
SweetPAKE: Key exchange with decoy passwords

Afonso Arriaga1 Peter Y.A. Ryan1 Marjan Škrobot1

1University of Luxembourg,
{afonso.delerue, peter.ryan, marjan.skrobot}@uni.lu

Abstract

Decoy accounts are often used as an indicator of the compromise of sensitive data, such as
password files. An attacker targeting only specific known-to-be-real accounts might, however,
remain undetected. A more effective method proposed by Juels and Rivest at CCS’13 is to
maintain additional fake passwords associated with each account. An attacker who gains ac-
cess to the password file is unable to tell apart real passwords from fake passwords, and the
attempted usage of a false password immediately sets off an alarm indicating a password file
compromise. Password-Authenticated Key Exchange (PAKE) has long been recognised for its
strong security guarantees when it comes to low-entropy password authentication and secure
channel establishment, without having to rely on the setup of a PKI. In this paper, we introduce
SweetPAKE, a new cryptographic primitive that offers the same security guarantees as PAKE
for key exchange, while allowing clients with a single password to authenticate against servers
with n candidate passwords for that account and establish a secure channel. Additional security
properties are identified and formalized to ensure that (a) high-entropy session keys are indis-
tinguishable from random, even if later on the long-term secret password becomes corrupted
(forward secrecy); (b) upon password file leakage, an adversary cannot tell apart real from fake
passwords; and (c) a malicious client cannot trigger a false alarm. We capture these properties
by extending well-established game-based definitions of PAKE. Furthermore, we propose a new
UC formulation that comprehensively unifies both SweetPAKE (session key indistinguishability
and sugarword indistinguishability) and a related notion known as Oblivious-PAKE. Finally,
we propose efficient SweetPAKE and Oblivious-PAKE protocols constructed from Password-
Authenticated Public-Key Encryption (PAPKE) that satisfy all the proposed notions.

Keywords: SweetPAKE, Honeywords, PAKE, Password-Authenticated Public-Key Encryp-
tion, Oblivious PAKE.

1 Introduction

Data breaches and leakage of user credentials are unfortunately becoming more common. It comes
as a result of the rise of the Internet and the interconnectedness of devices, along with inadequate
security measures to protect sensitive data. Some resources such as the ‘Have I Been Pwned ’ web-
site1, or even modern password managers, regularly monitor websites, forums, and marketplaces
with anonymized access, where criminals usually sell or publish stolen credentials. However, orga-
nizations and service providers must act promptly, but face significant challenges in detecting such
data breaches. According to a 2022 data security report by IBM [21], businesses took an aver-
age of approximately 9 months to identify and report a data breach. It is therefore of the utmost
importance that system architects take a security-by-design approach and put in place adequate
mechanisms to detect a compromise of user credentials.

1As of 2022, HIBP collected 11M+ credentials from more than 600 compromised websites. The project’s website
is available at https://haveibeenpwned.com.

1

https://orcid.org/0000-0002-1967-3390
https://orcid.org/0000-0002-1677-9034
https://orcid.org/0000-0002-7132-7591
mailto:afonso.delerue@uni.lu
mailto:peter.ryan@uni.lu
mailto:marjan.skrobot@uni.lu
https://haveibeenpwned.com

One simple tactic to detect leakage of user credentials is to create decoy accounts. This has the
clear benefit that no upgrade to the way users are authenticated within the system is necessary.
Suspicious activity in those accounts could indicate a password file compromise, as they are not
associated with real users. However, an adversary might be able to tell apart real usernames from
those that are fake, or target only specific accounts known to belong to legitimate users, and thus
avoid triggering the alert mechanism in place.

Another approach, proposed by Juels and Rivest [24], is to maintain decoy passwords instead.
Each user account is associated with one real password and multiple fake passwords. Using the
authors’ terminology, fake passwords are called honeywords, the real password is called the sugarword,
and together they form the sweetwords associated with each account. This so-called Honeywords
method incorporates an auxiliary computer device called the Honeychecker, with a simple API and
an operating system possibly different from that of the authenticated server, whose sole purpose is
to raise an alarm whenever a user used a honeyword as their password. The authentication server
stores the password file, containing n sweetwords per user. The Honeychecker stores the index of
each user’s sugarword (and nothing else). The Honeychecker is connected to the authentication
server via a secure channel, and every time a user logs in, the index of the sweetword used (together
with the username) is transmitted to the Honeychecker. Obviously, if honeywords are not generated
carefully, an adversary might also be able to spot the sugarword among sweetwords. A generation
algorithm is said to be (perfectly) flat if the winning probability of guessing the sugarword given
n sweetword is 1/n. The authors propose multiple generation algorithms that are perfectly flat (or
ϵ-flat, meaning that a negligible advantage ϵ is tolerated). We refer the reader to [24] for more details
on these honeyword generation algorithms.

The authors of [24] assume there is a server-authenticated TLS channel between the user and the
authentication server, over which the password is transmitted, every time the client authenticates.
In practice, this is usually supported by a PKI, where a trusted Certificate Authority (CA) asserts
the identity of the server and its public key via an X.509 certificate. Needless to say that this is
a considerable trust assumption since modern browsers and operating systems include more than
a hundred certificates in their truststore, all of which could potentially issue such a certificate.
Phishing attacks are recurring, whether the attacker was able to masquerade as the authentication
server because it obtained a valid certificate or because it was able to trick the victim. A better
approach to overcome the limitations of client-authentication via preshared password over server-
authenticated TLS channel that has seen wide-scale deployment in recent years [31, 18, 5] relies on
Password-Authenticated Key Exchange (PAKE) protocols. This primitive allows two parties that
share a low-entropy password to establish a high-entropy session key, with the assurance that offline
dictionary attacks are computationally hard, and online password guesses are limited to one per
interaction. Phishing attacks are effectively mitigated, which stands as a significant advantage of
PAKE protocols. This raises the following research questions:

• How to build a PAKE-style protocol that admits decoy passwords?
In contrast to conventional PAKE protocols, servers store n sweetwords per client. In addition
to the session key, a server running the protocol also outputs the index of the client’s password,
to be transmitted to the Honeychecker.

• What security guarantees such protocol provides?

To answer these questions, we introduce a new cryptographic primitive that we call SweetPAKE,
which is a generalization of PAKE2, and allows for direct integration with the Honeywords method
from [24].

2Looking ahead, the SweetPAKE game-based security model for the case (n = 1) matches the widely-used Real-
or-Random model for PAKE by [3].

2

We emphasize that our research centers on the development of a mutual authentication protocol
between a client and a server, via a shared low-entropy password. On the server side, the client’s
password is placed among decoys. An initial client registration and decoy passwords generation
is required. This process, similarly to the setup required by conventional PAKE protocols, can
be executed through various methods, ranging from in-person registration to online registration
facilitated by a server-authenticated TLS channel. All the benefits of PAKE persist even when the
secure channel for the registration phase is established via a PKI, as the registration procedure for
a new client is a one-time setup requirement.

1.1 Our contribution

We consider a system that, upon enrollment, allows a client to share a password (i.e. the sugarword)
with an authentication server. This sugarword is on the authentication server side hidden amongst
(n− 1) honeywords.

Thus, each authentication server in its password file, for each client, stores a vector containing n
sweetwords (the sugarword plus the (n− 1) honeywords). The index corresponding to the position
of the sugarword in the vector of sweetwords is together with the client’s identity stored by the
Honeychecker. The client enrollment process (registration, password selection, and honeywords
generation) could be carried out with the help of the registration authority or by the authentication
server itself, assuming that the index is an ephemeral value that is discarded and never stored after
being transmitted to the Honeychecker.

Later on, a SweetPAKE protocol allows the client and the authentication server to agree on a
secure session key as long as the client’s password is among the n sweetwords. The authentication
server silently transmits the index of the matching sweetword to the Honeychecker. If it does not
match the index of the sugarword, the Honeychecker raises an alarm to the system administrator,
signalling a password file compromise.
In this paper, our contribution is multi-fold:

• Architecture. We abstract the general architecture considered in [24] to a setting where we
don’t assume a server-authenticated channel between client and server (possibly supported by
a PKI).

• Security model. We identify and formalize three security properties for SweetPAKE to en-
sure that (a) high-entropy session keys are indistinguishable from random, even if later on
the long-term secret password becomes corrupted (commonly referred to as forward secrecy);
(b) upon password file leakage, an active adversary cannot tell apart real passwords from
those that are fake and never used by legitimate clients; and (c) a malicious client cannot
trigger a false alarm. All these properties are first formalized based on the well-known Real-
or-Random definition for PAKE [3]. We then model the first two properties in the Universal
Composability framework, with a single ideal functionality. UC definitions are notorious for
capturing arbitrary correlations between passwords, which is particularly relevant in the con-
text of SweetPAKE as we are then able to assure security with respect to a larger set of
honeyword generation algorithms.

• Naive approach. We explain why the naive approach of running up to n times a PAKE pro-
tocol is insufficient to meet the above-mentioned requirements, in addition to being inefficient
due to too many rounds of communication.

• BeePAKE. We build a SweetPAKE protocol from Password-Authenticated Public-Key En-
cryption (PAPKE) [12], message authentication codes, key derivation functions and random

3

permutations. We call our protocol BeePAKE and formally prove that it satisfies all three
security properties.

• Relations with other notions. We explore the relations between our newly proposed prim-
itive with other notions in the literature, namely Oblivious PAKE [25]. To the best of our
knowledge, no UC definition was previously proposed for O-PAKE. The one we propose here
unifies both SweetPAKE and O-PAKE. We then show how BeePAKE protocol can be modified
to achieve UC-secure O-PAKE.

1.2 Related Work

In this section, we briefly discuss the state-of-the-art PAKE protocols and security definitions, in-
troduce PAPKE [12] and three important notions that are relevant to our problem: Oblivious
PAKE [25], HoneyPAKE [7], and HPAKE [27]. Finally, we mention a few complementary ap-
proaches.

PAKE. Password-Authenticated Key Exchange allows secure session key establishment over in-
secure networks between two or more parties who only share a low-entropy password. The main
advantage of PAKE over a typical authentication approach is that it prevents offline dictionary at-
tacks and by design avoids man-in-the-middle attacks in the context of phishing. The most widely
accepted security definitions for PAKE can be classified as (i) game-based ; and (ii) simulation-based
definitions. Security model ‘Find-then-Guess’ (FtG) [9] and its extension ‘Real-or-Random’ (RoR)
[3] are prominent within the game-based category. The simulation-based definition within Canetti’s
Universal Composability framework [14] is the gold standard (with the known caveat that the defini-
tion is impossible to satisfy in the plain model). Starting with EKE [10], many PAKE protocols have
been proposed and rigorously studied over the last three decades (see a recent survey [19]). In 2019,
as a result of the IETF standardization competition, CPace [17, 4] and OPAQUE [23] were selected
as the winning protocols. Today, PAKE protocols can be found in many places, most notably in
electronic passports (PACE), wireless network security protocols such as WPA3-Personal (SAE) and
Eduroam (EAP-PWD), Apple Cloud Key Vault (SRP), and IoT network protocol Thread (J-PAKE).

PAPKE. Password-Authenticated Public-Key Encryption (PAPKE) [12] enables secure end-to-end
encryption between two entities without relying on a trusted third party or other mechanisms for
authentication, such as a PKI. In a nutshell, this primitive is similar to regular Public-Key Encryp-
tion (PKE), except that the key generation algorithm takes a password as extra input and produces
a secret key and an authenticated public key. The encryption algorithm also takes as extra input
a password. The essence of this primitive is that ciphertexts are only decryptable if the password
used for encryption matches the one used to generate the key pair. Two constructions for PAPKE
have been proposed based on the ideal cipher model or random oracle model.
The authors show that a 2-round PAKE protocol can trivially be constructed from PAPKE as fol-
lows: (1) the client generates a key pair with their password and sends the authenticated public
key to the server; (2) the server samples a random session key and encrypts it with the password
previously shared with the client, and sends the ciphertext back to the client; (3) if the client is able
to successfully decrypt the ciphertext, both parties agree on a common session key. In our protocol
BeePAKE, we leverage this idea and let the server encrypt the session key under the authenticated
public key and each sweetword. The number of communication rounds remains unchanged, regard-
less of the number of decoy passwords. Other building blocks are however necessary to ensure the
protocol satisfies the three security properties we aim for.

4

HoneyPAKE. Becerra et al. [7] were the first to observe the benefits of combining PAKE with
the Honeywords methods, for simultaneous authentication, secure-channel establishment, and pass-
word file leakage detection. However, in their setting, each client has two passwords (similar to
2FA-type authentication mechanisms). On the server side, only the second password is mixed with
(n− 1) honeywords. This change significantly simplifies the problem. Namely, a trivial solution to
the problem is as follows: a client and a server establish a secure channel using the first password,
and only then the client sends the second password (or some function of it) through already estab-
lished secure channel. This second password is the one that might trigger an alarm if it matches
a honeyword. Essentially, the solution is simply replacing the PKI-authenticated channel with a
password-authenticated channel established using PAKE protocol. The authors propose a new pro-
tocol named HoneyPAKE that follows this strategy with some optimizations. The problem we
address in our work is how to construct a PAKE-style protocol that allows for decoy passwords on
the server side. In the design of such protocol, we restrict our attention to the setting where the
client is only allowed to store a single low-entropy password as a long-term secret. We also formalize
the security guarantees our construction satisfies, which includes a novel property of false-alarm
protection against malicious clients.

Oblivious PAKE. The work of Kiefer and Manulis on Oblivious Password-Authenticated Key Ex-
change (O-PAKE) [25] is close to the problem at hand. In their work, the client shares one password
with each server, but the client is allowed to use multiple passwords within an O-PAKE session. The
protocol succeeds if and only if one of those input passwords matches the one stored on the server
side. Such protocol is useful in scenarios where the client no longer remembers which of their pass-
words has been registered at a particular server. At first glance, this seems to be exactly the problem
we are addressing with SweetPAKE, with the roles of client and server reversed. However, there are
a few, but important, differences in the security definitions between O-PAKE and SweetPAKE: (1)
O-PAKE password setup is somewhat incompatible with the one from SweetPAKE (see Section 4);
(2) SweetPAKE demands two additional properties (i.e. ‘sugarword indistinguishability’ and ‘false
alarm protection’) that are specific to our use case. Interestingly, in [25], the proposed compiler relies
on Index-Hiding Message Encoding (IHME) [28] and a secure PAKE to achieve O-PAKE, which is
a completely different approach from the one taken in this paper.

