
Multiplex: TBC-based Authenticated Encryption
with Sponge-Like Rate

Thomas Peters1, Yaobin Shen2 and François-Xavier Standaert1

1 UCLouvain, ICTEAM, Crypto Group, Louvain-la-Neuve, Belgium
thomas.peters@uclouvain.be,fstandae@uclouvain.be

2 School of Informatics, Xiamen University, Xiamen, China
yaobin.shen@xmu.edu.cn

Abstract. Authenticated Encryption (AE) modes of operation based on Tweakable
Block Ciphers (TBC) usually measure efficiency in the number of calls to the un-
derlying primitive per message block. On the one hand, many existing solutions
reach a primitive-rate of 1, meaning that each n-bit block of message asymptotically
needs a single call to the TBC with output length n. On the other hand, while these
modes look optimal in a blackbox setting, they become less attractive when leakage
comes into play, since all these calls must then be equally well protected to maintain
security. Leakage-resistant modes improve this situation, by generating ephemeral
keys every constant number of calls. However, rekeying is inherently suboptimal in
primitive-rate, since a TBC call can only be used either to refresh a key or to encrypt
a block. Even worse, existing solutions achieving almost n bits of security for n-bit
secret keys have at most a primitive-rate 2/3. Hence the question: Can we design
a highly-secure TBC-based rekeying mode with “nearly optimal” primitive-rate? We
answer this question positively with Multiplex, a new mode that has primitive-rate
d/(d + 1) given a TBC with a dn-bit tweak. Multiplex achieves n− log2(dn) bits of
security for both (i) misuse-resilience CCA confidentiality security in the blackbox
setting and (ii) Ciphertext Integrity with Misuse-resistant and unbounded Leakage
in encryption and decryption (CIML2). It also provides (iii) confidentiality with
leakage up to the birthday bound. Furthermore, Multiplex can run d + 1 calls in par-
allel in each iteration. The combination of these features gives a mode of operation
that inherits most of the good implementation features and flexibility of a Duplex
sponge – therefore paving the way towards sound comparisons between TBC-based
and permutation-based AE.
Keywords: Leakage-Resistance · Authenticated Encryption · Tweakable Block Ci-
pher

1 Introduction
Leakage-resistant modes of operation aim to better balance the burden of preventing side-
channel attacks between cryptographic designers and hardware engineers. They allow so-
called leveled implementations, where different parts of the implemented designs require
different (more or less expensive) countermeasures. In general, adding leakage-resistant
features to a mode implies moderate overheads when side-channel attacks are not a concern
and can lead to significant gains when they are a concern. In the context of lightweight
cryptography where single-pass modes are preferred, it is for example possible to reach
the best possible integrity with leakage guarantees so far, coined Ciphertext Integrity with
Misuse-resistance and Leakage in encryption and decryption (CIML2) [26], in a liberal
model where only a key-derivation function (KDF) and a tag-generation function (TGF)

thomas.peters@uclouvain.be, fstandae@uclouvain.be
yaobin.shen@xmu.edu.cn

2 Multiplex: TBC-based Authenticated Encryption with Sponge-Like Rate

have to be protected against leakage, while the rest of the computations can leak in full
(so require no countermeasure). By contrast, it is not possible to reach the best possible
confidentiality with leakage guarantees in a leveled manner (which requires two passes)
in this case: only CCA security with misuse-resilience and Leakage in encryption, coined
CCAmL1 [26], can then be obtained. CCAmL1 designs ensure that confidentiality of
plaintexts is preserved as long as the nonces used to encrypt are fresh (even if other
plaintexts are compromised in the past [2]). They require strong protections against
leakage for their KDF and TGF, and mild protections for the message-processing part.
As discussed in [8], a necessary condition for the strongly protected parts of these modes is
that they resist Differential Power Analysis (DPA), which are side-channel attacks where
the adversary can observe the leakage of many different inputs for the same key, and a
necessary condition for the mildly protected parts is that they resist Simple Power Analysis
(SPA), which are side-channel attacks where the adversary can only observe the leakage of
a small number of inputs for the same key (e.g., fixed by the cryptographic design thanks to
a re-keying process in the case of leakage-resistant encryption). Leveled implementations
that ensure CIML2 and CCAmL1 security are denoted Grade-2 by Bellizia et al. in [8].

The leveled implementation of (e.g., grade-2) designs can lead to significant perfor-
mance gains over uniformly protected ones. Furthermore, these gains increase when
the target physical security level increases, due to increased cost of the countermeasures
needed in this case. This conclusion has now been consolidated both for sponge-based
designs like Ascon [20, 43] or Spook [7, 35] and for designs based on block ciphers or
Tweakable Block Ciphers (TBC) like LR-BC [15] or Triplex [42]. Triplex (which is the start-
ing point of our work) is a single-pass and leakage-resistant mode of operation. In each
iteration, it encrypts 2n bits of message with 3 calls to a TBC with 2n-bit tweaks where
n is the block size. It has primitive-rate 2/3, but its 3 TBC calls cannot be performed in
parallel.

The main contribution of this work is to observe that by improving Triplex to make it
parallelizable for each iteration, we can reach a flexible design, denoted as Multiplex and
illustrated in Figure 5. It leads to two important outcomes.

On the one hand, Multiplex can encrypt with a flexible rate given a TBC with arbitrary
tweak length and fixed block and key size of n bits. For this purpose, Multiplex uses a TBC
with dn-bit tweak as underlying primitive and it is able to encrypt dn bits of message with
d + 1 calls to this TBC.1 So whereas Triplex has a primitive-rate of 2/3 and is partially
serial, the primitive-rate of Multiplex approaches 1 when d increases and its d + 1 TBC
calls can be processed in parallel. Therefore, Multiplex has a primitive-rate of d/(d + 1).
A more detailed comparison between Multiplex and Triplex is provided in Section 4.

On the other hand, and besides its interest as an efficient leakage-resistant mode
of operation, the similarity of Multiplex with the Duplex construction is striking [13].
In order to reach a similar security level (namely ≈ n − log2(dn) bits of CIML2 and
CCA security, ≈ n/2 bits of CCAmL1 security [7]), a Duplex construction needs a 2n-bit
capacity. It means that in order to encrypt dn bits of message in each iteration, it requires
a permutation operating on a (d + 2)n-bit state. Multiplex requires a TBC with an input
space of the same size in this case: the dn-bit tweak, the n-bit plaintext and the n-bit key,
for a total of (d + 2)n bits. The d + 1 TBCs it uses in parallel have the same input space
as well (i.e., these TBCs use the same inputs organized differently). Hence, Multiplex and
the Duplex sponge require primitives with identical input spaces to encrypt messages of
the same size with the same security. They only differ in their output space: Multiplex
uses d + 1 calls to a TBC with n-bit output space for this purpose, while the Duplex
construction uses 1 call to a (d + 2)n-bit permutation.

The interest of Multiplex actually goes beyond the context of leakage-resistance. How
1The TBCs needed by Multiplex can be designed based on the tweakey framework [30]. We refer to

the Skinny family for exemplary instances of such designs [3].

Thomas Peters, Yaobin Shen and François-Xavier Standaert 3

to compare the efficiency of TBC-based and permutation-based designs has been a long-
standing open question in symmetric cryptography [38]. One recurrent challenge to answer
it is the better flexibility of permutation-based designs, which can increase their rate by in-
creasing the size of their underlying permutation. Multiplex provides such a flexibility and
improves over Skinny-Hash [4] which, to the best of our knowledge, is the only TBC-based
design with similar flexibility. As a result, it allows nailing down an interesting research
challenge for symmetric (crypt)analysists. Namely, since the flexibility of Multiplex and
the Duplex construction respectively come from increasing the tweak size of a TBC or the
permutation size of a sponge, it would be interesting to understand how the number of
rounds of these two primitives must increase in function of d for the corresponding authen-
ticated encryption schemes to maintain their security guarantees. The latter may differ
since, for example, generating pseudorandom n-bit blocks (with d+1 blocks per iteration)
is not the same as generating pseudorandom (d + 2)n-bit states. Equipped with such an
understanding, it would then become possible to evaluate the implementation figures of
the corresponding authenticated encryption schemes according to different metrics (e.g.,
speed, area, energy per bit, memory requirements, . . .).

Note that we give multi-user security proofs and consider schemes with n bits of public
key to have good bounds in this setting [6]. Our bounds are maintained if we ignore this
public parameter but are then only valid in the single-user setting. A similar tradeoff can
be applied to permutation-based designs [7], and it is therefore not discriminant for the
TBC vs. Duplex/sponge discussion.

Related works. Leakage-resistant authentication, encryption and authenticated encryp-
tion has been active research topics over the recent years, with many theoretical treatments
and proposals of concrete schemes. Theoretical treatments of block cipher based or TBC-
based designs include [11, 12, 37] and [10]. Theoretical treatments of permutation-based
designs include [18, 21, 27] and [22]. Examples of grade-3 designs (which enable leveled
implementations with CIML2 and CCAmL2 guarantees) include TEDT which is TBC-
based [9] and ISAP which is permutation-based [19]. Example of Grade-2 designs were
given before (Ascon, Spook, LR-BC, Triplex). These works generally suggest that a possi-
ble advantage of TBCs in the context of leakage is that they are more easily amenable
to proofs without idealized assumptions. They are built on the seed results of Micali
and Reyzin [34] and Dziembowski and Pietrzak [24] who laid the foundations of leakage-
resilient primitives such as pseudorandom generators, functions and permutations, with
numerous follow-ups [40, 45, 23, 25, 44].

As for analyses without leakage, we first mention the important result of Jovanovic et
al. [31]. It shows that some Duplex sponge designs offer n bits of security with a capacity
lower than 2n bits, which renders the output space of “standard” Duplex sponges (i.e.,
(d + 2)n bits) closer to that of Multiplex (i.e., (d + 1)n bits). Yet, this only holds without
leakage and while ensuring ≈ n−log2(dn) bits of CIML2 security requires a 2n-bit capacity
(see [42, Appendix C]). More generally, TBC-based and permutation-based designs are the
focus of a rich literature. We refer to [39] for a state-of-the-art TBC-based authenticated
encryption and to [17, 33] for developments of the Duplex construction.

We finally refer to Section 4.1 for a detailed model-level comparison with Triplex and
Skinny-Hash, which are Multiplex’s main competitors.

Future work. In order to further demonstrate the generality of Multiplex, we initiate the
study of adapting the mode to short-block TBCs in Supplementary Material S1. Such
TBCs have been considered in a recent work aiming at low-memory authenticated encryp-
tion [36], which the authors argue is relevant for higher-order masking against side-channel
attacks. It considers a different model than ours and, in particular, cannot lead to leveled
implementations. We leave open the question to fully address the adaptation of Multiplex
to this case and assess its security, as it requires different techniques to achieve CIML2
(for instance, concatenating shorter tags does not directly prevent divide-and-conquer at-

4 Multiplex: TBC-based Authenticated Encryption with Sponge-Like Rate

tacks on each shorter tag). Nevertheless, our design principle shows that such a variant
could enjoy less time to proceed the data thanks to parallelism in each iteration, which
motivates an interesting direction for future research.

We also provide a multi-block hash function based on TBCs in Supplementary Mate-
rial S2, which does not have a direct application for our (leakage-resistant) authenticated
encryption application but could be useful in other contexts.

Organization. We first give notations and security notions in Section 2. Next, in Sec-
tion 3, we introduce a new hash function called Multihash that is the main component of
Multiplex. In Section 4, we formally give the design rationale and specification of Multiplex.
Then, in Section 5 and Section 6, we give the security proofs for Multiplex. We finally
conclude the paper in Section 7.

2 Preliminaries
Notations Let ε denote the empty string. Let {0, 1}∗ be the set of all finite bit strings
including the empty string ε. For a finite set S, let x

$←− S denote the uniform sampling
from S assigning a value to x. Let |x| denote the length of the string x. Let x[i : j]
denote the substring from the i-th bit to the j-th bit (inclusive) of x. Concatenation of
strings x and y is written as x ∥ y or simply xy. If A is an algorithm, let y ← A(x1, . . . ; r)
denote running A with randomness r on inputs x1, . . . and assigning the output to y. Let
y

$←− A(x1, . . .) be the result of picking r at random and letting y ← A(x1, . . . ; r). Let
Perm(n) denote the set of all permutations over {0, 1}n, and let finally Func(∗, n) denote
the set of all functions from {0, 1}∗ to {0, 1}n.

Tweakable block cipher [32]. A block cipher E : K × M → M is a family of
permutations, where EK(·) = E(K, ·) is a permutation overM. A tweakable block cipher
E : K×T ×M→M (slightly abusing notation for simplicity) is a family of permutations
over M, indexed by two functionally distinct parameters: a key K ∈ K that is secret
and used to provide the security, and a tweak T ∈ T that is public and used to provide
variability. We therefore write EK(T, ·) = E(K, T, ·), a permutation over M.

Nonce-based authenticated encryption [41]. An AE scheme Π is a triplet of al-
gorithms (K, E ,D), where K is the key-generation algorithm, E the encryption algorithm
and D the decryption algorithm. The key-generation algorithm K samples a key K uni-
formly at random from the key space. The encryption algorithm E takes as input a key
K, a nonce N , Associated Data (AD) A, a message M , and returns a ciphertext and tag
C ∥ tag ← EK(N, A, M). The decryption algorithm D takes as input a key K, a nonce
N , an AD A, a ciphertext and tag C ∥ tag, and returns either a message M or a symbol
⊥ indicating invalidity. For correctness, we assume that if C ∥ tag ← EK(N, A, M) then
M ← DK(N, A, C ∥ tag). In this paper, the tag is always of fixed length.

Privacy security. We define the privacy security with respect to nonce-misuse re-
silience as introduced in [2]. The privacy security game Gpriv

Π is detailed in Figure 1. We
consider the security in the multi-user setting. For queries to the same user, the adversary
may repeat the nonce in the first encryption oracle Enc1, but the nonce in the second
encryption oracle should be unique and fresh. For queries to different users, the adversary
may repeat the nonce in both oracles. With access to oracles Prim, Enc1 and Enc2, the
goal of the adversary is to distinguish the second encryption oracle of an AE scheme from
a random function. Formally, given an adversary A, we define

Advpriv
Π (A) = 2Pr

[
Gpriv

Π (A)
]
− 1

Thomas Peters, Yaobin Shen and François-Xavier Standaert 5

Game Gpriv
Π (A)

K1, K2, . . . ,
$←− K; b

$←− {0, 1}
b′ ← APrim,Enc1,Enc2 ; return (b′ = b)

Procedure Prim(J, T, X)
if X = (+, x) then return EJ (T, x)
if X = (−, y) then return E−1

J (T, y)

Procedure Enc1(i, N, A, M)
C ∥ tag← E(Ki, N, A, M)
return C ∥ tag

Procedure Enc2(i, N, A, M)
C1 ∥ tag1 ← E(Ki, N, A, M)
C0 ∥ tag0

$←− {0, 1}|C1|+|tag|

return Cb ∥ tagb

Figure 1: Game Gpriv
Π : multi-user privacy security of an AE Π.

