
Accelerating Training and Enhancing Security Through Message Size Optimization in Symmetric Cryptography

1

Accelerating Training and Enhancing Security Through Message

Size Optimization in Symmetric Cryptography

Abhisar*, Madhav Yadav**, Girish Mishra***

* Department of Mechanical Engineering, IIT Delhi, Delhi, India

abhisar.sos.07@gmail.com

** Department of Mathematics and Computing, IIT Hyderabad, Hyderabad, India

madhavyadav4595@gmail.com

*** Scientific Analysis Group, Defence R&D Organisation, Delhi, India

gmishratech28@gmail.com

Abstract- This research extends Abadi and Andersen's exploration

of neural networks using secret keys for information protection in

multiagent systems. Focusing on enhancing confidentiality

properties, we employ end-to-end adversarial training with neural

networks Alice, Bob, and Eve. Unlike prior work limited to 64-bit

messages, our study spans message sizes from 4 to 1024 bits,

varying batch sizes and training steps. An innovative aspect

involves training model Bob to approach a minimal error value

close to zero and examining its effect on the feasibility of the

model. This research unveils the neural networks' adaptability and

scalability in encryption and decryption across diverse scenarios,

offering valuable insights into their optimization potential for

secure communication.

Keywords- Symmetric neural network, Alice, Bob, Eve,

Cryptography, Adversarial neural cryptography.

1. INTRODUCTION

n recent years, the pervasive utilization of neural networks has

remarkably advanced our capabilities in tackling increasingly

intricate tasks. Notably, these networks have demonstrated their

prowess in diverse applications, ranging from the deployment of

Generative Adversarial Networks (GANs) [1] for generating and

discerning fake images to our current exploration into the domain

of symmetric Cryptography. Building on the seminal work of

Martín Abadi and David G Andersen [2]., our research delves into

the world of secure communication within a multiagent system

[3], employing a sophisticated end-to-end adversarial training

system featuring neural networks Alice, Bob, and Eve.

This investigation unfolds within the context of enhancing

confidentiality properties, a critical pursuit in secure

communication, especially when considering potential

adversaries. Unlike traditional cryptographic approaches [4] that

prescribe specific algorithms, our methodology embraces the

flexibility of end-to-end adversarial training. This novel approach

introduces an adaptive layer, allowing neural networks Alice and

Bob to dynamically evolve in response to potential threats [5],

particularly addressing information interception by a third neural

network, Eve.

Expanding on the groundwork laid by Abadi and Andersen [2],

our research pioneers comprehensive experiments with message

sizes ranging from 4 to 1024 bits, in an effort to find the most

optimized message size, while we also try various experiments to

minimize our error and a lot more. This expansive exploration

includes dynamic adjustments to batch sizes and training steps,

providing an understanding of how neural networks adapt and

scale in mastering encryption and decryption processes across a

spectrum of message sizes and training conditions.

A unique key-point of our investigation involves the introduction

of a novel dimension, where we try to train model Bob to approach

its minimal error value, essentially converging towards zero. This

objective not only refines the learning process but also emphasizes

on maximizing the confidentiality goals achieved through the

interactions of neural networks in our multiagent system.

Our paper is structured into five main sections. Section 1 is the

introduction followed by Section 2 which provides a

comprehensive overview of the model and its workings. In Section

3, we outline the experiments conducted on the model, and Section

4 presents the results and analyses. Section 5 is concerned with

testing of the model. Finally, in Section 6, we draw conclusions

from our research, emphasizing the potential community impact

of our findings.

Each dimension of our research contributes unique benefits. The

exploration of diverse message sizes enriches our understanding

of neural network adaptability in different scenarios. Dynamic

adjustments to batch sizes and training steps enhance the

scalability and efficiency of the networks. The pursuit of

minimizing the error of model Bob not only refines the learning

process but also underscores our dedication to achieving the

highest levels of confidentiality in secure communication. Overall,

this research significantly advances our knowledge of the

adaptability and optimization potential of neural networks, laying

a solid foundation for future advancements in the realm of

confidential information exchange.

I

mailto:abhisar.sos.07@gmail.com
mailto:madhavyadav4595@gmail.com
mailto:gmishratech28@gmail.com

Accelerating Training and Enhancing Security Through Message Size Optimization in Symmetric Cryptography

2

2. UNDERSTANDING THE MODEL

2.1. OVERVIEW

The research simulates a cryptographic communication scenario

involving three entities: Alice, Bob, and Eve. It initializes

parameters and generates random shared keys and plain-text

messages for Alice. A neural network architecture is defined

[6][7][8], shared by Alice and Bob, along with a smaller one for

Eve. The networks use convolutional layers and activation

functions like sigmoid and tanh. The research implements loss

functions to measure the separation between Alice's input and

Bob's output, as well as the comparison of Eve's output to a

random guess. Training involves alternating between training

Alice/Bob and training Eve using an Adam optimizer. The losses

for Bob and Eve are recorded and printed during training steps.

