
Trapdoor Memory-Hard Functions

Benedikt Auerbach
benedikt.auerbach@ista.ac.at

ISTA

Christoph U. Günther
cguenthe@ista.ac.at

ISTA

Krzysztof Pietrzak
pietrzak@ista.ac.at

ISTA

February 23, 2024

Abstract

Memory-hard functions (MHF) are functions whose evaluation provably requires
a lot of memory. While MHFs are an unkeyed primitive, it is natural to consider the
notion of trapdoor MHFs (TMHFs). A TMHF is like an MHF, but when sampling
the public parameters one also samples a trapdoor which allows evaluating the
function much cheaper.

Biryukov and Perrin (Asiacrypt’17) were the first to consider TMHFs and put
forth a candidate TMHF construction called Diodon that is based on the Scrypt
MHF (Percival, BSDCan’09). To allow for a trapdoor, Scrypt’s initial hash chain
is replaced by a sequence of squares in a group of unknown order where the order of
the group is the trapdoor. For a length n sequence of squares and a group of order
N , Diodon’s cumulative memory complexity (CMC) is O(n2 log N) without the
trapdoor and O(n log(n) log(N)2) with knowledge of it.

While Scrypt is proven to be optimally memory-hard in the random oracle
model (Alwen et al., Eurocrypt’17), Diodon’s memory-hardness has not been
proven so far. In this work, we fill this gap by rigorously analyzing a specific
instantiation of Diodon. We show that its CMC is lower bounded by Ω( n2

log n log N)
which almost matches the upper bound. Our proof is based Alwen et al.’s lower
bound on Scrypt’s CMC but requires non-trivial modifications due to the algebraic
structure of Diodon. Most importantly, our analysis involves a more elaborate
compression argument and a solvability criterion for certain systems of Diophantine
equations.

1

https://orcid.org/0000-0002-7553-6606
https://orcid.org/0009-0001-5790-695X


Contents
1 Introduction 3

1.1 Memory-Hard Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Trapdoor MHFs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 The Diodon TMHF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Contributions and Technical Overview . . . . . . . . . . . . . . . . . . . 5
1.5 Open Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Preliminaries 7
2.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Algebraic Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Generic Group Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.4 Machine Model and Complexity Measure . . . . . . . . . . . . . . . . . . 9

3 A Trapdoor Memory-Hard Function from Factoring 10
3.1 Trapdoor Memory-Hard Functions . . . . . . . . . . . . . . . . . . . . . . 10
3.2 Description of TdScrypt . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4 Overview of the Lower Bound Proof 13

5 Single-challenge Time-Memory Trade-Off 14
5.1 Reasoning About A1’s Queries Algebraically . . . . . . . . . . . . . . . . 15
5.2 Proof Skeleton . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.3 Analyzing the Behavior of Ax = b . . . . . . . . . . . . . . . . . . . . . . 19
5.4 Combinatorial Proof of the rank(A) Lower Bound . . . . . . . . . . . . . 20
5.5 Incompressibility Argument . . . . . . . . . . . . . . . . . . . . . . . . . 23

6 Multi-challenge Memory Complexity 25

A Detailed Cumulative Memory Complexity Analysis 32

B Bounding the Entries of A 34

C Proof of Claim 5 35
C.1 Notation and Data Structures . . . . . . . . . . . . . . . . . . . . . . . . 36
C.2 Encoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
C.3 Encoding Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
C.4 Success Probability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2



1 Introduction
Moderately-hard functions have many applications, the most prominent one being password
hashing. Early constructions of such functions aimed to be moderately hard in terms
of computation. For example, PBKDF2 [Kal00] is essentially a regular hash function
repeated sufficiently many times.

Unfortunately, computationally expensive functions are not egalitarian. Attackers can
use specialized hardware (like FPGAs or ASICs) to evaluate some specific computationally
expensive function several orders of magnitude more efficiently (in terms of energy and
hardware cost) than general-purpose hardware. This creates an asymmetry between
the cost for honest users and attackers. Specifically with password hashing in mind,
Percival [Per09] introduced the notion of memory-hard functions (MHFs).

1.1 Memory-Hard Functions
Informally, a function is memory-hard if its evaluation cost on general-purpose hardware
is dominated by the memory (rather than CPU) cost. Since memory costs are roughly
the same for specialized- and general-purpose hardware, MHFs are more egalitarian than
computationally-hard functions. The first MHF construction was Scrypt [Per09] followed
by many others (e.g., [BDK16, BCS16, ABH17, BHK+19, BH22]). These constructions
primarily differ in their notion of memory-hardness and side-channel resistance.

Memory-Hardness. A popular way to measure the memory-hardness of a function is
the cumulative memory complexity (CMC) [AS15]. It basically sums the memory cost over
all steps1 of an evaluation. A secure MHF not only ensures that the CMC of the honest
evaluation algorithm is high, but also that any other, adversarial evaluation algorithm has
a CMC not much lower than the honest evaluation algorithm. While the honest evaluation
algorithm uses little to no parallelism, the adversarial algorithm is allowed arbitrarily
many parallel queries to the random oracle.

Unfortunately, the definition of CMC does not exclude time-memory trade-offs. In
particular, an MHF may be evaluated in more steps where each step requires less mem-
ory [RD16]. A stronger notion is sustained space complexity [ABP18] which only counts
steps where the memory usage is sufficiently high.

Finally, let us mention the related notion of bandwidth-hardness [RD17, BRZ18]
capturing the number of cache-misses rather than the memory usage. This captures the
energy cost of evaluating a function more accurately, whereas CMC is a better measure
for the hardware cost.

Side-channel Resistance. MHFs come in two flavors, data-dependent and data-
independent MHFs (dMHF and iMHF, respectively), which classify the side-channel
resistance of MHFs. The memory-access patterns during the evaluation of an iMHF do
not depend on the input but are fixed. In contrast, dMHFs allow the memory-access
patterns to depend on the input. While dMHFs are easier to construct and can provably

1MHFs are typically constructed from hash functions. In security proofs, these are modelled as random
oracles. So a “step” may be thought of as a query (or many independent queries in parallel) to the
random oracle.

3



achieve higher evaluation cost [ABP17], their security can be compromised by side-channel
attacks which leak memory access patterns. A notion aiming to combine the advantages
of iMHFs and dMHFs using computational assumptions was proposed in [ABZ20].

1.2 Trapdoor MHFs
An MHF is an unkeyed primitive, but like for other unkeyed primitives, say, one-way
permutations or collision-resistant hash functions, it is natural to consider a keyed version.
Biryukov and Perrin [BP17] introduced asymmetrically memory-hard functions which are
essentially MHFs admitting a trapdoor. So similarly to an MHF, evaluating the function
is guaranteed to cost a lot of memory in general. However, in contrast to an MHF, when
sampling the parameters one also generates a secret trapdoor. Knowledge of this trapdoor
allows evaluating the function much cheaper using less memory. Therefore, we call such
functions trapdoor MHFs (TMHFs) and note that the PURED framework [BLP23]—an
effort to classify all types of resource-hard functions—also uses the word “trapdoor” to
describe such functions.

In this work, we focus on a data-dependent TMHF that provably achieves high CMC.
To precisely quantify the gap between the honest evaluation algorithms (with and without
knowledge of the trapdoor) we use the notation (chon, ctd)-TMHF. This means that the
honest evaluation algorithms without and with knowledge of the trapdoor have a CMC of
chon and ctd, respectively.

Applications. One potential application of TMHFs are proofs of CMC that benefit
from efficient private verification. For example, consider an e-mail server that wants to
combat junk mail [DN93] by requiring e-mail senders to solve a TMHF. Thanks to the
trapdoor, the server can verify the sender’s response with fewer resources than the sender.
So the server can choose larger parameters that would otherwise be too costly, especially
if the gap between chon and ctd is large.2

Another application is password hashing, albeit a less convincing one. In principle,
the trapdoor allows a server to verify logins more cheaply compared to using an MHF.
However, the trapdoor needs to be stored securely (e.g., in an HSM) and then it is
conceivable to simply encrypt the passwords instead of hashing them. One downside of
encryption is that a compromise of the key (e.g., the HSM is broken) reveals all passwords,
a catastrophical failure. Since TMHFs would still require some bruteforcing in this case,
they might still be preferable.

Related Primitives. Memory-hard puzzles [ABB22] are closely related, yet different.
Solving a puzzle is memory-hard, but it is easy to sample a puzzle that will evaluate to a
specific solution. While the first property is comparable to evaluating a TMHF without
knowledge of the trapdoor, the second property can roughly be seen as the opposite of
the trapdoor evaluation.

2In a similar vein, some proof of work blockchains use MHFs, but the parameters cannot be too large
as otherwise the verification of blocks becomes too expensive. Sadly, TMHF are not suited for blockchains
since it is unclear who would possess the trapdoor.

4



1.3 The Diodon TMHF
Diodon [BP17] is the first construction aiming to be TMHF. It is based on Scrypt [Per09],
a well-known data-dependent MHF that has provably high memory-hardness [ACK+16,
ACP+17]. Diodon as stated in [BP17] offers multiple parameters to fine-tune the security
and performance of the function. In this paper, we stick to the natural choice of parameters
that most closely resembles Scrypt3 and also work in a slightly different algebraic setting.
To avoid confusion, we call this specific instantiation TdScrypt.

TdScrypt essentially replaces the sequential hashing done in Scrypt’s initial phase
with sequential squaring in a group of unknown order. More precisely, TdScrypt is
defined with respect to a group of unknown order where the trapdoor is the group order N .
Given a parameter n which basically specifies the memory requirement of the evaluation
and input group element W =: W0, first define Wi := W 2

i−1 for 0 < i < n. Then set
S0 := h(Wn, 0 · · · 0), and, for 0 < i ≤ n, define Si := h(Wj, Si−1) where j := Si−1 mod n
and h is a hash function. Finally, Sn is the output of TdScrypt on input W .

Evaluation Algorithms. The honest evaluation algorithm without knowledge of the
trapdoor repeatedly squares W , and stores all intermediate values (i.e., all Wi) in memory.
Then it computes all Si in sequence, looking up Wj on demand. Adding up the memory
consumed over all steps, we get a CMC of Θ(n2 log N) because the algorithm stores n
group elements of size roughly log N bits while computing the values from S0 to Sn within
n steps.4

In comparison, the trapdoor evaluation algorithm first computes Wn = W 2n directly
by first reducing 2n mod N . Then, it computes the Si sequentially while computing
the Wj on demand similarly to Wn. This has a cost of roughly Θ(n log(N)2 log(n))
and we defer the details to Section 3.2. In summary, TdScrypt is approximately an
(n2 log(N), n log(n) log(N)2)-TMHF.

1.4 Contributions and Technical Overview
Our main contribution is a rigorous proof of the following lower bound. It bounds the CMC
required by any TdScrypt evaluation algorithm without knowledge of the trapdoor.

Theorem 1 (Informal). In the random oracle and generic group model, assuming that
factoring is hard, any algorithm A evaluating TdScrypt has a cumulative memory
complexity lower bounded by Ω( n2

log n
log N).

Recall that the honest evaluation algorithm (without trapdoor) has a cumulative-
memory complexity of Θ(n2 log N), so our lower bound is a factor 1/ log(n) loose. We do
not know of any evaluation algorithm achieving O( n2

log n
log N) and believe that the loss in

tightness is an artifact of our proof.

Proof Strategy. We follow the proof of Alwen et al. [ACP+17] who proved that
Scrypt has a CMC of Ω(n2ωh)—which is tight—in the random oracle model (ROM).5

3Using notation from [BP17], M := n, L := n, and η := 1.
4We assume that a hash- and group operations take the same amount of time.
5Note that ωh is the output length of the random oracle which corresponds to log N in our bounds.

5



Naturally, we also work in the ROM, but also need to consider Shoup’s generic-group
model (GGM) [Sho97]. Their proof first considers a single-challenge time-memory trade-off
which is then generalized to get a multi-challenge memory complexity lower bound. We
will elaborate how these two concepts are related to CMC in the following paragraphs.

We remark that our single-challenge time-memory trade-off proof is more involved and
differs considerably from Alwen et al. [ACP+17] where this part of the proof was fairly
simple. The generalization to the multi-challenge memory complexity lower bound—by far
the most complicated part in [ACP+17]—is fortunately essentially identical. Thus, most
of our proof focuses on the single-challenge case and we only sketch the multi-challenge
argument while referring to [ACP+17] for details.

Single-challenge Time-Memory Trade-Off. Consider the following single-challenge
game. Like when evaluating TdScrypt, the adversary A receives an input group element
W but does not know the group order N . It is then given the challenge j

$← {0, . . . , n−1}
and needs to output Wj = W 2j as quickly as possible. Before being challenged, A is
allowed to perform precomputation and to store the resulting advice string. Clearly, if
the advice string is large enough, A can store W0, . . . , Wn−1 and answer every challenge
instantly. Inspired by this, we are interested in a time-memory trade-off: How fast (on
average) can A answer a challenge in relation to the size of the advice string?

To this end, we first show that if A answers a large fraction of the challenges quickly,
it must have a lot of group elements stored, else it could factor. Our approach draws
inspiration from proofs showing that repeated squaring (i.e., on input W computing
W 2j ) [RSW96] is sequential in generic models if factoring is hard [KLX20, Rot22, RS20].
On a high level, they first lower bound the number of queries required by algorithms
oblivious to the group order. Using this lower bound, they show that if an adversarial
algorithm is faster, its query behavior reveals a non-trivial factor of N . While the lower
bound for sequential squaring trivially equals the prescribed number of iterations, figuring
out a tight enough bound for the single-challenge game with respect to TdScrypt is
substantially more complex. Without delving into the details, we prove a bound by
analyzing the solvability of certain systems of Diophantine equations.6 We use powerful
mathematical tools such as a lemma due to van der Waerden [Laz96] and a generalization
of the famous distinct subset sums problem due to Erdős [Guy94, C8].

Second, again assuming hardness of factoring, we show that storing k group elements
roughly requires a memory of k log(N) as otherwise we could encode a random injection
(the GGM’s labeling function) more efficiently than information-theoretically possible.
Our proof is inspired by Corrigan-Gibbs and Kogan [CK18] who analyze how helpful
preprocessing is for computing discrete logarithms by using an incompressibility argu-
ment [DTT10]. In contrast to their work, our argument is more involved. On the one
hand, the single-challenge game is more complex than the discrete logarithm problem. On
the other, the group order is unknown which complicates bookkeeping in the encoding
routine.

Combining the two results above, we get that if an adversary answers challenges
quickly on average, then the advice string must be large—assuming factoring is hard.

6This means that the systems have integer coefficients. Intuitively, if an algorithm is oblivious to the
group order, its query behavior might as well be analyzed over Z instead of ZN .

6



Multi-challenge Time-memory Trade-Off. When an algorithm evaluates TdScrypt
and outputs Sn, it almost surely must have computed S1, . . . , Sn in sequence because h is
a modeled as a random oracle. Computing Si given Si−1 requires Wj by definition where
is j := Si−1 mod n (almost) uniformly random because, again, h is a random oracle. It
follows that evaluating TdScrypt requires playing n single-challenge games in sequence.
So, a lower bound on the memory complexity of solving multiple challenges implies a
lower bound on the CMC of TdScrypt.