Game GCIML2
Π (A)

K1, K2, . . . ,
$←− K; b

$←− {0, 1}
Q ← ∅; b′ $←− APrim,Enc,Dec

return (b′ = b)

Procedure Enc(i, N, A, M)
Le ← LE(Ki, N, A, M)
C ∥ tag← E(Ki, N, A, M)
Q ← Q∪ {(Ki, N, A, C ∥ tag)}
return (C ∥ tag, Le)

Procedure Dec(i, N, A, C ∥ tag)
Ld ← LD(Ki, N, A, C ∥ tag)
M ← D(Ki, N, A, C ∥ tag)
if (Ki, N, A, C ∥ tag) ∈ Q then

return (M, Ld)
if b = 0 then return (⊥, Ld)
else return (M, Ld)

Procedure Prim(J, T, X)
if X = (+, x) then return EJ (T, x)
if X = (−, y) then return E−1

J (T, y)

Figure 2: Game GCIML2
Π : multi-user CIML2 security of an AE Π.

as adversary’s advantage against the privacy security of an AE Π in the nonce misuse-
resilience setting, with Gpriv

Π (A) the abbreviation of Gpriv
Π (A) = true.

Authenticity security. We consider the authenticity security in the leakage setting,
and follow the notion of Ciphertext Integrity with Misuse-resistance and encryption and
decryption Leakage (CIML2) by Berti et al. [12]. Here, the adversary not only has access to
the encryption oracle E and decryption oracle D, but also to their corresponding leakage
functions LE and LD. We consider it in the multi-user setting. Given an adversary A,
we define

AdvCIML2
Π (A) = 2Pr

[
GCIML2

Π (A)
]
− 1

as the advantage of the adversary against the CIML2 security of an AE scheme Π, where
game GCIML2

Π is illustrated in Fig. 2 and GCIML2
Π (A) is the abbreviation that GCIML2

Π (A) =
true. The adversary is given encryption and decryption oracles, both of which contain
the corresponding leakage function. She can repeat nonces in encryption and decryption
queries. She may also make a decryption query (i, N, A, C ∥ tag) even if (i, N, A, C ∥ tag)
has appeared in previous encryption queries. This kind of decryption query lets her obtain
additional leakage during decryption. The goal of the adversary is to output a valid and
new tuple (i, N, A, C ∥ tag) that passes the decryption oracle of the real AE scheme, while
in the ideal world she will always receive a rejection symbol ⊥.

Some useful Lemmas. The next lemmas will be useful in our analyzes.

Lemma 1. [29, Lemma 15] Suppose that we throw u balls uniformly at random into 2n

bins. Then, with probability at most 2−n, there exists some bin of more than max{4n, 4u/2n}
balls.

6 Multiplex: TBC-based Authenticated Encryption with Sponge-Like Rate

Lemma 2. [14, Lemma 10] Suppose that we throw u balls into 2n bins and, conditioning
on the result of prior throws, the probability that each ball falls into any particular bin is
at most 21−n. Fix 0 < ϵ < 1, and let u ≤ 2(1−ϵ)n−1. Then with probabilty at most 2−n/2,
there exists some bin of more than ⌈1.5/ϵ⌉ balls.

3 Multihash: Extending Hirose’s Hash Function
In this section, we introduce a new hash function called Multihash which relies on a
tweakable block cipher with n-bit key, dn-bit tweak and n-bit block. This hash function
can be seen as an extension of Hirose’s double-block length hash function [28] that further
outputs auxiliary blocks. Multihash is the main component of Multiplex whose specification
is given in the next section, but we already give the intuition below of how these auxiliary
blocks can be used to encrypt message blocks. We prove the collision resistance up to
O(2n) queries in the ideal TBC model, where we take into account the computation
of these auxiliary blocks for better modularity, which will be helpful in the analysis of
Multiplex.

Compression function. We first recall the definition of Hirose’s compression function
based on an underlying TBC with dn-bit tweak.

Definition 1. Let E : {0, 1}n ×{0, 1}dn ×{0, 1}n → {0, 1}n be a tweakable block cipher.
Then Hirose : {0, 1}2n×{0, 1}dn → {0, 1}2n is a compression function such that (hi, ki) =
Hirose(hi−1, ki−1, ti) where hi−1, ki−1 ∈ {0, 1}n is the state, ti ∈ {0, 1}dn is being absorbed,
and {

hi = Eki−1(ti, hi−1)⊕ hi−1 ,

ki = Eki−1(ti, hi−1 ⊕ θ1)⊕ hi−1 ⊕ θ1 ,

where θ1 ∈ {0, 1}n is a non-zero constant, e.g., 1 = 0n−11.

Next, we describe the extension of Hirose’s compression function that also outputs
d − 1 auxiliary blocks e1, . . . , ed−1. In general, these blocks are optional and they are
not directly involved in the collision bound in the sense that (hi, ki) remains the actual
compressed output. Still, in the security proof in the ideal TBC model, we take all these
computations into account and show that they do not decrease the expected high security.

Definition 2. Let E : {0, 1}n ×{0, 1}dn ×{0, 1}n → {0, 1}n be a tweakable block cipher.
Then F : {0, 1}2n × {0, 1}dn → {0, 1}(d+1)n is an extended Hirose’s compression function
such that (hi, ki, e1

i , . . . , ed−1
i) = F (hi−1, ki−1, ti) where hi−1, ki−1 ∈ {0, 1}n is the state,

ti ∈ {0, 1}dn is being absorbed, hi, ki ∈ {0, 1}n is the main output (the refreshed state),
and e1

i , . . . , ed−1
i the auxiliary blocks that are computed as follows:

hi = Eki−1(ti, hi−1)⊕ hi−1,

ki = Eki−1(ti, hi−1 ⊕ θ1)⊕ hi−1 ⊕ θ1,

e1
i = Eki−1(ti, hi−1 ⊕ θ2)⊕ hi−1 ⊕ θ2,

...
ed−1

i = Eki−1(ti, hi−1 ⊕ θd)⊕ hi−1 ⊕ θd.

Here θ1, . . . , θd ∈ {0, 1}n are distinct non-zero constants (e.g., 1, . . . , d).

It is easy to see that if (hi, ki, e1
i , . . . , ed−1

i) = F (hi−1, ki−1, ti) then we have (hi, ki) =
Hirose(hi−1, ki−1, ti). A pictorial illustration of the extended compression function F when
d = 2 is given in the left of Figure 3. On the right-hand side of the figure, the reader can

Thomas Peters, Yaobin Shen and François-Xavier Standaert 7

hi−1

ki−1

E

E

ti

ti

⊕

⊕ ⊕
θ1

E

ti

⊕ ⊕
θ2

e1i

hi

ki

hi−1

ki−1

e1i−1

⊕
M2i C2i

⊕
M2i-1 C2i-1

E

E

C2i-1∥C2i

C2i-1∥C2i

⊕

⊕ ⊕
θ1

E

C2i-1∥C2i

⊕ ⊕
θ2

e1i

hi

ki

Figure 3: The compression function F based on a tweakable block cipher E with n-bit key and
2n-bit tweak (left). The intuitive idea to turn the compression function F into encryption and
authentication (right).

Hash function Multihash(t)
t1 . . . tℓ ← pad(t); (h0, k0)← (0n, 0n)
for i← 1 to ℓ do

(hi, ki, e1
i , . . . , ed−1

i)← F (hi−1, ki−1, ti)
return (hℓ, kℓ)

h0

k0

E

E

t1

t1

⊕

⊕ ⊕
θ1

E

t1

⊕ ⊕
θ2 e11

E

E

t2

t2

⊕

⊕ ⊕
θ1

E

t2

⊕ ⊕
θ2 e12

E

E

t3

t3

⊕

⊕ ⊕
θ1

E

t3

⊕ ⊕
θ2 e13

h3

k3

Figure 4: The hash function Multihash built from the compression function F of Figure 3.

already have an intuition about how the iteration of the compression function F can be
turned into an encryption and how the resulting ciphertext blocks can be digested.

We now turn to Multihash : {0, 1}∗ → {0, 1}2n, the hash function defined as the
iteration of the compression function F . Let pad : {0, 1}∗ → ({0, 1}dn)+ be an injective
padding function, e.g., the one-zero padding pad(t) = t ∥ 10a where a = dn − 1 − (|t|
mod dn). The Multihash specification is given in Figure 4. Note that after each iteration,
only the two blocks hi and ki are forwarded to the next iteration. The remaining d − 1
blocks are output as auxiliary blocks and will later be used for encrypting messages.

From hash to encryption and authentication. We first explain the way to turn
Multihash into encryption and authentication that motivates the collision resistance achieved
by Multihash. The collision resistance mainly focuses on the two-block (h, k)-output but
we also take into account another type of internal collisions that will be crucial to avoid
in the security analysis of Multiplex.

The encryption is based on the observation that the (full) output of the compression
function F (see the right of Figure 3 for an example with d = 2) is a (d + 1)n-bit random
string as long as the ephemeral key ki−1 of the TBC is secret and random. Therefore,
assuming the current (d + 1) n-bit blocks are random, we can use the top d blocks to
XOR-encrypt d blocks of a message while keeping the single bottom n-bit block ki−1
as the secret ephemeral key to produce the next bunch of (d + 1) random n-bit blocks
during the current iteration. Regarding authentication, it follows from the fact that the

8 Multiplex: TBC-based Authenticated Encryption with Sponge-Like Rate

tweak of a TBC is public but can significantly influence the output. Therefore, we can
put the ciphertext blocks (or blocks of associated data) as the tweak to be authenticated.
Yet, this process requires a key-derivation function to produce the initial random full state
(h1, k1, e1

1, . . . , ed−1
1) to begin with2 as well as a tag-generation function to encapsulate the

digest, i.e., the final (short) output state “(hlast, klast)”, and produce a tag. The details of
these two components and more design considerations are postponed to the next section.

While for the AE the iterations manipulate a (full) state of (d + 1) blocks in addition
to the message blocks, the underlying (short) state of the extended compression function
F remains of 2 blocks. Indeed, in terms of collision resistance, only (hi, ki) carries the
security to the next iteration. This is important to reach the CIML2 notion since the
adversary has the full control on the ciphertext blocks in the tweaks both in encryption
and decryption (due to leakage and nonce reuse). Moreover, for secrecy concerns we also
want to avoid that any pair (hi, ki) appears in another iteration at any position in a single
full state. In summary, and back to Multihash, we need for technical reason to capture
the following event called two-block collision. By definition, a two-block collision occurs if
there are (x1, x2) ∈ {(hℓ, kℓ), (hℓ⊕θ1, kℓ), . . . , (hℓ⊕θd, kℓ)} and (y1, y2) ∈ {(hℓ′ , kℓ′), (hℓ′⊕
θ1, kℓ′), . . . , (hℓ′⊕θd, kℓ′)} such that (x1, x2) = (y1, y2), where (hℓ, kℓ) and (hℓ′ , kℓ′) are the
2n-bit outputs of Multihash for two different messages t and t′ respectively. In that case,
we say that one finds a two-block collision. For an adversary A with oracle access to E and
E−1, let Advtcoll

Multihash(A) be the probability that A finds a two-block collision of Multihash.
The following lemma shows the high two-block-collision resistance of Multihash.

Lemma 3. Let Multihash be a hash function specified in Figure 4. Then for any adversary
A making at most q queries to E and E−1 where q ≤ 2n−2, we have

Advtcoll
Multihash(A) ≤ 8dq2

22n

by assuming θ1, . . . , θd = 1, . . . , d.

Proof. Let A be an adversary that aims at finding a two-block collision for the hash
function Multihash. In total, A asks at most q queries to E and E−1. Suppose that A
finds a two-block colliding pair t and t′ for the hash function Multihash. Then it is easy
to see that A also finds a two-block colliding pair for the compression function F . Note
that each output block of F is determined by both the plaintext and the ciphertext of
the TBC. Hence, regardless of the adversary asking forward queries or backward queries
to E, hi = Eki−1(ti, hi−1)⊕ hi−1 is always determined randomly. Similar arguments hold
for ki, e1

i , . . . , ed−1
i .

Let (K, T, X, Y) be the entry that records the query and response of E, where K
is the key, T the tweak, X the plaintext, Y the ciphertext. Without loss of generality,
we assume that the adversary does not make repeated queries to E since otherwise she
will receive the same responses. To obtain blocks hi and ki, it requires a pair of entries
(ki−1, ti, hi−1, hi−1 ⊕ hi) and (ki−1, ti, hi−1 ⊕ θ1, hi−1 ⊕ hi ⊕ θ1). We now consider the
probability that a two-block collision happens. For 1 ≤ j ≤ q, let Cj be the event that
a two-block collision occurs for F at the j-th pair of queries. It implies that for some
0 ≤ j′ < j,

(x1, x2) = (y1, y2)

where (x1, x2) ∈ {(hj , kj), (hj ⊕ θ1, kj), . . . , (hj ⊕ θd, kj)} and (y1, y2) ∈ {(hj′ , kj′), (hj′ ⊕
θ1, kj′), . . . , (hℓ′ ⊕ θd, kℓ′)}. This is the same as (hj , kj) belonging to

{(hj′ , kj′)} ∪ {(hj′ ⊕ θi, kj′) : 1 ≤ i ≤ d} ∪ {(hj′ ⊕ θi1 ⊕ θi2 , kj′) : 1 ≤ i1 < i2 ≤ d}.
2This is when there is no AD, otherwise (h1, k1) is enough and the first auxiliary values will be

generated when processing the last blocks of AD.

Thomas Peters, Yaobin Shen and François-Xavier Standaert 9

From the assumption θ1, . . . , θd = 1, . . . , d, it holds 3 ≤ θi1 + θi2 ≤ 2d − 1 for any
1 ≤ i1 < i2 ≤ d. Hence the total number of elements in above three sets is at most 2d
that counts from (hj′ , kj′) to (hj′ ⊕ (2d− 1), kj′). Hence

Pr [Cj] ≤ 2dj

(2n − (2j − 2))(2n − (2j − 1))
≤ 2dj

(2n − (2j − 1))2

since hj and kj are chosen uniformly at random without replacement from a set of size at
least 2n − (2j − 2). Finally, we have

Advtcoll
H (A) ≤

q∑
j=1

Pr [Cj] ≤
q∑

j=1

2dj

(2n − (2j − 1))2 ≤
8dq2

22n

by assuming q ≤ 2n−2 which concludes the proof.

Remark 1. In CHES 2022 [42], Shen et al. proved the collision resistance of Hirose’s
double-block-length hash function based on a TBC, which can be seen as a special case of
our lemma when d = 2. Their construction can only output a 2n-bit state since it inherits
from Hirose’s construction.

