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Abstract- This research extends Abadi and Andersen's exploration 

of neural networks using secret keys for information protection in 

multiagent systems. Focusing on enhancing confidentiality 

properties, we employ end-to-end adversarial training with neural 

networks Alice, Bob, and Eve. Unlike prior work limited to 64-bit 

messages, our study spans message sizes from 4 to 1024 bits, 

varying batch sizes and training steps. An innovative aspect 

involves training model Bob to approach a minimal error value 

close to zero and examining its effect on the feasibility of the 

model. This research unveils the neural networks' adaptability and 

scalability in encryption and decryption across diverse scenarios, 

offering valuable insights into their optimization potential for 

secure communication. 

Keywords- Symmetric neural network, Alice, Bob, Eve, 

Cryptography, Adversarial neural cryptography. 

1. INTRODUCTION 

n recent years, the pervasive utilization of neural networks has 

remarkably advanced our capabilities in tackling increasingly 

intricate tasks. Notably, these networks have demonstrated their 

prowess in diverse applications, ranging from the deployment of 

Generative Adversarial Networks (GANs) [1] for generating and 

discerning fake images to our current exploration into the domain 

of symmetric Cryptography. Building on the seminal work of 

Martín Abadi and David G Andersen [2]., our research delves into 

the world of secure communication within a multiagent system 

[3], employing a sophisticated end-to-end adversarial training 

system featuring neural networks Alice, Bob, and Eve. 

 

This investigation unfolds within the context of enhancing 

confidentiality properties, a critical pursuit in secure 

communication, especially when considering potential 

adversaries. Unlike traditional cryptographic approaches [4] that 

prescribe specific algorithms, our methodology embraces the 

flexibility of end-to-end adversarial training. This novel approach 

introduces an adaptive layer, allowing neural networks Alice and 

Bob to dynamically evolve in response to potential threats [5], 

particularly addressing information interception by a third neural 

network, Eve. 

 

Expanding on the groundwork laid by Abadi and Andersen [2], 

our research pioneers comprehensive experiments with message 

sizes ranging from 4 to 1024 bits, in an effort to find the most 

optimized message size, while we also try various experiments to 

minimize our error and a lot more. This expansive exploration 

includes dynamic adjustments to batch sizes and training steps, 

providing an understanding of how neural networks adapt and 

scale in mastering encryption and decryption processes across a 

spectrum of message sizes and training conditions. 

A unique key-point of our investigation involves the introduction 

of a novel dimension, where we try to train model Bob to approach 

its minimal error value, essentially converging towards zero. This 

objective not only refines the learning process but also emphasizes 

on maximizing the confidentiality goals achieved through the 

interactions of neural networks in our multiagent system. 

 

Our paper is structured into five main sections. Section 1 is the 

introduction followed by Section 2 which provides a 

comprehensive overview of the model and its workings. In Section 

3, we outline the experiments conducted on the model, and Section 

4 presents the results and analyses. Section 5 is concerned with 

testing of the model. Finally, in Section 6, we draw conclusions 

from our research, emphasizing the potential community impact 

of our findings. 

 

Each dimension of our research contributes unique benefits. The 

exploration of diverse message sizes enriches our understanding 

of neural network adaptability in different scenarios. Dynamic 

adjustments to batch sizes and training steps enhance the 

scalability and efficiency of the networks. The pursuit of 

minimizing the error of  model Bob not only refines the learning 

process but also underscores our dedication to achieving the 

highest levels of confidentiality in secure communication. Overall, 

this research significantly advances our knowledge of the 

adaptability and optimization potential of neural networks, laying 

a solid foundation for future advancements in the realm of 

confidential information exchange.  
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2. UNDERSTANDING THE MODEL 

 

2.1. OVERVIEW 

The research simulates a cryptographic communication scenario 

involving three entities: Alice, Bob, and Eve. It initializes 

parameters and generates random shared keys and plain-text 

messages for Alice. A neural network architecture is defined 

[6][7][8], shared by Alice and Bob, along with a smaller one for 

Eve. The networks use convolutional layers and activation 

functions like sigmoid and tanh. The research implements loss 

functions to measure the separation between Alice's input and 

Bob's output, as well as the comparison of Eve's output to a 

random guess. Training involves alternating between training 

Alice/Bob and training Eve using an Adam optimizer. The losses 

for Bob and Eve are recorded and printed during training steps. 

