
Attribute-Based Signatures with Advanced Delegation, and
Tracing

Cécile Delerablée1, Lenäıck Gouriou1, and David Pointcheval2

1 Leanear, France
2 DIENS, École normale supérieure, CNRS, PSL University, Inria, Paris, France

Abstract. Attribute-based cryptography allows fine-grained control on the use of the private key.
In particular, attribute-based signature (ABS) specifies the capabilities of the signer, which can
only sign messages associated to a policy that is authorized by his set of attributes. Furthermore,
we can expect signature to not leak any information about the identity of the signer. ABS is a useful
tool for identity-preserving authentication process which requires granular access-control, and can
furthermore be enhanced with additional properties, for example delegation where users are able
to manage a set of keys derived from their original one.

In this paper, we address delegation of signing keys. Our first delegation works for any subset of
the original attributes, which is the intuitive approach of delegation. Furthermore, we also provide
another kind of delegation where the delegator can choose a policy at delegation time to produce
keys that can sign any message under this specific policy. This last approach to delegation is a direct
application of a new version of the indexing technique, which was first introduced by Okamoto and
Takashima in order to prove adaptive security in ABS and its counterpart for encryption, ABE. On
top of that, we prove that our scheme is compatible with a well studied feature of ABS, traceability,
by using an approach based on Linearly-Homomorphic signatures. All our schemes also guarantee
the anonymity of the real signer.

The unforgeability of our schemes is proven using the SXDH assumption, and our constructions use
the Dual Pairing Vector Spaces (DPVS) framework developed by Okamoto and Takashima, which
has been widely used for all kind of attribute and functional cryptography mechanisms.

1 Introduction

Digital signatures have key applications into emerging technologies : E-signatures, smart con-
tracts on blockchain, and authentication to online services. All of them require some kind of
signature from the user, that must then be verified by another party.

Furthermore, some applications are reliant on the anonymity granted to its participants, like
e-vote and anonymous auctions. It can be because of mandatory data privacy regulations (US
Data Privacy Laws, Europe’s GDPR), or because it provides a concurrential advantage, as users
are concerned about their privacy. Hence, these applications should only enforce verifications
that are strictly necessary, like verifying the legitimacy of a signer to sign a contract or access
a service, without revealing the identity of the signer.

As mentioned in CT-RSA 2021 [DGK+21], blockchain applications like cryptocurrencies
must also ensure accountability and identity management to follow regulatory requirements
(Know Your Customer/Anti-Money Laundering), as well as ensure public verifiability to keep
their users’ trust. Therefore, suitable primitives should allow to reconcile these regulations and
principles with anonymity. This can be achieved through tracing, which also prevents abuse
and makes signers accountable. This crosses out fully anonymous primitives like ring signa-
tures [RST01].

One could use solutions based on group signatures [Cv91], where a designated tracer can
remove the anonymity of a signer, but they unfortunately lack expressivity. Indeed, they can
only express membership of a group of potential signers, and not more complex policies, based
on boolean expressions. This is not enough for the many applications we have mentioned, where
we need to verify precise but varied statements and conditionals.

Attribute-based signatures (ABS), introduced in [MPR11], combine anonymity, expressivity
and traceability. It allows users to sign a message for a policy that can be validated with a

2 Cécile Delerablée, Lenäıck Gouriou, and David Pointcheval

set of attributes. ABS are very appropriate for situations where high-granularity of the policy
is required: management of rights for members of a department, industrial contracts, financial
operations, and blockchain operations.

The expressivity and granularity of ABS can be pushed even further with delegation, where
users can create new sub-keys with restricted rights from their original keys. This technique
grants users the capacity to manage any type of rights on a case-by-case basis, without the need
to refer to an authority for approval.

Direct applications of delegation can be found in project management and team manage-
ment. Since delegated keys can be tailored by the delegator depending on its needs, they can
include restricted timeframes of validity, scope perimeters, and authorizations of specific sets
of actions. This can be useful to integrate temporary members in an existing team, or allow
cooperation between members of two different teams in a secure way. Another application is the
management of many devices by a single user. In this scenario, a user is in possession of many
devices, and he wishes to configure them following common security practices like the least
privilege principle. Thanks to delegation, this can be done dynamically on a device-per-device
basis, without referring to an authority.

These possibilities make delegation a promising feature for ABS, as it furthers the granularity
needed to manage modern applications (both from a security and a functionality standpoint),
while maintaining the anonymity and traceability required by different regulations.

Related Work. Attribute-Based Signature was introduced by Maji et al. [MPR11], as the
signature version of Attribute-Based Encryption (ABE) [GPSW06]. They define what one can
expect as unforgeability for ABS: one is unable to produce a convincing signature for any policy
he wouldn’t satisfy. Unforgeability can be adaptive, where the adversary can choose the challenge
policy at the moment it outputs the forgery, or selective, a weaker version where the adversary
must choose the challenge policy at the beginning of the game. They also introduce privacy
(or anonymity) for ABS, where any verifier does not learn anything on the identity nor the
attributes of the signer when seeing a signature, except that the signature is valid or not, with
respect to the claimed policy.

Our constructions are based on Okamoto and Takashima’s [OT11] original work in the
Dual-Pairing Vector Space (DPVS) framework, which is still the basis for their recent work for
signatures [DOT19]. The DPVS allows to prove adaptive unforgeability in ABS and adaptive
security in its ABE counterpart [OT11,OT12]. Most of their previous works are based on the
DLIN assumption or variants. Along with Attrapadung et al., they focused on the expressivity
of the policy [SKAH18].

A common feature for ABS is tracing [DZL14,Gha15] where a dedicated tracing authority
can remove the anonymity of signatures for accountability. The most common approach for
traceability in the litterature is the one proposed by Ghadafi et al. [EGK14], where a designated
tracer with a secret tracing key can produce a proof of identity of the signer, which is verifiable
by any third party with a public verification key. It relies on attaching an encryption of the
identity of the signer to signatures, along with a NIZK proof that the identity is the one used
to sign. The tracer simply own the secret key to decrypt any identity when tracing a signature,
and can produce NIZK proof of the identity to any verifying third-party to prove tracing was
done correctly.

Another functionality which has not received much attention in ABS is the delegation func-
tionality. A work from [LMY14] proposes proxy signature with a warrant for ABS, which works
as a delegation of pre-set policies. Their work is in a restricted setting, where policies are a subset
cover of attributes, and their construction is selectively secure and doesn’t consider anonymity.

A recent line of work from Manulis et al. [DGM18,GM19] explores a Hierarchical ABS with
a focus on the management of intermediate authorities, where the delegation keeps track of
the delegation path containing all the authorities that participated in the creation of someone’s
key. While this allows delegation via intermediate authorities, the tracing of the delegation path

Attribute-Based Signatures with Advanced Delegation, and Tracing 3

makes the size of keys and signatures linear in the number of attributes and the length of the
delegation path. This additional cost cannot be avoided as their delegation and tracing are
intermingled. Since delegation cannot be separated from tracing in their construction, this also
means that delegation cannot be done without the NIZK that is used for tracing.

Fig. 1. Two types of delegation : attributes and policies.

Contributions. In this paper, we propose and prove an ABS construction with two different
types of delegation: delegation of attributes and delegation of policies. A depiction of these
functionalities is given in Figure 1. This construction is existentially unforgeable, as well as
perfectly anonymous, under the following two standard assumptions: the SXDH assumption in
the standard model, and the collision-resistance of some hash functions.

We also present a new version of indexing for DPVS, that builds on the one introduced
by [OT12]. We then show as an application that this new version of indexing can be used to
separate the commitment between message and policy with a hash function in our signature
scheme, which is the core component of our delegation of policies.

Finally, we present a construction for ABS with traceability, which is compatible with our
first construction with delegation. It is existentially unforgeable under the SXDH assumption
in the standard model, and the collision-resistance of some hash functions. It is also compu-
tationally anonymous under these same assumptions, and the perfect zero-knowledge of the
Square Diffie-Hellman problem [HPP20] in the Random Oracle Model (ROM). The traceability
stands in the ROM, and relies on the security of a Linearly-Homomorphic signature scheme, the
simulation-extractability of some non-interactive zero-knowledge proof (NIZK) and the sound-
ness of some other NIZK. We exploit the scheme from [HPP20], whose security is proven in the
generic bilinear group model.

The keys and signatures of both our schemes are linear in the number of attributes involved,
with performances comparable to [OT11]. See Figure 2.

2 Preliminaries

Our constructions will heavily use the Dual Pairing Vector Spaces (DPVS), proposed for efficient
schemes with adaptive security [LOS+10,OT12], in the same vein as Dual System Encryption
(DSE) [Wat09,LW10], in either prime-order groups under the DLIN assumption or pairings on
composite-order elliptic curves, and thereafter on the SXDH assumption in a pairing-friendly

4 Cécile Delerablée, Lenäıck Gouriou, and David Pointcheval

Feature [OT11] [GM19] Ours

Unforge. assumpt. DLIN q-type, SXDH, GGM SXDH
Delegation × ✓ ✓
Traceability × Delegation path Original delegator

Trace. assumpt. × × GGM, ROM
Signature size G2 : 9t+ 11 G1 : 6(2ℓ− 1)t+ 24 G2 : 10t+ 14

G2 : 4(2.5ℓ− 1)t+ 17

Fig. 2. Comparison with Related Work. t is the number of attributes used in a signature, and ℓ is the height of
the delegation hierarchy.

setting (G1,G2,Gt, e,G1, G2, q), with a bilinear map e from G1×G2 into Gt, where G1 (respec-
tively G2) is a generator of G1 (respectively G2), and all the groups are of prime order q. We
will use additive notation for G1 and G2, and multiplicative notation in Gt.

Definition 1 (Decisional Diffie-Hellman Assumption). The DDH assumption in G, of
prime order q with generator G, states that no algorithm can efficiently distinguish the two
distributions

D0 = {(a ·G, b ·G, ab ·G), a, b $← Zq} D1 = {(a ·G, b ·G, c ·G), a, b, c $← Zq}

And we will denote by AdvddhG (T) the best advantage an algorithm can get in distinguishing the
two distributions within time bounded by T . Eventually, we will make the following more general
Symmetric eXternal Diffie-Hellman (SXDH) Assumption which makes the DDH assumptions in
both G1 and G2. Then, we define Advsxdh(T) = max{AdvddhG1

(T),AdvddhG2
(T)}.

2.1 Dual Pairing Vector Spaces

We will use the framework from [DGP22] which uses a lower number of bases than the original
framework from Okamoto and Takashima [OT11]. One could also consider the more recent
framework from Datta et al. [DOT19] for a lower number of bases, but it also implies a higher
number of specific sub-problems for the proof, which makes it less modular for the security
proof.

To define Dual Pairing Vector Spaces (DPVS) under the SXDH assumption, we consider the

additional law between an element X ∈ Gn
1 and Y ∈ Gn

2 : X × Y
def
=

∏
i e(Xi, Yi). If X = (Xi)i =

x⃗ · G1 ∈ Gn
1 and Y = (Yi)i = y⃗ · G2 ∈ Gn

2 : (x⃗ · G1) × (y⃗ · G2) = X × Y =
∏

ie(Xi, Yi) = g
⟨x⃗,y⃗⟩
t ,

where gt = e(G1, G2) and ⟨x⃗, y⃗⟩ is the inner product between vectors x⃗ and y⃗.
From any basis B = (⃗bi)i of Zn

q , we can define the basis B = (bi)i of Gn
1 , where bi = b⃗i ·G1.

This allows us to note (a1, . . . , an)B =
∑

i ai · bi.

Such a basis B is equivalent to a random invertible matrix B
$← GLn(Zq), the matrix with

b⃗i as its i-th row. If we additionally use B∗ = (b∗
i)i, the basis of Gn

2 associated to the matrix

B′ = (B−1)⊤, as B ·B′⊤ = In,

bi × b∗
j = (⃗bi ·G1)× (⃗b′j ·G2) = g

⟨⃗bi ,⃗b′j⟩
t = g

δi,j
t ,

where δi,j = 1 if i = j and δi,j = 0 otherwise, for i, j ∈ {1, . . . , n}: B and B∗ are called Dual
Orthogonal Bases. A pairing-friendly setting with such dual orthogonal bases B and B∗ of size
n is called a Dual Pairing Vector Space.

2.2 Change of Basis

The security games will heavily rely on indistinguishable change of basis. We recap the indistin-
guishable modifications on random dual orthogonal bases B and B∗, under the DDH assumption
in G1 (can also be applied in G2), proven in [DGP22]. We illustrate these theorems in the Fig-
ure 6, in the Supplementary Materials.

Attribute-Based Signatures with Advanced Delegation, and Tracing 5

SubSpace-Ind Property, on (B,B∗)1,2: from the view of B and B∗\{b∗
2}, and any vector

(y1, y2, . . . , yn)B∗ , for chosen y2, . . . , yn ∈ Zq, but unknown random y1
$← Zq, one cannot dis-

tinguish the vectors (x1, x
′
2, x3, . . . , xn)B and (x1, x2, x3, . . . , xn)B, for chosen x

′
2, x2, . . . , xn ∈

Zq, but unknown random x1
$← Zq.

Swap-Ind Property, on (B,B∗)1,2,3: from the view of B and B∗\{b∗
1,b

∗
2}, and any vector

(y1, y1, y3, . . . , yn)B∗ , for chosen y1, y3, . . . , yn ∈ Zq, one cannot distinguish the vectors (x1, 0,
x3, x4, . . . , xn)B and (0, x1, x3, x4, . . . , xn)B, for chosen x1, x4, . . . , xn ∈ Zq, but unknown

random x3
$← Zq.

Index-Ind Property, on (B,B∗)1,2,3: from the view of B and B∗\{b∗
3}, and any vector (π ·

(t,−1), y3, . . . , yn)B∗ , for chosen y3, . . . , yn ∈ Zq, but unknown random π
$← Zq, and for

any chosen p ̸= t ∈ Zq, one cannot distinguish the vectors (σ · (1, p), x3, x4, . . . , xn)B and

(σ · (1, p), x′3, x4, . . . , xn)B, for chosen x′3, x3, x4, . . . , xn ∈ Zq, but unknown random σ
$← Zq.

We also present a new version of Index-Ind in dimension 3 (instead of 2), with a sketch of
the proof in Figure 7 in the Appendix, and the full proof is presented in Appendix C.2.

Theorem 2 (Index-Ind Property). In (B,B∗) of dimension 6, from the view of (b1,b2,b3,b
∗
1,b

∗
2,b

∗
3,b

∗
4),

and any vector u = (π · (x + ρx′,−1,−ρ), β, 0, 0)B, for chosen x, x′, β ∈ Zq, but unknown ran-

dom π, ρ
$← Zq, and for any chosen (y, y′) ̸= (x, x′) ∈ Z2

q, one cannot distinguish the vectors
v∗
0 = (σ · (1, y, y′), 0, 0, 0)B∗ and v∗

1 = (σ · (1, y, y′), α, 0, 0)B∗, for chosen α ∈ Zq, but unknown

random σ
$← Zq, with an advantage better than 4× AdvddhG2

(t) + 2× AdvddhG1
(t).

An important application of this theorem for our construction is that we can now have
independent commitment for the message and for the policy, contrary to [OT11]. In their con-
struction, the message m and the policy T are commited together inside a single call of a hash
function H, which can then be used as part of an indexing in dimension 2, where H(m, T) plays
the role of p in the 2-Dimension property. A direct application of the 3-Dimensional Indexing
allows to decorrelate H(m, T) into H(m) and H(T), which can then be used to build the new
delegation functionalities that we present in our construction.

2.3 Attribute-Based Signature

Standard ABS Definition. Attribute-Based Signatures (ABS) have been formalized in [MPR11],
with attributes in the keys and policies in the signatures:

Setup(1κ). From the security parameter κ, the algorithm defines all the global parameters PK
and the master secret key MK;

KeyGen(MK, id, Γ). For a master secret key MK, an identity id and a list of attributes Γ , the
algorithm outputs a private key SKid,Γ specific to the user id and the set of attributes Γ ;

Sig(SKid,Γ ,m, T). For a private key SKid,Γ , on a set of attributes Γ , a message m and a policy
T satisfied by Γ , the algorithm outputs a signature σ;

Verif(PK,m, T , σ). Given the public parameters PK, a signature σ for a message m under a
policy T , the algorithm outputs 1 for accept or 0 for reject.

For correctness, the Verif algorithm should output 1 with overwhelming probability on (σ,m, T)
if σ has been generated on m and T , with a private key SKid,Γ that has been generated from
the KeyGen algorithm associated on a set Γ that satisfies T . We will note T (Γ) = 1 when T is
satisfied by Γ , and T (Γ) = 0 otherwise.

ABS with Delegation. We now consider two different kinds of delegation. The first one is
to delegate a subset of attributes from a key, which is the usual approach to delegation where
keys are a set of attributes. The other one is to choose a policy which can be validated by
the delegator key, and create a new delegated key that is commited to this policy. The new

6 Cécile Delerablée, Lenäıck Gouriou, and David Pointcheval

delegated key can sign any new message under the commited policy. We will prove that both
these delegations are fully compatible with anonymity.

For ABS with delegation, in addition to the initial definition of an ABS, we also consider
delegation algorithms, with an additional signing algorithm:

Delegate-Attributes(SKid,Γ , īd, Γ
′). From SKid,Γ , and for a subset Γ ′ ⊂ Γ , one can derive a

signing key SKīd,Γ ′ for a user īd.
Delegate-Policy(SKid,Γ , īd, T). For a private key SKid,Γ on a set of attributes Γ and a policy T

satisfied by Γ , the algorithm outputs a policy key SKīd,T ;

DelegateSig(SKid,T ,m). For a delegated key SKid,T on a policy T and a messagem, the algorithm
outputs a signature σ;

The delegated keys from the first algorithm can be used in a similar way as a fresh key.
For this reason, when we refer to a key in the following, it can be from either KeyGen or
Delegate-Attributes without distinction, except if specified otherwise. It thus allows hierarchical
delegation of attributes. On the other hand, policy delegation provides different keys, hence
another signing algorithm, which is why we’ll refer to them as policy keys.

For the correctness, we add that the Verif algorithm should output 1 with overwhelming
probability on (σ,m, T) even if σ has been generated on m with a policy key SKīd,T . In both
cases, we note īd the new full identity associated to the keys, which could be formed for example
by concatenation: īd = id||id′, for some id′, and even possibly a longer chain, as only delegated
attributes under the exact same chain might be combined as a new key.

2.4 Security Model

As for any signature scheme, with ABS, one should not be able to produce a valid signature under
a policy T if one does not own the appropriate attributes to fulfill it. However, we also account
for the nature of delegated keys: One should not be able to produce a valid signature under a
policy T if one does not own the appropriate attributes or the delegated key for unforgeability.

