Enc : {0, 1}n → {0, 1}(k+1)n computes a random additive secret sharing with k+ 1 shares for each input
bit.

– Dec : {0, 1}(k+1)n → {0, 1}n parses the input as n additive secret sharings, each with k + 1 shares, and
computes each output bit by the parity of the k + 1 shares.

We describe the parity-tolerant circuit for f (Figure 2).

Lemma 1. The circuit C⋆ constructed in Figure 2 is a (t, ϵ)-parity-tolerant implementation of f .

We refer the readers to Appendix F for the proof of Lemma 1.
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Parity-Tolerant Circuit for f

1. Encoding the Input: The circuit C⋆ samples random bits r for Enc, pads the input x to be x∥0 ∈ {0, 1}n,
and computes x̂ := Enc(x∥0; r) by only using XOR gates.

2. Computing Encoded Output from Encoded Input:
(a) Let ℓ be the number of random bits used in Enc. Let f ′ : {0, 1}n̂ × {0, 1}ℓ → {0, 1}n̂ be the function

defined by

f ′(x̂, r′) : x∥∗ ← Dec(x̂), where x ∈ {0, 1}ni

y ← f(x)

ŷ ← Enc(y∥0; r′), where y∥0 ∈ {0, 1}n.

(b) Let C̃ be a k-probing-tolerant implementation of f ′. Note that C̃ is a randomized circuit. Let (I, C,O)
be a (t, k, ϵ)-parity-to-probing circuit implementation of C̃.

(c) The circuit C⋆ samples random bits r′ and computes ŷ = O(C(I(x̂, r′))).
3. Decoding the Output: The circuit C⋆ computes Dec(ŷ) and outputs the first no bits.

Fig. 2: Construction of Parity-Tolerant Circuits from Parity-to-Probing Circuits

Instantiations of k-Probing-Tolerant Circuits. There are several known compilers for k-probing-tolerant cir-
cuits, including [IKL+13,GIS22]. However, the multiplicative overhead of most of these compilers grows
quadratically with k. To obtain an efficient construction of k-probing-tolerant circuits, we borrow the fol-
lowing theorem from [GIM+16], which is based on the MPC protocol from [DIK10].

Theorem 4 ([DIK10,GIM+16]). There is an efficient algorithm Q such that for every positive integer k
and every function f : {0, 1}ni → {0, 1}no with circuit size s and circuit depth h, the output of Q(1k, f) is a
k-probing-resilient implementation (I, C,O) of f with |I| = Õ(ni+k), |C| = Õ(s+kh+k2), |O| = Õ(no+k),
where Õ omits logarithmic factors.

Note that to transform from a k-probing-resilient circuit to a k-probing-tolerant circuit, it is sufficient to
implement the input encoder I and the output decoder O by k-probing-tolerant circuits, which can be done
by using known results from [IKL+13,GIS22]. Thus, we have the following corollary.

Corollary 4. There is an efficient algorithm Q such that for every positive integer k and every function
f : {0, 1}ni → {0, 1}no computed by a circuit Cf size s and depth h, the output of Q(1k, Cf ) is a k-probing-
tolerant implementation C of f with |C| = Õ(s+ kh) + poly(ni, no, k), where Õ omits logarithmic factors.

5.2 Feasibility of Parity-Tolerant Circuits

According to Theorem 3, to obtain a (t, ϵ)-parity-tolerant circuit, it is sufficient to construct a (t, k, ϵ)-parity-
to-probing circuit defined in Definition 4.

Our starting point is the construction in [GIM+16]. Let C̃ be a circuit that only consists of NAND gates.
Recall that the idea is to encode each wire value in C̃ by a small-bias encoding scheme. In the following, we
will focus on the 1/2-bias encoding scheme in Figure 1. Suppose

– w = (w1, . . . , w|C̃|) are the wire values in C̃.

– u,v ∈ {0, 1}|C̃| are two vectors of random bits.

Then, the compiler in [GIM+16] takes C̃ as input and outputs (Î , Ĉ, Ô) where the wire values in Ĉ are

(u1, v1, u1 · v1 ⊕ w1), . . . , (u|C̃|, v|C̃|, u|C̃| · v|C̃| ⊕ w|C̃|),
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or equivalently, (u,v,u ∗ v ⊕w).
We observe that (Î , Ĉ, Ô) is already a (t, k, ϵ)-parity-to-probing circuit assuming NAND gadget for some

proper k and ϵ. The intuition is as follows.

Intuitions. First, for each subset W of wires in Ĉ, there is a deterministic set V(W ) of wires in C̃ of size
at most k′ such that parity(W ) can be simulated with statistical error 2−k′−1 if we learn val(V(W )). More
concretely, for a set W of wires in Ĉ, we may define a set V(W ) of wires in C̃ as follows:

– If W touches more than k′ different encodings, then we set V(W ) = ∅.
– Otherwise, we set V(W ) = {wi | some bit of Enc(wi) = (ui, vi, ui · vi ⊕ wi) is in W}.

Then, if |V(W )| ≠ ∅, parity(W ) can be perfectly simulated if we learn val(V(W )). If |V(W )| = ∅, then either
W is an empty set, indicating that parity(W ) = 0, or W touches more than k′ different encodings, indicating
that parity(W ) is statistically close to a uniform bit with error 2−k′−1 (See the proof of Theorem 10). In
any case, parity(W ) can be simulated with statistical error 2−k′−1 when learning wire values in V(W ).

Now, for two sets W and W ′, we define W ⊕W ′ = (W ∪W ′)\(W ∩W ′). Then we have parity(W ) ⊕
parity(W ′) = parity(W ⊕W ′). Now for t subsets W1, . . . ,Wt, we want to simulate the joint distribution
of parity(W1), . . . , parity(Wt). Let V = ∪S⊂{1,...,t}(V(⊕i∈SWi)). Then if we learn all wire values in V , we
can simulate parity(⊕i∈SWi) with statistical error 2−k′−1 for all subset S ⊂ {1, . . . , t}. By the XOR lemma
(See Appendix C), we can simulate the joint distribution of parity(W1), . . . , parity(Wt) with statistical
error 2t/2−k′−1 from the wire values in V .

Regarding the size of V , we note that V(·) satisfies that for all subsets W,W ′, if V(W ),V(W ′) are not
the empty set, then V(W ⊕W ′) ⊂ V(W ) ∪ V(W ′). Indeed,

– If V(W ⊕W ′) = ∅, then V(W ⊕W ′) ⊂ V(W ) ∪ V(W ′).
– If V(W ⊕W ′) ̸= ∅, then for all wi ∈ V(W ⊕W ′), some bit of Enc(wi) is in W ⊕W ′. This implies that

at least one of W and W ′ contains some bit of Enc(wi), indicating that wi ∈ V(W ) ∪ V(W ′). Thus,
V(W ⊕W ′) ⊂ V(W ) ∪ V(W ′).

With this property, we can prove that |V | ≤ t · k′. Thus (Î , Ĉ, Ô) is a (t, t · k′, 2t/2−k′−1)-parity-to-probing
circuit.

Realizing NAND Gadgets. Thus, to obtain a (t, k, ϵ)-parity-to-probing circuit compiler in the plain model, our
goal is to remove the NAND gadget in the construction in [GIM+16].

We summarize our construction for NAND in Figure 3 and refer the readers to Section 2.4 for intuitions
about our construction.

Our Construction. We summarize our construction in Figure 4. Note that our construction only blows up
the size of the underlying circuit by a constant factor.

Theorem 5. For all circuit C̃, the construction in Figure 4 is a (t, k, ϵ)-parity-to-probing circuit, where

ϵ = 2
t
2+1 ·

(
7

8

) k
2t

.

We prove Theorem 5 in Appendix G.

Towards t-Parity-Tolerant Circuits. By Theorem 3, Corollary 4, and Theorem 5, we have the following
corollary.

Corollary 2. Let L denote the leakage class that contains all t-parity leakage functions. For every f :
{0, 1}n → {0, 1}m with circuit implementation C of size s and depth h, there exists an L-leakage-tolerant
circuit for f with circuit size Õ(s) + poly(n,m, h, t, κ), where κ is a statistical security parameter.
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Circuit for NAND

– Input: (u1, v1, z1), (u2, v2, z2), u0, v0
– Auxiliary Input: (u′

1, v
′
1), (u

′
2, v

′
2), ρ1, ρ2, ρ3

– Output: z0 := u0 · v0 ⊕ (z1 ⊕ u1 · v1) · (z2 ⊕ u2 · v2)⊕ 1.

1. Refresh Input Encoding: The goal of the first step is to compute

z′1 = u′
1 · v′1 ⊕ (z1 ⊕ u1 · v1), z′2 = u′

2 · v′2 ⊕ (z2 ⊕ u2 · v2).

The circuit is constructed as follows.
(a) For all a ∈ {0, 1}2, the circuit computes α1,a := u′

1 · a1 ⊕ (z1 ⊕ u1 · a2)⊕ ρ1 and α2,a := u′
2 · a1 ⊕ (z2 ⊕

u2 · a2)⊕ ρ2.
(b) For all a ∈ {0, 1}2, the circuit computes β1,a := (v′1 ⊕ a1 ⊕ 1) · (v1 ⊕ a2 ⊕ 1) and β2,a := (v′2 ⊕ a1 ⊕ 1) ·

(v2 ⊕ a2 ⊕ 1).
(c) For all a ∈ {0, 1}2, the circuit computes γ1,a := α1,a · β1,a and γ2,a := α2,a · β2,a.
(d) The circuit computes

z′1 =
(
⊕a∈{0,1}2γ1,a

)
⊕ ρ1, z′2 =

(
⊕a∈{0,1}2γ2,a

)
⊕ ρ2.

2. Computing NAND on Refreshed Input Encodings: The goal of the second step is to compute z0 from
(u′

1, v
′
1, z

′
1), (u

′
2, v

′
2, z

′
2), u0, v0:

z0 = u0 · v0 ⊕ (z′1 ⊕ u′
1 · v′1) · (z′2 ⊕ u′

2 · v′2)⊕ 1.

The circuit is constructed as follows.
(a) The circuit computes z′1 · z′2, z′1 · u′

2, u
′
1 · z′2, u′

1 · u′
2.

(b) For all a ∈ {0, 1}3, the circuit computes

α3,a := u0 · a0 ⊕ (z′1 ⊕ u′
1 · a1) · (z′2 ⊕ u′

2 · a2)⊕ 1⊕ ρ3

= u0 · a0 ⊕ (z′1 · z′2)⊕ a2 · (z′1 · u′
2)⊕ a1 · (u′

1 · z′2)
⊕ a1a2 · (u′

1 · u′
2)⊕ 1⊕ ρ3.

by a proper linear combination of u0, z
′
1 · z′2, z′1 · u′

2, u
′
1 · z′2, u′

1 · u′
2, ρ3.

(c) For all a ∈ {0, 1}3, the circuit computes β3,a := (v0 ⊕ a0 ⊕ 1) · (v′1 ⊕ a1 ⊕ 1) · (v′2 ⊕ a2 ⊕ 1).
(d) For all a ∈ {0, 1}3, the circuit computes γ3,a := α3,a · β3,a.
(e) The circuit computes

z0 =
(
⊕a∈{0,1}3γ3,a

)
⊕ ρ3.

Fig. 3: Circuit Implementation of NAND Gadget
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(t, k, ϵ)-Parity-to-Probing Circuit (I, C,O)

– Input: A randomized circuit C̃ with input size {0, 1}ni and output size {0, 1}no

– Output: A tuple (I, C,O)

Input Encoder I: For input x ∈ {0, 1}ni , I(x) = {(ui, vi, ui · vi ⊕ xi)}ni
i=1, where ui, vi are random bits for all

i ∈ {1, . . . , ni}.

Circuit C:

1. Suppose the wires in C̃ are denoted by w1, . . . , w|C̃|. For simplicity, assume that the first ni wires are the
input wires, and the last no wires are the output wires. The circuit C takes I(x) as input and samples the
following random bits:
– u,u(1),u(2) ∈ {0, 1} ˜|C| where the first ni bits of u are set to be the same as those in I(x).
– v,v(1),v(2) ∈ {0, 1} ˜|C| where the first ni bits of v are set to be the same as those in I(x).
– ρ,ρ(1),ρ(2) ∈ {0, 1} ˜|C|.

2. For each random wire wi in C̃, the circuit C samples a random bit as zi and sets the encoding of wi as
(ui, vi, zi).

3. We label the NAND gates in C̃ by the indices of their output wires. I.e., the output of the ℓ-th NAND gate is
the ℓ-th wire wℓ. Let π1(·) be the function that maps ℓ to the index of the first input of the ℓ-th NAND gate,
and π2(·) be the function that maps ℓ to the index of the second input of the ℓ-th NAND gate. Then the ℓ-th
NAND gate takes as input wπ1(ℓ), wπ2(ℓ) and outputs wℓ = wπ1(ℓ) NAND wπ2(ℓ).

4. For each NAND gate in C̃, suppose this is the ℓ-th NAND gate and the input encodings are (uπ1(ℓ), vπ1(ℓ), zπ1(ℓ))
and (uπ2(ℓ), vπ2(ℓ), zπ2(ℓ)). The circuit C computes the subcircuit for the NAND gadget described in Figure 3
with
– Input: (uπ1(ℓ), vπ1(ℓ), zπ1(ℓ)), (uπ2(ℓ), vπ2(ℓ), zπ2(ℓ)), uℓ, vℓ

– Auxiliary Input: (u(1)
ℓ , v

(1)
ℓ ), (u

(2)
ℓ , v

(2)
ℓ ), ρ

(1)
ℓ , ρ

(2)
ℓ , ρℓ

We set zℓ to be the output of the subcircuit.
5. The output of C is {(ui, vi, zi)}|C̃|

i=|C̃|−no+1

Output Decoder O: O takes the output of C, denoted by {(ui, vi, zi)}|C̃|
i=|C̃|−no+1

, as input, and outputs
y = (u|C̃|−no+1 · v|C̃|−no+1 ⊕ z|C̃|−no+1, . . . , u|C̃| · v|C̃| ⊕ z|C̃|).

Fig. 4: (t, k, ϵ)-Parity-to-Probing Circuit
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and David Peleg, editors, Automata, Languages, and Programming, pages 576–588, Berlin, Heidelberg,
2013. Springer Berlin Heidelberg.

ISW03. Yuval Ishai, Amit Sahai, and David Wagner. Private Circuits: Securing Hardware against Probing Attacks.
In Dan Boneh, editor, Advances in Cryptology - CRYPTO 2003, pages 463–481, Berlin, Heidelberg, 2003.
Springer Berlin Heidelberg.

MR04. Silvio Micali and Leonid Reyzin. Physically observable cryptography (extended abstract). In Moni Naor,
editor, Theory of Cryptography, First Theory of Cryptography Conference, TCC 2004, Cambridge, MA,
USA, February 19-21, 2004, Proceedings, volume 2951 of Lecture Notes in Computer Science, pages 278–
296. Springer, 2004.

MV13. Eric Miles and Emanuele Viola. Shielding circuits with groups. In Dan Boneh, Tim Roughgarden, and
Joan Feigenbaum, editors, Symposium on Theory of Computing Conference, STOC’13, Palo Alto, CA,
USA, June 1-4, 2013, pages 251–260. ACM, 2013.

NN90. J. Naor and M. Naor. Small-bias probability spaces: Efficient constructions and applications. In Proceedings
of the Twenty-Second Annual ACM Symposium on Theory of Computing, STOC ’90, page 213–223, New
York, NY, USA, 1990. Association for Computing Machinery.

PR13. Emmanuel Prouff and Matthieu Rivain. Masking against side-channel attacks: A formal security proof. In
Thomas Johansson and Phong Q. Nguyen, editors, Advances in Cryptology - EUROCRYPT 2013, 32nd
Annual International Conference on the Theory and Applications of Cryptographic Techniques, Athens,
Greece, May 26-30, 2013. Proceedings, volume 7881 of Lecture Notes in Computer Science, pages 142–159.
Springer, 2013.

Rot12. Guy N. Rothblum. How to compute under ${\cal{AC}}ˆ{\sf0}$ leakage without secure hardware. In
Reihaneh Safavi-Naini and Ran Canetti, editors, Advances in Cryptology - CRYPTO 2012 - 32nd Annual
Cryptology Conference, Santa Barbara, CA, USA, August 19-23, 2012. Proceedings, volume 7417 of Lecture
Notes in Computer Science, pages 552–569. Springer, 2012.

RP10. Matthieu Rivain and Emmanuel Prouff. Provably secure higher-order masking of AES. In Stefan Mangard
and François-Xavier Standaert, editors, Cryptographic Hardware and Embedded Systems, CHES 2010,
12th International Workshop, Santa Barbara, CA, USA, August 17-20, 2010. Proceedings, volume 6225 of
Lecture Notes in Computer Science, pages 413–427. Springer, 2010.

A Leakage-Resilient Stateful Circuits

We generalize the definitions of memory cells, stateful circuits, and t-probing-resilient stateful circuits
in [ISW03] to the general case.

Definition 5 (Memory Cells [ISW03]). A memory cell is a stateful gate with fan-in 1. On any invocation
of the circuit, it outputs the previous input to the gate, and stores the current input for the next invocation.

Definition 6 (Stateful Circuits [ISW03]). A stateful circuit C is a circuit with the extensions that (1)
C may contain memory cells, and (2) C may contain cycles as long as every cycle traverses at least one
memory cell. Let s0 be the initial state for the memory cells. We write C[s0] for the circuit C with memory
cells initially filled with s0. A stateful circuit C can also have external input and output wires.

Remark 1. Stateful circuits can have external input and output wires. One example in [ISW03] is an AES
circuit, where the internal memory cells contain the secret key, the input wires are the plaintext, and the
output wires are the corresponding ciphertext.