We also propose a UC definition for this primitive, which overcomes the setup incompatible pre-
viously mentioned, and therefore unifies both Oblivious PAKE and SweetPAKE (session key and
sugarword indistinguishability) definitions.

HPAKE. Li, Wang, and Liang [27] address a similar problem to the one that we independently
explore in this work, making it crucial to draw comparisons between their findings and ours. In their
paper, the authors introduce a game-based security model to address session key indistinguishabil-
ity, as well as what we refer to as sugarword indistinguishability. However, their approach does
not account for false alarm protection against malicious clients, nor does it offer a clear definition
within the UC framework. Their proposed construction follows a white-box approach, building upon
OPAQUE, which has the advantage of being an augmented PAKE. In contrast, our contribution lies
in a black-box construction that inherently offers enhanced modularity. Additionally, we establish
a parallel with Oblivious PAKE.

Alternative approaches. An interesting line of work, complementary to ours, involves preventing
the offline guessing attempts on user’s password from the authenticating server by elevating it into a
strong secret using an auxiliary service or device [6, 22]. Moreover, it is noteworthy that significant

5

efforts for alternatives to passwords are underway with passwordless standards such as WebAuthn3

gaining prominence, particularly with the widespread adoption of the term passkeys by various
industry players. WebAuthn relies on high-entropy public-keys, which are public in nature. Despite
these ongoing developments, given their human-memorable nature and widespread use, passwords
are far from being deprecated and are likely to remain relevant in many contexts [11].

2 SweetPAKE Security Model

Security definitions for PAKE have been extensively studied in the literature and fall into either
game-based or simulation-based categories. The most widely accepted game-based definition is
the Real-or-Random model by [3], which is an extension of the Find-then-Guess (FtG) model by
[9]. The popular choice for simulation-based definitions is that of [14], outlined in the Universal
Composability (UC) framework of [13].

2.1 Model considerations

In this paper, we propose three game-based security properties for SweetPAKE building upon the
Real-or-Random (RoR) PAKE model from [3] and two other related works [25, 7]. We select the RoR
PAKE model variant over the original FtG as it has been shown to provide tighter compositional
properties with higher-level protocols that make use of the session key [30]. In our view, game-based
definitions convey security guarantees in simple terms and are generally easier to manage from
a provable security standpoint. In case of SweetPAKE, game-based definitions and corresponding
proofs provide modularity by allowing the reader to easily pinpoint which building blocks are required
to achieve each of the three proposed security notions. However, the main drawback often pointed
out is that game-based definitions fail to capture arbitrary correlations between passwords – in
game-based models, clients’ passwords are sampled independently and uniformly at random4 from a
password dictionary by the challenger. In contrast, PAKE definitions within the UC framework result
in a stronger notion and successfully captures the scenario where clients register related passwords
with different servers. Furthermore, it also ensures security under arbitrary protocol composition.

UC definition is the gold standard for PAKE and arguably better suited for capturing arbitrary
password correlations, which often occur in practice and moreover in the context of decoy passwords
(depending on the adopted method [24]). Therefore, we extend our security analysis to the Universal
Composability framework to leave no stone unturned.

In line with the above discussion, and starting with our game-based models, we will assume
that the underlying SweetPAKE initialization procedure provides the flatness of sweetwords within
each initialized client’s vector and the independence between sugarwords in the system. Whilst the
first assumption is addressed by the seminal work of Juels and Rivest [24], the second assumption
is standard for corruption models captured by game-based definitions [9, 3], where passwords are
uniformly sampled or chosen from a distribution with min-entropy κ.

How to generate honeywords that look like they could be real passwords is an interesting problem
addressed by [24]. Employing the terminology of the authors, this property of the honeyword
generation procedure is called flatness.

3https://www.w3.org/TR/webauthn-2/.
4Although various authors adopting game-based PAKE modelling use the uniform password distribution to simplify

the security model and analysis, other distributions could be considered as in [2], as long as passwords are still sampled
independently and carry enough entropy for meaningful security.

6

https://www.w3.org/TR/webauthn-2/

Definition 1 (Flatness.). Let Flat be a honeywords generation procedure that takes as input a secret
sugarword pw and a public parameter n representing the number of sweetwords in the game and
outputs a randomly permuted array P[n] containing the sugarword and (n− 1) honeywords. To win
the game, an adversary A with access to P[n] must guess the index of the sugarword pw in it. The
honeywords generation procedure Flat is perfectly flat, if for any adversary against the game above,
the inequality

AdvflatnessA,Flat (n) =
1

n

holds, where the probability is taken over the choice of sugarword pw, honeywords generation proce-
dure Flat, and any random coins used by the adversary to produce its guess.

As pointed out in [24], one good way of generating a sugarword and honeywords is to first
generate a list of n sweetwords, and then randomly pick one element of this list to be the sugarword.
This becomes the real password, and the remaining elements the honeywords. In more general
terms, our game-based model captures any password setup procedure in which sugarwords are
picked independently from each other and the honeywords generation procedure is flat, while our
UC formulation handles arbitrary correlations of sweetwords/passwords, providing strong security
guarantees.

2.2 SweetPAKE architecture

Although similar to PAKE in many aspects, SweetPAKE has several differences that must be in-
corporated into the security model. To pinpoint exactly what these differences are and what one
might expect of SweetPAKE protocol in terms of functionality and security guarantees, let’s first
abstract the architecture of a system where SweetPAKE is run to establish session keys for secure
communication between clients and servers.

A client C ∈ C has a password pwC,S for a server S ∈ S. The server S has a list of n sweetwords
for client C. One element on this list matches password pwC,S . The index i, where the password
pwC,S matches the i-th element of S’s list of sweetwords for C, is stored with the hard-to-corrupt
Honeychecker. We assume that the initial setup is carried out with the help of a registration service
that generates (n−1) honeywords, picks a random index i ∈ {1..n}, creates a list with the generated
honeywords and the client’s password placed in position i and sends the list to the server and the
index to the Honeychecker.

We also assume that secure channels exist everywhere except between the client and the server.
Here, we analyse the strongest variant of those proposed in [7], in which the client has a single
password per server, there’s no setup of pre-shared keys, seeds or nonces, and communication between
the server and the Honeychecker is unidirectional from the server to the Honeychecker. Thus, the
goal of the SweetPAKE protocol is to establish session keys between the client and server with
mutual authentication, and for the server to be able to identify the index of the client’s password so
that it can be forwarded to the Honeychecker. The overall architecture is depicted in Figure 1.

2.3 Game-based security

Informally, there are three security properties we would like to capture for SweetPAKE protocols:
(1) indistinguishability of session keys, similar to regular PAKE protocols; (2) difficulty of spotting
the sugarword (real password) among sweetwords; (3) difficulty of raising a false alarm to the
Honeychecker. To model all three properties, we use a standard PAKE model from [3], and we
highlight that Test query is relevant only to the indistinguishability of the session keys property.
Furthermore, instead of a single password per client, servers store a list of sweetwords per client –

7

Client Server

Registration
Authority

HoneycheckerSweetPAKE
protocol

(client,index)

(client,index)

(client,sweetwords)

(client,password)

secure channel

open channel

Figure 1: SweetPAKE architecture.

one of which is the sugarword. In our model, we consider a setting where multiple clients and servers
run many protocol executions of SweetPAKE, possibly in parallel.

Augmented PAKE (aPAKE) protocols allow servers to hold a one-way hash of the password
instead of the password in clear. This serves to impede potential adversaries’ attempts at swiftly
recovering the password (and impersonating the client) if the server’s security is ever compromised.
In the context of strong augmented PAKE (saPAKE) [23], safeguarding against pre-computation
attacks is also required. In our model, we exclusively focus on extending the balanced PAKE scenario
(also known as symmetric PAKE) to the setting where the server possesses multiple passwords per
client, stored in clear. We do not deal with the kind of asymmetry between client and server known
as augmented PAKE5.

There are established generic compilers from balanced PAKE to augmented PAKE [15, 20], and
further from augmented PAKE to strong augmented PAKE [23]. However, this work does not ex-
plore whether these compilers can be applied to SweetPAKE. Detecting password file leakage is an
orthogonal problem to slowing down password recovery once leakage occurs. It could even be argued
that measures taken to slow down password recovery might inadvertently prolong the detection of
such leaks.

Protocol participants. A party in a SweetPAKE protocol is either a client C ∈ C or a server
S ∈ S. The set of all parties U is the union C∪S. Each party might run multiple protocol execution
instances. We denote by U i the i-th execution of party U . We consider the Honeychecker to be a
passive protocol participant as it only receives a client identity and an index from the server, via a
secure channel, while its further actions are separate from the SweetPAKE protocol. The Honey-
checker cannot be corrupted within our model.

Setup. Each pair of parties (C, S) share a secret password pwC,S . On the server side, this secret
is mixed with (n − 1) honeywords. The value of n is a fixed security parameter of the protocol.
Games are initialized by a challenger that for each pair (C, S) ∈ C x S first samples the sugarword
pwC,S independently and uniformly at random from dictionary D and then applies a function Flat
on input (pwC,S , n). The function Flat outputs a randomly permuted array PC,S [n] containing the
sugarword and (n − 1) honeywords. An index i that contains the sugarword position in PC,S [n] is
then forwarded to the Honeychecker. We assume that Flat generates honeywords that are flat with
respect to the sugarword.

5Note that in the case of symmetric PAKEs and SweetPAKE, it is indeed technically feasible for the server to store
password hashes, given that the client also hashes its password before initiating the protocol. However, the resulting
protocol wouldn’t offer the guarantees provided by an augmented PAKE, such as requiring the client to know the
actual password (not just the password hash), or safeguarding against pre-computation attacks.

8

Once the challenger completes the sampling, the server S is associated with a bi-dimensional ar-
ray (of n sweetwords per client) and the client C with a list of passwords (one password per server).
For an algorithmic description of this initialization procedure, see Figure 2. Notice that upon initial-
ization, S is unaware of which sweetwords are sugarwords, but after a legitimate interaction between
C and S, the server S will learn the sugarword of the client C because the index is an output of the
protocol on the server’s side.

Initialize:

f o r S ∈ S // for each server
f o r C ∈ C // for each client

pwC,S ← D // pick a sugarword
PC,S [n]← Flat(pwC,S , n) // create sweetwords
lookup i such that PC,S [i] = pwC,S

forward sugarword position i to Honeychecker

Figure 2: Initialization procedure common to all games.

Party instance state. Each party instance U i holds a state that the party keeps updating during
the protocol execution. It takes the form of (U i.pid, U i.trace, U i.internal, U i.key, U i.accept) where

• U i.pid is the partner identifier of U i, which is initially ⊥ and remains so until U i starts running
the protocol;

• U i.trace is the communication transcript of U i, and when U i terminates, U i.trace containing
the full or a partial communication transcript is used as the session identifier, made explicit
by the protocol;

• U i.internal is the internal state of U i and might hold secrets unique to U i (such as secret
exponents);

• U i.key is the session key of U i, which remains ⊥ until the party instance U i accepts;

• U i.index is the password index U i, which remains ⊥ until the party instance U i accepts. This
is only relevant if U ∈ S, otherwise it stays ⊥ forever;

• U i.accept is a boolean flag that keeps track of the acceptance state of U i. For simplicity, we
assume that instance U i terminates once U i.accept = true.

Correctness. An untampered protocol execution between a client instance Ci (holding password
pwC,S) and a server instance Sj (holding a list PC,S of sweetwords for C) results in Ci and Sj

accepting, becoming partners and outputting the same key Ci.key = Sj .key if pwC,S ∈ PC,S . Fur-
thermore, Sj also outputs an index i such that PC,S [i] = pwC,S . As with the Honeywords method,
[24], when a legitimate client authenticates, the server learns the correct index.

Partner instances. A client instance Ci and a server instance Sj are partnered if both instances
have terminated in accepting state with (a) identical session identifiers Ci.trace = Sj .trace, and
(b) matching partner identifiers Ci.pid = S and Sj .pid = C. The correctness implies key equal-
ity. We emphasize that client instances are never partnered with each other, nor are server instances.

9

Adversary model. We model the adversary A as a PPT algorithm. After the password initializa-
tion procedure, the challenger proceeds by generating global parameters, and Common Reference
String (CRS) if applicable, as described by the SweetPAKE protocol specifications - these values
are passed on to the adversary A. From thereon, the interaction between the challenger and the
adversary occurs via oracles, provided by the challenger and queried at will by the adversary, essen-
tially modelling the adversary’s capability in real world systems. Common to all three SweetPAKE
security games we discuss below are the following oracles:

• Execute(Ci, Sj): This oracle models an honest execution of the protocol between a client
instance Ci and a server instance Sj . The transcript of the protocol containing all messages
exchanged between the parties is output to the adversary.

• Send(U i,m): This oracle models an active attack, in which the adversary is able to send
a message m of its choice to party instance U i. Recall that in [3] model, the adversary is
capable of dropping, injecting, and modifying protocol messages at will. The message that
party instance U i would output upon receiving message m is passed on to the adversary.

• Reveal(U i): This oracle models the capability of corrupting a session key. When queried on
U i, this oracle outputs the session key of U i. For a meaningful definition, if the game has
a Test oracle, Reveal(U i) outputs ⊥ in case U i or its partner (if there is one) was previously
queried to Test.

• Corrupt(C, S): This oracle models the corruption of a client and outputs the password that
client C registered with server S. This query is essential to capture perfect forward secrecy
(PFS) since session keys should not be compromised even if long-term passwords used in the
protocol are compromised.

I. Real-or-Random indistinguishability of the session key. In this game, the adversary is
challenged to distinguish between real and random session keys. To do so, it has at its disposal a
Test oracle that when queried, outputs a key. Here, we adopt the extension from [3] that allows the
adversary to place multiple Test queries. For a meaningful definition – and following the terminology
commonly employed in PAKE – we restrict this oracle to only output a key when queried on a fresh
instance. Let’s define what this entails.

Freshness: Party instance U i is fresh if (a) it terminated in accepting state, (b) it was not queried
to Reveal or Test, and (c) in case of having exactly

• 0 partner instances: Corrupt(C, S), where C = U or S = U , was not called prior to U i

accepting;

• 1 partner instance: neither Reveal or Test was queried to the partner instance;

• 2 or more partner instances: no further conditions are imposed.

Oracle specific to RoR SweetPAKE security game:

• Test(U i): When the game is initialized, a bit b is sampled. If b = 0, this oracle outputs the
real session key for party instance U i, otherwise it outputs a random key of the length of the
real key. This oracle provides a challenge to the adversary and can only be queried on fresh

10

party instances. If party instance U i is not fresh, this oracle outputs ⊥. All Test queries are
answered according to the same challenge bit b. Once the adversary places a query on U i to
this oracle, it is restricted to call Reveal on U i or its partner.

