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Abstract. We present a novel technique within the MPC-in-the-Head
framework, aiming to design efficient zero-knowledge protocols and dig-
ital signature schemes. The technique allows for the simultaneous use of
additive and multiplicative sharings of secret information, enabling ef-
ficient proofs of linear and multiplicative relations. The applications of
our technique are manifold. It is first applied to construct zero-knowledge
arguments of knowledge for Double Discrete Logarithms (DDLP). The
resulting protocol achieves improved communication complexity with-
out compromising efficiency. We also propose a new zero-knowledge ar-
gument of knowledge for the Permuted Kernel Problem. Eventually,
we suggest a short (candidate) post-quantum digital signature scheme
constructed from a new one-way function based on simple polynomials
known as fewnomials. This scheme offers simplicity and ease of imple-
mentation. Finally, we present two additional results inspired by this
work but using alternative approaches. We propose a zero-knowledge ar-
gument of knowledge of an RSA plaintext for a small public exponent
that significantly improves the state-of-the-art communication complex-
ity. We also detail a more efficient forward-backward construction for the
DDLP.

1 Introduction

Zero-knowledge protocols have emerged as a pivotal tool in ensuring robust
computer security and enhancing cryptographic protocols. They offer a power-
ful solution by allowing one party to prove knowledge of certain information to
another party, without revealing any additional details. With the rapid advance-
ments in quantum computing technology, the need for post-quantum security
in cryptography and computer security has become of paramount importance.
Post-quantum cryptography aims to develop communication protocols that can
withstand attacks from both classical and quantum computers.

Secure multi-party computation (MPC) enables a group of n ≥ 2 parties,
who do not trust each other, to collaboratively compute a joint function using
their private inputs. In 2007, Ishai, Kushilevitz, Ostrovsky, and Sahai [IKOS07]
demonstrated that semi-honest multiparty computation (i.e. where adversaries
follow the protocol description but may try to learn arbitrary information) is
sufficient for constructing zero-knowledge protocols. This theoretical paradigm,
deemed MPC-in-the-Head, has received considerable practical attention recently



since it enables the construction of efficient and succinct protocols with good
security properties. It has been used in particular to propose several innovative
signature schemes with (alleged) post-quantum security. The goal of this article is
to add another string to the MPC-in-the-Head ’s bow by integrating secret shar-
ing conversion, a technique that has already been used in general MPC [GPS12].
We show that this technique finds applications for (1) zero-knowledge arguments
of knowledge of Double Discrete Logarithms, (2) zero-knowledge arguments of
knowledge of Permuted Kernel Problem solutions, and (3) constructing a (candi-
date) post-quantum digital signature scheme from a new somewhat minimalistic
one-way function in finite fields.

Related works and contributions of the paper. The MPC-in-the-Head
(MPCitH) framework [IKOS07] has gained considerable popularity in recent
times. This framework leverages secure MPC techniques, where the prover men-
tally shares its secret information and emulates a semi-honest MPC protocol
involving N parties and independently commits each party’s view. The verifier
then challenges the prover to reveal the views of a randomly selected subset of
N − 1 parties. By design, no information about the original input is exposed,
thereby achieving the zero-knowledge property. Besides, a malicious prover would
need to deceive at least one party, which the verifier is likely to detect, ensur-
ing the soundness property. In most practical applications, the secret is shared
additively among the N parties, which makes proving linear relations easy but
proofs of multiplicative relations more costly. Several techniques were introduced
recently to improve the practical efficiency of the resulting schemes, for instance,
the MPCitH with a helper as formalized in [Beu20], the MPCitH with abort intro-
duced in [FMRV22] or the recent hypercubing optimization technique proposed
in [MGH+23].

We present a new technique to expand this toolbox further by allowing a
prover to use simultaneously in the MPC protocol additive sharings and multi-
plicative sharings of its secret information. The former are used for linear rela-
tions, while the latter are used to prove efficiently multiplicative relations. To
ensure consistency, we propose a simple technique to transform a multiplicative
share into an additive share of the same value. Converting shares from one type
of secret sharing scheme into another is ubiquitous in MPC [GPS12] and the idea
has already been used in the MPCitH realm [DGH+21] (but for different shar-
ings). Our technique finds several applications in (post-quantum) zero-knowledge
arguments and digital signature schemes.