Overall, the research explores the dynamics of secure

communication, emphasizing the challenge of maintaining

confidentiality in the presence of an eavesdropper.

2.2. MESSAGE AND KEY SIZE

In contrast to the methodology employed by Abadi and David,

where key size and message size were consistently kept equal, our

research introduces a deliberate variation in these sizes.

Specifically, we explore sizes of 4, 8, 16, 32, 64, 128, 256, 512

and 1024 bits. This intentional diversification aims to understand

the behavior of Bob and Eve when confronted with significantly

larger key sizes. Throughout these experiments, the sample size is

maintained as a constant value of 8192, allowing us to isolate and

analyze the impact of key and message size variations on the

performance of the neural networks involved. A sample size of

8192 was bifurcated into two parts, training and testing. The

sample size was divided into batches, each containing 256

messages hence, a total of 32 batches: 25 for training and 7 for

testing.

2.3. CREATION OF MESSAGE AND KEY

In this study, the 'message' and 'keys' are conceptualized as

NumPy arrays, each having dimensions of (sample size, message

size). To assemble these arrays, an encompassing structure of

8192 rows (sample size) was generated. Within each row, columns

were created in accordance with the specified message size.

Consequently, every row encapsulates a message with values set

at either 1 or -1. These messages were randomly generated.

These randomly generated messages function as the plaintext

received by Alice, destined for subsequent transformation into

ciphertext. In parallel, a 2D array of keys was crafted, mirroring

the number of rows at 8192 (sample size) and columns aligned

with the bits in each key. This array symbolizes the shared key

between Alice and Bob, a component for Bob to accurately predict

ciphertexts.

2.4. LOSS FUNCTIONS FOR ALICE, BOB, AND EVE

The research incorporates a systematic approach to loss function

design for the neural networks of Alice, Bob, and Eve [6]. The

overarching objective is to guide Alice and Bob in minimizing

their respective losses while concurrently ensuring that Eve's error

consistently increases. Alice and Bob collaborate to enhance their

performance, aiming for minimal loss, while Eve pursues the

minimization of her error without access to the decryption key.

The design of these loss functions is pivotal in shaping the

adversarial training process. The subsequent step involves setting

these loss functions as minimization constraints, aligning with the

collective goal of training each neural network to excel in its

designated role.

2.5. BOB AND EVE LOSS FUNCTION

The algorithm leverages Hamming distance as a key metric to

minimize errors. Hamming distance provides a quantitative

measure of dissimilarity between binary sequences which in our

case is the discrepancy of message generated by Bob and the

original text. By systematically comparing the bits of the original

and generated messages, the algorithm identifies discrepancies

and aims to minimize the Hamming distance, effectively reducing

errors in the output. This utilization of Hamming distance [9]

serves as a fundamental component in the algorithm's strategy to

enhance accuracy and optimize performance. This result is

calculated for all the messages and averaged to give an average

value of loss. In a similar way, the loss function for Eve was

calculated.

2.6. COMBINED ALICE, BOB, EVE LOSS FUNCTION

In our neural network framework, the objective extends beyond

minimizing Bob's loss; it also involves amplifying Eve's loss. To

achieve this delicate balance, a combination of two functions is

utilized: Bob's loss function and the difference between Eve's

output and a random guess. Notably, the final result is not

computed using Eve's loss function, but rather through assessing

the difference between Eve's output and a random guess. This

choice has been made to ensure that if Eve guesses all bits

incorrectly, the network's overall dynamics remain relatively

stable. This intentional insensitivity to complete incorrect guesses

prevents possible hints that might aid Eve in deducing the

encryption, reinforcing the goal of keeping Eve consistently

unaware and unable to surpass random chance in her predictions.

This approach ensures the careful consideration given to

maintaining the integrity and security of the encryption process

within the neural network architecture.

 The Eve's distance from random guess is calculated as follows:

𝐸𝑣𝑒 𝑉𝑠 𝑅𝑎𝑛𝑑𝑜𝑚 𝐺𝑢𝑒𝑠𝑠 =
(𝑀𝑒𝑠𝑠𝑎𝑔𝑒 𝑆𝑖𝑧𝑒 − 𝐸𝑣𝑒 𝐿𝑜𝑠𝑠)2

𝑀𝑒𝑠𝑠𝑎𝑔𝑒 𝑆𝑖𝑧𝑒2

A combined function was created such that it considers both the

Bob's distance from original message and Eve's distance from

random guess.