Overall, the research explores the dynamics of secure 

communication, emphasizing the challenge of maintaining 

confidentiality in the presence of an eavesdropper. 

 

2.2. MESSAGE AND KEY SIZE 

In contrast to the methodology employed by Abadi and David, 

where key size and message size were consistently kept equal, our 

research introduces a deliberate variation in these sizes. 

Specifically, we explore sizes of 4, 8, 16, 32, 64, 128, 256, 512 

and 1024 bits. This intentional diversification aims to understand 

the behavior of Bob and Eve when confronted with significantly 

larger key sizes. Throughout these experiments, the sample size is 

maintained as a constant value of 8192, allowing us to isolate and 

analyze the impact of key and message size variations on the 

performance of the neural networks involved. A sample size of 

8192 was bifurcated into two parts, training and testing. The 

sample size was divided into batches, each containing 256 

messages hence, a total of 32 batches: 25 for training and 7 for 

testing. 

2.3. CREATION OF MESSAGE AND KEY 

In this study, the 'message' and 'keys' are conceptualized as 

NumPy arrays, each having dimensions of (sample size, message 

size). To assemble these arrays, an encompassing structure of 

8192 rows (sample size) was generated. Within each row, columns 

were created in accordance with the specified message size. 

Consequently, every row encapsulates a message with values set 

at either 1 or -1. These messages were randomly generated. 

These randomly generated messages function as the plaintext 

received by Alice, destined for subsequent transformation into 

ciphertext. In parallel, a 2D array of keys was crafted, mirroring 

the number of rows at 8192 (sample size) and columns aligned 

with the bits in each key. This array symbolizes the shared key 

between Alice and Bob, a component for Bob to accurately predict 

ciphertexts. 

2.4. LOSS FUNCTIONS FOR ALICE, BOB, AND EVE 

The research incorporates a systematic approach to loss function 

design for the neural networks of Alice, Bob, and Eve [6]. The 

overarching objective is to guide Alice and Bob in minimizing 

their respective losses while concurrently ensuring that Eve's error 

consistently increases. Alice and Bob collaborate to enhance their 

performance, aiming for minimal loss, while Eve pursues the 

minimization of her error without access to the decryption key. 

The design of these loss functions is pivotal in shaping the 

adversarial training process. The subsequent step involves setting 

these loss functions as minimization constraints, aligning with the 

collective goal of training each neural network to excel in its 

designated role. 

2.5. BOB AND EVE LOSS FUNCTION 

The algorithm leverages Hamming distance as a key metric to 

minimize errors. Hamming distance provides a quantitative 

measure of dissimilarity between binary sequences which in our 

case is the discrepancy of message generated by Bob and the 

original text. By systematically comparing the bits of the original 

and generated messages, the algorithm identifies discrepancies 

and aims to minimize the Hamming distance, effectively reducing 

errors in the output. This utilization of Hamming distance [9] 

serves as a fundamental component in the algorithm's strategy to 

enhance accuracy and optimize performance. This result is 

calculated for all the messages and averaged to give an average 

value of loss. In a similar way, the loss function for Eve was 

calculated. 

2.6. COMBINED ALICE, BOB, EVE LOSS FUNCTION 

In our neural network framework, the objective extends beyond 

minimizing Bob's loss; it also involves amplifying Eve's loss. To 

achieve this delicate balance, a combination of two functions is 

utilized: Bob's loss function and the difference between Eve's 

output and a random guess. Notably, the final result is not 

computed using Eve's loss function, but rather through assessing 

the difference between Eve's output and a random guess. This 

choice has been made to ensure that if Eve guesses all bits 

incorrectly, the network's overall dynamics remain relatively 

stable. This intentional insensitivity to complete incorrect guesses 

prevents possible hints that might aid Eve in deducing the 

encryption, reinforcing the goal of keeping Eve consistently 

unaware and unable to surpass random chance in her predictions. 

This approach ensures the careful consideration given to 

maintaining the integrity and security of the encryption process 

within the neural network architecture. 

 The Eve's distance from random guess is calculated as follows: 

𝐸𝑣𝑒 𝑉𝑠 𝑅𝑎𝑛𝑑𝑜𝑚 𝐺𝑢𝑒𝑠𝑠 =
(𝑀𝑒𝑠𝑠𝑎𝑔𝑒 𝑆𝑖𝑧𝑒 − 𝐸𝑣𝑒 𝐿𝑜𝑠𝑠)2

𝑀𝑒𝑠𝑠𝑎𝑔𝑒 𝑆𝑖𝑧𝑒2
 

 

A combined function was created such that it considers both the 

Bob's distance from original message and Eve's distance from 

random guess.  