1.5 Open Problems
First, TdScrypt has a CMC of O(n2 log N) whereas the lower bound is only Ω( n2

log n
log N).

Ideally, this bound should be tight. Looking ahead, one possible way of achieving this
is strengthening Lemma 2, a solvability criterion for certain systems of Diophantine
equations. Essentially, one would need to show rank(A) ≥ ℓ/(ct) for some constant c.

Second, TdScrypt’s drop in CMC when using the trapdoor is only due to the much
lower memory requirement of the trapdoor evaluation. The computation actually increases
from n to n log(N), as in the 2nd phase of the evaluation (where we compute the Si’s)
the normal evaluation just makes n group operations (modular multiplications), while the
trapdoor evaluation needs to do n exponentiations. An open problem is constructing a
TMHF where the trapdoor evaluation not only improves CMC, but strictly improves on
memory usage and computation individually (or at least improves on one of them without
decreasing the other).

Finally, coming up with a TMHF that fulfills different notions of memory hardness
would be interesting. For example, a data-independent TMHF or a TMHF that ensures
high sustained space complexity.

2 Preliminaries

2.1 Notation
N, Z, ZN , Q, and R are the sets of natural numbers including 0, integers, integers
modulo N , rational, and real numbers, respectively. For these sets, the superscript +

denotes the strictly positive subset (e.g., N+ = {1, 2, . . .}). [a, b] denotes the set {a, . . . , b},
[a, b) = {a, . . . , b − 1}, and [n] is a shorthand for [1, n]. Furthermore, Inj(A, B) is the
set of all injections from set A to set B and x

$← X samples an element from the set X
uniformly at random. Vectors are written in boldface (e.g., x) and matrices in upper case.
|x| denotes the absolute value or the length of x depending on whether x is a number or
a list, vector, etc., and ∥x∥ is the number of bits required to encode x. Algorithms are
usually typeset sans-serif (e.g., Alg), x := y or x := Alg(. . .) denote assignment or the
output of a deterministic algorithm, and a← Alg(. . .) the output of a probabilistic one.

λ always denotes the security parameter and negl(λ) (resp. poly(λ)) are the set of all
functions that are negligible (resp. polynomial) in λ. Furthermore, we use standard Big O
notation such as O, Ω, Θ, and ω. When working with groups, group elements are written
upper case, and their exponents with respect to the group generator lower case. Lastly,
log denotes the binary logarithm.

7



2.2 Algebraic Setting
To allow for a trapdoor, we require some algebraic structure: the group of quadratic residues
with respect to RSA moduli. As a consequence, the memory-hardness of TdScrypt is
based on factoring assumptions. In the following, we define modulus generation, related
factoring assumptions, and the group of quadratic residues.

Definition 1 (Safe-prime Generator). Let GenSP be an algorithm that samples two
distinct safe primes of the same bit length uniformly at random. More precisely, define

(p′, q′)← GenSP(λ)

and let p := (p′ − 1)/2 and q := (q′ − 1)/2. It holds that p′, p, q′ and q are prime, p ≠ q,
and ∥p∥ = ∥q∥ = k(λ) with k(λ) ∈ poly(λ).

In terms of notation, let N := pq and N ′ := p′q′ in the rest of the paper.7. Next, we
give two hardness assumptions stating that factoring N ′ as well as N is hard.

Definition 2 (Factoring N ′). The game Fac′GenSP,A(λ) is defined with respect to GenSP
and a probabilistic polynomial-time (PPT) adversary A. On input of a security parameter λ
it runs (p′, q′)← GenSP(λ), sets N ′ := p′q′, and invokes the adversary, yielding (p∗, q∗)←
A(N ′). The game returns 1 if {p∗, q∗} = {p′, q′} and 0 otherwise.

We say that factoring N ′ is hard if, for every PPT algorithm A, the advantage is
negligible, i.e.,

AdvFac′

GenSP,A(λ) := Pr
[
1← Fac′GenSP,A(λ)

]
∈ negl(λ)

where the probability is taken over the randomness of GenSP and A.

Definition 3 (Factoring N). The game FacGenSP,A(λ) is defined similarly to Fac′GenSP,A(λ)
but with N ′ replaced by N . So the game invokes (p∗, q∗)← A(N) and returns 1 if and
only if {p∗, q∗} = {p, q}. We say that factoring N is hard if, for every PPT algorithm A,

AdvFac
GenSP,A(λ) := Pr[1← FacGenSP,A(λ)] ∈ negl(λ)

where the probability is taken over the randomness of GenSP and A.

Let us briefly analyze both assumptions. It is conjectured that the density of safe
primes p′ in the interval [2k−1, 2k] is of order 1/k2 (e.g., [vzGS13]). Note that the
map p′ 7→ (p′ − 1)/2 is injective, so this statement implies the same regarding the density
of (p′ − 1)/2 = p in [2k−2, 2k−1]. Thus, assuming the conjecture holds, the standard
factoring assumption (i.e., factoring the product of two uniformly sampled arbitrary k-bit
primes is hard) implies that factoring N ′ as well as N is hard. For simplicity, we say that
factoring is hard with respect to GenSP if factoring N as well as factoring N ′ are hard
with respect to GenSP.

Equipped with these definitions, we finally define the group of quadratic residues
modulo N ′.

7Note that usually N and N ′ are defined the other way around. However, most parts of the paper are
only concerned with N , so we chose this notation to avoid clutter.

8



Definition 4 (Group of Quadratic Residues). For (p′, q′)← GenSP(λ), let p := (p′− 1)/2,
q := (q′ − 1)/2, N ′ := p′q′, and N := pq. The group of quadratic residues modulo N ′ is a
subgroup of Z∗N ′ defined as QRN ′ := {X2 | X ∈ Z∗N ′}.

Since p′ and q′ are safe primes (and thereby Blum integers), QRN ′ is a cyclic group
of order |QRN ′| = N and a uniformly sampled element X ← QRN ′ is a generator with
overwhelming probability φ(N)/N = 1− q+p−1

N
∈ (1− negl(λ)) where φ denotes Euler’s

totient function.

2.3 Generic Group Model
In the proof of our main result we model the cyclic group QRN ′ = ⟨g⟩ of order N := pq
as a generic group in the style of Shoup’s generic group model (GGM) [Sho97]. In the
GGM algorithms do not get direct access to the group (that we may identify with the
group (ZN , +) by using the isomorphism ZN → QRN ′ ; z 7→ gz). Instead, access to group
elements is provided via abstract labels σ ∈ L where L := {0, 1}ωL (with ωL ≥ ⌈log(N)⌉)
and group operations are performed using an oracle G that allows for multiplication,
division, and inversion.

More precisely, let Inj(ZN ,L) be the set of all injections from ZN to L and let
Σ $← Inj(ZN ,L) be one such injection chosen uniformly at random. Σ is called the
labeling function, and it defines the oracle G : {+,−, inv} × L × L → L ∪ {⊥}. G answers
a query (◦, σ1, σ2) as follows. If σ1 and σ2 are not in the image of Σ, it returns ⊥.
Otherwise, if ◦ ∈ {+,−}, it returns Σ(Σ−1(σ1) ◦ Σ−1(σ2) mod N), and if ◦ = inv, it
returns Σ(−Σ−1(σ1) mod N).

Abusing notation, we will almost always write Σ instead of G when talking about a
concrete instantiation of the generic group oracle.

2.4 Machine Model and Complexity Measure
Parallel Oracle Model. To define a memory complexity measure, we first require a
machine model. Prior work uses the parallel random oracle model [AS15, ACP+17] which
allows algorithms to perform an unlimited number of random oracle queries in parallel.
Similarly, we define the parallel oracle model which additionally allows for generic group
queries. That is, a polynomial-time (PT) algorithm A has access to two oracles: G, a
group-operation oracle, and h, a random oracle. We will sometimes explicitly state the
oracles in superscript, i.e., AG,h, and omit them when they are clear from context.

The random oracle h : {0, 1}∗ → {0, 1}ωh maps inputs to bit strings of length ωh and
we require that ωh ∈ Θ(log N). To ensure that the set of random oracles is finite, we
assume some sufficiently large, finite bound ∗ on the inputs.

Algorithm A’s execution proceeds in rounds starting with round 1. Within each round,
A performs local computation and submits oracle queries at the end of it. Then, at the
beginning of the next round, A receives the response to its queries. Formally, states
capture A’s progress throughout the rounds and its queries to both oracles. At the end
of round i, A produces an output state sti := (τi, qrsGi , qrsh

i ) where τ is a bit string, and
qrsG and qrsh are vectors containing queries to G and h, respectively. Consequently, in
round i + 1, it receives the input state sti := (τi, resGi , resh

i ) where resGi and resh
i are

vectors containing the results of the queries qrsGi and qrsh
i .

9



We will only consider deterministic algorithms in the interest of keeping proofs readable
and concise. This is essentially without loss of generality in our setting since we only care
about algorithms that correctly evaluate TdScrypt with sufficiently high, i.e., noticeable,
success probability. Such algorithms can be derandomized by trying out a few choices of
the randomness, checking each randomness on a polynomial number of random inputs,
and then fix the randomness on which the algorithm performed best. This will with
overwhelming probability result in a deterministic algorithm whose success probability is
close to the randomized one.

Complexity Measure. To evaluate the memory complexity of an algorithm, we use a
notion called cumulative memory complexity (CMC) [AS15]. Essentially, CMC is the sum
of an algorithm’s memory consumption at every point in time, i.e., the area under the
memory usage curve.

More formally, consider an algorithm A running in the parallel oracle model on some
input x. Its execution results in a sequence of input states sti = (τi, resGi , resh

i ). Then, its
CMC is given by

ccmem(AG,h(x)) :=
∑

i

∥sti∥

where the bit length of the input state sti is defined as ∥sti∥ := ∥τi∥+ |resGi |ωL + |resh
i |ωh.

Without loss of generality, an algorithm submits at least one query per round, so ∥sti∥ ≥
min{ωL, ωh} ∈ Θ(log N) by definition.

Preprocessing Algorithms. Instead of working with a single deterministic PT al-
gorithm A, we often view it as a pair of deterministic PT algorithms A = (A0,A1).
Intuitively, A0 performs preprocessing and outputs some advice which A1 receives as
input. It follows that we do not charge A0 for any memory usage and that we do not count
its number of rounds (but emphasize that, unlike in other works, A0’s computation is not
completely unbounded as we cannot allow it to factor N with noticeable probability).

In the terms of the parallel oracle model, given public parameters pp and online input
x, to evaluate AG,h(pp, x), first execute AG,h

0 (pp) resulting in an input state st0. Then,
starting in round 1, run AG,h

1 (st0, x) with the online input x yielding the output of A. The
CMC of A is defined as ccmem(AG,h(pp, x)) := ccmem(AG,h

1 (st0, x)).

3 A Trapdoor Memory-Hard Function from Factoring
In this section we define the syntax for trapdoor memory-hard functions (Section 3.1) and
then describe TdScrypt, the instantiation of Diodon [BP17] we will use throughout
the paper (Section 3.2).

3.1 Trapdoor Memory-Hard Functions
A trapdoor memory-hard function (TMHF) is defined by a triple of polynomial-time
algorithms (Setup, Eval, TDEval) as follows (with the security parameter λ left implicit).

10



• Setup()→ (pp, td). The probabilistic setup algorithm samples public parameters pp
and corresponding trapdoor td. The public parameters implicitly determine the
domain Dom(pp) and range Ran(pp) of the TMHF.

• Eval(pp, w) =: y. The deterministic evaluation algorithm takes public parameters
pp and w ∈ Dom(pp) as inputs and returns a y ∈ Ran(pp).

• TDEval(pp, td, w) =: y. The deterministic trapdoor evaluation algorithm takes public
parameters pp, trapdoor td, and w ∈ Dom(pp) as inputs and returns y ∈ Ran(pp).

We require correctness, i.e., for all (pp, td)← Setup() and all w ∈ Dom(pp), it holds that

Eval(pp, w) = TDEval(pp, td, w).

To quantify the quality of a TMHF we have to analyze the cumulative memory required
to evaluate it with and without access to the trapdoor. Accordingly, if the required CMC
is given by functions chon and ctd, i.e.,

chon(pp) = ccmem(Eval(pp, w)) and ctd(pp) = ccmem(TDEval(pp, td, w))

the TMHF is referred to as a (chon, ctd)-TMHF.
Naturally, trapdoor evaluations must have a lower CMC than the standard evaluation

algorithm. That is, for all (pp, td) ← Setup, there exists some 0 < ∆(pp) < 1 (ideally
∆(pp) ∈ o(1)), such that, for all inputs w ∈ Dom(pp), we have

ctd(pp) < ∆(pp) · chon(pp).

Moreover, we want our function to be a good MHF when ignoring the trapdoor. This means
the CMC of Eval(pp, w) should be high by construction, but no adversarial evaluation
algorithm should exist that can evaluate the function with much lower CMC. This must
hold even when the other adversarial algorithm is allowed to make many parallel queries
to the oracles and when it is given some advice that was computed (by any polynomial
time preprocessing) dependent on pp (but of course not the input w or the trapdoor).

3.2 Description of TdScrypt
We will analyze TdScrypt which can be viewed as a concrete instantiation of Diodon [BP17].
Specifically, using notation from [BP17], we set M := n, L := n, and η = 1. Furthermore,
TdScrypt is defined over the group of quadratic residues QRN ′ instead of ZN ′ due to
technicalities.

Construction. TdScrypt is defined with respect to integer n ∈ N corresponding to
the number of iterated steps (i.e., repeated squarings). It relies on computations in the
group QRN ′ of quadratic residues modulo N ′ as defined in Definition 4. Accordingly, its
public parameters pp consist of an RSA modulus N ′ := p′q′, where p′ and q′ are safe primes
generated using safe prime generator GenSP (see Definition 1), a hash function h : {0, 1}∗ →
{0, 1}ωh , and n. The corresponding trapdoor is td := N = (p′ − 1)(q′ − 1)/4 = |QRN ′ |.
TdScrypt’s formal description is in Figure 1.

11



Setup()
00 (p′, q′)← GenSP()
01 N ′ := p′q′

02 N := (p′ − 1)(q′ − 1)/4
03 pick h
04 pp := (N ′, h, n)
05 td := N
06 Return (pp, td)

Eval(pp, W )
07 W0 := W
08 For i := 1, . . . , n− 1:
09 Wi := W 2

i−1
10 Store Wi

11 S0 := h(Wn, 0ωh)
12 For i := 1, . . . , n:
13 ji := Si−1 mod n
14 Si := h(Wji

, Si−1)
15 Return Sn

TDEval(pp, td, W )
16 W0 := W
17 m := 2n mod N
18 Wn := W m

0
19 S0 := h(Wn, 0ωh)
20 For i := 1, . . . , n:
21 ji := Si−1 mod n
22 mi := 2ji mod N
23 Wji

:= W mi
0

24 Si := h(Wji
, Si−1)

25 Return Sn

Figure 1: Trapdoor memory-hard function TdScrypth
n defined with respect to number of

steps n ∈ N. The TMHF uses a hash function h : {0, 1}∗ → {0, 1}ωh , domain Dom(pp) =
QRN ′ and range {0, 1}ωh . The exponentiations W 2

i , W m
0 , and W mi

0 are computed in QRN ′ .