𝐴𝑙𝑖𝑐𝑒 𝐵𝑜𝑏 𝐸𝑣𝑒 𝑂𝑝𝑡𝑖𝑚𝑖𝑠𝑖𝑛𝑔 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛
= 𝐵𝑜𝑏 𝐿𝑜𝑠𝑠 + 𝐸𝑣𝑒 𝑉𝑠 𝑅𝑎𝑛𝑑𝑜𝑚𝐺𝑢𝑒𝑠𝑠

Accelerating Training and Enhancing Security Through Message Size Optimization in Symmetric Cryptography

3

By minimizing this function, we can ensure that both Bob decrypts

the message correctly while ensuring Eve cannot perform any

better than a random guess.

2.7. NEURAL NETWORK

The neural network structure used by Bob, Eve, and Alice is as

follows:

A function creates and initializes weight variables for the neural

network layers. Another function takes an input, encrypt message

(representing the encrypted message), and processes it through a

series of operations.

It starts by performing matrix multiplication with a fully

connected layer, followed by reshaping the result. Then, a

sequence of convolutional layers is applied with varying filter

sizes and strides, introducing non-linearities through activation

functions like sigmoid and tanh. These convolutional layers

contribute to the network's ability to learn features from the input

data. The final result is reshaped to match the expected output size.

2.8. TRAINING OF ALICE, BOB AND EVE

The neural network-based symmetric encryption system involves

distinct objectives for its participants. Alice, responsible for

encrypting plaintext, aims to create a cipher decipherable by Bob

while thwarting Eve's attempts to accurately guess the content.

Bob, tasked with decryption, endeavors to accurately recover the

original plaintext given the ciphertext and the key. Meanwhile,

Eve's objective is to decipher the message solely based on the

ciphertext. To achieve these goals, the system employs the Alice

Bob Eve Optimising Function, which minimizes the combined

loss of Alice and Bob during training. Implemented with the Adam

optimizer, the training process monitors the loss function for both

Bob and Eve after each iteration. Collaboration among the

participants ensures the encryption and decryption processes are

harmoniously aligned to meet the desired objectives. Additionally,

the training regimen focuses on minimizing Eve's loss, thereby

enhancing her chances of decrypting the code correctly. The

termination conditions for the code include reaching a

predetermined number of steps or achieving an optimal value for

Bob's loss, with each condition tailored as required by the

experiment.

2.9. EXTRACTING DATA

The data was extracted from the model in one of the three ways:

1. By fixing the number of steps, for example the model

would stop operating after executing 5,000 steps.

2. By fixing the Loss of Bob. By constraining the lower

limit of loss for Bob, we were able to calculate the

number of steps required to reach that accuracy. Please

note that we will be interchangeably using the terms Bob

loss and error which mean the same thing: how far Bob’s

decryption of the ciphertext is from the original plain

text.

3. By changing batch size. The effect of batch size on the

loss value was observed keeping the value of bits

constant.

The next section discusses the experiments conducted by us on the

model and our methodology behind them.

3. EXPERIMENTS ON OUR MODEL

3.1. MESSAGE SIZE V/S NUMBER OF EPOCHS FOR FIXED

ERROR

This experiment focuses on investigating the impact of varying

Message sizes and the associated number of epochs required for

training our model. Throughout the experiment, a constant error

value was set, specifically 0.5 and 0.1 in our case. The study

involved conducting trials with Message sizes of 4 to 1024 bits,

and recording the corresponding number of epochs needed to

achieve a predetermined error level.

The objective of this experiment is to identify the optimal message

size, aiming to minimize the number of iterations required for

effective training. This research holds potential applications

[3][11] in various fields where efficient training processes are

crucial for developing models with improved speed and resource

utilization.

3.2. SAMPLE SIZE V/S ERROR AT CONSTANT EPOCH

In the experiment conducted by Anderson and David [2], the

sample size was consistently set at 4096. However, our current

investigation seeks to assess the impact of different sample sizes

on the results. In this context, the sample size refers to the number

of plaintexts and keys that traverse our training model during each

epoch. By systematically varying the sample size, we aim to gain

insights into how this parameter influences the final outcomes of

the training process. However, for maintaining a uniformity, the

batch size was kept constant to 256 messages. We tried

experimenting with a sample size of 2048, 4096 and 8192

messages. Each of these samples were divided into batches of size

256 messages. This exploration is essential for a more nuanced

understanding of the relationship between batch size and the

achieved results, shedding light on potential optimizations, how to

achieve desired accuracy with minimal training time.