Eventually the adversary terminates and outputs a guess bit b′.

Definition 2. A SweetPAKE protocol Π has session keys indistinguishable from random, if for any
PPT adversary against the game above, the inequality

AdvRoR
A,Π (λ, n)

def
= |Pr[b = b′]− 1

2
| ≤ n · qs

|D|
+ ϵ(λ)

holds for negligible term ϵ(λ) and n sweetwords per pair (C, S), where |D| is cardinality of the
password dictionary and qs is an upper-bound on the number of queries to Send oracle.

In essence, we require the best course of action of adversary to be guessing one of the n sweetwords
associated with some pair (C, S).

II. Sugarword indistinguishability. Unfortunately, from time to time servers get compromised
and some passwords are leaked. This game aims to capture the difficulty of guessing the sugarword
among sweetwords, even for adversaries that have some control over the network.

Oracle specific to sugarword indistinguishability security game:

• Leak(S,C): This oracle models a partial compromise of a server’s passwords authentication file.
When queried, it outputs PC,S to the adversary, which contains all sweetwords associated with
the client C at the server S. Because now the adversary has all candidate passwords for C at S,
it is restricted from querying Send(C, ·). Otherwise, it is trivial to test out all sweetwords and
figuring out which one is the sugarword. In the real world, clients are usually the ones initiating
the communication and rarely are the systems designed otherwise. Therefore, we argue that
this minimal and inevitable restriction we impose in our model brings out a meaningful security
definition.

Eventually the adversary terminates and outputs a pair (C, S) and a guess index i. The adversary
is admissible if pwC,S was not revealed via Corrupt query.

Definition 3. A SweetPAKE protocol Π is sugarword indistinguishable, if for any admissible PPT
adversary against the game above, the inequality

AdvSIND
A,Π (λ, n)

def
= Pr[PC,S [i] = pwC,S]

≤ 1

n
+

n · q∗s
|D|

+ ϵ(λ)

holds for negligible term ϵ(λ) and n sweetwords per pair (C, S), where |D| is cardinality of the
password dictionary and q∗s is an upper-bound on the number of inquiries to Send(C, ·) oracle before
the leak.

This means that no adversary can do better than testing n passwords per interaction with C
before the leak. Thus (n · q∗s)/|D|) term, and randomly guessing the index of the sugarword, which
yields a successful guess with probability 1/n.

11

III. False alarm protection. From the correctness of SweetPAKE, a server instance accepts not
only with the real password of the client, but also with the associated honeywords. In such a case,
Honeychecker would trigger the alarm. The third property we want to capture is the difficulty of an
adversary triggering the alarm without the password file being leaked (or partially leaked) – this is
in fact a false alarm. In this game, the adversary has access to the usual oracles and its goal is to
originate such an event that we (unimaginatively) name Event E. Note that oracles Test from game
RoR and Leak from game SIND are not needed here and deliberately not included.

Event E: An adversary queries Send(Sj , ·) and as a result party instance Sj accepts outputting a
pair (C, i) to Honeychecker, which corresponds to a honeyword, i.e.,

PC,S [i] ̸= pwC,S .

Definition 4. A SweetPAKE protocol Π offers false alarms protection if for any PPT adversary A
against game FAP the inequality

AdvFAP
A,Π (λ, n)

def
= Pr[E] ≤ q⋄s · (n− 1)

|H|
+ ϵ(λ) (1)

holds for negligible term ϵ(λ) and n sweetwords per pair (C, S) ∈ C x S, where |H| is cardinality of
the honeyword dictionary induced by Flat(pwC,S , n) over the sugarword and parameter n, and q⋄s is
an upper-bound on the number of inquiries to Send(S, ·) oracle for any S ∈ S.

This means that no adversary can do better than testing (n−1) honeywords per interaction with
the server in the absence of a password file leak.

2.4 UC security

We propose a new UC definition for SweetPAKE, which reconciles the divergences in password
sampling between SweetPAKE and O-PAKE. This is because, in the UC framework, passwords are
arbitrarily chosen by the environment Z. The functionality described in Figure 3 primarily reflects
the security aspects of SweetPAKE’s session key indistinguishability (but also extends to sugarword
indistinguishability as we will discuss in a moment) and the security guarantees provided by O-
PAKE protocols. This definition draws inspiration from the PAKE definition presented in [14] while
incorporating the minimal necessary extensions to account for the protocol asymmetry in that one
party holds 1 password whereas the other party holds n passwords. In more detail, the adversary
might place a TestPwC to test n passwords against 1, or a TestPwS query to test 1 password against
n. As with the ideal functionality for PAKE, if the adversary succeeds, the record is marked as
compromised and the adversary is given the freedom to set the session key via a NewKey query.

In the UC framework, the selection of passwords is carried out by an environment Z, which
maintains a permanent communication channel with the adversary A. This arrangement inherently
models scenarios where honest parties’ passwords may become compromised at any point during
the protocol execution. It is important to note that the environment Z can expose various levels of
information to the adversary A, such as a client password, the complete set of passwords associated
with a server, or even just a subset of those.

Perhaps the most notable benefit of security definitions within the UC framework is the ability
to capture arbitrary password correlations, in contrast to the limitations imposed by game-based
definitions, in which the challenger samples passwords according to some fixed distribution (usually
the uniform distribution over the dictionary). This models practical use-cases where clients register
the same or similar passwords with multiple servers, or typing errors when asked to input their

12

1. New Session Client. On input (NewSessionC, sid,Pi,Pj , pw) from party Pi:

• Ignore this query if record (sid,Pi, ·, ·, ·, ·, ·) already exists.

• Otherwise, record (sid,Pi,Pj , fresh, pw,⊥, client) and send (NewSessionC, sid,Pi,Pj) to A.

2. New Session Server. On input (NewSessionS, sid,Pi,Pj ,PC,S) from party Pi where PC,S ∈ Dn:

• Ignore this query if record (sid,Pi, ·, ·, ·, ·, ·, ·) already exists.

• Otherwise, record (sid,Pi,Pj , fresh,PC,S ,⊥, server) and send (NewSessionS, sid,Pi,Pj) to A.

3. Password Guess on Client. On input (TestPwC, sid,Pi,P
∗
C,S) from adversary A:

• Retrieve the record of the (sid,Pi,Pj , fresh, pw,⊥, client) (abort if no such record exists).

• If pw = P∗
C,S [·], update the record to (sid,Pi,Pj , compromised, pw,⊥, client), and send

(TestPwC, sid, correct) to A.
• Else, update record to (sid,Pi,Pj , interrupted, pw,⊥, client) and send (TestPwC, sid, wrong) to A.

4. Password Guess on Server. On input (TestPwS, sid,Pi, pw
∗) from adversary A:

• Retrieve the record of the (sid,Pi,Pj , fresh,PC,S ,⊥, server) (abort if no such record exists).

• If pw∗ ∈ PC,S

– Initialize vector M = [0] ∗ n
– ∀m ∈ {1..n} s.t. P∗

C,S [m] = pw, mark M[m] = 1

– Update the record to (sid,Pi,Pj , compromised,PC,S ,⊥, server)

– Send (TestPwC, sid, correct ,M) to A.

• Else, update record to (sid,Pi,Pj , interrupted,PC,S ,⊥, server) and send (TestPwS, sid, wrong) to
A.

5. Session Key. On input (NewKey, sid,Pi, k
∗) from adversary A where |k∗| = λ:

• Retrieve record (sid,Pi,Pj , status, p, k, r) for status ∈ fresh, interrupted, compromised, abort if no
such record exist.

• If status = compromised or either Pi or Pj is corrupted, set k ← k∗.

• If status = fresh and there exists a record (sid,Pj ,Pi, completed, ·, k′, r′) such that r ̸= r′ and status
of Pj switched from fresh to completed before it received (NewKey, sid, k′), set k ← k′.

• Else set k ←$ 0, 1λ.

• Update the record to (sid,Pi,Pj , completed, p, k, r), and output (NewKey, sid, k) to Pi.

Figure 3: SweetPAKE/O-PAKE ideal functionality FOPAKE. To capture sugarword indistinguisha-

bility, remove the gray box in TestPwS.

13

password. We also note that since we are in the symmetric PAKE setting, passwords are stored in
clear on the server side. This means that our ideal functionality does not need an interface to steal
the password file as the password file contains exactly the passwords input by the environment Z
upon new session calls to the ideal functionality6.

An important observation is that trivial protocols such as one that simply uses PAPKE to
encrypt individually each password, without further modifications to the protocol, reveals to the
decryptor the index of the correct password. For this vanilla protocol to be provably secure, the
functionality must also leak the indices of matching passwords. To see why, consider an environment
Z that samples n high-entropy passwords, initializes party Pi with these, randomly selects one of the
passwords and gives it to its real-world adversary A to interact with Pi. Real-world adversary A is
the decryptor and therefore figures out the index of the given password, and sends it to Z. Finally Z
outputs 1 if the index corresponds to the password randomly picked. For such environment Z, there is
no simulator capable of simulating the real-world without receiving the index from the functionality.
In fact, the functionality must leak all indices of matching passwords, has the environment might
place repeated passwords when initializing Pi. Note, however, that this is only relevant when testing
1 password against n. In the reverse direction, the simulator can always compute itself which indices
match by querying one password at the time and placing place holders ⊥ in the other n−1 password
slots.

To capture sugarword indistinguishability as well, we simply lift from TestPwS the leakage of
indices matching the queried password (see Figure 3). The vanilla protocol (plus its sugarword
indistinguishability extension) is depicted in Figure 5. To be able to capture sugarword indistin-
guishability, the encryptor must remove duplicate passwords (and replace them with place holders
⊥), and shuffle the vector of ciphertexts. Intuitively, deduplication ensures there is at most 1 match.
Shuffling renders the matching index irrelevant.

It is a deliberate choice not to try to capture false alarm protection within our definition as
this would require changing the syntax of the protocol to also output an index (in the SweetPAKE
setting, this is the index the server sends to the Honeychecker), which is not relevant in the Oblivious
PAKE setting. To the best of our knowledge, this is the first UC formulation of O-PAKE primitive.

3 BeePAKE: A game-based secure SweetPAKE protocol

In this section, we first review why simple composition of secure Password Authenticated Key
Exchange (PAKE) protocol executions is not adequate for building SweetPAKE. This exercise will
give an insight into design choices we made in Section 3.2. Then, we present a practical construction
that securely realizes SweetPAKE primitive as defined in Section 2.

3.1 Naive proposal

Let’s consider a simple (but less efficient) way to build SweetPAKE. Suppose we select a forward-
secure PAKE protocol with key confirmation7 such as a variant of SPAKE2 from [1].

6In the augmented setting, when the environment Z registers a password, in the real world this password is not
stored in clear on the server side. Corrupting the server still grants access to the passwords, but compromising the
password file with the hashes has meaningful practical implications too. Such compromise subsequently allows the
attacker to (1) impersonate the server to the client, and (2) find the password via an offline dictionary attack. There is
a practical difference between corrupting the server and seeing the passwords in clear, and compromising the password
file with the hashes.

7Note that the explicit authentication, using for instance a secure MAC, allows an authentication server to identify
which PAKE session is the correct one and appropriately submit the index to the Honeychecker.

14

In case there are n sweetwords stored per user on the authentication server S, a client C could
initiate n independent PAKE executions with S. Perhaps more sensibly, the Client should bundle
n instances into 1, to minimize the number of message flows. For each PAKE execution, C must
generate a distinct Diffie-Hellman key share using the same password but different ephemeral ex-
ponents to be in line with the standard PAKE security definitions (both UC and game-based). To
each message, the server responds by executing the SPAKE2 protocol with a different password from
the list of sweetwords for the client C, and a distinct ephemeral exponent – n key confirmations are
also produced. The client C then checks which key confirmation is valid and sends their own key
confirmation. Finally, The server S identifies the sugarword with the client’s key confirmation.

Remark 1. The main drawback of our naive protocol is the computational burden imposed on
the client side. Since all key shares coming from the client use the same password, one may try to
optimize client computation and reuse the same key share in each of the n instances. However, note
that both RoR-secure and UC-secure PAKE are insufficient to guarantee security in case of message
repetitions (e.g. X = gxMpw in SPAKE2) over multiple PAKE sessions.

Remark 2. Sugarword indistinguishability is not satisfied by our naive protocol without taking
additional care. More specifically, with the intention to improve efficiency, it would be natural to
stop the execution of this naively built SweetPAKE as soon as the correct PAKE session is identified
of the client side. However, in a sequential execution of multiple instances, this leaks the index of the
sugarword. Even if the n sessions are bundled together, timing attacks are still of concern. Active
adversaries have another attack vector: intercept and repeat messages (e.g. repeating n times the
same messages from S to reveal if it contains the sugarword). Looking ahead, the shuffling technique
introduced in our BeePAKE protocol could be adapted to the naive construction as well.

3.2 Secure SweetPAKE construction

Here we introduce an efficient and conceptually simple construction that satisfies all three Sweet-
PAKE gamed-based security properties defined in Section 2. This generic construction that we call
BeePAKE can be seen as a compiler that takes four primitives (see Appendix B for the details)
and combines them into a secure SweetPAKE: (a) a UC-secure password authenticated public-key
encryption algorithm from [12], (b) secure PRF, (c) random permutation RP, and (d) secure MAC
algorithm. The resulting construction offers standard model security if underlying primitives are
standard model secure8.

BeePAKE compiler. On a high level our compiler (see Figure 4) works as follows. A client C and
a server S first run PAPKE with multiple-ciphertexts9, each corresponding to one of n sweetwords
stored by the server S for the client C. For each ciphertext, the server encapsulates a fresh secret
key that is derived from an initial secret seed using a fixed-length output pseudorandom function
PRF. Before being sent out, the vector containing ciphertexts is shuffled to hide the order of pass-
words within the password file. After successful decryption, the client expands the obtained fresh
secret using PRF to achieve client-to-server explicit authentication and establish a secure channel
with the server. In addition, the client provides an ephemeral index carrying information about suc-
cessful ciphertext decryption, thus reducing the amount of work on the server side. As a result of a
successful BeePAKE execution both the client and the server jointly share a high-entropy session key.

8Unfortunately, the two existing PAPKE instantiations from [12] rely on idealized assumptions.
9The security model of PAPKE admits multiple ciphertexts per authenticated public key from the same encryptor.