Definition 7 (Leakage-Resilient Stateful Circuits). Let L be a class of leakage functions and C[s0] be
a stateful circuit C with an initial state s0. A stateful circuit C ′[s′0] is an L-leakage-resilient implementation
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of C[s0] if it is secure against an L-leakage-limited interactive adversary. Specifically, an L-leakage-limited
interactive adversary is an adversary which is given access to C ′[s′0]. The adversary may invoke C ′ q times
where q is an arbitrary polynomial in the security parameter. In each invocation, the adversary adaptively
chooses an input x and a leakage function L ∈ L with input size |C ′| based on the observed output values
and answers to the leakage queries in previous invocations, and the adversary learns the output values cor-
responding to the chosen input and the answer to the leakage query L. The security requires the existence of
a simulator Sim that can simulate the adversary’s view using only a black-box access to C[s0], without the
access to s0, with negligible statistical error.

A.1 From Leakage-Tolerant Circuits to Leakage-Resilient Stateful Circuits

In this section, we show that for any leakage class L, L-leakage-resilient stateful circuits can be constructed
from L-leakage tolerate circuits and 2-adaptive L-leakage-resilient encoding schemes. Concretely, for a pair
of randomized functions (Enc, Dec),

– We say (Enc, Dec) is an encoding scheme if for all m ∈ {0, 1},

Pr[Dec(Enc(m)) = m] = 1.

– We say (Enc, Dec) is 2-adaptive L-leakage-resilient if any adversary cannot distinguish an encoding of 0
from that of 1 by making two adaptively chosen leakage queries in L on the codeword. Formally, for all
(computationally unbounded) adversary A = (A1,A2), the following two distributions are statistically
close with negligible distance:

(L1(c), L2(c)) : c← Enc(0), (L1, st)← A1(|Enc(0)|), L2 ← A2(st, |Enc(0)|, L1(c))

(L1(c), L2(c)) : c← Enc(1), (L1, st)← A1(|Enc(0)|), L2 ← A2(st, |Enc(0)|, L1(c))

Theorem 6. Let L be a leakage class. Suppose there is a 2-adaptive L-leakage-resilient encoding, and an
efficient compiler transforming any binary function f : {0, 1}n → {0, 1}m to an L-leakage-tolerant circuit.
Then, there is an efficient compiler transforming any stateful circuit C[s0] to an equivalent L-leakage-resilient
stateful circuit C ′[s′0].

Proof. We follow the high-level idea presented in Section 2.1. Let (Enc, Dec) denote a 2-adaptive L-leakage-
resilient encoding scheme. For a string s, we use Enc(s) to denote the concatenation of the encoding of every
bit in s.

Initially, we set s′0 = Enc(s0). Let f be a binary function defined as follows.

– The function f takes s′,x as input.
– Then it decodes s′ by using Dec and obtains s.
– Next it computes C[s] with public input x and obtains the updated state s̃ with public output y.
– After that, it encodes s̃ by using Enc and obtains s̃′.
– Finally f outputs (s̃′,y).

Let Ĉ be an L-leakage-tolerant circuit for f . The construction of C ′[s′0] is as follows: In the i-th invocation
with public input xi, C ′[s′i−1] computes Ĉ(s′i−1,x) and obtains (s′i,y), which are regarded as the updated
state and the public output respectively.

We first give the construction of the simulator Sim. Let (Sim′1, Sim
′
2) be the simulator guaranteed by the

L-leakage tolerance of Ĉ. In the beginning, Sim sets s̃0 to be an all-0 string of the same length as s0. Then
Sim computes s̃′0 = Enc(s̃0). Sim does the following for the i-th invocation.

– Sim invokes C[si−1] with public input xi and obtains the public output yi.
– Sim sets s̃i to be an all-0 string of the same length as si. Then Sim computes s̃′i = Enc(s̃i).
– Upon receiving the leakage query Li from A, Sim runs Sim′1(Li) and obtains (sti, L

′
i). Then Sim runs

Sim′2(sti, L
′
i(s̃

′
i−1,xi, s̃

′
i,yi)) and obtains bi. Finally Sim returns bi as the simulated leakage to A.
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We prove that C ′[s′0] is an L-leakage-resilient stateful circuit for C[s0] by a list of hybrid arguments.
Hybrid0: In the initial hybrid, we consider the real execution.
Hybrid1: In this hybrid, we consider a sequence of small hybrids that change the answer to the i-th

leakage query by the one simulated by (Sim′1, Sim
′
2). In the i-th small hybrid, for the leakage query Li in the

i-th invocation, we first run Sim′1(Li) and obtains (sti, L
′
i). Then we run Sim′2(sti, L

′
i(s

′
i−1,xi, s

′
i,yi)) and

obtains bi. Finally we return bi as the simulated leakage to A. Since Ĉ is L-leakage-tolerant, the distribution
of Hybrid1,i is statistically close to Hybrid1,i−1. Note that in the last small hybrid, all leakage queries are
simulated by (Sim′1, Sim

′
2), which only depend on the encodings of states.

Hybrid2: In this hybrid, we consider a sequence of small hybrids that switch {s′i}
q
i=1 by {s̃′i}

q
i=1 one

by one. In the j-th small hybrid, the only difference is that we use s̃′j rather than s′j . Given {s̃′i}i<j and
{s′i}i>j , the only difference are the answers to the j-th leakage query and the (j+1)-th leakage query, which
translates to two adaptive leakage queries in L to s̃′j . Since (Enc, Dec) is a 2-adaptive L-leakage-resilient
encoding scheme, the distribution of Hybrid2,j is statistically close to Hybrid2,j−1. Note that the last
small hybrid corresponds to the case where all leakage queries are simulated by Sim. Therefore, C ′[s′0] is an
L-leakage-resilient stateful circuit for C[s0].

In the following, we give instantiations of 2-adaptive L-leakage-resilient encodings for leakage classes
we are interested in. We also show how to construct an L-leakage-resilient stateful circuit with efficient
simulation even if the underlying L-leakage-tolerant circuits require inefficient simulation.

A.2 Construction of 2-Adaptive L-Leakage-Resilient Encodings.

In this subsection, we first show that any L⊗2-leakage-resilient encoding (i.e., an encoding scheme that is
secure against 2 non-adaptive leakage queries in L) achieves 2-adaptive L-leakage resilience.

Lemma 2. Let (Enc, Dec) be an L⊗2-leakage-resilient encoding with error ϵ. Let t be the output length of
functions in L. Then (Enc, Dec) is a 2-adaptive L-leakage-resilient encoding with error 2tϵ.

Proof. For the sake of contradiction, suppose there exists a 2-adaptive L-leakage adversary A = (A1,A2)
such that the statistical distance between the following two distributions is η > 2tϵ:

(L1(c), L2(c)) : c← Enc(0), (L1, st)← A1(|Enc(0)|), L2 ← A2(st, |Enc(0)|, L1(c))

(L1(c), L2(c)) : c← Enc(1), (L1, st)← A1(|Enc(0)|), L2 ← A2(st, |Enc(0)|, L1(c))

We prove the existence of an L⊗2-leakage adversary A′ such that the following two distributions is at
least η/2t > ϵ:

(L1(c), L2(c)) : c← Enc(0), (L1, L2)← A′(|Enc(0)|)
(L1(c), L2(c)) : c← Enc(1), (L1, L2)← A′(|Enc(0)|)

This is equivalent to the existence of (A′′, D′′) which satisfies that

|Pr[c← Enc(0), (L1, L2, st)← A′′ : D′′(L1(c), L2(c), st) = 1]

−Pr[c← Enc(1), (L1, L2, st)← A′′ : D′′(L1(c), L2(c), st) = 1]| ≥ η/2t.

This is because we may choose the random tape r of A′′ to maximize the above difference. Then A′′ becomes
a deterministic algorithm, and we may hardcode st inside D′′. Now we can construct A′ which simply
runs A′′ with random tape r and outputs L1, L2. Then the above difference implies a lower bound on the
statistical distance between the following two distributions:

(L1(c), L2(c)) : c← Enc(0), (L1, L2)← A′(|Enc(0)|)
(L1(c), L2(c)) : c← Enc(1), (L1, L2)← A′(|Enc(0)|)

In the following we focus on the construction of A′′ and D′′. We construct A′′ as follows.
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1. A′′ invokes A1 with |Enc(0)| and receives (L1, st).
2. A′′ randomly samples b ∈ {0, 1}t as a guess of applying L1 to the encoding.
3. A′′ invokes A2 with st, |Enc(0)|, b and receives L2.
4. A′′ outputs (L1, L2, b).

By the definition of statistical distance, there exists a computationally unbounded distinguisher D such
that D can distinguish the following two distributions with advantage η:

(L1(c), L2(c)) : c← Enc(0), (L1, st)← A1(|Enc(0)|), L2 ← A2(st, |Enc(0)|, L1(c))

(L1(c), L2(c)) : c← Enc(1), (L1, st)← A1(|Enc(0)|), L2 ← A2(st, |Enc(0)|, L1(c))

We construct D′′ as follows.

– D′′ takes (L1(c), L2(c), b) as input. Then D′′ checks whether b = L1(c). If true, D′′ outputs D(L1(c), L2(c)).
Otherwise D′′ outputs a random bit.

Then we have

|Pr[c← Enc(0), (L1, L2, b)← A′′ : D′′(L1(c), L2(c), b) = 1]

−Pr[c← Enc(1), (L1, L2, b)← A′′ : D′′(L1(c), L2(c), b) = 1]|

=
1

2t
|Pr[c← Enc(0), (L1, L2, b)← A′′ : D′′(L1(c), L2(c), b) = 1 | L1(c) = b]

−Pr[c← Enc(1), (L1, L2, b)← A′′ : D′′(L1(c), L2(c), b) = 1 | L1(c) = b]|

=
η

2t
.

The last step is because given L1(c) = b, A′′ behaves identically to A and D′′ behaves identically to D.

Instantiations of 2-Adaptive L-Leakage-Resilient Encodings. By Lemma 2, it is sufficient to construct L⊗2-
leakage-resilient encodings. We given instantiations for the leakage classes we are interested in this work.

For t-probing leakage, it is sufficient to use a random additive secret sharing with 2t + 1 shares as the
encoding scheme. I.e., Enc(m) outputs 2t+ 1 random bits with parity m. The obtained encoding scheme is
2-adaptive t-probing-resilient with no error.

For t-D1 leakage, it is sufficient to use a random additive secret sharing with 2t(κ + t) shares as the
encoding scheme. I.e., Enc(m) outputs 2t(κ+ t+log(4t)) random bits with parity m. The obtained encoding
scheme is 2-adaptive t-D1-resilient with error 2−κ. This can be proved by following a similar argument to
that in the proof of Theorem 8.

For t-parity leakage, we follow the idea in [GIM+16] by first splitting the input bit to an additive secret
sharing with 2t+κ+1 shares and then encoding each share by the small-bias encoding scheme in Figure 1. The
obtained encoding scheme is 2-adaptive t-parity-resilient with error 2−κ. This can be proved by combining
Claim 5 and the XOR Lemma 4

A.3 Leakage-Resilient Stateful Circuits with Efficient Simulation

We note that for the L-leakage-resilient stateful circuit C ′[s′0] constructed in Theorem 6, the efficiency of the
simulator depends on the simulator of the underlying L-leakage-tolerant circuit Ĉ. If Ĉ requires inefficient
simulation (in the output length of each leakage query), then C ′[s′0] also requires inefficient simulation. This is
the case when using our construction for t-parity-tolerant circuits to build t-parity-resilient stateful circuits.
On the other hand, we provides evidence that the inefficient simulation of our t-parity-tolerant circuits may
be inherent in Appendix H.

In this subsection, we show how to construct leakage-resilient stateful circuits with efficient simulation
even if the underlying L-leakage-tolerant circuit requires inefficient simulation. To this end, we need to use
a one-to-one L-leakage-resilient encoding. To be more concrete, we say (Enc, Dec) is a one-to-one encoding
scheme, if Enc : {0, 1} → {0, 1}n satisfies that any y ∈ {0, 1}n is a valid encoding of either m = 0 or m = 1.
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Theorem 7. Let L be a leakage class. Suppose there is a 2-adaptive L-leakage-resilient encoding, a one-to-
one L-leakage-resilient encoding, and an efficient compiler transforming any binary function f : {0, 1}n →
{0, 1}m to an L-leakage-tolerant circuit. Then, there is an efficient compiler transforming any stateful circuit
C[s0] to an equivalent L-leakage-resilient stateful circuit C ′[s′0] with efficient simulation.

Proof. At a high level, our idea is to include a control bit b in the state. We modify the stateful circuit
C by taking an auxiliary input in each invocation. If b = 0, then the circuit ignores the auxiliary input
and computes the output by using the internal state and the public input as the original stateful circuit.
Otherwise, the circuit keeps the state unchanged and outputs the decoding of the auxiliary input. To achieve
the same functionality as the original stateful circuit, the control bit is set to be 0 by default and we just
use random bits as the auxiliary input. Now the construction of the L-leakage-resilient stateful circuit is
applying the compiler in Theorem 6 to the modified stateful circuit.

To show efficient simulation, the simulator will set the initial state to be all 0 values and set the control
bit to be 1 (so by the construction the control bit will remain to be 1 in all invocations). In each invocation,
after learning the public input and output, the simulator will replace the auxiliary input by an encoding of
the public output. In this way, the simulator simply evaluates the L-leakage-resilient stateful circuit with
fake initial state and computes the leakage queried by the adversary.

We describe the formal construction below. Let (Enc, Dec) be the 2-adaptive L-leakage-resilient encoding,
and (Enc′, Dec′) be the one-to-one L-leakage-resilient encoding. Without loss of generality, suppose the public
output is of length ℓ.

Initially, we set s′0 = Enc(s0∥0), where the appended bit is viewed as the control bit. Let f be a binary
function defined as follows.

– The function f takes s′,x, r as input, where |r| = |Enc′(0ℓ)|, and 0ℓ is a string of 0s of length ℓ.
– Then it decodes s′ by using Dec and obtains s∥b. It also decodes r and obtains ỹ.
– Next it computes C[s] with public input x and obtains the updated state s̃ with public output y.
– After that, depending on the control bit b, f computes the following.
• If b = 0, it encodes s̃∥b by using Enc and obtains s̃′.
• Otherwise, it encodes s∥b by using Enc and obtains s̃′. Then it resets y to be ỹ.

– Finally, f outputs (s̃′,y).

Let Ĉ be an L-leakage-tolerant circuit for f . The construction of C ′[s′0] is as follows: In the i-th invocation
with public input xi and internal randomness ri, C ′[s′i−1] computes Ĉ(s′i−1,xi, ri) and obtains (s′i,yi),
which are regarded as the updated state and the public output respectively.

We first give the construction of the simulator Sim. In the beginning, Sim sets s̃0 to be an all-0 string of
the same length as the actual initial state. Then Sim computes s̃′0 = Enc(s̃0∥1). Note that the control bit is
b = 1. Sim does the following for the i-th invocation.

– Sim invokes C[si−1] with public input xi and obtains the public output yi.
– Sim computes r̃i = Enc′(yi) and computes Ĉ(s̃′i−1,xi, r̃i). The output (s̃′i,yi) is regarded as the updated

state and the public output respectively.
– Upon receiving the leakage query Li from A, Sim computes Li on the wire values of Ĉ and returns the

simulated leakage to A.

We prove that C ′[s′0] is an L-leakage-resilient stateful circuit for C[s0] by a list of hybrid arguments. Let
(Sim′1, Sim

′
2) be the simulator guaranteed by the L-leakage tolerance of Ĉ.

Hybrid0: In the initial hybrid, we consider the real execution.
Hybrid1: In this hybrid, we consider a sequence of small hybrids that change the answer to the i-th

leakage query by the one simulated by (Sim′1, Sim
′
2). In the i-th small hybrid, for the leakage query Li in the

i-th invocation, we first run Sim′1(Li) and obtains (sti, L
′
i). Then we run Sim′2(sti, L

′
i(s

′
i−1,xi, s

′
i,yi)) and

obtains bi. Finally we return bi as the simulated leakage to A. Since Ĉ is L-leakage-tolerant, the distribution
of Hybrid1,i is statistically close to Hybrid1,i−1. Note that in the last small hybrid, all leakage queries are
simulated by (Sim′1, Sim

′
2), which only depend on the encodings of states and the auxiliary inputs.
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Hybrid2: In this hybrid, we consider a sequence of small hybrids that switch {s′i, ri}
q
i=0 by {s̃′i, r̃i}

q
i=0.

(Here we assume r0 and r̃0 are all-0 strings. Note that they are not used in the construction.) In the (j+1)-th
small hybrid, the only difference is that we use s̃′j , r̃j rather than s′j , rj . Given {s̃′i, r̃i}i<j and {s′i, ri}i>j , the
only difference are the answers to the j-th leakage query and the (j + 1)-th leakage query, which translates
to two adaptive leakage queries in L to s̃′j and one leakage query in L to r̃j . Since (Enc, Dec) is a 2-adaptive
L-leakage-resilient encoding scheme and (Enc′, Dec′) is a one-to-one L-leakage-resilient encoding scheme, the
distribution of Hybrid2,j+1 is statistically close to Hybrid2,j . Note that in the last small hybrid, we use
s̃′i, r̃i in all invocations.

Hybrid3: In this hybrid, we consider a sequence of small hybrids that change the simulated answer to
the i-th leakage query back to that on the wire values of Ĉ. Specifically, in the i-th small hybrid, for the
leakage query Li in the i-th invocation, we output the result of applying Li on the wire values of Ĉ with input
(s̃′i−1,xi, r̃i) and output (s̃′i,yi). Since Ĉ is L-leakage-tolerant and (Sim′1, Sim

′
2) is the simulator guaranteed

by the L-leakage tolerance of Ĉ, the distribution of Hybrid3,i is statistically close to Hybrid3,i−1. Note
that the last hybrid corresponds to the case where all leakage queries are simulated by Sim. Therefore, C ′[s′0]
is an L-leakage-resilient stateful circuit for C[s0].

Remark 2. We note that the leakage-resilient encoding schemes we constructed in Appendix A.2 for t-probing
leakage, t-D1 leakage, and t-parity leakage are all one-to-one encoding schemes.

B Depth-1 AC0 Leakage Tolerance

In this section, we introduce our construction for leakage tolerant circuits against depth-1 AC0 leakage (D1
leakage for short). We follow the overview in Section 2.3 and first show that the ISW construction [ISW03]
for linear functions achieves D1 tolerance. Then we show how to construct D1-tolerant circuits for general
functions. In Appendix B.4, we give a counter example showing that the ISW construction is not OR-tolerant
even for linear functions.