In particular, for the delegation of attributes, we consider that the adversary will have
access to delegated keys via the ODelegateAttributes oracle, which he can use on keys he pre-
viously queried for via either OKeyGen or ODelegateAttributes. Regarding the policy delega-
tion, we add two additional oracles: ODelegatePolicy to generate a policy key from a previous
OKeyGen or ODelegateAttributes query, and ODelegateSig to obtain a signature from a policy
key ODelegatePolicy that has already been queried. None of the keys are actually revealed to the
adversary, unless he queries specifically for them via OGet, to model the real information learnt
by the adversary. Indeed, some keys can be generated, but only as source of delegations, and
only delegated keys will be known to the adversary, in case the adversary is just a delegatee.

Definition 3 (Existential Unforgeability). EUF for ABS with delegation is defined by the
following game between the adversary and a challenger:

Initialize: The challenger runs the Setup algorithm of ABS and gives the public parameters PK
to the adversary;

Oracles: The following oracles can be called in any order and any number of times:

OKeyGen(id, Γ): to model KeyGen-queries for any identity id and any set of attributes Γ of
its choice, and gets back the index k of the key;

ODelegateAttributes(k, īd, Γ ′): to model Delegate-Attributes-queries for identity īd and any
subset of attributes Γ ′ ⊂ Γ , for the k-indexed generated key from Γ . It generates the
signing key but only outputs the index k′ of the new key;

ODelegatePolicy(k, īd, T): to model Delegate-Policy-queries for identity īd and any policy T ,
from the k-indexed generated key for Γ so that T (Γ) = 1. It generates the new policy
key but only outputs the index k′ of the new policy key;

Attribute-Based Signatures with Advanced Delegation, and Tracing 7

OGet(k): the adversary obtains the k-indexed key generated by one of the above oracles;

OSig(id,m, T , k): to model Sig-queries under any policy T of its choice for a message m,
for the identity id, and a key index k. It generates and outputs the signature;

ODelegateSig(īd,m, T , k): to model DelegateSig-queries for any message m, for identity īd,
policy T , and key index k. It generates and outputs the signature.

Finalize(b′): The adversary outputs a forgery (m′, T ′, σ′). If for some attribute set Γ corre-
sponding to a key asked to the OGet oracle, T ′(Γ) = 1, or if the adversary queried OSig or
ODelegateSig on (m′, T ′), or if the adversary queries ODelegatePolicy on T ′, one outputs 0.
Otherwise one outputs Verif(PK,m′, T ′, σ′).

The advantage Advdel-euf(A) of an adversary A in this game is defined as the probability to
output 1.

As usual, the Finalize-step excludes trivial attacks, where the adversary owns a key able to
generate an acceptable signature or just forwards a query asked to the signing oracle.

Another security notion that should also be satisfied by an ABS scheme, even more so with
delegation, is that a signature generated for a given policy should be independent of the user,
and signatures generated by fresh keys or delegated keys should be indistinguishable. We refer
to this property as anonymity, as in [MPR11]. Our definition requires to examine six different
distributions, to take into account the possibility of delegation:

Definition 4 (Anonymity). An ABS with delegation scheme is said anonymous if, for any

(PK,MK)
$← Setup, any message m, any identities id0, id1, any attribute sets Γ0, Γ1, any sign-

ing keys SK0
$← KeyGen(MK, id0, Γ0), SK1

$← KeyGen(MK, id1, Γ1), any delegated keys SK′
0

$←
Delegate-Attributes(SK0, id

′
0, Γ

′
0), SK

′
1

$← Delegate-Attributes(SK1, id
′
1, Γ

′
1), for Γ

′
0 ⊂ Γ0 and Γ ′

1 ⊂
Γ1, any policy keys ˜SK′

0
$← Delegate-Policy(SK0, T), ˜SK′

1
$← Delegate-Policy(SK1, T), for any

policy T satisfied by both Γ ′
0 and Γ

′
1, the six distributions of the signatures generated by Sig(SK0,m, T),

Sig(SK′
0,m, T),DelegateSig(˜SK′

0,m),Sig(SK1,m, T), Sig(SK′
1,m, T),DelegateSig(˜SK′

1,m) are in-
distinguishable.

Indistinguishability can be perfect, statistical or computational, which leads to perfect, sta-
tistical or computational anonymity.

Whereas perfect anonymity excludes traceability, computational anonymity may allow the
existence of a trapdoor leading to traceability. We will propose both in the following.

2.5 Policies and Access-Trees

We use the same approach as [GPSW06] by defining a policy on attributes in U : we will consider
a policy as an access-tree T with only AND and OR gates instead of more general threshold gates
(an AND-gate being an n-out-of-n gate, whereas an OR-gate is a 1-out-of-n gate). Nevertheless,
access-trees with only AND and OR gates are as expressive as access-trees with threshold gates.

Access-trees have a similar structure to boolean expressions, which are commonly used in
applicative security. This makes the access-tree approach easily compatible with existing security
infrastructures that already rely on such expressions for their policy.

Definition of access-trees. We only recall the important notations of access-trees, and refer
the reader to [DGP22] for a full definition of access-trees. We also introduce the additional
notion of dual trees, that will be used to prove the correctness and anonymity our signatures.

An access-tree T is a rooted labeled tree from the root ρ, with internal nodes associated to
AND and OR gates and leaves associated to attributes. For each leaf λ ∈ L, A(λ) ∈ U is an
attribute, and any internal node ν ∈ N is labeled with a gate G(ν) ∈ {AND,OR} as an AND or
an OR gate to be satisfied among the children in children(ν).

8 Cécile Delerablée, Lenäıck Gouriou, and David Pointcheval

Satisfying an access-tree. On a given list Γ ⊆ U of attributes, each leaf λ ∈ L is either
satisfied (considered or set to True), if A(λ) ∈ Γ , or not (ignored or set to False) otherwise. We
will denote LΓ the restriction of L to the satisfied leaves in the tree T (corresponding to an
attribute in Γ). Then, for each internal node ν, one checks whether all children (AND-gate) or
at least one of the children (OR-gate) are satisfied, from the attributes associated to the leaves,
and then ν is itself satisfied or not. We then denote T (Γ) = 1 when the access-tree T is satisfied
by the set of attributes Γ .

Evaluation Pruned Trees. We consider an access-tree T with leaves L and a set Γ of
attributes so that T (Γ) = 1. A Γ -evaluation tree T ′ ⊂ T is a pruned version of T , where one
children only is kept for OR-gate nodes, down to the leaves, so that T ′(Γ) = 1. Basically, we
keep a skeleton with only necessary True leaves to evaluate the internal nodes up to the root.
We will denote EPT(T , Γ) the set of all the evaluation pruned trees of T with respect to Γ .
EPT(T , Γ) is non-empty if and only if T (Γ) = 1.

Labelings of a Tree. We define the labeling of a tree, which can be seen as a linear secret
sharing among the leaves of the tree.

Definition 5 (Random y-Labeling). A random y-labeling Λy of an access-tree T , for any
y ∈ Zp, is the probabilistic algorithm Λy(T) that sets aρ ← y for the root, and then in a top-
down manner starting from the root, set aν for each internal node ν : if ν is an AND-node with
n children, a random n-out-of-n sharing of aν is associated to each children i.e., random values
are associated to aκ for all κ ∈ children(ν), such that the sum is equal to aν in Zp; if ν is an
OR-gate, each children is associated to the value aν .

Algorithm Λy(T) outputs Λy = (aλ)λ∈L, for all the leaves λ ∈ L of the tree T . Random labelings
have several properties: the sum of a y-labeling and a random z-labeling is a random (y + z)-
labeling of T . And multiplying all the labels of a y-labeling by a constant c leads to a cy-labeling.
Furthermore, because of the recursive definition of labelings, one can see that, given a labeling
(aλ) on T , we can extract a aν-labeling for any subtree of T , rooted at node ν, which coincides
with T on all values aλ for leaves of the subtree.

Evaluation of a Labeled Tree. As noted above, labels on leaves are a linear secret sharing
of the root that allows reconstruction of the secret if and only if the policy is satisfied: for a set Γ
that satisfies T and a labeling Λy of T for a random y, given only (aλ)λ∈LΓ

, one can reconstruct
y = aρ. Indeed, as T (Γ) = 1, we use an evaluation pruned tree T ′ ∈ EPT(T , Γ). Then, in a
bottom-up way, starting from the leaves, one can compute the labels of all the internal nodes,
up to the root.

Dual-Trees. For our construction, we will use another type of tree, called the dual-tree T ∗

of T : this is the exact same tree as T , except that all OR gates in T become AND gates in T ∗,
and conversely all AND gates in T become OR gates in T ∗. We note that the structure of T and
T ∗ is identical, in particular all leaves are present on both trees, thus we will abuse notations
and consider LT = LT ∗ when there is no ambiguity.

Dual-trees will be crucial in our constructions. They will allow the signer to share enough
information to the verifier for the verification of the signature, to prove correctness. At the
same time, it prevents revealing anything about the validity of the access-tree other than the
signer could sign it with its attributes, to ensure anonymity. This is formalized in the two next
propositions, proven in Appendix C.1.

Proposition 6. If (aλ)λ is an a0-labeling of T , and (bλ)λ is a b0-labeling of its dual tree T ∗,
then

∑
λ∈L aλbλ = a0b0.

This stems from the fact that there is always an OR-gate (from either T or T ′) which creates a
common factor when recursively evaluating the product at each node on both trees (Illustration
on Figure 3).

Attribute-Based Signatures with Advanced Delegation, and Tracing 9

OR/a0

a0

λ1

a0

λ2

a0

λ3

AND/b0

b1

λ1

b2

λ2

b0 − b1 − b2

λ3

Fig. 3. A trivial access-tree with an OR-gate (left) and its dual tree with an AND-gate (right). Each tree has a
random labeling for a0 or b0. One can see that

∑
λ∈L aλbλ = a0b1+a0b2+a0(b0−b1−b2) = a0b0. This generalizes

to any number of children for a gate, and to any access-tree by recursion from bottom to top.

Proposition 7. Let T be an access-tree and Γ a set of attributes so that T (Γ) = 1. Then, for
any Evaluation Pruned Tree T ′ ∈ EPT(T , Γ), there is a 1-labeling (bλ)λ of the dual T ∗ which
verifies: bλ = 1 for all λ ∈ LT ′ and bλ = 0 for all λ /∈ LT ′.

If a tree T is satisfied by a set of attributes, we can associate the value 1 to the leaves of the
satisfied attributes in the tree (which defines the pruned tree T ′ ⊂ T), and this association
is effectively a 1-labeling of the dual-tree T ′∗ ⊂ T ∗, but also a 1-labeling of the dual-tree
T ∗. As this is a 1-labeling of T ∗, but specific to T ′, we can then randomize it for anonymity,
with a 0-labeling of T ∗, through the linearity of labelings on T ∗, while maintaining correctness
(Illustration on Figure 4).

OR

AND

A

λ1

B

λ2

C

λ3

D

λ4

AND/1

OR/1

A/1

λ1

B/1

λ2

C/0

λ3

D/0

λ4

Fig. 4. An access-tree fulfilled by the set {A,B} (left). One can extract a 1-labeling from its dual-tree (right)
which has values 1 on leaves {A,B} and 0 on all other leaves.

3 ABS with Attribute and Policy Delegation

In this section, we describe a Delegatable ABS scheme with perfect anonymity, and an un-
bounded universe of attributes. The basic idea is to derive the scheme from a KP-ABE, where
signatures can be seen as a decryption key associated to a policy, and the verification algorithm
tries to decrypt a ciphertext on a set of attributes. If decryption works, the signature is valid,
otherwise the signature is invalid. To enable delegations of attributes and policies, we sepa-
rate the commitment to the message and the policy in the signing process, which is a critical
difference from the [OT13] construction.

3.1 Description of our ABS Scheme

In our ABS with delegation, users can delegate subset of attributes with Delegate-Attributes,
or pre-signed policies with Delegate-Policy. Then, they can sign using Sig with keys generated
from either KeyGen or Delegate-Attributes, using any attributes they want. Alternatively, they
can sign using DelegateSig with keys generated from Delegate-Policy, on a pre-chosen access-tree
included in the keys.

To simplify reading, we also detail the distribution of vectors of each element, which will be
enough to make the security proof afterwards. 0k denotes k zero components in a vector.

Setup(1κ). The algorithm chooses three random dual orthogonal bases, in a pairing-friendly
setting PG = (G1,G2,Gt, e,G1, G2, q):

B = (b1, . . . ,b4) D = (d1, . . . ,d10) H = (h1, . . . ,h8)

B∗ = (b∗
1, . . . ,b

∗
4) D∗ = (d∗

1, . . . ,d
∗
10) H∗ = (h∗

1, . . . ,h
∗
8).

It picks two full-domain hash functions H and H′ onto Zq. It sets the public parameters
PK = {PG,H,H′, (b1,b3), (b

∗
2), (d1,d2,d3,d5), (d

∗
1,d

∗
2,d

∗
3,d

∗
4), (h1,h2,h3,h5), (h

∗
4)}, and

master secret key MK = {(b∗
1), (h

∗
1,h

∗
2,h

∗
3)}.

10 Cécile Delerablée, Lenäıck Gouriou, and David Pointcheval

KeyGen(MK, id, Γ). A random scalar δid
$← Z∗

q is associated to id, to define

k∗
0 = (δid, ϕ0, 0

2)B∗ k∗
t = (δid, πt(1, t), ϕt, 0

6)D∗

r∗1 = (δid, 0, 0, ψ1, 0
4)H∗ r∗2 = (0, δid, 0, ψ2, 0

4)H∗ r∗3 = (0, 0, δid, ψ3, 0
4)H∗

for all attributes t ∈ Γ , with ϕ0, ψ1, ψ2, ψ3, (ϕt)t, (πt)t
$← Z∗

q for each t. The signing key
SKid,Γ is then set (k∗

0, (k
∗
t)t∈Γ , r

∗
1, r

∗
2, r

∗
3). It can be computed later for new attributes t, for

id, with extra k∗
t , using the same δid, specific to user id.

Delegate-Attributes(SKid,Γ , īd, Γ
′). Pick random αīd, ϕ

′
0, (ϕ

′
t)t, ψ

′
1, ψ

′
2, ψ

′
3

$← Zq for t ∈ Γ ′ ⊂ Γ ,
and compute

k̄∗
0 = αīd · k∗

0 + ϕ′0 · b∗
2 k̄∗

t = αīd · k∗
t + ϕ′t · d∗

4

r̄∗1 = αīd · r∗1 + ψ′
1 · h∗

4 r̄∗2 = αīd · r∗2 + ψ′
2 · h∗

4 r̄∗3 = αīd · r∗3 + ψ′
3 · h∗

4

The delegated signing key SKīd,Γ ′ is then set as (k̄∗
0, (k̄

∗
t)t∈Γ ′ , r̄∗1, r̄

∗
2, r̄

∗
3). More delegations can

be provided with additional k̄∗
t for īd from id using the same αīd, specific to the attribute-

delegation from id to īd.
This results in the vectors, with αīd, ϕ0, ϕ

′
0, (ϕt)t, (ϕ

′
t)t, (πt)t, ψ1, ψ

′
1, ψ2, ψ

′
2,

ψ3, ψ
′
3

$← Zq

k̄∗
0 = (αīdδid, αīdϕ0 + ϕ′0, 0

2)B∗ k̄∗
t = (αīdδid, αīdπt(1, t), αīdϕt + ϕ′t, 0

6)D∗

r̄∗1 = (αīdδid, 0, 0, αīdψ1 + ψ′
1, 0

4)H∗

r̄∗2 = (0, αīdδid, 0, αīdψ2 + ψ′
2, 0

4)H∗ r̄∗3 = (0, 0, αīdδid, αīdψ3 + ψ′
3, 0

4)H∗

which follow the same distributions as, with δīd, (πt)t, ϕ0, (ϕt)t, ψ1, ψ2, ψ3
$← Z∗

q

k̄∗
0 = (δīd, ϕ0, 0

2)B∗ k̄∗
t = (δīd, πt(1, t), ϕt, 0

6)D∗ ∀t ∈ Γ
r̄∗1 = (δīd, 0, 0, ψ1, 0

4)H∗

r̄∗2 = (0, δīd, 0, ψ2, 0
4)H∗ r̄∗3 = (0, 0, δīd, ψ3, 0

4)H∗

Sig(SKid,Γ ,m, T). Let T ′ ∈ EPT(T , Γ) be an Evaluation Pruned Tree, scalars ν, ξ, ζ, (ωλ)λ, (qλ)λ
$←

Z∗
q , and (αλ)λ the 1-labeling of the dual T ∗ specific to T ′ (see Proposition 7), where αλ = 1

if λ ∈ LT ′ , else αλ = 0. This is possible as T (Γ) = 1. Compute (βλ)λ to be a random
0-labeling of the dual T ∗ associated to T .
Eventually, set, for H = H(T), H ′ = H′(m):

U∗ = ξk∗
0 + ζb∗

2 S∗
λ = αλξ · k∗

tλ
+ βλ · d∗

1 + ωλ · (d∗
2 + tλ · d∗

3) + qλ · d∗
4

V ∗ = ξ(r∗1 +H · r∗2 +H ′ · r∗3) + ν · h∗
4

for all the leaves λ, where tλ is the associated attribute of λ. The signature is thus σ =
(U∗, V ∗, (S∗

λ)λ).
This results in the vectors, with δid, ν, ξ, ζ, (ωλ)λ, (qλ)λ, ϕ0, ψ1, ψ2, ψ3, (ϕtλ)λ,

(πtλ)tλ
$← Z∗

q

U∗ = (ξδid, ξϕ0 + ζ, 02)B∗

S∗
λ = (αλξδid + βλ, (αλξπtλ + ωλ)(1, tλ), αλξϕtλ + qλ, 0

6)D∗

V ∗ = (ξδid · (1, H,H ′), ξ(ψ1 + ψ2H + ψ3H
′) + ν, 04)H∗

which follow the same distributions as, with δ, ν, ζ, (ωλ)λ, (qλ)λ
$← Z∗

q , and (βλ)λ a random
0-labeling of T ∗,

U∗ = (δ, ζ, 02)B∗ S∗
λ = (αλδ + βλ, ωλ(1, tλ), qλ, 0

6)D∗

V ∗ = (δ · (1, H,H ′), ν, 04)H∗

Attribute-Based Signatures with Advanced Delegation, and Tracing 11

Delegate-Policy(SKid,Γ , īd, T). Let T ′ ∈ EPT(T , Γ) be an Evaluation Pruned Tree, scalars ν, ξ, ζ, ψ′
3, (ωλ)λ, (qλ)λ

$←
Z∗
q , and (αλ)λ the 1-labeling of T ∗ specific to T ′ (see Proposition 7), where αλ = 1 if λ ∈ LT ′ ,

else αλ = 0. This is possible as T (Γ) = 1. Then, compute (βλ)λ to be a random 0-labeling
of the dual T ∗ associated to T .
Eventually, set for H = H(T):

U∗ = ξk∗
0 + ζb∗

2 S∗
λ = αλξ · k∗

tλ
+ βλd

∗
1 + ωλ(d

∗
2 + tλ · d∗

3) + qλ · d∗
4

r′∗3 = ξr∗3 + ψ′
3h

∗
4 V ∗ = ξ(r∗1 +H · r∗2) + ν · h∗

4

for all the leaves λ, where tλ is the associated attribute of λ. The delegated key is thus
SKīd,T = (U∗, V ∗, r′∗3 , (S

∗
λ)λ).