Remark 2. Since Multihash only forwards a 2n-bit state to the next iteration, it is
collision-resistant up to O(2n) queries. While it is enough in many cases, we introduce
another multi-block hash function called MBLhash as a side contribution in Supplementary
Material S2. It achieves a better collision-resistance security up to O(2(d+1)n/2) queries.
Its internal compression function forwards a (d + 1)n-bit state to the next iteration and
absorbs a single block at a time. This provides an interesting tradeoff with respect to
Multihash. While the absorption has a smaller rate, the output length has been increased
logarithmically in the total amount of queries it can support. It is also based on a TBC
with n-bit key and dn-bit tweak, aims at hashing a message with a high collision-resistance
security and cannot be simply turned into an AE scheme.

4 Design and Specification of Multiplex
In this section, we give the design rationale and specification of Multiplex. In general,
Multiplex enjoys n − log2(dn) bits of CIML2 security in the unbounded leakage model
with a leveled implementation and n− log2(dn) bits of confidentiality without leakage in
the nonce misuse-resilient setting. It also provides n/2-bit CCAmL1 security, a standard
confidentiality guarantee with leakage due to a re-keying process for the bulk of the
computations. Moreover, the rate (here defined as the number of n-bit message blocks
processed per number of TBC calls) gets closer to 1 as the tweak size increases.

High-level structure. Multiplex follows the general 3-step framework of leakage-
resistant AE modes suggested in [8]. It is based on a TBC with a dn-bit tweak, and
consists of three parts, including key- derivation function (KDF), message-processing func-
tion (MPF) and tag-generation function (TGF). KDF is used to generate an initial 2n-bit
state (when AD is not the empty string) from a long-term master key K and a nonce N .
MPF makes several iterations of Hirose’s compression function Hirose in order to absorb
the associated data, ending with a single call to its extended version F to create a first full
state of d + 1 blocks to start processing the message, as sketched in the previous section.
More precisely, MPF goes on with Multihash using the last random short state (hv+1, hv+1)
of this first full state as IV (with an extra separation bit). This process encrypts message
blocks and hashes ciphertext blocks. Finally, TGF encapsulates the final short state, i.e.,

10 Multiplex: TBC-based Authenticated Encryption with Sponge-Like Rate

E N

K

P
∥
0
n

EE N
∥
P

N
∥
P

0
n

⊕
⊕ ⊕

θ
1

EE A
1 ∥

A
2

A
1 ∥

A
2

⊕

⊕
⊕

θ
1

EE A
3 ∥

A
4

A
3 ∥

A
4

⊕

⊕
⊕

θ
1

EA
3 ∥

A
4

⊕
⊕

θ
2

⊕ M
1
C

1

⊕ M
2
C

2

EE C
1 ∥

C
2

C
1 ∥

C
2

⊕

⊕
⊕

θ
1

⊕1

EC
1 ∥

C
2

⊕
⊕

θ
2

⊕ M
3
C

3

⊕ M
4
C

4

EE C
3 ∥

C
4

C
3 ∥

C
4

⊕

⊕
⊕

θ
1

E 0
n

K
tag

KDF
M

PF
TGF

E N

K

P
∥
0
2
n

EE N
∥
P

∥
0
n

N
∥
P

∥
0
n

0
n

⊕
⊕ ⊕

θ
1

EE A
1
∥
A

2
∥
A

3

A
1
∥
A

2
∥
A

3 ⊕

⊕
⊕

θ
1

EE A
4
∥
A

5
∥
A

6

A
4
∥
A

5
∥
A

6 ⊕

⊕
⊕

θ
1

EA
4
∥
A

5
∥
A

6

⊕
⊕

θ
2

⊕

EA
4
∥
A

5
∥
A

6

⊕
⊕

θ
3

⊕ M
1

C
1

M
2

C
2

⊕ M
3

C
3

EE C
1
∥
C
2
∥
C
3

C
1
∥
C
2
∥
C
3 ⊕

⊕
⊕

θ
1

⊕1

EC
1
∥
C
2
∥
C
3

⊕
⊕

θ
2

⊕

EC
1
∥
C
2
∥
C
3

⊕
⊕

θ
3

⊕ M
4

C
4

M
5

C
5

⊕ M
6

C
6

EE C
4
∥
C
5
∥
C
6

C
4
∥
C
5
∥
C
6 ⊕

⊕
⊕

θ
1

E 0
n

K
tag

0
n

Figure
5:

M
ultiplex’s

encryption
w

hen
the

tw
eak

of
a

T
B

C
is

2
n

bits
(top)

and
w

hen
the

tw
eak

of
a

T
B

C
is

3
n

bits
(bottom

).
In

both
cases,

the
first

3
T

B
C

calls
represent

the
key-derivation

function
(K

D
F)

that
produces

a
2
n-bit

initialstate.
T

he
m

iddle
part

is
the

m
essage-processing

function
(M

PF)
that

encrypts
and

authenticates
m

essage.
T

he
last

T
B

C
callis

the
tag-generation

function
(T

GF)
that

generates
the

tag.
O

nly
the

tw
o

T
B

C
calls

colored
in

gray
m

ust
be

protected
against

D
PA

.

Thomas Peters, Yaobin Shen and François-Xavier Standaert 11

the digest of Multihash, to compute a tag for the associated data and message. The pic-
torial illustration of Multiplex can be found in Figure 5. Below we give a more detailed
description of these three parts.

Key-derivation function. The KDF takes as input a long-term master key K, a
nonce N , and a public key P if we target multi-user security (otherwise, P = 0n in
the single-key setting). As illustrated on the left of Figure 5, it first invokes a (DPA-
protected) TBC to produce an ephemeral key k0 and expands it into the 2n-bit state
(h1, k1) = Hirose(0n, k0, N ||P ||0∗) by two TBC calls. The public key P can be a public
random string or simply a unique ID of each user, which is used to resist key-collision
attack in the multi-user scenario.

Message-processing function. The MPF (illustrated on the middle of Figure 5) can
be regarded as the hash function Multihash introduced in Section 3. It uses the 2n-bit
state (h1, k1) from KDF as the initial value, and continues generating a 2n-bit state (hi, ki)
by absorbing data where hi is used as an input and ki as a key to a TBC. Note that for
each iteration that may require invoking a TBC several times, distinct constants θ1, . . . , θd

are XORed to hi in order to force inputs being distinct while the key ki remains the same.

The MPF first handles the associated data A and then the message M . To authenticate
the associate data A, it simply puts them as the tweak to a TBC, following the intuition
that the tweak is public but can significantly influence the output of a TBC. For each
iteration, it requires two TBC calls to authenticate d blocks of associated data. In the last
iteration of associated data, besides two TBC calls for authentication, (d− 1) additional
TBC calls are invoked to generate the first full state, leading to a (d+1)n-bit random state
(hi, ki, e1

i , . . . , ed−1
i). A constant ‘1’ is then XORed with ki for domain separation between

associated data and message. To encrypt and authenticate, it first uses the previous dn-
bit state (hi, e1

i , . . . , ed−1
i) to XOR-encrypt d blocks of message. Then it authenticates the

resulting d blocks of ciphertext and generates a (d + 1)n-bit state for the next iteration.
Note that for the (d + 1)n-bit state (hi, ki, e1

i , . . . , ed−1
i), only ki as a key of a TBC should

always be kept secret and cannot be used to XOR-encrypt the message, while the rest of
the dn-bit state can XOR-encrypt the message since the disclosure of these values will not
affect the output randomness of a TBC. Hence, it requires d+1 TBC calls to authenticate
and encrypt d blocks of message. The additional (d− 1) TBC calls in the last iteration of
associated data are compensated in the last iteration of message that only requires two
TBC calls for authentication and outputs a 2n-bit state.

Tag-generation function. Finally, the TGF (illustrated on the right of Figure 5)
encapsulates the 2n-bit state as a tweak of a TBC following the recent LR-MAC in [10] to
produce a tag. It requires a TBC call with a long-term master key and a fixed-constant
input 0n. To check the validity of the tag in decryption, it is recommended to inverse this
TBC call and check whether the output equals to the constant 0n. This inversion avoids
leaking information on the right tag given any adversarially chosen invalid ciphertexts, as
formalized in [12].

4.1 Specification of Multiplex

The code description of Multiplex is detailed in Figure 6 (Appendix A) and illustrated
in Figure 5 (above). Its parameter configurations are in Table 1.

12 Multiplex: TBC-based Authenticated Encryption with Sponge-Like Rate

Table 1: Parameters of Multiplex based on a TBC with n-bit key and dn-bit tweak. For example,
the underlying TBC can be instantiated with Skinny-384 [3] for 121-bit security. The rate can
be further improved when instantiated with larger tweak TBCs, e.g., Deoxys-TBC-512 for rate
3/4 and Deoxys-TBC-640 [16] for rate 4/5.

Parameters General n n = 128 (e.g., Skinny-384)
Secret key n bits 128 bits

Public key3 n bits 128 bits
Tweak size dn bits 256 bits
Nonce size n bits 128 bits

Block length max 2n/n 295 GB
Tag size n bits 128 bits

Security level n− log2(dn) bits 120 bits
Rate d/(d + 1) 2/3

Padding Method. For a TBC with dn-bit tweak and n-bit key, the padding function
first appends a single 1 and then the smallest number of 0s to the plaintext M such that
the length of the padded plaintext is a multiple of dn bits (since in each iteration, it can
handle a dn-bit string). The padded plaintext is parsed into dℓ blocks of n bits where
ℓ = ⌈|M |/dn⌉, namely M [1] ∥ . . . ∥M [dℓ] where |M [i]| = n. The same padding function
is applied to parse the associated data A into dv blocks of n bits where v = ⌈|A|/dn⌉,
namely A[1] ∥ . . . ∥ A[dv] where |A[i]| = n, except if the associated data A is empty. In
this case, no padding is required and no associated data is processed. Formally, for any
M ∈ {0, 1}∗ and A ∈ {0, 1}∗, we have

M [1] ∥ . . . ∥M [dℓ]← pad(M) = M ∥ 1 ∥ 0dn−1−(|M | mod dn),

A[1] ∥ . . . ∥A[dv]← pad(A) =

{
A ∥ 1 ∥ 0dn−1−(|M | mod dn) if |A| > 0,

ε if|A| = 0.

Comparison with Triplex. As a non-trivial extension of Triplex [42], Multiplex is
a more flexible design with a rate that can approach 1. Moreover, for each iteration
of message-processing function, the (d + 1) TBC calls can be implemented in parallel.
These features cannot be achieved by Triplex or a naive generalization of Triplex. Here we
provide a comparison between Multiplex and Triplex, from the perspective of both design
and security analysis.

Regarding the design, Multiplex uses the same key-derivation function and tag-generation
function as Triplex, due to the need of a 2n-bit initial value and good leakage-resistance
properties. Yet, the difference emerges in the message processing function that is the
main part of an AEAD scheme. Given a TBC with 2n-bit tweak, for each iteration of the
message-processing function in Triplex, a TBC call should be first invoked with the tweak
N ∥ P to encrypt a message block Mi to a ciphertext block Ci. The rest of the two TBC
calls can then be invoked with the tweak Ci−1 ∥Ci, where the left half tweak Ci−1 comes
from the previous iteration. By contrast, for Multiplex, these three TBC calls can be in-
voked at the same time with the same tweak Ci−1 ∥Ci that both come from the previous
iteration. Hence, these (d + 1) TBC calls in Multiplex can be implemented in parallel and
are more suitable for a general tweak size. We note that a naive generalization of Triplex
with dn-bit tweaks cannot achieve this goal. Besides, the different tweak N ∥ P used in
the first TBC call of such a naive generalization would require additional memory, which
is also in contrast with Multiplex that deals with N only in the initial phase of its KDF,
and can send and erase the nonce before the message processing starts.

3Note that this public key is optional and is only used in order to improve the security against key-
collision attacks in the multi-user scenario.

Thomas Peters, Yaobin Shen and François-Xavier Standaert 13

On the other hand, due to construction differences, Multiplex requires different security
analyses than Triplex for n-bit security. We highlight some differences here and refer to the
next sections for detailed analyses. Firstly, it requires an extended collision lemma (shown
in Section 3) to capture two-block collisions among (d + 1) TBC calls. Secondly, since the
first TBC call in each iteration of the message-processing function uses the same tweak
as the other d TBC calls instead of N ∥ P , we cannot simply rely on the uniqueness of
nonce N and randomness of P as in the case of Triplex. Instead, we consider the influence
of collisions among these tweaks. Eventually, the proof of Multiplex is more general and
works for any d ≥ 1. The proof of Triplex only focuses on the case d = 2.

Comparison with Skinny-Hash. Skinny-Hash [4] also allows a flexible rate by instan-
tiating the permutation of duplex mode with several TBC calls. Hence, we next discuss
the better rate of Multiplex compared to Skinny-Hash.

Firstly, as a hash function, Skinny-Hash (here we focus on Skinny-tk3-Hash and its
generalization since it has better rate than Skinny-tk2-Hash), requires (d + 1) TBC calls
where the outputs of (d− 1) TBC calls are used to XOR (d− 1) n-bit blocks of message
and the outputs of 2 TBC calls are kept secret to maintain n-bit security. Hence, the rate
of Skinny-Hash is (d − 1)/(d + 1) when instantiated with a TBC with dn-bit tweak and
n-bit key (so totally the tweakey size is (d + 1)n bits). By contrast, for the underlying
hash function in Multiplex (e.g., Multihash without the auxiliary TBC calls for e1, , ed−1

in Section 3, as they are not required for hashing) the rate is d/2, as it uses only two TBC
calls in each iteration for hashing d n-bit blocks of message. The rate d/2 is always larger
than (d− 1)/(d + 1) for d ≥ 1, and their ratio increases with d.

Secondly, Skinny-Hash is initially designed only as a hash function and we cannot use
it as an AEAD. If we want to turn Skinny-Hash into an AEAD scheme, one option is
to apply the transformation of Skinny-Hash into a duplex mode, namely first building a
permutation from several TBC calls and then use it in a duplex AEAD mode. We remark
that the rate of this naive method is at most (d− 1)/(d + 1) for both associated data and
message, while for Multiplex, the rate for associated data is d/2 and the rate for message
is d/(d + 1).

In addition, this simple method ignores the important role of key-derivation function
(KDF) and tag-generation function (TGF). In Multiplex, we plug Multihash with well-
designed KDF and TGF. Regardless of what the rate is, the KDF requires three TBC
calls and the TGF requires one TBC. Moreover, they are designed to be well-suited against
side-channel attacks since only the first TBC and the last TBC call should be DPA secure.
By contrast, if we apply the idea of Skinny-Hash to some side-channel protection friendly
duplex mode such as Ascon, then both KDF and TGF require (d + 1) TBC calls, and
these 2(d + 1) TBC calls should be well protected against side-channel attacks.

5 Confidentiality Analysis of Multiplex
In this section, we provide the confidentiality analysis for Multiplex in the nonce misuse-
resilience setting. We also discuss how the techniques of [9, 27] can be applied to Multiplex
to obtain CCAmL1 security at the end of the section.