In the following, we will assume that the time of evaluating h approximately matches
the time of evaluating a group operation, i.e., computing a multiplication in modulo N ′.
This could for example be implemented by setting h(s) := h′′(h′(s) · h′(s) mod N ′), where
h′ : {0, 1}∗ → QRN ′ and h′′ : QRN ′ → {0, 1}ωh are cryptographic hash functions.

To evaluate the TMHF on input W ∈ Dom(pp) := QRN ′ algorithm Eval sets W0 := W
and computes and stores the group elements Wi := W 2

i−1 = W 2i for i ∈ [n − 1]. Then
it sets S0 := h(Wn, 0ωh), and, for i := [n], computes Si := h(Wji

, Si−1) where the
index ji := Si−1 mod n. The output of Eval is Sn ∈ Ran(pp) := {0, 1}ωh .

TDEval computes the values Si without storing the group elements Wji
, but instead

recomputes them efficiently using its knowledge of N = |QRN ′ |. It sets W0 := W ,
computes Wn := W m

0 , and S0 := h(Wn, 0ωh), where m := 2n mod N . Then for i ∈ [n] it
computes, in order, ji := Si−1 mod n, mi := 2ji mod N , Wi = W mi

0 , and Si := h(Wji
, Si−1).

Its output is Sn.

Cumulative Memory Complexity. Recall that the CMC is the memory usage summed
over all steps. In the following analysis of TdScrypt we will give a brief estimate of
Eval and TDEval’s CMC where we define a “step” to constitute the time taken by one
group operation. For details on this choice and an in-depth CMC analysis we refer to
Appendix A.

For Eval, note that its CMC is dominated by the second loop (Lines 12–14). During
the loop, Eval keeps n group elements W0, . . . , Wn in memory, amounting to Θ(n log(N ′))
bits. The loop requires Θ(n) group operations in total as every evaluation of h takes the
time of one group operation by definition. We thus obtain

ccmem(Eval(pp, x)) ∈ Θ(n log(N ′) · n) = Θ(n2 log(N ′)).

TDEval’s CMC is also dominated by the loop (Lines 20–24). In contrast to Eval, the
memory usage during the loop is low because it does not store n group elements. However,
every loop iteration requires more steps since TDEval reduces n-bit integers of the form 2j

12



with j ∈ [0, n) modulo N (Line 22) and performs exponentiations in QRN ′ (Line 23).
In general, the former operations requires Θ(n log(N ′)) group operations which can be
reduced to log(n) group operations by using a lookup table of size Θ(log(n) log(N ′)). The
exponentation requires Θ(log N ′) group operations using square-and-multiply. So during
the loop, TDEval stores the lookup table using Θ(log(n) log(N ′)) bits, and every iteration
takes Θ(log(n) + log(N ′)) group operations, resulting in

ccmem(TDEval(pp, td, x)) ∈ Θ(log(n) log(N ′) · n (log(N ′) + log(n)))
= Θ(n log(N ′)2 log(n)).

Summing up, TdScrypt is a (n2 log(N ′), n log(n) log(N ′)2)-TMHF.

4 Overview of the Lower Bound Proof
In the previous section, we established that Eval has a CMC of Θ(n2 log N) and TDEval
one of Θ(n log n log N). These analyses only hold for the specific algorithms stated in
Figure 1. However, an adversary (without knowledge of the trapdoor) need not follow Eval.
The rest of this paper is devoted to showing that no evaluation algorithm is meaningfully
faster than Eval.

Theorem 1 (Restated). Let n ∈ poly(λ) with n ≥ 8 and let A be a deterministic parallel
oracle machine that evaluates TdScrypt correctly with probability χ(λ) over the choice
of the parameters and input W . Then, assuming that factoring is hard, in the GGM and
ROM with probability at least χ(λ)− ϵ(λ),

ccmem(App(W )) ∈ Ω
(

n2

log n
log N

)

where pp are the public parameters, ϵ(λ) ∈ negl(λ), and the probability is taken over the
choice of parameters.

So we show a lower bound on the CMC of evaluating TdScrypt that almost matches
Eval and is only a factor of 1/ log n loose. Note that log n ∈ O(log λ) by definition of n,
so the loss in tightness is small asymptotically.

To prove our lower bound, we assume that factoring is hard and work in generic
models. This is in line with lower bounds on the memory complexity of (non-trapdoor)
memory-hard functions which are situated in the ROM. The rest of the paper is divided
into two sections similar to Alwen et al. [ACP+17]

Single-challenge Time-Memory Trade-Off (Section 5). Before considering the
whole TdScrypt execution, we focus on the hardness of computing Wj := W 2j for
j

$← [n] given M bits of precomputed advice. This is closely related to the second phase of
TdScrypt which, for all i ∈ [n], requires computing Si := h(W 2ji , Si−1) given challenge
ji := Si−1 mod n. Note that ji is chosen (almost) uniformly from [0, n) when modeling
h as a random oracle. Here, the precomputed advice can be thought of as the state of
the algorithm before learning challenge ji. Our goal is to show that if the advice is short,
computing Wj takes a long time on average. Stated differently, if A computes Wj quickly
on average, the advice must be large.

13



Multi-challenge Memory Complexity Lower-Bound (Section 6). We abstract
the whole evaluation of TdScrypt as a multi-challenge game to get the lower bound on
ccmem(A). To this end, the single-challenge trade-off is applied to every challenge, i.e., to
the moment in time before it is known and every point in time before the preceding challenge
has been issued. This idea closely follows the corresponding proof in Alwen et al. [ACP+17],
and we refer interested readers to the paper for details.

5 Single-challenge Time-Memory Trade-Off
We consider a pair of deterministic parallel oracle machines A = (A0,A1) where A0
receives the input W and performs preprocessing, resulting in an advice string. In the
context of TdScrypt, this is best thought of as the computation performed by the
(adversarial) evaluation algorithm up to learning challenge j. A1, on input of challenge
j

$← [0, n), uses the advice string to query W 2j to h in as few rounds as possible. For now,
we explicitly pass the challenge j as an input. Our goal is to relate the advice string size
to the number of rounds required by A1 on average across all possible choices of j.

To formalize the preceding description, we first specify the set of parameters which
determine an execution of TdScrypt and then the game sketched above.

Definition 5 (Parameters). For security parameter λ ∈ N, let params(λ) be the set of
all possible parameters. It contains all quadruples (N, Σ, h, w) where (p′, q′)← GenSP(λ)
with p := (p′ − 1)/2 and q := (q′ − 1)/2 defines the group order N := pq, the labeling
function Σ is an injection Inj(ZN ,L), h is a random oracle, and the input w is non-zero,
i.e., w ∈ ZN \ {0}. Here, w is the discrete logarithm of W , i.e., Σ−1(W ) = w in the GGM.
Furthermore, recall that we require ωL, the length of labels in L, and ωh, the output
length of h, to be larger than log N and of order log N respectively.

To avoid clutter, we sometimes leave λ implicit and write params instead of params(λ).

Definition 6 (Single-challenge Game). Let (N, Σ, h, w) ∈ params and A = (A0,A1) be
deterministic parallel oracle machines . To the challenge j ∈ [0, n) and state st0 :=
AΣ,h

0 (Σ(1), Σ(w)) we associate

TimeSCΣ,h
A1 (st0, j) =

min{i : Σ(w2j ) ∈ qrsh
i }, if the minimum exists

∞, otherwise.

So TimeSC is the earliest round i ∈ N+ in which AG,h
1 (st0, j) queries Σ(w2j ) to h or ∞

if it never does.
Next, we answer the following question: How small can TimeSC be relative to the size

of st0? That is, we are interested in a time-memory trade-off when playing TimeSC.
A preliminary observation is that if ∥st0∥ ≥ nωL, then there exists a simple strategy

SS achieving TimeSCSS = 1. Indeed, SS simply stores the answers to every possible
challenge in st0. Generalizing to any ∥st0∥ = M , we get the following strategy SS: SS0
encodes ρ := ⌊M/ωL⌋ group elements in st0 where the elements are of the form W 2i with
the i equidistantly spaced across 0, . . . , n− 1. SS1, on input j, picks the maximum i ≤ j
such that W 2i is stored in st0 and, if necessary, repeatedly squares it until reaching W 2j .
So TimeSCSS > n/(2ρ) for at least half of the challenges.

14



We want to show that if factoring is hard, no algorithm A can meaningfully beat SS
for most choices of parameters. That is, there exists a partition of params into sets good
and bad such that bad contains a negligible fraction of params and A can only beat the
strategy when the chosen parameters are in bad. Note that we cannot give guarantees
for all possible parameter choices since, e.g., sometimes N might be easy to factor. This
leads us to Lemma 1 that characterizes the set bad.

Lemma 1 (Single-challenge Trade-Off). For every pair of deterministic parallel oracle
machines A = (A0,A1), all c ∈ N with security parameter λ large enough, and all
n, M, Q ∈ poly(λ) with n ≥ 8 and subsets bad ⊆ params(λ), if, for every (N, Σ, h, w) ∈ bad,
A1 makes at most Q queries, st0 := AΣ,h

0 (Σ(1), Σ(w)) is of size |st0| ≤M and

Pr
j

$←[0,n)

[
TimeSCΣ,h

A1 (st0, j) ≤ n

6ρ log(n/2)

]
≥ 1/2

where ρ = (M + log n + log Q + c log λ + 1)/(log(N)− 3(log Q− log n)− 3), then |bad| <
λ−c| params(λ)|.

In other words, bad is the set of parameters where, for every choice of parameters
contained therein, A1 answers more quickly than expected. It is also possible to define
the single-challenge trade-off the other way around. So there exists a large set good, and
the trade-off holds for any parameters in good. Corollary 1 captures this view and also
simplifies Lemma 1 by not stating all constants explicitly.

Corollary 1. For every pair of deterministic parallel oracle machines A = (A0,A1), there
exists a negligible function ϵ(λ) ∈ negl(λ) such that, for all n, M, Q ∈ poly(λ) with n ≥ 8,
there exists a subset good ⊆ params(λ) such that, for every (N, Σ, h, w) ∈ good, A1 makes
at most Q queries, st0 := AΣ,h

0 (Σ(w)) is of size |st0| ≤M ,

Pr
j

$←[0,n)

[
TimeSCΣ,h

A1 (st0, j) >
n

6ρ log(n/2)

]
≥ 1/2

where ρ ∈ Θ((M + log n + log Q + log λ)/(log(N)− (log Q − log n))) and |good| ≥ (1−
ϵ(λ))|params(λ)|.

Let us now compare Corollary 1’s guarantees to the simple strategy SS. ρ is asymptot-
ically close to ⌊M/ log N⌋ ≤ ⌊M/ log ωL⌋ as in SS. However, n/(6ρ log(n/2)) is roughly
a 1/ log(n) factor looser than n/(2ρ). This seemingly is an artifact of our proof (looking
ahead, Lemma 2), and we leave possible improvements to future work. The remainder
of the section is devoted to the proof and structured as follows: First, we explain how
to reason about A1’s query behavior algebraically and state some algebraic tools related
to that. Second, we give the high-level structure of the proof and highlight three central
claims. Finally, we prove each claim to complete the proof.

5.1 Reasoning About A1’s Queries Algebraically
Algebraic Representation of Labels. Algorithm A1 receives st0 (the output of
preprocessing algorithm A0(Σ(1), Σ(w))) and challenge j as input. It then uses the GGM

15



Table 1: Associating labels in the GGM to linear representations over ZN . Column “Query”
lists the queries made by A1 and column “Response” the label returned as response to
the query. Labels queried out of the blue, i.e., not previously returned to A1 as answer
to a query, are collected in column “O.o.t.B. Inputs”. The representations assigned to
responses and o.o.t.b. input labels are given in column “Representation”.

Round Query O.o.t.B. Inputs Response Representation
1 G(+, σ1, σ2)

σ1 x1
σ2 x2

σ3 x1 + x2

2 G(+, σ3, σ3)
σ4 2x1 + 2x2

3 G(−, σ3, σ5)
σ5 x3

σ6 x1 + x2 − x3

...

oracle to generate the label Σ(w2j). As is typical in the GGM (e.g., [CK18, Sho97]),
the reduction in our proof exploits A1’s query behavior. To this end, the reduction
associates an algebraic representation to every label that A1 queries to or receives from the
oracle. More precisely, the algebraic representations are linear terms over ZN in several
indeterminates x1, . . . , xm. The reduction stores the mapping of algebraic representations
to labels in an (initially empty) table T to ensure consistency between queries.

Whenever A1 makes a query G(+, σ1, σ2), the reduction does the following:8 First,
it checks whether T already contains the label σ1. If not, it represents σ1 by a new
indeterminate xi and stores this mapping in T . Then, σ2 is processed analogously before
the reduction computes the label σ3 = G(+, σ1, σ2). If T does not contain a representation
for σ3, its representation is set to the sum of the ones of σ1 and σ2. Queries for the
operations ◦ ∈ {−, inv} are handled in the analogous way. Table 1 illustrates this
explanation by example.

We stress that A1 only receives the (bit string) st0 and the challenge j as input but not
any labels. As a consequence, T is initially empty. Thus, all algebraic representations will
not contain any constant terms. This is in contrast to similar approaches (e.g., [Sho97])
where constant terms arise as a consequence of the adversary explicitly receiving the
group generator as input at the beginning of the game. Intuitively, in our scenario A0
must store some labels (e.g., Σ(w)) in st0 in order for the hint to be useful.

System of Equations. In the above explanation, the reduction executed A1 with
some arbitrary challenge j ∈ [n]. In the actual proof, the reduction cares about specific
challenges, in particular, the subset J ⊆ [0, n) of challenges that are answered within in at
most t rounds (t will be set later). For every j ∈ J , the reduction starts A1(st0, j). Then,

8The following explanation is high-level and thus omits technicalities such as collision handling.

16



it executes all instances of A1 in parallel in lockstep while only keeping track of a single
table T . In more detail: First, the reduction initializes the empty table T . Second, for
every j ∈ J , it runs the A1(st0, j) until the first batch of parallel queries to the GGM
oracle is made. Iterating over all j ∈ J , the reduction responds to the queries and adds
labels to T as described above. Then, it resumes the execution of all A1 instances until
they query the GGM a second time. The reduction repeats this procedure for t rounds.