3.3. MESSAGE SIZE V/S ERROR FOR A FIXED NUMBER OF

EPOCHS

The focus of this experiment is to investigate how errors change

under a constant number of training cycles, specifically set at

5,000 epochs to ensure consistency. In a methodical manner, we

altered the bit size throughout the experimentation process and

observed the corresponding errors. By systematically adjusting the

bit size and measuring errors at each step, we aim to gain insights

into how different bit sizes impact error metrics. This structured

approach allows us to analyze and understand the relationship

between varying bit sizes and the resulting error rates, providing

valuable information about the sensitivity of our model to changes

in bit configuration.

Accelerating Training and Enhancing Security Through Message Size Optimization in Symmetric Cryptography

4

3.4. NUMBER OF EPOCHS V/S ERROR FOR FIXED

MESSAGE SIZE

This experiment is mainly focused on understanding how the

number of training cycles, known as epochs, affects reaching a

particular level of error in our model. We're keeping it simple by

creating a graph that shows the relationship between the number

of epochs and the error. This graph helps us make predictions

about how many epochs are needed to achieve a specific level of

accuracy. In other words, we're trying to figure out the best

number of training cycles to get our model to perform as

accurately as we want it to.

4. RESULTS AND ANALYSIS

4.1. RESULTS: MESSAGE SIZE V/S NUMBER OF EPOCHS

FOR FIXED ERROR

In the course of this experiment, our algorithm was subjected to

predefined termination criteria based on a specific Loss Value.

The experiment encompassed four distinct scenarios where the

designated loss values were set at 1, 0.75, 0.5, and 0.25. It was our

hypothesis that analyzing the behavior of the algorithm under

these diverse loss values would yield valuable insights, guiding us

in understanding the feasibility and effectiveness of our algorithm

in achieving the desired loss targets.

The results have been shown below (Fig 1., Fig 2. & Fig 3.)

Fig 1. Bar graphs for 4 bit and 8 bit message

Fig 2. Bar graphs for 16, 32, 64 and 256 bit message

Fig 3. Bar graphs for 512 bit message

Observations from the two plotted graphs, where the first had a

constant error of 0.5 and the second a constant error of 0.1:

1. As can be seen, the scale for 4 bit, 8 bit was totally

different to that of 16, 32, 64, and 256 bit messages which

was again different from 512 bit message. This result

implies that it is much easier for messages larger than 8

bits to quickly reach their optimal value (minimum loss

value) than 4 and 8 bit messages.

2. For higher message sizes, more epochs were needed to

compensate for the increased number of possibilities.

Between the sizes of 16 to 64, an optimal message size

was identified. Within this range, the message size was

sufficient for the algorithm to function effectively

without being excessively large, resulting in a reduced

need for epochs.

3. In general, as lesser loss value was desired, the number

of epochs rose for every bit. For message sizes of 512 bits

the loss value of 0.25 was not achieved even after 25,000

epochs and remained stagnant to minimal value of 0.4. A

similar observation was observed for 1024 bits where

even after 15,000 epochs, a minimal loss value of 30 was

observed.

4. The observed pattern between 16 and 64 suggests a sweet

spot for the most optimal message size during the model

training process. This range allows for efficient algorithm

performance without requiring an excessive number of

epochs.

4.2. RESULTS: SAMPLE SIZE V/S ERROR AT CONSTANT

EPOCH

The primary objective of this experiment was to investigate the

extent to which we could reduce the sample size, leading to a

decrease in computational power requirements without

significantly compromising the error rate. The initial setup

involved a sample size of 8192 messages, organized into batches

0
500

1000
1500
2000
2500
3000

Loss Value =
1

Loss Value =
0.75

Loss Value
=0.5

Loss Value =
0.25

N
u

m
b

er
 o

f
ep

o
ch

s

Loss value v/s number of epochs

4 bit 8 bit

0

200

400

600

Loss Value =
1

Loss Value =
0.75

Loss Value
=0.5

Loss Value =
0.25

N
u

m
b

er
 o

f
ep

o
ch

s

Loss value v/s number of epochs

16 bit 32 bit 64 bit 128 bit 256 bit

0

2000

4000

6000

8000

10000

12000

14000

16000

Loss Value = 1 Loss Value = 0.75 Loss Value =0.5

N
u

m
b

er
 o

f
ep

o
ch

s

Loss value v/s number of epochs

512 bit

Accelerating Training and Enhancing Security Through Message Size Optimization in Symmetric Cryptography

5

of 256 messages each. The sample size was systematically

reduced, reaching a minimum of 2048 bits. Beyond this point, any

further reduction in the sample size markedly diminished accuracy

on the test data.