15

Public info: n, λ

pwC,S ∈ D PC,S = [pw1, pw2, ..., pwn] ∈ Dn

Client Server

(sk, apk)← KGen(λ, pwC,S)
C, apk

k ←$ {0, 1}λ

K← PRF(k, (C, apk), n · λ)
for i = 1 to n

C[i]← Enc(apk,PC,S [i],K[i])

(Ĉ, pmap)← RP(C)

Ĉ

for i = 1 to n

k∗ ← Dec(sk, Ĉ[i])

if (k∗ ̸=⊥) record i and break

if (k∗ =⊥) k∗ ←$ {0, 1}λ

tr ← (C, S, apk, Ĉ, i)

(key, kt)← PRF(k∗, tr, 2 · λ)
tag ← MAC.Sign(kt, tr)

return key

i, tag

i∗ ← RI(i, pmap)

tr ← (C, S, apk, Ĉ, i)

(key, kt)← PRF(K[i∗], tr, 2 · λ)
if (¬MAC.Vrfy(kt, tr, tag)) abort

send (C, i∗) to Honeychecker

return key

Figure 4: BeePAKE protocol. Random permutation RP can be inverted by RI with auxiliary mapping
information pmap.

Protocol description. First, a client C wishing to authenticate computes a public key apk
(authenticated with the password) obtained as the output of PAPKE’s key generation algorithm
KGen(λ, pwC,S) and sends it (together with its identity C) to a server S.

Second, the server S generates a random seed k, inputs it into PRF(k, (C, apk), n · λ) and as a
result obtains a vector of keys K of size n ·λ bits. Next, the server encrypts the keys stored in K one
at a time10 by feeding the client’s authenticated public key apk together with a password candidate
pwi from the password file PC,S into PAPKE’s encryption algorithm Enc(apk,PC,S [i],K[i]). The

server, then, shuffles the vector of ciphertexts C, sends a resulting vector Ĉ to the client, and stores
the mapping between C and Ĉ denoted as pmap.

Third, upon receiving the server’s message, the client checks the format and size of the vector

10The PAPKE encryption procedure can be executed concurrently.

16

Ĉ and, if valid, goes through it by trying to decrypt each ciphertext using PAPKE’s decryption
algorithm Dec(sk, Ĉ[i]). If no ciphertext decryption from Ĉ is successful, the client aborts. Oth-
erwise, upon successful decryption, the client retrieves the plaintext containing the secret value k∗,
and stores an index i of the well-formed ciphertext within Ĉ. Once a valid ciphertext is found, the
client aborts the decryption procedure11. Then C uses PRF(k∗, tr, 2 · λ) to expand k∗ into two keys
(key, kt). The key kt is used to compute the tag tag over the transcript of the first two message
rounds and index i. Finally, C sends tag together with index i to the server.

Fourth, the server inverts the random permutation RP using RI with auxiliary mapping informa-
tion pmap, thus obtaining the true index of the sugarword i∗. This helps the server to retrieve the
corresponding secret K[i∗] and to derive the same key pair (key, kt) as the client. Then, the server
checks tag. If tag verification is successful, the server forwards (C, i∗) to the Honeychecker and sets
key to be its session key with C. Otherwise, the server aborts. In the background, Honeychecker
checks whether the pair (C, i∗) is valid and acts accordingly.

Design choices. The main idea behind this construction is to rely on the stronger PAPKE primitive
instead of PAKE. Thereby, a SweetPAKE server may use the same authenticated public key coming
from a client for multiple encryptions using different passwords as input to the encryption algorithm
from PAPKE. This approach significantly reduces the size of the client’s first message compared to
the naive approach and minimizes computational effort on the client side. Also, it allows us to prove
optimal security bounds for all three security properties. Note that we use PAPKE in PAKE mode,
meaning that we only encrypt secret keys – this keeps the size of the ciphertext vector Ĉ small. We
reduce the computation on the server side by sending a temporary index in the last client’s message
without jeopardizing sugarword indistinguishability.

The random permutation RP thwarts timing attacks against sugarword indistinguishability.
Thus, a client can stop the decryption of vector Ĉ as soon as it finds a valid ciphertext.

To achieve false alarm protection against an adversary that knows the sugarword (either an
insider or due to sugarword compromise), we encrypt a different secret key for each sweetword
(on the server side). This approach, together with the use of secure PRF and MAC, prevents the
adversary (on the client side) from creating a valid tag for a wrong index. To generate a vector K,
we only sample a seed k that we subsequently expand using PRF, instead of sampling n session keys
separately. This choice reduces the number of random bits needed for the protocol execution.

A session key in SweetPAKE will be accepted and the session successfully terminated from the
server side in case an adversary or (an honest user accidentally) submits any sweetword. In case it’s
a honeyword, it’s up to the Honeychecker to either raise a silent alarm to the system administrator
or directly take action, dropping the connection and preventing further communication.

On a final note, we would like to refer the reader to Appendix A for a performance comparison
of our BeePAKE protocol against the bundled multi-session SPAKE2 described above. For this
analysis, we focus on the computational cost of both client and server, and the total bandwidth
required to execute the protocols. For an estimation of the computational cost, we counted the
most costly operations, which are likely to impact the overall performance: group exponentiation,
group multiplication, hash into group, ideal cipher on groups (which largely depends on the groups
and IC instantiation [29]). For concrete run time and bandwidth requirements of both protocols,
we instantiated BeePAKE and SPAKE2 over Curve25519. Furthermore, BeePAKE is instantitated
with the PAPKE-IC-DHIES [12] variant, IC with Rinjdael-256, and AE with AES-128-GCM, for an
overall security parameter of λ = 128. As expected, our BeePAKE shines in terms of the client’s
computational effort, and compares favorably in terms bandwidth, without impacting the server’s

11Note that this optimization does not enable timing attacks against sugarword indistinguishability property since
Ĉ is previously shuffled using a random permutation.

17

computational cost.

3.3 Security analysis of BeePAKE protocol

In this section, we show that BeePAKE protocol described in Figure 4 satisfies three security notions
defined for SweetPAKE. To prove this, we will assume that underlying PAPKE primitive UC-realizes
PAPKE functionality FPAPKE from [12]. Note that our SweetPAKE definition admits correlations
between sweetwords coming out of Flat algorithm. As a consequence, game-based PAPKE definitions
from [12] (i.e. IND-CCKA and AUTH-CTXT) are insufficient for our purpose. Therefore we need
to rely on the security provided with UC PAPKE. We resolve a syntax issue between UC and
game-based definitions12 using dummy session identifiers as done in [14] and [12].

3.3.1 Session key indistinguishability of BeePAKE

In Theorem 1 we establish indistinguishability of the session keys (including forward secrecy) for the
BeePAKE protocol presented in Figure 4. The proof of the theorem is in Appendix D.

Theorem 1. Let PAPKE be a secure password-authenticated public-key encryption scheme that real-
izes the UC-PAPKE functionality FPAPKE [12], and PRF be secure fixed-length output pseudo-random
function. Then, the BeePAKE protocol Π described in Figure 4 is a RoR-secure SweetPAKE. More
precisely, the advantage of any PPT adversary is bounded by

AdvRoRÂ,Π
(λ, n) ≤ n · qs

|D|
+ AdvprfB3,PRF

(λ) + Advprf
B′

3,PRF
(λ) + ϵ(λ), (2)

where n is the number of sweetwords, qs denotes the number of Send queries asked by Â, |D| is the
size of the password dictionary, and ϵ(λ) is negligible.

3.3.2 Sugarword indistinguishability of BeePAKE

In Theorem 2 we establish sugarword indistinguishability for BeePAKE. The proof of the theorem
is in Appendix E.

Theorem 2. Let PAPKE be a secure password-authenticated public-key encryption scheme that re-
alizes the UC-PAPKE functionality FPAPKE [12], PRF be a secure fixed-length output pseudo-random
function, and RP be a random permutation. Then, the BeePAKE protocol Π described in Figure 4
satisfies the sugarword indistinguishablity. More precisely, the advantage of any PPT adversary is
bounded by

AdvSINDÂ,Π
(λ, n) ≤ 1

n
+

n · q∗s
|D|

+ AdvprfB1,PRF
(λ) + ϵ(λ), (3)

where n is the number of sweetwords, q∗s denotes the number of Send queries to client instances
before Leak query has been asked, |D| is the size of the password dictionary, and ϵ(λ) is negligible.

3.3.3 False alarm protection of BeePAKE

In Theorem 3 we establish that BeePAKE satisfies false alarm protection. The proof of the theorem
is in Appendix F.

12All three interfaces provided with FPAPKE take as input a globally unique session identifier sid, which is in contrast
with our SweetPAKE notions.

18

Theorem 3. Let PAPKE be a secure password-authenticated public-key encryption scheme that re-
alizes the UC-PAPKE functionality FPAPKE [12], PRF be a secure fixed-length output pseudo-random
function, and MAC be a one-time unforgeable message authentication algorithm. Then, the BeeP-
AKE protocol Π described in Figure 4 provides false alarm protection. More precisely, the advantage
of any PPT adversary is bounded by

AdvFAPÂ,Π
(λ, n) ≤ (n− 1) · q⋄s

|H|
+ AdvprfB1,PRF

(λ) + AdvprfB5,PRF
(λ)

+ q∗s · Adv
1uf
B6,MAC(λ) + ϵ(λ)

(4)

where n is the number of sweetwords, q⋄s denotes the number of Send queries to server instances asked
by Â, q∗s denotes the number of Send queries to client instances, |H| is the size of the honeyword
dictionary induced by the underlying honeyword generation algorithm, and ϵ(λ) is negligible.

4 PAPKE-2-OPAKE: A UC-secure Oblivious PAKE proto-
col

In this section, we propose a simple and intuitive Oblivious PAKE protocol based on PAPKE from
[12], a secure PRF, and a random permutation. In our construction, the random permutation is
optional and only needed to achieve FOPAKE variant that implies sugarword indistinguishability, i.e.
without leaking the indices of matching passwords (refer to Figure 3, removing the gray box). We
adopt a similar approach as in Theorem 1, taking advantage of the fact that PAPKE has already
been established as secure in the UC model (as shown in [12]). We demonstrate in Section 4.4 that a
simplified version of BeePAKE, called PAPKE-2-OPAKE (Figure 5), is sufficient to achieve UC-secure
SweetPAKE/O-PAKE. Nevertheless, it’s crucial to highlight that in this particular version, neither
party learns the index of the correct password. As a result, this protocol is only applicable to the
O-PAKE setting, rendering the protection against false alarms irrelevant.

4.1 Oblivious PAKE

An O-PAKE protocol allows a forgetful client to test multiple passwords in one shot without leaking
its password guesses to a legitimate server or a malicious party. More precisely, in O-PAKE, a
client shares a distinct password with each server in the system and is allowed to submit multiple
passwords within a single O-PAKE session with a server. The client succeeds if and only if one of
those input passwords matches the one stored on the server side – as a result of a successful O-PAKE
run, the client and the server establish a common session key.

4.2 Oblivious PAKE vs SweetPAKE

Real-or-Random (RoR) O-PAKE from [25] and RoR SweetPAKE defined in Section 2 are both
particular cases of RoR PAKE [3] where we restrict our attention to the setting of a single password
(n = 1). Besides differences in the password initialization procedures, these two definitions address
the same problem (with respect to session key indistinguishability), only with the roles of client and
server reversed. But these differences in how the challenger selects and assigns passwords yields
non-equivalent security definitions nevertheless.

19

SweetPAKE provides security assurances beyond those of session key indistinguishability, as
it allows the detection of a password file compromise on the server side (captured by sugarword
indistinguishability and false alarm protection). Also, in O-PAKE, the set of passwords the client
inputs is a subset of all passwords the client has registered with every server within the model –
this captures the uncertainty the client has regarding which of their passwords was registered. In
SweetPAKE, candidate passwords (i.e. the sweetwords) are stored on the server side and generated
according to a honeyword generation procedure that assures flatness with respect to the sugarword.
Thus, in the SweetPAKE setting, it makes little sense to model honeywords as real passwords the
client registers with other servers, and that an adversary may selectively corrupt.

4.3 Constructing Oblivious PAKE from PAPKE

In our PAPKE-2-OPAKE protocol depicted in Figure 5, Alice first identifies herself to Bob. Then,
Bob sends his authenticated public key, which Alice uses to encapsulate a single secret key k under
multiple (n) passwords13, and in that process forms a ciphertext vector that is then sent to Bob.
Alice at this point has all information to derive the session key. Upon receiving the ciphertext
vector, Bob tries to decrypt each ciphertext one by one. As soon as a single ciphertext decryption is
successful, Bob no longer needs to decrypt more ciphertexts. It then computes the session key and
terminates the protocol. If no ciphertext is valid, Bob samples a random key and terminates.

Note that since our SweetPAKE/O-PAKE ideal functionality (see Fig. 3) is implicitly rejecting,
the server in PAPKE-2-OPAKE protocol must randomly sample the session key in case of a wrong
password guess. To have the party abort in such circumstances, we would need to modify our
functionality to accommodate one-sided or mutual explicit authentication as in [16, 8]. Also, to
achieve sugarword indistinguishability, Alice must additionally substitute all duplicate passwords in
the password vector PA,B with ⊥ and then shuffle PA,B before encrypting the session key.

4.4 Security analysis of our Oblivious PAKE construction

In this section, we present a straightforward method for compiling PAPKE to Oblivious PAKE. Our
method involves a stripped-down version of the BeePAKE protocol, and we prove its UC-security
properties in Theorem 4 with reference to the ideal functionality shown in Figure 3. It is worth
noting that our construction differs from the approach described in [25], which relies on different
building blocks and leverages on the concept of Index-Hiding Message Encoding (IHME).

Theorem 4. Let PAPKE be a secure password-authenticated public-key encryption scheme that
UC-realizes the ideal functionality FPAPKE (Appendix C). Then, the PAPKE-2-OPAKE protocol Π
described in Figure 5 UC-realizes O-PAKE ideal functionality (Figure 3) in the presence of static-
corruption adversaries.

The proof of Theorem 4 can be found in Appendix G. For a full-fledged SweetPAKE with protection
against false alarms, we refer the reader to our BeePAKE construction (Figure 4), which requires
an extra round of communication and a MAC.

13Remember that the security model of PAPKE admits multiple ciphertexts per authenticated public key from the
same encryptor. Also, note that the passwords that Alice submits to the PAPKE encryption algorithm may come
from various places (e.g. the password manager’s list or can be typed by a human).