This parallel and lockstep execution gives rise to a system of linear equations corre-
sponding to the challenges j ∈ J as follows. By definition of J , all challenges j lead to
A1(st0, j) querying the label Σ(w2j) within t rounds. In turn, the table must contain this
label with a corresponding representation of the form aj,1x1 + · · ·+ aj,mxm (here in, say,
m indeterminates). By correctness, it must satisfy

aj,1x1 + · · ·+ aj,mxm = w2j mod N. (1)

Collecting these equations for all j ∈ J , we obtain a system of equations over ZN of the
form Ax = b, where A = (aji)j∈J,i∈[m] and b = (2jw mod N | j ∈ J)⊤. Since Equation (1)
holds for every equation, the system must have a solution x ∈ Zm. Intuitively, the solution
x corresponds to the discrete logarithm of group elements queried by A1 out of the blue
(represented by indeterminates) of which there are m in total. In practice, A1 must have
(mostly) stored these group elements in st0 as a randomly guessed group element will
most likely not be useful in computing a challenge.

Groups of Unknown Order. The above characterization of A requires knowledge of
the group order N . However, assuming that factoring is hard, the reduction and, more
importantly, A1 do not know N . Therefore, we will argue that it is almost always valid
to consider the system Ax = b as being defined over Z instead of ZN . That is, A ∈ Zℓ×m,
x ∈ Zm, and b ∈ Zℓ with b = (2jw | j ∈ J)⊤ Since A1 is executed for t rounds, for every
entry aji ∈ A, we have |aji| ≤ 2t as a consequence.9 Furthermore, Ax = b constitutes a
system of Diophantine equations since A, x, and b only have integer components.10 Since
we are working with integers, this system might not have a solution x. However, looking
ahead, it almost always will, assuming that factoring is hard.

Solving a system of equations Ax = b over Z works similarly to solving one over a
field. Recall that in a field one commonly uses Gaussian elimination to transform A into
a row- or column-reduced echelon form (i.e., a triangular matrix with pivot entries equal
to 1) because then the solution can easily be found algorithmically. The integer analogue
to the column reduced echelon form is the well-known column-style Hermite normal form
(HNF) which we define as in [MW01].

Definition 7 (Hermite Normal Form). A matrix H ∈ Zℓ×m is in Hermite normal form if

(i) there exists a sequence of integers 1 ≤ i1 < · · · < ir ≤ ℓ such that hij = 0 for all
i < ij where r is the number of non-zero columns; and

(ii) 0 ≤ hijk < hijj for all 0 ≤ k < j ≤ m.
9In fact, for every row aj , one can even show that ∥aj∥1 ≤ 2t (cf. Appendix B), but the weaker

statement ∥aj∥∞ ≤ 2t is sufficient for our proof.
10A precise definition of A, x, and b appears in Appendix C.2 as part of the proof contained therein.

17



So by Item (i), H is a lower-triangular matrix and all its zero columns are to the right.
Furthermore, taking Item (ii) into account, for every matrix A, there exists a unique HNF
H such that H = AU where U ∈ Zm×m is unimodular (i.e., invertible over Z). Moreover,
H has r := rank(A) non-zero columns [Her09]. In the rest of the paper, we denote the
HNF of A by HNF(A) = (H, U).

Note that the definition of rank(·) might differ to one’s own intuitive definition. This
is due to Zℓ×m being a module and not a vector space. In contrast to linear algebra,
different definitions of rank are not equivalent, so we define rank(·) below.

Definition 8 (Rank). rank(A) is the size of largest subset of A’s columns that are
linearly independent. A set of columns {c1, . . . , ck} is linearly dependent if there exist
α1, . . . , αk ∈ Z with at least one αi ̸= 0 such that ∑k

i=1 αici = 0.

5.2 Proof Skeleton
We first give a high-level overview of the proof. Assume that Lemma 1 does not hold. So
we have a large set of parameters bad where the trade-off does not hold for at least half
of the challenges. That is, we have an upper bound on how many rounds the adversary
needs to answer them. Thus, we can derive a system of equations Ax = b over Z where
the aij ∈ A are bounded in magnitude due to the trade-off not holding. Then, we prove
the following claims about this system:

• Assuming factoring is hard, Ax = b behaves identically over Z and ZN almost always.
For example, Ax = b having a solution over ZN does not necessarily imply the
same holds over Z, yet the implication will almost always hold under the factoring
assumption.

• Assuming that Ax = b over Z has a solution, rank(A) ≥ ρ for every choice of
parameters in bad.

• rank(A) < ρ for some choice of parameters in bad. Otherwise, a random labeling
function Σ could be compressed more efficiently than information-theoretically
possible.

Notice that the last two claims contradict each other, so Lemma 1 must hold. We now
give the detailed version of the above sketch.

Proof of Lemma 1. We distinguish two cases depending on ρ, the first one being trivial.
Case ρ > n/(6 log(n/2)): Then n/(6ρ log(n/2)) < 1 and so the trade-off holds for any

j ∈ [0, n) since TimeSC ≥ 1 by Definition 6.
Case ρ ≤ n/(6 log(n/2)): Towards contradiction, assume that Lemma 1 does not hold.

That is, there exists a pair of deterministic parallel oracle machines A = (A0,A1), c ∈ N
with security parameter λ large enough and, for infinitely many security parameters λ,
there exist n, M, Q ∈ poly(λ) with n ≥ 8 and a subset bad ⊆ params(λ), such that, for
every (N, Σ, h, w) ∈ bad, A1 makes at most Q queries, st0 := AΣ,h

0 (Σ(1), Σ(w)) is of size
|st0| ≤M and

Pr
j

$←[0,n)

[
TimeSCΣ,h

A1 (st0, j) ≤ n

6ρ log(n/2)

]
≥ 1/2

18



where ρ = (M + log n + log Q + c log λ + 1)/(log(N)− 3(log Q− log n)− 3) and |bad| ≥
λ−c| params(λ)|.

So for parameters in bad, it holds that A1 will answer at least n/2 challenges correctly
by the end of round n

6ρ log(n/2) . By the definition of rounds (cf. Section 2.4), to compute
these answers, it can make and receive the results of t := n

6ρ log(n/2) − 1 rounds of queries.
As in Section 5.1, consider the system of Diophantine equations Ax = b where

A ∈ Z(n/2)×m for some m ∈ N+ arising from A1’s query behavior. In the case that A1
answers more than n/2 challenges, we avoid ambiguities by selecting n/2 challenges in
some deterministic order (e.g., low challenge numbers first). Note that every matrix
element |aij| ≤ 2t and that the vector b does not contain 0, its elements are pairwise
distinct, and of the form bi = 2jw for j ∈ [0, n).

First, assuming factoring is hard, Ax = b behaves similarly to Ax = b mod N almost
always. It is proven in Section 5.3.
Claim 1. If Lemma 1 does not hold, there exists a negligible function ϵ(λ) ∈ negl(λ) such
that

(i) Ax = b has a solution;

(ii) HNF(A) and HNF(A) mod N have the same shape (i.e., HNF(A) mod N has no
additional zero entries); and

(iii) the diagonal entries of HNF(A) mod N are invertible over ZN

except for probability ϵ(λ) where the probability is taken over the choice of (N, Σ, h, w) ∈
params(λ).

Second, since A answers a lot of challenges quickly, its rank must be large as proven
in Section 5.4.
Claim 2. If Lemma 1 does not hold and ρ ≤ n/(6 log n), for all (N, Σ, h, w) ∈ bad,
rank(A) ≥ ρ.

Last, rank(A) cannot be too large by an incompressibility argument presented in
Section 5.5.
Claim 3. If Lemma 1 does not hold, there exists a (N, Σ, h, w) ∈ bad, such that rank(A) <
ρ.

The latter two claims contradict each other, completing the proof.

5.3 Analyzing the Behavior of Ax = b

The proof of Claim 1 follows from the assumed hardness of factoring. In particular,
Item (i) and Item (ii) reduce to factoring N ′, and Item (iii) to factoring N .

Proof of Claim 1. Let Ei denote the event that item i does not hold. We will show that
all events happen with negligible probability.

19



• There exists a negligible function ϵ(λ) ∈ negl(λ) such that Prparams
[
E(iii)

]
≤ ϵ(λ). To

see this, consider the algorithm B playing the game FacGenSP,B(λ) (cf. Definition 3). It
uses A (guaranteed by the assumption that Lemma 1 does not hold) as a subroutine.
On input N , B picks w ← ZN \ {0}, and lazily samples h and Σ to respond to A’s
queries. Note that B can simulate Σ and h perfectly because it knows N . Assuming
that N , w and what has been sampled of Σ and h so far is consistent with bad, B is
able to derive the system Ax = b. Then, it computes HNF(A) mod N and checks
whether any diagonal element a cannot be inverted. If so, B outputs (p∗, q∗) where
p∗ = gcd(a, N) and q∗ = N/p∗.
B is a PPT algorithm and (N, Σ, h, w) ∈ bad with probability at least λ−c. Hence,

Pr
[
E(iii)

]
≤ λc AdvFac

GenSP,B(λ)

which is negligible as factoring N is assumed to be hard.

• There exists a negligible function ϵ(λ) ∈ negl(λ) such that Prparams
[
E(i)

]
+Prparams

[
E(ii)

]
≤

ϵ(λ).
The reduction is similar to the previous item except for two differences. First,
B only knows N ′ but not N , so it cannot simulate Σ perfectly. However, this is
not an issue as B can approximate lazy sampling Σ by using N ′/4 instead of N .
Since N ′/4 = N + O(

√
N), answering a polynomial number of Σ queries using lazy

sampling with N ′/4 is statistically close to lazy sampling with N .
Second, B factors N ′ instead of N . If Ax = b has a solution over Z but not ZN or
if a matrix entry is non-zero over Z but zero over ZN , B learns a multiple of the
group order N . Such a multiple can be used to factor N ′ with probability at least
1/2 [KL14, Thm. 8.50].

Combining the two items above completes the proof.

5.4 Combinatorial Proof of the rank(A) Lower Bound
The key result of this section is the following number-theoretical lemma. Given a system
of Diophantine equations Ax = b, it bounds rank(A) from below as a function of A’s
number of rows and the magnitude of its entries.

Lemma 2. Let ℓ ∈ N with ℓ ≥ 4, t ∈ N, and m, w ∈ N+. For any matrix A =
(ai,j)i∈[ℓ],j∈[m] ∈ Zℓ×m with |ai,j| ≤ 2t for all i, j and vector b = (2j1w, . . . , 2jℓw)⊤ with
pairwise distinct j1, . . . , jℓ ∈ N, if the system Ax = b has a solution x ∈ Zm, then

rank(A) ≥ ℓ

3 max{t, log ℓ}
.

In the context of the single-challenge trade-off, the lemma states the following: If A1
solves a lot of challenges, either it must take a long time or rank(A) is high. This makes
sense since the rank approximately corresponds to the number of group elements stored in
st0 which is at most M/ log N ≈ ρ. Note that Claim 2 formalizes precisely this intuition,
so it follows from Lemma 2 almost directly.

20



Proof of Claim 2. By the assumption that Lemma 1 does not hold, A1 answers at least
ℓ := n/2 ≥ 4 challenges within t := n/(6ρ log(n/2)) − 1 rounds of queries. By Claim 1
Item (i), we may assume that bad only contains parameters where the system Ax = b has
a solution. So we apply Lemma 2 to get

rank(A) ≥ n

6 max{t, log(n/2)}

and we consider two cases depending on max: First, if rank(A) ≥ n/(6t), it follows that
rank(A) ≥ n/(6(t + 1)) and substituting for t, we arrive at rank(A) ≥ ρ log(n/2) ≥ ρ as
desired since log(n/2) ≥ 2. Second, if rank(A) ≥ n/(6 log(n/2)), by the assumption that
n/(6 log(n/2)) ≥ ρ, we also get rank(A) ≥ ρ completing the proof.

We now turn to the proof of Lemma 2. The first ingredient is an elegant number-
theoretic lemma due to van der Waerden (restated and proven in [Laz96]) which precisely
describes when a system of Diophantine equations has a solution.

Lemma 3 (van der Waerden). Consider the Diophantine system of linear equations
Ax = b with A ∈ Zℓ×m and b ∈ Zℓ. The system has a solution x ∈ Zm if and only if, for
every rational vector v ∈ Qℓ such that vA ∈ Zm, it also holds that vb ∈ Z.

We will show that if rank(A) is too small, such a vector v always exists. To this end,
we introduce the second ingredient which is a combinatorial claim. It is a vector version of
the famous distinct subset sums problem and associated conjecture11 due to Erdős [Guy94,
C8].

Claim 4. For t, m, ℓ ∈ N with ℓ ≥ 4, let R ⊂ Zm with |R| = ℓ and every r ∈ R satisfying
∥r∥∞ ≤ 2t.12 If m < ℓ/(3 max{t, log ℓ}), two subsets R1, R2 ⊆ R exist such that at least
one subset is non-empty (R1 ∪R2 ≠ ∅), they are disjoint (R1 ∩R2 = ∅), and their sums
are equal (∑r1∈R1 r1 = ∑

r2∈R2 r2).

Note that the above claim is slightly more general than the vector version considered
by Costa et al. [CDD23, Prop. 2.1], but their proof is easily adapted to our setting.

Proof. First, for any subset’s sum, notice that the largest absolute value of any resulting
vector coordinate is bounded by 2tℓ, which follows directly from the triangle inequality
and the fact that subsets contain at most ℓ elements.

Second, there exist 2ℓ distinct (not necessarily disjoint) subsets. Assuming that all
subsets’ sums are distinct, by the pigeonhole principle, it must hold that

|{−2tℓ,−2tℓ + 1, . . . , 2tℓ− 1, 2tℓ}|m ≥ 2ℓ

(2t+2ℓ)m ≥ 2ℓ

m(t + 2 + log ℓ) ≥ ℓ

m ≥ ℓ/(3 max{t, log ℓ})
11Consider a subset S ⊆ {1, . . . , 2t} of size |S| = m. What is the maximum size m so that all subsets

of S have distinct sums? The best-known lower bound is t + 2 ≤ m and upper bounds are roughly
m < t + log t (ignoring constants). Erdős conjectured that m = t + O(1) and offered $500 for proof or
refutation [Guy94, C8].

12∥r∥∞ is the infinity norm of the vector r = (r1, . . . , rm) and defined as maxi|ri|.

21



where the second line follows by overapproximating the size of the set, the third by
applying log to both sides, and the fourth by 2 ≤ log ℓ ≤ max{t, log ℓ} since ℓ ≥ 4 by
assumption. As a consequence, if m < ℓ/(3 max{t, log ℓ}), then there exist two distinct,
but not necessarily disjoint subsets R′1 and R′2 with equal subset-sum.

To get disjoint sets R1 and R2, we remove all common elements by defining Ri :=
Ri \ (R′1 ∩R′2) for i ∈ {1, 2}. Notice that at least one set is non-empty since R′1 and R′2
are distinct. This completes the proof.

Equipped with these tools, the proof of Lemma 2 is straightforward.

Proof of Lemma 2. Towards contradiction, assume that there exist A as well as b satisfying
the constraints in the lemma’s statement and that the system Ax = b has a solution, but

rank(A) <
ℓ

3 max{t, log ℓ}
.

We will show that this implies the existence of a vector v ∈ {−1, 0, 1}ℓ with v ̸= 0 and
vA = 0.