Nonce-misuse resilience. The following theorem shows that Multiplex is beyond-
birthday-bound secure in the nonce-misuse resilience setting. Recall that the security
game is illustrated in Figure 1. Note that here we only give the CPA security analysis
as the CCA security of an AE scheme can be trivially obtained by using the standard
argument with the proved authenticity security in the next section.

Theorem 1. Suppose that the adversary makes at most q encryption queries, p ideal
TBC queries, the total number of primitive calls among these q encryption queries being

14 Multiplex: TBC-based Authenticated Encryption with Sponge-Like Rate

at most σ and the total number of queried users being at most u. Then we have

Advpriv
Multiplex(A) ≤ (3c1 + dn + 3n)p + (3c1 + dn + n)σ + c1q

2n

+u2 + 16d(σ + p)2 + 8q

22n+1 + 2q2 + q(σ + p)
23n

+ 2
2n/2

with c1 = max{4n, 4u/2n}, assuming q ≤ 2n−1, σ ≤ 2n−3, and p + σ ≤ 2n−1.

Discussion and proof ideas. This theorem suggests that as long as the total number
of primitive calls σ and the number of offline TBC queries p does not go beyond 2n/n,
Multiplex can ensure confidentiality. The total number of users can also be as large as 2n.
The proof essentially relies on the fact that the outputs of Multiplex are indistinguishable
from random strings as long as there is no two-block collision on (hi, ki). Since the nonce
is always unique during the second encryption phase, this two-block collision happens with
probability about 8d(σ + p)2/22n by Lemma 3. For a (key, tweak) collision between the
first TBC call in the KDF part and direct TBC calls or internal TBC calls, this happens
with probability about (c1p + c1σ)/2n for some constant c1, since the multiplicities of the
public key Pi can be bounded by Lemma 1. For a (key, tweak) collision between direct
TBC calls and internal TBC calls, the idea is similar since the maximum number of state
values with the same hi can be bounded by Lemma 2. For a (key, tweak) collision between
TGF part and direct TBC calls or internal TBC calls, this happens with probability about
q(σ + p)/23n since both the tweak and the key of the TGF are random. For a (key, tweak)
collision between the first TBC call in KDF and TGF, this happens with probability about
q/22n +q2/23n since the tweak of TGF is random and the keys between two different users
are independently random. Regarding the key collision among many users, this happens
with probability about u2/22n due to the use of a public key Pi. The formal proof contains
more details and explanations.

Proof. In the security game of Figure 1, the adversary has access to three oracles, including
the first encryption oracle where the nonce may be repeated, the second encryption oracle
where the nonce is always fresh and unique, and the ideal TBC oracle that captures the
power of offline computations. Note that the first encryption oracle and ideal TBC oracle
behave exactly the same in both of the real and ideal worlds. Therewith our goal is to
show that the adversary cannot tell apart the outputs of the second encryption oracle in
the real world from those outputs in the ideal world, except with a negligible probability.

From the interaction with its oracles, the adversary can obtain the information that
are recorded as follows.

• For each query Prim(J, T, (+, x)) with answer y, we will store an entry (prim, J, T, x, y, +).
Similarly, for each query Prim(J, T, (−, y)) with answer x, we will store an entry
(prim, J, T, x, y,−).

• For each query C∥tag← Enc1(i, N, A, M), let A[1]∥ . . . ∥A[dv]← A, M [1]∥ . . . ∥M [dℓ]←
M and C[1] ∥ . . . ∥ C[dℓ]← C. Let

h0 = 0n, k0 = EKi(Pi ∥ 0(d−1)n, N) ,

h1 = Ek0(N ∥ Pi ∥ 0(d−2)n, 0n), k1 = Ek0(N ∥ Pi ∥ 0(d−2)n, θ1)⊕ θ1 ,

and for 1 ≤ j ≤ v, let

hj+1 = Ekj
(A[dj − d + 1] ∥ . . . ∥A[dj], hj)⊕ hj ,

kj+1 = Ekj
(A[dj − d + 1] ∥ . . . ∥A[dj], hj ⊕ θ1)⊕ hj ⊕ θ1 .

Thomas Peters, Yaobin Shen and François-Xavier Standaert 15

For 1 ≤ r ≤ d − 1, let er
1 = Ekv

(T, hv ⊕ θr+1) ⊕ hv ⊕ θr+1 where T = A[dv − d +
1]∥ . . . ∥A[dv] if AD is not empty otherwise T = N ∥Pi∥0(d−2)n. Let kv+1 = kv+1⊕1,
and for 1 ≤ j ≤ ℓ− 1, let

hv+j+1 = Ekv+j
(C[dj − d + 1] ∥ . . . ∥ C[dj], hv+j)⊕ hv+j ,

kv+j+1 = Ekv+j
(C[dj − d + 1] ∥ . . . ∥ C[dj], hv+j ⊕ θ1)⊕ hv+j ⊕ θ1 ,

er
j+1 = Ekv+j

(C[dj − d + 1] ∥ . . . ∥ C[dj], hv+j ⊕ θr+1)⊕ hv+j ⊕ θr+1

for 1 ≤ r ≤ d− 1. Let

hv+ℓ+1 = Ekv+ℓ
(C[dℓ− d + 1] ∥ . . . ∥ C[dℓ], hv+ℓ)⊕ hv+ℓ ,

kv+ℓ+1 = Ekv+ℓ
(C[dℓ− d + 1] ∥ . . . ∥ C[dℓ], hv+ℓ ⊕ θ1)⊕ hv+ℓ ⊕ θ1 .

We will store an entry (enc1, i, N, A, M, C ∥ tag). We additionally use the entry
(inter, J, T, x, y) to track the internal primitive calls during the computation of this
query (except the first and last TBC calls). These additional entries are used for
the analysis and invisible to the adversary.

• For each query C ∥ tag ← Enc2(i, N, A, M), similarly to the above case, we will
store an entry (enc2, i, N, A, M, C ∥ tag) and use the entry (inter, J, T, x, y) to track
the internal primitive calls.

We then define some bad events, and show that the outputs in the real world behave
the same as random strings conditioned on the fact that none of these bad events occur.
Let ha

i,b∥ka
i,b be the b-th internal state for the a-th query to user i. Let parent(ha

i,b∥ka
i,b) be a

sequence of values that point to ha
i,b∥ka

i,b at the a-th query to user i, with parent(ha
i,1∥ka

i,1) =
(ha

i,0 ∥ka
i,0, Na

i ∥Pi), parent(ha
i,b ∥ka

i,b) = (ha
i,0 ∥ka

i,0, Na
i ∥Pi, Aa

i [1]∥ . . . ∥Aa
i [d], . . . , Aa

i [d(b−
2) + 1] ∥ . . . ∥Aa

i [d(b− 1)]) if 2 ≤ b ≤ va
i + 1, and parent(ha

i,b ∥ ka
i,b) = (ha

i,0 ∥ ka
i,0, Na

i ∥ Pi,
Aa

i [1] ∥ . . . ∥Aa
i [d], . . . , Aa

i [dva
i − d + 1] ∥ . . . ∥Aa

i [dva
i], Ma

i [1] ∥ . . . ∥Ma
i [d], . . . , Ma

i [d(b−
va

i −2)+1]∥ . . . ∥Ma
i [d(b−va

i −1)]) if va
i +1 < b ≤ va

i +ℓa
i +1. We then give the definition

of the first bad event bad1. This event consists of several bad conditions, and is to ensure
that the output of each query behaves like a random string when none of these conditions
are triggered. The intuition of each bad condition will be explained when described. We
say that the event bad1 happens if at least one of the following conditions is violated:

(1) There are two users i and j (i ̸= j) such that Ki = Kj and Pi = Pj . This is to avoid
key collisions among u users.

(2) There is a Pi that repeats at least c1 times among u users. This helps to analyze
other bad conditions by putting a threshold on the maximal repeated times of a
public Pi.

(3) There is an ideal TBC entry (prim, J, T, x, y, ∗) or an internal primitive call (inter, J, T, x, y)
such that J = Ki and T = Pi ∥ 0(d−1)n for some user i. This is to avoid the input
collision (including the secret key and tweak) of the first TBC call with that of the
ideal TBC queries or internal primitive calls.

(4) There is an entry (enc2, i, Na
i , Aa

i , Ma
i , Ca

i ∥ taga
i) such that ka

i,0 = kb
j,0 and Na

i ∥Pi =
N b

j ∥ Pj for some other entry (enc∗, j, N b
j , Ab

j , M b
j , Cb

j ∥ tagb
j) of a different user j.

This is to ensure that even when (N, A, M) may repeat across two users, the initial
input (k0, N ∥ P) remains different, therefore avoiding trivial collisions for the hash
function Multihash.

(5) There is an entry (enc2, i, Na
i , Aa

i , Ma
i , Ca

i ∥taga
i) such that ka

i,0 = J and Na
i ∥Pi∥0(d−2)n =

T for some ideal TBC query (prim, J, T, x, y, ∗) or an internal primitive call (inter, J, T, x, y).

16 Multiplex: TBC-based Authenticated Encryption with Sponge-Like Rate

This is to ensure that for each encryption query to Enc2, the initial input ka
i,0 and

Na
i ∥Pi ∥ 0(d−2)n are always fresh from that of ideal TBC queries and internal prim-

itive calls and thus provide enough randomness for the following iterations.

(6) There is an entry (enc2, i, Na
i , Aa

i , Ma
i , Ca

i ∥ taga
i) such that parent(ha

i,b ∥ ka
i,b) ̸=

parent(ha′

i′,b′ ∥ ka′

i′,b′) and (ha
i,b, ka

i,b) ∈ {(ha′

i′,b′ , ka′

i′,b′)} ∪ {(ha′

i′,b′ ⊕ θr, ka′

i′,b′) : 1 ≤ r ≤
d} ∪ {(ha′

i′,b′ ⊕ θr1 ⊕ θr2 , ka′

i′,b′) : 1 ≤ r1 < r2 ≤ d}. This is to ensure that for each en-
cryption query, the 2n-bit internal pairs (ha

i,b, ka
i,b), (ha

i,b⊕θ1, ka
i,b), . . . , (ha

i,b⊕θr, ka
i,b)

are always fresh from other internal pairs.

(7) There is an entry (enc2, i, Na
i , Aa

i , Ma
i , Ca

i ∥ taga
i) such that one of {ha

i,b, ka
i,b, ha

i,b ⊕
θ1, . . . , ha

i,b ⊕ θd} appears at least c2 times for b ≥ 1. This is to put a threshold on
the maximal number of repetitions of these values that is helpful for the following
analysis.

(8) There is an entry (enc2, i, Na
i , Aa

i , Ma
i , Ca

i ∥taga
i) such that (x, J) ∈ {(ha

i,b, ka
i,b), (ha

i,b⊕
θ1, ka

i,b), . . . , (ha
i,b ⊕ θd, ka

i,b) : b ≥ 1} for some ideal TBC query (prim, J, T, x, y, ∗).
This is to ensure that for each encryption query, the inputs of the internal primitive
calls are always fresh from those of ideal TBC queries.

(9) There is an entry (enc2, i, Na
i , Aa

i , Ma
i , Ca

i ∥taga
i) such that (Ki, ha

i,ℓa+va+1∥ ka
i,ℓa+va+1∥

0(d−2)n) = (Kj , Pj ∥ 0(d−1)n) for some entry (enc∗, j, Na
j , Aa

j , Ma
j , Ca

j ∥ taga
j). This

is to avoid the input collision between the first TBC call and the last TBC call.

(10) There is an entry (enc2, i, Na
i , Aa

i , Ma
i , Ca

i ∥ taga
i) such that Ki = J and ha

i,ℓa+va+1 ∥
ka

i,ℓa+va+1 ∥ 0(d−2)n = T for some ideal TBC query (prim, J, T, x, y, ∗) or internal
primitive call (inter, J, T, x, y). This is to ensure that the input of last TBC call is
fresh from those of ideal TBC queries and internal primitive calls.

If bad1 does not happen, then for each entry (enc2, i, Na
i , Aa

i , Ma
i , Ca

i ∥ taga
i), taga

i is al-
ways a n-bit random string since the key and tweak pair (Ki, ha

i,ℓa+va+1∥ ka
i,ℓa+va+1∥0(d−2)n)

of the last TBC is fresh. On the other hand, each Ca
i [b] is sampled uniformly at random

from a set {0, 1}n \ S(ka
i,b−1, T) where S(ka

i,b−1, T) is the set of values that have been
evaluated for the TBC under the key and tweak pair (ka

i,b−1, T). To capture the devia-
tion of Ca

i [b] from a uniformly random string, we will first sample a value v uniformly
at random from {0, 1}n, and say the bad event bad2 happens if v ∈ S(ka

i,b−1, T) and
v ← {0, 1}n \ S(ka

i,b−1, T) is resampled. The value v is then assigned to Ca
i [b]. Hence,

when neither bad1 nor bad2 happens, the outputs in the real world are merely random
strings that are independent of the queries of the adversary. According to the fundamental
lemma of game playing technique [5],

Advpriv
Multiplex(A) ≤ Pr [bad1 ∪ bad2] ≤ Pr [bad1] + Pr [bad2 | ¬bad1] .

These two bad events will be bounded in Lemma 4 and Lemma 5 by

u2 + 16d(σ + p)2 + 8q

22n+1 + (3c1 + dn + 3n)p + (3c1 + dn + n)σ + c1q

2n

+2q2 + q(σ + p)
23n

+ 2
2n/2 ,

and thus complete the proof.

Lemma 4. Assume that the adversary makes at most q encryption queries, p ideal TBC
queries, with the total number of primitive calls among these q encryption queries being
at most σ and the number of queried users being at most u, we have

Pr [bad1] ≤ u2 + 16d(σ + p)2 + 8q

22n+1 + 3c1(p + σ) + c1q + 2np

2n
+ 2q2 + q(σ + p)

23n
+ 2

2n/2

Thomas Peters, Yaobin Shen and François-Xavier Standaert 17

Proof. The event bad1 consists of several conditions. Let condi be the sub-event that the
i-th condition is triggered. We analyze each condition in turn.

For cond1, both Ki and Pi are uniformly random strings. Thus the probability that
Ki = Kj and Pi = Pj is exactly 1/22n. Summing this over

(
u
2
)

pairs of (i, j),

Pr [cond1] ≤ u2

22n+1 .

Next, we analyze the condition cond2. Recall that each Pi is chosen uniformly at
random from the set {0, 1}n. Let c1 = max{4n, 4u/2n}, and by the balls-into-bins result
of Lemma 1,

Pr [cond2] ≤ 1
2n

.

We then bound the condition cond3. Conditioned on ¬cond2, for each ideal TBC
query (prim, J, T, x, y, ∗) or internal primitive call (inter, J, T, x, y), there are at most c1
users such that Pi ∥ 0(d−1)n = T . On the other hand, the probability that Ki = J for
any of these c1 users is 1/2n since Ki is a uniformly random string. Summing this over
at most p ideal TBC queries and σ primitive calls,

Pr [cond3] ≤ c1p + c1σ

2n
.