To assess the impact of these variations, we compared Bob's loss

values on both the training and testing sets upon the completion of

5000 epochs. The ensuing observations are detailed below.

Fig 4. Bar graphs for different sample sizes, 4 bit message

Fig 5. Bar graphs for different sample sizes, 16 bit message

Fig 6. Bar graphs for different sample sizes, 64 bit message

Fig 7. Bar graphs for different sample sizes, 256 bit message

The results can be summarized as follows:

1. In the case of 4-bit messages (Fig 4.), the training and

testing errors exhibit some comparability, potentially

stemming from the minimal training requirements for

small-sized messages. However, in line with our prior

experiments, 4-bit messages still manifest a notably high

error rate in both the training and testing datasets.

2. In contrast, across all other scenarios, a substantial

discrepancy in training and testing errors is evident for

varying sample sizes. Notably, the 8192-sample size

yields significantly lower errors compared to the 2048

and 4096 sample sizes.

2048 4096 8192

4 bit training loss 1.156 0.531 0.375

4 bit test loss 1.254 0.64 0.21

1.156

0.531

0.375

1.254

0.640

0.210

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Lo
ss

 V
al

u
e

Sample Size

4 bit message

4 bit training loss 4 bit test loss

2048 4096 8192

16 bit training loss 0.126 6.00E-07 5.80E-07

16 bit test loss 3.754 0.0635 0.0227

1.26E-01 6.00E-07 5.80E-07

3.754E+00

6.350E-02
2.270E-02

0

0.5

1

1.5

2

2.5

3

3.5

4

Lo
ss

 V
al

u
e

Sample Size

16 bit message

16 bit training loss 16 bit test loss

2048 4096 8192

64 bit training loss 2.326 0.0078 0.0151

64 bit test loss 35.34 1.362 0.084

2.33 0.01 0.02

35.34

1.36
0.08

0

5

10

15

20

25

30

35

40

Lo
ss

 V
al

u
e

Sample Size

64 bit message

64 bit training loss 64 bit test loss

2048 4096 8192

256 bit training loss 5.516 5.492 0.283

256 bit test loss 194.304 70.407 6.8

5.52 5.49 0.28

194.30

70.41

6.80

0

50

100

150

200

250

Lo
ss

 V
al

u
e

Sample Size

256 bit message

256 bit training loss 256 bit test loss

Accelerating Training and Enhancing Security Through Message Size Optimization in Symmetric Cryptography

6

3. Observations reveal an upward trend in error rates as we

increase the message size while maintaining a constant

sample size.

4. Interestingly, the 16-bit message size emerged as a

favorable choice, demonstrating negligible errors in both

the training and testing datasets.

4.3. RESULTS: MESSAGE SIZE V/S ERROR FOR A FIXED

NUMBER OF EPOCHS

In this study, we maintained a consistent number of epochs at

5000, selecting this value based on a balance between achieving a

desirable error reduction and ensuring computational feasibility.

The choice of 5000 epochs was motivated by their sufficiency in

minimizing the error to 0.05, aligning with our experimental

objectives. Importantly, this epoch configuration allowed for the

successful execution of our experiments without imposing

excessive computational demands. Going beyond this threshold to

achieve higher accuracy levels would have necessitated a

significant increase in computational time, a trade-off that was

deemed unnecessary given the satisfactory results obtained at the

chosen epoch size.

The test was done for message sizes of 4, 8, 16, 32, 64, 128, 256,

and 1024 bits. The error at the end of 5000 epochs for each of these

cases was noted and the results were observed.