For finding such a v, we may assume that rank(A) = m (i.e., A is full-rank). To see
this, assume that A ∈ Zℓ×m is not full rank. We will see that it is sufficient to consider
A′ ∈ Zℓ×rank(A), the submatrix containing a linearly independent subset of A’s columns
that is of maximum size, i.e., rank(A).

Let the columns of A be c1, . . . , cm and, without loss of generality, assume that
c1, . . . , crank(A) are linearly independent, so A′ = (c1, . . . , crank(A)). By definition of linear
dependence (cf. Definition 8), for any column j with rank(A) < j ≤ m, there exist
coefficients αi (with at least one αi ̸= 0) such that

α1c1 + · · ·+ αrank(A)crank(A) + αjcj = 0.

Multiplying by v, we get
α1vc1 + · · ·+ αrank(A)vcrank(A) + αjvcj = v0

which simplifies to αjvcj = 0 since vA′ = 0 by assumption. Note that αj ≠ 0 as otherwise
some αi where 1 ≤ i ≤ rank(A) would need to be non-zero which would imply that
c1 . . . , crank(A) are not linearly independent. Dividing by αj, it follows that vcj = 0 for
all rank(A) < j ≤ m which implies vA = 0. It follows that we can restrict our attention
to the full-rank case.

Now we use Claim 4 to construct v. Whenever A contains two identical rows, it is
straightforward to define an appropriate v. Thus, we may assume that the rows of A
are distinct and form a set R ⊂ Zm of size |R| = ℓ. Combining this with the assumption
m = rank(A) < ℓ/(3 max{t, log ℓ}), Claim 4 applies, so there exist two disjoint subsets R1
and R2 with equal sum with one of them being non-empty. Hence, we initialize v := 0,
and set vi := 1 if ri ∈ R1 and vj := −1 if rj ∈ R2. This is unambiguous as the subsets are
disjoint. Further, notice that v ̸= 0 since one subset is non-empty, and, since the subsets’
sums are equal, vA = 0 as required.

Last, we apply Lemma 3 to Ax = b and v. By definition, b ∈ Zℓ contains no element
bi = 0, all bi are pairwise distinct and exponentially far apart. Thus, vb = β ∈ Z with
β ̸= 0 since v ∈ {−1, 0, 1}. Setting v′ := 1

|β|+1v, we arrive at the conclusion that the
system Ax = b does not have a solution by van der Waerden (Lemma 3). This is a
contradiction, completing the proof.

22



5.5 Incompressibility Argument
Recall that Claim 3 claims the existence of parameters in bad such that rank(A) < ρ.
To this end, we will show that rankmin < ρ where rankmin is the minimum rank over all
possible parameters in bad, that is,

rankmin := min
bad

(rank(A)). (2)

Our proof use an incompressibility argument (e.g., [Yao90, DTT10, ACP+17, AAC+17,
CK18]) to bound rankmin in terms of |st0| = M and since ρ depends on M , we get the
desired bound. Formally, we follow the framework of De, Trevisan, and Tulsiani [DTT10]
stated below.
Lemma 4 (De, Trevisan, and Tulsiani [DTT10]). Let Enc : S × {0, 1}µ → {0, 1}r and
Dec : {0, 1}µ × {0, 1}r → S be randomized encoding and decoding procedures such that, for
every s ∈ S,

Pr
r←{0,1}r

[Dec(Enc(s; r); r) = s] ≥ δ.

Then µ ≥ log|S| − log 1/δ.
Intuitively, the analysis of preprocessing algorithms A = (A0,A1) using the framework

proceeds as follows. S is usually a set of functions, injections, etc. where A has oracle
access to one s ∈ S. Enc, knowing s ∈ S, runs As

0 to get st0 and then A1(st0)s such
that A1’s query behavior implicitly allows one to reconstruct parts of s. It outputs an
encoding comprised of st0 and an additional hint. Dec receives this encoding and runs
A1(st0)hint where the hint is used to simulate the oracle. Given A1’s query behavior, Dec
recovers s at the cost of ∥st0∥ + ∥hint∥ bits where the hint is carefully designed to be
smaller than log|S| bits. Since encoding s using less than log|S| bits would constitute
information-theoretically impossible compression, st0 must be large enough to contain the
remaining information.

In our case, we work with S := bad, but effectively we only efficiently encode the
labeling function Σ ∈ Inj(ZN ,L) while using a naive encoding for N , h, and w. Our
argument then follows the strategy outlined in the previous paragraph. As in Section 5.1,
A1 induces the system of Diophantine equations Ax = b where A and b are known. Every
element of x mod N corresponds to the discrete logarithm of some label in L and Dec can
solve the system to extract x, effectively learning some discrete logarithms, and, in turn,
the labels for the corresponding group elements without them being encoded in the hint.
Given usual linear algebra intuition, the solvability of this system and the uniqueness of
its solution are related to the rank of A. Here, this is rankmin which allows us to connect
∥st0∥ = M to rankmin.

Equipped with this high-level explanation, we now state Claim 5. It posits the
existence of (Enc, Dec) that efficiently encode the labeling function Σ ∈ Inj(ZN ,L) where
the encoding size depends on M and rankmin.
Claim 5. If Lemma 1 does not hold, for (N, Σ, h, w) ∈ bad, there exist (Enc, Dec) which,
given auxiliary inputs N , h, and w, encodes the labeling function Σ using

log
(
|L|
N

)
+ log(N !) + M + log n + log Q− rankmin · (log N − 3(log n + log Q)− 3)

bits with probability 1.

23



Before constructing such (Enc, Dec), we show how their existence implies Claim 3.

Proof of Claim 3. In general, optimally encoding an element of params requires log|params| =
µ′ + log

(
|L|
N

)
+ log(N !) bits where µ′ is the length of an optimal encoding of N , h, and

w. Since bad contains at least a 1/λc fraction of params, it follows from elementary
logarithmic identities that an optimal encoding of a tuple in bad requires

µ′ + log
(
|L|
N

)
+ log(N !) + log(λ−c) = µ′ + log

(
|L|
N

)
+ log(N !)− c log λ

bits. Now, by Claim 5 and applying Lemma 4 while canceling common terms (implicitly
accounting for µ′), it must hold that

−c log λ ≤M + log n + log Q− rankmin · (log N − 3(log n + log Q)− 3)
which implies

rankmin ≤
M + log n + log Q + c log λ

log N − 3(log Q− log n)− 3 .

By the definition of ρ in Lemma 1, it follows that rankmin < ρ, so there exists a (N, Σ, h, w) ∈
bad such that rank(A) < ρ as desired.

The only thing left is to show is that (Enc, Dec) for Σ as in Claim 5 exist. This requires
careful handling of various technicalities, so we will only sketch the proof here and defer
the complete proof to Appendix C.

Proof of Claim 5 (Sketch). The high-level idea is that Enc and Dec both run A1 as a
subroutine. A1 induces a system of equations Ax = b with rank(A) ≥ rankmin. This
allows Enc to encode the discrete logarithm of rankmin many group element labels using a
short hint instead of the naive encoding that costs roughly log N bits.

Given input Σ and auxiliary inputs N , h and w, Enc computes st0 by running
AΣ,h

0 (Σ(1), Σ(w)) and then executes AΣ,h
1 (st0) on every challenge j ∈ [0, n) for at most

t := n
6ρ log(n/2) − 1 rounds in parallel in lockstep. During this, Enc successively constructs

an encoding of Σ. This encoding contains the information necessary for Dec to also run
A1 without knowing the oracle Σ.

In particular, Enc (and also Dec) track the algebraic representation of queries as in
Section 5.1. The algebraic representation of a label might include some indeterminates
which correspond to labels that A1 input to Σ out of the blue (i.e., either it guessed the
label or it extracted it from st0).

On the one hand, Enc needs to ensure that Dec can answer oracle queries to the
labeling function Σ correctly. To this end, it first encodes the image of Σ using log

(
|L|
N

)
bits, and, for some queries, it adds a hint of circa log N bits which specify the label to
be returned. Note that this hint is only required for some queries since the output of a
query is sometimes uniquely determined by the algebraic representations of the preceding
queries (e.g., when A1 repeats a query). Since Dec tracks those representations, it can
answer such queries without additional help from Enc.

On the other hand, Enc also needs to tell Dec when the label Σ(w2j ) is queried to h.
This requires a hint of log n + log Q bits; log n bits to identify the instance of A1 and
log Q to specify the query within that instance. Given rankmin many hints, Dec derives

24



a system of equations Ax = b. The vector b ∈ Zrankmin contains the 2iw specified by the
hints and the rows of A the corresponding algebraic representations. So x ∈ Zm, when
taken modulo N , corresponds to the discrete logarithms of some indeterminates within
these algebraic representations.

Computing HNF(A) = (H, U) yields a lower triangular matrix H such that Ax = b
has a solution if and only if Hy = b has a solution where x = Uy. Recall that H has
rankmin many non-zero columns and, due to the triangular shape of H, every non-zero
column constrains one entry of x. For example, considerh11

h21 h22
h31 h32


y1

y2
y3

 =

2iw
2jw
2kw


with rankmin = 2 and pivot elements h11 and h22.

Next, reduce every matrix and vector modulo N . Notice that Claim 1 Items (ii)
and (iii) guarantee that H mod N still has the same shape and that the pivot elements are
invertible. This implies that every non-zero column of H mod N uniquely constrains one
entry in y mod N and thus effectively one indeterminate. So given A1’s query behavior,
Dec derives the discrete logarithm of rankmin many indeterminates with a hint of only
rankmin(log n + log Q) bits.

Last, we analyze the encoding size relative to the naive encoding of log
(
|L|
N

)
+ log(N !)

bits. Answering queries in general requires no more bits than the naive encoding: log
(
|L|
N

)
bits for the image and roughly log N bits for every query. For every indeterminate
recovered from the system of equations, the hint is only log n + log Q bits which is smaller
than log(N/2) for λ large enough. Thus, the total encoding size is

log
(
|L|
N

)
+ log(N !)︸ ︷︷ ︸

Cost of DLogs in general

+ M︸︷︷︸
|st0|

− rankmin · (log N − 1− log n− log Q)︸ ︷︷ ︸
Savings due to DLogs from Ax=b

.

Note that the savings in the claim’s actual statement are lower since Enc has to handle
colliding Σ queries which introduce additional overhead.

6 Multi-challenge Memory Complexity
We now consider the whole evaluation of TdScrypt, and we want to prove that it
requires Ω( n2

log n
log N) memory almost always—no matter the evaluation strategy. This is

formalized in the theorem below which is in the spirit of Alwen et al. [ACP+17, Thm. 1].

Theorem 1. Let n ∈ poly(λ) with n ≥ 8 and let A be a deterministic parallel oracle
machine that evaluates TdScrypt correctly with probability χ(λ) over the choice of the
parameters and input W . Then, assuming that factoring is hard, in the GGM and ROM
with probability at least χ(λ)− ϵ(λ),

ccmem(AΣ,h(Σ(1), Σ(w))) ∈ Ω
(

n2

log n
log N

)

25



where ϵ(λ) ∈ negl(λ), and the probability is taken over (N, Σ, h, w) $← params(λ).

As stated before, our proof follows Alwen et al.’s [ACP+17] line of reasoning closely, that
is, considering the single-challenge game and then generalizing it to the multi-challenge
setting which roughly equals any actual evaluation. While our single-challenge trade-off
proof differed considerably, the multi-challenge proof is almost identical. On a high level,
the single-challenge trade-offs can simply be swapped out, and this only affects constants.
Alwen et al. [ACP+17] took great care to state these explicitly. In contrast, we stick to
asymptotics since our primary focus is showing that a TMHF exists.

TdScrypt Definition. Recall the definition of TdScrypt. Given input Σ(w), compute
the powers Σ(2iw), 0 ≤ i < n. Then, define S0 = h(Σ(2nw), 0ℓ) and, for 1 < i ≤ n,
Si = h(Σ(2jiw), Si−1) where ji = Si−1 mod n is the ith challenge. For k ∈ [n], we define
sk to be the round in which the kth challenge is issued, i.e., when the value Sk−1 is the
result of a query.

High-level Proof Strategy. On a high-level, the proof strategy is as follows. We modify
Corollary 1 to work with a single adversary A that can be thought of as a (potentially
dishonest) evaluation strategy for TdScrypt. For some k ∈ [n], we split the execution of
A into two parts, up to round sk when the kth challenge jk = Sk−1 mod n is issued and
afterward. These parts map to A0 and A1 as in Corollary 1 where the explicit input j
to A1 is replaced by slightly altering (i.e., programming) the random oracle such that
Sk−1 mod n = j (but ⌊Sk−1/n⌋ is unchanged) and the advice st0 is now the input state
stsk

. So we get a time-memory trade-off in the style of Corollary 1 that intuitively states:
For at least half of the n possible values jk may take, either A needs a lot of rounds
to answer the challenge, or all the input state str with r ≤ sk have a size ∥str∥ that is
increasing with r and reasonably large when r is closer to sk. Then, we can argue that
this trade-off must hold for roughly half of all n challenges by Hoeffding’s inequality, and
we can thus add the input state sizes ∥str∥ for all n challenges to get the desired memory
complexity.

Proof Sketch. As a first step, we characterize parameter combinations that are not
amenable to our proof strategy.

Definition 9 (Collisions). For given N , Σ, and w, the set collidingk contains all random
oracles h that cause a collision amongst the preceding {S0, . . . , Sk−1} during the honest
Eval(pp, Σ(w)).

Definition 10 (Rounding Impossible). For given N , Σ, and w, the set roundingk(n)
contains all random oracles h that are not amenable to programming some challenge
j ∈ [0, n). That is, there exists 0 ≤ i ≤ k such that Si > ⌊2ℓ/n⌋n− 1.

Intuitively, the above two definitions characterize random oracles where we cannot
program jk = Sk−1 mod n uniformly. Either the value is not independent of previously
issued challenges due to collisions, or Sk−1 might overflow for some choices of jk. The
next definition then tells us that any fixed adversary A almost always learns the values
(Si)0≤i≤n in sequential order.

26



Definition 11 (Wrong Evaluation Order). For given N , Σ, w, and A, the set wrongOrderk

contains all random oracles h where during the execution of AΣ,h(Σ(w)) a query to h of
the form (·, Sj) occurs before one of the form (·, Si) for 0 ≤ i < j < k.

With the above definitions in place, we can now define the time-memory trade-off.
Essentially, this is a modified version of the single-challenge game (cf. Definition 6) merged
with the time-memory trade-off Lemma 1 (resp. Corollary 1).

Definition 12 (Hard Challenge). Let λ, n ∈ N with n ≥ 8, k, j ∈ [0, n), (N, Σ, h, w) ∈
params(λ) with h ̸∈ collidingk−1 ∪ roundingk−1(n), and A a deterministic oracle machine
making at most Q ∈ poly(λ) queries. Consider the execution AΣ,h(Σ(1), Σ(w)) up to
round sk ∈ N+, which is the earliest round where the query (W 2jk−1

, Sk−2) ∈ qrsh with
jk−1 = Sk−2 mod n occurs (in the case k = 1, the query is (W 2n

, 0ℓ)). For any round
r with 0 ≤ r ≤ sk, let Mr = ∥str∥, and associate a fixed value ρr to it similarly to
Lemma 1.13 It follows that

ρr ∈ Θ(Mr + log n + log Q + log λ)/(log(N)− log Q− log n).