B.1 Review of ISW Construction for Linear Functions

We first consider a linear function f(x1, . . . , xn) = (y1, . . . , ym) where each yj is a linear combination of
{xi}ni=1. We will show that the ISW construction for f is D1-tolerant. Recall the ISW construction for the
linear function f :

1. Input Encoding Phase: For all i ∈ {1, . . . , n}, do the following.
– Prepare k random bits xi,0, . . . , xi,k−1.
– Compute xi,k = xi ⊕ xi,0 ⊕ . . .⊕ xi,k−1 in order.
– Set [xi] = (xi,0, . . . , xi,k). Note that the parity of bits in [xi] is equal to xi.

2. Circuit Emulation Phase: The circuit computes [yj ] via a proper linear combination of [x1], . . . , [xn].
3. Output Decoding Phase: For all j ∈ {1, . . . ,m}, set (yj,0, . . . , yj,k) = [y] and compute yj = yj,k⊕yj,k−1⊕

. . .⊕ yj,0 in order.

For all j ∈ {0, . . . , k}, let Ij be the set of wires that are linear combinations of {xi,j}ni=1. We first prove
the following lemma.

Lemma 3. For all j ∈ {0, . . . , k}, let wj be an arbitrary variable in Ij. Then any k−1 variables of {wj}kj=0

are uniformly random.

Proof. Note that [x1], [x2], . . . , [xn] are uniformly random additive sharings. Therefore, for all j⋆ ∈ {0, . . . , k},
we have that {x0,j , . . . , xn,j}j ̸=j⋆ are uniformly random.

Since each variable wj is a linear combination of {xi,j}ni=1, we have that {wj}j ̸=j⋆ are uniformly random.
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B.2 D1 Tolerance of ISW Construction for Linear Functions

We prove the following main theorem about the ISW construction for linear functions.

Theorem 8. Let κ denote the security parameter. For all positive integer t and for all linear function
f : {0, 1}n → {0, 1}m, when k = t · κ, the ISW construction for f is (t, t · 2−κ)-D1-tolerant.

Proof. Let x = (x1, . . . , xn) denote the input bits and y = (y1, . . . , ym) denote the output bits. Let C denote
the circuit after applying the ISW construction on the linear function f . We represent each D1 leakage on
wire values in C as follows:

1. An adversary first chooses an arbitrary set W of wires in C.
2. Then the adversary may arbitrarily flip some wires in W . Denote the resulting set of literals (wire

variables or their negations) by W̃ .
3. Finally, the leakage is defined to be OR(W̃ ).

For each D1 leakage, if the number of indices j ∈ {0, . . . , k} such that W ∩ Ij ̸= ∅ is at least κ, then by
Lemma 3, there exist at least κ variables in W that are uniformly random. This means that OR(W̃ ) = 1 with
probability at least 1− 2−κ.

Now suppose (W1, W̃1), . . . , (Wt, W̃t) are the sets decided by the adversary, and the t D1 leakage bits are
α1 = OR(W̃1), . . . , αt = OR(W̃t). Let T be the set of indices ℓ ∈ {1, . . . , t} such that Wℓ∩Ij ̸= ∅ for at most κ
indices j ∈ {0, . . . , k}. Then by the above analysis, for each ℓ ̸∈ T , αℓ = 1 with probability at least 1− 2−κ.
Consider the following two hybrids.

– Hybrid0: Output (α1, . . . , αt).
– Hybrid1: For all ℓ ∈ {1, . . . , t}, if ℓ ∈ T , set βℓ = αℓ; otherwise, set βℓ = 1. Output (β1, . . . , βt).

By the union bound, the statistical distance between Hybrid0 and Hybrid1 is at most t · 2−κ. We are
going to simulate (β1, . . . , βt) by at most t D1 queries on the input and output bits. Note that it is sufficient
to focus on {βℓ}ℓ∈T = {αℓ}ℓ∈T .

Recall that |T | ≤ t and for all ℓ ∈ T , Wℓ ∩Ij ̸= ∅ for at most κ index j ∈ {0, . . . , k}. Since k = t ·κ, there
exists j⋆ ∈ {0, . . . , k} such that Wℓ ∩ Ij⋆ = ∅ for all ℓ ∈ T . Consider the following simulation process.

1. For all i ∈ {1, . . . , n}, sample k random bits as {xi,j}j ̸=j⋆ . By the property of the additive secret sharing
scheme, the distribution of {xi,j}j ̸=j⋆ remain unchanged. Then compute all variables in

⋃
j ̸=j⋆ Ij . Note

that it includes all wire values in the circuit emulation phase except wires in Ij⋆ . Note that all generated
variables are independent of the input and output bits.

2. For all i ∈ {1, . . . , n}, compute the intermediate wires in the input encoding phase as follows. For j < j⋆,
compute xi⊕xi,0⊕ . . .⊕xi,j as it is described, which is an equation depending on xi. For j ≥ j⋆, compute
xi ⊕ xi,0 ⊕ . . .⊕ xi,j by xi,k ⊕ xi,k−1 ⊕ . . .⊕ xi,j+1, which is a known bit.

3. For all i ∈ {1, . . . ,m}, compute the intermediate wires in the output decoding phase as follows. For
j > j⋆, compute yi,k ⊕ . . . yi,j as it is described, which is a known bit. For j ≤ j⋆, compute yi,k ⊕ . . . yi,j
by yi ⊕ yi,0 ⊕ . . .⊕ yi,j−1, which is an equation depending on yi.

4. Use the above equation of wires in C to compute αℓ = OR(W̃ℓ) for all ℓ ∈ T . Note that we have generate
all wire values except those in Ij⋆ . However, since Wℓ ∩ Ij⋆ = ∅, we can compute OR(W̃ℓ) by the wires we
have generated. Also note that the equation of each variable depends on at most one input bit or output
bit. Thus OR(W̃ℓ) is just a D1 leakage query on the input and output bits. Simulate {αℓ}ℓ∈T by making
|T | D1 leakage queries on the input and output bits.

Note that we just generate the wire values in C except those in Ij⋆ in a different way. However, from the
first point, the distribution of those wire values remains unchanged. Thus, the output of the simulation has
the same distribution as {αℓ}ℓ∈T .
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B.3 D1 Leakage Tolerance for General Functions

In this subsection, we show how to use the ISW construction for linear functions to construct a D1-tolerant
circuit for any function f : {0, 1}n → {0, 1}m. Let x ∈ {0, 1}n denote the input of f , y = f(x), and C denote
the circuit that computes the function f . At a high level, for each wire w in C, we will compute an additive
sharing of w.

1. For each input bit xi, we sample k random bits (xi,0, . . . , xi,k−1). To obtain [xi], we want to compute
xi,k = xi ⊕ (

⊕k−1
ℓ=0 xi,ℓ). We view the computation of xi,k as a linear function and apply the ISW

construction to it.
2. For each addition gate with two input additive sharings [a], [b], we sample random bits c0, . . . , ck−1.

To obtain [c] = [a + b], we want to compute ck = (
⊕k

ℓ=0 aℓ) ⊕ (
⊕k

ℓ=0 bℓ) ⊕ (
⊕k−1

ℓ=0 cℓ). We view the
computation of ck as a linear function and apply the ISW construction to it.

3. For each multiplication gate with two input additive sharings [a], [b], we sample random bits c0, . . . , ck−1.
Then we compute aℓ1 · bℓ2 for all ℓ1, ℓ2 ∈ {0, . . . , k}. Our goal is to compute ck = (

⊕k
ℓ1,ℓ2=0 aℓ1 · bℓ2) ⊕

(
⊕k−1

ℓ=0 ). We view the computation of ck as a linear function and apply the ISW construction to this
linear function.

4. After obtaining an additive secret sharing [yj ] for each output yj , we want to reconstruct yj =
⊕k

ℓ=0 yj,ℓ.
We view the computation of yj as a linear function and apply the ISW construction to it.

Theorem 9. Let κ denote the security parameter. For all positive integer t and for all f : {0, 1}n → {0, 1}m,
when k = t · κ, the above construction for f is (t, t(|C| + 1) · 2−κ)-D1-tolerant, where C is the circuit
implementation of f .

Proof. Let C̃g denote the ISW construction for the linear function that is used to compute the gate g in C,
where g can be an input gate, an output gate, an addition gate, or a multiplication gate.

Consider a D1 leakage on wire values in C̃ defined as follows:

1. An adversary first chooses an arbitrary set W of wires in C̃.
2. Then the adversary may arbitrarily flip some wires in W . The new set of variables is denoted by W̃ .
3. Finally, the leakage is defined to be OR(W̃ ).

Now suppose (W1, W̃1), . . . , (Wt, W̃t) are the sets decided by the adversary, and the t bits of D1 leakage
are α1 = OR(W̃1), . . . , αt = OR(W̃t). For each gate g in C, let W̃ℓ,g be the wire values of W̃ℓ in C̃g. Then we
have W̃ℓ =

⋃
g∈C W̃ℓ,g. (Note that for a multiplication gate g with inputs a, b, C̃g only includes the wires

aℓ1 · bℓ2 for all ℓ1, ℓ2 ∈ {0, . . . , k} while [a], [b] are covered by the circuits for previous gates where a and b are
the output wires.) Consider the following two hybrids.

– Hybrid0: Output (α1, . . . , αt).
– Hybrid1: Let Tg be the set defined in the proof of Theorem 8 when applying the ISW construction to

the linear function for the gate g. Then for all ℓ ̸∈ Tg, OR(W̃ℓ,g) = 1 with probability at least 1 − 2−κ.
This also implies that OR(W̃g) = 1 with probability at least 1− 2−κ.
Let T =

⋂
g Tg. For all ℓ ∈ {1, . . . , t}, if ℓ ∈ T , set βℓ = αℓ; otherwise, set βℓ = 1. Output (β1, . . . , βt).

By the union bound, the statistical distance between Hybrid0 and Hybrid1 is at most t · 2−κ. Thus, it
is sufficient to simulate {βℓ}ℓ∈T = {αℓ}ℓ∈T . Note that for each g, {OR(W̃ℓ,g)}ℓ∈T can be perfectly simulated
by |T | D1 queries on the input and output bits of g. In particular, the simulation would directly output |T |
D1 queries and the simulation results are just the query results. Thus, {αℓ}ℓ∈T can be perfectly simulated by
|T | D1 queries on (1) the input and output bits {x,y}, (2) the additive secret sharings of all wires {[w]}w∈C ,
(3) and

{aℓ1 · bℓ2 | a, b are inputs of a multiplication gate in C, ℓ1, ℓ2 ∈ {0, . . . , k}}.

Consider the following hybrids. In Hybrid′
i, we replace the additive secret sharings for the first i wires

by random additive secret sharings of 0 and compute aℓ1 · bℓ2 for each multiplication gate with inputs (a, b)
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accordingly. Then we compute and output {αℓ}ℓ∈T . Note that in the last hybrid, all additive secret sharings
are replaced by random additive secret sharings of 0, which can be generated explicitly, and all aℓ1 ·bℓ2 can be
computed explicitly as well. In this case, {αℓ}ℓ∈T become |T | D1 queries on the input and output bits, which
can be simulated perfectly. Now we show that the statistical distance between Hybrid′

i−1 and Hybrid′
i is

bounded by t · 2−κ.
Note that the only difference between Hybrid′

i−1 and Hybrid′
i is the additive secret sharing for the

i-th wire. By fixing all other additive secret sharings, {αℓ}ℓ∈T become |T | D1 queries on the additive secret
sharing for the i-th wire. Following a similar argument to that in Theorem 8, the distribution of {αℓ}ℓ∈T in
Hybrid′

i−1 is statistically close to that in Hybrid′
i with distance t · 2−κ.

Therefore, the statistical distance between Hybrid′
0 and Hybrid′

|C| is bounded by t|C| · 2−κ.

In summary, any t-D1 leakage on C̃ can be simulated by t-D1 leakage on the input and output bits of f
with statistical distance t(|C|+ 1) · 2−κ.

B.4 ISW Construction is Not OR-Tolerant

Consider the ISW construction for the circuit C(x1, x2, x3) = x1⊕x2⊕x3. The wires of C can be summarized
as follows:

1. Input Wires and Input Encodings: {xi, [xi] = (xi,0, xi,1, . . . xi,k)}3i=1, {xi ⊕ (
⊕ℓ

j=0 xi,j) | i ∈ {1, 2, 3}, ℓ ∈
{0, 1, . . . , k − 1}}.

2. Intermediate Results: {x1,j ⊕ x2,j , x1,j ⊕ x2,j ⊕ x3,j}kj=1. Let yj = x1,j ⊕ x2,j ⊕ x3,j .
3. Output Wire and Output Encodings: {

⊕ℓ
j=0 yk−j}kℓ=0. Note that y = yn ⊕ . . .⊕ y1.

Consider the following attack: (x1⊕x1,1)∨ (x2⊕x2,1)∨ (x1,1⊕x2,1) = (x1⊕x1,1)∨ (x2⊕x2,1)∨ (x1⊕x2).
Let r1 = x1 ⊕ x1,1 and r2 = x2 ⊕ x2,1. Then (x1 ⊕ x1,1) ∨ (x2 ⊕ x2,1) ∨⊕(x1,1 ⊕ x2,1) = r1 ⊕ r2 ⊕ (x1 ⊕ x2).

We show that this cannot be simulated by one query of OR on x1, x2, x3, y.

Proof. For the sake of contradiction, assume that there exists an simulator Sim that can simulate (x1 ⊕
x1,1) ∨ (x2 ⊕ x2,1) ∨ ⊕(x1,1 ⊕ x2,1) with one query of OR on x1, x2, x3, y.

For r1 ⊕ r2 ⊕ (x1 ⊕ x2), when x1 ⊕ x2 = 0, with probability 1/4, the result is 0. For all subset W ⊂
{x1, x2, x3, y}, there exist pW , qW,0, qW,1 ∈ [0, 1] such that Sim will query the OR of bits in W with probability
pW and if the result is equal to 0, Sim would output 0 with probability qW,0, and otherwise, Sim would output
0 with probability qW,1. Without loss of generality, we assume that the OR of bits in an empty set is 0.

We first show that for any non-empty set W , pW · qW,1 is negligible. If not, consider the two different
inputs (x1, x2, x3, y) = (1, 0, 0, 1) and (x1, x2, x3, y) = (0, 1, 1, 0). In this case, r′1,1⊕ r′2,1⊕ (x1⊕x2) is always
1. On the other hand, for any non-empty set W , the OR of bits in W is 1 for at least one of the two inputs.
Then for at least one of these two cases, Sim would output 0 with non-negligible probability, which leads to
a contradiction.

When W = ∅, we show that pW ·qW,0 is negligible. Otherwise, when (x1, x2, x3, y) = (1, 0, 0, 1), Sim would
output 0 with non-negligible probability while r1 ⊕ r2 ⊕ (x1 ⊕ x2) is always 1.

Now we show that such Sim cannot exist. Consider the input (x1, x2, x3, y) = (1, 1, 1, 1). In this case, the
OR of any non-empty set W is equal to 1. Consider the probability that Sim outputs 0:

Pr[Sim = 0] = p∅ · q∅,0 +
∑

W⊂{x1,x2,x3,y},W ̸=∅

pW · qW,1.

By the above argument, pW · qW,1 is negligible and when W is an empty set, p∅ · q∅,0 is also negligible. This
means that Pr[Sim = 0] is negligible. However, when (x1, x2, x3, y) = (1, 1, 1, 1), r1⊕ r2⊕ (x1⊕ x2) = 0 with
probability 1/4. It contradicts with the assumption that Sim can simulate (x1⊕x1,1)∨(x2⊕x2,1)∨⊕(x1,1⊕x2,1)
with one query of OR on x1, x2, x3, y.
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C Preliminaries: Fourier Analysis and XOR Lemma

We follow the standard Fourier analysis for binary functions. Let n be an positive integer. For all set
S ⊂ {1, . . . , n}, the characters χS : {0, 1}n → R is defined by χS(x) =

∏
i∈S(−1)xi . We have the following

two properties:

– For all x and x′, χS(x⊕ x′) = χS(x) · χS(x
′).

– For all S, S′ ⊂ {1, . . . , n}, let S′′ = (S ∪ S′)\(S ∩ S′). We simply write S′′ := S ⊕ S′. Then χS′′(x) =
χS(x) · χS′(x).

The Fourier coefficients of a function f : {0, 1}n → R are denoted by

f̂(S) =
1

N

∑
x∈{0,1}n

f(x)χS(x)

for all S ⊂ {1, . . . , n}, where N = 2n. Then for all x, we have

f(x) =
∑

S⊂{1,...,n}

f̂(S)χS(x).

Our work uses the XOR lemma from [Gol11].

Lemma 4 (XOR Lemma [Gol11]). Let X = (X1, . . . , Xn) and Y = (Y1, . . . , Yn) be two random variables
over {0, 1}n. If for all S ⊂ {1, . . . , n}, the statistical distance between ⊕i∈SXi and ⊕i∈SYi is at most ϵ, then
the statistical distance between X and Y is at most 2n/2 · ϵ.

D Construction in [GIM+16]

In this section, we show that the construction in [GIM+16] gives a (1, k, 2−k−1)-parity-to-probing circuit.
Let C̃ denote the input circuit. Without loss of generality, we assume that C̃ only contains NAND gates.

The compiler in [GIM+16] can be divided into two steps. In the first step, the compiler transforms C̃ to
(Î , Ĉ, Ô), where Î , Ô are the input encoder and output decoder, and Ĉ is a circuit assuming the existence of
a secure NAND gadget. One may view the first step as a (1, k, 2−k−1)-parity-to-probing circuit compiler with
the aid of a secure NAND gadget. In the second step, the compiler instantiates the NAND gadget and outputs
(I, C,O).

Step 1: Transforming the Circuit Assuming NAND Gadget. The idea of the first step is to encode each wire
value in C̃ by a small-bias encoding scheme.

Definition 8 (Small-bias Encoding [GIM+16]). We say (Enc, Dec) is an ϵ-bias encoding if

– Enc : {0, 1} → {0, 1}n is a randomized function such that (1) Enc output its random tape, and (2) for all
x ∈ {0, 1} and for all S ⊂ {1, . . . , n},

|Pr[χS(Enc(x)) = 1]− Pr[χS(Enc(x)) = −1]| ≤ ϵ.