𝐴𝑙𝑖𝑐𝑒 𝐵𝑜𝑏 𝐸𝑣𝑒 𝑂𝑝𝑡𝑖𝑚𝑖𝑠𝑖𝑛𝑔 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛
= 𝐵𝑜𝑏 𝐿𝑜𝑠𝑠 + 𝐸𝑣𝑒 𝑉𝑠 𝑅𝑎𝑛𝑑𝑜𝑚𝐺𝑢𝑒𝑠𝑠 



Accelerating Training and Enhancing Security Through Message Size Optimization in Symmetric Cryptography 

3 
 

By minimizing this function, we can ensure that both Bob decrypts 

the message correctly while ensuring Eve cannot perform any 

better than a random guess. 

2.7. NEURAL NETWORK 

The neural network structure used by Bob, Eve, and Alice is as 

follows: 

A function creates and initializes weight variables for the neural 

network layers. Another function takes an input, encrypt message 

(representing the encrypted message), and processes it through a 

series of operations.  

It starts by performing matrix multiplication with a fully 

connected layer, followed by reshaping the result. Then, a 

sequence of convolutional layers is applied with varying filter 

sizes and strides, introducing non-linearities through activation 

functions like sigmoid and tanh. These convolutional layers 

contribute to the network's ability to learn features from the input 

data. The final result is reshaped to match the expected output size. 

2.8. TRAINING OF ALICE, BOB AND EVE 

The neural network-based symmetric encryption system involves 

distinct objectives for its participants. Alice, responsible for 

encrypting plaintext, aims to create a cipher decipherable by Bob 

while thwarting Eve's attempts to accurately guess the content. 

Bob, tasked with decryption, endeavors to accurately recover the 

original plaintext given the ciphertext and the key. Meanwhile, 

Eve's objective is to decipher the message solely based on the 

ciphertext. To achieve these goals, the system employs the Alice 

Bob Eve Optimising Function, which minimizes the combined 

loss of Alice and Bob during training. Implemented with the Adam 

optimizer, the training process monitors the loss function for both 

Bob and Eve after each iteration. Collaboration among the 

participants ensures the encryption and decryption processes are 

harmoniously aligned to meet the desired objectives. Additionally, 

the training regimen focuses on minimizing Eve's loss, thereby 

enhancing her chances of decrypting the code correctly. The 

termination conditions for the code include reaching a 

predetermined number of steps or achieving an optimal value for 

Bob's loss, with each condition tailored as required by the 

experiment. 

2.9. EXTRACTING DATA 

The data was extracted from the model in one of the three ways: 

1. By fixing the number of steps, for example the model 

would stop operating after executing 5,000 steps. 

2. By fixing the Loss of Bob. By constraining the lower 

limit of loss for Bob, we were able to calculate the 

number of steps required to reach that accuracy. Please 

note that we will be interchangeably using the terms Bob 

loss and error which mean the same thing: how far Bob’s 

decryption of the ciphertext is from the original plain 

text. 

3. By changing batch size. The effect of batch size on the 

loss value was observed keeping the value of bits 

constant. 

The next section discusses the experiments conducted by us on the 

model and our methodology behind them. 

3. EXPERIMENTS ON OUR MODEL 

3.1. MESSAGE SIZE V/S NUMBER OF EPOCHS FOR FIXED 

ERROR 

This experiment focuses on investigating the impact of varying  

Message sizes and the associated number of epochs required for 

training our model. Throughout the experiment, a constant error 

value was set, specifically 0.5 and 0.1 in our case. The study 

involved conducting trials with Message sizes of 4 to 1024 bits, 

and recording the corresponding number of epochs needed to 

achieve a predetermined error level.  

The objective of this experiment is to identify the optimal message 

size, aiming to minimize the number of iterations required for 

effective training. This research holds potential applications 

[3][11] in various fields where efficient training processes are 

crucial for developing models with improved speed and resource 

utilization. 