This results in the vectors, with δid, ν, ξ, ζ, (ωλ)λ, (qλ)λ, ϕ0, ψ1, ψ2, (ϕtλ)λ,

(πtλ)tλ
$← Z∗

q

U∗ = (ξδid, ξϕ0 + ζ, 02)B∗

S∗
λ = (αλξδid + βλ, (αλξπtλ + ωλ)(1, tλ), αλξϕtλ + qλ, 0

6)D∗

V ∗ = (ξδid · (1, H, 0), ξ(ψ1 + ψ2H) + ν, 04)H∗

r′∗3 = (0, 0, ξδid, ξψ3 + ψ′
3, 0

4)H∗

which follow the same distributions as, with δid, ν, ζ, (ωλ)λ, (qλ)λ, ψ
′
3

$← Z∗
q , and (βλ)λ a

random 0-labeling of T ∗

U∗
i = (δid, ζ, 0

2)B∗ S∗
λ = (αλδid + βλ, ωλ(1, tλ), qλ, 0

6)D∗

V ∗ = (δid · (1, H, 0), ν, 04)H∗ r′∗3 = (δid · (0, 0, 1), ψ′
3, 0

4)H∗

DelegateSig(SKid,T ,m). Let T ′ ∈ EPT(T , Γ) be an Evaluation Pruned Tree, ν, ξ, ζ, (ω′
λ)λ, (q

′
λ)λ

$←
Z∗
q , (β

′
λ)λ a random 0-labeling of T ∗. Set, for H ′ = H′(m):

U ′∗ = ξU∗ + ζb∗
2 S′∗

λ = ξ · S∗
λ + β′λd

∗
1 + ω′

λ(d
∗
2 + tλ · d∗

3) + q′λ · d∗
4

V ′∗ = ξ(V ∗ +H ′ · r′∗3) + ν · h∗
4

for all the leaves λ, where tλ is the associated attribute of λ. The signature is thus σ =
(U ′∗, V ′∗, (S′∗

λ)λ).

This results in the vectors, with δid, ν, ν
′, ξ, ζ, ζ ′, (ωλ)λ, (ω

′
λ)λ, (qλ)λ, (q

′
λ)λ

$← Z∗
q , and (αλ)λ

the 1-labeling of T ∗,

U ′∗ = (ξδid, ξζ + ζ ′, 02)B∗

S′∗
λ = (ξ(αλδid + βλ) + β′λ, (αλξωλ + ω′

λ)(1, tλ), αλξqλ + q′λ, 0
6)D∗

V ′∗ = (ξδid · (1, H,H ′), ξν + ν ′, 04)H∗

which follow the same distributions as, with δid, ν, ζ, (ωλ)λ, (qλ)λ
$← Z∗

q , (βλ)λ a random
0-labeling of T ∗, and H = H(T)

U ′∗ = (δid, ζ, 0
2)B∗ S′∗

λ = (αλδid + βλ, ωλ(1, tλ), qλ, 0
6)D∗

V ′∗ = (δid · (1, H,H ′), ν, 04)H∗

Verif(PK,m, T , σ). Let κ, κ0, (κλ)λ, s, s0, θ, θ
′, (θλ)λ

$← Zq. Let (sλ)λ be a random s0-labeling of
T , then set, for H̄ = H(T), H̄ ′ = H′(m):

u = (−s0 − s, 0, κ0, 0)B cλ = (sλ, θλ(tλ,−1), 0, κλ, 05)D
v = (s+ θH̄ + θ′H̄ ′,−θ,−θ′, 0, κ, 03)H

If e(b1, U
∗) ̸= 1Gt ∧ e(u, U∗) · e(v, V ∗) ·

∏
e(cλ, S

∗
λ) = 1Gt , accept and output 1, else reject

and output 0.

12 Cécile Delerablée, Lenäıck Gouriou, and David Pointcheval

One can note that, as usual with Dual Pairing Vectors Spaces, some basis vectors are kept
hidden to real-life players, as they will only be used in the security proofs: (b2,b4), (b

∗
3,b

∗
4),

(d4,d6,d7,d8,d9,d10), (d
∗
5,d

∗
6,d

∗
7,d

∗
8,d

∗
9,d

∗
10), (h4,h6,h7,h8), and (h∗

5,h
∗
6,h

∗
7,h

∗
8).

Correctness. Let (U∗, V ∗, (S∗
λ)λ) be a signature generated by Sig with a key SKid,Γ , or by

DelegateSig with a key SKid,T , for an access-tree T and attributes Γ so that T (Γ) = 1. Let
(u, v, (cλ)λ) the verification vectors generated by Verif for the same access-tree. We note T ′ ∈
EPT(T , Γ) the Evaluation Pruned Tree used during signature.

We remind from Proposition 6 that
∑

λ∈L sλαλ = s0 and
∑

λ∈L sλβλ = 0, as we have
labelings of T and T ∗. We have

∑
λ∈L sλ(αλδid + βλ) = s0(δid + 0) = s0δid. The first check

e(b1, U
∗) = gδidt ̸= 1Gt is to make sure δid ̸= 0, and thus that ξ ̸= 0 during the signing process.

For the second verification: ∏
e(cλ, S

∗
λ) = g

∑
λ∈L sλ(αλδid+βλ)

t = gs0δidt (1)

e(u, U∗) · e(v, V ∗) = g
δid·(−s0−s)
t · gδidst = g−δids0

t (2)

This leads to an accept if the signature was properly generated, with the same tλ in the S∗
λ’s

and cλ’s, such that the vectors (1, tλ) and (tλ,−1) are orthogonal in equation (1), and (H,H ′) =
(H̄, H̄) so that (1, H) and (H̄,−1), as well as (1, H ′) and (H̄ ′,−1) are orthogonal, to guarantee
that for random θ and θ′, (1, H,H ′) and (θH̄ + θ′H̄ ′,−θ,−θ′) are orthogonal in equation (2).

Issuing new attributes to an existing key. We propose a way for the Central Authority,
as well as any delegator, to compute new attributes for an existing signing key without having
to recompute the full key.

The main insight of our technique is that all keys possess a random δid (which can be of
the form αidδid after any number of delegation), specific to the current id considered, that binds
every part of the key together. Thus, we use a Pseudo-Random Function on the entry id to
generate these δid.

The key of the PRF used by each agent (the Central Authority, and any delegator) shall be
unique and secret, as the knowledge of δid is enough to generate new attributes arbitrarily for
any existing signing key.

3.2 Security Results

About the above ABS with delegation, one can claim the unforgeability and the perfect anonymity,
as defined in Section 2.4.

Theorem 8 (Existential Unforgeability). The ABS scheme with delegation described in
Section 3.1 is existentially unforgeable under the collision-resistance of the hash functions H,H′

and the SXDH assumption.

Theorem 9 (Perfect Anonymity). The ABS scheme with delegation described in Section 3.1
is perfectly anonymous.

4 Sketches of the Security Proofs

We provide here some sketches of the proofs. Full proofs are detailed in Appendix C.

4.1 Perfect Anonymity

Proof. Let us define an alternative signing algorithm AltSig, that uses the master secret key
instead of an individual signing key. We will first show that this alternative signature algorithm
produces signatures indistinguishable from the ones created by an ABS without delegation.
Then, we show that the distribution of signatures generated by delegated keys, whether via

Attribute-Based Signatures with Advanced Delegation, and Tracing 13

delegation of attributes or delegation of policies, is the same as the distribution of signatures
made by keys in an ABS without delegation. This will show that the distribution of all the
possible signatures made with our scheme is the same.

Let us begin with AltSig:

AltSig(MK,m, T). With random scalars δ′, ζ, ν, (qλ)λ, (γλ)λ
$← Zq, and (β′λ)λ a random δ′-

labeling of T ∗, set, for H = H(T) and H ′ = H′(m):

U∗ = (δ′, ζ, 02)B∗ S∗
λ = (β′λ, γλ(1, tλ), qλ, 0

6)D∗ V ∗ = (δ′ · (1, H,H ′), ν, 04)H∗

We claim that this is the same distribution as a real signature generated by a signing key
SKid,Γ from the KeyGen algorithm (which is detailed in the supplementary materials in G0),
except for two elements that we now discuss.

First, the random (γλ)λ from the second component of S∗
λ follows the same random uniform

distribution as (αλξπλ + ωλ)λ.
Second, the random δ′-labeling (β′λ)λ of T ∗ replaces (αλδ

′+βλ)λ, where (αλ) is the 1-labeling
of T ∗ specific to the Evaluation Pruned Tree associated to Γ , and (βλ) a random 0-labeling
of T ∗. As already noted, from the linearity of the labelings on T ∗, the linear combination is a
random 1 · δ′ + 0-labeling of T ∗, as (β′λ)λ is. We stress that adding a random 0-labeling of T ∗,
which only depends on the policy T , completely hides the initial labeling that was specific to
Γ , and thus to the verifier.

Finally, we prove that the distribution of signatures made using delegation is the same as
the one from AltSig. This is shown in G0, as we instantiate the first game for our EUF proof.

As an additional note for the incoming EUF proof, we note that, should it be necessary,
AltSig would also be able to return the value r∗3 = δ′ ·h∗

3, which will be useful to simulate answer
to ODelegatePolicy queries, and output r∗3.

4.2 Existential Unforgeability

Proof. The proof is done in two parts. First, we show that if the adversary is only allowed
access to oracles OKeyGen and OSig, then the scheme is EUF. This is effectively considering
an adversary without delegation. Then, we show that we can simulate all the other oracles
(ODelegateAttributes,ODelegatePolicy,ODelegateSig) using only the OKeyGen and OSig oracles.

Proof without Delegation. For this proof, thanks to the (perfect) indistinguishability of the
Sig and AltSig outputs from the Anonymity of the scheme, we will first replace the simulation
of the signing oracle by the AltSig procedure.

Then, we will use the index id for all the KeyGen queries/answers, and we assume the number
of KeyGen queries bounded by K. We use the index i for all the Sig queries/answers, and we
assume the number of Sig queries bounded by S. We will also use t to denote the attributes,
and we assume the number of attributes involved in a security game bounded by T .

The verification done by the challenger (on the candidate forgery output by the adversary)
uses a pair (m, T) that is different from any pair that appeared in the signing queries, hence
with H̄ = H(T) and H̄ ′ = H′(m), but (H̄, H̄ ′) ̸= (Hi, H

′
i) for all i, under the collision-resistance

of H and H′, as for any pair (mi, Ti) at least m ̸= mi or T ̸= Ti. Then, the proof follows the
sequence of games presented on Figure 5, to show, as proven in Appendix C.3, that

Adv0 − Adv5 ≤ (6KT + 2S + 2)× AdvddhG1
(t) + (4T 2K + 6K + 4S)× AdvddhG2

(t)

+ S/q + AdvcollH (t) + AdvcollH′ (t).

We now deal with the final game G5 and consider a signature (U∗, V ∗, (S∗
λ)λ) generated by

the adversary. If e(b1, U
∗) = 1Gt , then the verification fails, by definition of Verif. Hence, the

first component of U∗ must be non-zero, in the basis B∗. We now consider the value e(u, U∗) ·

14 Cécile Delerablée, Lenäıck Gouriou, and David Pointcheval

G0 Initialization of the EUF security game
For the (at most) K different id’s and S different indices i’s.
k∗
id,0 = (δid ϕid,0 0 0)B∗

U∗
i = (δi ζi 0 0)B∗

u = (−s0 − s 0 κ0 0)B
r∗id,1 = (δid 0 0 ψid,1 0 0 0 0)H∗

r∗id,2 = (0 δid 0 ψid,2 0 0 0 0)H∗

r∗id,3 = (0 0 δid ψid,3 0 0 0 0)H∗

V ∗
i = (δi δiHi δiH

′
i νi 0 0 0 0)H∗

v = (s+ θH̄+ θ′H̄ ′ −θ −θ′ 0 κ 0 0 0)H
k∗
id,t = (δid πid,t πid,tt ϕid,t 0 0 0 0 0 0)D∗

S∗
i,λ = (β′

i,λ γi,λ γi,λtλ qi,λ 0 0 0 0 0 0)D∗

cλ = (sλ θλtλ, −θλ 0 κλ 0 0 0 0 0)D

G1 rλ is a r0-labeling, ω is random
SubSpace-Ind on (B,B∗)3,4, (D,D∗)5,6 and (H,H∗)4,5

u = (−s0 − s 0 κ0 −r0)B

v = (s+ θH̄+ θ′H̄ ′ −θ −θ′ 0 κ ω 0 0)H

cλ = (sλ θλtλ −θλ 0 κλ rλ 0 0 0 0)D

G2 δ′′id all random: Hybrid sub-sequence (see Figure 8)

k∗
id,0 = (δid ϕid,0 0 δ′′id)B∗

k∗
id,t = (δid πid,t πid,tt ϕid,t 0 0 0 0 0 0)D∗

G3 r′0 random: Formal change of basis on (B,B∗)4

u = (−s0 − s 0 κ0 r′0)B

G4 ρi, τi all random: Hybrid sub-sequence (see Figure 9)

U∗
i = (δi ζi 0 ρi)B∗

V ∗
i = (δi δiHi δiH

′
i νi 0 τi 0 0)H

G5 s′ random : Formal change of basis on (B,B∗)4,1

u = (s′ 0 κ0 r′0)B

Fig. 5. Sequence of Games for Unforgeability. Grey rectangles indicate the values changed in each game

Attribute-Based Signatures with Advanced Delegation, and Tracing 15

e(v, V ∗)·
∏
e(cλ, S

∗
λ). Since the coefficient s′ of b1 in u is uniform and independent from all other

values, then e(u, U∗) is uniform and independent from all other pairings in the Verif algorithm.
This implies e(u, U∗) · e(v, V ∗) ·

∏
e(cλ, S

∗
λ) ̸= 1Gt except with probability 1/q: Adv5 ≤ 1/q. As

a consequence,

Adveuf = Adv0 ≤ (6KT + 2S + 2)× AdvddhG1
(t) + (4T 2K + 6K + 4S)× AdvddhG2

(t)

+ (S + 1)/q + AdvcollH (t) + AdvcollH′ (t).

Proof with Delegation. We now reduce the EUF proof for our ABS with delegation to the
proof without delegation. To do this, we simulate the oracles for delegated keys: keys from
ODelegateAttributes can be simulated with OKeyGen, and signatures from ODelegateSig and
policy keys from ODelegatePolicy can be simulated with AltSig.

Once we have shown these simulations, we are in a similar game as G0 for the Existential
Unforgeability proof in the case without delegation. The sequence of games can continue the
same way, with thus the same security bounds.

The full details of the proof for the simulation of the oracles can be found in Appendix C.2.

5 ABS with Traceability

In usual ABS definitions, and as shown in our construction, one usually expects perfect anonymity.
But one could also require traceability of the signer, as in group signatures [Cv91], with an
opener able to trace back the signer, and even prove the correct opening.

We propose such a construction, where tracers can be held accountable by a designated Trac-
ing Authority. The traceability we propose does not ensure non-frameability from the Central
Authority [EGK14], but it does ensure the traditional traceability property, which guarantees
that malicious signers cannot deceive the designated tracer.

The way we design traceability make it compatible with our construction with delegation,
from Section 3. This would result in a scheme where delegation of any signing key is possible,
and where a Tracing Authority can trace any signature. However, we underline that a scheme
that combines both our delegation and tracing can only trace back to the original delegator of
the signing key that was used to produce the signature that is being tracked.

A more fine-grained solution for tracing delegated keys and path of delegations can be found
in [GM19], but it comes at the cost of a scheme whose signatures’ sizes are linear in both the
number of attributes used and the length of the delegation path.

5.1 Traceable ABS

This extends the initial definition of an ABS, with the algorithms Setup (with additional tracing
key TK and verification key VK), KeyGen, Sig, and Verif, we also consider the Trace and Judge
algorithms:

Trace(TK,m, T , σ). Given the tracing key TK and a valid signature σ on (m, T), the algorithm
outputs the identity id of the signer together with a proof π, both set to ⊥ in case of failure.

Judge(VK,m, σ, id, π). Given the verification key VK, a signature σ for a messagem, and a proof
π that user id generated (m, T , σ), the algorithm outputs 1 if π is valid or 0 else.

Correctness, unforgeability and anonymity are the same as for a regular ABS (see definitions
from [OT11]), except that anonymity cannot be perfect, but computational. We also ask for
any valid signature to be traced back to its signer, with a convincing proof π, either for a judge
or anybody when VK is public.

Definition 10 (Traceability). Traceability for ABS is defined by the following game between
the adversary and a challenger:

16 Cécile Delerablée, Lenäıck Gouriou, and David Pointcheval

Initialize: The challenger runs the Setup algorithm of ABS and gives the public parameters PK
to the adversary;

Oracles: The following oracles can be called in any order and any number of times.
OKeyGen(id, Γ): to model KeyGen-queries for any identity id and any set of attributes Γ of

its choice, and the adversary gets back the key SKid,Γ ;
OSig(id,m, T): to model Sig-queries for any identity id and under any policy T of its choice

for a message m, and the adversary gets the signature σ;
Finalize(b′): The adversary outputs a signature (m′, T ′, σ′). One asks (id, π) = Trace(TK, σ′).

If one of the following is true (non-legitimate attack)
– (m′, T ′) has been queried to the OSig-oracle;
– id has been queried to the OKeyGen-oracle with Γ such that T ′(Γ) = 1 and Judge(VK,m′, σ′, id, π) =

1;
then output 0, otherwise output Verif(PK,m′, T ′, σ′).

The success Advtrace(A) of an adversary A against traceability is the probability to have 1 as
output in this game.

More precisely, we consider the adversary wins the traceability game if it manages to mislead
the tracing procedure: by making it either fail or output an honest user (whose key has not
been asked to the key-oracle), or by making the result of the tracing impossible to prove. Of
course, we will ignore the output if it exactly corresponds to a signing-query.