Define h′ = h except for Sk−1 which will be changed to S ′k−1 with ⌊S ′k−1/n⌋ = ⌊Sk−1/n⌋
but S ′k−1 mod n = j, and consider the execution AΣ,h′(Σ(1), Σ(x)). Let tk,j,r ∈ N+ be
minimal such that the query (W 2j

, Sk−1) ∈ qrsh′ occurs after sk in round r + tk,j,r > sk

where tk,j,r =∞ if it never does. Then, let

rk = arg max
0≤r≤sk

{
n

6ρr log(n/2) − (sk − r)
}

,

and define
HardΣ,h,n

A(w)(k, j) = 1 if and only if tk,j,rk
>

n

6ρrk
log(n/2) .

We will re-use the notation introduced in these definitions and use it to state the
modified single-challenge trade-off. Essentially, it says that most parameters do not fall
into colliding, rounding or wrongOrder, and that the time-memory trade-off holds for them.

Lemma 5. For every deterministic parallel oracle machine A, there exist negligible
functions ϵ(λ) ∈ negl(λ) such that, for all n ∈ poly(λ) with n ≥ 8, there exists a subset
good ⊆ params(λ) such that, for every (N, Σ, h, w) ∈ good and k ∈ N with 1 ≤ k ≤ n,
|good| ≥ (1− ϵ(λ))|params(λ)| and the following holds:

• h ̸∈ collidingk−1;

• h ̸∈ roundingk−1(n);

• h ̸∈ wrongOrderk−1; and

• Pr
j

$←[0,n)

[
HardΣ,h,n

A(w)(k, j)
]
≥ 1/2.

13To be precise, ρ = (M + log n + 2 log Q + c log λ + 1)/(log(N)− 3(log Q− log n)− 3) where c is as in
Lemma 1.

27



Proof (Sketch). As in the proof of Lemma 1, towards contradiction, we assume that for
some n and k, bad is large, i.e., |bad| ≥ λ−c| params(λ), and we consider four cases. We
will show that every case leads to a contradiction.

• h ∈ collidingk−1: View N , Σ and w as fixed and count how many choices of h cause
a collision. There are at most k2 ≤ n2 possible colliding pairs Si and Sj and, for
every pair, a collision happens for at most a 2− log N fraction of random oracles as h’s
output length is at least log N . So, at most an n2/2log N fraction of random oracles
might cause a collision which is negligible and therefore contradicts the assumption
that bad covers a polynomial fraction of params (cf. [ACP+17, Clm. 15]).

• h ∈ roundingk−1 and h ∈ wrongOrderk−1: Both analyses are analogous the previ-
ous case with the fraction of random oracles being in the order of 1/N as well
(cf. [ACP+17, Clms. 16 & 18]).

• Pr
j

$←[n]

[
HardΣ,h,n

A(w)(k, j)
]

< 1/2: This case follows the proof of Lemma 1 with some
modifications. Instead of considering explicit preprocessing- and online algorithms
(A0,A1), we split the execution of A into two parts—up to round r (preprocessing)
and everything afterward (online). In this setting, we cannot pass the challenge j to
the online algorithm explicitly anymore. Instead, we will program the random oracle
h to include the challenge implicitly, i.e., setting Sk−1 mod n = j. Programming is
always possible as long as h ̸∈ collidingk−1 ∪ roundingk−1(n), and we may assume that
this is the case by the preceding case analyses. For Dec to know when to program
h, log Q additional bits of hint are required to recognize the query (W 2jk−1

, Sk−2)
(cf. Definition 12). Apart from these modifications, the proof is identical to the one
of Lemma 1.

This discussion completes the proof sketch.

We now use Lemma 5’s trade-off to lower bound the sum ∑sn+1
r=1 ρr where we note that

ρr is a quantity related to the size of the input state ∥str∥. Note that the sum covers all
rounds up to round sn + 1, i.e., the round in which A first computes Sn, the output of
TdScrypt. This strategy is taken from [ACP+17, Sec. 5] so we refer interested readers
there for more details.

Claim 6 (Lower Bound on ∑
ρr). If (N, Σ, h, w) ∈ good and AΣ,h(Σ(1), Σ(w)) queries

Sn, then ∑sn+1
r=1 ρr ∈ Ω(n2/ log n).

Proof (Sketch). First, note that if the parameters are in good, whenever A queries Sn, it
must have received all {Si}0≤i≤n during its execution, and it must receive them in order.
Second, if HardΣ,h,n

A(w)(k, j) = 1, then, for any 0 ≤ r ≤ sk,

tk,j,r >
n

6ρr log(n/2) (3)

by the choice of rk (cf. [ACP+17, Clms. 5 & 10]). Third, by a generalization of Hoeffding’s
inequality (cf. [ACP+17, Clm. 7]), we argue that for any fixing of challenges, at least
n(1/2− ϵ) challenges are Hard where ϵ > 0 (cf. [ACP+17, Clm. 19]).

Given the above, we apply [ACP+17, Clm. 8] to ρr > n
6tk,j,r log(n/2) , which is Equation (3)

rearranged. This gets us ∑sn+1
r=1 ρr ∈ Ω(n2/ log n) as desired (cf. [ACP+17, Clm. 11]).

28



Finally, we prove Theorem 1 by converting the quantity ∑ ρr to memory complexity.

Proof of Theorem 1 (Sketch). By Lemma 5, an overwhelming fraction of parameters is in
good, and A queries Sn with probability χ(λ). Applying Claim 6, we get a lower bound
of ∑sn+1

r=1 ρr ∈ Ω(n2/ log n). Since Mr ∈ Ω(ρr log N) for all r ∈ N by definition, it follows
that ∑sn+1

r=1 Mr ∈ Ω( n2

log n
log N). Note that this sum is equivalent to the ccmem of A which

completes the proof sketch.

Acknowledgements. We thank the Eurocrypt reviewers for their thorough review and
for pointing out related works. This research was funded in whole or in part by the
Austrian Science Fund (FWF) 10.55776/F85.

References
[AAC+17] Hamza Abusalah, Joël Alwen, Bram Cohen, Danylo Khilko, Krzysztof Pietrzak,

and Leonid Reyzin. Beyond hellman’s time-memory trade-offs with appli-
cations to proofs of space. In Tsuyoshi Takagi and Thomas Peyrin, editors,
ASIACRYPT 2017, Part II, volume 10625 of LNCS, pages 357–379. Springer,
Heidelberg, December 2017.

[ABB22] Mohammad Hassan Ameri, Alexander R. Block, and Jeremiah Blocki. Memory-
hard puzzles in the standard model with applications to memory-hard functions
and resource-bounded locally decodable codes. In Clemente Galdi and Stanis-
law Jarecki, editors, Security and Cryptography for Networks, pages 45–68,
Cham, 2022. Springer International Publishing.

[ABH17] Joël Alwen, Jeremiah Blocki, and Ben Harsha. Practical graphs for optimal
side-channel resistant memory-hard functions. In Bhavani M. Thuraisingham,
David Evans, Tal Malkin, and Dongyan Xu, editors, ACM CCS 2017, pages
1001–1017. ACM Press, October / November 2017.

[ABP17] Joël Alwen, Jeremiah Blocki, and Krzysztof Pietrzak. Depth-robust graphs
and their cumulative memory complexity. In Jean-Sébastien Coron and
Jesper Buus Nielsen, editors, EUROCRYPT 2017, Part III, volume 10212 of
LNCS, pages 3–32. Springer, Heidelberg, April / May 2017.

[ABP18] Joël Alwen, Jeremiah Blocki, and Krzysztof Pietrzak. Sustained space
complexity. In Jesper Buus Nielsen and Vincent Rijmen, editors, EURO-
CRYPT 2018, Part II, volume 10821 of LNCS, pages 99–130. Springer, Hei-
delberg, April / May 2018.

[ABZ20] Mohammad Hassan Ameri, Jeremiah Blocki, and Samson Zhou. Computa-
tionally data-independent memory hard functions. In Thomas Vidick, editor,
ITCS 2020, volume 151, pages 36:1–36:28. LIPIcs, January 2020.

[ACK+16] Joël Alwen, Binyi Chen, Chethan Kamath, Vladimir Kolmogorov, Krzysztof
Pietrzak, and Stefano Tessaro. On the complexity of scrypt and proofs of space
in the parallel random oracle model. In Marc Fischlin and Jean-Sébastien

29



Coron, editors, EUROCRYPT 2016, Part II, volume 9666 of LNCS, pages
358–387. Springer, Heidelberg, May 2016.

[ACP+17] Joël Alwen, Binyi Chen, Krzysztof Pietrzak, Leonid Reyzin, and Stefano
Tessaro. Scrypt is maximally memory-hard. In Jean-Sébastien Coron and
Jesper Buus Nielsen, editors, EUROCRYPT 2017, Part III, volume 10212 of
LNCS, pages 33–62. Springer, Heidelberg, April / May 2017.

[AS15] Joël Alwen and Vladimir Serbinenko. High parallel complexity graphs and
memory-hard functions. In Rocco A. Servedio and Ronitt Rubinfeld, editors,
47th ACM STOC, pages 595–603. ACM Press, June 2015.

[BCS16] Dan Boneh, Henry Corrigan-Gibbs, and Stuart E. Schechter. Balloon hashing:
A memory-hard function providing provable protection against sequential
attacks. In Jung Hee Cheon and Tsuyoshi Takagi, editors, ASIACRYPT 2016,
Part I, volume 10031 of LNCS, pages 220–248. Springer, Heidelberg, December
2016.

[BDK16] Alex Biryukov, Daniel Dinu, and Dmitry Khovratovich. Argon2: New genera-
tion of memory-hard functions for password hashing and other applications.
In 2016 IEEE European Symposium on Security and Privacy (EuroS&P),
pages 292–302, 2016.

[BH22] Jeremiah Blocki and Blake Holman. Sustained space and cumulative complex-
ity trade-offs for data-dependent memory-hard functions. In Yevgeniy Dodis
and Thomas Shrimpton, editors, CRYPTO 2022, Part III, volume 13509 of
LNCS, pages 222–251. Springer, Heidelberg, August 2022.

[BHK+19] Jeremiah Blocki, Benjamin Harsha, Siteng Kang, Seunghoon Lee, Lu Xing,
and Samson Zhou. Data-independent memory hard functions: New attacks
and stronger constructions. In Alexandra Boldyreva and Daniele Micciancio,
editors, CRYPTO 2019, Part II, volume 11693 of LNCS, pages 573–607.
Springer, Heidelberg, August 2019.

[BLP23] Alex Biryukov and Marius Lombard-Platet. Pured: A unified framework for
resource-hard functions. Cryptology ePrint Archive, Paper 2023/1809, 2023.
https://eprint.iacr.org/2023/1809.

[BP17] Alex Biryukov and Léo Perrin. Symmetrically and asymmetrically hard cryp-
tography. In Tsuyoshi Takagi and Thomas Peyrin, editors, ASIACRYPT 2017,
Part III, volume 10626 of LNCS, pages 417–445. Springer, Heidelberg, Decem-
ber 2017.

[BRZ18] Jeremiah Blocki, Ling Ren, and Samson Zhou. Bandwidth-hard functions:
Reductions and lower bounds. In David Lie, Mohammad Mannan, Michael
Backes, and XiaoFeng Wang, editors, ACM CCS 2018, pages 1820–1836. ACM
Press, October 2018.

[CDD23] Simone Costa, Marco Dalai, and Stefano Della Fiore. Variations on the Erdős
distinct-sums problem. Discrete Applied Mathematics, 325:172–185, 2023.

30

https://eprint.iacr.org/2023/1809


[CK18] Henry Corrigan-Gibbs and Dmitry Kogan. The discrete-logarithm problem
with preprocessing. In Jesper Buus Nielsen and Vincent Rijmen, editors,
EUROCRYPT 2018, Part II, volume 10821 of LNCS, pages 415–447. Springer,
Heidelberg, April / May 2018.

[DN93] Cynthia Dwork and Moni Naor. Pricing via processing or combatting junk
mail. In Ernest F. Brickell, editor, CRYPTO’92, volume 740 of LNCS, pages
139–147. Springer, Heidelberg, August 1993.

[DTT10] Anindya De, Luca Trevisan, and Madhur Tulsiani. Time space tradeoffs
for attacks against one-way functions and PRGs. In Tal Rabin, editor,
CRYPTO 2010, volume 6223 of LNCS, pages 649–665. Springer, Heidelberg,
August 2010.

[Guy94] Richard K. Guy. Unsolved Problems in Number Theory. Problem Books in
Mathematics. Springer, New York, NY, 2 edition, 1994.

[Her09] Charles Hermite. Sur l’introduction des variables continues dans la théorie
des nombres, volume 1 of Cambridge Library Collection - Mathematics, page
164–192. Cambridge University Press, 2009.

[Kal00] Burt Kaliski. Pkcs# 5: Password-based cryptography specification version
2.0. Request for Comments 2898, Internet Engineering Task Force, September
2000.

[KL14] Jonathan Katz and Yehuda Lindell. Introduction to Modern Cryptography,
Second Edition. Chapman & Hall/CRC, 2nd edition, 2014.

[KLX20] Jonathan Katz, Julian Loss, and Jiayu Xu. On the security of time-lock
puzzles and timed commitments. In Rafael Pass and Krzysztof Pietrzak,
editors, TCC 2020, Part III, volume 12552 of LNCS, pages 390–413. Springer,
Heidelberg, November 2020.

[Laz96] Felix Lazebnik. On systems of linear diophantine equations. Mathematics
Magazine, 69(4):261–266, 1996.

[MVOV97] Alfred J. Menezes, Paul C. Van Oorschot, and Scott A. Vanstone. Handbook
of applied cryptography. CRC press, 1997.

[MW01] Daniele Micciancio and Bogdan Warinschi. A linear space algorithm for
computing the hermite normal form. In Proceedings of the 2001 International
Symposium on Symbolic and Algebraic Computation, ISSAC ’01, page 231–236,
New York, NY, USA, 2001. Association for Computing Machinery.

[Per09] Colin Percival. Stronger key derivation via sequential memory-hard functions.
In BSDCan 2009, 2009.

[RD16] Ling Ren and Srinivas Devadas. Proof of space from stacked expanders. In
Martin Hirt and Adam D. Smith, editors, TCC 2016-B, Part I, volume 9985
of LNCS, pages 262–285. Springer, Heidelberg, October / November 2016.

31



[RD17] Ling Ren and Srinivas Devadas. Bandwidth hard functions for ASIC resistance.
In Yael Kalai and Leonid Reyzin, editors, TCC 2017, Part I, volume 10677 of
LNCS, pages 466–492. Springer, Heidelberg, November 2017.