– Dec : {0, 1}n → {0, 1} is a deterministic function such that for all x ∈ {0, 1}, Pr[Enc(Dec(x)) = x] = 1.

A small-bias encoding scheme ensures that any parity of its output is statistically close to a uniform bit with
error ϵ independent of its input. An example of a 1/2-bias encoding is presented in Figure 1. In the following,
we assume ϵ = 1/2. We refer the readers to [GIM+16] for constructions of other ϵ-bias encoding schemes.

The construction of (Î , Ĉ, Ô) is as follows:

– Î takes x ∈ {0, 1}ni as input and outputs {Enc(xi)}ni
i=1.
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– Ĉ takes {Enc(xi)}ni
i=1 as input. For each random bit r used in C̃, Ĉ samples a random encoding Enc(r). For

each NAND gate in C̃ with input x0, x1, Ĉ takes as input Enc(x0), Enc(x1) and outputs Enc(x0 NAND x1).
The computation from Enc(x0), Enc(x1) to Enc(x0 NAND x1) is done by a secure NAND gadget.

– Ô takes {Enc(yi)}no
i=1 as input and outputs {yi = Dec(Enc(yi))}no

i=1.

Now consider a set W of wires in Ĉ. Intuitively, if W touches more than k different small-bias encodings in Ĉ,
then parity(W ) would have bias at most 2−k, which translates to statistical error 2−k−1. Thus, parity(W )
can be simulated by a random bit. On the other hand, if W touches at most k different small-bias encodings
in Ĉ, then parity(W ) can be perfectly simulated if we learn the underlying k wires in C̃.

Step 2: Instantiating the NAND Gadget by Masking Lemma. Recall Î(x) = {Enc(xi)}ni
i=1. Let τ(Ĉ, Î(x))

denote all wire values in Ĉ. In the second step, τ(Ĉ, Î(x)) are split to additive shares

(R, τ(Ĉ, Î(x))⊕R)

where R is a random string of size |τ(Ĉ, Î(x))|.
As we will show later, the benefit of doing this is that one may compute any function f on R and any

function g on τ(Ĉ, Î(x))⊕R such that f(R)⊕ g(τ(Ĉ, Î(x))⊕R) can be perfectly simulated by one parity
of τ(Ĉ, Î(x)). Essentially, we may add new wires that are arbitrary functions on either the first share or the
second share without breaking the parity-to-probing property obtained in Step 1.

Now the idea is to build a circuit that realizes the NAND gadget such that each inner wire of the circuit
can be solely computed from either R or τ(Ĉ, Î(x)) ⊕ R. With more details, recall that the NAND gadget
takes as input Enc(x0), Enc(x1) and outputs Enc(x0 NAND x1). After we split each bit in Ĉ to additive shares,
what we want to compute becomes

(r0, Enc(x0)⊕ r0), (r1, Enc(x1)⊕ r1)→ (r2, Enc(x0 NAND x1)⊕ r2).

We may interpret it as computing some function h that maps (r0, Enc(x0) ⊕ r0), (r1, Enc(x1) ⊕ r1), r2 to
Enc(x0 NAND x1) ⊕ r2. The works [GIM+16,GIW17] show an instantiation of h such that every inner wire
can be solely computed from either (r0, r1, r2) or (Enc(x0)⊕ r0, Enc(x1)⊕ r1, Enc(x0 NAND x1)⊕ r2), which
is a part of R or τ(Ĉ, Î(x))⊕R.

We give a very high-level intuition about how this is achieved. Let a = (r0, r1, r2), b = (Enc(x0) ⊕
r0, Enc(x1)⊕r1), and c = Enc(x0 NAND x1)⊕r2. Then the function h maps a, b to c. We want to construct a
circuit computing h such that each inner wire can be computed solely from a or (b, c). The main observation
is that for all public constants β of size |b|,∏

i

(bi ⊕ βi ⊕ 1) · h(a, b) =
∏
i

(bi ⊕ βi ⊕ 1) · h(a,β).

To see why this is the case, note that when b = β, the LHS is h(a, b) = h(a,β) which is the RHS. When
b ̸= β, the LHS is always 0, and so is the RHS. Now the circuit of computing h is constructed as follows:

1. For all β, the circuit computes
∏

i(bi⊕βi⊕1) and h(a,β). Note that the computation of
∏

i(bi⊕βi⊕1)
only depends on b while the computation of h(a,β) only depends on a.

2. Then for all β, the circuit computes
∏

i(bi⊕βi⊕1) ·h(a,β) =
∏

i(bi⊕βi⊕1) ·h(a, b) =
∏

i(bi⊕βi⊕1) ·c.
Note that the result only depends on b, c.

3. Finally, the circuit computes c = ⊕β

∏
i(bi ⊕ βi ⊕ 1) · c. The computation only depends on b, c.

In summary, the circuit C is obtained from Ĉ by splitting the wire values to additive shares and replacing
the secure NAND gadget by an instantiation such that every inner wire can be solely computed from either the
first share or the second share. The input encoder and output decoder are modified as follows so that they
properly provide the shares of the small-bias encodings and decode the shares of the small-bias encodings:

– I takes as input x ∈ {0, 1}ni and outputs {(ri, Enc(xi)⊕ ri)}ni
i=1.
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– O takes as input {r′i, Enc(yi)⊕ r′i}
ni
i=1 and outputs y.

Theorem 10. The construction in [GIM+16] described above with the small-bias encoding scheme instan-
tiated by Figure 2 is a (1, k, 2−k−1)-parity-to-probing circuit compiler.

Before proving Theorem 10, we first introduce the parity simulation lemma in Appendix D.1. We will
give the proof of Theorem 10 in Appendix D.2.

Obtaining (1, ϵ)-Parity-Tolerant Circuits from [GIM+16]. We note that:

– From [ISW03,GIS22], for all f , there exists a k-probing-tolerant implementation of f .
– The construction from [GIM+16] shows that for all circuit C̃, there is a (1, k, 2−k−1)-parity-to-probing

circuit implementation of C̃.

Thus, we have the following corollary.

Corollary 5. There exists a polynomial-time circuit compiler that takes as input (Cf , 1
κ), where Cf is a

circuit of size s that computes f , and outputs a (1, 2−κ)-parity-tolerant implementation of Cf with circuit
size poly(κ, s).

D.1 Parity Simulation Lemma

Recall that the compiler in [GIM+16] first transforms the input circuit C̃ to (Î , Ĉ, Ô) assuming a secure NAND
gadget. Then in the second step, the secure NAND gadget is instantiated by standard AND and XOR gates. We
note that the second step of the construction in [GIM+16] can be viewed as a randomized function which
takes the wire values of Ĉ as input and outputs the wire values of C.

In [GIM+16], Goyal et al. have shown that any parity of wire values in Ĉ can be simulated by at most
k wire values of the underlying circuit C̃. Thus, if we can prove that any parity of wire values in C can be
simulated by one parity of wire values in Ĉ, then we can reduce the parity of wire values in C to k probings
in C̃, showing that the construction in [GIM+16] is a parity-to-probing circuit compiler.

To this end, we first extend the notion of parity tolerance to randomized functions.

Parity Tolerance for Randomized Functions. Intuitively, we say a randomized function F is t-parity tolerant
if any t parity attacks towards the output of F can be simulated by t parities of its input.

Definition 9 (t-Parity-Tolerant Functions). For a randomized function F : {0, 1}n → {0, 1}m, we say
F is (t, ϵ)-parity-tolerant (or (t, ϵ)-PT) if there exists a simulator Sim = (Sim1, Sim2) with the following
syntax:

– Sim1 takes as input t subsets W1, . . . ,Wt of the output of F , and outputs a state st and t subsets V1, . . . , Vt

of the input of F ;
– Sim2 takes the state st and parity(V1), . . . , parity(Vt) as input, and outputs t bits (b1, . . . , bt).

The simulator Sim satisfies that for all input x ∈ {0, 1}n and for all t subsets W1, . . . ,Wt of the output of
F , the following two distributions are statistically close with error ϵ:

(parity(W1), . . . , parity(Wt))

≈ϵ (Sim2(st, parity(V1), . . . , parity(Vt))) : (st, V1, . . . , Vt)← Sim1(W1, . . . ,Wt).

Sometimes, we may explicitly write the randomness of F by F (x; r), which means that F takes x as input
and uses r as random tape.
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Parity Simulation Lemma. While we may directly deal with the randomized function that maps the wire
values in Ĉ to the wire values in C, we note that it is sufficient to only focus on the parity of a chosen subset
W of wires in C.

Recall that the second step in [GIM+16] works as follows:

1. The compiler splits the wire values in Ĉ to additive shares R and τ(Ĉ,x)⊕R.
2. The secure NAND gadget is replaced by some circuit such that each wire value is either a function on R

or a function on τ(Ĉ,x)⊕R.

Thus, we may separate W to two parts WL and WR, where each wire in WL is a function on R and each wire
in WR is a function on τ(Ĉ,x)⊕R. Then parity(W ) = parity(WL)⊕parity(WR) = f(R)⊕g(τ(Ĉ,x)⊕R)
for some functions f, g. We consider the randomized function F that takes as input τ(Ĉ,x) and outputs
parity(W ). It is sufficient to show that for all f, g, the corresponding randomized function F is (1, ϵ)-PT.

We have the following lemma.

Lemma 5 (Parity Simulation Lemma). Let n be a positive integer. For all f, g : {0, 1}n → {0, 1}, the
randomized function F : {0, 1}n → {0, 1} defined by

F (x; r) = f(r)⊕ g(x⊕ r),

where r ∈ {0, 1}n is uniformly distributed, is (1, 0)-PT.

Proof. We first give a sufficient condition of (1, 0)-PT.

Claim 2 Let F : {0, 1}n → {0, 1} be a randomized function. If there exists v̂(S) in the range [−1, 1] for all
S ⊂ {1, . . . , n} such that

– For all x ∈ {0, 1}n, Pr[F (x) = 0]− Pr[F (x) = 1] =
∑

S⊂{1,...,n} v̂(S)χS(x),
–

∑
S⊂{1,...,n} |v̂(S)| ≤ 1,

then F is (1, 0)-PT.

Proof (Proof of Claim 2). Note that the output of F is a single bit. Therefore, we only need to construct a
simulator Sim that simulates the output of F . Consider the following construction:

– Sim1 generates the states st and the set V as follows:
1. For all S ⊂ {1, . . . , n}, with probability |v̂(S)|, Sim1 generates

(st = (S,
1− sign(v̂(S))

2
), V = {xi}i∈S).

In other words, st2 = 0 if v̂(S) ≥ 0 and st2 = 1 if v̂(S) < 0.
2. With probability 1−

∑
S⊂{1,...,n} |v̂(S)|, Sim1 generates

(st = (⊥,⊥), V = ∅),

where u is a uniform bit.
– Sim2 takes st and parity(V ) as input. If st = (⊥,⊥), Sim2 outputs a random bit. Otherwise, Sim2

outputs b = st2 ⊕ parity(V ).

Note that the above simulator is well defined since
∑

S⊂{1,...,n} |v̂(S)| ≤ 1.
Let Sim(x) denote the output of Sim when the input of F is x. Since we always have Pr[Sim(x) =

0] + Pr[Sim(x) = 1] = Pr[F (x) = 0] + Pr[F (x) = 1] = 1, to show that Pr[Sim(x) = 0] = Pr[F (x) = 0], it is
sufficient to prove that

Pr[Sim(x) = 0]− Pr[Sim(x) = 1] = Pr[F (x) = 0]− Pr[F (x) = 1].
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Observe that

Pr[Sim(x) = 0]− Pr[Sim(x) = 1]

=
∑

(st,V )

(Pr[Sim2(st, V ) = 0 | (st, V )]− Pr[Sim2(st, V ) = 1 | (st, V )])

·Pr[Sim1(F,W ) = (st, V )]

When (st, V = ((⊥,⊥), ∅), we have Pr[Sim1(F,W ) = (st, V )] = 1 −
∑

S⊂{1,...,n} |v̂(S)|. In this case, since
Sim2 outputs a uniform bit, we have

Pr[Sim2(st, V ) = 0 | (st, V )] = Pr[Sim2(st, V ) = 1 | (st, V )] = 1/2.

When (st, V ) = ((S, 1−sign(v̂(S))
2 ), {xi}i∈S) for some S ⊂ {1, . . . , n}, we have Pr[Sim1(F,W ) = (st, V )] =

|v̂(S)|. In this case, Sim2(st, V ) = st2 ⊕ parity(V ) is fixed. Therefore,

Pr[Sim2(st, V ) = 0 | (st, V )]− Pr[Sim2(st, V ) = 1 | (st, V )]

Pr[st2 ⊕ parity(V ) = 0 | (st, V )]− Pr[st2 ⊕ parity(V ) = 1 | (st, V )]

= (−1)st2⊕parity(V ) = sign(v̂(S)) · χS(x).

Thus,

Pr[Sim(x) = 0]− Pr[Sim(x) = 1]

=
∑

(st,V )

(Pr[Sim2(st, V ) = 0 | (st, V )]− Pr[Sim2(st, V ) = 1 | (st, V )])

·Pr[Sim1(F,W ) = (st, V )]

=
∑

S⊂{1,...,n}

|v̂(S)| · sign(v̂(S)) · χS(x)

=
∑

S⊂{1,...,n}

v̂(S) · χS(x)

= Pr[F (x) = 0]− Pr[F (x) = 1].

⊓⊔
With Claim 2, it is sufficient to show that for all f, g : {0, 1}n → {0, 1}, there exist {v̂(S)}S⊂{1,...,n}

satisfying Claim 2 for the randomized function F (x; r) = f(r)⊕ g(x⊕ r).
For all x ∈ {0, 1}n, let v(x) = Pr[F (x) = 0]−Pr[F (x) = 1]. We set v̂(S) = 1

N

∑
x∈{0,1}n v(x)χS(x) for all

S ⊂ {1, . . . , n}, where N = 2n. Then v̂(S) is in the range [−1, 1]. We will show that
∑

S⊂{1,...,n} |v̂(S)| ≤ 1.
Observe that

v̂(S) =
1

N

∑
x∈{0,1}n

v(x)χS(x)

=
1

N

∑
x∈{0,1}n

(Pr[F (x) = 0]− Pr[F (x) = 1])χS(x)

=
1

N

∑
x∈{0,1}n

(Pr[F (x) = ⊕i∈Sxi]− Pr[F (x) = 1⊕ (⊕i∈Sxi)])

Now consider a random variable X uniformly distributed over {0, 1}n. We have Pr[X = x] = 1/N . Thus
1

N

∑
x∈{0,1}n

(Pr[F (x) = ⊕i∈Sxi]− Pr[F (x) = 1⊕ (⊕i∈Sxi)])

=
∑

x∈{0,1}n

Pr[X = x] · (Pr[F (X) = ⊕i∈SXi | X = x]− Pr[F (X) = 1⊕ (⊕i∈SXi) | X = x])

= Pr[F (X) = ⊕i∈SXi]− Pr[F (X) = 1⊕ (⊕i∈SXi)].
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Since F (x; r) = f(r)⊕ g(x⊕ r), then

Pr[F (X) = ⊕i∈SXi] = Pr[f(R)⊕ g(X ⊕R) = ⊕i∈SXi]

= Pr[f(R)⊕ (⊕i∈SRi) = g(X ⊕R)⊕ (⊕i∈S(Xi ⊕Ri))].

Here, we separate ⊕i∈SXi to be (⊕i∈SRi)⊕ (⊕i∈S(Xi ⊕Ri)).
Since X and R are independent and uniformly distributed over {0, 1}n, we have X ⊕ R and R are

independent and uniformly distributed over {0, 1}n. Let R′ = X ⊕R. Then,

Pr[F (X) = ⊕i∈SXi] = Pr[f(R)⊕ (⊕i∈SRi) = g(X ⊕R)⊕ (⊕i∈S(Xi ⊕Ri))]

= Pr[f(R)⊕ (⊕i∈SRi) = g(R′)⊕ (⊕i∈SR
′
i)]

= Pr[f(R)⊕ (⊕i∈SRi) = 0] · Pr[g(R′)⊕ (⊕i∈SR
′
i) = 0]

+ Pr[f(R)⊕ (⊕i∈SRi) = 1] · Pr[g(R′)⊕ (⊕i∈SR
′
i) = 1].

Similarly, we have

Pr[F (X) = 1⊕ (⊕i∈SXi)] = Pr[f(R)⊕ (⊕i∈SRi) = 0] · Pr[g(R′)⊕ (⊕i∈SR
′
i) = 1]

+ Pr[f(R)⊕ (⊕i∈SRi) = 1] · Pr[g(R′)⊕ (⊕i∈SR
′
i) = 0].

Thus,

v̂(S) = Pr[F (X) = ⊕i∈SXi]− Pr[F (X) = 1⊕ (⊕i∈SXi)]

= (Pr[f(R)⊕ (⊕i∈SRi) = 0]− Pr[f(R)⊕ (⊕i∈SRi) = 1])

· (Pr[g(R′)⊕ (⊕i∈SR
′
i) = 0]− Pr[g(R′)⊕ (⊕i∈SR

′
i) = 1]).

Recall that we want to show
∑

S⊂{1,...,n} |v̂(S)| ≤ 1. The above equation implies that

|v̂(S)| ≤ 1

2
· (Pr[f(R)⊕ (⊕i∈SRi) = 0]− Pr[f(R)⊕ (⊕i∈SRi) = 1])2

+
1

2
· (Pr[g(R′)⊕ (⊕i∈SR

′
i) = 0]− Pr[g(R′)⊕ (⊕i∈SR

′
i) = 1])2.

Thus, ∑
S⊂{1,...,n}

|v̂(S)| ≤ 1

2

∑
S⊂{1,...,n}

(Pr[f(R)⊕ (⊕i∈SRi) = 0]− Pr[f(R)⊕ (⊕i∈SRi) = 1])2

+
1

2

∑
S⊂{1,...,n}

(Pr[g(R′)⊕ (⊕i∈SR
′
i) = 0]− Pr[g(R′)⊕ (⊕i∈SR

′
i) = 1])2.