3.2. SAMPLE SIZE V/S ERROR AT CONSTANT EPOCH 

In the experiment conducted by Anderson and David [2], the 

sample size was consistently set at 4096. However, our current 

investigation seeks to assess the impact of different sample sizes 

on the results. In this context, the sample size refers to the number 

of plaintexts and keys that traverse our training model during each 

epoch. By systematically varying the sample size, we aim to gain 

insights into how this parameter influences the final outcomes of 

the training process. However, for maintaining a uniformity, the 

batch size was kept constant to 256 messages. We tried 

experimenting with a sample size of 2048, 4096 and 8192 

messages. Each of these samples were divided into batches of size 

256 messages.  This exploration is essential for a more nuanced 

understanding of the relationship between batch size and the 

achieved results, shedding light on potential optimizations, how to 

achieve desired accuracy with minimal training time. 

3.3. MESSAGE SIZE V/S ERROR FOR A FIXED NUMBER OF 

EPOCHS 

The focus of this experiment is to investigate how errors change 

under a constant number of training cycles, specifically set at 

5,000 epochs to ensure consistency. In a methodical manner, we 

altered the bit size throughout the experimentation process and 

observed the corresponding errors. By systematically adjusting the 

bit size and measuring errors at each step, we aim to gain insights 

into how different bit sizes impact error metrics. This structured 

approach allows us to analyze and understand the relationship 

between varying bit sizes and the resulting error rates, providing 

valuable information about the sensitivity of our model to changes 

in bit configuration. 
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3.4. NUMBER OF EPOCHS V/S ERROR FOR FIXED 

MESSAGE SIZE 

This experiment is mainly focused on understanding how the 

number of training cycles, known as epochs, affects reaching a 

particular level of error in our model. We're keeping it simple by 

creating a graph that shows the relationship between the number 

of epochs and the error. This graph helps us make predictions 

about how many epochs are needed to achieve a specific level of 

accuracy. In other words, we're trying to figure out the best 

number of training cycles to get our model to perform as 

accurately as we want it to. 

4. RESULTS AND ANALYSIS 

4.1. RESULTS: MESSAGE SIZE V/S NUMBER OF EPOCHS 

FOR FIXED ERROR 

In the course of this experiment, our algorithm was subjected to 

predefined termination criteria based on a specific Loss Value. 

The experiment encompassed four distinct scenarios where the 

designated loss values were set at 1, 0.75, 0.5, and 0.25. It was our 

hypothesis that analyzing the behavior of the algorithm under 

these diverse loss values would yield valuable insights, guiding us 

in understanding the feasibility and effectiveness of our algorithm 

in achieving the desired loss targets.  

The results have been shown below (Fig 1., Fig 2. & Fig 3.) 

 

Fig 1. Bar graphs for 4 bit and 8 bit message 

 

 

Fig 2. Bar graphs for 16, 32, 64 and 256 bit message 

 

Fig 3. Bar graphs for 512 bit message 

Observations from the two plotted graphs, where the first had a 

constant error of 0.5 and the second a constant error of 0.1: 

1. As can be seen, the scale for 4 bit, 8 bit was totally 

different to that of 16, 32, 64, and 256 bit messages which 

was again different from 512 bit message. This result 

implies that it is much easier for messages larger than 8 

bits to quickly reach their optimal value (minimum loss 

value) than 4 and 8 bit messages.  

2. For higher message sizes, more epochs were needed to 

compensate for the increased number of possibilities. 

Between the sizes of 16 to 64, an optimal message size 

was identified. Within this range, the message size was 

sufficient for the algorithm to function effectively 

without being excessively large, resulting in a reduced 

need for epochs.  

3. In general, as lesser loss value was desired, the number 

of epochs rose for every bit. For message sizes of 512 bits 

the loss value of 0.25 was not achieved even after 25,000 

epochs and remained stagnant to minimal value of 0.4. A 

similar observation was observed for 1024 bits where 

even after 15,000 epochs, a minimal loss value of 30 was 

observed. 

4. The observed pattern between 16 and 64 suggests a sweet 

spot for the most optimal message size during the model 

training process. This range allows for efficient algorithm 

performance without requiring an excessive number of 

epochs. 

4.2. RESULTS: SAMPLE SIZE V/S ERROR AT CONSTANT 

EPOCH 

The primary objective of this experiment was to investigate the 

extent to which we could reduce the sample size, leading to a 

decrease in computational power requirements without 

significantly compromising the error rate. The initial setup 

involved a sample size of 8192 messages, organized into batches 
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of 256 messages each. The sample size was systematically 

reduced, reaching a minimum of 2048 bits. Beyond this point, any 

further reduction in the sample size markedly diminished accuracy 

on the test data. 