The images below show the variation of error v/s epoch for

different bits (4, 8, 16, 32, 64, 128, 256, and 1024)

Fig 8. Epoch number v/s Loss value for 4 bit message

Fig 9. Epoch number v/s Loss value for 8 bit message

Fig 10. Epoch number v/s Loss value for 16 bit message

Fig 11. Epoch number v/s Loss value for 32 bit message

Accelerating Training and Enhancing Security Through Message Size Optimization in Symmetric Cryptography

7

Fig 12. Epoch number v/s Loss value for 64 bit message

Fig 13. Epoch number v/s Loss value for 128 bit message

Fig 14. Epoch number v/s Loss value for 256 bit message

Fig 15. Epoch number v/s Loss value for 512 bit message

Fig 16. Epoch number v/s Loss value for 1024 bit message

Fig 17. Error v/s bit size at 5000th epoch (log10)

0

0.5

1

1.5

2

4 8 16 32 64 128 256 512 1024

lo
g(

1
+L

o
ss

 V
al

u
e)

Message Size

Loss value at 5000th epoch

Loss Value (5000th epoch)

Accelerating Training and Enhancing Security Through Message Size Optimization in Symmetric Cryptography

8

Upon analyzing the graphs, the following observations were

made:

1. For a 4 bit message (Fig 8.), the graph is very noisy. The

noisiness decreases as the message as the message size

increases.

2. From 16 bit message to 64 bit message (Fig 10, 11, 12),

the graphs have significantly less amount of noise while

keeping Eve’s error ideal. This however changes as we

increase the message size, implying on increasing

message size, both Bob and Eve notice a significant

decrease in their losses nearly becoming equal as the

message size increases. (Fig 14. to Fig 16). This result is

of very importance because it shows that for larger

message sizes, if eve is trained enough the security of the

ciphertext could be compromised.

3. The minimum recorded error, observed after 5000

epochs, was for the 32-bit message (Fig 11.), specifically

4.2468 × 10-7. Conversely, the maximum error was

recorded for the 1024-bit message (Fig 16.), amounting

to 35.41.

4. The error remained relatively stable for message sizes up

to 256 bits but exhibited an exponential surge thereafter.

The error recorded for a 256-bit message (Fig 14.) was

0.283. A plausible explanation for this pattern could be

that once the algorithm surpasses a certain error

threshold, (0.5 in our case), further reduction becomes

notably challenging. Consequently, a substantial

decrease in error was not observed.

5. The number of steps necessary to achieve a specific error

value increases with an increase in message size.

6. The largest message size with correspondingly sufficient

minimization of error after 5000 epochs (Fig 17.) was 64

bit size and 16 bit. This might be because as the size

increases, the possibilities for our model to amend

changes also increases, hence increasing the number of

epochs required.

4.4. RESULTS: NUMBER OF EPOCHS V/S ERROR FOR

FIXED MESSAGE SIZE

In this experiment, the focus shifted to plotting the number of

epochs against the loss value. The objective was to observe the

variation in the number of epochs required from the beginning to

the end for each error value. This experiment is designed to

provide insights into the dynamic relationship between the number

of epochs and loss values, offering a basis for predicting an

approximate estimate of the epochs needed to reach a specific loss

value for a given message size and error threshold.

Consider the following graphs:

Fig 18. Loss value v/s Epoch number for 4 bit message

Fig 19. Loss value v/s Epoch number for 32 bit message

Fig 20. Loss value v/s Epoch number for 256 bit message

The following things can be observed here:

1. A scatter plot was employed to illustrate the density of

points for a specific Bob's loss value. Notably, the graphs

revealed a significantly higher density as the error value

approached zero. This heightened density near zero

suggests a concentrated convergence behavior around

this threshold.

0

1000

2000

3000

4000

5000

6000

012345

N
u

m
b

er
 o

f
ep

o
ch

Loss Value

4 bit message

Epoch Number

0

2000

4000

6000

-10010203040 N
u

m
b

er
 o

f
ep

o
ch

Loss Value

32 bit message

Epoch Number

0

2000

4000

6000

050100150200250300
N

u
m

b
er

 o
f

ep
o

ch

Loss Value

256 bit message

Epoch Number

Accelerating Training and Enhancing Security Through Message Size Optimization in Symmetric Cryptography

9

2. Furthermore, a notable surge in the number of epochs

was observed when the error value approached zero. This

observation aligns with our earlier finding that crossing a

certain threshold value prompts a substantial increase in

the number of epochs required to minimize the error. The

sudden jump in epochs near zero underscores the

algorithm's increased challenge in further reducing error

beyond this critical point.

Let us consider a special case where we sample size = 4096

and the whole sample gets trained together. This was done to

reduce the noise for this particular experiment. For a 256 bit

message the graph was observed as follows:

Fig 21. Loss value v/s Epoch number for 256 bit message with

4096 samples

By observing these trends, a formula was devised to predict

possible number of epochs for a given error:

 NumberOfEpoch = −a ln(𝐿𝑜𝑠𝑠𝑉𝑎𝑙𝑢𝑒) + 𝑏

Where a and b are positive real numbers.

By taking few initial values of number of epoch and error, a

and b can be found.