20

Public info: n, λ

PA,B = [pw1, ..., pwn] ∈ Dn pwA,B ∈ D

Alice Bob

A

(sk, apk)← KGen(λ, pwA,B)

apk

k ←$ {0, 1}λ

PA,B ← DRP(PA,B)

for i = 1 to n

C[i]← Enc(apk,PA,B [i], k)

tr ← (A,B, apk,C)

key ← PRF(k, tr, λ)

return key

C

for i = 1 to n

k∗ ← Dec(sk,C[i])

if (k∗ ̸= ⊥) break

if (k∗ = ⊥) set k∗ ←$ {0, 1}λ

tr ← (A,B, apk,C)

key ← PRF(k∗, tr, λ)

return key

Figure 5: An O-PAKE protocol called PAPKE-2-OPAKE that realizes FOPAKE from UC-secure

PAPKE. Add the protocol step in text box if sugarword indistinguishability is required. Dedupli-
cation and random permutation algorithm DRP first substitutes password duplicates with ⊥ and
then shuffles the vector using RP.

5 Conclusion and future directions

A PAKE-style protocol that admits decoy passwords is useful to put in place as a password file
leakage detection mechanism, similar to the Honeywords method by Juels and Rivest [24], while
preserving the strong security guarantees provided by PAKE when it comes to low-entropy password-
authentication and secure channel establishment. We called this new primitive SweetPAKE.

In this paper, we extended the well-established PAKE model by Abdalla et al. [3] and modelled
3 security properties of SweetPAKE: (1) indistinguishability of session keys (with forward secrecy);
(2) indistinguishability of sugarwords; and (3) false alarm protection. We also extend the UC model
for PAKE [14] to account for the protocol asymmetry in that one party holds a single password
whereas the other party holds n passwords, and to handle arbitrary correlations between passwords
/ sweetwords.

We leverage the PAPKE primitive by Bradley et al. [12] to encrypt the session key under multiple
candidate passwords and combine it with a key derivation function, a secure message authentication
code and a random permutation to build BeePAKE, a SweetPAKE protocol that satisfies simulta-

21

neously all three properties.
The SweetPAKE notion is closely related to O-PAKE by Kiefer and Manulis [25], with the roles

of client and server reversed. With regard to game-based definitions, it is easy to see that O-PAKE
implies indistinguishability of session keys of SweetPAKE, sufficing to initialize n times more servers
within the model to avoid password overlap.

The status of whether the reverse is true, or if O-PAKE implies sugarword indistinguishability,
remains unresolved questions, but it does not seems to be the case. More importantly, the UC defi-
nition we introduce overcomes these differences and unifies SweetPAKE (session key and sugarword
indistinguishability) and O-PAKE.

In Section 4.3 we show an alternative construction to [25] on how to build an O-PAKE protocol,
inspired by our BeePAKE protocol. However, the protocol is considerably simpler, as it builds on top
of only PAPKE and PRF. A compelling future direction is to show if the O-PAKE protocol proposed
in [25] and based on PAKE and IHME can be transformed into a SweetPAKE. Interestingly, their
protocol is instantiated with SPAKE2, which has a tight proof under the gap-CDH assumption [1].
However, for sugarword indistinguishability, we most likely need to assume a decisional variant of
the underlying hard problem, so that an adversary cannot link the candidate values extracted from
the IHME structure.

Finally, our game-based definitions of SweetPAKE admit that sweetwords associated with a
client may be correlated as long as they are “flat”, i.e. any of them is equally likely (or ϵ-close)
to be the sugarword. However, like game-based definitions of PAKE, our game-based models do
not capture arbitrary correlations between sugarwords (i.e. between “real” passwords). Reason
being that corrupting a party might reveal information that allows the attacker to trivially infer the
password of another party. As with PAKE, to provide this security guarantee one must refer to the
UC model.

Acknowledgements

We thank the anonymous reviewers of AsiaCCS 2024 for their comments and suggestions. Afonso
Arriaga and Marjan Škrobot received support from the Luxembourg National Research Fund (FNR)
under the CORE Junior project (C21/IS/16236053/FuturePass). Peter Y.A. Ryan received support
from the Luxembourg National Research Fund (FNR) under the CORE project (C21/IS/16221219/
ImPAKT). Additionally, we extend our thanks to Steve Meireles for his contribution to the imple-
mentation of the proposed protocols.

References

[1] Michel Abdalla, Manuel Barbosa, Tatiana Bradley, Stanis law Jarecki, Jonathan Katz, and
Jiayu Xu. Universally composable relaxed password authenticated key exchange. In Daniele
Micciancio and Thomas Ristenpart, editors, Advances in Cryptology – CRYPTO 2020, pages
278–307, Cham, 2020. Springer.

[2] Michel Abdalla, Olivier Chevassut, and David Pointcheval. One-time verifier-based encrypted
key exchange. In Serge Vaudenay, editor, Public Key Cryptography - PKC 2005, pages 47–64,
Berlin, Heidelberg, 2005. Springer.

[3] Michel Abdalla, Pierre-Alain Fouque, and David Pointcheval. Password-based authenticated
key exchange in the three-party setting. In Serge Vaudenay, editor, Public Key Cryptography -
PKC 2005, pages 65–84, Berlin, Heidelberg, 2005. Springer.

22

[4] Michel Abdalla, Björn Haase, and Julia Hesse. Security analysis of cpace. In Mehdi Tibouchi
and Huaxiong Wang, editors, Advances in Cryptology – ASIACRYPT 2021, pages 711–741,
Cham, 2021. Springer.

[5] Michel Abdalla and David Pointcheval. Simple password-based encrypted key exchange proto-
cols. In Alfred Menezes, editor, Topics in Cryptology – CT-RSA 2005, pages 191–208, Berlin,
Heidelberg, 2005. Springer.

[6] Tolga Acar, Mira Belenkiy, and Alptekin Küpçü. Single password authentication. Computer
Networks, 57(13):2597–2614, 2013.

[7] José Becerra, Peter B. Rønne, Peter Y. A. Ryan, and Petra Sala. Honeypakes. In Vashek
Matyáš, Petr Švenda, Frank Stajano, Bruce Christianson, and Jonathan Anderson, editors,
Security Protocols XXVI, pages 63–77, Cham, 2018. Springer.

[8] Hugo Beguinet, Céline Chevalier, David Pointcheval, Thomas Ricosset, and Mélissa Rossi. Get a
cake: Generic transformations from key encaspulation mechanisms to password authenticated
key exchanges. In Mehdi Tibouchi and XiaoFeng Wang, editors, Applied Cryptography and
Network Security, pages 516–538, Cham, 2023. Springer.

[9] Mihir Bellare, David Pointcheval, and Phillip Rogaway. Authenticated key exchange secure
against dictionary attacks. In Bart Preneel, editor, Advances in Cryptology — EUROCRYPT
2000, pages 139–155, Berlin, Heidelberg, 2000. Springer.

[10] S.M. Bellovin and M. Merritt. Encrypted key exchange: password-based protocols secure against
dictionary attacks. In Proceedings 1992 IEEE Computer Society Symposium on Research in
Security and Privacy, pages 72–84, Los Alamitos, CA, USA, 1992. IEEE Computer Society.

[11] Joseph Bonneau, Cormac Herley, Paul C. van Oorschot, and Frank Stajano. The quest to
replace passwords: A framework for comparative evaluation of web authentication schemes. In
2012 IEEE Symposium on Security and Privacy, pages 553–567, Los Alamitos, CA, USA, 2012.
IEEE Computer Society.

[12] Tatiana Bradley, Jan Camenisch, Stanislaw Jarecki, Anja Lehmann, Gregory Neven, and Jiayu
Xu. Password-authenticated public-key encryption. In Robert H. Deng, Valérie Gauthier-
Umaña, Mart́ın Ochoa, and Moti Yung, editors, Applied Cryptography and Network Security,
pages 442–462, Cham, 2019. Springer.

[13] R. Canetti. Universally composable security: a new paradigm for cryptographic protocols. In
Proceedings 42nd IEEE Symposium on Foundations of Computer Science, pages 136–145, Los
Alamitos, CA, USA, 2001. IEEE Computer Society.

[14] Ran Canetti, Shai Halevi, Jonathan Katz, Yehuda Lindell, and Phil MacKenzie. Universally
composable password-based key exchange. In Ronald Cramer, editor, Advances in Cryptology
– EUROCRYPT 2005, pages 404–421, Berlin, Heidelberg, 2005. Springer.

[15] Craig Gentry, Philip MacKenzie, and Zulfikar Ramzan. A method for making password-based
key exchange resilient to server compromise. In Cynthia Dwork, editor, Advances in Cryptology
- CRYPTO 2006, pages 142–159, Berlin, Heidelberg, 2006. Springer.

[16] Adam Groce and Jonathan Katz. A new framework for efficient password-based authenticated
key exchange. In Proceedings of the 17th ACM Conference on Computer and Communications

23

Security, CCS ’10, pages 516–525, New York, NY, USA, 2010. Association for Computing
Machinery.

[17] Björn Haase and Benôıt Labrique. Aucpace: Efficient verifier-based pake protocol tailored for
the iiot. IACR Transactions on Cryptographic Hardware and Embedded Systems, 2019(2):1–48,
Feb. 2019.

[18] Feng Hao and Peter Ryan. J-pake: Authenticated key exchange without pki. In Marina L.
Gavrilova, C. J. Kenneth Tan, and Edward David Moreno, editors, Transactions on Compu-
tational Science XI: Special Issue on Security in Computing, Part II, pages 192–206, Berlin,
Heidelberg, 2010. Springer.

[19] Feng Hao and Paul C. van Oorschot. Sok: Password-authenticated key exchange – theory,
practice, standardization and real-world lessons. In Proceedings of the 2022 ACM on Asia
Conference on Computer and Communications Security, ASIA CCS ’22, pages 697–711, New
York, NY, USA, 2022. Association for Computing Machinery.

[20] Jung Yeon Hwang, Stanislaw Jarecki, Taekyoung Kwon, Joohee Lee, Ji Sun Shin, and Jiayu
Xu. Round-reduced modular construction of asymmetric password-authenticated key exchange.
In Dario Catalano and Roberto De Prisco, editors, Security and Cryptography for Networks,
pages 485–504, Cham, 2018. Springer.

[21] Ponemon Institute. The cost of a data breach report. IBM Security, 2022.

[22] Stanislaw Jarecki, Hugo Krawczyk, Maliheh Shirvanian, and Nitesh Saxena. Device-enhanced
password protocols with optimal online-offline protection. In Proceedings of the 11th ACM on
Asia Conference on Computer and Communications Security, ASIA CCS ’16, pages 177–188,
New York, NY, USA, 2016. Association for Computing Machinery.

[23] Stanislaw Jarecki, Hugo Krawczyk, and Jiayu Xu. Opaque: An asymmetric pake protocol
secure against pre-computation attacks. In Jesper Buus Nielsen and Vincent Rijmen, editors,
Advances in Cryptology – EUROCRYPT 2018, pages 456–486, Cham, 2018. Springer.

[24] Ari Juels and Ronald L. Rivest. Honeywords: Making password-cracking detectable. In Pro-
ceedings of the 2013 ACM SIGSAC Conference on Computer & Communications Security, CCS
’13, pages 145–160, New York, NY, USA, 2013. Association for Computing Machinery.

[25] Franziskus Kiefer and Mark Manulis. Oblivious pake: Efficient handling of password trials. In
Javier Lopez and Chris J. Mitchell, editors, Information Security, pages 191–208, Cham, 2015.
Springer.

[26] Donald E. Knuth. The Art of Computer Programming, Volume 2: Seminumerical Algorithms,
volume 2. Addison-Wesley, USA, 3 edition, 1997.

[27] Wenting Li, Ping Wang, and Kaitai Liang. Hpake: Honey password-authenticated key exchange
for fast and safer online authentication. IEEE Transactions on Information Forensics and
Security, 18:1596–1609, 2023.

[28] Mark Manulis, Benny Pinkas, and Bertram Poettering. Privacy-preserving group discovery with
linear complexity. In Jianying Zhou and Moti Yung, editors, Applied Cryptography and Network
Security, pages 420–437, Berlin, Heidelberg, 2010. Springer.

24

[29] Bruno Freitas Dos Santos, Yanqi Gu, and Stanislaw Jarecki. Randomized half-ideal cipher on
groups with applications to uc (a)pake. In Carmit Hazay and Martijn Stam, editors, Advances
in Cryptology – EUROCRYPT 2023, pages 128–156, Cham, 2023. Springer.

[30] Marjan Skrobot and Jean Lancrenon. On composability of game-based password authenticated
key exchange. In 2018 IEEE European Symposium on Security and Privacy (EuroS&P), pages
443–457, Los Alamitos, CA, USA, 2018. IEEE Computer Society.

[31] D. Taylor, T. Wu, N. Mavrogiannopoulos, and T. Perrin. Using the secure remote password
(srp) protocol for tls authentication. Technical Report 5054, RFC Editor, 2007.

A Comparison between N*SPAKE2 and BeePAKE-PAPKE-
IC-DHIES

In Table 1 we compare the computational cost and bandwidth of BeePAKE-PAPKE-IC-DHIES
against the benchmark N*SPAKE2, which consists of running n instances of SPAKE2 [1] in parallel.
For a fair comparison, we have optimized N*SPAKE in the following ways: (1) messages are bundled
to minimize the number of flows; (2) the client only computes Mpw and Npw once. To obtain concrete
values, we have set the number of sweetwords per client to n = 20, and targeted an overall security
parameter λ = 128. We instantiated both SPAKE2 and PAPKE-IC-DHIES with Curve25519. The
IC in PAPKE-IC-DHIES is instantiated with Rijndael-256 using the techniques from [29], and AE
with AES-128-GCM. Note that the estimate column corresponds to the worst-case scenario where
every single ciphertext needs to be decrypted by the client until they find the one encrypted with
the sugarword. In practice, this happens on average after decrypting half of the ciphertexts, which is
reflected in the measurement experiment. Code for measurements was implemented in Python 3, and
runtime was assessed on a Mac laptop with an Intel Core i5 chip and 16GB of RAM. Measurements
were taken 50 times, averaging the results after removing the top and bottom 10%.

B Building blocks

In this section we provide a brief description of primitives used as building blocks in our BeePAKE
(Fig. 4) and Oblivious PAKE (Fig. 5) constructions.

Definition 5 (PAPKE [12]). Let D be a dictionary of possible passwords, and M be a message
space. A password-authenticated public-key encryption scheme is a tuple of algorithms PAPKE =
(KGen,Enc,Dec) behaving as follows:

• KGen(λ, pw): on input a security parameter λ and a password pw ∈ D, KGen algorithm outputs
an authenticated public key apk and a secret key sk.