It is sufficient to prove the following claim.

Claim 3 For all function f : {0, 1}n → {0, 1},∑
S⊂{1,...,n}

(Pr[f(R)⊕ (⊕i∈SRi) = 0]− Pr[f(R)⊕ (⊕i∈SRi) = 1])2 = 1,

where R is uniformly distributed over {0, 1}n.

Proof (Proof of Claim 3). Observe that

Pr[f(R)⊕ (⊕i∈SRi) = 0]− Pr[f(R)⊕ (⊕i∈SRi) = 1]

=
1

N

∑
r∈{0,1}n

(Pr[f(r)⊕ (⊕i∈Sri) = 0]− Pr[f(r)⊕ (⊕i∈Sri) = 1]).
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Note that given r, f(r)⊕ (⊕i∈Sri) is fixed. Then,

Pr[f(R)⊕ (⊕i∈SRi) = 0]− Pr[f(R)⊕ (⊕i∈SRi) = 1]

=
1

N

∑
r∈{0,1}n

(−1)f(r) · χS(r).

We have ∑
S⊂{1,...,n}

(Pr[f(R)⊕ (⊕i∈SRi) = 0]− Pr[f(R)⊕ (⊕i∈SRi) = 1])2

=
1

N2

∑
S⊂{1,...,n}

 ∑
r∈{0,1}n

(−1)f(r) · χS(r)

2

=
1

N2

∑
S⊂{1,...,n}

∑
r∈{0,1}n

∑
r′∈{0,1}n

(−1)f(r)⊕f(r′) · χS(r ⊕ r′)

=
1

N2

∑
r∈{0,1}n

∑
r′∈{0,1}n

(−1)f(r)⊕f(r′) ·

 ∑
S⊂{1,...,n}

χS(r ⊕ r′)

 .

Note that when r ̸= r′, we always have
∑

S⊂{1,...,n} χS(r⊕r′) = 0. And when r = r′,
∑

S⊂{1,...,n} χS(r⊕r′) =
N . Thus, ∑

S⊂{1,...,n}

(Pr[f(R)⊕ (⊕i∈SRi) = 0]− Pr[f(R)⊕ (⊕i∈SRi) = 1])2

=
1

N2

∑
r∈{0,1}n

∑
r′∈{0,1}n

(−1)f(r)⊕f(r′) ·

 ∑
S⊂{1,...,n}

χS(r ⊕ r′)


=

1

N2

∑
r=r′

(−1)f(r)⊕f(r′) ·N

=
1

N2

∑
r=r′

N

= 1.

⊓⊔

Finally, with Claim 3, we have∑
S⊂{1,...,n}

|v̂(S)| ≤ 1

2

∑
S⊂{1,...,n}

(Pr[f(R)⊕ (⊕i∈SRi) = 0]− Pr[f(R)⊕ (⊕i∈SRi) = 1])2

+
1

2

∑
S⊂{1,...,n}

(Pr[g(R′)⊕ (⊕i∈SR
′
i) = 0]− Pr[g(R′)⊕ (⊕i∈SR

′
i) = 1])2

=
1

2
+

1

2
= 1.

By Claim 2, this implies that F is (1, 0)-PT.

D.2 Proof of Theorem 10

In this section, we formally prove Theorem 10. Let C̃ denote the input circuit, (Î , Ĉ, Ô) denote the construc-
tion after the first step of [GIM+16], and (I, C,O) denote the final construction of [GIM+16].

The correctness follows from the construction. In the following, we show that the input encoder I and
the output decoder O are trivially parity-tolerant, and C achieves parity-to-probing security.

38



Trivial Parity Tolerance. Recall the small-bias encoding scheme.

Enc(x; r0, r1) = (r0, r1, r0 · r1 ⊕ x)

Dec(x̂0, x̂1, x̂2) = x̂0 · x̂1 ⊕ x̂2.

Notice that the input encoder I takes as input x ∈ {0, 1}ni and outputs {ρi, Enc(xi)⊕ ρi}ni
i=1. Consider

an implementation of I which for all i ∈ {1, . . . , ni}, the circuit computes ρi, Enc(xi)⊕ρi from xi as follows:

1. The circuit uses random bits ρi,0, ρi,1, ρi,2, ri,0, ri,1. Let ρi = (ρi,0, ρi,1, ρi,2) and ri = (ri,0, ri,1).
2. The circuit computes ri,0 · ri,1 and then ri,0 · ri,1 ⊕ xi. Let Enc(xi; ri) = (ri,0, ri,1, ri,0 · ri,1 ⊕ xi).
3. The circuit computes Enc(xi)⊕ ρi and outputs (ρi, Enc(xi)⊕ ρi).

Now we examine that all wires can be expressed as linear combinations of xi, (ρi, Enc(xi)⊕ ρi).

– For ρi = (ρi,0, ρi,1, ρi,2), these three bits are directly output. For ri = (ri,0, ri,1), note that Enc(xi)⊕ρi =
(ri,0 ⊕ ρi,0, ri,1 ⊕ ρi,1, ri,0 · ri,1 ⊕ xi ⊕ ρi,2). Therefore they are equal to the first two bits of Enc(xi)⊕ ρi

XOR with (ρi,0, ρi,1).
– For ri,0 · ri,1, it is equal to the last bit of Enc(xi)⊕ρi XOR with ρi,2 and xi. Similarly, for ri,0 · ri,1⊕ xi,

it is equal to the last bit of Enc(xi)⊕ ρi XOR with ρi,2.

As for the output decoder O, it takes as input {ρ′
i, Enc(yi) ⊕ r′i}

ni
i=1 and outputs y. Consider an imple-

mentation of O which for all i ∈ {1, . . . , no}, the circuit computes yi from ρ′
i, Enc(yi)⊕ ρ′

i.

1. Assume that the random bits used in Enc(yi) are r′i = (r′i,0, r
′
i,1). Then Enc(yi)⊕ ρ′

i is in the form of

(r′i,0 ⊕ ρ′i,0, r
′
i,1 ⊕ ρ′i,1, r

′
i,0 · r′i,1 ⊕ yi ⊕ ρ′i,2).

The circuit first computes Enc(yi; r′i) = (r′i,0, r
′
i,1, r

′
i,0 · r′i,1 ⊕ yi) by XORing ρ′

i and Enc(yi)⊕ ρ′
i.

2. The circuit computes r′i,0 · r′i,1 and then computes yi = (r′i,0 · r′i,1)⊕ (r′i,0 · r′i,1 ⊕ yi).

Following a similar analysis, all wires can be expressed as linear combinations of yi, (ρ′
i, Enc(yi)⊕ ρ′

i).

Parity-to-Probing Security. We will construct a simulator Sim = (Sim1, Sim2) required in Definition 4. Sim1
works as follows.

1. Sim1 receives a set W of wires in C. Let τ(Ĉ,x) denote the wire values in Ĉ and R be a random string of
size |τ(Ĉ,x)|. Recall that each wire in C is either a function on R or a function on τ(Ĉ,x)⊕R. Thus, we
may separate W to two parts WL and WR, where each wire in WL is a function on R and each wire in WR

is a function on τ(Ĉ,x)⊕R. Then parity(W ) = parity(WL)⊕ parity(WR) = f(R)⊕ g(τ(Ĉ,x)⊕R)
for some functions f, g. Consider the randomized function F that takes as input τ(Ĉ,x) and outputs
parity(W ). By Lemma 5, F is (1, 0)-PT. Let Sim′ be the simulator in Definition 9.

2. Sim1 invokes Sim′1 on the output wire of F and receives (st′, V̂ ), where V̂ is a set of wires in Ĉ.
Let w = (w1, . . . , w|C̃|) be all wire values in C̃. Then τ(Ĉ,x) is in the form of {Enc(wi)}|C̃|

i=1. For all
i ∈ {1, . . . , |C̃|}, Let V̂i ⊂ V̂ be the set of wires from Enc(wi).
– If there exists k indices i ∈ {1, . . . , |C̃|} such that V̂i ̸= ∅, then Sim1 samples a random bit u and sets

(st, V ) = ((st′, u, ∅), ∅).

– Otherwise, let V = {wi | V̂i ̸= ∅}. Note that |V | ≤ k. Sim1 sets

(st, V ) = ((st′, 0, V̂ ), V ).

Sim1 outputs (st, V ).

As for Sim2,

39



– If V = ∅, Sim2 sets parity(V̂ ) = u. Then Sim2 outputs the result of Sim′2(st′, parity(V̂ )).
– Otherwise, Sim2 receives val(V ) and computes Enc(wi) for all wi ∈ V . Then Sim2 computes parity(V̂ )

from {Enc(wi) | wi ∈ V } and outputs the result of Sim′2(st′, parity(V̂ )).

Claim 4 For all input x and for all W , the following two distributions are statistically close with error
ϵ = 2−k−1:

(parity(W ), O(C(I(x))))

≈ϵ (Sim2(st, val(V )), C̃(x)}) : (st, V )← Sim1(W ).

Proof. Consider the following hybrids.
Hybrid0: In this hybrid, consider the following generation process.

1. Given the input x, we compute y = O(C(I(x))).
2. We use the wire values in C to compute parity(W ).
3. Finally, we output

(parity(W ),y)

The output distribution is identical to (parity(W ), O(C(I(x)))).
Hybrid1: In this hybrid, we change the way of computing the wire values in C. Concretely

1’. Given the input x, we compute y = C̃(x). For all wire values (w1, . . . , w|C̃|) in C̃, we compute {Enc(wi)}|C̃|
i=1.

Let τ(Ĉ,x) = {Enc(wi)}|C̃|
i=1. Then we sample a random string R of size |τ(Ĉ,x)| and compute τ(Ĉ,x)⊕

R. Finally, from R and τ(Ĉ,x)⊕R, we compute all wire values in C.

According to the construction, the wire values in C as well as the output y have the same distribution in
both Hybrid0 and Hybrid1. Thus, the output distribution of Hybrid1 is identical to that of Hybrid0.

Hybrid2: In this hybrid, we utilize τ(Ĉ,x) and Sim′ to compute parity(W ). Concretely

2”. We separate W to two parts WL and WR, where each wire in WL is a function on R and each wire in WR

is a function on τ(Ĉ,x)⊕R. Then parity(W ) = parity(WL)⊕ parity(WR) = f(R)⊕ g(τ(Ĉ,x)⊕R)
for some functions f, g. Let F be the randomized function that takes as input τ(Ĉ,x) and outputs
parity(W ). By Lemma 5, F is (1, 0)-PT. Let Sim′ be the simulator in Definition 9.
We invoke Sim′1 on the output of F and receive (st′, V̂ ) where V̂ is a set of wires in Ĉ. We com-
pute parity(V̂ ) by using τ(Ĉ,x) Then, we invoke Sim′2 on (st′, parity(V̂ )) and view the output as
parity(W ).

According to Lemma 5, for all fixed τ(Ĉ,x), the output of Sim′ is identically distributed to the output of F ,
which is parity(W ) in Hybrid1. Thus, the output distribution of Hybrid2 is identical to that of Hybrid1.

Note that, R and τ(Ĉ,x)⊕R are not needed. We do not need to compute them in Step 1.
Hybrid3: In this hybrid, we utilize the wire values in C̃ to compute parity(V̂ ). Concretely,

2” ’. We run Step 2 in Hybrid2 till receiving (st′, V̂ ) from Sim′1. For all i ∈ {1, . . . , |C̃|}, let V̂i ⊂ V̂ be the
wires from Enc(wi). Let V = {wi | V̂i ̸= ∅}. If |V | ≥ k, then we set parity(V̂ ) to be a random bit.
Otherwise, we compute parity(V̂ ) from τ(Ĉ,x). We continue Step 2 in Hybrid2.

The only difference between Hybrid2 and Hybrid3 is that we set parity(V̂ ) to be a random bit when
|V | ≥ k in Hybrid3 rather than computing it from τ(Ĉ,x) as in Hybrid2. Recall that (Enc, Dec) is a
small-bias encoding scheme with ϵ = 1/2. Then for all V̂i ̸= ∅, the bias of parity(V̂i) is at most 1/2. We
borrow the following claim from [GIM+16] (Claim 2 in Appendix A.1 in [GIM+16]).

Claim 5 ([GIM+16]) Let X1, . . . , Xn be independent random variables such that for all j ∈ {1, . . . , n}, the
distribution of Xj is ϵj-biased. Then the random variable ⊕n

j=1Xj is
∏n

j=1 ϵj-biased.
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Thus, when |V | ≥ k, parity(V̂ ) = ⊕|C̃|
i=1parity(V̂i) is at most 2−k-biased, which implies that the statis-

tical distance between parity(V̂ ) and a uniform bit is at most 2−k−1. Therefore, the output distribution of
Hybrid3 is statistically close to Hybrid2 with error 2−k−1.

Hybrid4: In this hybrid, we change the order of the generation process.

1. Given the input x, we compute y = C̃(x).
2. We separate W to two parts WL and WR, where each wire in WL is a function on R and each wire in WR

is a function on τ(Ĉ,x)⊕R. Then parity(W ) = parity(WL)⊕ parity(WR) = f(R)⊕ g(τ(Ĉ,x)⊕R)
for some functions f, g. Let F be the randomized function that takes as input τ(Ĉ,x) and outputs
parity(W ). By Lemma 5, F is (1, 0)-PT. Let Sim′ be the simulator in Definition 9.
We invoke Sim′1 on the output of F and receive (st′, V̂ ) where V̂ is a set of wires in Ĉ. For all i ∈
{1, . . . , |C̃|}, let V̂i ⊂ V̂ be the wires from Enc(wi).
– If there exists k indices i ∈ {1, . . . , |C̃|} such that V̂i ̸= ∅, then we sample a random bit u and sets

(st, V ) = ((st′, u, ∅), ∅).

– Otherwise, let V = {wi | V̂i ̸= ∅}. Note that |V | ≤ k. We set

(st, V ) = ((st′, 0, V̂ ), V ).

3. From the wire values in C̃, we obtain val(V ).
4. If V = ∅, it means that there exists k indices i ∈ {1, . . . , |C̃|} such that V̂i ̸= ∅. We set parity(V̂ ) = u

and invoke Sim′2 on (st′, parity(V̂ )). We view the output as parity(W ).
5. If V ̸= ∅, then |V | ≤ k. We compute Enc(wi) for all wi ∈ V and compute parity(V̂ ). Then we invoke

Sim′2 on (st′, parity(V̂ )) and view the output as parity(W ).
6. Finally we output

(parity(W ),y).

Compared with Hybrid3, we only change the order of generating Enc(wi) and we only generate Enc(wi) for
wi ∈ V . This does not change the output distribution. Thus, the output distribution of Hybrid4 is identical
to that of Hybrid3.

Note that Step 2 corresponds to Sim1 and Step 4,5 correspond to Sim2. Thus, the output distribution of
Hybrid4 is identical to

(Sim2(st, val(V )), C̃(x)) : (st, V )← Sim1(W ).

D.3 Separating 2-Parity Tolerance from 1-Parity Tolerance

It is a natural question to ask whether a 1-parity-tolerant circuit/function is automatically secure against
more than 1 parity attack. While this is true for parity resilience, in this section, we show that it is not the
case for parity tolerance for either circuits or randomized functions.

We first give a counter example of a randomized function which is (1, 0)-PT but not (2, ϵ)-PT for all
ϵ < 1/64. Then we construct a (1, 0)-parity-tolerant circuit from this counter example and showing that this
circuit is not (2, ϵ)-parity-tolerant for all ϵ < 1/64.

Counter Example for Randomized Function. Consider n = 3 and we define the randomized function F :
{0, 1}3 → {0, 1}2 to be

F (x; r) = ((r1 ⊕ 1)(r2 ⊕ 1)(r3 ⊕ 1), (x1 ⊕ r1)(x2 ⊕ r2)(x3 ⊕ r3)),

where r = (r1, r2, r3) is uniformly distributed over {0, 1}3. Then F is (1, 0)-PT following from the parity
simulation lemma 5.

We show that F is not (2, ϵ)-PT for all ϵ < 1/64. Suppose there exists such a simulator Sim which can
simulate the output of F within 2 parity queries to the input x. Then there is also a simulator Sim′ which
can simulate the multiplication of the two output bits of F within 2 parity queries to the input x. Note that
the multiplication of the two output bits of F is v = (r1 ⊕ 1)(r2 ⊕ 1)(r3 ⊕ 1) · (x1 ⊕ r1)(x2 ⊕ r2)(x3 ⊕ r3) =
(r1 ⊕ 1)(r2 ⊕ 1)(r3 ⊕ 1) · x1x2x3.
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– If x1x2x3 = 0, v is always 0.
– Otherwise, with probability 1/8, v is equal to 1.

Intuitively, to simulate v, the simulator Sim′ has to learn x1x2x3, which is impossible within two parity
queries to the input x.

To formally argue this observation, we first describe Sim′ from Sim:

– Sim′1 invokes Sim1 with input W1 = {(r1⊕ 1)(r2⊕ 1)(r3⊕ 1)},W2 = {(x1⊕ r1)(x2⊕ r2)(x3⊕ r3)}. Then
Sim′1 receives (st, V1, V2) from Sim1 and outputs them.

– Sim′2 receives (st, parity(V1), parity(V2)) and feeds them to Sim2. Then Sim′2 receives b1, b2 from Sim2
and outputs b1 · b2.

If (b1, b2) is statistically close to ((r1⊕ 1)(r2⊕ 1)(r3⊕ 1), (x1⊕ r1)(x2⊕ r2)(x3⊕ r3)) with error ϵ, then b1 · b2
is statistically close to v = (r1 ⊕ 1)(r2 ⊕ 1)(r3 ⊕ 1) · (x1 ⊕ r1)(x2 ⊕ r2)(x3 ⊕ r3) with error at most ϵ.

On one hand, when x = 111, with probability 1/8, v = 1. This means that Pr[Sim′(111) = 1] ≥ 1/8− ϵ.
On the other hand, for all x ̸= 111, v is always equal to 0. This means that Pr[Sim′(x) = 1] ≤ ϵ for all
x ̸= 111.