[Rot22] Lior Rotem. Revisiting the uber assumption in the algebraic group model: Fine-
grained bounds in hidden-order groups and improved reductions in bilinear
groups. In Dana Dachman-Soled, editor, 3rd Conference on Information-
Theoretic Cryptography (ITC 2022), volume 230 of Leibniz International
Proceedings in Informatics (LIPIcs), pages 13:1–13:13, Dagstuhl, Germany,
2022. Schloss Dagstuhl – Leibniz-Zentrum für Informatik.

[RS20] Lior Rotem and Gil Segev. Generically speeding-up repeated squaring is
equivalent to factoring: Sharp thresholds for all generic-ring delay functions. In
Daniele Micciancio and Thomas Ristenpart, editors, CRYPTO 2020, Part III,
volume 12172 of LNCS, pages 481–509. Springer, Heidelberg, August 2020.

[RSW96] Ronald L. Rivest, Adi Shamir, and David A. Wagner. Time-lock puzzles and
timed-release crypto. Technical report, USA, 1996.

[Sho97] Victor Shoup. Lower bounds for discrete logarithms and related problems. In
Walter Fumy, editor, EUROCRYPT’97, volume 1233 of LNCS, pages 256–266.
Springer, Heidelberg, May 1997.

[vzGS13] Joachim von zur Gathen and Igor E. Shparlinski. Generating safe primes.
Journal of Mathematical Cryptology, 7(4):333–365, 2013.

[Yao90] Andrew Chi-Chih Yao. Coherent functions and program checkers (extended
abstract). In 22nd ACM STOC, pages 84–94. ACM Press, May 1990.

A Detailed Cumulative Memory Complexity Analysis
To analyze the cumulative memory complexity (CMC) of TdScrypt’s Eval and TDEval,
we first discuss the basic operations performed by them before describing their CMC.

Basic Operations. The relevant parameters are the RSA modulus N ′, the group size N ,
the output length ωh of the hash function h, and the number of iterations n. Note that
since N ≈ N ′/4 it follows that N and N ′ have essentially the same bit length. As stated
in Section 2, we further have that ωh ∈ Θ(log(N)) and n ≪ N since n ∈ poly(λ) (as
otherwise Eval would not run in poly(λ)).

We first give an overview of the operations used in Eval and TDEval, listing the amount
of bit operations, i.e., additions and multiplications in the field F2, and the scratch space
in terms of bits used in their computation. The results are summarized in Table 2.

Algorithm Eval performs group operations in QRN ′ (Line 09), evaluates hash function h
(Lines 11 and 14), and reduces outputs of h modulo n (Line 13). Recall that, by
definition, evaluating h requires the same computational effort as computing a group
operation, i.e., Θ(log(N ′)2) bit operations while using Θ(log(N ′)) bits of scratch space
(e.g., [MVOV97, Sec. 14.3.3]). The computation of ji := Si−1 mod n, on the other hand,

32



Operation Bit Operations Scratch Space
Multiplication in QRN ′ Θ(log(N ′)2) Θ(log(N ′))
Exponentiation in QRN ′ Θ(log(N) log(N ′)2) Θ(log(N ′))
Multiplication in ZN Θ(log(N)2) Θ(log(N))
Evaluation of h Θ(log(N ′)2) Θ(log(N ′))
Si−1 mod N Θ(log(n) log(N)) Θ(log(N))
2j mod n Θ(log(n) log(N)2) Θ(log(N))

Table 2: Time and memory usage of operations used in Eval and TDEval. Note that
log(N) ≈ log(N ′) > log(n).

requires Θ(log(n) log(N ′)) bit operations and scratch space of log(N) bits (e.g., [MVOV97,
Sec. 14.2.5]), where we used that ωh ∈ Θ(log(N)).

TDEval also computes h (Lines 19 and 24) and also reduces them modulo n (Line 21),
but it additionally performs exponentiations in QRN ′ (Lines 18 and 23) and reduces n-bit
integers of the form 2j with j ∈ [0, n) modulo N (Lines 17 and 22). Exponentiations
can be computed using square-and-multiply at the cost of Θ(log(N)) group operations.
The operation m := 2j mod n can be implemented using a lookup table that, for i ∈
[0, ⌈log(n)⌉], stores the values 22i mod N . Then, by writing j := ∑⌈log(n)⌉

i=0 bi2i, one can
compute m using at most ⌈log(n)⌉ group operations in ZN as

⌈log(n)⌉∏
i=0

bi22i mod N = 2
∑⌈log(n)⌉

i=0 bi2i mod N = 2j mod N.

In turn, one computation of the form m := 2j mod N can be done using Θ(log(n) log(N)2)
bit operations while using Θ(log(N)) bits of scratch space (not accounting for the storage
of the lookup table).

Note that the only operation with a time requirement that does not contain a term of
the form log(N ′)2 or log(N)2 is the computation of the index ji := Si−1 mod n in Lines 13
and 21, but that the number of bit operations required for this operation is actually
smaller since log(n) < log(N) ≈ log(N ′). Thus, in the following computation of Eval and
TDEval’s cumulative memory complexity we will use log(N)2 ≈ log(N ′)2, the number of
bit operations required for one group operation in QRN ′ and ZN , as our unit of time.
Accordingly, group operations and hash evaluations require one time unit, exponentiation
log(N) units, and computing 2j mod N requires log(n) units.

Cumulative Memory Complexity of Eval. As algorithm Eval’s scratch space re-
quirements are of order log(N ′) (see Table 2), its memory usage is dominated by storing
the group elements W0, . . . , Wn amounting to Θ(n log(N ′)) bits of memory sustained
throughout the whole second phase, i.e., Lines 12–14. In the first phase of the evaluation
the algorithm computes n group operations, in the second n hash evaluations and n
reductions modulo n. As a consequence, its cumulative memory complexity in terms of
bit storage and group operations is of order

ccmem(Eval(pp, x)) ∈ Θ(n log(N ′) · n) = Θ(n2 log(N ′)).

33



Cumulative Memory Complexity of TDEval. In order to compute the Wi at any
point in time, TDEval only has to keep track of at most two group elements and one
exponent mi. Further, it only requires scratch space of order log(N ′). Thus, its memory is
dominated by the lookup table used to perform reductions modulo N which has a size of
order Θ(log(n) log(N ′)) bits. In the first phase of the evaluation, the algorithm performs
one reduction modulo N as well as one exponentiation in QRN ′ . In each iteration in the
of the second phase of the evaluation TDEval has to perform the same operations as well
as an additional reduction modulo n (line 21), thus requiring essentially log(N) + log(n)
group operations. Thus, its cumulative memory complexity in terms of bit storage and
group operations amounts to

ccmem(TDEval(pp, td, x)) ∈ Θ(log(n) log(N ′) · n(log(N ′) + log(n)))
= Θ(n log(N ′)2 log(n)).

Summing up, TdScrypt is a (n2 log(N ′), n log(n) log(N ′)2)-TMHF.

B Bounding the Entries of A

In this section we analyze the maximal size that the entries of matrix A ∈ Zℓ×m induced
by the query behavior of A1 to the group-operation oracle G can take. Recall that (as
discussed in more detail in Section 5.1 and made formal in Appendix C.2) our encoder
assigns all labels appearing as input to or output of G an algebraic representation of
the form ∑m

i=1 aixi with a ∈ Zm which is stored in table T . Here, the indeterminates x
correspond to the labels being queried out of the blue. Matrix A collects the representations
of labels corresponding to challenges that are successfully answered within t rounds of
parallel queries.

In the following we characterize the set of representations that possibly can be added
to the table T . More precisely, using a simple abstraction we inductively define sets Rt

that for t ∈ N+ contain all a ∈ Zm that can be added to T within t rounds of queries to
G with unbounded parallelism.

As a special case, R0 is to be understood as all representations corresponding to labels
that are used as input to G within the first round of queries. Note that all of these
labels must be out of the blue. The ith label queried out of the blue corresponds to
indeterminate xi. Thus, its representation is the ith unit vector ei ∈ Zm. We define

R0 := {±ei | i ∈ {1, . . . , m}} ∪ {0}.

Note that R0 contains the representations of all labels appearing out of the blue (irrespective
of the actual round in which they are first queried) as well the ones of their inverses and
the neutral element. This choice of R0 overestimates the capabilities of A1 but will allow
us to derive a clean characterization of the sequence of sets Rt.

We now turn to the definition of set Rt for t ≥ 1. The representation of the label
output in response to a query to G is given by the sum, difference, or inverse of the label(s)
used as input, depending on whether the used operation was +, −, or inv. Accordingly,
for t ≥ 1 we define

Rt := {a1 ± a2 | a1, a2 ∈ Rt−1} ∪Rt−1,

34



i.e., we add to Rt−1 all vectors that can be obtained by adding or subtracting two vectors
that are reachable within t− 1 rounds. Note that this in particular captures inversion as
0 ∈ Rt−1. Further, any upper bound on the elements of Rt also applies to the entries of
A, since the inclusion of additional elements in R0 only improves on A1’s computational
capabilities.

To bound the elements of Rt note that with every additional query to G every vector
entry can at most double. This immediately implies ∥a∥∞ ≤ 2t for all a ∈ Rt. While this
observation is already sufficient for the proof of our lower bound, a more careful analysis
yields the following exact characterization of Rt in terms of the one-norm.
Lemma 6. Let m, t ∈ N and Rt be defined as above. Then for a ∈ Zm we have

a ∈ Rt ⇐⇒ ∥a∥1 ≤ 2t.

Proof. We prove the result by induction on t. The statement holds for t = 0 as we have
R0 = {±ei | i ∈ {1, . . . , m}} ∪ {0}, the set of integer vectors with one-norm bounded by
1.

Case =⇒: Assume the statement is true for all values up to t. First, consider a ∈ Zm

with ∥a∥1 > 2t+1 and consider arbitrary b, c ∈ Zm satisfying a = b ± c. We have
2t+1 < ∥a∥1 ≤ ∥b∥1 + ∥c∥1 implying that ∥b∥1 > 2t or ∥c∥1 > 2t. By the induction
hypothesis, one of the two vectors cannot have been computed within t group operations
with unbounded parallelism. In turn, a cannot have been computed within t + 1 group
operations.

Case ⇐=: Consider a ∈ Zm with ∥a∥1 ≤ 2t+1 and let S1, S2 ⊆ {1, . . . , m} be sets
of (almost) equal size jointly containing all odd entries of a. More precisely, we require
|S2| ≤ |S1| ≤ |S2|+1 and that ai is odd exactly if i ∈ S1∪S2. We define vectors b, c ∈ Nm

as

bi =


sgn(ai) · ⌈|ai|/2⌉ if i ∈ S1

sgn(ai) · ⌊|ai|/2⌋ if i ∈ S2

ai/2 else
and ci =


sgn(ai) · ⌊|ai|/2⌋ if i ∈ S1

sgn(ai) · ⌈|ai|/2⌉ if i ∈ S2

ai/2 else
,

where sgn denotes the sign of an integer. Note that by definition of b and c it holds that
a = b + c. Further, we have that

∥b∥1 =
m∑

i=1
|bi| = 1/2 · (|S1| − |S2|) +

m∑
i=1
|ai|/2

= 1/2 · ((|S1| − |S2|) + ∥a∥1).

If ∥a∥1 is even we have |S1| = |S2| and thus 2t ≥ ∥a∥1/2 = ∥b∥1 = ∥c∥1. On the
other hand, if ∥a∥1 is odd, we have 2t+1 ≥ ∥a∥1 + 1 and |S1| = |S2| + 1 which implies
2t ≥ 1/2(∥a∥1 + 1) = ∥b∥1 = ∥c∥1 + 1. Thus, by the induction hypothesis we have
b, c ∈ Rt and in turn a ∈ Rt+1.

C Proof of Claim 5
For the full proof, we first state Enc’s pseudocode, explain it, and finally analyze its
encoding size and success probability. We omit Dec’s pseudocode since it follows naturally
from Enc.

35



C.1 Notation and Data Structures
In the following, let Im(f) denote the image of the function f , and let x1, x2, . . . be
indeterminates14 in Z. Further, we use the shorthand ◦̂ := ◦ mod N where ◦ might be
a vector, matrix, indeterminate, etc. To signify when and why Enc aborts, we write
abortreason.

During Enc’s execution, it constructs five datastructures: I, a list of hints; Ξ, a
first-in-first-out queue; T , a table; S, a map of substitutions; and C, a list of collision
pointers. We use the notation x→ Y to denote that element x is appended or pushed to
datastructure Y .

List of Hints I. Dec needs a hint to recognize when A1(st0, j) queries the label
corresponding to 2jw to h for the first time. We are guaranteed that at least n/2 instances
of A1 perform this query within t steps and that matrix A ∈ Z(n/2)×m induced by A1’s
queries has rankmin ≤ m. In the remainder of this proof, we will not work with A but
with a different matrix A′ ∈ Zrankmin×m because encoding A would be too costly for the
compression argument. A′ consists of the rows of A that contain a pivot element in H,
the Hermite normal form (cf. Definition 7) of A. Note that rank(A′) = rank(A) = rankmin
which follows from the HNF. Indeed, the HNF has rankmin non-zero columns and hence
rankmin pivot elements. Simple, inefficient HNF algorithms iterate over the rows once, top
to bottom, while only touching rows that will contain a pivot in the end.15

So for Dec to reconstruct A′ from A1’s queries, it needs rankmin many hints. In the
remainder of this proof, we will not distinguish between A and A′ but simply call it
A ∈ Zrankmin×m.

Queue Ξ. The queue contains labels that Dec needs to, e.g., correctly respond to A1’s
queries. Enc fills Ξ with this information during its execution and, in the final step,
appends Ξ to the encoding. The elements pushed to the queue vary in length, but this
does not lead to ambiguities during decoding. In particular, we ensure that Dec always
knows this length in advance before popping an element from the queue.

Table T . Intuitively, T helps Dec answer repeat queries or queries where previous
responses uniquely determine the answer. It does so by mapping labels to algebraic
representations over ZN , the domain of Σ, analogously to Section 5.1. In addition, T
also stores an algebraic representation over Z, enabling us to connect the compression
argument to the query behavior of A1. This is necessary since A1 does not know to the
group order N and therefore its queries must be interpreted over Z. To summarize, T
contains three columns: The rightmost column contains labels σi ∈ Im(Σ); the leftmost

14As we will explain later, in contrast to the proof sketch in Section 5, there is a minor technical
difference between the indeterminates xi and the entries xi belonging to the vector x of the system
Ax = b.

15The algorithm starts with A = A0 and iteratively computes Ai =
( ∗ 0

∗ Ai+1

)
where 0 is an all-zero and

∗ is an arbitrary submatrix. In every iteration, it computes the GCD of Ai+1’s topmost row, swaps the
GCD to Ai+1’s leftmost column, and zeros out all elements to the right of it. This can be realized using
elementary column operations and results in a lower-triangular matrix H. Then the algorithm performs
further computation to ensure other HNF conditions. However, this does not change the shape of H, so
it is not relevant for our argument.

36



column contains linear terms in the indeterminates x̂j over ZN that represent a unique
algebraic representation of σi; and the middle column contains an algebraic (but not
necessarily unique) representation of σi in the form of linear terms in the indeterminates
xj over Z (see Table 3 for an example).