We will add the restriction that the adversary can only corrupt disjoint sets of identities
between any key-query and any other signing-query. We will call it the distinct-user setting.

One-Time Linearly-Homomorphic Signature We will rely on a (One-Time) Linearly-
Homomorphic Signature (OT-LH) [LPJY13]. An OT-LH scheme is a signature scheme where
one can produce a valid signature out of any linear combination of valid signatures, provided he
knows those other signatures. In other words, one can produce a valid signature σ of

∑
i αimi,

provided he knows valid signatures σi of the messages mi.
Another OT-LH scheme is proposed in [HP22] which has been proven in the generic group

model, with an extractor that provides the coefficients in the linear combination of the initial
messages for the new signed message. From this paper, we will also use the following theorem,
that states the intractability of the Linear-Square problem:

Theorem 11 (Linear-Square Problem). Given n Square Diffie-Hellman tuples (gi, ai =

gwi
i , bi = awi

i), together with wi, for random gi
$← G∗ and wi

$← Z∗
q, outputting (αi)i=1,...,n such

that (G =
∏
gαi
i , A =

∏
aαi
i , B =

∏
bαi
i) is a valid Square Diffie-Hellman, with at least two

non-zero coefficients αi, is computationally hard under the Discrete Logarithm assumption.

5.2 Construction of Traceable ABS

We consider any OT-LH scheme (KeyGen′,Sig′,DerivSign′,Verif ′) in Gn
2 . We will also use a non-

interactive zero-knowledge proof of knowledge (NIZKPoK-SqDH,VERIF-SqDH) of the witness
w for a Square Diffie-Hellman tuple (ht, h

w
t , h

w2

t) in Gt and a non-interactive zero-knowledge
proof (NIZKPoK-DH,VERIF-DH) of Diffie-Hellman tuple (gt, g

w
t , g

δ
t , g

δw
t) in Gt. For both proofs,

one can simply use Schnorr-like proofs [Sch91] with the Fiat-Shamir paradigm [FS87]. They
are well-known to provide simulation-soundness [Sah99]. We now detail our construction, with
access-trees for policies, where we just complete the signing key k∗

0 with a square Diffie-Hellman
tuple where one can identify the signer, if and only if the scalar wid is known. The public value
gwid
t associated to user id will then be enough to verify the tracing, without revealing wid:

Setup(1κ). The algorithm chooses three random dual orthogonal bases, in a pairing-friendly
setting PG = (G1,G2,Gt, e,G1, G2, q):

B = (b1, . . . ,b6) D = (d1, . . . ,d10) H = (h1, . . . ,h8)

B∗ = (b∗
1, . . . ,b

∗
6) D∗ = (d∗

1, . . . ,d
∗
10) H∗ = (h∗

1, . . . ,h
∗
8).

Attribute-Based Signatures with Advanced Delegation, and Tracing 17

It also chooses two full-domain hash function H and H′ onto Zq. The algorithm calls the
OT-LH signature algorithm KeyGen′(1κ, 6), for vectors in G6

2, and gets back the keys sk
and vk. It also gets Σ2 = Sig′(sk,b∗

2), and sets the public parameters as PK = {PG,H,
(b1,b3,b5,b6), (b

∗
2, Σ2), (d1,d2,d3,d5), (d

∗
1,d

∗
2,d

∗
3,d

∗
4), (h1,h2,h3,h5), (h

∗
4), vk}, and the mas-

ter secret key is set as MK = {(b∗
1,b

∗
5,b

∗
6), (h

∗
1,h

∗
2,h

∗
3), sk}. Finally, the tracing key TK and

the verification key VK are initialized as empty sets.
KeyGen(MK, id, Γ). Random scalars δid, wid

$← Z∗
q are associated to id, with

k∗
0 = δid · b∗

1 + ϕ0 · b∗
2 + δid · wid · b∗

5 + δid · w2
id · b∗

6

k∗
t = δid · d∗

1 + πt · (d∗
2 + t · d∗

3) + ϕt · d∗
4

r∗1 = δid · h∗
1 + ψ1 · h∗

4 r∗2 = δid · h∗
2 + ψ2 · h∗

4 r∗3 = δid · h∗
3 + ψ3 · h∗

4

for all attributes t ∈ Γ , with ϕ0, (ϕt)t, (πt)t $← Z∗
q for each t. The algorithm calls for Σid =

Sig′(sk,k∗
0). The signing key SKid,Γ is set as (wid,k

∗
0, Σid, (k

∗
t)t∈Γ , r

∗
1, r

∗
2, r

∗
3), for id. It can

be computed later for new attributes, but only by using the same δid. The pair (id, wid) is
appended to TK, and (id, gwid

t) is appended to VK.

Sig(SKid,Γ ,m, T). Let T ′ ∈ EPT(T , Γ) be an Evaluation Pruned Tree, ν, ξ, ζ
$← Z∗

q . Compute
the following 1-labeling of the dual tree T ∗: for each leaf λ, choose αλ = 1 if λ ∈ LT ′ , else
αλ = 0. Then, choose a random 0-labeling (βλ) of T ∗, and (qλ)λ, (ωλ)λ random scalars, and
set, for H = H(T), H ′ = H′(m):

U∗ = ξk∗
0 + ζb∗

2 S∗
λ = αλξ · k∗

tλ
+ βλd

∗
1 + ωλ(d

∗
2 + tλ · d∗

3) + qλ · d∗
4

V ∗ = ξ(r∗1 +H · r∗2 +H ′ · r∗3) + ν · h∗
4

for all the leaves λ, where tλ is the associated attribute of λ. From the linearly-homomorphic
property, one can compute a signature on U∗ ∈ G6

2:

Σ = DerivSign′(vk, ((ξ,k∗
0, Σid), (ζ,b

∗
2, Σ2))

Eventually, using wid, one can generate the proof of Square Diffie-Hellman tuple Π =

NIZKPoK-SqDH(wid, (e(b1, U
∗), e(b5, U

∗), e(b6, U
∗))), as this tuple is equal to (ht, h

wid
t , h

w2
id

t),
for some ht ∈ Gt. The final signature consists of the tuple σ = (U∗, V ∗, (S∗

λ)λ), Σ,Π).

Verif(PK,m, T , σ). Let κ, κ0, (κλ)λ, s, s0, θ, θ
′(θλ)λ

$← Zq. Let (sλ)λ be a random s0-labeling of
T , then set, for H̄ = H(T), H̄ ′ = H′(T):

u = −(s0 + s) · b1 + κ0 · b3 cλ = sλ · d1 + θλtλ · d2 − θλ · d3 + κλ · d5

v = (s+ θH̄ + θ′H̄ ′) · h1 − θ · h2 − θ′ · h3 + κ · h5

Accept if e(b1, U
∗) ̸= 1Gt and e(u, U

∗)·e(v, V ∗)·
∏
e(cλ, S

∗
λ) = 1Gt , but also if Verif

′(vk, U∗, Σ) =
1 and VERIF-SqDH((e(b1, U

∗), e(b5, U
∗), e(b6, U

∗)), Π) = 1, otherwise reject.
Trace(TK, σ′). Compute B1 = e(b1, U

∗) and B2 = e(b5, U
∗). Then, for (id, wid) ∈ TK, check

until Bwid
1 = B2. When the equality holds then generate the proof

π = NIZKPoK-DH(gt, g
wid
t , e(b1, U

∗), e(b5, U
∗))

and output (id, π). Otherwise output ⊥.
Judge(VK,m, σ′, id, π). Extract gwid

t corresponding to id from VK and output

VERIF-DH((gt, g
wid
t , e(b1, U

∗), e(b5, U
∗)), π)

As VK can be a public list, anybody can run the Judge algorithm. This means that anyone can
know the current number of users in the system.

18 Cécile Delerablée, Lenäıck Gouriou, and David Pointcheval

5.3 Correctness

This construction is a slight variation of the previous ABS scheme. Thus the correctness directly
ensues from the correctness of the scheme formerly presented in Section 3, the correctness and
linear-homomorphic property of the OT-LH scheme, and the completeness of both the zero-
knowledge proof.

5.4 Security Results

Since the verification process is even more restrictive than in the previous scheme, one can claim
the same unforgeability result:

Theorem 12 (Existential Unforgeability). The ABS scheme described in Section 5.2 is
existentially unforgeable under the collision-resistance of the hash functions H,H′ and the SXDH
assumption.

Because of the additional elements in the signature (which are useful for tracing), the signature
is no longer perfectly anonymous, but still computationally anonymous:

Theorem 13 (Computational Anonymity). The ABS scheme described in Section 5.2 is
computationally anonymous, when w0 and w1, in SK0 and SK1, are unknown, under the Deci-
sional Square Diffie-Hellman assumption in G2, and the perfect zero-knowledge of the NIZKPoK-SqDH
in the ROM.

Proof. The additional elements are the Square Diffie-Hellman tuple in the 1-st, 5-th, and 6-th
components of U∗ = (δ′, ϕ′0, 0, 0, δ

′ · wid, δ
′ · w2

id)B∗ , the signature Σ, and the proof Π.

The Square Diffie-Hellman tuple in U∗ can be generated from a Square Diffie-Hellman tuple
(δ′G2, w · δ′G2, w

2 · δ′G2) ∈ G3
2. Under the Decisional Square Diffie-Hellman assumption in G2,

such a tuple is indistinguishable from a random tuple in G3
2. This makes U∗ generated from w0 or

w1 indistinguishable when those scalars are unknown. Since Σ is a signature of U∗ that is itself
indistinguishable for w0 and w1, Σ is also indistinguishable for w0 and w1. Eventually, Π being
a zero-knowledge proof on the above tuple, it can be simulated without knowing the witness.
It thus does not leak any additional information. Hence the anonymity under the Decisional
Square Diffie-Hellman assumption in G2.

Finally, we state the traceability result, for which the proof is postponed to Appendix C.7

Theorem 14 (Traceability). The ABS scheme described in Section 5.2 is traceable in the
ROM according to the Definition 10, in the distinct-user setting, under the security of the OT-LH
signature scheme, the intractability of the Linear-Square problem, the simulation-extractability
of the NIZKPoK-SqDH, and the soundness of the NIZKPoK-DH.

References

Cv91. David Chaum and Eugène van Heyst. Group signatures. In Donald W. Davies, editor, EURO-
CRYPT’91, volume 547 of LNCS, pages 257–265. Springer, Heidelberg, April 1991.

DGK+21. Ivan Damg̊ard, Chaya Ganesh, Hamidreza Khoshakhlagh, Claudio Orlandi, and Luisa Siniscalchi.
Balancing privacy and accountability in blockchain identity management. In Kenneth G. Paterson,
editor, CT-RSA 2021, volume 12704 of LNCS, pages 552–576. Springer, Heidelberg, May 2021.

DGM18. Constantin Catalin Dragan, Daniel Gardham, and Mark Manulis. Hierarchical attribute-based signa-
tures. In Jan Camenisch and Panos Papadimitratos, editors, CANS 18, volume 11124 of LNCS, pages
213–234. Springer, Heidelberg, September / October 2018.

DGP22. Cécile Delerablée, Lénäıck Gouriou, and David Pointcheval. Key-policy ABE with switchable at-
tributes. In Clemente Galdi and Stanislaw Jarecki, editors, The 13th Conference on Security in
Communication Networks (SCN ’22), volume 13409 of LNCS, pages 147–171, Amalfi, Italy, 2022.
Springer, Heidelberg. https://eprint.iacr.org/2021/867.

https://eprint.iacr.org/2021/867

Attribute-Based Signatures with Advanced Delegation, and Tracing 19

DOT19. Pratish Datta, Tatsuaki Okamoto, and Katsuyuki Takashima. Efficient attribute-based signatures
for unbounded arithmetic branching programs. In Dongdai Lin and Kazue Sako, editors, PKC 2019,
Part I, volume 11442 of LNCS, pages 127–158. Springer, Heidelberg, April 2019.

DZL14. Shenglong Ding, Yiming Zhao, and Yuyang Liu. Efficient traceable attribute-based signature. In 2014
IEEE 13th International Conference on Trust, Security and Privacy in Computing and Communica-
tions, pages 582–589, 2014.

EGK14. Ali El Kaafarani, Essam Ghadafi, and Dalia Khader. Decentralized traceable attribute-based sig-
natures. In Josh Benaloh, editor, CT-RSA 2014, volume 8366 of LNCS, pages 327–348. Springer,
Heidelberg, February 2014.

FS87. Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to identification and signature
problems. In Andrew M. Odlyzko, editor, CRYPTO’86, volume 263 of LNCS, pages 186–194. Springer,
Heidelberg, August 1987.

Gha15. Essam Ghadafi. Stronger security notions for decentralized traceable attribute-based signatures and
more efficient constructions. In Kaisa Nyberg, editor, CT-RSA 2015, volume 9048 of LNCS, pages
391–409. Springer, Heidelberg, April 2015.

GM19. Daniel Gardham and Mark Manulis. Hierarchical attribute-based signatures: Short keys and optimal
signature length. In Robert H. Deng, Valérie Gauthier-Umaña, Mart́ın Ochoa, and Moti Yung, editors,
ACNS 19, volume 11464 of LNCS, pages 89–109. Springer, Heidelberg, June 2019.

GPSW06. Vipul Goyal, Omkant Pandey, Amit Sahai, and Brent Waters. Attribute-based encryption for fine-
grained access control of encrypted data. In Ari Juels, Rebecca N. Wright, and Sabrina De Capitani
di Vimercati, editors, ACM CCS 2006, pages 89–98. ACM Press, October / November 2006. Available
as Cryptology ePrint Archive Report 2006/309.

HP22. Chloé Hébant and David Pointcheval. Traceable constant-size multi-authority credentials. In Clemente
Galdi and Stanislaw Jarecki, editors, Security and Cryptography for Networks, pages 411–434, Cham,
2022. Springer International Publishing.

HPP20. Chloé Hébant, Duong Hieu Phan, and David Pointcheval. Linearly-homomorphic signatures and
scalable mix-nets. In Aggelos Kiayias, Markulf Kohlweiss, Petros Wallden, and Vassilis Zikas, editors,
PKC 2020, Part II, volume 12111 of LNCS, pages 597–627. Springer, Heidelberg, May 2020.

LMY14. Weiwei Liu, Yi Mu, and Guomin Yang. Attribute-based signing right delegation. In Man Ho Au,
Barbara Carminati, and C.-C. Jay Kuo, editors, Network and System Security, pages 323–334, Cham,
2014. Springer International Publishing.

LOS+10. Allison B. Lewko, Tatsuaki Okamoto, Amit Sahai, Katsuyuki Takashima, and Brent Waters. Fully se-
cure functional encryption: Attribute-based encryption and (hierarchical) inner product encryption. In
Henri Gilbert, editor, EUROCRYPT 2010, volume 6110 of LNCS, pages 62–91. Springer, Heidelberg,
May / June 2010.

LPJY13. Benôıt Libert, Thomas Peters, Marc Joye, and Moti Yung. Linearly homomorphic structure-preserving
signatures and their applications. In Ran Canetti and Juan A. Garay, editors, CRYPTO 2013, Part II,
volume 8043 of LNCS, pages 289–307. Springer, Heidelberg, August 2013.

LW10. Allison B. Lewko and Brent Waters. New techniques for dual system encryption and fully secure
HIBE with short ciphertexts. In Daniele Micciancio, editor, TCC 2010, volume 5978 of LNCS, pages
455–479. Springer, Heidelberg, February 2010.

MPR11. Hemanta K. Maji, Manoj Prabhakaran, and Mike Rosulek. Attribute-based signatures. In Aggelos
Kiayias, editor, CT-RSA 2011, volume 6558 of LNCS, pages 376–392. Springer, Heidelberg, February
2011.

OT11. Tatsuaki Okamoto and Katsuyuki Takashima. Efficient attribute-based signatures for non-monotone
predicates in the standard model. In Dario Catalano, Nelly Fazio, Rosario Gennaro, and Antonio
Nicolosi, editors, PKC 2011, volume 6571 of LNCS, pages 35–52. Springer, Heidelberg, March 2011.

OT12. Tatsuaki Okamoto and Katsuyuki Takashima. Fully secure unbounded inner-product and attribute-
based encryption. In Xiaoyun Wang and Kazue Sako, editors, ASIACRYPT 2012, volume 7658 of
LNCS, pages 349–366. Springer, Heidelberg, December 2012.

OT13. Tatsuaki Okamoto and Katsuyuki Takashima. Decentralized attribute-based signatures. In Kaoru
Kurosawa and Goichiro Hanaoka, editors, PKC 2013, volume 7778 of LNCS, pages 125–142. Springer,
Heidelberg, February / March 2013.

RST01. Ronald L. Rivest, Adi Shamir, and Yael Tauman. How to leak a secret. In Colin Boyd, editor,
ASIACRYPT 2001, volume 2248 of LNCS, pages 552–565. Springer, Heidelberg, December 2001.

Sah99. Amit Sahai. Non-malleable non-interactive zero knowledge and adaptive chosen-ciphertext security.
In 40th FOCS, pages 543–553. IEEE Computer Society Press, October 1999.

Sch91. Claus-Peter Schnorr. Factoring integers and computing discrete logarithms via Diophantine approx-
imations. In Donald W. Davies, editor, EUROCRYPT’91, volume 547 of LNCS, pages 281–293.
Springer, Heidelberg, April 1991.

SKAH18. Yusuke Sakai, Shuichi Katsumata, Nuttapong Attrapadung, and Goichiro Hanaoka. Attribute-based
signatures for unbounded languages from standard assumptions. In Thomas Peyrin and Steven Gal-
braith, editors, ASIACRYPT 2018, Part II, volume 11273 of LNCS, pages 493–522. Springer, Heidel-
berg, December 2018.

20 Cécile Delerablée, Lenäıck Gouriou, and David Pointcheval

Wat09. Brent Waters. Dual system encryption: Realizing fully secure IBE and HIBE under simple assump-
tions. In Shai Halevi, editor, CRYPTO 2009, volume 5677 of LNCS, pages 619–636. Springer, Heidel-
berg, August 2009.

A One-Time Linearly-Homomorphic Signature

For our traceable ABS scheme, we will make use of a (One-Time) Linearly-Homomorphic Sig-
nature (OT-LH). Let us first recall the definition.

KeyGen(1κ, n). From the security parameter κ, and a dimension n, the algorithm outputs a
signing key sk and a verification key vk;

Sig(sk,m). For a signing key sk and a message m of dimension n, the algorithm outputs a
signature σ;

DerivSign(vk, (αi,mi, σi)). For a verification key vk, several messages mi together with their
signatures σi, and some coefficients αi, the algorithm outputs a signature σ of the linear
combination

∑
i αimi;

Verif(vk,m, σ). Given a verification key vk, a message m, and a signature σ, the algorithm
outputs 1 for accept or 0 for reject;

Correctness and unforgeability are similar as for usual signature schemes, except that an output
(m′, σ′) will be considered a forgery if m′ is not in the span of the messages mi asked to the
signing oracle. Indeed, linear combination of signatures on themi’s is accessible to the adversary.
We will then denote by AdveufOT-LH the best advantage an adversary can have in generating a
valid signature for a message out of the span of the initially signed messages. Furthermore, any
signature generated by linear combinations using DerivSign should be perfectly indistinguishable
from a fresh signature generated by Sig.