This was tested for 128 bit message where the predicted

function came out to be y = -559.6ln(x) + 2645.7 and

corresponding R2 value came out to be 0.9559.

This was repeated for 256-bit message, where equation came

out to be 𝑦 = −661𝑙𝑛(𝑥) + 3163.2 and R2 value came out

to be 0.9078 and for 32 bit message 𝑦 = −1066𝑙𝑛(𝑥) +
 2609.6 and R2 value of 0.8972.

This result could prove to be quite effective in determining

whether the accuracy required is feasible or not. Since the

function for 256 bit message is known, we can easily find a

rough estimate on the number of times we have to train our

model so that the model becomes accurate.

However, it should be noted that this is just a rough

approximation and is limited to this case only. It can be used

to find an approximate order of epochs required and not its

exact value.

Also, the accuracy of this varies with number of points

considered for finding a and b. In general, more the number

and spread out the points were, more the accuracy of this

function.

5. TESTING OF OUR MODEL

The preceding sections concentrated on scrutinizing the impact of

varying parameters on the algorithm during training. No test data

was employed, and the model underwent continuous training on a

consistent number of samples. However, the objective of this

section is to assess our algorithm and determine the average loss

value. This assessment will ultimately enable us to draw

conclusions regarding the credibility of our model.

Analyzing the comparison of testing Bob loss with other

parameters reveals several trends (Table 1).

1. For a given epoch, the training loss value of Bob and the

testing loss value of Bob were closely aligned up to 8 bits.

The divergence between training and testing loss values

starts to occur from 16 bits onwards.

2. Up to 128 bits, the loss value is consistently below 1, with

the lowest loss values in the testing set recorded for 16-

bit messages.

3. From 256 bits onwards, a notable increase in Bob's loss

is observed.

4. Up to 64 bits, an increase in the number of epochs did not

significantly impact testing accuracy. This suggests that

the models were not prone to overtraining.

5. A consistent trend indicates that lower loss values during

training correlate with lower loss values during testing.

6. While the gap between loss values of Bob in testing and

training datasets wasn't substantial, the same cannot be

said for Eve. Eve exhibited very high error values for

higher message sizes, even when their training losses

were significantly lower.

A lot more results can be observed from another experiment we

did in the previous section (section 4.2)

1. We observed there was a significant drop in bob loss

for tests as the sample sizes were increased across all

the cases.

2. The lowest loss value of bob in while testing was

observed for 16 bit messages when comparing two

bits having same number of epochs.

0

1000

2000

3000

4000

5000

6000

050100150200250300

N
u

m
b

er
 o

f
Ep

o
ch

Loss Value

Message Size = 256

Accelerating Training and Enhancing Security Through Message Size Optimization in Symmetric Cryptography

10

On observing the Table 2 , the loss value during training for bob

was fixed to 0.1 and the corresponding results were observed.

1. Consistent with our previous findings, it was once

again observed that the loss value for Bob during

testing was minimum for 16-bit messages, followed

by 32-bit messages. It's worth noting that 4-bit, 8-bit,

and 512-bit messages were unable to reduce their

Bob loss to 0.1; therefore, they have been omitted

from the table. It should be noted that even eve

showed significant improvement in its accuracy,

Table 1: Effect of number of epochs and batch size on testing Bob loss

Table 2: Testing Bob loss when training Bob loss is fixed

Accelerating Training and Enhancing Security Through Message Size Optimization in Symmetric Cryptography

11

especially for 256 bit message size where she was

able to guess most of the bits correctly.

6. CONCLUSION

The primary purpose of undertaking this research was to gain a

comprehensive understanding of the dynamics of symmetric

cryptography, with a specific focus on the impact of varying

parameters on algorithmic performance during training and testing

phases. Through a series of experiments, we tried to unravel the

nuanced relationships between Message size, error rates, number

of epochs, and batch sizes, aiming to optimize the functioning of

cryptographic algorithms.

In the course of our extensive experiments, we have gleaned

valuable insights that culminate in significant conclusions

regarding the performance and optimization of our symmetric

cryptography algorithm. Each experiment contributed unique

perspectives to our understanding.

Firstly, in the exploration of varying epochs versus message size

for fixed error, we identified a crucial factor for achieving desired

accuracy—the most optimal message size. Our findings indicate

that, for our algorithm, a message size ranging from 16 to 64 bits

emerges as the most favourable for attaining the desired level of

accuracy.