Since the output of S′
1 is independent of x, we have

Pr[Sim′(111) = 1] = Pr[Sim′(X) = 1 | X = 111]

=
∑

(st,V1,V2)

Pr[Sim′2(st, parity(V1), parity(V2)) = 1 | (st, V1, V2) & X = 111]

·Pr[Sim′1(·) = (st, V1, V2)].

Note that, for all V1, V2, there exists x′ ̸= 111 such that when x = x′, parity(V1), parity(V2) are identical
with those when x = 111. This means that

Pr[Sim′2(st, parity(V1), parity(V2)) = 1 | (st, V1, V2) & X = 111]

≤
∑

x′ ̸=111

Pr[Sim′2(st, parity(V1), parity(V2)) = 1 | (st, V1, V2) & X = x′].

Thus,

Pr[Sim′(111) = 1] = Pr[Sim′(X) = 1 | X = 111]

=
∑

(st,V1,V2)

Pr[Sim′2(st, parity(V1), parity(V2)) = 1 | (st, V1, V2) & X = 111]

·Pr[Sim′1(·) = (st, V1, V2)]

≤
∑

(st,V1,V2)

∑
x′ ̸=111

Pr[Sim′2(st, parity(V1), parity(V2)) = 1 | (st, V1, V2) & X = x′]

·Pr[Sim′1(·) = (st, V1, V2)]

=
∑

x′ ̸=111

Pr[Sim′(X) = 1 | X = x′]

=
∑

x′ ̸=111

Pr[Sim′(x′) = 1]

Since Pr[Sim′(111) = 1] ≥ 1/8 − ϵ and Pr[Sim′(x′) = 1] ≤ ϵ for all x′ ̸= 111, we have 1/8 − ϵ ≤ 7ϵ. This
implies that ϵ ≥ 1/64. Thus, for all ϵ < 1/64, such a simulator Sim does not exists, which implies that F is
not (2, ϵ)-PT.
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Counter Example for Parity-Tolerant Circuits. Consider the following circuit C:

1. C takes as input x1, x2, x3 and uses random bits r1, r2, r3.
2. C computes x1 ⊕ r1, x2 ⊕ r2, x3 ⊕ r3 and then computes (x1 ⊕ r1)(x2 ⊕ r2)(x3 ⊕ r3).
3. C computes r1 ⊕ 1, r2 ⊕ 1, r3 ⊕ 1 and then computes (r1 ⊕ 1)(r2 ⊕ 1)(r3 ⊕ 1).
4. C computes and outputs x1 ⊕ x2 ⊕ x3.

Note that the output of C is a linear combination of its input. Thus, any parity query to its input and output
is equivalent to some parity query only to its input.

We first show that C is (1, 0)-parity-tolerant. Let x = (x1, x2, x3) and r = (r1, r2, r3). Observe that every
wire in C can be expressed as f(r)⊕ g(x⊕r) for some functions f, g. Thus, the parity of any subset of wires
of C is also in this form. Following from Lemma 5, C is (1, 0)-parity-tolerant.

Now we show that C is not (2, ϵ)-parity-tolerant for all ϵ < 1/64. This follows from the fact that (r1 ⊕
1)(r2⊕ 1)(r3⊕ 1), (x1⊕ r1)(x2⊕ r2)(x3⊕ r3) are inner wires of C. Since we have shown that the randomized
function

F (x; r) = ((r1 ⊕ 1)(r2 ⊕ 1)(r3 ⊕ 1), (x1 ⊕ r1)(x2 ⊕ r2)(x3 ⊕ r3))

is not (2, ϵ)-PT for all ϵ < 1/64, it implies that C is not (2, ϵ)-parity-tolerant for all ϵ < 1/64.

Remark 3. We note that the counter example F also implies that the parity simulation lemma 5 does not
extend to 2 parities. Thus the above proving technique fails to show that the construction in [GIM+16]
achieves (2, k, ϵ)-parity-to-probing security. Unfortunately, we do not know how to disprove this argument
either.

E Proof of Claim 1

Suppose Enc admits a trivially parity-tolerant implementation C and Enc is ϵ-parity-resilient.
Let w1, . . . , w|C| denote the wires in C. Suppose x ∈ {0, 1} is the input of Enc and y = Enc(x) is the

output. Since C is trivially parity-tolerant, for all i ∈ {1, . . . , |C|}, there exist ai ∈ {0, 1}, ci ∈ {0, 1}n such
that wi = ai ·x⊕ci ·y. Then for each output wire wi, ai = 0. Otherwise, x = wi⊕cj ·y is a linear combination
of the output y, which again contradicts the ϵ-parity-resilience of Enc.

For all XOR gate in C with input wires wi, wj and output wire wk, we have

(ai ⊕ aj ⊕ ak) · x = (ci ⊕ cj ⊕ ck) · y.

We claim that ai ⊕ aj ⊕ ak = 0. Otherwise, the input x can be expressed as a linear combination of the
output y, contradicting the ϵ-parity-resilience of Enc. Therefore, we always have ci · y ⊕ cj · y = ck · y.

Now we show that for all r, there exists an AND gate in C with input wires wi, wj and output wire wk

such that (ci · y) · (cj · y) ̸= (ck · y). Otherwise, let w′
i = ci · y for all i ∈ {1, . . . , |C|}. Then

– For all XOR gate in C with input wires wi, wj and output wire wk, we have

w′
i ⊕ w′

j = w′
k.

– For all AND gate in C with input wires wi, wj and output wire wk, by assumption, we have

w′
i · w′

j = w′
k.

Then (w′
1, . . . , w

′
|C|) is a valid transcript for Enc(0) for some r′. Note that for each output wire wi, we have

ai = 0, implying that wi = w′
i. Therefore y = Enc(1; r) = Enc(0; r′). This contradicts the assumption that

Enc is an encoding function.
Thus, when r is randomly sampled, there exists an AND gate in C with input wires wi, wj and output

wire wk such that when x = 1, (ci · y) · (cj · y) ̸= (ck · y) with probability at least 1/|C|. On the other
hand, when x = 0, we always have (ci · y) · (cj · y) = (ck · y). Therefore the statistical distance between
(ci · y, cj · y, ck · y) when the input x = 0 and that when x = 1 is at least 1/|C|.

However, since Enc is ϵ-parity-resilient, by the XOR lemma [Gol11], (ci · y, cj · y, ck · y) when x = 0 is
statistically close to that when x = 1 with distance 23/2ϵ < 1/|C|, which leads to a contradiction.
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F Proof of Lemma 1

The correctness of C⋆ follows from the description of the construction. In the following, we show the existence
of the simulator Sim = (Sim1, Sim2). We first analyse the wires in C⋆:

– The first part of C⋆ encodes the input x. The wires include x, r, x̂ and all inner wires in Enc(x∥0; r).
By the property of Enc, each inner wire of Enc is a linear combination of its input and random tape x, r.
Thus, if an inner wire of Enc is in the set W , we may replace it by the corresponding wires in x, r so
that the parity of W does not change after the replacement. Also by the property of Enc, r is a part of
its output x̂. Therefore, we only need to consider x, x̂.

– The second part of C⋆ computes the function f ′. The wires include x̂, r′, ŷ and all inner wires in I, C,O.
Since I,O are trivially parity-tolerant, each inner wire of I,O is a linear combination of the input and
output wires of I,O. Thus, if an inner wire of I,O is in the set W , we may replace it by the corresponding
input wires and output wires of I,O so that the parity of W does not change after the replacement. In
this way, we only need to consider x̂, r′, ŷ and all inner wires in C.
Recall that r′ is used as the random tape for Enc. By the property of Enc, r′ is a part of its output ŷ.
Thus, we only need to consider x̂, ŷ and all inner wires in C.

– The third part of C⋆ decodes the output ŷ. The wires include ŷ,y and all inner wires in Dec(ŷ). By the
property of Dec, each inner wire of Dec is a linear combination of its input ŷ. Thus, if an inner wire of
Dec is in the set W , we may replace it by the corresponding wires in ŷ so that the parity of W does not
change after the replacement. In this way, we only need to consider ŷ,y.

In summary, it is sufficient to only consider wires in x, x̂,y, ŷ and all wires in C.

Construction of Sim. Suppose W1, . . . ,Wt are the input sets of Sim. For each set Wi, we separate it into
two disjoint parts Wi = Wi,1

⋃
Wi,2 where Wi,1 only contain wires in x, x̂,y, ŷ, and Wi,2 only contain

wires in C. Our strategy is to first simulate the joint distribution of {parity(Wi,2)}ti=1. Then, we decide
the sets V1, . . . , Vt, and simulate the joint distribution of {parity(Wi,1)}ti=1 given {parity(Wi,2)}ti=1 and
{parity(Vi)}ti=1.

Since (I, C,O) is a (t, k, ϵ)-parity-to-probing circuit, let Sim′ denote the simulator in Definition 4. We
construct Sim1 as follows.

1. Sim1 invokes Sim′1 with input W1,2, . . . ,Wt,2 and receives (st′, V ′) from Sim′1. Here V ′ is a set of k wires
in C̃.

2. Since C̃ is a k-probing-tolerant implementation of f , let S̃im denote the simulator in Definition 2. Sim1
invokes S̃im1 with input V ′ and receives (s̃t, Ṽ ) from S̃im1. Here Ṽ is a set of k input and output wires
of f ′, which are x̂, ŷ. (Recall that r′ is a part of ŷ.)

3. Sim1 samples k random values as the wire values in Ṽ . Then Sim1 invokes S̃im2 with input (s̃t, val(Ṽ ))
and receives val(V ′) from S̃im2.

4. Sim1 invokes Sim′2 with input (st′, val(V ′)) and receives t bits (b′1, . . . , b
′
t).

5. So far Sim1 has simulated the joint distribution of {parity(Wi,2)}ti=1 when fixing the wire values in Ṽ .
Let X = {x1, . . . , xni} and Y = {y1, . . . , yno}. Let J = Ṽ ∪X ∪ Y . Note that the random variables in J
are linearly independent. This follows from the property of Enc where any k bits from the output of Enc
are uniformly distributed, and that Ṽ contains at most k wires in x̂ = Enc(x∥0; r) and at most k wires
in ŷ = Enc(y∥0; r′).
Let R = {r1, . . . , rℓ} and R′ = {r′1, . . . , r′ℓ}. Recall that x̂ is fully determined by x and r, and ŷ is fully
determined by y and r′. Let J ′ be a set of random variables such that J ⊂ J ′ ⊂ (J ∪R ∪R′) and J ′ is
a basis of the span of x, x̂,y, ŷ. For each variable in J ′\J , Sim1 assigns a random bit.

6. For all i ∈ {1, . . . , t}, parity(Wi,1) is a linear combination of random variables in J ′. Let supportJ′(Wi,1)
denote the support of parity(Wi,1) in J ′. We have

parity(Wi,1) = parity(supportJ′(Wi,1)).
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Recall that Sim1 has assigned values for all variables in J ′\(X ∪ Y ). Then, Sim1 computes b′′i =
parity(supportJ′(Wi,1)\(X ∪ Y )) and sets st = (b′1 ⊕ b′′1 , . . . , b

′
t ⊕ b′′t ). For all i ∈ {1, . . . , t}, Sim1

sets Vi = supportJ′(Wi,1) ∩ (X ∪ Y ).

As for Sim2, it takes as input st = (b′1 ⊕ b′′1 , . . . , b
′
t ⊕ b′′t ) and parity(V1), . . . , parity(Vt), and outputs

(b′1 ⊕ b′′1 ⊕ parity(V1), . . . , b
′
t ⊕ b′′t ⊕ parity(Vt)).

Claim 6 For all input x and for all W1, . . . ,Wt, the following two distributions are statistically close with
error ϵ:

(parity(W1), . . . , parity(Wt), C
⋆(x))

≈ϵ (Sim2(st, parity(V1), . . . , parity(Vt)), f(x)) : (st, V1, . . . , Vt)← Sim1(W1, . . . ,Wt).

Proof. Consider the following hybrids.
Hybrid0: In this hybrid, consider the following generation process.

1. Given the input x, we first randomly sample r, r′. Then we compute x̂ := Enc(x∥0; r).
2. Given x̂, r′, we evaluate the circuit C and obtain output ŷ.
3. We compute Dec(ŷ) and set y to be the first no bits of Dec(ŷ).
4. So far we have computed x, x̂,y, ŷ and all wire values in C. We use x, x̂,y, ŷ to compute {parity(Wi,1)}ti=1.
5. We use the wire values in C to compute {parity(Wi,2)}ti=1.
6. Finally, we output

(parity(W1,1)⊕ parity(W1,2), . . . , parity(Wt,1)⊕ parity(Wt,2),y)

Note that this is exactly the procedure of computing C⋆(x). The output distribution is identical to (parity(W1),
. . . , parity(Wt), C

⋆(x)).
Hybrid1: In this hybrid, we change the way of computing {parity(Wi,1)}ti=1 by using the simulator

Sim′ in Definition 4. Concretely,

2’. Given x̂, r′, we evaluate the circuit C̃(x̂, r′) and obtain output ŷ.
5’. We invoke Sim′1 on W1,2, . . . ,Wt,2 and receive (st′, V ′). Here V ′ is a set of k wires in C̃. We then invoke

Sim′2(st
′, val(V ′)) and receive b′1, . . . , b

′
t. These t bits are viewed as {parity(Wi,2)}ti=1.

Since (I, C,O) is a (t, k, ϵ)-parity-to-probing circuit implementation of C̃, the distribution of the output
in Hybrid1 is statistically close to the distribution of the output in Hybrid0 with error ϵ.

Hybrid2: In this hybrid, we change the way of computing val(V ′) by using the simulator S̃im in Defini-
tion 2. Concretely,

2”. Given x̂, r′, we compute ŷ = f ′(x̂, r′).
5”. We invoke Sim′1 on W1,2, . . . ,Wt,2 and receive (st′, V ′). Here V ′ is a set of k wires in C̃. We then invoke

S̃im1 on V ′ and receives (s̃t, Ṽ ). Here Ṽ is a set of k wires of x̂, ŷ. (Recall that r′ is a part of ŷ.)
Then we invoke S̃im2 on (s̃t, val(Ṽ )) and receives val(V ′). Next we invoke Sim′2(st

′, val(V ′)) and receive
b′1, . . . , b

′
t. These t bits are viewed as {parity(Wi,2)}ti=1.

Since C̃ is a k-probing-tolerant implementation of f ′, the output of Hybrid2 is identically distributed to
the output of Hybrid1.

Hybrid3: In this hybrid, we change the way of computing x̂,y, ŷ. Concretely,

1” ’. Given the input x, we first compute y = f(x).
2” ’. We randomly sample r, r′.
3” ’. We compute x̂ = Enc(x∥0; r) and ŷ = Enc(y∥0; r′).
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Recall that f ′ is defined to be

f ′(x̂, r′) : x∥∗ ← Dec(x̂), where x ∈ {0, 1}ni

y ← f(x)

ŷ ← Enc(y∥0; r′), where y∥0 ∈ {0, 1}n.

Thus, the distributions of x̂,y, ŷ in both hybrids are identical. Therefore, the output of Hybrid3 is identically
distributed to the output of Hybrid2.

Hybrid4: In this hybrid, we further change the way of computing x̂,y, ŷ. Consider the following gener-
ation process.

1. Given the input x, we compute y = f(x).
2. We run Step 5 in Hybrid3 with the modification that the wire values in Ṽ are sampled uniformly: We

invoke Sim′1 on W1,2, . . . ,Wt,2 and receive (st′, V ′). Here V ′ is a set of k wires in C̃. We then invoke
S̃im1 on V ′ and receives (s̃t, Ṽ ). Here Ṽ is a set of k wires of x̂, ŷ. (Recall that r′ is a part of ŷ.)
Now we samples random bits as wire values in Ṽ . Then we invoke S̃im2 on (s̃t, val(Ṽ )) and receives
val(V ′). Next we invoke Sim′2(st′, val(V ′)) and receive b′1, . . . , b′t. These t bits are viewed as {parity(Wi,2)}ti=1.

3. Recall that X = {x1, . . . , xni}, Y = {y1, . . . , yno}, R = {r1, . . . , rℓ}, and R′ = {r′1, . . . , r′ℓ}. Let J =

Ṽ ∪X ∪ Y and let J ′ be a set of random variables such that J ⊂ J ′ ⊂ (J ∪R ∪R′) and J ′ is a basis of
the span of x, x̂,y, ŷ. For each variable in J ′\(X ∪ Y ), we sample a random bit as its value. Then we
compute x̂ and ŷ from val(J ′).

4. We use x, x̂,y, ŷ to compute {parity(Wi,1)}ti=1.
5. Finally, we output

(parity(W1,1)⊕ parity(W1,2), . . . , parity(Wt,1)⊕ parity(Wt,2),y)

The main difference between Hybrid3 and Hybrid4 is how we compute x̂ and ŷ.

– In Hybrid3, we first sample r and r′ and then compute x̂ = Enc(x∥0; r) and ŷ = Enc(y∥0; r′). Next,
we determine the set Ṽ , which contains k wires of x̂, ŷ, and feed val(Ṽ ) to S̃im2. By the property of Enc,
when r and r′ are uniformly sampled, any k wires in x̂ are uniformly random and any k wires in ŷ are
also uniformly random.

– In Hybrid4, we first determine the set Ṽ , then we sample a random bit for each wire in Ṽ . After that,
we uniformly sample x̂ and ŷ given val(Ṽ ).

They only differ in the order of the generation of x̂ and ŷ while keeping the distribution unchanged. Thus,
the output of Hybrid4 is identically distributed to the output of Hybrid3.

Hybrid5: In this hybrid, we first determine the set V1, . . . , Vt and then modify the way of computing
{parity(Wi,1)}ti=1. Concretely,

1. Given the input x, we compute y = f(x).
2. We run Step 2 in Hybrid4. At the end of this step, we sampled val(Ṽ ) and obtained {parity(Wi,2)}ti=1.
3. We define X,Y,R,R′, J, J ′ following Step 3 in Hybrid4. For each variable in J ′\(X ∪ Y ), we sample a

random bit as its value.
4. For all i ∈ {1, . . . , t}, parity(Wi,1) is a linear combination of variables in J ′. Let supportJ′(Wi,1) be

the support of parity(Wi,1) in J ′. Then parity(Wi,1) = parity(supportJ′(Wi,1)).
Since we have assigned values for variables in J ′\(X∪Y ), we compute b′′i = parity(supportJ′(Wi,1)\(X∪
Y )). We set Vi = supportJ′(Wi,1) ∩ (X ∪ Y ).