Representation over ZN Representation over Z Label
· · ·

2x̂10 2x10 σ20
· · ·

4x̂5 x5 + x7 σ32
· · ·

Table 3: Exemplary table T . Note that the second populated row shows the case where a
collision has been resolved with x̂7 = 3x̂5.

We will ensure that the leftmost (i.e., the representation over ZN) and the rightmost
(i.e., the label) columns will not contain duplicates. This allows for convenient notation
regarding T . We write σi ∈ T to check if there exists a row containing label σi and a
row can be selected by either T (σ) or T (x) where x is an algebraic representation over
ZN (which is unique and thus unambiguous). A particular column is denoted by the
subscripts ZN , Z, and L. For example, in Table 3, TZN

(σ32) returns 4x̂5.

Mapping of Substitutions S. Recall that T must not contain any duplicate labels.
However, A1 might perform queries such that it arrives at the same label in two different
ways. So there exist two distinct algebraic representations over ZN for the same label—
a collision. Instead of adding a duplicate row, Enc uses the collision to express one
indeterminate x̂i in terms of its preceding indeterminates x̂j, j < i. That is, x̂i = ∑

j<i cj x̂j

with cj ∈ ZN . Subsequently, it replaces x̂i (over ZN) in the leftmost column of T . Note
that it cannot replace the corresponding indeterminate xi (over Z) in the middle column.
To handle this, S maps x̂i to ∑j<i cj x̂j keeping track of all substiutions. We write x̂i ∈ S
to check whether a mapping exists.

List of Collision Pointers C. Enc must tell Dec when the aforementioned collisions
take place since Dec cannot detect them on its own. Thus, it stores C, the list of collision
pointers, in the encoding. To this end, Enc encodes C’s length |C| ≤ nQ using log n+log Q
bits followed by |C| pointers which indicate when a collision occurs and how to resolve it.

C.2 Encoder
Pseudocode. The pseudocode of Enc is given in Figure 2.

Explanation. First, Enc runs A0 to get the state st0. Recall that Enc knows Σ and h, so
it can simulate G and h for A0 perfectly. Note that Enc does not perform any bookkeeping
regarding the oracles yet.

Then, it runs A1 with state st0 on every challenge j ∈ [0, n) for at most t rounds. It
executes all instances of A1 in parallel in lockstep. That is, Enc waits until all instances

37



Figure 2: Enc given input Σ and auxiliary inputs N , h, and W .

01 Compute st0 := AΣ,h
0 (Σ(1), Σ(w)).

02 Initialize empty data structures I, Ξ, T , S, and C.
03 For all j ∈ [0, n), run A1(st0, j) in lockstep for t rounds while simulating G (Figure 3)

and h (Figure 4).
04 Using the equations TZ(σ̃j) = w2j , define a system of equations Ax = b where

A ∈ Zrankmin×m and function f that maps every column i to the indeterminate xf(i).
(m and f are described in the explanation below).

05 Compute the Hermite normal form of A by HNF(A) = (H, U).
06 If any ĥij = 0 but hij ̸= 0, aborthnf .
07 Solve the system Âx̂ = b̂ such that x̂i = Σ−1(TL(x̂f(i))). During this, if any element

of ZN cannot be inverted, abortsol:
08 Consider the equivalent system Ĥŷ = b̂ where ŷ = Û−1x̂.
09 For i ≤ rankmin, fix the entries ŷi ∈ ŷ by the triangular shape of Ĥ.
10 For every i ≤ f(m− rankmin), if x̂i ̸∈ S, push Σ−1(TL(x̂i))→ Ξ. This fixes the first

m− rankmin values of x̂i.
11 Given these constraints on ŷ and x̂, solve Ûy = x.
12 Substitute every x̂i for x̂f(i) in T .
13 For every remaining x̂i ∈ TZN

, push Σ−1(TL(x̂i))→ Ξ.
14 Iterate over all σ ∈ Im(Σ) in lexicographical order and for any σi ̸∈ T , push

Σ−1(σi)→ Ξ.
15 Output the encoding comprised of Im(Σ), I, C, st0, and Ξ.

have made queries in the current round before answering them all at the same time. Now
Enc performs additional bookkeeping in order to aid Dec in simulating G and h correctly.

Enc simulates h (Figure 4) by forwarding the queries to h. It does not need to store the
response in Ξ since Dec also gets h as an auxiliary input. However, Dec cannot recognize
when A1(st0, j) queries the label σ corresponding to the exponent 2jw for the first time.
Thus, it adds (j, i) to the list of hints I and also sets the variable σ̃j = σ for later use in
Figure 2.

The bookkeeping for G is more elaborate. Enc responds to queries using Σ as before,
but also populates the table T . For every query input σi ̸∈ T, i ∈ {1, 2}, it adds a row
containing the label and fresh indeterminate xj. For the query output σ3, Enc pushes it
to Ξ if it is a new label, so that Dec can correctly simulate G. Then, in any case, Enc
computes the algebraic representations of σ3 over ZN and Z. The representations are
derived by adding/subtracting the representations of the query inputs σ1 and σ2. Here,
Enc might encounter a collision, i.e., σ3 ∈ T and the computed algebraic representation
over ZN differs from the one assigned to σ3 in the table.

A collision is beneficial for the compression since it gives a non-trivial relation between
the indeterminates. In particular, Enc attempts to eliminate one indeterminate in T .
To this end, it tries to express x̂k (where k is the maximal index within the colliding
representations) in terms of the other indeterminates. This might fail since not every
element in ZN has an inverse so Enc aborts in such cases. Enc replaces x̂k in T and

38



Figure 3: Answering A1(st0, j)’s ith query (◦ ∈ {+,−, inv}, σ1, σ2) to G.

01 If (σ1, σ2) ̸∈ Im(Σ)× Im(Σ), respond with ⊥.
02 Else:
03 If ◦ ∈ {+,−}:
04 Respond with σ3 = Σ (Σ−1(σ1) ◦ Σ−1(σ2)).
05 For i ∈ {1, 2}, if σi ̸∈ T , choose a fresh indeterminate xj and append (x̂i, xi, σi)→

T .
06 If σ3 ̸∈ T , add the

(
TZN

(σ1)◦TZN
(σ2) mod N, TZ(σ1)◦TZ(σ2), σ3

)
→ T and push

σ3 → Ξ.
07 Else, if σ3 ∈ T but TZN

(σ1) ◦ TZN
(σ2) ̸= TZN

(σ3) mod N :
08 Append the collision (j, i, T (σ3))→ C.
09 Rearrange TZN

(σ1) ◦TZN
(σ2) = TZN

(σ3) mod N to be of the form x̂k = Σl<kclx̂l

where k is the largest index within the equation and cl ∈ ZN . If rearranging
fails (i.e., an element of ZN cannot be inverted), abortcol.

10 Add (x̂k, Σl<kclx̂l)→ S.
11 Substitute Σl<kclx̂l for x̂k in the leftmost column TZN

.
12 Else, ◦ = inv, so respond to an inversion query in the natural manner analogously

to the case ◦ ∈ {+,−}.

Figure 4: Answering A1(st0, j)’s ith query (σ, . . .) to h.

01 Respond with h(σ, . . .)→ Ξ.
02 If Σ(w2j ) = σ, set σ̃j := σ and append (j, i)→ I.

also keeps track of this replacement by adding the appropriate mapping to the list of
substitutions S.

After executing all instances of A1 for at most t rounds, Enc (and also Dec) holds the
table T , substitutions S, and rankmin many labels σ̃j = Σ(w2j ). It chooses the first rankmin
of these labels, and creates a system of equations using the column TZN

, i.e.,

a11xf(1) + a12xf(2) + · · ·+ a1mxf(m) = 2j1w

a21xf(1) + a22xf(2) + · · ·+ a2mxf(m) = 2j2w

...
arankmin1xf(1) + arankmin2xf(2) + · · ·+ armxf(m) = 2jrankmin w

which can be viewed as a matrix A ∈ Zrankmin×m and vector b ∈ Zm. Here, m is the number
of indeterminates x̂i that occur in the system of equations. Note that these indeterminates
might only be a subset of all indeterminates, so the function f translates between column
indices and indeterminate subscripts. So i ≤ f(i) and f might skip some indices.

Next, Enc computes the Hermite normal form of A resulting in a lower-triangular
matrix H and unimodular (i.e., invertible over Z) matrix U such that AU = H. Recall

39



that H is a lower triangular matrix with rankmin non-zero columns on the left and the
height of these columns is strictly decreasing. Enc aborts when H and Ĥ differ in their
shape, that is, Ĥ has additional zero entries because an entry of H was a multiple of N .
On a high level, this step is necessary to connect our compression argument, which mainly
works in ZN , with the query behavior of A1, which must be interpreted over Z in hidden
order groups.

Enc solves the system Âx̂ = b̂ by solving Ĥŷ = b̂ where x̂ = Û ŷ. The first rankmin
entries of y are fixed because of the triangular shape of Ĥ and because every element can
be inverted (otherwise, Enc aborts). If rankmin = m, then this leads to a unique solution.
Otherwise, m− rankmin entries in ŷ are not uniquely defined and there might be multiple
solutions for x̂. Hence, Enc needs to add additional constraints. It does so by fixing the
first m− rankmin entries of x̂. To this end, Enc pushes the discrete logarithm of all x̂i with
i ≤ f(m− rankmin) to Ξ whenever x̂i is not in S. Because if this is the case, then Dec can
compute x̂i from the preceding x̂j, j < i.

Now that the system Û ŷ = x̂ is uniquely determined and can be solved to yield x̂. As
a result, up to rankmin many indeterminates in T might be replaced. Note that only “up
to” because some might have already been eliminated due to collisions.

Still, T might contain some indeterminates x̂i, so Enc pushes the remaining x̂i in T
to Ξ. Finally, the column TZN

only contains constants which correspond to the discrete
logarithm of the labels. T does not contain all labels so Enc pushes the remaining discrete
logarithms to Ξ in lexicorgraphical order of the labels.

The encoding output by Enc contains the image Im(Σ), the list of hints I and of
collisions C, the state st0 output by A0, and Ξ. Dec follows from the description of Enc
and this explanation so it is omitted.

C.3 Encoding Size
Let us analyze the size of Enc’s encoding.

• Im(Σ) which requires log
(
|L|
N

)
.

• I is a list of fixed length rankmin and every element is a pointer to a query. Identifying
a query requires log n bits to specify the challenge j ∈ [0, n) and log Q bits to indicate
the query’s index within the execution A1(st0, j). Thus, ∥I∥ = rankmin(log n+log Q).

• C is a list of variable length and every element contains a pointer to a query where
a collision happens as well as a row of T . Every row of T can be identified by the
query in which it was added plus ⌈log 3⌉ = 2 bits as every query adds at most three
rows. So ∥C∥ = (log n + log Q) + |C|(2(log n + log Q) + 2) where (log n + log Q)
encodes the variable length |C| ≤ nQ. We do not have any non-trivial bound on
|C|, but this will not be an issue for our analysis.

• ∥st0∥ = M by definition.

• ∥Ξ∥ is not bounded as well, but, again, this is not problematic for our analysis.

Now, to handle the variable length of C and Ξ, we compare the size of this encoding
to the naive encoding of Σ. The naive encoding also encodes Im(Σ) with log

(
|L|
N

)
bits and

40



then uses log(N !) bits to assign discrete logarithms to all labels in the image. Hence, we
can ignore the size of the image and will focus on how much Enc pays (in terms of bits)
for every discrete logarithm. We will show that any element contained in C and Ξ leads
to one discrete logarithm and that it is at most as expensive as in the naive encoding.

This is directly related to how much is paid for every row of T as every row of T yields
one discrete logarithm in the end.

• Unexpected query inputs require 0 bits initially as they are assigned an indeterminate
x̂i.

• Responses without collision (stored in Ξ) cost log(N − r) bits where r is the number
of rows in T (and thus the number of labels already assigned) at the time of the
query.

• Responses with collision (stored in C) cost 2(log n + log Q) + 2 bits but at the same
time eliminate one indeterminate x̂i in T .

Thus, responses without collisions cost as much as in the naive encoding and collisions are
cheaper because 2(log n + log Q) + 2 < log(N)− 1 for λ large enough. Indeed, n and Q are
polynomial, but N is superpolynomial in λ. So far, our encoding is at most as expensive
as the naive one without accounting for the indeterminates and additional bookkeeping
yet.

When solving the system of equations, we get rankmin many indeterminates for the
cost of a hint of log n + log Q bits. However, we might have already resolved all of those
indeterminates by collisions, so in the worst case we pay 3(log n+log Q)+2 bits for rankmin
many indeterminates. By the same reasoning as above, 3(log n + log Q) + 2 < log(N)− 1,
so we have a net profit of at least 0 < log(N)− 1− (3(log n + log Q) + 2) bits for rankmin
many indeterminates.

In the course of solving the system of equations, we might have to fix some values of x̂i

by fixing some indeterminates (stored in Ξ). Since we are fixing these indeterminates top-
down according to the rows of T , we pay at most log(N − r) bits per indeterminant—the
same as the naive algorithm. Note that we account for collisions in this step by using the
mapping S. This ensures that we do not overpay for any indeterminate that has already
been resolved by a collision. The remaining indeterminants and discrete logarithms (both
stored in Ξ) cost at most log(N − r) bits again.

To summarize, we pay fewer bits for rankmin discrete logarithms and, accounting for
the additional bookkeeping data, pay at most

log
(
|L|
N

)
+ log(N !)︸ ︷︷ ︸

Naive encoding of Σ

+ log n + log Q︸ ︷︷ ︸
Encoding of |C|

+ M︸︷︷︸
∥st0∥

− rankmin(log(N)− 3(log n + log Q)− 3)︸ ︷︷ ︸
Profit over the naive encoding

bits in total relative to the naive algorithm.

C.4 Success Probability
aborthnf and abortsol do not happen for any element in bad as guaranteed by Claim 1.
However, the lemma does not cover abortcol. Noting that abortcol may be used to factor

41



N , we modify Claim 1 to account for it as well. So Enc never aborts, so it is successful
with probability 1.

The discussion in this section gives a proof of Claim 5.

42


	Introduction
	Memory-Hard Functions
	Trapdoor MHFs
	The Diodon TMHF
	Contributions and Technical Overview
	Open Problems

	Preliminaries
	Notation
	Algebraic Setting
	Generic Group Model
	Machine Model and Complexity Measure

	A Trapdoor Memory-Hard Function from Factoring
	Trapdoor Memory-Hard Functions
	Description of TDScrypt

	Overview of the Lower Bound Proof
	Single-challenge Time-Memory Trade-Off
	Reasoning About A1's Queries Algebraically
	Proof Skeleton
	Analyzing the Behavior of Ax = b
	Combinatorial Proof of the rank(A) Lower Bound
	Incompressibility Argument

	Multi-challenge Memory Complexity
	Detailed Cumulative Memory Complexity Analysis
	Bounding the Entries of A
	Proof of Claim 5
	Notation and Data Structures
	Encoder
	Encoding Size
	Success Probability