• Enc(apk, pw,m): on input an authenticated public key apk, a password pw, and a message
m ∈M, Enc algorithm outputs a ciphertext c.

• Dec(sk, c): on input a secret key sk and ciphertext c, Dec algorithm outputs a message m ∈
M ∪ {⊥}, where ⊥ denotes invalid ciphertext.

Correctness. Let password pw ∈ D, key pair (apk, sk) be an output of KGen(λ, pw), and ciphertext
c be an output of Enc(apk, pw,m). PAPKE is said to be correct if we have that m← Dec(sk, c).

25

N*SPAKE2
Client Server

Estimation
Measured
(n = 20)

Estimation
Measured
(n = 20)

(2n+ 2) exp +
2n mult

99.14 ms
4n exp +
2n mult

215.01 ms

Bandwidth

General cost
Cost for n = 20

(λ = 128, Curve22519)
2n group elements +

(n+ 1) ∗ λ bits
1616 bytes

Message flows: 3

BeePAKE-PAPKE-IC-DHIES
Client Server

Estimation
Measured
(n = 20)

Estimation
Measured
(n = 20)

(n+ 1) exp +
1 ic

48.55 ms
2n exp +

n ic
181.45 ms

Bandwidth

General cost
Cost for n = 20

(λ = 128, Curve22519,
Rijndael-256, AES-128-GCM)

(n+ 1) group elements +
(n+ 1) ∗ λ bits +
n overhead of AE

1568 bytes

Message flows: 3

Table 1: Comparison between N*SPAKE2 and BeePAKE-PAPKE-IC. The terms ‘exp’, ‘mult’ and
‘ic’ refer to the number of group exponentiations, the number of group multiplications, and the
number of encryptions or decryption of group elements, respectively. The overhead of 1 AES-128-
GCM ciphertext is 12 bytes for the IV and 16 bytes for the tag.

26

In our paper, we will assume that underlying PAPKE primitive UC-realizes PAPKE functionality
FPAPKE from [12] (see Figure 1).

Definition 6 (Pseudorandom Function). Let PRF be a fixed-length output pseudorandom function
family parameterized by its output length. Given a key k in the key space K, a bitstring m ∈M, and
an output length l in bits, PRF outputs a value in {0, 1}l. We define the security of a fixed-length
output pseudorandom function family against any PPT adversary A making at most q queries in the
following distinguishing game:

1. For i = 1, . . . , q′ ≤ q: A chooses arbitrary values mi and receives the value PRF(k,mi, l)
(queries by A are adaptive, i.e., each query may depend on the responses to previous ones).

2. A chooses values m such that m /∈ {m1, ...,mq}.

3. A bit b ∈ {0, 1} is chosen at random. If b = 0, attacker A is provided with the output of
PRF(k,m, l), else A is given a random string of l bits.

4. Step 1 is repeated for up to q − q′ queries with the restriction on challenged m.

5. A outputs a bit b′ ∈ {0, 1}. It wins if b′ = b.

We define the advantage of an algorithm A in winning prf security game as AdvprfA,PRF(λ) =

| 2 · Pr[b′ = b] − 1∥. We say that PRF is prf-secure if for all PPT algorithms A, AdvprfA,PRF(λ) is
negligible in the security parameter λ.

Definition 7 (One-time MAC security). A MAC scheme with key space K and domain D is one-time
unforgeable if, for any PPT adversary A, the following advantage term is negligible in the security
parameter λ.

Adv1ufA,MAC
def
= Pr

[
t← MAC(k,m) : (m, t)← AMAC(k,·)(λ); k ← K

]
In one-time MAC, the adversary can only call MAC oracle once.

Definition 8 (Random Permutation). A uniform random permutation RP is one in which each of
the n! possible permutations are equally likely.

Fisher–Yates shuffle algorithm [26] implements a random permutation in O(n) time complexity,
assuming function rand() that generates a random numbers in O(1) time.

C Ideal Functionality for PAPKE

For completeness, we include in Figure 6 the ideal functionality for PAPKE from [12].

D Security Proof of Theorem 1

Proof. We will use the game-hopping technique in this proof, starting with the game G0 where Test
bit is fixed to 0 (real keys) and ending with the game G7 where Test bit is fixed to 1 (random keys).

Let Â be an adversary against the Real-or-Random (RoR) indistinguishability of the session keys
property and Cror be a challenger administrating this security game. Let Gx be the event that Â
outputs 1 in Game x.

27

1. Key Generation. On input (KEYGEN, sid, pwd) from party P:

• If sid ̸= (P, sid′) or a record (keyrec, sid, ·, ·) exists, ignore.

• Send (KEYGEN, sid) to A and wait for (KEYCONF, sid, apk,M) from A.
• If a record (badkeys, sid, apkj , ·) with apkj = apk exists, abort.

• Create a record (keyrec, sid, apk, pwd) and output (KEYCONF, sid, apk) to P.

2. Encryption. On input (ENCRYPT, sid, apk′, pwd′,m) from party Q where m ∈M:

• If a record (keyrec, sid, apk, pwd) with apk = apk′ exists and P (from sid = (P, sid′)) is honest, then
do the following:

– Send (ENC-L, sid, |m|) to A and wait for (CIPHERTEXT, sid, c) from A.
– Abort if a record (enrec, sid, ·, c) for c already exists.

– Create a record (enrec, sid,m′, c) with m′ ← m if pwd′ = pwd, and m←⊥, else.
• Otherwise, do the following:

– If a record (badkeys, sid, apkj , pwdj) with apkj = apk′ exists, set pwd∗ ← pwdj .

– Else, send (GUESS, sid, apk′) to A, wait for (GUESS, sid, pwd∗) from A and create record
(badkeys, sid, apk′, pwd∗).

– If pwd′ = pwd∗, send (ENC-M, sid,m) to A, and wait for (CIPHERTEXT, sid, c) from A.
– If pwd′ ̸= pwd∗, send (ENC-L, sid, |m|) to A, and wait for (CIPHERTEXT, sid, c) from A.

• Output (CIPHERTEXT, sid, c) to Q.

3. Decryption. On input (DECRYPT, sid, c) from party P:

• If sid ̸= (P, sid′) or no record (keyrec, sid, apk, pwd) exists, ignore.

• If a record (enrec, sid,m, c) for c exists, where m ∈M∪ {⊥}:
– Output (PLAINTEXT, sid,m) to P.

• Else:

– Send (DECRYPT, sid, c) to A and wait for (PLAINTEXT, sid,m, pwd∗) from A.
– If pwd∗ = pwd, set m′ ← m and m′ ←⊥ otherwise.

– Create a record (enrec, sid,m′, c).

– Output (PLAINTEXT, sid,m′) to P.

Figure 6: Ideal functionality FPAPKE [12].

28

Game G0. (Fixing a bit - real keys). This is a RoR game with a fixed challenge bit b = 0. Real
session keys are provided to Â when it queries Test oracle.

Game G1. (Building an environment). The challenger of this game Cror doubles as an environ-
ment Z interacting with a dummy adversary A in the real world.

Simulation. The challenger for Cror runs the simulation for Â as follows. Acting as an environment,
Cror executes the initialization procedure, defining all sweetwords and sugarwords associated with
clients and servers according to Figure 2. After this, Â may start making queries. Cror answers to
Â’s queries as presented in Figures 7 and 8. On high level, Cror replaces the calls to algorithms
PAPKE.KGen, PAPKE.Enc, and PAPKE.Dec in this game with calls to the parties in the real world.
The challenger resolves syntax issues between our game-based and UC PAPKE security notions
with use of dummy sids and by tracking and recording progress of instances with lists Lclients and
Lservers.

Note that Z does not flip any coin and always forwards the real session key to the adversary Â
when it asks a Test query. In the end, Z outputs whatever Â outputs.

Pr[G0] = Pr[G1] (5)

Game G2. (Transition to SIM). The challenger of this game now doubles as an environment Z
interacting with a simulator SIM and ideal functionality FPAPKE. Since we assume that underlying
PAPKE used in BeePAKE protocol UC-realizes FPAPKE, there exists a SIM that simulates adversary
A such that this transition is unnoticeable to Z. The environment Z outputs whatever Â outputs,
and therefore this has to be unnoticeable to Â, as well.

|Pr[G1]− Pr[G2]| = |Real(Z,A,PAPKE)− Ideal(Z,SIM,FPAPKE)| ≤ ϵ(λ) (6)

Game G3. (Randomize session keys for Execute queries). The challenger modifies Test query
such that independent random session keys are provided when Â calls Test oracle targeting an
instance that has accepted as a result of a call to an Execute query (see Figure 9).

When Z inputs (ENCRYPT, sid, apk′,PC,S [i],K[i]) to party Sj as a result of an Execute query,
a record (keyrec, sid, apk, pwC,S) always exist such that apk = apk′ because environment Z uses the
apk′ that is provided by SIM in the key confirmation message (KEYCONF, sid, apk,M). Note that
apk′ cannot be or become a “badkey” and SIM is never given the possibility to place a password
guess. Recall that we restrict our attention to dummy adversaries that simply follow the instruction
of the environment, which as shown in [13] is equivalent to the notion of accepting arbitrary PPT
adversarial strategies. Hence, SIM simulates the ciphertexts only from the length of the message,
which in our case is the length of the key parameterized by λ.

When Z inputs (DECRYPT, sid, c) as a result of a call to Execute oracle, there is always a record
(enrec, sid,m, c) of the plaintext m corresponding to c. Therefore, SIM cannot select m of its choosing
(as specified in else branch of ideal FPAPKE decryption interface).

Note that key is computed as a result of two calls to PRF, while key′ is sampled uniformly
at random. Both key and key′ are independent of the trace ← (C, S, apk, Ĉ, i, tag) since Ĉ was
computed from the message length and PRF is a secure PRF. Therefore,

|Pr[G2]− Pr[G3]| = AdvprfB3,PRF
+ Advprf

B′
3,PRF

≤ ϵ(λ) (7)

Game G4. Let bad1 be the event that when Â queries Send(Sj ,M = (C, apk)), no prior Corrupt(C, S)
query occurred, simulator SIM guesses any password from the list PC,S . Let bad2 be the event that

29

when Â queries Send(Ci,M = (S, Ĉ)), the SIM provides the correct password with the plaintext.
When bad1 or bad2 happen, the challenger aborts and Â wins the game. [Technically, the challenger
is unable to determine when it has to abort.] Since passwords are sampled by the environment Z
uniformly at random, the probability of challenger aborting is bounded by n · qs/|D|. Note that
qs is the total number of asked Send queries, which comprises both Send(Sj ,M = (C, apk)) and

Send(Ci,M = (S, Ĉ)). On an additional note, when Â impersonates the client, SIM is given 1
password guess targeting n (possibly) distinct passwords. When Â impersonates the server, SIM is
given n password guesses, each targeting one password.

Pr[G3] = Pr[G4] +
n · qs
|D|

(8)

Game G5. The challenger samples random keys for instances that terminate in the accepting state.
Recall that a legitimate adversary can only call Test or Reveal on fresh instances. In case the instance
was corrupted before accepting, a legitimate adversary cannot make a Test or Reveal query on that
instance. Bad events set in the previous game assure that ciphertexts produced by SIM (and the
transcripts that go along) are independent of session keys.

Pr[G4] = Pr[G5] (9)

Game G6. The challenger of this game doubles as an environment Z interacting with a dummy
adversary A in the real world, again, but still computes random session keys for Â.

|Pr[G6]− Pr[G5]| = |Real(Z,A,PAPKE)− Ideal(Z,SIM,FPAPKE)| ≤ ϵ(λ) (10)

Game G7. The challenger no longer doubles as environment Z and computes everything itself.
Notice that Game G7 is RoR with fixed b = 1. Random session keys are provided to Â when it
queries Test oracle.

Pr[G6] = Pr[G7] (11)

Putting all together,

AdvRoRÂ,Π
(λ, n) = 2 · Pr[Succ]− 1

= Pr[G7]− Pr[G0]

≤ n · qs
|D|

+ AdvprfB3,PRF
+ Advprf

B′
3,PRF

+ ϵ(λ)

E Security Proof of Theorem 2

Proof. Let Â be an adversary against the sugarword indistinguishability property and Csind be a
challenger administrating this security game.

Game G0. (Original game). The original game for the sugarword indistinguishability property.
Adversary Â terminates outputting (C, S, i).

Game G1. (Pseudo-random function). Remove calls to PRF and sample keys of vector K
independently at random. This game decouples k∗ from other values in the vector K. Even if tag
and PRF leak k∗, this does not help Â to determine vector K and k∗’s position in it.

|Pr[G0]− Pr[G1]| = AdvprfB1,PRF
≤ ϵ(λ) (12)

30

Game G2. (Building an environment). The challenger of this game doubles as an environment
Z interacting with a dummy adversary A in the real world.

Simulation. The challenger for Csind runs the simulation for Â in the same way as in the proof of
Theorem 1 with the following three changes due to game G1: (1) For each Send(Sj ,M = (C, apk))
query, instead of sampling seed k to be used as PRF input, Csind samples uniformly at random n
independent keys and places them in vector K; (2) The same change is made for Execute queries;
(3) Test queries are not available to Â. See Figure 10 for details.

Pr[G1] = Pr[G2] (13)

Game G3. (Transition to SIM). The challenger of this game now doubles as an environment Z
interacting with a simulator SIM and ideal functionality FPAPKE. Since we assume that underlying
PAPKE used in BeePAKE protocol UC-realizes FPAPKE, there exists a SIM that simulates adversary
A such that this transition is unnoticeable to Z. If Â correctly guesses an index, Z guesses “real
world”. Otherwise, Z guesses “ideal world”.

|Pr[G2]− Pr[G3]| = |Real(Z,A,PAPKE)− Ideal(Z,SIM,FPAPKE)| ≤ ϵ(λ) (14)

Game G4. (Wrong password guesses). Ideal functionality FPAPKE is replaced with F ′

PAPKE which
considers all password guesses of SIM as being wrong (but is unchanged otherwise). No more correct
password guesses.

Notice that q∗s corresponds to the number of Send queries to client instances, excluding those
queries asked after the Leak query has been made. Since servers do not know the index of the
sugarword, the adversary obtains no information about the index when interacting with servers.