Such linearly-homomorphic signatures have been proposed in the literature, as in [LPJY13].
But we can also use the simplified version from [HP22] which has been proven in the generic
group model, even together with an extractor that provides the coefficients in the linear com-
bination of the initial messages for the new signed message. From this paper, we will also use
the following theorem, that states the intractability of the Linear-Square problem:

Theorem 15 (Linear-Square Problem). Given n Square Diffie-Hellman tuples (gi, ai =

gwi
i , bi = awi

i), together with wi, for random gi
$← G∗ and wi

$← Z∗
q, outputting (αi)i=1,...,n such

that (G =
∏
gαi
i , A =

∏
aαi
i , B =

∏
bαi
i) is a valid Square Diffie-Hellman, with at least two

non-zero coefficients αi, is computationally hard under the Discrete Logarithm assumption.

B Schematic View of Change of Basis theorems.

We present in Figure 6 a schematic view of the 4 change of basis theorems that are used during
the security proof. We refer to [DGP22] for a full proof of the first 3 theorems, and the proof
for the adaptive Indexing theorem can be found in Section C.2.

C Proofs

In the following proofs, we will sometimes use the following DSDH assumption, which is implied
by the DDH assumption:

Definition 16 (Decisional Separation Diffie-Hellman Assumption). The DSDH assump-
tion in G, of prime order q with generator G, between two constant values x, y, states that no
algorithm can efficiently distinguish the two distributions, where a, b

$← Zq,

Dx = {(a ·G, b ·G, (ab+ x) ·G)} Dy = {(a ·G, b ·G, (ab+ y) ·G)}

As c + x and c + y are perfectly indistinguishable for a random c, then the best advantage an
algorithm can get in distinguishing the two distributions within time T is upper-bounded by
2 · AdvddhG (T).

Attribute-Based Signatures with Advanced Delegation, and Tracing 21

SubSpace-Ind on (B,B∗)1,2 with b∗
2 hidden.

c = (x1 x2 x3)B ≈ (x1 x′2 x3)B

k∗ = (y1 y2 y3)B∗ = (y1 y2 y3)B∗

Swap-Ind on (B,B∗)1,2,3 with b∗
1,b

∗
2 hidden.

c = (x1 0 x3)B ≈ (0 x1 x3)B

k∗ = (y1 y1 y3)B∗ = (y1 y1 y3)B∗

Index-Ind (static) on (B,B∗)1,2,3 with b∗
3 hidden, if p ̸= t.

c = (σ · (1, p) x3)B ≈ (σ · (1, p) x′3)B

k∗ = (π · (t,−1) y3)B∗ = (π · (t,−1) y3)B∗

Index-Ind (adaptive) on (B,B∗)1,2,3,4,5,6 with b4,b5,b
∗
5,b6,b

∗
6 hidden,

if (x, x′) ̸= (y, y′) and random ρ.

c = (σ · (1, y, y′) x4 0 0)B

≈ (σ · (1, y, y′) x′4 0 0)B

k∗ = (π · (x+ ρx′,−1,−ρ) y3 0 0)B∗

Colored cells x are random values, while gray cells x are any value (possibly chosen).

Fig. 6. Computationally indistinguishable changes of Basis

C.1 Proof of Dual-Tree Propositions

We remind the two propositions and prove them.

Proposition 6. If (aλ)λ is an a0-labeling of T , and (bλ)λ is a b0-labeling of its dual tree T ∗,
then

∑
λ∈L aλbλ = a0b0.

Proof. We proceed by induction on the depth ℓ of the access-trees T .
When ℓ = 1, there are only two cases: any tree is either a root node labeled with an AND

gate and any number of children, or it is a root node labeled with an OR gate and any number
of children, and T ∗ is the alternative situation. Hence, by considering T with an AND-gate at
the root and T ∗ with an OR-gate at the root, we address both cases at once (we just have to
exchange T and T ∗ for the other case): (aλ)λ is an a0-labeling of T , and (bλ)λ is a b0-labeling of
T ∗. Since L = children(ρ), because of the AND-gate, a0 =

∑
κ∈L aκ, and because of the OR-gate,

for all κ ∈ L, bκ = b0:
∑

λ∈L aλbλ = b0
∑

λ∈L aλ = a0b0.

Now we suppose, for the induction step, that this property holds for all k ≤ ℓ ∈ N, and prove
it holds for ℓ+1 as well. Again, let us consider T an access-tree of depth ℓ+1 with an AND-gate
at the root, and (aλ)λ an a0-labeling of T , then T ∗ is an access-tree of depth ℓ + 1 with an
OR-gate at the root, (bλ)λ is a b0-labeling of T ∗ (the other case just consists in switching T and
T ∗). Now, roots’ children are subtrees of depth at most ℓ. We note Tκ the subtree rooted at
κ ∈ children(ρ), and Lκ its leaves, and note that (Lκ)κ is a strict partition of L. As the dual tree
is built by just switching AND/OR gates, the dual-tree of Tκ (the subtree rooted at κ) is the
subtree of the dual-tree of T ∗ rooted at κ, that we can thus denote T ∗

κ without any ambiguity.

By definition of the labelings, a0 =
∑

κ∈children(ρ) aκ for T , and in T ∗, for all κ ∈ children(ρ),
bκ = b0. Then, as above, a0b0 =

∑
κ∈children(ρ) aκbκ. However, we also know from the induction

hypothesis on all the subtrees Tκ and T ∗
κ , rooted at κ ∈ children(ρ) over the sets of leaves Lκ,

of depth at most ℓ,
∑

λ∈Lκ
aλbλ = aκbκ. Because of the partition property of the Lκ’s into L,∑

λ∈L aλbλ =
∑

κ∈children(ρ)
∑

λ∈Lκ
aλbλ =

∑
κ∈children(ρ) aκbκ = a0b0.

Proposition 7. Let T be an access-tree and Γ a set of attributes so that T (Γ) = 1. Then, for
any Evaluation Pruned Tree T ′ ∈ EPT(T , Γ), there is a 1-labeling (bλ)λ of the dual T ∗ which
verifies: bλ = 1 for all λ ∈ LT ′ and bλ = 0 for all λ /∈ LT ′.

22 Cécile Delerablée, Lenäıck Gouriou, and David Pointcheval

Proof. Let T ′ be an Evaluation Pruned Tree from EPT(T , Γ), where T (Γ) = 1. By definition
of an EPT, T ′ has only one child on OR gates that come from T , and all children on AND gates
that come from T . This translates to its dual T ′∗ having AND gates with only one child, and
OR gates having all children. From there, we can easily construct a 1-labeling of T ′∗ noted (bλ)λ
where bλ = 1, for all λ ∈ LT ′ . Indeed, since AND gates have a unique child, its label is identical
to the one of the parent, and OR gates always have identical labels for the children than the
one of the parent, all the 1’s then go up to the root. We expand this into a 1-labeling of T ∗ by
setting bλ = 0 for all λ /∈ LT ′ .

C.2 Proof of Indexing for Dimension 3 Orthogonal Vectors

We have presented a simple version of the theorem, but a stronger version can be considered,
as in the SubSpace-Ind, Swap-Ind and 2-Dimensional Index-Ind, with bases (B,B∗) of any size n,
where the last positions can be filled with any valuses x7, . . . , xn, y7, . . . yn ∈ Zq.

The Index-Ind property can be static or adaptive [OT12,DGP22] regarding p and t, i.e. p
and t can be chosen before or after seeing the public parameters (with some basis vectors). The
difference between both versions is important when considering the proof of an attribute-based
construction, as it draws the line between bounded and unbounded universe of attributes. With
static Index-Ind, the attributes (p and t) must be chosen before seeing the public parameters,
which restricts attributes from a bounded universe of attributes (guessing the adversary’s choice
from an unbounded universe of attributes only work with negligeable probability). Meanwhile,
adaptive indexing allows the simulator to answer the adversary’s queries for any attribute and
at any point during the security game.

We note that there is a small amount of dimensions where vectors have components set to 0.
This is because these dimensions will serve as a fodder during the proof to manipulate the vectors
in an indistinguishable manner, in a way that is similar to the ideas used in the the Dual System
Encryption to prove adaptive security for identity and attribute-based constructions [Wat09].

We stress that in this theorem, π and σ are unknown and not under control, but σ ·G2 can
be known, as seen in the proof.

Proof. The proof follows a sequence of games presented in Figure 7.

Game G0: The adversary can choose (y, y′) ̸= (x, x′) and α, β in Zq, but π, σ, ρ
$← Zq:

u = (π(x+ ρx′,−1,−ρ), β, 0, 0)B v∗ = (σ(1, y, y′), 0, 0, 0)B∗

Game G1: We replicate the first vector (x + ρx′,−1,−ρ) into (x + ρx′,−1), with additional

ζ
$← Zp:

u = (π(x+ ρx′,−1,−ρ), β, ζ(x+ ρx′,−1))B v∗ = (σ(1, y, y′), 0, 0, 0)B∗

To show the indistinguishability, one applies the SubSpace-Ind property on (B,B∗)1,2,5,6. In-
deed, we can consider a triple (a ·G1, b ·G1, c ·G1), where c = ab+ τ mod q with either τ = 0
or random, which are indistinguishable under the DDH assumption in G1.

Let us assume we start from random dual orthogonal bases (V,V∗). Then we define the
matrices

B =


1 0 a 0
0 1 0 a
0 0 1 0
0 0 0 1


1,2,5,6

B′ =


1 0 0 0
0 1 0 0
−a 0 1 0
0 −a 0 1


1,2,5,6

B = B · V B∗ = B′ · V∗

Attribute-Based Signatures with Advanced Delegation, and Tracing 23

G0 Initial situation before indexing
u = (π((x+ρx′), −1, −ρ) β 0 0)B
v∗ = (σ(1, y, y′) 0 0 0)B∗

G1 SubSpace-Ind on (B,B∗)1,2,5,6

u = (π((x+ρx′), −1, −ρ) β ζ(x+ ρx′, −1))B

v∗ = (σ(1, y, y′) 0 0 0)B∗

G2 SubSpace-Ind on (B∗,B)1,2,3,5,6
u = (π((x+ρx′), −1, −ρ) β ζ(x+ ρx′, −1))B

v∗ = (σ(1, y, y′) 0 θ(1, y + ρy′))B∗

G3 Formal change on (B,B∗)5,6

u = (π((x+ρx′), −1, −ρ) β u1 u2)B

v∗ = (σ(1, y, y′) 0 v1 v2)B∗

G4 SubSpace-Ind on (B∗,B)5,4
u = (π((x+ρx′), −1, −ρ) β u1 u2)B

v∗ = (σ(1, y, y′) α v1 v2)B∗

G5 Formal change on (B,B∗)5,6

u = (π((x+ρx′), −1, −ρ) β ζ(x+ ρx′, −1))B

v∗ = (σ(1, y, y′) α θ(1, y + ρy′))B∗

G6 SubSpace-Ind on (B∗,B)1,2,3,5,6
u = (π((x+ρx′), −1, −ρ) β ζ(x+ ρx′, −1))B

v∗ = (σ(1, y, y′) α 0 0)B∗

G7 SubSpace-Ind on (B,B∗)1,2,5,6

u = (π((x+ρx′), −1, −ρ) β 0 0)B

v∗ = (σ(1, y, y′) α 0 0)B∗

Fig. 7. Sequence of Games for Index-Ind Property

The vectors b∗
5,b

∗
6 can not be computed, but they are hidden from the adversary’s view, and

are not used in any vector. We compute the new vectors:

u = (b(x+ ρx′,−1,−ρ), β, c(x+ ρx′,−1))V
= (b(x+ ρx′,−1,−ρ), β, (c− ab)(x+ ρx′,−1)B
= (b(x+ ρx′,−1,−ρ), β, τ(x+ ρx′,−1)B

v∗ = (σ(1, y, y′), 0, 0, 0)V∗ = (σ(1, y, y′), 0, 0, 0)B∗

One can note that when τ = 0, this is the previous game, and when τ random, we are in the
new game, with π = b and ζ = τ : Adv0 − Adv1 ≤ AdvddhG1

(t).

Game G2: We replicate the second non-orthogonal vector (1, y, y′) into (1, y + ρy′), with

additional θ
$← Zp:

u = (π(x+ ρx′,−1,−ρ), β, ζ(x+ ρx′,−1))B
v∗ = (σ(1, y, y′), 0, θ(1, y + ρy′))B∗

To show the indistinguishability, one applies the SubSpace-Ind property on (B∗,B)1,2,3,5,6.
Indeed, we can consider a triple (a · G2, b · G2, c · G2), where c = ab + τ mod q with either
τ = 0 or random, which are indistinguishable under the DDH assumption in G2.

24 Cécile Delerablée, Lenäıck Gouriou, and David Pointcheval

Let us assume we start from random dual orthogonal bases (V,V∗). Then we define the
matrices

B′ =


1 0 0 a 0
0 1 0 0 a
0 0 1 0 aρ
0 0 0 1 0
0 0 0 0 1


1,2,3,5,6

B =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
−a 0 0 1 0
0 −a −aρ 0 1


1,2,3,5,6

B∗ = B′ · V∗ B = B · V

The vectors b5,b6 can not be computed, but they are hidden from the adversary’s view. We
compute the new vectors:

v∗ = (b(1, y, y′), 0, c(1, y + ρy′))V∗ = (b(1, y, y′), 0, (c− ab)(1, y + ρy′))B∗

= (b(1, y, y′), 0, τ(1, y + ρy′))B∗

u = (π′(x+ ρx′,−1,−ρ), β, ζ(x+ ρx′,−1))V
= ((π′ + aζ)(x+ ρx′,−1,−ρ), β, ζ(x+ ρx′,−1))B

One can note that when τ = 0, this is the previous game, and when τ random, we are in the
new game, with π = π′ + aζ, σ = b, and θ = τ : Adv1 − Adv2 ≤ AdvddhG2

(t).

Game G3: Since (y, y′) ̸= (x, x′), with the random ρ, excepted with probability bounded by
1/q, x+ ρx′ ̸= y + ρy′, and so the vectors (1, y + ρy′) and (x+ ρx′,−1) are non-orthogonal.

They can be randomized with random scalars u1, u2, v1, v2
$← Zp:

u = (π(x+ ρx′,−1,−ρ), β, u1, u2)B v∗ = (σ(1, y, y′), 0, v1, v2)B∗

To show the indistinguishability, one makes a formal change of basis on (B,B∗)4,5, with a
random unitary matrix Z, with z1z4 − z2z3 = 1:

B = Z =

(
z1 z2
z3 z4

)
5,6

B′ =

(
z4 −z3
−z2 z1

)
5,6

B = B · V B∗ = B′ · V∗

This only impacts the hidden vectors (b5,b6), (b
∗
5,b

∗
6). If one defines u and v∗ in (V,V∗),

this translates in (B,B∗):

u = (π(x+ ρx′,−1,−ρ), β, ζ(x+ ρx′,−1))V
= (π(x+ ρx′,−1,−ρ), β, ζ((x+ ρx′)z1 − z2, (x+ ρx′)z3 − z4))B

v∗ = (σ(1, y, y′), 0, θ(1, y + ρy′))V∗

= (σ(1, y, y′), 0, θ(z4 − (y + ρy′)z3,−z2 + (y + ρy′)z1))B∗

Let us consider random u1, u2, v1, v2
$← Zp, and solve the system:

ζ((x+ ρx′)z1 − z2) = u1
ρ((x+ ρx′)z3 − z4) = u2
θ(z4 − (y + ρy′)z3) = v1

θ(−z2 + (y + ρy′)z1) = v2


(x+ ρx′)z1 − z2 = u1/ρ
−z2 + (y + ρy′)z1 = v2/θ
(x+ ρx′)z3 − z4 = u2/ρ
z4 − (y + ρy′)z3 = v1/θ

((x+ ρx′)− (y + ρy′))z1 = u1/ρ− v2/θ
−z2 + (y + ρy′)z1 = v2/θ

((x+ ρx′)− (y + ρy′))z3 = u2/ρ+ v1/θ
z4 − (y + ρy′)z3 = v1/θ

Attribute-Based Signatures with Advanced Delegation, and Tracing 25

This system admits a solution if y+ρy′ ̸= x+ρx′, which holds with overwhelming probability
for a random ρ

$← Zq if (y, y′) ̸= (x, x′). And with random θ and random unitary matrix Z,

u = (π(x+ ρx′,−1,−ρ), β, u1, u2)B v∗ = (σ(1, y, y′), 0, v1, v2)B∗

with random scalars u1, u2, v1, v2
$← Zp.

As a consequence, in bases (V,V∗), we are in the previous game, and in bases (B,B∗), we are
in the new game, if (y, y′) ̸= (x, x′): Adv2 − Adv3 ≤ 1/q, on the random choice of ρ.

Game G4: We now randomize the fourth component in v∗:

u = (π(x+ ρx′,−1,−ρ), β, u1, u2)B v∗ = (σ(1, y, y′), α, v1, v2)B∗

To show the indistinguishability, one applies the SubSpace-Ind property on (B∗,B)5,4. Indeed,
we can consider a triple (a · G2, b · G2, c · G2), where c = ab + τ mod q with either τ = 0 or
τ = α, which are indistinguishable under the DDH assumption in G2.

Let us assume we start from random dual orthogonal bases (V,V∗). Then we define the
matrices

B′ =

(
1 0
a 1

)
4,5

B =

(
1 −a
0 1

)
4,5

B∗ = B′ · V∗ B = B · V

The vectors b4 can not be computed, but it is not provided the adversary’s view. We compute
the new vectors:

v∗ = (σ(1, y, y′), c, b, v2)V∗ = (σ(1, y, y′), c− ab, b, v2)B∗

= (σ(1, y, y′), τ, b, v2)B∗

u = (π(x+ ρx′,−1,−ρ), β, u′1, u2)V = (π(x+ ρx′,−1,−ρ), β, u′1 + aβ, u2)B

One can note that when τ = 0, this is the previous game, and when τ = α, we are in the new
game, with v1 = b and u1 = u′1 + β: Adv3 − Adv4 ≤ 2× AdvddhG2

(t).

Game G5: We now undo the game G3:

u = (π(x+ ρx′,−1,−ρ), β, ζ(x+ ρx′,−1))B v∗ = (σ(1, y, y′), α, θ(1, y + ρy′))B∗

The same analysis can lead to Adv4 = Adv5, as we have already aborter is case of bad choice
for ρ.