To assess the impact of these variations, we compared Bob's loss 

values on both the training and testing sets upon the completion of 

5000 epochs. The ensuing observations are detailed below. 

 

Fig 4. Bar graphs for different sample sizes, 4 bit message 

 

Fig 5. Bar graphs for different sample sizes, 16 bit message 

 

 

Fig 6. Bar graphs for different sample sizes, 64 bit message 

 

Fig 7. Bar graphs for different sample sizes, 256 bit message 

The results can be summarized as follows:  

1. In the case of 4-bit messages (Fig 4.), the training and 

testing errors exhibit some comparability, potentially 

stemming from the minimal training requirements for 

small-sized messages. However, in line with our prior 

experiments, 4-bit messages still manifest a notably high 

error rate in both the training and testing datasets. 

2. In contrast, across all other scenarios, a substantial 

discrepancy in training and testing errors is evident for 

varying sample sizes. Notably, the 8192-sample size 

yields significantly lower errors compared to the 2048 

and 4096 sample sizes. 
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3. Observations reveal an upward trend in error rates as we 

increase the message size while maintaining a constant 

sample size. 

4. Interestingly, the 16-bit message size emerged as a 

favorable choice, demonstrating negligible errors in both 

the training and testing datasets. 

4.3. RESULTS: MESSAGE SIZE V/S ERROR FOR A FIXED 

NUMBER OF EPOCHS 

In this study, we maintained a consistent number of epochs at 

5000, selecting this value based on a balance between achieving a 

desirable error reduction and ensuring computational feasibility. 

The choice of 5000 epochs was motivated by their sufficiency in 

minimizing the error to 0.05, aligning with our experimental 

objectives. Importantly, this epoch configuration allowed for the 

successful execution of our experiments without imposing 

excessive computational demands. Going beyond this threshold to 

achieve higher accuracy levels would have necessitated a 

significant increase in computational time, a trade-off that was 

deemed unnecessary given the satisfactory results obtained at the 

chosen epoch size.  

The test was done for message sizes of 4, 8, 16, 32, 64, 128, 256, 

and 1024 bits. The error at the end of 5000 epochs for each of these 

cases was noted and the results were observed. 

The images below show the variation of error v/s epoch for 

different bits (4, 8, 16, 32, 64, 128, 256, and 1024) 

 

 

Fig 8. Epoch number v/s Loss value for 4 bit message 

 
 

Fig 9. Epoch number v/s Loss value for 8 bit message 

 
 

Fig 10. Epoch number v/s Loss value for 16 bit message 

 

 
Fig 11. Epoch number v/s Loss value for 32 bit message 
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Fig 12. Epoch number v/s Loss value for 64 bit message 

 

 
 

Fig 13. Epoch number v/s Loss value for 128 bit message 

 

 
 

Fig 14. Epoch number v/s Loss value for 256 bit message 

 

 
 

Fig 15. Epoch number v/s Loss value for 512 bit message 

 

 

 
 

Fig 16. Epoch number v/s Loss value for 1024 bit message 

 

 

 
 

Fig 17. Error v/s bit size at 5000th epoch (log10) 
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Upon analyzing the graphs, the following observations were 

made: 

1. For a 4 bit message (Fig 8.), the graph is very noisy. The 

noisiness decreases as the message as the message size 

increases. 

2. From 16 bit message to 64 bit message (Fig 10, 11, 12), 

the graphs have significantly less amount of noise while 

keeping Eve’s error ideal. This however changes as we 

increase the message size, implying on increasing 

message size, both Bob and Eve notice a significant 

decrease in their losses nearly becoming equal as the 

message size increases. (Fig 14. to Fig 16). This result is 

of very importance because it shows that for larger 

message sizes, if eve is trained enough the security of the 

ciphertext could be compromised. 

3. The minimum recorded error, observed after 5000 

epochs, was for the 32-bit message (Fig 11.), specifically 

4.2468 × 10-7. Conversely, the maximum error was 

recorded for the 1024-bit message (Fig 16.), amounting 

to 35.41. 

4. The error remained relatively stable for message sizes up 

to 256 bits but exhibited an exponential surge thereafter. 

The error recorded for a 256-bit message (Fig 14.) was 

0.283. A plausible explanation for this pattern could be 

that once the algorithm surpasses a certain error 

threshold, (0.5 in our case), further reduction becomes 

notably challenging. Consequently, a substantial 

decrease in error was not observed. 