5. Given x,y, we compute parity(V1), . . . , parity(Vt).
6. For all i ∈ {1, . . . , t}, we compute

parity(Wi,1) = parity(supportJ′(Wi,1))

= parity(supportJ′(Wi,1)\(X ∪ Y ))⊕ parity(supportJ′(Wi,1) ∩ (X ∪ Y ))

= b′′i ⊕ parity(Vi).
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7. Finally, we output

(parity(W1,1)⊕ parity(W1,2), . . . , parity(Wt,1)⊕ parity(Wt,2),y)

The main difference between Hybrid4 and Hybrid5 is how we compute {parity(Wi,1)}ti=1.

– In Hybrid4, we first compute x̂, ŷ from val(J ′) and then compute {parity(Wi,1)}ti=1 from x̂, ŷ.
– In Hybrid5, we simply write each parity(Wi,1) as a linear combination of variables in J ′. We separate

the linear combination into two parts, where the first part only contains variables in J ′\(X ∪Y ) and the
second part only contains variables in J ′ ∩ (X ∪ Y ). For the first part, it has been sampled without the
knowledge of x,y. For the second part, it is a linear combination of the values in x,y. Then, we compute
the second part from x,y.

Thus, the distribution of {parity(Wi,1)}ti=1 is the same in both hybrids. Therefore, the output of Hybrid5

is identically distributed to the output of Hybrid4.
Note that in Hybrid5, Step 2, 3, 4 correspond to Sim1 and Step 6, 7 correspond to Sim2. Thus, the

distribution of the output of Hybrid5 is just

(Sim2(st, parity(V1), . . . , parity(Vt)), f(x)) : (st, V1, . . . , Vt)← Sim1(W1, . . . ,Wt).

⊓⊔

G Proof of Theorem 5

In this section, we formally prove Theorem 5. Let C̃ denote the input circuit, and (I, C,O) denote the
construction in Figure 4. We use w = (w1, . . . , w|C̃|) to denote the wires in C̃. We first show that the input
encoder I and the output decoder O are trivially parity-tolerant.

Trivial Parity Tolerance. For the input encoder, I takes as input x ∈ {0, 1}ni and outputs {ui, vi, ui ·
vi ⊕ xi}ni

i=1. Consider the following circuit implementation of I:

1. The circuit takes x as input.
2. The circuit randomly samples ui, vi for all i ∈ {1, . . . , ni}.
3. For all i ∈ {1, . . . , ni}, the circuit computes ui · vi and then computes zi := (ui · vi)⊕ xi.
4. The circuit outputs {ui, vi, zi}ni

i=1.

Note that the sampled randomness {ui, vi}ni
i=1 is a part of the output, and for all i ∈ {1, . . . , ni}, the

intermediate result ui · vi can be written as (ui · vi ⊕ xi)⊕ xi = zi ⊕ xi, where zi is an output bit and xi is
an input bit. Thus, I is trivially parity-tolerant.

As for the output decoder, O takes as input {ui, vi, zi}no
i=1 and outputs y = (ui · vi⊕ zi)

no
i=1. Consider the

following circuit implementation of O:

1. The circuit takes {ui, vi, zi}no
i=1 as input.

2. For all i ∈ {1, . . . , ni}, the circuit computes ui · vi and then computes yi := ui · vi ⊕ zi.
3. The circuit outputs y.

Note that for all i ∈ {1, . . . , ni}, the intermediate result ui · vi can be written as (ui · vi ⊕ zi)⊕ zi = yi ⊕ zi,
where yi is an output bit and zi is an input bit. Thus, O is also trivially parity-tolerant.

Now we move to show that C achieves parity-to-probing security. We first analyse the wires in C and
then prove the parity-to-probing security by hybrid arguments.
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Analysis of Wires of NAND in Figure 3. Consider the wires in Figure 3:

1. The input wires, auxiliary input wires, and the output wire.
2. The inner wires of Step 1.(a) are linear combinations of the input wires. If some of the wire is in the

subset W , we may replace this wire by a proper subset of input wires so that the parity of W remains
unchanged. Thus, without loss of generality, we do not need to consider these wires.

3. The inner wires of Step 1.(b) are computation on v1, v2, v
′
1, v

′
2.

4. The inner wires of Step 1.(c) can be rewritten by (z′1 ⊕ ρ1) · (v′1 ⊕ a1 ⊕ 1) · (v1 ⊕ a2 ⊕ 1) and (z′2 ⊕ ρ2) ·
(v′2 ⊕ a1 ⊕ 1) · (v2 ⊕ a2 ⊕ 1) for all a ∈ {0, 1}2.

5. The inner wires of Step 1.(d) are z′1 and z′2.
6. The inner wires of Step 2.(a) are z′1 · z′2, z′1 · u′

2, u
′
1 · z′2, u′

1 · u′
2.

7. The inner wires of Step 2.(b) can be computed by linear combinations of u0, z
′
1 · z′2, z′1 · u′

2, u
′
1 · z′2, u′

1 · u′
2.

Without loss of generality, we do not need to consider these wires.
8. The inner wires of Step 2.(c) are computation on v0, v

′
1, v

′
2.

9. The inner wires of Step 2.(d) can be rewritten by (z0 ⊕ ρ3) · (v0 ⊕ a0 ⊕ 1) · (v′1 ⊕ a1 ⊕ 1) · (v′2 ⊕ a2 ⊕ 1)
for all a ∈ {0, 1}3.
Let ρ′1 = z′1⊕ ρ1, ρ′2 = z′2⊕ ρ2, and ρ′3 = z0⊕ ρ3. Then ρ1, ρ2, ρ3 can be computed by linear combinations

of z′1, z′2, z0, ρ′1, ρ′2, ρ′3. It is sufficient to only consider ρ′1, ρ
′
2, ρ

′
3. Then the wires we need to consider can be

summarized as follows:

– The input wires and output wire: (u0, v0, z0), (u1, v1, z1), (u2, v2, z2). (Part of Item 1)
– The refreshed input encodings: (u′

1, v
′
1, z

′
1), (u

′
2, v

′
2, z

′
2). (Part of Item 1 and Item 5)

– The wires z′1 · z′2, z′1 · u′
2, u

′
1 · z′2, u′

1 · u′
2. (Item 6)

– The random wires ρ′1, ρ
′
2, ρ

′
3. (Part of Item 1)

– The wires that are computation on v0, v1, v2, v
′
1, v

′
2, ρ

′
1, ρ

′
2, ρ

′
3. (Items 3,4,8,9)

Analysis of Wires in C. Let z := u ∗ v ⊕ w, z(1) = (zπ1(ℓ))
|C̃|
ℓ=1, and z(2) = (zπ2(ℓ))

|C̃|
ℓ=1. Following the

analysis for the wires of NAND (Figure 3) above, we set ρ̂ = z⊕ ρ, ρ̂(1) = z(1) ⊕ ρ(1), ρ̂(2) = z(2) ⊕ ρ(2). Then
the wires we need to consider in C can be summarized as follows.

– Encodings of Wires in C̃: (u,v, z).
– Refreshed Encodings of Wires in C̃: (u(1),v(1), z(1)) and (u(2),v(2), z(2)).
– The wires z(1) ∗ z(2), z(1) ∗ u(2),u(1) ∗ z(2),u(1) ∗ u(2).
– Random Wires: ρ̂, ρ̂(1), ρ̂(2).
– Wires that are computation on v,v(1),v(2), ρ̂, ρ̂(1), ρ̂(2).

For a subset W of wires in C, we define the following subsets of wires in C̃:

I = {wi | zi is in W}
I(1) = {wπ1(i) | At least one of z(1)i , z

(1)
i · u(2)

i , z
(1)
i · z(2)i is in W}

I(2) = {wπ2(i) | At least one of z(2)i , u
(1)
i · z

(2)
i , z

(1)
i · z(2)i is in W}

Let k′ = k/t. We set

V(W ) =

{
I ∪ I(1) ∪ I(2), If |I ∪ I(1) ∪ I(2)| ≤ k′

∅, Otherwise

We note that the function V(·) satisfies that for all positive integer t and for all W1, . . . ,Wt, if V(W1), . . . ,V(Wt)
are not empty sets, then for W0 := ⊕t

i=1Wi, V(W0) ⊂ ∪ti=1V(Wi). To see why this is the case, let
(Ii, I(1)i , I(2)i ) be the sets defined above for Wi for all i ∈ {0, 1, . . . , t}. Then for each wire in W0, this
wire is also in Wi for some i ∈ {1, . . . , t}. By definition, we have

I0 ⊂ ∪ti=1Ii , I(1)0 ⊂ ∪ti=1I
(1)
i , I(2)0 ⊂ ∪ti=1I

(2)
i .

Therefore, (I0 ∪ I(1)0 ∪ I(2)0 ) ⊂ ∪ti=1(Ii ∪ I
(1)
i ∪ I(2)i ). Since V(W1), . . . ,V(Wt) are not empty sets, we have

V(Wi) = Ii ∪ I(1)i ∪ I(2)i for all i ∈ {1, . . . , t}.
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– If V(W0) ̸= ∅, then V(W0) = I0 ∪ I(1)0 ∪ I(2)0 ⊂ ∪ti=1V(Wi).
– Otherwise, V(W0) = ∅ ⊂ ∪ti=1V(Wi).

Now for all t subsets W1, . . . ,Wt, let V = ∪S⊂{1,...,t}V(WS), where WS = ⊕i∈SWi. We show that
|V | ≤ t · k′ = k. Let W = {WS | |V(WS)| ̸= ∅}. Then V = ∪WS∈WV(WS). Let W ′

1, . . . ,W
′
t′ be a basis of W.

That is for all WS ∈ W, WS is a linear combination of W ′
1, . . . ,W

′
t′ . Note that t′ ≤ t.

By the property of V(·), we have that for all WS ∈ W, V(WS) ⊂ ∪t
′

i=1V(W ′
i ). Thus V = ∪t′i=1V(W ′

i ).
Then |V | = | ∪t′i=1 V(W ′

i )| ≤
∑t′

i=1 |V(W ′
i )| ≤ t′ · k′ ≤ t · k′ = k.

Parity-to-Probing Security.

Construction of the Simulator. We first construct the simulator Sim = (Sim1, Sim2).

– Sim1 takes W1, . . . ,Wt as input. Sim1 sets st = (W1, . . . ,Wt) and V = ∪S⊂{1,...,t}V(WS).
– Sim2 takes (st, val(V )) as input. For all wi ∈ V , Sim2 sets w′

i = wi. For all wi ̸∈ V , Sim2 sets w′
i = 0. Then

Sim2 randomly samples u,u(1),u(2), v,v(1),v(2), ρ̂, ρ̂(1), ρ̂(2) and computes all wires in C by viewing w′

as the wires in C̃.
Sim2 outputs parity(W1), . . . , parity(Wt).

Hybrid Arguments. Consider the following hybrids.
Hybrid0: In this hybrid, consider the following generation process.

1. Given the input x, we compute y = O(C(I(x))).
2. We use the wire values in C to compute parity(W1), . . . , parity(Wt).
3. Finally, we output

(parity(W1), . . . , parity(Wt),y)

The output distribution is identical to (parity(W1), . . . , parity(Wt), O(C(I(x)))).
Hybrid1: In this hybrid, we compute the wire values in C̃ and use them to compute the wire values in

C:

1. Given the input x, we randomly sample the random tape for C̃, denoted by r̃. Then we compute
y = C̃(x; r̃). Let w denote the wire values of C̃.

2. We generate the wire values analysed above (see Appendix G) using w. Concretely, we randomly sample
u,v, ρ̂,u(1),v(1), ρ̂(1),u(2),v(2), ρ̂(2). Then, we compute z = u∗v⊕w and z(1), z(2) accordingly. Finally,
we faithfully compute the rest of wires.

3. We use the wire values in C to compute parity(W1), . . . , parity(Wt).
4. Finally, we output

(parity(W1), . . . , parity(Wt),y)

The output distribution of Hybrid1 is identical to that of Hybrid0.
Hybrid2: In this hybrid, we switch to use Sim to compute parity(W1), . . . , parity(Wt). Concretely,

1. Given the input x, we randomly sample the random tape for C̃, denoted by r̃. Then we compute
y = C̃(x; r̃). Let w denote the wire values of C̃.

2. We follow Sim1 to set V = ∪S⊂{1,...,t}V(WS). For all wi ∈ V , we set w′
i = wi. For all wi ̸∈ V , we set

w′
i = 0. Then we generate the wire values analysed above (see Appendix G) using w′. Concretely, we

randomly sample u,v, ρ̂,u(1),v(1), ρ̂(1),u(2),v(2), ρ̂(2). Then, we compute z = u ∗ v ⊕w′ and z(1), z(2)

accordingly. Finally, we faithfully compute the rest of wires.
3. We use the wire values in C to compute parity(W1), . . . , parity(Wt).
4. Finally, we output

(parity(W1), . . . , parity(Wt),y)

49



Now we argue that the output of Hybrid2 and the output of Hybrid1 are statistically close. We prove
a stronger statement: we will show that for all w ∈ {0, 1}|C̃| (which may not be a valid transcript of C̃(x)),
the following two distributions are statistically close:

– Hybrid′
1: The first distribution is obtained by running Step 2, Step 3 in Hybrid1 and outputting

(parity(W1), . . . , parity(Wt)).
– Hybrid′

2: The second distribution is obtained by running Step 2, Step 3 in Hybrid2 and outputting
(parity(W1), . . . , parity(Wt)).

Note that this statement implies that the above two distributions are statistically close given w for all valid
transcript w of C̃(x). Since y is a part of the transcript, it implies that the output of Hybrid2 is statistically
close to that of Hybrid1.

Note that the only difference between Hybrid′
1 and Hybrid′

2 is that Hybrid′
1 uses w to compute all

wires while Hybrid′
2 uses w′. In particular w′

i = wi for all wi ∈ V . Let X = (X1, . . . , Xt) denote the
random variables of the output of Hybrid′

1 and Y = (Y1, . . . , Yt) denote the random variables of the output
of Hybrid′

2. By the XOR lemma [Gol11], it is sufficient to show that for all S ⊂ {1, . . . , t}, the statistical
distance between ⊕i∈SXi and ⊕i∈SYi is ϵ′ = ϵ/2t/2 = 2 · (7/8)k/2t = 2 · (7/8)k′/2, where k′ = k/t. To this
end, let I, I(1), I(2) be the sets defined in Appendix G for WS . we consider two cases:

Case 1: |I∪I(1)∪I(2)| ≤ k′. In this case, we have V(WS) = I∪I(1)∪I(2). Then parity(WS) only depends
on wires in V(WS) in C̃, and w′

i = wi for all wi ∈ V(WS). Thus, XS and YS are identically distributed.

Case 2: |I ∪ I(1) ∪ I(2)| > k′. We define the following sets U ,U (1),U (2):

U = {ui | At least one of ui, zi is in W}
U (1) = {u(1)

i | At least one of u(1)
i , z

(1)
i , u

(1)
i · u

(2)
i , u

(1)
i · z

(2)
i , z

(1)
i · u(2)

i , z
(1)
i · z(2)i is in W}

U (2) = {u(2)
i | At least one of u(2)

i , z
(2)
i , u

(1)
i · u

(2)
i , u

(1)
i · z

(2)
i , z

(1)
i · u(2)

i , z
(1)
i · z(2)i is in W}

By definition, |U| ≥ |I|, |U (1)| ≥ |I(1)|, |U (2)| ≥ |I(2)|. Thus, |U| + |U (1)| + |U (2)| ≥ |I ∪ I(1) ∪ I(2)| > k′.
Then at least one of |U|+ |U (1)| ≥ k′/2, |U|+ |U (2)| ≥ k′/2 holds. Without loss of generality, we assume that
|U|+ |U (1)| ≥ k′/2.

For fixed w,u(2),v,v(1),v(2), ρ̂, ρ̂(1), ρ̂(2), parity(W ) is a linear combination of u,u(1). Since u,u(1) are
uniform, parity(W ) is uniformly random if and only if not all coefficients of u,u(1) are 0. Now we analyse
the coefficient of each ui ∈ U and u

(1)
i ∈ U (1).

– For each ui ∈ U , the coefficient of ui is a function on vi, denoted by fi(vi). In particular, fi(vi) ̸≡ 0.
Thus, when vi is randomly sampled, with probability at least 1/2, fi(vi) = 1.

– For each u
(1)
i ∈ U (1), the coefficient of u(1)

i is a function on v
(1)
i , u

(2)
i , v

(2)
i , wπ2(i), denoted by f

(1)
i (v

(1)
i , u

(2)
i , v

(2)
i , wπ2(i)).

In particular, f (1)
i (v

(1)
i , u

(2)
i , v

(2)
i , 0) ̸≡ 0 and f

(1)
i (v

(1)
i , u

(2)
i , v

(2)
i , 1) ̸≡ 0. Thus when v

(1)
i , u

(2)
i , v

(2)
i are ran-

domly sampled, with probability at least 1/8, f (1)
i (v

(1)
i , u

(2)
i , v

(2)
i , wπ2(i)) = 1.

Note that the coefficients of all ui ∈ U and all u
(1)
i ∈ U (1) are independent. Thus, for all w, when

u(2),v,v(1),v(2) are randomly sampled, the probability that all coefficients are 0 is bounded by (1/2)|U| ·
(7/8)|U

(1)| ≤ (7/8)k
′/2. Therefore, when |I ∪ I(1) ∪ I(2)| > k′, parity(W ) is statistically close to a uniform

bit with error (7/8)k
′/2. Note that this analysis works for all w. Since Hybrid′

1 and Hybrid′
2 only differ in

using w and w′, the statistical distance between XS and YS is at most 2 · (7/8)k′/2 = ϵ′.
In summary, the statistical distance between XS and YS in both cases is at most ϵ′. Therefore, the output

of Hybrid2 is statistically close to the output of Hybrid1 with error ϵ.
Note that the distribution of the output of Hybrid2 is identical to

(Sim2(st, val(V )), C̃(x)}) : (st, V )← Sim1(W1, . . . ,Wt).
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Thus,

(parity(W1), . . . , parity(Wt), O(C(I(x))))

≈ϵ (Sim2(st, val(V )), C̃(x)) : (st, V )← Sim1(W1, . . . ,Wt).