Game G6: We undo the game G2:

u = (π(x+ ρx′,−1,−ρ), β, ζ(x+ ρx′,−1))B v∗ = (σ(1, y, y′), α, 0, 0)B∗

The same analysis can lead to Adv5 − Adv6 ≤ AdvddhG2
(t).

Game G7: We undo the game G1:

u = (π(x+ ρx′,−1,−ρ), β, 0, 0)B v∗ = (σ(1, y, y′), α, 0, 0)B∗

The same analysis can lead to Adv6 − Adv7 ≤ AdvddhG1
(t).

The global difference of advantages is bounded by 4× AdvddhG2
(t) + 2× AdvddhG1

(t) + 1/q.

26 Cécile Delerablée, Lenäıck Gouriou, and David Pointcheval

Proof of Theorem 8: Existential Unforgeability, with Delegation. We now reduce the
EUF proof for our ABS with delegation to the proof without delegation. To do this, simulate
the oracles for delegated keys: keys from ODelegateAttributes can be simulated with OKeyGen,
and signatures from ODelegateSig and policy keys from ODelegatePolicy can be simulated with
AltSig. For this reason, we will use the same notation id to count ODelegateAttributes and
OKeyGen queries, and the notation i to count OSig,ODelegatePolicy and ODelegateSig.

Game G0: Setup, KeyGen, Sig and Verif work exactly as in game G0.
We detail here the distribution of all the new algorithms output. Keys generated by the
Delegate-Attributes algorithm, for user id and subset Γ ′, follow the distribution

r∗id,1 = (αδid, 0, 0, ψid,1, 0
4)H∗

r∗id,2 = (0, αδid, 0, ψid,2, 0
4)H∗ r∗id,3 = (0, 0, αδid, ψid,3, 0

4)H∗

k∗
id,0 = (αδid, ϕid,0, 0

2)B∗ k∗
id,t = (αδid, απid,t(1, t), ϕid,t, 0

6)D∗ ∀t ∈ Γ ′

for random α, δid, ψid,1, ψid,2, ψid,3, ϕid,0, (ϕid,t)t, (πid,t)t
$← Zq for t ∈ Γ ′.

The i-th policy keys generated by the Delegate-Policy algorithm, for user id and access-tree
T , follow the distribution, for H = H(T):

U∗
i = (δi, ζi, 0

2)B∗ S∗
λ = ((αλ,iδi + βλ,i), ωi,λ(1, tλ), qi,λ, 0

6)D∗

V ∗ = (δi · (1, H, 0), νi, 04)H∗ r∗3 = (δi · (0, 0, 1), ψ′
i,3, 0

4)H∗

for random scalars δi, ζi, (qi,λ)λ, (ωi,λ)λ, νi, ψi,3
$← Zq for λ ∈ LT .

Signatures generated via policy keys with the DelegateSig algorithm for the i-th signature are
generated as, for Hi = H(Ti), H ′

i = H′(mi):

U∗ = (δi, ζi, 0
2)B∗ S∗

λ = ((αλ,iδi + βλ,i), ωλ,i(1, tλ), qi,λ, 0
6)D∗

V ∗ = (δi · (1, Hi, H
′
i), νi, 0

4)H∗

for random scalars δi, ζi, νi, (qi,λ)λ, (ωi,λ)λ
$← Z∗

q , and still (αλ,i) a 1-labeling of T ∗, and (βλ,i)
a random 0-labeling of T ∗.

Game G1: We simulate all Delegate-Attributes queries using KeyGen exclusively. When the
adversary ask for Delegate-Attributes on the set Γ ′ from another key SKid,Γ , where Γ

′ ⊂ Γ ,
we simulate the answer as KeyGen(MK, id′, Γ ′) for a new random id′. As the correctness
analysis has shown, the distribution between original keys and delegated keys is exactly the
same, hence: Adv0 = Adv1

Game G2: We simulate all Sig and DelegateSig queries with the AltSig algorithm. Queries
for the i-th Sig, or the i-th signature with DelegateSig, on access-tree Ti and message mi, is
simulated as, for Hi = H(Ti), H ′

i = H′
i(mi):

U∗
i = (δi, ζi, 0

2)B∗ S∗
i,λ = (δiβ

′
i,λ, γλ,i(1, tλ), qi,λ, 0,

6)D∗

V ∗
i = (δi · (1, Hi, H

′
i), νi, 0

4)H∗

where (β′λ)λ is a random 1-labeling of T ∗ and (γλ,i)
$← Z∗

q . As shown in the above perfect
anonymity proof, the distribution is exactly the same, hence the simulation is perfect: Adv1 =
Adv2.

Game G3: We simulate the Delegate-Policy queries with the AltSig algorithm, with only a
simple tweak on the element V ∗. Queries for the i-th Delegate-Policy, on identity īd, access-
tree Ti and message mi, is simulated with AltSig(MK,m, Ti) for a random m to get back

Attribute-Based Signatures with Advanced Delegation, and Tracing 27

(U∗
i , V

∗
i , (S

∗
i,λ)λ∈LTi

). We then set r∗i,3 = δi ·h∗
3+ψi,3h

∗
4 and V ′∗

i = V ∗
i −H ′

i ·r∗i,3, for ψi,3
$← Z∗

q :

V ′∗
i = V ∗

i − H ′
i · r∗i,3 = (δi · (1, Hi, H

′
i), νi, 0

4)H∗ − (δi · (0, 0, H ′
i), ψi,3H

′
i, 0

4)H∗ , which is thus

as (δi · (1, Hi, 0), ν
′
i, 0

4)H∗ , for ν ′i
$← Z∗

q . To properly simulate these queries, we only need to
ensure that we can simulate r∗i,3 in all games where we modify the answers of the signature
oracle. We finally output the policy key from the query as: (U∗

i , V
′∗
i , r

∗
i,3, (S

∗
i,λ)λ∈LTi

). Once
again the simulation is perfect: Adv2 = Adv3.

Then, we are in a similar game as G0 for the Existential Unforgeability proof in the case
without delegation. The sequence of games can continue the same way, with thus the same
security bounds.

C.3 Proof of Theorem 8: Existential Unforgeability, without Delegation.

The security proof follows the sequence of games presented on Figure 5.

Game G0: From the correctness of the signature and the perfect anonymity, keys generated
by the KeyGen algorithm, for user id, follow the distribution:

k∗
id,0 = (δid, ϕid,0, 0

2)B∗ k∗
id,t = (δid, πid,t(1, t), ϕid,t, 0

6)D∗ ∀t
r∗id,1 = (δid, 0, 0, ψid,1, 0

4)H∗ r∗id,2 = (0, δid, 0, ψid,2, 0
4)H∗

r∗id,3 = (0, 0, δid, ψid,3, 0
4)H∗

and the i-th signature generated by the Sig algorithm follows

U∗
i = (δi, ζi, 0

2)B∗ S∗
i,λ = (β′i,λ, γi,λ(1, tλ), qi,λ, 0

6)D∗

V ∗
i = (δi(1, Hi, H

′
i), νi, 0

4)H∗

where Hi = H(Ti), H ′
i = H′(mi).

For the decision of validity of the forgery S = (U∗, V ∗, (S∗
λ)λ) on message m′ and policy T ′,

one uses

u = (−s0 − s, 0, κ0, 0)B v = (s+ θH̄ + θ′H̄ ′,−θ,−θ′, 0, κ, 0, 0, 0)H
cλ = (sλ, θλtλ,−θλ, 0, κλ, 0, 0, 0, 0, 0)D

where H̄ = H(T), H̄ ′ = H′(m), and (T ,m) ̸= (Ti,mi) for all i. Instead of outputting just the
decision, one can consider the challenger outputs (u, v, (cλ)λ), and everybody can make the
final verification:

e(b1, U
∗) ̸= 1Gt e(u, U∗) · e(v, V ∗) ·

∏
e(cλ, S

∗
λ) = 1Gt

And we denote by Adv0 the probability of the validity of the forgery. Our goal is to show this
is negligible.

Game G1: We change the verification vectors into

u = (−s0 − s, 0, κ0,−r0)B v = (s+ θH̄ + θ′H̄ ′,−θ,−θ′, 0, κ, ω, 0, 0)H
cλ = (sλ, θλtλ,−θλ, 0, κλ, rλ, 0, 0, 0, 0)D

where r0 and ω are random scalars and (rλ)λ is a random r0-labeling for the tree-policy T ′.
The previous game and this game are indistinguishable under the DDH assumption in G1:
one applies the SubSpace-Ind property on (B,B∗)3,4, (D,D∗)4,5 and (H,H∗)4,5. Indeed, we can
consider a triple (a · G1, b · G1, c · G1), where c = ab + τ mod q with either τ = 0 or τ = 1,
which are indistinguishable under the DDH assumption in G1.

28 Cécile Delerablée, Lenäıck Gouriou, and David Pointcheval

Let us assume we start from random dual orthogonal bases (U,U∗), (V,V∗) and (W,W∗) .
Then we define the matrices

B =

(
1 −a
0 1

)
3,4

B′ =

(
1 0
a 1

)
3,4

D =

(
1 a
0 1

)
5,6

D′ =

(
1 0
−a 1

)
5,6

B = B · U B∗ = B′ · U∗ D = D · V D∗ = D′ · V∗

H =

(
1 −a
0 1

)
4,5

H ′ =

(
1 0
a 1

)
4,5

H = H ·W H∗ = H ′ ·W∗

The vectors b∗
4, d

∗
5, and h∗

5 can not be computed, but they are hidden from the adversary’s
view, and are not used in any vector. We compute the new vectors:

u = (−s0 − s, 0, κ0, 0)B − (0, 0, br0,−cr0)U
= (−s0 − s, 0, κ0, 0)B − (0, 0, b1r0,−(c− ab)r0)B
= (−s0 − s, 0, κ0 + br0,−τr0)B

v = (s+ θH̄ + θ′H̄ ′,−θ,−θ′, 0, κ, 0, 0, 0)H + (0, 0, 0, 0,−bω, cω, 0, 0)W
= (s+ θH̄ + θ′H̄ ′,−θ,−θ′, 0, κ, 0, 0, 0)H + (0, 0, 0, 0,−bω, (c− ab)ω, 0, 0)H
= (s+ θH̄ + θ′H̄ ′,−θ,−θ′, 0, κ− bω, τω, 0, 0)H

cλ = (sλ, θλtλ,−θλ, 0, κλ, 0, 0, 0, 0, 0)D + (0, 0, 0, 0,−brλ, crλ, 0, 0, 0, 0)V
= (sλ, θλtλ,−θλ, 0, κλ, 0, 0, 0, 0, 0)D + (0, 0, 0, 0,−brλ, (c− ab)rλ, 0, 0, 0, 0)D
= (sλ, θλtλ,−θλ, 0, κλ − brλ, τrλ, 0, 0, 0, 0)D

One can easily note that when τ = 0, this is the previous game, and when τ = 1, we are in
the new game.

On the other side, keys and signatures are unchanged, as their values on the corresponding
unknown basis vectors are 0. They can thus be directly defined in B∗, D∗, and H∗. We thus
have Adv0 − Adv1 ≤ 2× AdvddhG1

(t) (as shown in [DGP22]).

Game G2: We introduce a random value δ′′id in every key in basis B, in the component cor-
responding to the random value r0 that was just introduced in the verification vector u. In
order to do this, we proceed with an hybrid game on the key queries, modifying them one id
at a time. We will denote the current key by ∆, and we update the ∆-th key as:

k∗
∆,0 = (δ∆, ϕid,0, 0, δ

′′
∆)B∗

When ∆ = 0, no key has been modified, this is exactly the game G1: G1 = G1.0.0, whereas for
∆ = K, all the keys have been modified, this is exactly the expected game G2: G2 = G1.K.0.
In Appendix C.4, we show that for each ∆,

Adv1.∆.0 − Adv1.∆+1.0 ≤ 6T × AdvddhG1
(t) + (4T 2 + 6)× AdvddhG2

(t).

Hence, globally, we have

Adv1 − Adv2 ≤ 6KT × AdvddhG1
(t) + (4T 2 + 6)K × AdvddhG2

(t).

Game G3: In this game, we replace r0 in the verification vector by a random independent
r′0

$← Zq:

u = (−s0 − s, 0, κ0, r′0)B

Attribute-Based Signatures with Advanced Delegation, and Tracing 29

To do this, we proceed with a formal change of basis B. Let us assume we start from random
dual orthogonal bases (U,U∗). Then we define the matrices, with random θ

$← Z∗
q

B =
(
θ
)
4

B′ =
(
1/θ

)
4

B = B · U B∗ = B′ · U∗

which modifies only the hidden basis vectors b4,b
∗
4. Since they are not in the adversary’s

view, the advantage is not modified: Adv3 = Adv2. Furthermore

k∗
∆,0 = (δ∆, ϕid,0, 0, δ

′′
∆)U∗ = (δ∆, ϕid,0, 0, θδ

′′
∆)B∗

u = (−s0 − s, 0, κ0, r0)U = (−s0 − s, 0, κ0, r0/θ)B

Which replaces the random value δ′′∆ by another random value θδ′′∆ that follows the same
uniform distribution, and r′0 = −r0/θ follows a uniform independent distribution, also inde-
pendent from the r0-labeling (rλ)λ.

Game G4: We now update generated signatures, with random values in coordinates corre-
sponding to the random ω that was introduced in the verification vector v in game G1. In
order to do this, we proceed with an hybrid game on the signature queries, modifying them
one i at a time. We will denote the current signature by j, and we update the j-th signature
as:

U∗
j = (δj , ζj , 0, ρj)B∗

V ∗
j = (δj(1, Hj , H

′
j), νj , 0, τj , 0, 0)H∗

with ρj , τj
$← Zq.

When j = 0, no signature has been modified, this is exactly the game G3: G3 = G3.0.0,
whereas for j = S, all the signatures have been modified, this is exactly the expected game
G4: G4 = G3.S.0. In Section C.5, we show that for each j,

Adv3.j.0 − Adv3.j+1.0 ≤ 4× AdvddhG2
(t) + 2× AdvddhG1

(t) + 1/q,

if (H̄, H̄ ′) ̸= (Hj , H
′
j), which holds under the collision resistance of the two hash functions.

Hence, globally, we have

Adv3 − Adv4 ≤ S × (4× AdvddhG2
(t) + 2× AdvddhG1

(t) + 1/q) + AdvcollH (t) + AdvcollH′ (t).

Game G5: In this final game, we make the verification vector reject all the signatures by
removing the original secret on the first position:

u = (s′, 0, κ0, r
′
0)B

To do this, we define the matrices, with Θ
$← Zq

B′ =

(
1 −Θ
0 1

)
1,4

B =

(
1 0
Θ 1

)
1,4

B∗ = B′ · U∗ B = B · U

which modifies the hidden vectors b4,b
∗
1. Since they are not in the adversary’s view, the

advantage is not modified: Adv5 = Adv4. The verification vector is modified as

u = (−s0 − s, 0, κ0, r′0)U = (−s0 − s−Θr′0, 0, κ0, r′0)B = (s′, 0, κ0, r
′
0)B

30 Cécile Delerablée, Lenäıck Gouriou, and David Pointcheval

with s′ := −s0 − s − Θr′0 that is uniformly distributed. Meanwhile, the keys and signatures
are modified as follows:

k∗
id,0 = (δid, ϕid,0, 0, δ

′′
id)U∗ = (δid, ϕid,0, 0, δ

′′
id +Θδid)B∗ = (δid, ϕid,0, 0, δ

′
id)B∗

U∗
i = (δi, ζi, 0, ρi)U∗ = (δi, ζi, 0, ρi +Θδi)B∗ = (δi, ζi, 0, ρ

′
i)B∗

If we combine all the steps:

Adv0−Adv5 ≤ 2× AdvddhG1
(t)

+ 6KT × AdvddhG1
(t) + (4T 2 + 6)K × AdvddhG2

(t) + 0

+ S × (4× AdvddhG2
(t) + 2× AdvddhG1

(t) + 1/q) + AdvcollH (t) + AdvcollH′ (t)

≤ (2S + 2 + 6KT)× AdvddhG1
(t) + (4T 2K + 6K + 4S)× AdvddhG2

(t)

+ S/q + AdvcollH (t) + AdvcollH′ (t)

C.4 Existential Unforgeability: Gap between G1 and G2

In this sequence of games, detailed on Figure 8, we will stop tracking elements on bases H,H∗

as they are not modified.

G1.∆.0 Hybrid sequence from G1 to G2

id ≥ ∆ k∗
id,0 = (δid ϕid,0 0 0)B∗

id < ∆ k∗
id,0 = (δid ϕid,0 0 δ′′id)B∗

U∗
i = (δi ζi 0 0)B∗

u = (−s0 − s 0 κ0 −r0)B
r∗id,1 = (δid 0 0 ψid,1 0 0 0 0)H∗

r∗id,2 = (0 δid 0 ψid,2 0 0 0 0)H∗

r∗id,3 = (0 0 δid ψid,3 0 0 0 0)H∗

V ∗
i = (δi δiHi δiH

′
i νid 0 0 0 0)H∗

v = (s+θH̄+θH̄ ′ −θ −θ′ 0 κ ω 0 0)H
k∗
id,t = (δid πid,t πid,tt ϕid,t 0 0 0 0 0 0)D∗

S∗
i,λ = (β′

i,λ γi,λ γi,λtλ qi,λ 0 0 0 0 0 0)D∗

cλ = (sλ θλtλ −θλ 0 κλ rλ 0 0 0 0)D
G1.∆.1 Add random δ′∆: SubSpace-Ind on (B∗,B)1,4 and on (D∗,D)1,6

k∗
∆,0 = (δ∆ ϕ∆,0 0 δ′∆)B∗

k∗
∆,t = (δ∆ π∆,t π∆,tt ϕ∆,t 0 δ′∆ 0 0 0 0)D∗

G1.∆.2 Add random δ′∆zt: SubSpace-Ind on (D∗,D)4,8
k∗
∆,t = (δ∆ π∆ π∆t ϕ∆,t 0 δ′∆ 0 δ′∆zt 0 0)D∗

G1.∆.3 Hybrid game (see Figure 10)

cλ = (sλ θλtλ −θλ 0 κλ 0 0 rλ
ztλ

0 0)D

G1.∆.4 Policy argument: r0 unpredictable, then δ′′∆ random

k∗
∆,0 = (δ∆ ϕ∆,0 0 δ′′∆)B∗

G1.∆.5 Undo G1.∆.3: Hybrid game

cλ = (sλ θλtλ −θλ 0 κλ rλ 0 0 0 0)D

G1.∆.6 Undo G1.∆.2: SubSpace-Ind on (D∗,D)4,8
k∗
∆,t = (δ∆ π∆,t π∆,tt ϕ∆,t 0 δ′∆ 0 0 0 0)D∗

G1.∆.7 Undo G1.∆.1: SubSpace-Ind on (D∗,D)1,6
k∗
∆,t = (δ∆ π∆,t π∆,tt ϕ∆,t 0 0 0 0 0 0)D∗

Fig. 8. Existential Unforgeability: Gap between G1 and G2

Attribute-Based Signatures with Advanced Delegation, and Tracing 31

Game G1.∆.0: The state of the game at that point is the following, for the keys

id < ∆ k∗
id,0 = (δid, ϕid,0, 0, δ

′′
id)B∗

id ≥ ∆ k∗
id,0 = (δid, ϕid,0, 0, 0)B∗

∀id, ∀t k∗
id,t = (δid, πid,t(1, t), ϕid,t, 0, 0, 0, 0, 0, 0)D∗

for the signatures,

U∗
i = (δi, ζi, 0, 0)B∗ S∗

i,λ = (β′i,λ, γi,λ(1, tλ), qi,λ, 0, 0, 0, 0, 0, 0)D∗

and the verification vectors

u = (−s0 − s, 0, κ0,−r0)B cλ = (sλ, θλtλ,−θλ, 0, κλ, rλ, 0, 0, 0, 0)D

Game G1.∆.1: We change the ∆-th key into, for a random δ′∆
$← Zq

k∗
∆,0 = (δ∆, ϕ∆,0, 0, δ

′
∆)B∗ k∗

∆,t = (δ∆, π∆,t(1, t), ϕ∆,t, 0, δ
′
∆, 0, 0, 0, 0)D∗

Other vectors are not modified.