5. The number of steps necessary to achieve a specific error 

value increases with an increase in message size. 

6. The largest message size with correspondingly sufficient 

minimization of error after 5000 epochs (Fig 17.) was 64 

bit size and 16 bit. This might be because as the size 

increases, the possibilities for our model to amend 

changes also increases, hence increasing the number of 

epochs required. 

 

4.4. RESULTS: NUMBER OF EPOCHS V/S ERROR FOR 

FIXED MESSAGE SIZE 

In this experiment, the focus shifted to plotting the number of 

epochs against the loss value. The objective was to observe the 

variation in the number of epochs required from the beginning to 

the end for each error value. This experiment is designed to 

provide insights into the dynamic relationship between the number 

of epochs and loss values, offering a basis for predicting an 

approximate estimate of the epochs needed to reach a specific loss 

value for a given message size and error threshold. 

Consider the following graphs: 

 

Fig 18. Loss value v/s Epoch number for 4 bit message 

 

Fig 19. Loss value v/s Epoch number for 32 bit message 

 
Fig 20. Loss value v/s Epoch number for 256  bit message 

The following things can be observed here:  

1. A scatter plot was employed to illustrate the density of 

points for a specific Bob's loss value. Notably, the graphs 

revealed a significantly higher density as the error value 

approached zero. This heightened density near zero 

suggests a concentrated convergence behavior around 

this threshold. 
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2. Furthermore, a notable surge in the number of epochs 

was observed when the error value approached zero. This 

observation aligns with our earlier finding that crossing a 

certain threshold value prompts a substantial increase in 

the number of epochs required to minimize the error. The 

sudden jump in epochs near zero underscores the 

algorithm's increased challenge in further reducing error 

beyond this critical point. 

 

Let us consider a special case where we sample size = 4096 

and the whole sample gets trained together. This was done to 

reduce the noise for this particular experiment. For a 256 bit 

message the graph was observed as follows:  

 

Fig 21. Loss value v/s Epoch number for 256  bit message with 

4096 samples 

By observing these trends, a formula was devised to predict 

possible number of epochs for a given error: 

 NumberOfEpoch = −a ln(𝐿𝑜𝑠𝑠𝑉𝑎𝑙𝑢𝑒) + 𝑏 

Where a and b are positive real numbers. 

By taking few initial values of number of epoch and error, a 

and b can be found. 

This was tested for 128 bit message where the predicted 

function came out to be y = -559.6ln(x) + 2645.7  and 

corresponding R2 value came out to be 0.9559. 

This was repeated for 256-bit message, where equation came 

out to be 𝑦 =  −661𝑙𝑛(𝑥)  +  3163.2 and R2 value came out 

to be 0.9078 and for 32 bit message 𝑦 =  −1066𝑙𝑛(𝑥)  +
 2609.6 and R2 value of 0.8972. 

This result could prove to be quite effective in determining 

whether the accuracy required is feasible or not. Since the 

function for 256 bit message is known, we can easily find a 

rough estimate on the number of times we have to train our 

model so that the model becomes accurate. 

However, it should be noted that this is just a rough 

approximation and is limited to this case only. It can be used 

to find an approximate order of epochs required and not its 

exact value. 

Also, the accuracy of this varies with number of points 

considered for finding a and b. In general, more the number 

and spread out the points were, more the accuracy of this 

function. 

5. TESTING OF OUR MODEL 

The preceding sections concentrated on scrutinizing the impact of 

varying parameters on the algorithm during training. No test data 

was employed, and the model underwent continuous training on a 

consistent number of samples. However, the objective of this 

section is to assess our algorithm and determine the average loss 

value. This assessment will ultimately enable us to draw 

conclusions regarding the credibility of our model. 

Analyzing the comparison of testing Bob loss with other 

parameters reveals several trends (Table 1). 

1. For a given epoch, the training loss value of Bob and the 

testing loss value of Bob were closely aligned up to 8 bits. 

The divergence between training and testing loss values 

starts to occur from 16 bits onwards. 

2. Up to 128 bits, the loss value is consistently below 1, with 

the lowest loss values in the testing set recorded for 16-

bit messages. 

3. From 256 bits onwards, a notable increase in Bob's loss 

is observed. 

4. Up to 64 bits, an increase in the number of epochs did not 

significantly impact testing accuracy. This suggests that 

the models were not prone to overtraining. 