Pr[G4] ≤ Pr[G3] +
n · q∗s
|D|

(15)

Game G5. (Random Permutation). At this point, only honestly generated ciphertexts (on
an individual level) might decrypt to something other than ⊥. Which ciphertext decrypts might
still reveal information regarding the correct index. However, this information is destroyed by the
random permutation RP that shuffles ciphertexts in each execution. Therefore, the probability of
correctly guessing an index in this game is 1/n.

Pr[G5] =
1

n
(16)

Putting all together,

AdvSINDÂ,Π
(λ, n) ≤ 1

n
+

n · q∗s
|D|

+ AdvprfB1,PRF
+ ϵ(λ) (17)

F Security Proof of Theorem 3

Proof. Let Â be an adversary against the false alarm protection property and Cfap be a challenger
administrating this security game.

31

Game G0. (Original game). The original game for the false alarm protection property. Adversary
Â runs in t-time and places at most q queries.

Game G1. (Pseudo-random function I). Remove calls to PRF and sample keys of vector K
independently at random. As in proof of Theorem 2, this game hop decouples k∗ from other values
in the vector K.

|Pr[G0]− Pr[G1]| = AdvprfB1,PRF
≤ ϵ(λ) (18)

Game G2. (Building an environment). The challenger of this game Cfap doubles as an environ-
ment Z interacting with a dummy adversary A in the real world.

Simulation. Due to similarity with the order of game hops, the challenger for Cfap runs the simulation
for Â in the same manner as the challenger for Csind in the proof of Theorem 2 (see Figure 10).

Pr[G1] = Pr[G2] (19)

Game G3. (Transition to SIM). The challenger of this game now doubles as an environment Z
interacting with a simulator SIM and ideal functionality FPAPKE. Since we assume that underlying
PAPKE used in BeePAKE protocol UC-realizes FPAPKE, there exists a SIM that simulates adversary
A such that this transition is unnoticeable to Z. If event E occurs, the environment Z guesses “real
world”. If Â depletes its resources (number of queries available) without triggering event E, Â lost
and environment Z guesses “ideal world”.

|Pr[G2]− Pr[G3]| = |Real(Z,A,PAPKE)− Ideal(Z,SIM,FPAPKE)| ≤ ϵ(λ) (20)

Game G4. (Encrypting zeros). The challenger encrypts 0λ for all honeywords. What pass-
words are sugarwords is known to the challenger, and ciphertexts encrypted with mismatching pairs
(apk, pw) decrypt to ⊥ according to the ideal functionality FPAPKE. Refer to Figure 11.

Simulation. On the server side (encryption), if apk is a “goodkey”, SIM receives (ENC-L, sid, λ).
Since λ = |K[i]| for all i, nothing changes. If apk is a “badkey”, SIM is allowed to place a password
GUESS. Notice that for every such Send query, Z asks (n− 1) encryptions with replaced keys (0λ).

On the client side (decryption), if a record (ENCREC, sid,m, c) exists, then the correct record
will be returned, which for replaced keys is the ⊥ symbol. If no record exists, SIM has one password
guess via (PLAINTEXT, sid,m, pw∗) per (DECRYPT, sid, c). In practice, we are accounting for the
probability of adversary Â encrypting c under the correct password associated with apk, which
will then allow the adversary to remove that password from possible candidates for sweetwords. In
the reduction, we count all PLAINTEXT answers from SIM, which is upper bounded by 1/|H| per
ciphertext decryption (DECRYPT, sid, c) because of flatness (by definition, all honeywords are all
equally likely). The last flow on the server side remains unchanged, meaning that fixed keys 0λ are
not used. Instead, PRF expands over k∗ as per protocol description. Unless SIM successfully guesses
one of the honeywords in either GUESS or PLAINTEXT answers, the ciphertexts and decryption
outputs are produced from the exact same view that SIM had in Game G3. Given that honeywords
within each vector PC,S are all equally likely, the probability of each honeyword guess is 1/|H|. SIM

places at most n−1 honeyword guesses for every Send(S, ·) query Â asks to a server instance. Hence,

Pr[G4] ≤ Pr[G3] +
(n− 1) · q⋄s
|H|

(21)

Game G5. (Pseudo-random function II). At this point, none of the keys that would allow Â

32

to forge a tag that triggers a false alarm are part of the trace. We remove calls to PRF and sample
(key, kt) independently at random. The challenger keeps track of values on both client and server
sides. Note that this change decouples key from kt, so even if key somehow leaks kt is protected.

|Pr[G4]− Pr[G5]| = AdvprfB5,PRF
≤ ϵ(λ) (22)

Game G6. (Secure MAC). The challenger selects one Send query to embed the challenge from
MAC (essentially not sampling kt and marking it as a challenge key). All subsequent queries that
require computation of a MAC under the challenge key kt (either tag creation or tag verification)
are answered with the help of MAC oracle. Finally, if adversary Â is able to trigger a false alarm
and the challenge was embedded in the correct place, which happens with probability 1/q∗s , it is
essentially forging a tag. Therefore,

Pr[G6] ≤ Pr[G5] + q∗s · Adv
1uf
B6,MAC ≤ ϵ(λ) (23)

To conclude,

AdvFAPÂ,Π
(λ, n) ≤ (n− 1) · q⋄s

|H|
+ AdvprfB1,PRF

(λ + AdvprfB5,PRF
(λ) + q∗s · Adv

1uf
B6,MAC(λ) + ϵ(λ) (24)

G Security Proof of Theorem 4

Here we provide the proof of Theorem 4, showing that our generic PAPKE-2-OPAKE construc-

tion and its extension , both presented in Figure 5, securely realize the UC OPAKE functionality

FOPAKE
14 shown in Figure 3. Throughout the proof, we add text in box in all the places where

proofs for two constructions differ.

Proof overview. To prove the Theorem 4 we must show that the following two interactions are
indistinguishable by the environment: 1) “real world” interaction in which the environment Z, ad-
versary A and parties Pi and Pj execute the protocol from Fig. 5 based on the ideal functionality
FPAPKE (Fig. 6); 2) “ideal world” interaction in which the simulator SIM interacts with FOPAKE and
simulates the interaction between the parties Pi and Pj and FPAPKE towards A in the presence of
the environment Z. Our proof follows the proof strategy from [12], where authors prove that their
PAPKE-2-PAKE compiler realizes standard UC PAKE functionality.

The simulator. Here we provide the description of the simulation algorithm SIM. We use “FPAPKE”
to refer to the sub-procedure that simulator runs internally and is described in the proof.

First message round. After receiving (NewSessionS, sid′,Pi,Pj) from FOPAKE, SIM sends a message
(sid′) from “Pi” to “Pj” via A.

Second message round. After receiving (NewSessionC, sid′,Pj ,Pi) from FOPAKE, SIM waits for a
message (sid′) sent to “Pj” from A. Then SIM sets sid ← (Pj , sid

′) and runs “FPAPKE” on input
“(KEYGEN, sid,⊥) from Pj” to generate apk. Then, SIM sends a message (sid′, apk) from “Pj” to

14The extended protocol securely realize FOPAKE with sugarword indistinguishability.

33

“Pi” via A.

Third message round. After receiving message (sid′, apk′) from A sent to “Pi” (apk′ possibly being
modified by A), SIM first samples k ←$ {0, 1}λ, sets sid ← (Pj , sid

′) and runs “FPAPKE” on input

“(ENCRYPT, sid, apk′,⊥, k) from Pi” n-times to generate C. SIM shuffles C. Then, in case of a
correct password guess (or corrupted instance), SIM computes key as a result of PRF over a key k and
transcript (Pi, Pj , apk,C), or otherwise samples key at random, and sends (NewKey, sid′,Pi, key) to
FOPAKE followed by a message (sid′,C) from “Pi” to “Pj” via A.

Final round. After receiving message (sid′,C′) sent to “Pj” from A, SIM runs “FPAPKE” n-times
on input “(DECRYPT, sid,C′[ind]) from Pj” to obtain a plaintext m. In case of a correct pass-
word guess (or corrupted instance), SIM sets k∗ ← m computes key as a result of PRF over a
key k∗ and transcript (Pi, Pj , apk,C) or otherwise samples key at random, and sends to FOPAKE

(NewKey, sid′,Pj , key).

Proof. Here we argue that the environment Z cannot distinguish between the two worlds.

First message round. In both worlds (NewSessionS, sid′,Pi,Pj ,PA,B) sent from Z is treated in the
same way, and hence views of Z/A are identical for the first message round.

Second message round. This round starts when Z calls (NewSessionC, sid′,Pj ,Pi, pwA,B), and A
sends (sid’) to Pj . Then, A receives (KEYGEN, sid) from FPAPKE (or “FPAPKE”) and replies with
(KEYCONF, sid, apk). Finally, A receives (sid′, apk) from Pj (or “Pj”). Views of Z/A are identical
for the second message round.

Third message round. After receiving (sid′, apk′) from A sent to Pi:
1) If apk = apk′ (where apk was provided by A for that session), then A receives n-times

(ENC-L, sid, |m|) from FPAPKE (or “FPAPKE”) and replies with n different (CIPHERTEXT, sid, cind).

Then Pi sends to Pj a message (sid′,C) where C = {c1, ..., cn} and is shuffled with RP (save pmap)

and outputs (NewKey, sid′, Pj , key). Note that key is computed by Pi in the real world, while in
the ideal world it is chosen by FOPAKE.

2) If apk ̸= apk′, we have two cases to consider:
2a) if a record (badkeys, sid, apkq, pwdq) with apkq = apk′ exists, then if pwdq = PA,B [i] then

(ENC-M, sid, k) is sent to A from FPAPKE (or “FPAPKE”) or (ENC-L, sid, |m|) if pwdq ̸= PA,B [i]. In the
ideal world, SIM sends (TestPwS, sid′,Pi, pwdq) to FOPAKE. If password guess is correct FOPAKE an-
swers (correct,M) where the vector M contains position(s) of the correct password in PA,B . Based on
M, “FPAPKE” sends either (ENC-M, sid, k) or (ENC-L, sid, |m|) toA while respecting the order of calls.
Otherwise, SIM receives wrong, and “FPAPKE” sends n (ENC-L, sid, |m|) to A; In case of FOPAKE that
captures sugarword indistinguishability, vector M is not provided, but since DRP(PA,B) is added

to the extended protocol, SIM then sends a single (ENC-M, sid, k) and n− 1 (ENC-L, sid, |m|) in

random order to A. 2b) Otherwise, if no such record exists, A receives (GUESS, sid, apk′) from
FPAPKE (or “FPAPKE”), and answers with (GUESS, sid, pwd∗). If password guess is correct, then
(ENC-L, sid, k) is sent to A from FPAPKE or (ENC-L, sid, |m|) if otherwise. In the ideal world, SIM
sends (TestPwS, sid′,Pi, pwd

∗) and answers in the same way as in case 2a) based on the reply from
FOPAKE. Notice that in both cases 2a) and 2b), A after receiving n queries (ENC-·, sid, ·) replies with
n different (CIPHERTEXT, sid, cind). Then Pi (or “Pi”) sends to Pj a message (sid′,C) and outputs
(NewKey, sid′,Pi, key). Note that key is computed by Pi in the real world, while in the ideal world

34

it is chosen by FOPAKE.

Final output round. After receiving (sid′,C′) sent to “Pj” from A:

1) If a record (enrec, sid, k′/ ⊥,C′[ind]) exists for all ciphertexts within the vector C′, then
Z receives (NewKey, sid′,Pj , key) from Pj (or “Pj”). There are three cases to consider depend-
ing on how session key key is defined: 1a) honest execution between Pi and Pj with overlap-
ping passwords (pw ∈ P∗

A,B): in the real world, Pi will ask (ENCRYPT, sid, apk,P∗
A,B [ind], k′)

where P∗
A,B [ind] = pwA,B (among other queries) and k′ is a random secret sampled by Pi that

will be used with transcript as input to PRF that outputs the session key shared between Pi

and Pj . In the ideal world, SIM sends (NewKey, sid′,Pi,⊥) to FOPAKE - since password from Pj

and password file Pi are overlapping, FOPAKE will assign them the same session key. 1b) hon-
est execution between Pi and Pj without overlapping passwords (pwA,B /∈ P∗

A,B): in the real
world, Pi queries (ENCRYPT, sid, apk,P∗

A,B [ind], k′), where pwA,B /∈ P∗
A,B and k′ is a random se-

cret sampled by Pi that will create a record (enrec, sid,⊥, c′) in FPAPKE. Then, after it receives
(DECRYPT, sid,C[ind]′) from Pj , FPAPKE returns (PLAINTEXT, sid,⊥), and Pj sets k ←$ {0, 1}λ
and computes the key. In the ideal world, we proceed as in case 1a) (by calling (NewKey, sid′,Pi,⊥),
but since password from Pj and password file from Pi are not overlapping, key will be a random
value of size λ. 1c) corrupted parties: the environment Z creates a corrupted P∗, and queries
(ENCRYPT, sid, apk, pwd∗ind, k

′
ind) for any k′ind in {0, 1}λ. In the real world, if pwd∗ind = pwA,B , k∗

is set to k′ind and key is computed using k∗ and transcript. In case none of password guesses were
correct, sample k∗ ←$ {0, 1}λ and compute key. In the ideal world, for each pwd∗ind that SIM re-
ceives through (ENCRYPT, sid, apk, pwd∗ind, k

∗
ind) it submits (TestPwC, sid′,Pj ,Pind,⊥) to FOPAKE

such that P is built in the following way: password guess pwd∗ind is inserted on all n positions in
Pind. If as an answer to a TestPwC call FOPAKE returns correct, session Pj is compromised, k∗ind
that corresponds to the first correct password occurrence in C′ is then used to compute key =
PRF(k∗ind, Pi, Pj , apk,C

′), and SIM sends (NEWKEY, sid′, key) to FOPAKE - the session key of Pj is
set to key. Note that SIM using this strategy to query FOPAKE can obtain position(s) of correct pass-
word guess(es) in C∗. This means SIM can select the correct k∗ind and thus compute the appropriate
key.

2) If a record (enrec, sid, k′,C′[ind]) does not exist for any ciphertext in the vector C′, then A
receives (DECRYPT, sid,C′[ind]) from FPAPKE (or “FPAPKE”) and replies with its answer as follows:
(PLAINTEXT, sid, k∗ind, pwd

∗
ind). After this, Z will receive from Pj (or “Pj”) (NewKey, sid′,Pj , key),

where key = PRF(k∗ind, Pi, Pj , apk,C
′) for the first password guess (if any out of n) such that

pwd∗ind = pwA,B . In case all password guesses were wrong, sample k∗ ←$ {0, 1}λ and compute key.
In the ideal world, SIM sends n (TestPwC, sid′,Pj ,Pind) calls to FOPAKE in the same way as in 1c. If
password guess is correct (Pind[·] = pwA,B), FOPAKE answers with correct, and position ind of correct
guess and underlying secret k∗ind are obtained, SIM computes key = PRF(k∗ind, Pi, Pj , apk,C

′), sends
(NEWKEY, sid′, key), and Pj ’s session key is set to key. Otherwise, SIM receives wrong, and Pj ’s
session key key is picked at random and (NEWKEY, sid′, key) is sent.