Next, we analyze the condition cond4. For each Na
i ∥Pi, there are at most c1−1 other

users such that N b
j ∥ Pj = Na

i ∥ Pi due to ¬cond2. On the other hand, conditioned on
¬cond1, Ki ̸= Kj when Pi = Pj . Thus the probability that ka

i,0 = kb
j,0 is 1/2n since they

are outputs of two TBCs with different keys. Summing over at most q encryption queries,

Pr [cond4] ≤ (c1 − 1)q
2n

.

Next, we analyze the condition cond5. Conditioned on ¬cond2, for each ideal TBC
query (prim, J, T, x, y, ∗) or internal primitive call (inter, J, T, x, y), there are at most c1
encryption queries (enc2, i, Na

i , Aa
i , Ma

i , Ca
i ∥ taga

i) such that Na
i ∥ Pi ∥ 0(d−2)n = T . The

probability that ka
i,0 = J is at most 1/(2n − q) for any of these encryption queries since

ka
i,0 is distributed uniformly at random in a set of size at least 2n − q. Summing over at

most p ideal TBC queries and σ internal primitive calls,

Pr [cond5] ≤ c1(p + σ)
2n − q

≤ 2c1(p + σ)
2n

by assuming q ≤ 2n−1.
Next, we analyze the condition cond6. This condition implies that the adversary found

a two-block collision on the hash function Multihash that can be reduced to the underlying
compression function F by at most σ + p TBC queries. On the other hand, conditioned
on ¬cond4, this collision is not trivial. Hence from Lemma 3,

Pr [cond6] ≤ 8d(σ + p)2

22n
.

We then consider the condition cond7. Conditioned on ¬cond6, each pair of ha
i,b−1∥ka

i,b−1
is fresh for b ≥ 2. In the case of b = 1, the pair (ka

i,0, Na
i ∥ Pi) is fresh conditioned on

¬cond4 and ¬cond5. Thus each of corresponding outputs {ha
i,b, ha

i,b⊕θ1, . . . , ha
i,b⊕θd, ka

i,b}
is chosen uniformly at random from a set of size at least 2n− σ− p. The probability that
each of them hits some particular value is at most 1/(2n − σ − p) ≤ 1/2n−1 by assuming
σ + p ≤ 2n−1. Fix c2 = n and assume σ ≤ 2n−3. By the biased balls-into-bins result of
Lemma 2,

Pr [cond7] ≤ 2
2n/2 .

18 Multiplex: TBC-based Authenticated Encryption with Sponge-Like Rate

Next, we analyze the condition cond8. Conditioned on ¬cond7, for each ideal TBC
query (prim, J, T, x, y, ∗), there are at most n values of v ∈ {ha

i,b, ha
i,b ⊕ θ1, . . . , ha

i,b ⊕ θd :
b ≥ 1} such that v = x. The probability that ka

i,b = J for any of these (v, ka
i,b) is at most

1/(2n − σ − p) ≤ 1/2n−1 by assuming σ + p ≤ 2n−1. Summing over at most p ideal TBC
queries,

Pr [cond8] ≤ 2np

2n
.

Next, we analyze the condtion cond9. Conditioned on ¬cond6, both ha
i,ℓa+va+1 and

ka
i,ℓa+va+1 are chosen uniformly at random from a set of size at least 2n−σ−p. Hence the

probability that ha
i,ℓa+va+1 = Pj and ka

i,ℓa+va+1 = 0n is at most 1/(2n−σ−p)2 ≤ 1/22n−2

by assuming σ + p ≤ 2n−1. We consider two cases:

• Case 1: i = j, and thus Ki = Kj . By summing over at most q encryption queries,
the probability corresponding to this case is at most 4q/22n.

• Case 2: i ̸= j, and thus the conditional probability that Ki = Kj is 1/2n. Summing
over all pairs of encryption queries, we obtain a bound 2q2/23n.

Summing up,

Pr [cond9] ≤ 4q

22n
+ 2q2

23n
.

Finally we consider the condition cond10. Similarly to cond9, the probability that ha
i,ℓa+va+1∥

ka
i,ℓa+va+1 ∥0(d−2)n = T is at most 1/22n−2 by assuming σ +p ≤ 2n−1. On the other hand,

the conditional probability that Ki = J is 1/2n since Ki is a random string. Summing
over q encryption queries, σ + p ideal TBC queries and internal primitive calls, we get

Pr [cond10] ≤ q(σ + p)
23n

.

Thus totally,

Pr [bad1] ≤ u2 + 16d(σ + p)2 + 8q

22n+1 + 3c1(p + σ) + c1q + 2np

2n

+2q2 + q(σ + p)
23n

+ 2
2n/2 .

Lemma 5. Pr [bad2 | ¬bad1] ≤ (d+1)nσ+(d+1)np
2n .

Proof. Denote by p(J, T) the number of ideal TBC queries that are issued by the adver-
sary under the pair of key and tweak (J, T) and thus

∑
J∈K,T ∈T

p(J, T) = p. Recall that

S(ka
i,b−1, T) is the set of values that have been sampled for the TBC under the pair of

key and tweak (ka
i,b−1, T) during the computation of encryption queries. Conditioned on

¬bad1, the size of S(ka
i,b−1, T) is at most (d + 1)n + p(ka

i,b−1, T) since each ka
i,b−1 repeats

at most n times and is used (d + 1) times during each iteration. Hence for each Ca
i [b], the

probability that v ∈ S(ka
i,b−1, T) where v

$←− {0, 1}n is at most ((d+1)n+p(ka
i,b−1, T))/2n.

Summing over at most σ primitive calls,

Pr [bad2 | ¬bad1] ≤ (d + 1)nσ + (d + 1)np

2n
.

Thomas Peters, Yaobin Shen and François-Xavier Standaert 19

CCAmL1 security. We now present a heuristic analysis for the confidentiality with
leakage of Multiplex. The proof follows from previous analyses for leakage-resistant modes
of operation [27, 15, 26, 9] and is standard without significant technical novelty. The
security definition of CCAmL1 (CCA security with Misuse-resilience and Leakage) [26] is
given in Supplementary Material S3. The main idea is that by only focusing on encryption
leakages and assuming fresh nonces, each message block is encrypted with a fresh key up
to the birthday bound.4 At a high level and following the simplified assumptions in [8],
the security of Multiplex can be reduced to the Simple Power Analysis (SPA) security of
a single iteration encrypting a dn-bit block of the message with a fresh key.

More formally, to prove the CCAmL1 security of Multiplex, we can resort to the hard-
to-invert assumption of [45] that is also used in the proof of TEDT [9]. We briefly sketch
the leakage function in encryption and challenge queries since decryption is assumed to
be black-box in the CCAmL1 game. When the nonce is fresh in encryption, we can
show that the initial 2n-bit state (h1, k1) after KDF is random. This is because all the
k0’s computed from the first protected TBC are distinct and secret random up to the
birthday bound. The same holds for all the initial states (h1, k1) since it requires only
two calls to Ek0 and their leakage thus remains limited. When the nonce is repeated in
encryption, the adversary can easily mount a Differential Power Analysis (DPA) on the
initial state by using many associated data A and messages M . Yet, the initial states for
any nonce-respecting queries are independent and secret (as for challenge queries).

We then show that the following internal states remain sufficiently secret in challenge
queries and thus the security is preserved. Let (hv+i, kv+i) be the current state and
M [di − d + 1] ∥ . . . ∥M [di] the bn-bit block of message that is being processed in the
computation of a challenge query. The ephemeral key kv+i is used d + 1 times in this
iteration with distinct input hi, hi⊕ θ1, . . . , θd for some constant d. Since kv+i is not used
anywhere else except with a birthday bound probability, these d + 1 TBC calls should
not leak too much information about the refreshed state (hv+i+1, kv+i+1, e1

i+1, . . . , ed−1
i+1)

which will thus be random and secret. Hence, the secrecy and randomness of an internal
state propagates to the next one by (hv+i+1, kv+i+1). On the other hand, the computation
of TGF is independent of the message processing since the last TBC call with the long-
term key is protected and the final state is unique except with a negligible probability.
Hence the CCAmL1 security reduces to the leakage of the one-time XOR computation of
C[di−d+1] = e1

i⊕M [di−d+1], . . . , C[di−1] = ed−1
i ⊕M [di−1], and C[di] = hv+i⊕M [di],

where ej
i = Ekv+i−1(T, hv+i−1 ⊕ θj+1) ⊕ hv+i−1 ⊕ θj+1 for 1 ≤ j ≤ d − 1. Except the

fact that hv+i is also involved in Ekv+i(T, hv+i) ⊕ hv+i, Ekv+i(T, hv+i ⊕ θ1) ⊕ hv+i ⊕
θ1, . . . , Ekv+i

(T, hv+i⊕θd)⊕hv+i⊕θd, these XORs are the minimal number of encryption
manipulations one can expect. Since hv+i is involved in the computation of Ekv+i

that
is internal and out of the adversary’s control, we can assume that little informative leaks.
Thanks the hard-to-invert leakage assumption, we repeat this argument until reaching the
final state as the leakages between two iterations are independent.

6 Authenticity Analysis of Multiplex
Next, we provide the authenticity analysis of Multiplex in the leakage setting.

CIML2 security. The analysis of CIML2 security is done in the unbounded leakage
model with a leveled implementation [11, 12]. In this model, the leakage functions are
allowed to expose all internal states of unprotected (or weakly protected) building blocks
to the adversary, while only the key of strongly protected components remains secret,
still with their inputs and outputs allowed to leak. In the case of Multiplex, only the

4State-of-the-art CCAmL1 security can only be secure up to the birthday bound.

20 Multiplex: TBC-based Authenticated Encryption with Sponge-Like Rate

first and last TBCs used as KDF and TGF are strongly protected and require DPA-
protection (based on masking for instance). All the other TBC calls involved in the
message dependent computations require no side-channel protection. This is where a
leveled design allows saving computations compared to a uniformly protected one that calls
the protected TBC with the long term key at each call. The following result shows that
Multiplex provides beyond-birthday-bound CIML2 security. Due to the page limitation,
we only provide the proof ideas here and postpone the full proof of this theorem to
Supplementary Material S4.

Theorem 2. Suppose that the adversary makes at most totally q encryption and de-
cryption queries, p ideal TBC queries, the total number of primitive calls among these q
encryption and decryption queries being at most σ and the total number of queried users
being at most u. Then we have

AdvCIML2
Multiplex(A) ≤ u2 + 8d(σ + p)2 + 8q

22n+1 + c(σ + p + q) + 2q

2n
+ 2q2 + q(σ + p)

23n

by assuming σ + p ≤ 2n−1, q ≤ 2n−1, and c = max{4n, 4u/2n}.

Discussion and proof ideas. Multiplex ensures CIML2 security as long as the total
number of primitive calls σ and the number of offline TBC calls p does not exceed 2n/n,
and the number of users can be as large as 2n.

The proof is based on the observation that as long as the final two blocks (hℓ+v+1, kℓ+v+1)
are fresh, then it is hard for the adversary to predict the tag of Multiplex. For queries
to the same user, since each tuple (N, A, C) is unique, this collision can be reduced to
the two-block collision of the hash function Multihash that is captured by Lemma 3. On
the other hand, although the tuple (N, A, C) may repeat among different users, the key
pair (Ki, Pi) is unlikely to collide and thus avoids trivial collisions. For a (key, tweak)
collision between the first TBC call in the KDF part and direct TBC calls or internal
TBC calls, this happens with probability about (cp+ cσ)/2n for some constant c since the
multiplicities of Pi can be bounded by Lemma 1. For a (key, tweak) collision between the
TGF part and direct TBC calls or internal TBC calls, this happens with probability about
q(σ + p)/23n since both the tweak and the key of TGF are random. For a (key, tweak)
collision between the first TBC call in KDF and TGF, this happens with probability about
q/22n +q2/23n since the tweak of TGF is random and the keys between two different users
are independently random. Regarding the key collision among many users, this happens
with probability about u2/22n with the help of a public key Pi. The formal proof is more
detailed.

7 Concluding Remarks
We designed Multiplex, a TBC-based mode with primitive-rate d/(d + 1). Its underlying
TBC uses dn-bit tweaks, where n is both the block length and the key length. Each
message processing iteration of Multiplex carries (d + 1) blocks of state and, after XORing
d blocks of message, absorbs the ciphertext blocks and refreshes the full state. That is,
each TBC call in the iteration involves the same (d + 2)-block input, only constants differ
for separation. These calls can then be run in parallel in order to minimize the time of
each iteration.

Besides its interest for flexible leakage-resistant modes of operation and as a good
candidate for comparing TBCs and permutations, outlined in the introduction, we believe
these results also open interesting research avenues. In particular, it would be worth try-
ing to further optimize the performances of Multiplex by relying on shorter-block TBC.
For instance, there is a 64-bit version of Skinny [3] that requires less rounds than the

Thomas Peters, Yaobin Shen and François-Xavier Standaert 21

128-bit version, still with 256-bit tweak. Of course the amount of TBC calls will double
to process the same amount of message bits: since we would have to consider n/2-bit
blocks of message, the primitive rate would approach d/(d + 2) if we carefully deal with
hi, since 2 calls would be necessary to produce a fresh ephemeral key. Nevertheless, the
time of this double amount of TBC executions could reduce to the time of a single execu-
tion when parallelism can be exploited. This shows that a primitive with a smaller block
length might decrease the overall encryption time. It would then also be interesting to
evaluate the cost of the iteration. In Supplementary Material S1, we give an intuitive idea
of how this short-block Multiplex would work for the iterations in the message-processing
part. Equipping it with a suitable key-derivation function and a tag-generation function
may achieve a comparable security as Multiplex. We leave it as an interesting open prob-
lem. Besides studying such an efficiency improvement, studying the black-box security
of Multiplex in the standard model would also be a nice path towards comparing the se-
curity of modes with optimal primitive-rate which do not resort on idealized assumption.
In this paper, we had to rely on the ideal TBC setting since, in the unbounded leakage
model, proving CIML2 first required showing beyond-birthday collision-resistance in the
message-processing part where the adversary is given all the internal values. However, we
carefully designed Multiplex so that the key-input of each TBC call can be proven being
independent through the successive iterations by relying on the pseudorandomness of the
TBC.

Acknowledgments. Thomas Peters and François-Xavier Standaert are respectively as-
sociate researcher and senior research associate of the Belgian Fund for Scientific Research
(F.R.S.-FNRS). This work and its presentation have been funded in parts by the ERC
consolidator grant 724725 (acronym SWORD) and the ERC Advanced Grant 101096871
(acronym BRIDGE). Views and opinions expressed are those of the authors only and do
not necessarily reflect those of the European Union or the European Research Council.
Neither the European Union nor the granting authority can be held responsible for them.
Much of this work was done while Yaobin Shen was a post-doc at UCL Crypto Group.