The previous game and this game are indistinguishable under the DDH assumption in G2:
one applies the SubSpace-Ind property, on (B∗,B)2,4 and (D∗,D)1,6. Indeed, we can consider a

triple (a ·G2, b ·G2, c ·G2), where c = ab+ τ mod q with either τ = 0 or τ = δ′∆
$← Zq, which

are indistinguishable under the DDH assumption in G2.

Let us assume we start from random dual orthogonal bases (U,U∗) and (V,V∗). Then we
define the matrices

B′ =

(
1 a
0 1

)
1,4

B =

(
1 0
−a 1

)
1,4

D′ =

(
1 a
0 1

)
1,6

D =

(
1 0
−a 1

)
1,6

B∗ = B′ · U∗ B = B · U D∗ = D′ · V∗ D = D · V

The vectors b4 and d6 can not be computed, but they are hidden from the adversary’s view.
The ∆-th key is now computed as

k∗
∆,0 = (δ∆, ϕ∆,0, 0, 0)B∗ + (b, 0, 0, c)U∗ = (δ∆ + b, ϕ∆,0, 0, τ)B∗

k∗
∆,t = (δ∆, π∆(1, t), ϕ∆,t, 0, 0, 0, 0, 0, 0)D∗ + (b, 0, 0, 0, 0, c, 0, 0, 0, 0)V∗

= (δ∆ + b, π∆,t(1, t), ϕ∆,t, 0, τ, 0, 0, 0, 0)D∗

When τ = 0, we are in the previous game, meanwhile when τ = δ′∆
$← Zq we are in the

new game. In both cases, the random value δ∆ are replaced by δ∆ + b that follow the same
distribution. We can also update r∗∆,1, r

∗
∆,2 and r∗∆,3 as b ·G2 is given.

Since b4 and d6 cannot be computed, one has to generate the verification vectors in the
original bases:

u = (−s0 − s, 0, κ0,−r0)U
= (−s0 − ar0 − s, 0, κ0,−r0)B = (−s′0 − s, 0, κ0,−r0)B

cλ = (sλ, θλtλ,−θλ, 0, κλ, rλ, 0, 0, 0, 0)V
= (sλ + arλ, θλtλ,−θλ, 0, κλ, rλ, 0, 0, 0, 0)D = (s′λ, θλtλ,−θλ, 0, κλ, rλ, 0, 0, 0, 0)D

where s′0 = s0 + ar0 and s′λ = sλ + arλ. Since (rλ)λ and (sλ)λ are random r0 and s0-labeling
(respectively), then any linear combination (s′λ = sλ+arλ)λ is a random s′0 = s0+ar0-labeling.

Hence, Adv1.∆.0 − Adv1.∆.1 ≤ AdvddhG2
(t).

32 Cécile Delerablée, Lenäıck Gouriou, and David Pointcheval

Game G1.∆.2: We again change the keys into

k∗
∆,t = (δ∆, π∆,t(1, t), ϕ∆,t, 0, δ

′
∆, 0, δ

′
∆zt, 0, 0)D∗

for random scalars zt
$← Zq.

The previous game and this game are indistinguishable under the DDH assumption in G2:
one applies the SubSpace-Ind property on (D∗,D)4,8. Indeed, we can consider a triple (a ·G2, b ·
G2, c · G2), where c = ab + τ mod q with either τ = 0 or τ = 1, which are indistinguishable
under the DSDH assumption in bG2.

One chooses additional scalars αt = δ′∆zt and βt
$← Zq to virtually set bt = αt · b + βt and

ct = αt · c+ βt · a, which makes ct − abt = αt · τ = δ′∆zt · τ .
Let us assume we start from random dual orthogonal bases (V,V∗). Then we define the
matrices

D =

(
1 0
−a 1

)
4,8

D′ =

(
1 a
0 1

)
4,8

D = D · V D∗ = D′ · V∗

The vector d7 can not be computed, but it is hidden from the adversary’s view. The ∆-th
key is now computed as

k∗
∆,t = (δ∆, π∆,t(1, t), ϕ∆,t, 0, δ

′
∆, 0, 0, 0, 0)D∗ + (0, 0, 0, bt, 0, 0, 0, ct, 0, 0)V∗

= (δ∆, π∆,t(1, t), ϕ∆,t + bt, 0, δ
′
∆, 0, αtτ, 0, 0)D∗

= (δ∆, π∆,t(1, t), ϕ
′
∆,t, 0, δ

′
∆, 0, δ

′
∆zt · τ, 0, 0)D∗

When τ = 0, we are in the previous game, meanwhile when τ = 1 we are in the new game.

Vectors in D are not modified, and are directly simulated in D, as their components are 0 on
the 7-th coordinate. Hence, Adv1.∆.1 − Adv1.∆.2 ≤ AdvdsdhG2

(t).

Game G1.∆.3: We hide the shares rλ in every verification vectors, in front of the value δ′∆
that was just introduced in the keys. In order to do this, we proceed with an hybrid game
on the attribute indices, modifying them one t at a time, using the first time the attribute t
appears in the game. We will denote the current attribute by p, also identified to its index in
the order of appearance. We transform the verification vectors for all λ such that tλ = p into

cλ = (sλ, θλp,−θλ, 0, κλ, 0, 0, rλ/zp)D

When p = 0 (for the order of appearance, which means before the first one), this is exactly
the game G1.∆.2: G1.∆.2 = G1.∆.2.0.0, whereas for p = T (for the order of appearance, which
means the last one) this is exactly the expected game G1.∆.3: G1.∆.3 = G1.∆.2.T.0.

From Appendix C.6, for each p, we prove that

Adv1.∆.2.p.0 − Adv1.∆.2.p.5 ≤ 3× AdvddhG1
(t) + 2T × AdvddhG2

(t).

Hence, globally, we have

Adv1.∆.2 − Adv1.∆.3 ≤ 3T × AdvddhG1
(t) + 2T 2 × AdvddhG2

(t).

Game G1.∆.4: First, one can note that the scalars zt used in the verification vectors and in
the ∆-th key mask the rλ in the verification vectors. Since attributes in the ∆-th key do
not satisfy the policy T ′ of the forgery, not enough rλ can be known (others are perfectly
private), and then r0 is perfectly unpredictable, it can be replaced by a random value r′0, in
an intermediate game.

Attribute-Based Signatures with Advanced Delegation, and Tracing 33

Then, we proceed with a formal change of basis B. Let us assume we start from random dual
orthogonal bases (U,U∗). Then we define the matrices, with θ = r′0/r0, for a random r′0

$← Z∗
q

B =
(
θ
)
4

B′ =
(
1/θ

)
4

B = B · U B∗ = B′ · U∗

which modifies only the hidden basis vectors b4,b
∗
4. Since they are not in the adversary’s

view, the advantage is not modified: Adv1.∆.4 = Adv1.∆.3. Then,

id < ∆ k∗
id,0 = (δid, ϕid,0, 0, δ

′′
id)U∗ = (δid, ϕid,0, 0, θδ

′′
id)B∗

k∗
∆,0 = (δ∆, ϕ∆,0, 0, δ

′
∆)U∗ = (δ∆, ϕ∆,0, 0, θδ

′
∆)B∗

id > ∆ k∗
id,0 = (δid, ϕid,0, 0, 0)U∗ = (δid, ϕid,0, 0, 0)B∗

u = (−s0 − s, 0, κ0,−r′0)U = (−s0 − s, 0, κ0,−r′0/θ)U
= (−s0 − s, 0, κ0,−r0)U

Definitions in (U,U∗) are the above intermediate game, and definitions in (D,D∗) correspond
to the new game as for id < ∆, δ′′id are already random values, then θδ′′id is also uniformly
random (whatever independent θ is); and since r′0 is random, θδ′∆ = r′0δ

′
∆/r0 is uniformly

random, and independent.

Game G1.∆.5: In this game, we undo G1.∆.3. Then, as above, Adv1.∆.4 − Adv1.∆.5 ≤ 3T ×
AdvddhG1

(t) + 2T 2 × AdvddhG2
(t).

Game G1.∆.6: In this game, we undo G1.∆.2. Then Adv1.∆.5 − Adv1.∆.6 ≤ AdvdsdhG2
(t).

Game G1.∆.7: In this game, we undo G1.∆.1. Then Adv1.∆.6 − Adv1.∆.7 ≤ AdvddhG2
(t).

The hybrid on ∆ is over, as one can see: G1.∆+1.0 = G1.∆.7. We can now proceed on the hybrid
on ∆+ 1, until ∆ = K.

C.5 Existential Unforgeability: Gap between G3 and G4

In this sequence, we will stop tracking elements on bases D,D∗ as they are not modified. See
Figure 9.

G3.j.0 Hybrid sequence from G3 to G4

i ≥ j U∗
i = (ξiδi ζi 0 0)B∗

i < j U∗
i = (ξiδi ζi 0 ρi)B∗

u = (−s0 − s 0 κ0 −r0)B
i ≥ j V ∗

i = (ξiδi ξiδiHi ξiδiH
′
i νi 0 0 0 0)H∗

i < j V ∗
i = (ξiδi ξiδiHi ξiδiH

′
i νi 0 τi 0 0)H∗

v = (s+θH̄+θ′H̄ ′ −θ −θ′ 0 κ ω 0 0)H

G3.j.1 Add random ρj : SubSpace-Ind on (B∗,B)1,4 and on (H∗,H)1,6

U∗
j = (ξjδj ζj 0 ρj)B∗

V ∗
j = (ξjδj ξjδjHj ξjδjH

′
j νj 0

ρjr0
ω

0 0)H∗

G3.j.2 Randomize ρjr0/ω: Index-Ind on (H∗,H)1,2,3,6,7,8
U∗

j = (ξjδj ζj 0 ρj)B∗

V ∗
j = (ξjδj ξjδjHj ξjδjH

′
j νj 0 τj 0 0)H∗

Fig. 9. Existential Unforgeability: Gap between G3 and G4

34 Cécile Delerablée, Lenäıck Gouriou, and David Pointcheval

Game G3.j.0: The state of the game at that point is the following, for the keys, the signatures,
and the verification vectors

k∗
id,0 = (δid, ϕid,0, 0, δ

′′
id)B∗ r∗id,1 = (δid, 0, 0, ψid,1, 0, 0, 0, 0)H∗

r∗id,2 = (0, δid, 0, ψid,2, 0, 0, 0, 0)H∗

r∗id,3 = (0, 0, δid, ψid,3, 0, 0, 0, 0)H∗

i ≥ j U∗
i = (ξiδi, ζi, 0, 0)B∗ V ∗

i = (ξiδi(1, Hi, H
′
i), νi, 0, 0, 0, 0)H∗

i < j U∗
i = (ξiδi, ζi, 0, ρi)B∗ V ∗

i = (ξiδi(1, Hi, H
′
i), νi, 0, τi, 0, 0)H∗

u = (−s0 − s, 0, κ0,−r0)B v = (s+ θH̄ + θ′H̄ ′,−θ,−θ′, 0, κ,
ω, 0, 0)H

Game G3.j.1: We change the j-th signature into:

U∗
j = (ξjδj , ζj , 0, ρj)B∗ V ∗

j = (ξjδj(1, Hj , H
′
j), νj , 0, ρj · r0/ω, 0, 0)H∗

with a random ρj
$← Zq. The previous game and this game are indistinguishable under the

DDH assumption in G2: one applies the SubSpace-Ind property, on (B,B∗)1,4 and (H,H∗)1,6.
Indeed, we can consider a triple (a·G2, b·G2, c·G2), where c = ab+τ mod q with either τ = 0 or
random, which are indistinguishable situations under the DDH assumption in G2. One notes
that we can virtually set a′ = r0/ω · a and c′ = r0/ω · c, which makes c′ − a′b = r0/ω · τ .
Let us assume we start from random dual orthogonal bases (U,U∗), (W,W∗). Then we define
the matrices

B′ =

(
1 a
0 1

)
1,4

B =

(
1 0
−a 1

)
1,4

H ′ =

(
1 a′

0 1

)
1,6

H =

(
1 0
−a′ 1

)
1,6

B∗ = B′ · U∗ B = B · U H∗ = H ′ ·W∗ H = H ·W

The vectors b4 and h6 can not be computed, but they are hidden from the adversary’s view.
The j-th signature is now computed as:

U∗
j = (b, ζj , 0, c)U∗ = (b, ζj , 0, τ)B∗

V ∗
j = (b(1, Hj , H

′
j), νj , 0, c

′, 0, 0)W∗ = (b(1, Hj , H
′
j), νj , 0, r0/ω · τ, 0, 0)H∗

This is the expected signature, with ξj = b/δj . Since b ·G2 is known, we can use it to simulate
S∗
j,λ. When τ = 0, we are in the previous game, meanwhile when τ = ρj is random, we are in

the new game.
Since the vectors b4 and h6 can not be computed, we cannot define the verification vectors
in the new bases:

u = (−s0 − s, 0, κ0,−r0)U = (−s0 − s− ar0, 0, κ0,−r0)B
= (−s0 − s′, 0, κ0,−r0)B

v = (s+ θH̄ + θ′H̄ ′,−θ,−θ′, 0, κ, ω, 0, 0)W
= (s+ a′ω + θH̄ + θ′H̄ ′,−θ,−θ′, 0, κ, ω, 0, 0)H
= (s+ ar0 + θH̄ + θ′H̄ ′,−θ,−θ′, 0, κ, ω, 0, 0)H
= (s′ + θH̄ + θ′H̄ ′,−θ,−θ′, 0, κ, ω, 0, 0)H

They remain consistent, as one can simply replace the random s by s′ = s + ar0. Hence,
Adv3.j.0 − Adv3.j.1 ≤ AdvddhG2

(t).

Game G3.j.2: We change again the j-th signature into:

U∗
j = (ξjδj , ζj , 0, ρj)B∗ V ∗

j = (ξjδj(1, Hj , H
′
j), νj , 0, τj , 0, 0)H∗

Attribute-Based Signatures with Advanced Delegation, and Tracing 35

with random and independent ρj , τj
$← Zq.

To do this, we use the Index-Ind Property from Theorem 2 on (H,H∗) on the 6 coordi-
nates 1,2,3,6,7,8, of dimension 6 from the view (h∗

1,h
∗
2,h

∗
3,h

∗
6,h1,h2,h3) with hidden vectors

(h∗
7,h

∗
8,h6,h7,h8), with

v = (s+ θH̄ + θ′H̄ ′,−θ,−θ′, 0, κ, ω, 0, 0)H
= (s+ θ(H̄ + ρH̄ ′),−θ,−ρθ, 0, κ, ω, 0, 0)H
= (s, 0, 0, 0, κ, 0, 0, 0)H + (θ(H̄ + ρH̄ ′,−1,−ρ), 0, 0, ω, 0, 0)H

V ∗
j = (ξjδj(1, Hj , H

′
j), νj , 0, τj , 0, 0)H∗

= (0, 0, 0, νj , 0, 0, 0, 0)H∗ + (ξjδj(1, Hj , H
′
j), 0, 0, τj , 0, 0)H∗

with ρ = θ′/θ, where ρ needs to be decided before the start of the game, as θ, θ′ can be
too. Under the collision resistance of the hash functions, we can assume that H̄ ̸= Hj and
H̄ ′ ̸= H ′

j . Then, one cannot distinguish between the two following

V ∗
j = (ξjδj(1, Hj , H

′
j), νj , 0, r0/ω · τ, 0, 0)H∗

V ∗
j = (ξjδj(1, Hj , H

′
j), νj , 0, τj , 0, 0)H∗

with random τj , and known random ξjδj ·G2, as the latter can either be chosen or is the b ·G2

from the DDH instances. Hence, Adv3.j.1 − Adv3.j.2 ≤ 4× AdvddhG2
(t) + 2× AdvddhG1

(t) + 1/q.

C.6 Existential Unforgeability: Hybrid Sequence

In this sequence, we only follow elements in bases D,D∗ as other vectors are not modified. See
Figure 10.

Game G1.∆.2.p.0: The state of the game at that point is the following, for the keys

k∗
∆,t = (δ∆, π∆,t(1, t), ϕ∆,t, 0, δ

′
∆, 0, δ

′
∆zt, 0, 0)D∗

k∗
id,t = (δid, πid,t(1, t), ϕid,t, 0, 0, 0, 0, 0, 0)D∗

the signatures,

S∗
i,λ = (β′i,λ, γi,λ(1, tλ), qi,λ, 0, 0, 0, 0, 0, 0)D∗

and ciphertexts

cλ = (sλ, θλtλ,−θλ, 0, κλ, rλ, 0, 0, 0, 0)D t > p

cλ = (sλ, θλtλ,−θλ, 0, κλ, 0, 0, rλ/zt, 0, 0)D t ≤ p

Game G1.∆.2.p.1: We change the keys into:

k∗
∆,t = (δ∆, π∆,t(1, t), ϕ∆,t, 0, δ

′
∆, δ

′
∆, δ

′
∆zt, 0, 0)D∗

k∗
id,t = (δid, πid,t(1, t), ϕid,t, 0, 0, 0, 0, 0, 0)D∗

To do this, we define the matrices

D′ =

(
1 1
0 1

)
6,7

D =

(
1 0
−1 1

)
6,7

which modifies the hidden vectors d7,d
∗
6. Since they are not in the adversary’s view, the

advantage is perfect.