This finishes the proof of Theorem 5.

H Evidence Against Efficient Simulation

Recall that in our main feasibility result for parity tolerance, the simulator needs to run in super-polynomial
time. Indeed, in our construction of parity-to-probing circuits, we need the simulator to compute a set
V = ∪S⊂{1,...,t}V(WS). A straightforward implementation of this step would be computing V(WS) for all
S ⊂ {1, . . . , t}, which takes exponential time in t. In this section, we provide evidence that the above
inefficient simulation may be inherent.

We consider a relaxed notion of parity tolerance for a randomized function. Informally, for a (t, t′)-parity-
tolerant randomized function, we allow the simulator to query at most t′ ≥ t parities of the function input
to simulate t parities of the function output.

Definition 10 ((t, t′)-Parity-Tolerant Functions). For a randomized function F : {0, 1}n → {0, 1}m, we
say F is (t, t′, ϵ)-parity-tolerant if there exists a simulator Sim = (Sim1, Sim2) with the following syntax:

– Sim1 takes as input t subsets W1, . . . ,Wt of the output of F , and outputs t a state st and t′ subsets
V1, . . . , Vt′ of the input of F ;

– Sim2 takes the state st and parity(V1), . . . , parity(Vt′) as input, and outputs t bits (b1, . . . , bt).

The simulator Sim satisfies that for all input x ∈ {0, 1}n and for all t subsets W1, . . . ,Wt of the output of
F , the following two distributions are statistically close with error ϵ:

(parity(W1), . . . , parity(Wt))

≈ϵ (Sim2(st, parity(V1), . . . , parity(Vt′))) : (st, V1, . . . , Vt′)← Sim1(W1, . . . ,Wt).

In the following, we construct a (t, t′, ϵ)-parity-tolerant randomized function such that if Sim is a proba-
bilistic polynomial-time algorithm, then the following assumption is broken.

Assumption 1 (LPN Assumption with Fixed Weight Noise [BFKL93,BCG+19]) For k,N ∈ N,
let HWk,N be the distribution of uniform, weight-k vectors over {0, 1}N . Let κ be the security parameter.
For t = t(κ), N = N(κ), k = k(κ), the LPN(t,N, k) assumption states that

{(A, b) : A
$←− {0, 1}N×t, e

$←− HWk,N , s
$←− {0, 1}t, b← As+ e}

c
≈ {(A, b) : A

$←− {0, 1}N×t, b
$←− {0, 1}N}.

Theorem 11 (Impossibility of Black-Box Simulation). Let κ be the security parameter. Let t = κ,N =
40κ3, k = 5κ. Then there exists a family of randomized functions {F : {0, 1}2N → {0, 1}N}N such that:

1. Inefficient Simulation: F is (t, 2k2t, ϵ)-parity-tolerant, where ϵ = 2t/2 · (3/4)k ≤ 2−κ.
2. Impossibility of Black-Box Simulation: Assuming the LPN(t − 1, N, k) assumption, there exists a

distribution D(t,N, k) such that for all large enough security parameter κ and for all PPT algorithms
Sim = (Sim1, Sim2) with the syntax in Definition 10, there exists an input x such that the statistical
distance between

(parity(W1), . . . , parity(Wt)) : (W1, . . . ,Wt)
$←− D(t,N, k),y = F (x)

and

Sim2(st, parity(V1), . . . , parity(Vt′))

: (W1, . . . ,Wt)
$←− D(t,N, k), (st, V1, . . . , Vt′)← Sim1(W1, . . . ,Wt)

is at least 1/16, where t′ = 2k2t.
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Proof. We first give the construction of F as follows. Let x = (x(1),x(2)) ∈ {0, 1}2N denote the input of F
such that x(1),x(2) ∈ {0, 1}N . The output of F is defined as follows:

– F samples N independent random bits (a1, . . . , aN ) from the Bernoulli distribution with probability
q = (1 − (3/4)1/k)/2 to be 1. Then it outputs y = a ⊕ (x(1) ∗ x(2)), where ∗ denotes coordinate-wise
multiplication (i.e., bitwise AND).

Part I: Inefficient Simulation. We first show the existence of Sim = (Sim1, Sim2). Let x denote the function
input and y = F (x). We construct a matrix M of size N × t:

– For all i ∈ {1, . . . , N}, j ∈ {1, . . . , t}, Mij = 1 if yi ∈Wj and Mij = 0 otherwise.

Observe that for all j ∈ {1, . . . , t}, parity(Wj) = ⟨M⋆,j ,y⟩. In the following, we use span(M) to denote
the span of the column vectors of M .

The simulator Sim1 first finds all indices i such that there is a vector c ∈ span(M) with hamming weight
at most k2 and ci = 1. Suppose I is the set that contains all such indices. We have the following claim.

Claim 7 Suppose I is the set of all indices i such that there is a vector c ∈ span(M) with hamming weight
at most k2 and ci = 1. Then |I| ≤ k2t.

Proof (Proof of Claim 7). Consider all vectors of hamming weight no more than k2 in span(M). Suppose the
rank of these vectors is t̃ ≤ t. Let c1, c2, . . . , ct̃ be a basis. Consider the set I = {i | ∃j ∈ {1, . . . , t̃}, s.t., cji =
1}. Then |I| ≤ k2t̃ ≤ k2t. We claim that I is the set in the above statement.

To see why this is the case, note that for each vector c that has hamming weight no more than k2 in
span(M), c is a linear combination of c1, . . . , ct̃. Therefore, for all i ∈ {1, . . . , N}, ci = 1 only if there exists
j such that cji = 1, which implies that i ∈ I.

Now Sim1 computes the output as follows:

– Suppose I = {i1, . . . , i|I|}. For all j ∈ {1, . . . , |I|}, Sim1 sets V2j−1 = {x(1)
ij
} and V2j = {x(2)

ij
}.

– Sim1 sets st = (I,W1, . . . ,Wt).

As for Sim2, it receives st = (I,W1, . . . ,Wt) and {parity(Vj)}2|I|j=1. Then for all i ∈ {1, . . . , N}, Sim2
randomly samples ai. For all ij ∈ I, Sim2 computes x(1)

ij
·x(2)

ij
= parity(V2j−1)·parity(V2j). For all i ̸∈ I, Sim2

sets x
(1)
i · x

(2)
i = 0. Based on ai and x

(1)
i · x

(2)
i , Sim2 computes yi and outputs parity(W1), . . . , parity(Wt).

Claim 8 For all input x and for all W1, . . . ,Wt, the output distribution of Sim is statistically close to the
joint distribution of (parity(W1), . . . , parity(Wt)) with error ϵ = 2t/2 · (3/4)k.

Proof (Proof of Claim 8). Let I be the set defined above. Then

– The set I contains all indices i such that there exists a vector c ∈ span(M) with hamming weight at
most k2 and ci = 1. By Claim 7, |I| ≤ k2t.

By definition, Sim2 learns {x(1)
i , x

(2)
i }i∈I . Let y = F (x) and ỹ be the vector computed by Sim2 (i.e.,

replacing x
(1)
i · x

(2)
i = 0 for all i ̸∈ I). We want to show that

(parity(W1(y)), . . . , parity(Wt(y))) ≈ϵ (parity(W1(ỹ)), . . . , parity(Wt(ỹ))).

By the XOR lemma [Gol11], it is sufficient to show that for all S ⊂ {1, . . . , t}, the statistical distance
between parity(WS(y)) and parity(WS(ỹ)) is ϵ′ = ϵ/2t/2 = (3/4)k. Observe that

parity(WS(y)) = ⊕j∈Sparity(Wj(y))

= ⊕j∈S⟨M⋆,j ,y⟩
= ⟨⊕j∈SM⋆,j ,y⟩.

Let c =
∑

j∈S M⋆,j . Then c is in span(M), and parity(WS(y)) = ⟨c,y⟩. Similarly, parity(WS(ỹ)) = ⟨c, ỹ⟩.
We consider two cases.
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– If the hamming weight of c is larger than k2, then ⟨c,y⟩ = ⟨c,a⟩⊕⟨c,x(1) ∗x(2)⟩. Given x = (x(1),x(2)),
⟨c,a⟩ is statistically close to uniform with error (1− 2q)k

2

/2 = (3/4)k/2 (following from Claim 5). Thus,
⟨c,y⟩ is statistically close to uniform with error (3/4)k/2.
Similarly, ⟨c, ỹ⟩ is also statistically close to uniform with error (3/4)k/2. Thus the statistical distance
between parity(WS(y)) and parity(WS(ỹ)) is at most (3/4)k.

– If the hamming weight of c is no more than k2, then for all i such that ci = 1, we have i ∈ I. Therefore, ỹi
and yi have the same distribution. Thus, parity(WS(y)) and parity(WS(ỹ)) are identically distributed.

Part II: Impossibility of Efficient Simulation. We construct the distributionD(t,N, k) as follows: (W1, . . . ,Wt)
$←−

D(t,N, k) is sampled by

1. Sampling A
$←− {0, 1}N×(t−1), e $←− HWk,N , and s

$←− {0, 1}t−1;
2. Computing b = As+ e;
3. Setting M = (A, b);
4. For all j ∈ {1, . . . , t}, Wj = {yi | Mij = 1}.

Now assume that there exists a PPT simulator Sim = (Sim1, Sim2) such that for all input x,

(parity(W1), . . . , parity(Wt)) : (W1, . . . ,Wt)
$←− D(t,N, k),y = F (x)

≈η Sim2(st, parity(V1), . . . , parity(Vt′)) : (W1, . . . ,Wt)
$←− D(t,N, k),

(st, V1, . . . , Vt′)← Sim1(W1, . . . ,Wt),

where η ≤ 1/16. We will construct an PPT algorithm Sim′ that finds the vector e with probability η′ =
1/16− 2t · e−N/16 = 1/16− negl(κ):

1. Sim′ invokes Sim on W1, . . . ,Wt and receives V1, . . . , Vt′ , where t′ = 2k2t.
2. Sim′ initially sets I ′ = ∅. For all i ∈ {1, . . . , N}, if x(1)

i is linearly dependent with parity(V1), . . . , parity(Vt′),
add i in I ′.

3. Let J = {1, . . . , n}\I. Solve MJ · α = 0, where MJ denotes the sub-matrix of M that only contains
rows of indices in J . Sim′ finds the first non-zero solution α (if exists). If M ·α has hamming weight k,
output M ·α. Otherwise, output ⊥.

Let I be the set of all indices i such that there exists a vector c ∈ span(M) with hamming weight at
most t′ = 2k2t and ci = 1 (Note that I is different from that in Part I). We show that with overwhelming
probability, there is a unique non-zero vector c of hamming weight at most t′ and c = e has hamming weight
k.

Claim 9 Let M be the random matrix defined above. With probability at least 1− δ, where δ = 2t · e−N/16,
M has full column rank and there is exactly one non-zero vector c ∈ span(M) with hamming weight at most
t′ = 2k2t and its hamming weight is k.

Proof. Recall the sampling process of M :

1. Sample A
$←− {0, 1}N×(t−1), e $←− HWk,N , and s

$←− {0, 1}t−1;
2. Compute b = As+ e;
3. Set M = (A, b);

Therefore the vector e is in span(M) and its hamming weight is k. We show that with probability 1 − δ,
all other non-zero linear combination of the column vectors of M has hamming weight larger than t′. Note
that this implies that M has full column rank.

Note that for all non-zero linear combination of the column vectors of M , denoted by c, such that c ̸= e,
either c or c⊕e can be written as a non-zero linear combination of column vectors in A. Since A is a uniform
matrix, it implies that c is a random vector. By Chernoff Bound, with probability at least 1 − e−N/16, the
hamming weight of c is larger than t′. By union bound, with probability at least 1− 2t · e−N/16, all non-zero
vector c ∈ span(M) such that c ̸= e has hamming weight larger than t′.
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Now assume that M has full column rank and there is exactly one non-zero vector c ∈ span(M) with
hamming weight at most t′ and c = e has hamming weight k. We show that, with constant probability,
I ⊂ I ′.

Since e ∈ span(M), there exists S ⊂ {1, . . . , t} such that parity(WS) = ⟨e,y⟩, where y = F (x) is the
function output. Therefore, from the output of Sim, we can compute a bit b that is statistically close to ⟨e,y⟩
with error η. Since ⟨e,y⟩ = ⟨e,a⟩⊕⟨e,x(1)∗x(2)⟩, we have Pr[⟨e,y⟩ = ⟨c,x(1)∗x(2)⟩] = Pr[⟨e,a⟩ = 0]. Recall
that each ai is sampled independently with probability q to be 1. Thus, Pr[⟨e,a⟩ = 0] = (1+ (1− 2q)k)/2 =
7/8.

Let E denote the event that b computed from the output of Sim is equal to ⟨c,x(1) ∗ x(2)⟩. When x is
sampled uniformly, we have

Pr[E] = Pr[E | I ̸⊂ I ′] · Pr[I ̸⊂ I ′] + Pr[E | I ⊂ I ′] · Pr[I ⊂ I ′]

≤ Pr[E | I ̸⊂ I ′] + Pr[I ⊂ I ′].

We show that Pr[E | I ̸⊂ I ′] ≤ 3/4.
Assume that x

(1)
i⋆ ∈ I but x

(1)
i⋆ ̸∈ I ′. Let z0 = x

(1)
i⋆ and zi = parity(Vi) for all i ∈ {1, . . . , t′}. Since z0 =

x
(1)
i⋆ ̸∈ I ′, z0 is linearly independent of z1, . . . , zt′ . We randomly pick zt′+1, . . . , z2n−1 such that z0, . . . , z2n−1

is a basis of the span of x. Then each x
(1)
i and x

(2)
i can be written as a linear combination of z0, . . . , z2n−1.

Let z = (z1, . . . , z2n−1). Suppose x
(1)
i = αi,0 · z0 ⊕αi · z and x

(2)
i = βi,0 · z0 ⊕ βi · z. Then

⟨e,x(1) ∗ x(2)⟩
= ⊕i∈Ix

(1)
i · x

(2)
i

= ⊕i∈I(αi,0 · z0 ⊕αi · z) · (βi,0 · z0 ⊕ βi · z)
= z0 · ((⊕i∈Iαi,0 · βi,0)⊕ (⊕i∈I(αi,0 · βi ⊕ βi,0 ·αi)) · z)⊕ (⊕i∈I(αi · z) · (βi · z)).

We want to show that the coefficient of z0 is not a constant. This is equivalent to show that ⊕i∈I(αi,0 ·βi ⊕
βi,0 ·αi) ̸= 0. First note that {x(1)

i , x
(2)
i }i∈I are linearly independent. Since z0 = x

(1)
i⋆ , we have

{x(1)
i ⊕ αi,0 · z0}i∈I,i̸=i⋆ ∪ {x(2)

i ⊕ βi,0 · z0}i∈I

are linearly independent. Recall that x
(1)
i = αi,0 · z0 ⊕ αi · z and x

(2)
i = βi,0 · z0 ⊕ βi · z. Therefore,

{αi · z}i∈I,i̸=i⋆ ∪ {βi · z}i∈I are linearly independent, which implies that {αi}i∈I,i̸=i⋆ ∪ {βi}i∈I are linearly
independent. Note that ⊕i∈Iαi,0 · βi ⊕ βi,0 · αi is a linear combination of {αi}i∈I,i̸=i⋆ ∪ {βi}i∈I , and in
particular, αi⋆,0 = 1, which means that not all coefficients are 0s. Thus, ⊕i∈Iαi,0 ·βi⊕ βi,0 ·αi ̸= 0. Now we
have shown that the coefficient of z0 is a non-zero linear combination of z.

When x is sampled uniformly, z0, z are also uniform. Therefore, the coefficient of z0 is uniformly dis-
tributed. Since z0 is linearly independent of z, and the simulator only learns {parity(Vi)}t

′

i=1 ⊂ {z1, . . . , z2n−1},
z0 is uniformly distributed given {parity(Vi)}t

′

i=1 ⊂ {z1, . . . , z2n−1}. We have the following two cases:

– If the coefficient of z0 is 0, which happens with probability 1/2, E happens with probability at most 1.
– If the coefficient of z0 is 1, which happens with probability 1/2, E happens with probability at most 1/2.

Thus, when x is sampled uniformly, Pr[E | I ̸⊂ I ′] ≤ 3/4.
On the other hand, since from the output of Sim, we can compute a bit b that is statistically close to

⟨c,y⟩ with error η = 1/16, and Pr[⟨c,y⟩ = ⟨c,x(1) ∗ x(2)⟩] ≥ 7/8, we have

Pr[I ⊂ I ′] ≥ Pr[E]− Pr[E | I ̸⊂ I ′] ≥ 7/8− η − 3/4 = 1/8− η ≥ 1/16.

Thus, with constant probability, I ⊂ I ′.
Recall that J = {1, . . . , n}\I ′. When I ⊂ I ′, I ∩J = ∅. On the other hand, |J | = N −|I ′| = N −2k2t. For

any non-zero vector γ ∈ {0, 1}t such that MJ · γ = 0, M · γ is a non-zero vector and its hamming weight is
at most 2k2t. This implies that M · γ = e, the vector with hamming weight k.
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Thus, given that M has full column rank and there is exactly one non-zero vector c ∈ span(M) with
hamming weight at most t′ and c = e has hamming weight k, with probability 1/16, the algorithm Sim′

outputs e. By Claim 9, Sim′ outputs e with probability at least ϵ′ = 1/16− 2t · e−N/16.
Note that Sim′ breaks the LPN(t−1, N, k) assumption. Therefore, for all PPT simulator Sim = (Sim1, Sim2),

there exists x such that the statistical distance between

(parity(W1), . . . , parity(Wt)) : (W1, . . . ,Wt)
$←− D(t,N, k),y = F (x)

and

Sim2(st, parity(V1), . . . , parity(Vt′))

: (W1, . . . ,Wt)
$←− D(t,N, k), (st, V1, . . . , Vt′)← Sim1(W1, . . . ,Wt)

is at least 1/16.
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