A Code Description of Multiplex

22 Multiplex: TBC-based Authenticated Encryption with Sponge-Like Rate

Procedure E(K ∥ P, N, A, M)
Input: key K ∈ {0, 1}n,

public key P ∈ {0, 1}n

nonce N ∈ {0, 1}n

associated data A ∈ {0, 1}∗

plaintext M ∈ {0, 1}∗

Output: ciphertext C ∈ {0, 1}|M|

tag tag ∈ {0, 1}n

Initialize
A[1] ∥ . . . ∥A[dv]← pad(A)
M [1] ∥ . . . ∥M [dℓ]← pad(M)
k0 ← EK(P ∥ 0(d−1)n, N)
h0 ← 0n; T ← N ∥ P ∥ 0(d−2)n

h1 ← DM(h0, k0, T, 0n)
k1 ← DM(h0, k0, T, θ1)

Processing Associated Data
for i← 1 to v do

T ← A[di− d + 1] ∥ . . . ∥A[di]
hi+1 ← DM(hi, ki, T, 0n)
ki+1 ← DM(hi, ki, T, θ1)

Processing Plaintext
for j ← 1 to d− 1 do

ej
1 ← DM(hv, kv, T, θj+1)

kv+1 ← kv+1 ⊕ 1
for i← 1 to ℓ− 1 do

for j ← 1 to d− 1
a← di− d + j

C[a]← ej
i ⊕M [a]

C[di]← hv+i ⊕M [di]
T ← C[di− d + 1] ∥ . . . ∥ C[di]
hv+i+1 ← DM(hv+i, kv+i, T, 0n)
kv+i+1 ← DM(hv+i, kv+i, T, θ1)
for j ← 1 to d− 1

ej
i+1 ← DM(hv+i, kv+i, T, θj+1)

for j ← 1 to d− 1
a← dℓ− d + j

C[a]← ej
ℓ ⊕M [a]

C[dℓ]← hv+ℓ ⊕M [dℓ]
T ← C[dℓ− d + 1] ∥ . . . ∥ C[dℓ]
hℓ+v+1 ← DM(hℓ+v, kℓ+v, T, 0n)
kℓ+v+1 ← DM(hℓ+v, kℓ+v, T, θ1)
C ← ⌈C[1] ∥ . . . ∥ C[dℓ]⌉|M|

Finalize
tag← EK(hℓ+v+1 ∥ kℓ+v+1 ∥ 0(d−2)n, 0n)
return C ∥ tag

Procedure D(K ∥ P, N, A, C ∥ tag)
Input: key K ∈ {0, 1}n,

public key P ∈ {0, 1}n

nonce N ∈ {0, 1}n

associated data A ∈ {0, 1}∗

ciphertext C ∈ {0, 1}∗

tag tag ∈ {0, 1}n

Output: plaintext M ∈ {0, 1}|C| or ⊥

Initialize
A[1] ∥ . . . ∥A[dv]← pad(A)
C[1] ∥ . . . ∥ C[dℓ]← pad(C)
k0 ← EK(P ∥ 0(d−1)n, N)
h0 ← 0n; T ← N ∥ P ∥ 0(d−2)n

h1 ← DM(h0, k0, T, 0n)
k1 ← DM(h0, k0, T, θ1)

Processing Associated Data
for i← 1 to v do

T ← A[di− d + 1] ∥ . . . ∥A[di]
hi+1 ← DM(hi, ki, T, 0n)
ki+1 ← DM(hi, ki, T, θ1)

Processing Ciphertext
for j ← 1 to d− 1 do

ej
1 ← DM(hv, kv, T, θj+1)

kv+1 ← kv+1 ⊕ 1
for i← 1 to ℓ− 1 do

for j ← 1 to d− 1
a← di− d + j

M [a]← ej
i ⊕ C[a]

M [di]← hv+i ⊕ C[di]
T ← C[di− d + 1] ∥ . . . ∥ C[di]
hv+i+1 ← DM(hv+i, kv+i, T, 0n)
kv+i+1 ← DM(hv+i, kv+i, T, θ1)
for j ← 1 to d− 1

ej
i+1 ← DM(hv+i, kv+i, T, θj+1)

for j ← 1 to d− 1
a← dℓ− d + j

M [a]← ej
ℓ ⊕ C[a]

M [dℓ]← hv+ℓ ⊕ C[dℓ]
T ← C[dℓ− d + 1] ∥ . . . ∥ C[dℓ]
hℓ+v+1 ← DM(hℓ+v, kℓ+v, T, 0n)
kℓ+v+1 ← DM(hℓ+v, kℓ+v, T, θ1)
M ← ⌈M [1] ∥ . . . ∥M [dℓ]⌉|C|

Finalize
x← E−1

K (hℓ+v+1 ∥ kℓ+v+1 ∥ 0(d−2)n, tag)
if x = 0n then return M else ⊥

Inner Function DM(h, k, m, θ)
e← Ek(m, h⊕ θ)⊕ h⊕ θ

return e

Figure 6: Authenticated encryption and decryption procedures of Multiplex construction based on
a TBC with n-bit key and dn-bit tweak. Here θ1, . . . , θd ∈ {0, 1}n are distinct non-zero constants,
e.g., 1, . . . , d.

Thomas Peters, Yaobin Shen and François-Xavier Standaert 23

References
[1] F. Abed, C. Forler, E. List, S. Lucks, and J. Wenzel. Counter-bdm: A provably

secure family of multi-block-length compression functions. In Progress in Cryptol-
ogy - AFRICACRYPT 2014 - 7th International Conference on Cryptology in Africa,
Marrakesh, Morocco, May 28-30, 2014. Proceedings, pages 440–458, 2014.

[2] T. Ashur, O. Dunkelman, and A. Luykx. Boosting authenticated encryption robust-
ness with minimal modifications. In CRYPTO (3), volume 10403 of LNCS, pages
3–33. Springer, 2017.

[3] C. Beierle, J. Jean, S. Kölbl, G. Leander, A. Moradi, T. Peyrin, Y. Sasaki, P. Sasdrich,
and S. M. Sim. The SKINNY family of block ciphers and its low-latency variant
MANTIS. In CRYPTO (2), volume 9815 of LNCS, pages 123–153. Springer, 2016.

[4] C. Beierle, J. Jean, S. Kölbl, G. Leander, A. Moradi, T. Peyrin, Y. Sasaki, P. Sasdrich,
and S. M. Sim. SKINNY-AEAD and skinny-hash. IACR Trans. Symmetric Cryptol.,
2020(S1):88–131, 2020.

[5] M. Bellare and P. Rogaway. The security of triple encryption and a framework for
code-based game-playing proofs. In Advances in Cryptology - EUROCRYPT 2006,
25th Annual International Conference on the Theory and Applications of Crypto-
graphic Techniques, St. Petersburg, Russia, May 28 - June 1, 2006, Proceedings,
pages 409–426, 2006.

[6] M. Bellare and B. Tackmann. The multi-user security of authenticated encryption:
AES-GCM in TLS 1.3. In CRYPTO (1), volume 9814 of LNCS, pages 247–276.
Springer, 2016.

[7] D. Bellizia, F. Berti, O. Bronchain, G. Cassiers, S. Duval, C. Guo, G. Leander,
G. Leurent, I. Levi, C. Momin, O. Pereira, T. Peters, F. Standaert, B. Udvarhelyi, and
F. Wiemer. Spook: Sponge-based leakage-resistant authenticated encryption with a
masked tweakable block cipher. IACR Trans. Symmetric Cryptol., 2020(S1):295–349,
2020.

[8] D. Bellizia, O. Bronchain, G. Cassiers, V. Grosso, C. Guo, C. Momin, O. Pereira,
T. Peters, and F. Standaert. Mode-level vs. implementation-level physical security
in symmetric cryptography - A practical guide through the leakage-resistance jungle.
In CRYPTO (1), volume 12170 of LNCS, pages 369–400. Springer, 2020.

[9] F. Berti, C. Guo, O. Pereira, T. Peters, and F. Standaert. TEDT, a leakage-resist
AEAD mode for high physical security applications. IACR Trans. Cryptogr. Hardw.
Embed. Syst., 2020(1):256–320, 2020.

[10] F. Berti, C. Guo, T. Peters, and F. Standaert. Efficient leakage-resilient macs without
idealized assumptions. In M. Tibouchi and H. Wang, editors, Advances in Cryptology -
ASIACRYPT 2021 - 27th International Conference on the Theory and Application of
Cryptology and Information Security, Singapore, December 6-10, 2021, Proceedings,
Part II, volume 13091 of LNCS, pages 95–123. Springer, 2021.

[11] F. Berti, F. Koeune, O. Pereira, T. Peters, and F. Standaert. Ciphertext integrity
with misuse and leakage: Definition and efficient constructions with symmetric prim-
itives. In Proceedings of the 2018 on Asia Conference on Computer and Communica-
tions Security, AsiaCCS 2018, Incheon, Republic of Korea, June 04-08, 2018, pages
37–50, 2018.

24 Multiplex: TBC-based Authenticated Encryption with Sponge-Like Rate

[12] F. Berti, O. Pereira, T. Peters, and F. Standaert. On leakage-resilient authenticated
encryption with decryption leakages. IACR Trans. Symmetric Cryptol., 2017(3):271–
293, 2017.

[13] G. Bertoni, J. Daemen, M. Peeters, and G. V. Assche. Duplexing the sponge: Single-
pass authenticated encryption and other applications. In Selected Areas in Cryptog-
raphy, volume 7118 of LNCS, pages 320–337. Springer, 2011.

[14] P. Bose, V. T. Hoang, and S. Tessaro. Revisiting AES-GCM-SIV: multi-user security,
faster key derivation, and better bounds. In Advances in Cryptology - EUROCRYPT
2018 - 37th Annual International Conference on the Theory and Applications of Cryp-
tographic Techniques, Tel Aviv, Israel, April 29 - May 3, 2018 Proceedings, Part I,
pages 468–499, 2018.

[15] O. Bronchain, C. Momin, T. Peters, and F. Standaert. Improved leakage-resistant au-
thenticated encryption based on hardware AES coprocessors. IACR Trans. Cryptogr.
Hardw. Embed. Syst., 2021(3):641–676, 2021.

[16] B. Cogliati, J. Jean, T. Peyrin, and Y. Seurin. A long tweak goes a long way: High
multi-user security authenticated encryption from tweakable block ciphers. Cryptol-
ogy ePrint Archive, Paper 2022/846, 2022. https://eprint.iacr.org/2022/846.

[17] J. Daemen, B. Mennink, and G. V. Assche. Full-state keyed duplex with built-in
multi-user support. In ASIACRYPT (2), volume 10625 of LNCS, pages 606–637.
Springer, 2017.

[18] J. P. Degabriele, C. Janson, and P. Struck. Sponges resist leakage: The case of
authenticated encryption. In ASIACRYPT (2), volume 11922 of LNCS, pages 209–
240. Springer, 2019.

[19] C. Dobraunig, M. Eichlseder, S. Mangard, F. Mendel, B. Mennink, R. Primas, and
T. Unterluggauer. ISAP v2.0. IACR Trans. Symmetric Cryptol., 2020(S1):390–416,
2020.

[20] C. Dobraunig, M. Eichlseder, F. Mendel, and M. Schläffer. Ascon v1.2: Lightweight
authenticated encryption and hashing. J. Cryptol., 34(3):33, 2021.

[21] C. Dobraunig and B. Mennink. Leakage resilience of the duplex construction. In
ASIACRYPT (3), volume 11923 of LNCS, pages 225–255. Springer, 2019.

[22] C. Dobraunig and B. Mennink. Leakage resilient value comparison with application
to message authentication. In EUROCRYPT (2), volume 12697 of LNCS, pages
377–407. Springer, 2021.

[23] Y. Dodis and K. Pietrzak. Leakage-resilient pseudorandom functions and side-
channel attacks on feistel networks. In CRYPTO, volume 6223 of LNCS, pages 21–40.
Springer, 2010.

[24] S. Dziembowski and K. Pietrzak. Leakage-resilient cryptography. In FOCS, pages
293–302. IEEE Computer Society, 2008.

[25] S. Faust, K. Pietrzak, and J. Schipper. Practical leakage-resilient symmetric cryptog-
raphy. In CHES, volume 7428 of LNCS, pages 213–232. Springer, 2012.

[26] C. Guo, O. Pereira, T. Peters, and F. Standaert. Authenticated encryption with nonce
misuse and physical leakage: Definitions, separation results and first construction
- (extended abstract). In LATINCRYPT, volume 11774 of LNCS, pages 150–172.
Springer, 2019.

https://eprint.iacr.org/2022/846

Thomas Peters, Yaobin Shen and François-Xavier Standaert 25

[27] C. Guo, O. Pereira, T. Peters, and F. Standaert. Towards low-energy leakage-resistant
authenticated encryption from the duplex sponge construction. IACR Trans. Sym-
metric Cryptol., 2020(1):6–42, 2020.

[28] S. Hirose. Some plausible constructions of double-block-length hash functions. In
Fast Software Encryption, 13th International Workshop, FSE 2006, Graz, Austria,
March 15-17, 2006, Revised Selected Papers, pages 210–225, 2006.

[29] V. T. Hoang and S. Tessaro. The multi-user security of double encryption. In
Advances in Cryptology - EUROCRYPT 2017 - 36th Annual International Conference
on the Theory and Applications of Cryptographic Techniques, Paris, France, April 30
- May 4, 2017, Proceedings, Part II, pages 381–411, 2017.

[30] J. Jean, I. Nikolic, and T. Peyrin. Tweaks and keys for block ciphers: The TWEAKEY
framework. In ASIACRYPT (2), volume 8874 of LNCS, pages 274–288. Springer,
2014.

[31] P. Jovanovic, A. Luykx, B. Mennink, Y. Sasaki, and K. Yasuda. Beyond conventional
security in sponge-based authenticated encryption modes. J. Cryptol., 32(3):895–940,
2019.

[32] M. D. Liskov, R. L. Rivest, and D. A. Wagner. Tweakable block ciphers. J. Cryptol.,
24(3):588–613, 2011.

[33] B. Mennink, R. Reyhanitabar, and D. Vizár. Security of full-state keyed sponge and
duplex: Applications to authenticated encryption. In ASIACRYPT (2), volume 9453
of LNCS, pages 465–489. Springer, 2015.

[34] S. Micali and L. Reyzin. Physically observable cryptography (extended abstract). In
TCC, volume 2951 of LNCS, pages 278–296. Springer, 2004.

[35] C. Momin, G. Cassiers, and F. Standaert. Unprotected and masked hardware imple-
mentations of spook v2. IACR Cryptol. ePrint Arch., page 254, 2022.

[36] Y. Naito, Y. Sasaki, and T. Sugawara. Secret can be public: Low-memory aead
mode for high-order masking. Cryptology ePrint Archive, Paper 2022/812, 2022.
https://eprint.iacr.org/2022/812.

[37] O. Pereira, F. Standaert, and S. Vivek. Leakage-resilient authentication and encryp-
tion from symmetric cryptographic primitives. In CCS, pages 96–108. ACM, 2015.