5. A consistent trend indicates that lower loss values during 

training correlate with lower loss values during testing. 

6. While the gap between loss values of Bob in testing and 

training datasets wasn't substantial, the same cannot be 

said for Eve. Eve exhibited very high error values for 

higher message sizes, even when their training losses 

were significantly lower. 

A lot more results can be observed from another experiment we 

did in the previous section (section 4.2) 

1. We observed there was a significant drop in bob loss 

for tests as the sample sizes were increased across all 

the cases. 

2. The lowest loss value of bob in while testing was 

observed  for 16 bit messages when comparing two 

bits having same number of epochs.  
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On observing the Table 2 , the loss value during training for bob 

was fixed to 0.1 and the corresponding results were observed. 

1. Consistent with our previous findings, it was once 

again observed that the loss value for Bob during 

testing was minimum for 16-bit messages, followed 

by 32-bit messages. It's worth noting that 4-bit, 8-bit, 

and 512-bit messages were unable to reduce their 

Bob loss to 0.1; therefore, they have been omitted 

from the table. It should be noted that even eve 

showed significant improvement in its accuracy, 

Table 1: Effect of number of epochs and batch size on testing Bob loss 

Table 2: Testing Bob loss when training Bob loss is fixed 
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especially for 256 bit message size where she was 

able to guess most of the bits correctly. 

6. CONCLUSION 

The primary purpose of undertaking this research was to gain a 

comprehensive understanding of the dynamics of symmetric 

cryptography, with a specific focus on the impact of varying 

parameters on algorithmic performance during training and testing 

phases. Through a series of experiments, we tried to unravel the 

nuanced relationships between Message size, error rates, number 

of epochs, and batch sizes, aiming to optimize the functioning of 

cryptographic algorithms. 

In the course of our extensive experiments, we have gleaned 

valuable insights that culminate in significant conclusions 

regarding the performance and optimization of our symmetric 

cryptography algorithm. Each experiment contributed unique 

perspectives to our understanding. 

Firstly, in the exploration of varying epochs versus message size 

for fixed error, we identified a crucial factor for achieving desired 

accuracy—the most optimal message size. Our findings indicate 

that, for our algorithm, a message size ranging from 16 to 64 bits 

emerges as the most favourable for attaining the desired level of 

accuracy. 

Moving on to the investigation of batch size versus epoch at 

constant error, we sought to determine the minimum batch size 

that balances computational efficiency with result quality. Our 

conclusive observation is clear: a sample size below 4096 

compromises accuracy, while larger sample sizes, around 4096 or 

8192, yield superior results. This knowledge provides a practical 

guideline for optimizing the batch size in the algorithm. 

In the examination of varying epochs and observing loss value, we 

discerned that 16 to 64-bit messages consistently outperformed 

other message sizes, including smaller sizes like 4 and 8 bits. 

These mid-range message sizes exhibited minimal noise and ideal 

values for Eve's loss, further emphasizing their efficacy in the 

algorithm. 

The final experiment delved into the challenging task of 

minimizing Bob's loss value after reaching a certain threshold. Our 

observation of an exponential increase in the number of steps 

required beyond a minimum loss value led us to construct a 

predictive function. While offering a rough estimate, this function 

serves as a valuable tool for understanding the computational 

demands of further error reduction. 

Concluding with the testing of our model, we affirm the credibility 

of our algorithm across various parameters. In summary, our 

comprehensive analysis allows us to assert three key conclusions: 

1) A message size ranging from 16 to 64 bits proves to be the most 

optimum for our algorithm. 2) A minimum sample size of 4096 is 

imperative for achieving lower loss values. 3) While reducing 

error to a single-digit number is achievable for most cases, the 

exponential increase in the required number of epochs for further 

reduction poses a noteworthy challenge. 

Collectively, this research significantly contributes to the field of 

symmetric cryptography by unraveling key insights and 

optimizing algorithmic performance. The paper offers a 

foundation for refining cryptographic algorithms and 

understanding the interplay between parameters, providing 

practical implications for real-world applications [3][11]. Future 

research endeavors can build upon these findings, exploring 

additional parameters, refining predictive models, and extending 

the application of symmetric cryptography to address evolving 

challenges in the realm of cybersecurity. As we look ahead, this 

work lays the groundwork for a more nuanced and efficient 

approach to cryptographic algorithm design and implementation. 
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