36 Cécile Delerablée, Lenäıck Gouriou, and David Pointcheval

G1.∆.2.p.0 Hybrid sequence from G1.∆.3 to G1.∆.4

id > ∆ k∗
id,0 = (δid ϕid,0 0 0)B∗

k∗
∆,0 = (δ∆ ϕ∆,0 0 δ′∆)B∗

id < ∆ k∗
id,0 = (δid ϕid,0 0 δ′′id)B∗

U∗
i = (ξiδi ζi 0 0)B∗

u = (−s0 − s 0 κ0 −r0)B
r∗id,1 = (δid 0 0 ψid,1 0 0 0 0)H∗

r∗id,2 = (0 δid 0 ψid,2 0 0 0 0)H∗

r∗id,3 = (0 0 δid ψid,3 0 0 0 0)H∗

V ∗
i = (ξiδi ξiδiHi ξiδiHi νid 0 0 0 0)H∗

v = (s+θH̄+θ′H̄ ′ −θ −θ′ 0 0 ω 0 0)H
id ̸= ∆ k∗

id,t = (δid πid,t πid,tt ϕid,t 0 0 0 0 0 0)D∗

k∗
∆,t = (δ∆ π∆,t π∆,tt ϕ∆,t 0 δ′∆ 0 δ′∆zt 0 0)D∗

S∗
i,λ = (β′

i,λ γi,λ γi,λtλ qi,λ 0 0 0 0 0 0)D∗

tλ ≥ p cλ = (sλ θλtλ −θλ 0 κλ rλ 0 0 0 0)D
tλ < p cλ = (sλ θλtλ −θλ 0 κλ 0 0 rλ

zt
0 0)D

G1.∆.2.p.1 Duplicate δ′∆ in D∗: Formal change of basis on (D∗,D)6,7
k∗
∆,t = (δ∆ π∆,t π∆,tt ϕ∆,t 0 δ′∆ δ′∆ δ′∆zt 0 0)D∗

G1.∆.2.p.2 Swap rλ: Swap-Ind on (D,D∗)5,6,7

tλ = p cλ = (sλ θλp −θλ 0 κλ 0 rλ 0 0 0)D

G1.∆.2.p.3 Index-Ind for all t ̸= p on (D∗,D)2,3,7,9,10

t ̸= p k∗
∆,t = (δ∆ π∆,t π∆,tt ϕ∆,t 0 δ′∆

δ′∆zt
zp

δ′∆zt 0 0)D∗

G1.∆.2.p.4 Remove α: Formal change of basis on (D∗,D)7,8
k∗
∆,t = (δ∆ π∆ π∆t ϕ∆,t 0 δ′∆ 0 δ′∆zt 0 0)D∗

tλ = p cλ = (sλ θλp −θλ 0 κλ 0 α rλ
zp

0 0)D

G1.∆.2.p.5 SubSpace-Ind on (D,D∗)5,7

tλ = p cλ = (sλ θλp −θλ 0 κλ 0 0 rλ
zp

0 0)D

Fig. 10. Existential Unforgeability: Hybrid Sequence

Attribute-Based Signatures with Advanced Delegation, and Tracing 37

The keys are modified in the following way. Note that keys other than ∆ and signatures are
unmodified as they all have a 0 in the 6-th position.

k∗
∆,t = (δ∆, π∆,t(1, t), ϕ∆,t, 0, δ

′
∆, 0, δ

′
∆zt, 0, 0)V∗

= (δ∆, π∆,t(1, t), ϕ∆,t, 0, δ
′
∆, δ

′
∆, δ

′
∆zt, 0, 0)D∗

Meanwhile, the ciphertexts are not modified because they all have a 0 in the 7-th position.
The adversary gains no advantage in this game: Adv1.∆.2.p.0 = Adv1.∆.2.p.1.

Game G1.∆.2.p.2: We change only the verification texts linked to the p-th attribute into:

tλ = p, cλ = (sλ, θλp,−θλ, 0, κλ, 0, rλ, 0, 0, 0)D

The previous game and this game are indistinguishable under the DSDH assumption in G1:
one applies the Swap-Ind property, on (D,D∗)5,6,7. Indeed, we can consider a triple (a ·G1, b ·
G1, d · G1), where d = ab + τ mod q with either τ = 0 or τ = 1, which are indistinguishable
situations under the DSDH assumption.
One chooses additional scalars αλ = −rλ and βλ

$← Zq to virtually set bλ = αλ · b + βλ and
dλ = αλ · d+ βλ · a, which makes dλ − abλ = αλ · τ = −rλ · τ .

D =

1 a −a
0 1 0
0 0 1


5,6,7

D′ =

 1 0 0
−a 1 0
a 0 1


5,6,7

D∗ = D′ · V∗ D = D · V

The vectors d∗
6,d

∗
7 can not be computed, but they are not in the view of the adversary. The

verification texts for the p-th attribute is changed as follows

cλ = (sλ, θλp,−θλ, 0, 0, rλ, 0, 0, 0, 0)D + (0, 0, 0, 0, bλ, dλ,−dλ, 0, 0, 0)V
= (sλ, θλp,−θλ, 0, bλ, rλ + αλ · τ,−αλ · τ, 0, 0, 0)D
= (sλ, θλp,−θλ, 0, bλ, rλ − rλ · τ, rλ · τ, 0, 0, 0)D

When τ = 0, we are in the previous game, meanwhile when τ = 1, we are in the next game.
Other verification texts are generated in D directly.
Keys and signatures are unchanged because they have the same value on 6th and 7th columns,
either 0 or δ′∆. Notably, those with 0 on these positions are keys different than ∆, and can
be fully generated in D∗.

k∗
∆,t = (δ∆, π∆,t(1, t), ϕ∆,t, 0, δ

′
∆, δ

′
∆, δ

′
∆zt, 0, 0)V∗

= (δ∆, π∆,t(1, t), ϕ∆,t, a · δ′∆ − a · δ′∆, δ′∆, δ′∆, δ′∆zt, 0, 0)D∗

= (δ∆, π∆,t(1, t), ϕ∆,t, 0, δ
′
∆, δ

′
∆, δ

′
∆zt, 0, 0)D∗

The advantage of the adversary is: Adv1.∆.2.p.1 − Adv1.∆.2.p.2 ≤ AdvdsdhG1
(t).

Game G1.∆.2.p.3: We keep the δ′∆ value (at the 7-th hidden position) in the key for the p-th
attribute only, and replace all values in other keys by δ′∆zt/zp:

k∗
∆,p = (δ∆, π∆,p(1, p), ϕ∆,p, 0, δ

′
∆, δ

′
∆, δ

′
∆zp, 0, 0)D∗

k∗
∆,t = (δ∆, π∆,t(1, t), ϕ∆,t, 0, δ

′
∆, δ

′
∆zt/zp, δ

′
∆zt, 0, 0)D∗

k∗
id,t = (δid, πid,t(1, t), ϕid,t, 0, 0, 0, 0, 0, 0)D∗

To show this is possible without impacting the other vectors, we use the Index-Ind property,
but in another level of sequence of hybrid games, for γ ∈ {1, . . . , T}\{p}. We will again
enumerate γ in their order of appearance in the security game (whether in key queries, or
signature queries).

38 Cécile Delerablée, Lenäıck Gouriou, and David Pointcheval

Game G1.∆.2.p.2.γ: We consider

k∗
∆,p = (δ∆, π∆,p(1, p), ϕ∆,p, 0, δ

′
∆, δ

′
∆, δ

′
∆zp, 0, 0)D∗

k∗
∆,t = (δ∆, π∆,t(1, t), ϕ∆,t, 0, δ

′
∆, δ

′
∆zt/zp, δ

′
∆zt, 0, 0)D∗ p ̸= t < γ

k∗
∆,t = (δ∆, π∆,t(1, t), ϕ∆,t, 0, δ

′
∆, δ

′
∆, δ

′
∆zt, 0, 0)D∗ t ≥ γ

cλ = (sλ, θλtλ,−θλ, 0, κλ, 0, 0, rλ/zt, 0, 0)D t < p

cλ = (sλ, θλp,−θλ, 0, κλ, 0, rλ, 0, 0, 0)D
cλ = (sλ, θλtλ,−θλ, 0, κλ, rλ, 0, 0, 0, 0)D t > p

When γ = 1, this is the previous game: G1.∆.2.p.2.1 = G1.∆.2.p.2, whereas with γ = T + 1,
this is the current game: G1.∆.2.p.2.T+1 = G1.∆.2.p.3.
To do this, we use the Index-Ind Property from Section 2.2 on (D,D∗) on the 5 coordi-
nates 2, 3, 6, 9, 10 of dimension 5 from the view (d∗

2,d
∗
3,d

∗
7,d2,d3) with hidden vectors

(d∗
9,d

∗
10,d7,d9,d10), with

cλ = (sλ, θλp,−θλ, 0, κλ, 0, rλ, 0, 0, 0)D
k∗
∆,t = (δ∆, π∆,t(1, t), ϕ∆,t, 0, δ

′
∆, δ

′
∆, δ

′
∆zt, 0, 0)D∗ t = γ

Hence, we have Adv1.∆.2.p.2 − Adv1.∆.2.p.3 ≤ 4× AdvddhG2
(t) + 2× AdvddhG1

(t)

Game G1.∆.2.p.4: We use a theoretic information change to uniformize the keys and verification
texts. We change the key into:

k∗
∆,t = (δ∆, π∆,t(1, t), ϕ∆,t, 0, δ

′
∆, 0, δ

′
∆zt, 0, 0)D∗

k∗
∆,p = (δ∆, π∆,p(1, p), ϕ∆,p, 0, δ

′
∆, 0, δ

′
∆zp, 0, 0)D∗

Meanwhile the verification texts associated to attribute p are changed into:

cλ = (sλ, θλp,−θλ, 0, κλ, 0, rλ, rλ/zp, 0, 0)D t = p

To do this we use the following matrices:

D′ =

(
1 0

1/zp 1

)
7,8

D =

(
1 −1/zp
0 1

)
7,8

The vectors d7,d
∗
7,d

∗
8 must not be in the adversary’s view, but since they are hidden the

advantage is perfect.
Keys for ∆ are modified in the following way:

k∗
∆,t = (δ∆, π∆,t(1, t), ϕ∆,t, 0, δ

′
∆, δ

′
∆zt/zp, δ

′
∆zt, 0, 0)V∗

= (δ∆, π∆,t(1, t), ϕ∆,t, 0, δ
′
∆, 0, δ

′
∆zt, 0, 0)D∗

k∗
∆,p = (δ∆, π∆,p(1, p), ϕ∆,p, 0, δ

′
∆, δ

′
∆, δ

′
∆zp, 0, 0)V∗

= (δ∆, π∆,p(1, p), ϕ∆,p, 0, δ
′
∆, 0, δ

′
∆zp, 0, 0)D∗

Verification texts associated to p are changed as well:

cλ = (sλ, θλp,−θλ, 0, κλ, 0, rλ, 0, 0, 0)V t = p

= (sλ, θλp,−θλ, 0, κλ, 0, rλ, rλ/zp, 0, 0)D

We note that for t ̸= p, cλ are unchanged. The same goes for all keys different than ∆ and all
signatures, as their component on the relevant positions are all 0 (7-th for verification texts,
7-th and 8-th for keys and signatures).
The adversary gains no advantage in this game: Adv1.∆.2.p.3 = Adv1.∆.2.p.4.

Attribute-Based Signatures with Advanced Delegation, and Tracing 39

Game G1.∆.2.p.5: We remove rλ from the verification texts associated to the p-th attribute.

cλ = (sλ, θλtλ,−θλ, 0, κλ, 0, 0, rλ/zp, 0, 0)D tλ = p

The previous game and this game are indistinguishable under the DSDH assumption in G1:
one applies the SubSpace-Ind property, on (D,D∗)5,7. Indeed, we can consider a triple (a·G1, b·
G1, d · G1), where d = ab + τ mod q with either τ = 0 or τ = 1, which are indistinguishable
situations under the DSDH assumption.
One chooses additional scalar βλ

$← Zq to virtually set bλ = rλ · b+βλ and dλ = rλ ·d+βλ ·a,
which makes dλ − abλ = rλ · τ .

D′ =

(
1 0
a 1

)
5,7

D =

(
1 −a
0 1

)
5,7

D∗ = D′ · V∗ D = D · V

The vector d∗
7 cannot be computed, but they are not in the adversary’s view. The verification

texts for each λ so that tλ = p are changed in the following way:

cλ = (sλ, θλp,−θλ, 0, 0, 0, 0, rλ, rλ/zp, 0, 0)D + (0, 0, 0, 0, bλ, 0, dλ, 0, 0, 0)V

= (sλ, θλp,−θλ, 0, bλ, 0, rλ · τ, rλ/zp, 0, 0)D

When τ = 1, we are in the previous game, meanwhile when τ = 0, we are in the next
game. Other verification texts are unchanged and can be fully generated in V. Keys and
signatures are unchanged and can be fully generated in V∗ because they all have a value of
0 on the 7-th position at that point in the hybrid game. The advantage of the adversary is:
Adv1.∆.2.p.4 − Adv1.∆.2.p.5 ≤ AdvddhG1

(t).

C.7 Proof of Theorem 14: Traceability

In this proof, we will first recall the way we can simulate the keys and the signatures. Then, we
will show how the linearly-homomorphic signature and the Linear-Square problem will prevent
attacks:

Game G0: As shown in the previous section, keys generated by the KeyGen algorithm, for
user id, follow the distribution:

k∗
id,0 = (δid, ϕid,0, 0, 0, δid · wid, δid · w2

id)B∗ r∗id,1 = (δid, 0, 0, ψid,1, 0, 0, 0, 0)H∗

k∗
id,t = (δid, πid,t(1, t), ϕid,t, 0, 0, 0, 0, 0, 0)D∗ r∗id,2 = (0, δid, 0, ψid,2, 0, 0, 0, 0)H∗

Σid = Sig′(sk,k∗
id,0) r∗id,3 = (0, 0, δid, ψid,3, 0, 0, 0, 0)H∗

The i-th signature generated by the Sig algorithm follows the distribution

U∗
i = (ξiδi, ζi, 0, 0, ξiδi · wi, ξiδi · w2

i)B∗ V ∗
i = (ξiδi(1, Hi, H

′
i), νi, 0, 0, 0, 0)H∗

S∗
i,λ = (β′i,λ, γi,λ(1, tλ), qi,λ, 0, 0, 0, 0, 0, 0)D∗

where δi, wi,k
∗
i,0, Σi correspond to new and fresh δid, wid,k

∗
id,0, Σid of the signer id (for an

implicitly freshly generated key as signing queries and key queries should not correspond to
the same identities, as we are in the distinct-user setting), and Hi = H(Ti), H ′

i = H′(mi),
together with

Σ = DerivSign′(vk, ((ξi,k
∗
i,0, Σi), (ζi,b

∗
2, Σ2))

Π = NIZKPoK-SqDH(wi, (e(b1, U
∗), e(b5, U

∗), e(b6, U
∗)))

40 Cécile Delerablée, Lenäıck Gouriou, and David Pointcheval

For the decision of the challenge signature σ = (U∗, V ∗, (S∗
λ)λ, Σ,Π) on messagem and policy

T , different from any query-answer to the signing oracle, one uses

u = (−s0 − s, 0, κ0, 0, 0, 0)B v = (s+ θ · H̄ + θ′ · H̄ ′,−θ,−θ′, 0, κ, 0, 0, 0)H
cλ = (sλ, θλ(tλ,−1), 0, κλ, 0, 0, 0, 0, 0)D

where (H̄, H̄ ′) ̸= (Hi, H
′
i) for all i. Instead of outputting just the decision, one can consider

the challenger outputs (u, v, (cλ)λ), and everybody can make the final verification, with B1 =
e(b1, U

∗), B2 = e(b5, U
∗), and B3 = e(b6, U

∗):

e(b1, U
∗) ̸= 1Gt e(u, U∗) · e(v, V ∗) ·

∏
e(cλ, S

∗
λ) = 1Gt

Verif ′(vk, U∗, Σ) = 1 VERIF-SqDH((B1, B2, B3), Π) = 1

For the tracing procedure, one checks Bwid
1 = B2 for all the id’s asked to the key generation

oracle. If no wid matches, we output 1. Otherwise we output 0. We denote by Adv0 the
probability to output 1 in this game.

Game G1: We replace Σ by a fresh signature (during the signing queries), Σ = Sig′(sk, U∗),
as signatures from DerivSign′ and Sig′ follows perfectly indistinguishable distributions in an
OT-LH signature scheme: Adv0 = Adv1.

Game G2: The simulator generates the proofs Π, during the signing queries only, with the
zero-knowledge simulator. Thanks to the (perfect) zero-knowledge property, this game is
indistinguishable from the previous one: Adv1 = Adv2. Now, the simulator does not need to
know the scalars wid for signing queries, but only for key queries.

Game G3: The simulator generates the signatures using Square Diffie-Hellman tuples (hi, h
′
i, h

′′
i),

with unknown scalars wi: Adv2 = Adv3.

Game G4: In this game, we always output 0, meaning the tracing procedure always succeeds,
and so Adv4 = 0.
Let us study the gap:
– If we consider OSig′(m) the signature oracle in the EUF security game of the OT-LH

scheme, under the unforgeability result on Σ, the U∗ of the output signature (m′, T ′, σ)
of our adversary necessarily involves a linear combination of the U∗

i , which implies a
linear combination of the k∗

id,0 and b∗
2. Using the signature from [HPP20], we even get the

coefficients of this linear combination;

– If we consider the 1-st, 5-th and 6-th components, which constitute a Square Diffie-Hellman
tuple with an exponent that is a (known) linear combination of the scalars involved in the
keys or signatures, the Theorem 11 implies that there is necessarily either a wi involved
in a signing-query or a wid involved in a key-query in this U∗;

– With the additional proof of knowledge Π, from the simulation-extractability, one can
extract this scalar: which is as hard as breaking the Decisional Square Diffie-Hellman if
this is a wi from a signing-query, because of the challenge (hi, h

′
i, h

′′
i), which could either

be a random tuple or a Square Diffie-Hellman tuple.
As a consequence, except with probability bounded by AdveufOT-LH(t)+Advlsqp(t)+Advdsqdh(t),
this is necessarily a wid from a key-query, which can thus be extracted by the tracing algorithm:
Adv3 − Adv4 ≤ AdveufOT-LH(t) + Advlsqp(t) + Advdsqdh(t).

	Attribute-Based Signatures with Advanced Delegation, and Tracing