[38] T. Peyrin. Tweakable block cipher-based cryptography, 2020. FSE, Invited talk.

[39] T. Peyrin and Y. Seurin. Counter-in-tweak: Authenticated encryption modes for
tweakable block ciphers. In CRYPTO (1), volume 9814 of LNCS, pages 33–63.
Springer, 2016.

[40] K. Pietrzak. A leakage-resilient mode of operation. In EUROCRYPT, volume 5479
of LNCS, pages 462–482. Springer, 2009.

[41] P. Rogaway. Authenticated-encryption with associated-data. In Proceedings of the
9th ACM Conference on Computer and Communications Security, CCS 2002, Wash-
ington, DC, USA, November 18-22, 2002, pages 98–107, 2002.

[42] Y. Shen, T. Peters, F. Standaert, G. Cassiers, and C. Verhamme. Triplex: an efficient
and one-pass leakage-resistant mode of operation. IACR Trans. Cryptogr. Hardw.
Embed. Syst., 2022(4):135–162, 2022.

https://eprint.iacr.org/2022/812

26 Multiplex: TBC-based Authenticated Encryption with Sponge-Like Rate

[43] C. Verhamme, G. Cassiers, and F.-X. Standaert. Analyzing the leakage resistance of
the NIST’s lightweight crypto competition’s finalists. In CARDIS, volume xxxx of
LNCS, pages yyy–zzz. Springer, 2022.

[44] Y. Yu and F. Standaert. Practical leakage-resilient pseudorandom objects with mini-
mum public randomness. In CT-RSA, volume 7779 of LNCS, pages 223–238. Springer,
2013.

[45] Y. Yu, F. Standaert, O. Pereira, and M. Yung. Practical leakage-resilient pseudoran-
dom generators. In CCS, pages 141–151. ACM, 2010.

Thomas Peters, Yaobin Shen and François-Xavier Standaert 27

Supplementary Material

28 Multiplex: TBC-based Authenticated Encryption with Sponge-Like Rate

S1 A Shorter-Block Variant of Multiplex
In this section, we provide an intuitive idea how to build Multiplex from a short-block
tweakable block cipher (TBC) with n-bit security. For a short-block TBC, the key size is
usually larger than the block size in order to to keep the security. Here we focus on the
case where the key size is twice as large as the block size. We first describe a variant of
Multihash denoted by Multihash from a short-block TBC, and then show how to encrypt
and authenticate messages by using this hash function.

hash function. The hash function Multihash is based on a compression function F that
is defined below. The main idea is to keep a 2n-bit state as in F for Multihash. Now,
this state is simply seen as 4 blocks of n/2 bits. However, while in F the state can be
carried by the n-bit key-input and the n-bit plaintext-input in each TBC call, here we can
only carry 3 blocks of n/2 bits by following this strategy as the TBC now only supports
(n/2)-bit plaintext-input. To hope keeping a good collision-resistance bound, we still have
to make all the TBC calls in F directly depending on the 4th block as well and we thus
put this last n/2 bits in the tweak. Assuming the tweak size is d · n/2, for some integer
d ≥ 2, we still have room to absorb d−1 blocks. This leads to the following definition with
rate (d− 1)/(d + 1), where we also generate the auxiliary blocks that will help designing
a Multiplex variant with shorter blocks.

Definition 3. Let E : {0, 1}n × {0, 1}dn/2 × {0, 1}n/2 → {0, 1}n/2 be a TBC. Then F :
{0, 1}4n/2×{0, 1}(d−1)n/2 → {0, 1}(d+1)n/2 is an extended compression function such that
(h1

i , h2
i , k1

i , k2
i , e1

i , . . . , ed−3
i) = F (h1

i−1, h2
i−1, k1

i−1, k2
i−1, ti) where h1

i−1, h2
i−1, k1

i−1, k2
i−1,∈

{0, 1}n/2 is the state, ti ∈ {0, 1}(d−1)n/2 is being absorbed, h1
i , h2

i , k1
i , k2

i is the main
output (the refreshed state), and e1

i , . . . , ed−3
i ∈ {0, 1}n/2 the auxiliary blocks that are

computed as follows:

h1
i = Ek1

i−1 ∥ k2
i−1

(h2
i−1 ∥ ti, h1

i−1)⊕ h1
i−1

k1
i = Ek1

i−1 ∥ k2
i−1

(h2
i−1 ∥ ti, h1

i−1 ⊕ θ1)⊕ h1
i−1 ⊕ θ1

k2
i = Ek1

i−1 ∥ k2
i−1

(h2
i−1 ∥ ti, h1

i−1 ⊕ θ2)⊕ h1
i−1 ⊕ θ2

h2
i = Ek1

i−1 ∥ k2
i−1

(h2
i−1 ∥ ti, h1

i−1 ⊕ θ3)⊕ h1
i−1 ⊕ θ3

e1
i = Ek1

i−1 ∥ k2
i−1

(h2
i−1 ∥ ti, h1

i−1 ⊕ θ4)⊕ h1
i−1 ⊕ θ4

...
ed−3

i = Ek1
i−1 ∥ k2

i−1
(h2

i−1 ∥ ti, h1
i−1 ⊕ θd)⊕ h1

i−1 ⊕ θd

Here θ1, . . . , θd ∈ {0, 1}n/2 are distinct non-zero constants, e.g., 1, . . . , d.

See the left of Figure 7 for the illustration of compression function F when d = 4.
Following the same paradigm in Section 3, we can obtain the hash function Multihash
that is based on the compression function F . Note that we consider the case when the key
size of a TBC is twice large as the block size. In the hash function Multihash, it requires
two TBC calls to produce the n-bit key.

Multiplex from a short-block TBC. Following a similar paradigm of Multiplex in
Section 4, we can turn the hash function Multihash with a key-derivation function and a
tag-generation function into a full-fledged AE scheme. For that purpose, the KDF and the
TGF variants would have to make (at least) two protected calls to the short-block TBC.
This Multiplex variant would allow encrypting d− 1 blocks of n/2-bit message in parallel
per iteration with only d + 1 calls to the underlying short-block TBC. Given a TBC with
256 bits of tweak, we have d = 4, and the mode would allow encrypting 3 · 64 = 192 bits
of message per iteration with primitive-rate 3/5 (while the only previous AE with short

Thomas Peters, Yaobin Shen and François-Xavier Standaert 29

h1
i−1

k1i−1

k2i−1

∥

E

E

h2
i − 1∥ti

h2
i − 1∥ti

⊕

⊕ ⊕
θ1

E

h2
i − 1∥ti

⊕ ⊕
θ3

h2
i

h1
i

k1i

E

h2
i − 1∥ti

⊕ ⊕
θ4

e1i

E

h2
i − 1∥ti

⊕ ⊕
θ2

k2i

h1
i−1

k1i−1

k2i−1

∥

h2
i−1

e1i−1

⊕
M2i C2i

⊕
M2i-1 C2i-1

⊕
M2i-2 C2i-2

E

E

h2
i − 1∥ti

h2
i − 1∥ti

⊕

⊕ ⊕
θ1

E

h2
i − 1∥ti

⊕ ⊕
θ3

h2
i

h1
i

k1i

E

h2
i − 1∥ti

⊕ ⊕
θ4

e1i

E

h2
i − 1∥ti

⊕ ⊕
θ2

k2i

Figure 7: The compression function F that is based on a tweakable block cipher E with n/2-bit
block, n-bit key and 2n-bit tweak (left). An intuitive idea to turn the compression function F
into encryption and authentication(right) where ti = C2i−2 ∥ C2i−1 ∥ C2i.

blocks aiming at leakage resilience [36] only enjoys a rate 1/3, but for different security
goals). Here we only provide one iteration of our short-block Multiplex scheme that is
illustrated in the right of Figure 7.

S2 Multi-Block Hash Function Using a Tweakable Block
Cipher
In this section, we introduce the multi-block-length (MBL) hash function called MBLhash
based on a tweakable block cipher with n-bit key and dn-bit tweak that is collision-
resistant up to O(2(d+1)n/2) queries in the ideal TBC model.

Note that this MBL compression function can be regarded as a generalization of Hi-
rose’s double-block length compression function [28] to output arbitrary blocks without
increasing the size of key. A similar MBL hash function called Counter-bDM is proposed
by Abed et al. [1]. It is based on a block cipher and the key size increases linearly with
the output blocks, while for the hash function MBLhash, the size of key is fixed and only
the size of tweak increases linearly with the output blocks.

Compression function. The MBL hash function MBLhash is built on top of a MBL
compression function F ∗ that is described as follows.

Definition 4. Let E : {0, 1}n ×{0, 1}dn ×{0, 1}n → {0, 1}n be a tweakable block cipher.
Then F ∗ : {0, 1}(d+1)n×{0, 1}n → {0, 1}(d+1)n is a multi-block compression function such
that (hi, ki, e1

i , . . . , ed−1
i) = F ∗(hi−1, ki−1, e1

i−1, . . . , ed−1
i−1 , ti) where hi−1, ki−1, e1

i−1, . . . , ed−1
i−1 ,

30 Multiplex: TBC-based Authenticated Encryption with Sponge-Like Rate

hi−1

ki−1

E

E

e1i−1∥ti

e1i−1∥ti

⊕

⊕ ⊕
θ1

E

e1i−1∥ti

⊕ ⊕
θ2

e1i

hi

ki

Figure 8: The MBL compression function F ∗ based on a tweakable block cipher E with n-bit
key and 2n-bit tweak.

ti ∈ {0, 1}n, and hi, ki, e1
i , . . . , ed−1

i ∈ {0, 1}n are computed as follows:

hi = Eki−1(e1
i−1 ∥ . . . ∥ ed−1

i−1 ∥ ti, hi−1)⊕ hi−1

ki = Eki−1(e1
i−1 ∥ . . . ∥ ed−1

i−1 ∥ ti, hi−1 ⊕ θ1)⊕ hi−1 ⊕ θ1

e1
i = Eki−1(e1

i−1 ∥ . . . ∥ ed−1
i−1 ∥ ti, hi−1 ⊕ θ2)⊕ hi−1 ⊕ θ2

...
ed−1

i = Eki−1(e1
i−1 ∥ . . . ∥ ed−1

i−1 ∥ ti, hi−1 ⊕ θd)⊕ hi−1 ⊕ θd

Here θ1, . . . , θd ∈ {0, 1}n are distinct non-zero constants, e.g., 1, . . . , d.

A pictorial illustration of the compression function F ∗ when d = 2 is given in Figure 8.
Next, we give the definition of MBL hash function MBLhash : {0, 1}∗ → {0, 1}(d+1)n

composed of the compress function F . Let pad : {0, 1}∗ → ({0, 1}n)+ be an injective
padding function, e.g., one-zero padding pad(t) = t ∥ 10a where a = n− 1− (|t| mod n).
The specification of MBL hash function MBLhash is given in Figure 9.

We say a collision occurs if MBLhash(t) = MBLhash(t′) for any two different messages
t, t′ ∈ {0, 1}∗. This collision requires a multi-block collision on the outputs, namely
(hℓ, kℓ, e1

ℓ , . . . , ed−1
ℓ) = (h′

ℓ′ , k′
ℓ′ , e′1

ℓ′ , . . . , e′d−1
ℓ′). For an adversary A with oracle access

to E and E−1, let Advmcoll
H (A) be the probability that A finds a collision of the hash

function MBLhash. The following lemma shows that MBLhash is collision-resistance up to
O(2(d+1)n/2) queries. The proof can be adapted directly from [1, Theorem 3] since the
key and tweak play the same role in the ideal TBC model.

Lemma 6. For any adversary A making at most q queries to E and E−1, we have

Advmcoll
MBLhash(A) ≤ (d + 1)2 · 2d+3 · q2

2(d+1)n
+ (d + 1)3 · 2d+6 · q2

2(d+2)n
.

S3 CCAmL1 Security
In this section, we give the definition of CCAmL1 [26] in the multi-user setting. In
CCAmL1 game (illustrated in Figure 10), the adversary has the access to encryption ora-
cles with leakage and decryption oracle without leakage. The goal of adversary is to attack

Thomas Peters, Yaobin Shen and François-Xavier Standaert 31

Hash function MBLhash(t)
t1 ∥ . . . ∥ tℓ ← pad(t); (h0, k0, e1

0, . . . , ed−1
0)← (0n, 0n, 0n, . . . , 0n)

for i← 1 to ℓ do
(hi, ki, e1

i , . . . , ed−1
i)← F (hi−1, ki−1, e1

i−1, . . . , ed−1
i−1 , ti)

return (hℓ, kℓ, e1
ℓ , . . . , ed−1

ℓ)

h0

k0

E

E

e10∥t1

e10∥t1

⊕

⊕ ⊕
θ1

E

e10∥t1

⊕ ⊕
θ2 e11

E

E

e11∥t2

e11∥t2

⊕

⊕ ⊕
θ1

E

e11∥t2

⊕ ⊕
θ2 e12

E

E

e12∥t3

e12∥t3

⊕

⊕ ⊕
θ1

E

e12∥t3

⊕ ⊕
θ2 e13

h3

k3

Figure 9: The MBL hash function MBLhash that is built from the compression function F ∗ with
n-bit key and 2n-bit tweak.

Game GCCAmL1
Π (A)

K1, K2, . . . ,
$←− K; b

$←− {0, 1}
b′ $←− APrim,Lenc1,Lenc2,Dec

return (b′ = b)

Procedure Prim(J, T, X)
if X = (+, x) then return EJ (T, x)
if X = (−, y) then return E−1

J (T, y)

Procedure Dec(i, N, A, C ∥ tag)
M ← D(Ki, N, A, C ∥ tag)
return M

Procedure Lenc1(i, N, A, M)
C ∥ tag← E(Ki, N, A, M)
Le ← LE(Ki, N, A, M)
return (C ∥ tag, Le)

Procedure Lenc2(i, N, A, M0, M1)
if |M0| ̸= |M1| then return ⊥
Cb ∥ tagb ← E(Ki, N, A, Mb)
Lb

e ← LE(Ki, N, A, Mb)
return (Cb ∥ tagb, Lb

e)

Figure 10: Game GCCAmL1
Π defines the multi-user CCAmL1 security of an AE scheme Π.

the confidentiality of messages encrypted with fresh nonces (nonce-misuse resilience). The
advantage of the adversary is captured by the left-or-right framework. That is, the prob-
ability that the adversary can tell apart the encryption of two different messages of equal
length. This framework can avoid the conceptual difficulty to define the leakage of ideal
objects in the real-or-random game. For queries to the same user, the adversary may
repeat the nonce in the first encryption oracle Lenc1 but the nonce in the second one
Lenc2 (challenge queries) is unique and fresh. For queries to different users, the adversary
can repeat the nonce in both oracles. The adversary also has the access to decryption
oracle Dec, but she cannot forward queries from Lenc2 to Dec since otherwise resulting
in trivial win. Formally,

AdvCCAmL1
Π (A) = 2Pr

[
GCCAmL1

Π (A)
]
− 1

is the advantage of the adversary against the CCAmL1 security of an AE Π.