Moving on to the investigation of batch size versus epoch at

constant error, we sought to determine the minimum batch size

that balances computational efficiency with result quality. Our

conclusive observation is clear: a sample size below 4096

compromises accuracy, while larger sample sizes, around 4096 or

8192, yield superior results. This knowledge provides a practical

guideline for optimizing the batch size in the algorithm.

In the examination of varying epochs and observing loss value, we

discerned that 16 to 64-bit messages consistently outperformed

other message sizes, including smaller sizes like 4 and 8 bits.

These mid-range message sizes exhibited minimal noise and ideal

values for Eve's loss, further emphasizing their efficacy in the

algorithm.

The final experiment delved into the challenging task of

minimizing Bob's loss value after reaching a certain threshold. Our

observation of an exponential increase in the number of steps

required beyond a minimum loss value led us to construct a

predictive function. While offering a rough estimate, this function

serves as a valuable tool for understanding the computational

demands of further error reduction.

Concluding with the testing of our model, we affirm the credibility

of our algorithm across various parameters. In summary, our

comprehensive analysis allows us to assert three key conclusions:

1) A message size ranging from 16 to 64 bits proves to be the most

optimum for our algorithm. 2) A minimum sample size of 4096 is

imperative for achieving lower loss values. 3) While reducing

error to a single-digit number is achievable for most cases, the

exponential increase in the required number of epochs for further

reduction poses a noteworthy challenge.

Collectively, this research significantly contributes to the field of

symmetric cryptography by unraveling key insights and

optimizing algorithmic performance. The paper offers a

foundation for refining cryptographic algorithms and

understanding the interplay between parameters, providing

practical implications for real-world applications [3][11]. Future

research endeavors can build upon these findings, exploring

additional parameters, refining predictive models, and extending

the application of symmetric cryptography to address evolving

challenges in the realm of cybersecurity. As we look ahead, this

work lays the groundwork for a more nuanced and efficient

approach to cryptographic algorithm design and implementation.

7. REFERENCES

[1] Goodfellow, I. J. (2014, June 10). Generative adversarial networks.
arXiv.org. https://arxiv.org/abs/1406.2661

[2] Abadi, M. (2016, October 21). Learning to Protect Communications with
Adversarial Neural Cryptography. arXiv.org.
https://arxiv.org/abs/1610.06918

[3] I. Meraouche, S. Dutta, S. K. Mohanty, I. Agudo and K. Sakurai, "Learning
Multi-Party Adversarial Encryption and Its Application to Secret Sharing,"
in IEEE Access, vol. 10, pp. 121329-121339, 2022, doi:
10.1109/ACCESS.2022.3223430.

[4] Meraouche, Ishak & DUTTA, Sabyasachi & Tan, Haowen & Sakurai,
Kouichi. (2021). Neural Networks Based Cryptography: A Survey. IEEE
Access. PP. 1-1. 10.1109/ACCESS.2021.3109635.

[5] William Stallings. 2010. Cryptography and Network Security: Principles
and Practice (5th. ed.). Prentice Hall Press, USA.

[6] Adversarial neural cryptography(October 20, 2018) - the Mathy Bit. (n.d.).
https://mathybit.github.io/adversarial-neural-crypto/

[7] Nuclearstar. (n.d.). Adversarial_Neural_Cryptography/main.py at master ·
Nuclearstar/Adversarial_Neural_Cryptography. GitHub.
https://github.com/Nuclearstar/Adversarial_Neural_Cryptography/blob/mas
ter/Research_Paper.pdf

[8] VamshikShetty. (n.d.). adversarial-neural-cryptography-tensorflow/train.py
at master · VamshikShetty/adversarial-neural-cryptography-tensorflow.
GitHub. https://github.com/VamshikShetty/adversarial-neural-
cryptography-tensorflow/blob/master/train.py

[9] Bookstein, Abraham & Kulyukin, Vladimir & Raita, Timo. (2002).
Generalized Hamming Distance. Information Retrieval. 5.
10.1023/A:1020499411651.

[10] Chandra, Sourabh & Bhattacharyya, Siddhartha & Paira, Smita & Alam, Sk.
(2014). A Study and Analysis on Symmetric Cryptography.
10.1109/ICSEMR.2014.7043664.

[11] Sooksatra, K., & Rivas, P. (2020). A Review of Machine Learning and
Cryptography Applications. 2020 International Conference on
Computational Science and Computational Intelligence (CSCI), 591-597.

https://arxiv.org/abs/1610.06918
https://github.com/Nuclearstar/Adversarial_Neural_Cryptography/blob/master/Research_Paper.pdf
https://github.com/Nuclearstar/Adversarial_Neural_Cryptography/blob/master/Research_Paper.pdf