3) Modified ciphertext vector. Here we treat the case when a record (enrec, sid, k′,C′[ind]) does
not exist for all ciphertexts but only for some within the vector C′. If the received vector C′

contains any ciphertext for which records (enrec, sid, k′,C′[i]) does not exists (but also contains at
least one with existing records), then A will receive the following (DECRYPT, sid,C′[i]) from FPAPKE

(or “FPAPKE”) and reply with (PLAINTEXT, sid, k∗ind, pwd
∗
ind) for all ciphertexts with non-existing

record.

35

3a) Honest password records and wrong password guesses - real world. If none of pwd∗ind = pwA,B ,
and it does not exist (ENCRYPT, sid, apk,P∗

A,B [ind], k′) where P∗
A,B [ind] = pwA,B (corresponding

to C′[ind]’s with records), Pj sets k∗ ←$ {0, 1}λ and computes the key. If none of pwd∗ind = pwA,B ,
but it does exist (ENCRYPT, sid, apk,P∗

A,B [ind], k′) where P∗
A,B [ind] = pwA,B (corresponding to

C′[ind]’s with records), Pj sets k∗ = k′ and computes the key = PRF∗(k∗, Pi, Pj , apk,C
′). Notice

that since transcripts differ between Pi and Pj , the session key shared will be different due to
prf-security of PRF.

3b) Honest password records and correct password guesses – real world. If there is a record
(PLAINTEXT, sid, k∗ind, pwd

∗
ind) received as an answer to (DECRYPT, sid,C′[ind]) such that pwd∗ind

is equal to pwA,B , we branch in two cases:
3b1) Correct password guess in front of honest records. If C′[ind] is placed in vector C′ in front of

any ciphertext for which records (enrec, sid, k′,C′[i]) exists, then Z receives (NewKey, sid′,Pj , key)
from Pj (or “Pj”), where key = PRF(k∗ind, Pi, Pj , apk,C

′);
3b2) Correct password guess after even a single honest record with overlapping password. If

there exists a record as follows (ENCRYPT, sid, apk,P∗
A,B [ind], k′) where P∗

A,B [ind] = pwA,B (cor-
responding to C′[ind]’s with records) and there exists adversarial pwd∗q = pwA,B such that ind < q,
Pj sets k∗ = k′ and computes the key = PRF∗(k∗, Pi, Pj , apk,C

′). Notice that since transcripts
differ between Pi and Pj , the session key shared will be different due to prf-security of PRF. If such
(ENCRYPT record does not exist, we are again in 3b1).

In the ideal world, SIM knows all adversarial password guesses and corresponding secrets (i.e.
(DECRYPT, sid,C′[ind]) and corresponding (PLAINTEXT, sid, k∗ind, pwd

∗
ind)) and all asked queries

(ENCRYPT, sid, apk,⊥, k′) with corresponding adversarial ciphertexts. Thus, SIM sends at most n−
1 (TestPwC, sid′, Pj ,P) where P is set as pwd∗ind in all n positions (as in 1c and 2) so that index of a
correct password guess (if exists) is known. If all password guesses to FOPAKE are wrong, SIM receives
wrong, and Pj ’s session key key is picked at random and (NEWKEY, sid′, key) is sent (even if there is a
honest ciphertext with the correct password within the received ciphertext vector, key will be random
due to PRF security.). If password guess is correct (Pind[·] = pwA,B), FOPAKE answers with correct,
and correct password pwd∗ind, its position ind in the ciphertext vector and underlying secret k∗ind are
obtained. Now SIM needs to test whether there exists any honest ciphertext with a correct password
pwd∗ind within the received ciphertext vector and does so with calling (TestPwS, sid′,Pi, pwd

∗
ind)

to FOPAKE and gets the vector of indices M which will show him in which position in the original
honest ciphertext vector was the correct password (if any). If honest ciphertext is in front of the
ciphertext with the correct password guess pwd∗ind from the adversary, SIM picks key randomly
(secure due to PRF security), or otherwise SIM computes key = PRF(k∗ind, Pi, Pj , apk,C

′) and sends
(NEWKEY, sid′, key), and Pj ’s session key is set to key. For extended protocol SIM does not obtain

the vector M but it can use correct or wrong indication from FOPAKE to understand if it is in

password overlapping or password non-overlapping case. In case of former SIM counts the number of
honest ciphertexts before the correct password guess in the ciphertext vector (this number we mark
as p), and submits in (NEWKEY, sid′, key) a random key key with probability p/n and adversarial
key key = PRF(k∗ind, Pi, Pj , apk,C

′) in all other cases.

36

Send(Ci,M = start client instance) query:

• sample sid

• input (KEYGEN, sid, pwC,S) to Ci and receive (KEYCONF, sid, apk,M) via A
• record (Ci, apk, sid) in list Lclients

• return (C, apk)

Send(Sj ,M = (C, apk)) query:

• if ∄ (Ci′, apk′, sid′) in Lclients such that C = C′ and apk = apk′: sample sid // client impersonation

• else: sid← sid′

• sample key k ←$ {0, 1}λ and generate K← PRF(k, (C, apk), n · λ)
• for i = 1 to n

– input (ENCRYPT, sid, apk,PC,S [i],K[i]) to party Sj

– receive (CIPHERTEXT, sid,C[i]) via A

• (Ĉ, pmap)← RP(C)

• record (Sj , C, apk,K, Ĉ, pmap) in list Lservers

• return (S, Ĉ)

Send(Ci,M = (S, Ĉ)) query:

• if ∄ (Ci′, ∗, sid′) in Lclients s.t. Ci = Ci′: return (invalid) // instance Ci does not exist yet

• else: sid← sid′

• for i = 1 to n

– input (DECRYPT, sid, Ĉ[i]) to party Ci

– receive (PLAINTEXT, sid, k∗) via A, if (k∗ ̸=⊥) record i and break

• if (k∗ = ⊥) return (abort)

• else

– tr ← (C, S, apk, Ĉ, i)

– (key, kt)← PRF(k∗, tr, 2 · λ)
– tag ← MAC.Sign(kt, tr)

– Ci.accept← true, Ci.key ← key

– return (i, tag, (accept))

Send(Sj ,M = (i, tag)) query:

• if ∄ (Sj ′, C′, apk′,K′, Ĉ′, pmap′) in Lservers s.t. Sj = Sj ′: return (invalid) // invalid query, instance
Sj does not exist yet

• else: C ← C′, apk ← apk′, K← K′, Ĉ← Ĉ′, pmap← pmap′

• i∗ ← RI(i, pmap)

• tr ← (C, S, apk, Ĉ, i)

• (key, kt)← PRF(K[i∗], tr, 2 · λ)
• if (¬MAC.Vrfy(kt, tr, tag) return (abort)

• else

– Sj .accept← true, Sj .key ← key Sj .index← i∗

– return (accept)

Figure 7: In the proofs of Theorem 1, the challenger answers Â queries by replacing the calls to
algorithms PAPKE.KGen, PAPKE.Enc, and PAPKE.Dec in with calls to the parties in the real world
via environment Z. The pseudocode provided here specifies how Send queries are answered.

37

Execute(Ci, Sj) query:

• sample sid

• input (KEYGEN, sid, pwC,S) to Ci and receive (KEYCONF, sid, apk,M) via A
• sample key k ←$ {0, 1}λ and generate K← PRF(k, (C, apk), n · λ)
• for i = 1 to n

– input (ENCRYPT, sid, apk,PC,S [i],K[i]) to party Sj

– receive (CIPHERTEXT, sid,C[i]) via A

• (Ĉ, pmap)← RP(C)

• for i = 1 to n

– input (DECRYPT, sid, Ĉ[i]) to party Ci

– receive (PLAINTEXT, sid, k∗) via A
∗ if (k∗ ̸= ⊥) record i and break

• tr ← (C, S, apk, Ĉ, i)

• (key, kt)← PRF(k∗, tr, n · λ)
• tag ← MAC.Sign(kt, tr)

• Ci.accept← true, Ci.key ← key, Sj .accept← true, Sj .key ← key

• trace← (C, S, apk, Ĉ, i, tag)

• return trace

Reveal(U i):

• if U i.accept = true

– return U i.key

Corrupt(C, S) query:

• return pwC,S

Test(U i) query:

• return U i.key

Figure 8: In the proof of Theorem 1, the challenger answers Â queries by replacing the calls to
algorithms PAPKE.KGen, PAPKE.Enc, and PAPKE.Dec in with calls to the parties in the real world
via environment Z. The pseudocode provided here specifies how Execute, Reveal, Corrupt, Test
queries are answered.

When Â queries Test(Ua) to a fresh instance Ua created as the result of Execute(Ci, Sj) where Ci = Ua or
Sj = Ua:

• if Ua.replaced = ⊥

– sample key′ ←$ {0, 1}λ

– Ci.replaced← key′

– Sj .replaced← key′

– return Ua.replaced to Â.

Figure 9: In the proof of Theorem 1, the challenger in game G3 randomizes session keys for Execute
queries.

38

Send(Sj ,M = (C, apk)) query:

• if ∄ (Ci′, apk′, sid′) in Lclients such that C = C′ and apk = apk′

– sample sid // client impersonation attack

• else

– sid← sid′

• for i = 1 to n

– sample K[i]← {0, 1}λ

• for i = 1 to n

– input (ENCRYPT, sid, apk,PC,S [i],K[i]) to party Sj

– receive (CIPHERTEXT, sid,C[i]) via A

• (Ĉ, pmap)← RP(C)

• record (Sj , C, apk,K, Ĉ, pmap) in list Lservers

• return (S, Ĉ)

Execute(Ci, Sj) query:

• sample sid

• input (KEYGEN, sid, pwC,S) to Ci and receive (KEYCONF, sid, apk,M) via A
• for i = 1 to n

– sample K[i]← {0, 1}λ

• for i = 1 to n

– input (ENCRYPT, sid, apk,PC,S [i],K[i]) to party Sj

– receive (CIPHERTEXT, sid,C[i]) via A

• (Ĉ, pmap)← RP(C)

• for i = 1 to n

– input (DECRYPT, sid, Ĉ[i]) to party Ci

– receive (PLAINTEXT, sid, k∗) via A
∗ if (k∗ ̸= ⊥) record i and break

• tr ← (C, S, apk, Ĉ, i)

• (key, kt)← PRF(k∗, tr, 2 · λ)
• tag ← MAC.Sign(kt, tr)

• Ci.accept← true, Ci.key ← key, Sj .accept← true, Sj .key ← key

• trace← (C, S, apk, Ĉ, i, tag)

• return trace

Figure 10: In the proofs of Theorem 2 and Theorem 3, the challenger answers Â queries by replacing
the calls to algorithms PAPKE.KGen, PAPKE.Enc, and PAPKE.Dec in with calls to the parties in the
real world via environment Z. The pseudocode provided here specifies how Send(Sj ,M = (C, apk))
and Execute queries are answered. For Send queries to the client or key confirmation flow to the
server, refer to Figure 7.

39

Send(Sj ,M = (C, apk)) query:

• if ∄ (Ci′, apk′, sid′) in Lclients such that C = C′ and apk = apk′

– sample sid // client impersonation attack

• else

– sid← sid′

• for i = 1 to n, sample K[i]← {0, 1}λ

• for i = 1 to n

– if PC,S [i] ̸= pwC,S

∗ input (ENCRYPT, sid, apk,PC,S [i], 0
λ) to party Sj

– else input (ENCRYPT, sid, apk,PC,S [i],K[i]) to party Sj

– receive (CIPHERTEXT, sid,C[i]) via A

• (Ĉ, pmap)← RP(C)

• record (Sj , C, apk,K, Ĉ, pmap) in list Lservers

• return (S, Ĉ)

Execute(Ci, Sj) query:

• sample sid

• input (KEYGEN, sid, pwC,S) to Ci and receive (KEYCONF, sid, apk,M) via A

• for i = 1 to n, sample K[i]← {0, 1}λ

• for i = 1 to n

– if PC,S [i] ̸= pwC,S

∗ input (ENCRYPT, sid, apk,PC,S [i], 0
λ) to party Sj

– else input (ENCRYPT, sid, apk,PC,S [i],K[i]) to party Sj

– receive (CIPHERTEXT, sid,C[i]) via A

• (Ĉ, pmap)← RP(C)

• for i = 1 to n

– input (DECRYPT, sid, Ĉ[i]) to party Ci

– receive (PLAINTEXT, sid, k∗) via A
∗ if (k∗ ̸= ⊥) record i and break

• tr ← (C, S, apk, Ĉ, i)

• (key, kt)← PRF(k∗, tr, 2 · λ)
• tag ← MAC.Sign(kt, tr)

• accCi ← true, keyCi ← key, accSj ← true, keySj ← key

• trace← (C, S, apk, Ĉ, i, tag)

• return trace

Figure 11: In the proof of Theorem 3, the challenger encrypts 0λ for all honeywords. What pass-
words are sugarwords is known to the challenger, and ciphertexts encrypted with mismatching pairs
(apk, pw) decrypt to ⊥ according to the ideal functionality FPAPKE.

40

	Introduction
	Our contribution
	Related Work

	SweetPAKE Security Model
	Model considerations
	SweetPAKE architecture
	Game-based security
	UC security

	BeePAKE: A game-based secure SweetPAKE protocol
	Naive proposal
	Secure SweetPAKE construction
	Security analysis of BeePAKE protocol
	Session key indistinguishability of BeePAKE
	Sugarword indistinguishability of BeePAKE
	False alarm protection of BeePAKE

	PAPKE-2-OPAKE: A UC-secure Oblivious PAKE protocol
	Oblivious PAKE
	Oblivious PAKE vs SweetPAKE
	Constructing Oblivious PAKE from PAPKE
	Security analysis of our Oblivious PAKE construction

	Conclusion and future directions
	Comparison between N*SPAKE2 and BeePAKE-PAPKE-IC-DHIES
	Building blocks
	Ideal Functionality for PAPKE
	Security Proof of Theorem 1
	Security Proof of Theorem 2
	Security Proof of Theorem 3
	Security Proof of Theorem 4