32 Multiplex: TBC-based Authenticated Encryption with Sponge-Like Rate

S4 Proof of Theorem 2
In the CIML2 security game of Figure 2, the adversary is granted access to three oracles,
including the encryption oracle, the decryption oracle, and the offline ideal TBC oracle.
The adversary forges successfully if any of her queries passes the decryption oracle. Our
goal is to show that the successful probability is negligible. From the interaction with her
oracles, the adversary can obtain the information that are recorded as follows.

• For each query Prim(J, T, (+, x)) with answer y, we will store an entry (prim, J, T, x, y, +).
Similarly, for each query Prim(J, T, (−, y)) with answer x, we will store an entry
(prim, J, T, x, y,−).

• For each query (C∥tag, Le)← Enc(i, N, A, M), let A[1]∥ . . . ∥A[dv]← A, M [1]∥ . . . ∥M [dℓ]←
M and C[1] ∥ . . . ∥ C[dℓ]← C. Let

h0 = 0n, k0 = EKi
(Pi ∥ 0(d−1)n, N) ,

h1 = Ek0(N ∥ Pi ∥ 0(d−2)n, 0n), k1 = Ek0(N ∥ Pi ∥ 0(d−2)n, θ1)⊕ θ1 ,

and for 1 ≤ j ≤ v, let

hj+1 = Ekj
(A[dj − d + 1] ∥ . . . ∥A[dj], hj)⊕ hj ,

kj+1 = Ekj
(A[dj − d + 1] ∥ . . . ∥A[dj], hj ⊕ θ1)⊕ hj ⊕ θ1 .

For 1 ≤ r ≤ d − 1, let er
1 = Ekv

(T, hv ⊕ θr+1) ⊕ hv ⊕ θr+1 where T = A[dv − d +
1]∥ . . . ∥A[dv] if AD is not empty otherwise T = N ∥Pi∥0(d−2)n. Let kv+1 = kv+1⊕1,
and for 1 ≤ j ≤ ℓ− 1, let

hv+j+1 = Ekv+j
(C[dj − d + 1] ∥ . . . ∥ C[dj], hv+j)⊕ hv+j ,

kv+j+1 = Ekv+j
(C[dj − d + 1] ∥ . . . ∥ C[dj], hv+j ⊕ θ1)⊕ hv+j ⊕ θ1 ,

er
j+1 = Ekv+j

(C[dj − d + 1] ∥ . . . ∥ C[dj], hv+j ⊕ θr+1)⊕ hv+j ⊕ θr+1

for 1 ≤ r ≤ d− 1. Let

hv+ℓ+1 = Ekv+ℓ
(C[dℓ− d + 1] ∥ . . . ∥ C[dℓ], hv+ℓ)⊕ hv+ℓ ,

kv+ℓ+1 = Ekv+ℓ
(C[dℓ− d + 1] ∥ . . . ∥ C[dℓ], hv+ℓ ⊕ θ1)⊕ hv+ℓ ⊕ θ1 .

Denote by h = (h0, . . . , hℓ+v+1) and k = (k0, . . . , kℓ+v+1). In the unbounded leakage
model with leveled implementation, except the key Ki of the first and final TBC
call, all the values of h and k are exposed to the adversary. Hence we will store an
entry (enc, i, N, A, M, T ∥ tag, h, k). Note that the adversary can learn the internal
primitive calls from this entry that are recorded by (leak, J, T, x, y) as follows:

– (leak, k0, N ∥Pi∥0(d−2)n, 0n, h1) and (leak, k0, N ∥Pi∥0(d−2)n, θ1, k1⊕θ1) during
the initialization;

– for 1 ≤ j ≤ v, (leak, kj , A[dj−d+1]∥ . . . ∥A[dj], hj , hj⊕hj+1), (leak, kj , A[dj−d+
1]∥ . . . ∥A[dj], hj⊕θ1, hj⊕kj+1⊕θ1), and (leak, kv, A[dj−d+1]∥ . . . ∥A[dj], hv⊕
θr+1, hv ⊕ er

1 ⊕ θr+1) for 1 ≤ r ≤ d− 1 during the associated dara processing;
– for 1 ≤ j ≤ ℓ− 1, (leak, kv+j , C[dj − d + 1] ∥ . . . ∥ C[dj], hv+j , hv+j ⊕ hv+j+1),

(leak, kv+j , C[dj−d+1]∥ . . . ∥C[dj], hv+j⊕θ1, hv+j⊕kv+j+1⊕θ1), (leak, kv+j , C[dj−
d+1]∥ . . . ∥C[dj], hv+j⊕θr+1, hv+j⊕er

j+1⊕θr+1) for 1 ≤ r ≤ d−1, and finally
(leak, kv+ℓ, C[dj − d + 1] ∥ . . . ∥ C[dj], hv+ℓ, hv+ℓ+1) and (leak, kv+ℓ, C[dj − d +
1] ∥ . . . ∥ C[dj], hv+ℓ ⊕ θ1, hv+ℓ ⊕ kv+ℓ+1 ⊕ θ1) during the message processing.

Thomas Peters, Yaobin Shen and François-Xavier Standaert 33

• For each query (M, Ld)← Dec(i, N, A, C ∥ tag) (here M can be either a message or
a false symbol ⊥ by abusing of notation), similarly to the encryption query, we will
store an entry (dec, i, N, A, M, C ∥ tag, h, k, x) where x is the checking value that is
computed as x = E−1

Ki
(hℓ+v+1 ∥ kℓ+v+1 ∥ 0(d−2)n, tag). We also use (leak, J, T, x, y)

to record the internal primitive calls that the adversary can learn from this entry.

Note that in the CIML2 game, the adversary can make a decryption query even when
this query has appeared in previous encryption queries. This is to capture the scenario
that the adversary may obtain some more leakage information by repeating the query.
However, in the unbounded leakage model with leveled implementation, all the internal
values are exposed to the adversary by previous encryption queries. Hence without loss
of generality, we can simply ignore such trivial decryption queries.

We now proceed to show that the probability that the adversary forges successfully
is negligible. To this end, we first define a bad event. This event consists of several
bad conditions that will be explained when described. The purpose of this event is to
ensure that the adversary is unlikely to forge a tag when none of these bad conditions
are triggered as shown below. The event bad is said to happen if at least one of the
following conditions is violated (note that conditions 1-4 are similar to those in the proof
of Theorem 1 and thus we omit the corresponding explanations here):

(1) There are two users i and j (i ̸= j) such that Ki = Kj and Pi = Pj .

(2) There is a Pi that repeats at least c1 times among u users.

(3) There is an ideal TBC entry (prim, J, T, x, y, ∗) or an internal primitive call (leak, J, T, x, y)
such that J = Ki and T = Pi ∥ 0(d−1)n for some user i.

(4) There is an entry (dec, i, Na
i , Aa

i , Ma
i , Ca

i ∥ taga
i) such that ka

i,0 = kb
j,0 and Na

i ∥Pi =
N b

j ∥ Pj for some other entry (∗, j, N b
j , Ab

j , M b
j , Cb

j ∥ tagb
j) of a different user j.

(5) There is an entry (dec, i, Na
i , Aa

i , Ma
i , Ca

i ∥ taga
i , ha

i , ka
i , xa

i) such that ha
i,ℓa+va+1 ∥

ka
i,ℓa+va+1 = hb

i,ℓb+vb+1∥kb
i,ℓb+vb+1 for some previous encryption query (enc, i, N b

i , Ab
i ,

M b
i , Cb

i ∥ tagb
i , hb

i , kb
i) with (Na

i , Aa
i , Ca

i) ̸= (N b
i , Ab

i , Cb
i). This condition and the

following condition (6) are to ensure that for each decryption query, the tweak
ha

i,ℓa+va+1 ∥ka
i,ℓa+va+1 is always different from those of other encryption and decryp-

tion queries of the same user.

(6) There is an entry (dec, i, Na
i , Aa

i , Ma
i , Ca

i ∥ taga
i , ha

i , ka
i , xa

i) such that ha
i,ℓa+va+1 ∥

ka
i,ℓa+va+1 = hb

i,ℓb+vb+1∥kb
i,ℓb+vb+1 for some previous decryption query (dec, i, N b

i , Ab
i ,

M b
i , Cb

i ∥ tagb
i , hb

i , kb
i , xb

i) with (Na
i , Aa

i , Ca
i) ̸= (N b

i , Ab
i , Cb

i).

(7) There is an entry (dec, i, Na
i , Aa

i , Ma
i , Ca

i ∥ taga
i , ha

i , ka
i , xa

i) such that ha
i,ℓa+va+1 ∥

ka
i,ℓa+va+1 = hb

j,ℓb+vb+1 ∥ kb
j,ℓb+vb+1 for some previous encryption query (enc, j,

N b
j , Ab

j , M b
j , Cb

j ∥ tagb
j , hb

j , kb
j) with i ̸= j and Pi ̸= Pj . This condition and the

following condition (8) are to ensure that for each decryption query, the tweak
ha

i,ℓa+va+1 ∥ ka
i,ℓa+va+1 is always different from those of other encryption or decryp-

tion queries of a different user. Note that we only need to consider the case when
Pi ̸= Pj since otherwise Ki ̸= Kj conditioned on that condition (1) does not happen.

(8) There is an entry (dec, i, Na
i , Aa

i , Ma
i , Ca

i ∥ taga
i , ha

i , ka
i , xa

i) such that ha
i,ℓa+va+1 ∥

ka
i,ℓa+va+1 = hb

j,ℓb+vb+1∥kb
j,ℓb+vb+1 for some previous decryption query (dec, j, N b

j , Ab
j ,

M b
j , Cb

j ∥ tagb
j , hb

j , kb
j , xb

j) with i ̸= j and Pi ̸= Pj .

(9) There is an entry (dec, i, Na
i , Aa

i , Ma
i , Ca

i ∥taga
i , ha

i , ka
i , xa

i) such that (Ki, ha
i,ℓa+va+1∥

ka
i,ℓa+va+1 ∥ 0(d−2)n) = (Kj , Pj ∥ 0(d−1)n) for some other entry. This is to avoid the

34 Multiplex: TBC-based Authenticated Encryption with Sponge-Like Rate

input collision (including key and tweak) between the first TBC and the last TBC
call.

(10) There is an entry (dec, i, Na
i , Aa

i , Ma
i , Ca

i ∥ taga
i , ha

i , ka
i , xa

i) such that Ki = J and
ha

i,ℓa+va+1 ∥ ka
i,ℓa+va+1 ∥ 0(d−2)n = T for some ideal TBC query (prim, J, T, x, y, ∗) or

some leaked primitive call (leak, J, T, x, y). This is to ensure that the input of the
last TBC call is fresh from those of ideal TBC queries and leaked primitive calls.

Observe that
Pr [A forges] ≤ Pr [A forges | ¬bad] + Pr [bad] . (1)

A bound on the probability that event bad happens is given in Lemma 7.
We then analyze the conditional probability that A forges successfully given that

bad does not happen. Such a forgery requires xa
i = 0n for some decryption query

(dec, i, Na
i , Aa

i , Ma
i , Ca

i ∥ taga
i , ha

i , ka
i , xa

i). We consider the following cases.

• (Na
i , Aa

i , Ca
i) = (N b

i , Ab
i , Cb

i) for some previous encryption query (enc, j, N b
j , Ab

j , M b
j ,

Cb
j ∥ tagb

j , hb
j , kb

j), then taga
i ̸= tagb

i and xa
i cannot be 0n.

• (Na
i , Aa

i , Ca
i) = (Na

i , Aa
i , Ca

i) for some previous decryption query (dec, i, N b
i , Ab

i , M b
i ,

Cb
i ∥ tagb

i , hb
i , kb

i , xb
i), then taga

i ̸= tagb
i , and the probability that xa

i = 0n is at most
1/(2n − q) since conditioned on ¬bad, the value xa

i is always chosen uniformly at
random from a set of size at least 2n − q.

• If neither of the above cases happens, then conditioned on ¬bad, the key and tweak
pair (Ki, ha

i,ℓa+va+1 ∥ ka
i,ℓa+va+1 ∥ 0(d−2)n) is always fresh. Thus xa

i is a uniformly
random string and the probability that xa

i = 0n is 1/2n.

Summing over at most q decryption queries, we get

Pr [A forges | ¬bad] ≤ q

2n − q
≤ 2q

2n

by assuming q ≤ 2n−1. The proof is completed via Equation 1 and the bound of Lemma 7.

Lemma 7. Assume that the adversary makes at most totally q encryption and decryption
queries, p ideal TBC queries, with the total number of primitive calls among these q
encryption and decryption queries being at most σ and the number of queried users being
at most u, we have

Pr [bad] ≤ u2 + 8d(σ + p)2 + 8q

22n+1 + c(σ + p + q)
2n

+ 2q2 + q(σ + p)
23n

where c = max{4n, 4u/2n} and assuming σ + p ≤ 2n−1.

Proof. The event bad consists of several conditions. Denote by condi the sub-event that
the i-th condition is triggered. Note that the analyzes of conditions from cond1 to cond4
are similar to those in the proof of Lemma 4, and can be bounded by

Pr

[4∨
i=1

condi

]
≤ u2

22n+1 + 1
2n

+ cp + cσ

2n
+ (c− 1)q

2n

where c = max{4n, 4u/2n}.
Next, we analyze the conditions from cond5 to cond8. If any of these four conditions is

violated, then it implies that the adversary found a two-block collision of the hash function

Thomas Peters, Yaobin Shen and François-Xavier Standaert 35

Multihash by at most σ + p TBC queries. On the other hand, conditioned on ¬cond4, this
collision is not trivial. By Lemma 3, we get

Pr

 8∨
j=5

condj

 ≤ 8d(σ + p)2

22n
.

We then consider the condition cond9. Since there is no collision on the hash func-
tion Multihash as bounded in the above case, both ha

i,ℓa+va+1 and ka
i,ℓa+va+1 are chosen

uniformly at random from a set of size at least 2n − σ − p. Thus the probability that
ha

i,ℓa+va+1 = Pj and ka
i,ℓa+va+1 = 0n is at most 1/(2n − σ − p)2 ≤ 1/22n−2 by assuming

σ + p ≤ 2n−1. Similarly to the analysis in condition (9) of Lemma 4, we have

Pr [cond9] ≤ 4q

22n
+ 2q2

23n
.

Finally we analyze the condition cond10. Following the similar argument in condition
(10) of Lemma 4, we get

Pr [cond10] ≤ q(σ + p)
23n

.

Wrapping up,

Pr [bad] ≤ u2 + 8d(σ + p)2 + 8q

22n+1 + c(σ + p + q)
2n

+ 2q2 + q(σ + p)
23n

.

	Introduction
	Preliminaries
	Multihash: Extending Hirose's Hash Function
	Design and Specification of Multiplex
	Specification of Multiplex

	Confidentiality Analysis of Multiplex
	Authenticity Analysis of Multiplex
	Concluding Remarks
	Code Description of Multiplex