Double Discrete Logarithm Problem (DDLP): A double discrete logarithm of an
element y ̸= 1G in a cyclic group G of prime order q with respect to bases g ∈ G
and h ∈ F∗

q (generators of G and F∗
q respectively) is an integer x ∈ {0, . . . , q− 1}

such that y = gh
x

. Initially introduced by Stadler [Sta96] for verifiable secret-
sharing, this computational problem has found applications in various crypto-
graphic protocols, including group signatures [CS97], blind signatures [ASM10],
e-cash systems [CG07], credential systems [CGM16], and verifiable randomness
generation [BTV20]. Stadler proposed a zero-knowledge protocol, which has a
computational and communication complexity of Ω(log q) (in terms of group
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elements). However, in the recent work [BTV20], Blazy, Towa, and Vergnaud
presented a new protocol that outputs arguments with only O(log log q) group
elements. It relies on the “Bulletproofs” technique proposed by Bünz, Bootle,
Boneh, Poelstra, Wuille and Maxwell in 2018 [BBB+18]. This reduced commu-
nication complexity comes at a security price since the security analysis should
rely on stronger idealized assumptions [GOP+22] or achieve only non-meaningful
concrete security [DG23]. For a use-case considered in [BTV20], the length of
Stadler arguments are 24.6 Kilobytes (KB) and those of Blazy et al. are 10.2KB
long. As a first simple application of our conversion in the head technique, we
present (for similar prover and verifier efficiency) arguments of size about 16.6KB
(depending on the parameters). Even if this is longer than the previous approach,
this still improves the communication complexity of Stadler’s protocol by about
30%. By increasing the prover and verifier computational complexity, it is pos-
sible to decrease the communication complexity to 7.2KB (with better security
guarantees than [BTV20]). It is worth mentioning that even by increasing the
prover/verifier running times, the arguments of [Sta96,BTV20] cannot be short-
ened.

Permuted Kernel Problem (PKP): The PKP is a classical NP-hard compu-
tational problem, where, given a matrix and a vector (of matching dimensions)
defined over a finite field, one has to find a permutation of the vector coordinates
that belongs to the matrix kernel. This problem was introduced in cryptography
by Shamir [Sha90], who designed a zero-knowledge argument of knowledge of
a solution of a PKP problem (and used it for a cryptographic post-quantum
identification scheme). This protocol was improved subsequently in a long series
of work [Ste94,BFK+19,Beu20,FJR23,Fen22a,BG22]. We apply our technique
to this problem and obtain a zero-knowledge argument of knowledge protocol
which does not involve permutations that are not easy to implement securely, in
particular in the presence of side-channel attacks.

One-way functions from “Fewnomials”: A cryptographic one-way function f :
S → S is a function that is computationally easy to compute but computation-
ally difficult to invert. If S is a finite field (e.g. S = Fp for some prime number p),
then it is well-known that f can be represented as a polynomial in Fp[X] (with
degree upper-bounded by (p−1)). Ad hoc examples of such functions are crypto-
graphic hash functions or functions derived from block ciphers (using for instance
the Davies-Meyer construction [Win84]). Still, the polynomial representations of
such functions are usually of very high complexity (which makes them not con-
venient for the MPCitH paradigm). Several works were devoted to designing
efficient symmetric cryptographic primitives suitable for efficient implementa-
tion using MPCitH (e.g. the Picnic [CDG+20,KZ22] and the Rainier [DKR+22]
signature schemes). As a third application of our technique, we propose a re-
verse approach to design a cryptographic system with simplicity and minimal
complexity. The motivation is to remove potential points of failure and to ob-
tain schemes easier to implement correctly. To do so, we consider the simplest
polynomials defined over a finite field Fp that are good one-way function can-
didates. The simplest polynomials are certainly the monomials f1 : Fp → Fp,
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x 7→ f1(x) = xn mod p but they are trivially not one-way. If n is coprime with
(p−1), this is a permutation on which one can apply the Davies-Meyer construc-
tion to obtain the binomials f2 : Fp → Fp, x 7→ f2(x) = xn + x mod p which
seem difficult to invert (the best-known algorithm for n = Ω(p) has arithmetic
complexity O(p1/2) [BCR13]). More generally, a fewnomial is a term used in
algebraic geometry and computational algebra, to describe a polynomial with a
few terms (i.e. with a relatively low number of monomials compared to its de-
gree). If one considers a fewnomial of high degree with t ≥ 2 monomials over Fp,
the best known algorithm has arithmetic complexity O(p(t−1)/t) [BCR13]. These
candidate one-way functions are not suitable for symmetric cryptography (since
evaluating them is much more costly than popular hash functions and block
ciphers) but they are particularly interesting for our new conversion technique.
In particular, we propose (candidate) post-quantum signatures with lengths of
about 10.5KB. The produced signatures are thus not the shortest ones, but our
goal with this application is to propose a new simpler, and cleaner one-way func-
tion suitable for the MPCitH paradigm with competitive performances and to
motivate future research in this area.

Other results: We present two additional results inspired by this work but using
alternative approaches. We first describe a zero-knowledge argument of knowl-
edge of an RSA plaintext for a small public exponent that significantly improves
the state-of-the-art communication complexity [GQ90]. The scheme is very sim-
ple but seems to have been overlooked. Following a recent idea proposed by
Joux [Jou23], we also propose a more efficient construction for the DDLP (with-
out using our conversion in the head technique) achieving arguments about
6.6KB long. This improves the communication complexity of Stadler’s proto-
col by about 75% (for the same security guarantees and overall efficiency).

2 Preliminaries

We denote Fq the finite field with q elements (for q some prime power). Let
N ≥ 2 be some integer. We make use of N -out-of-N additive and multiplicative
sharing of field elements x ∈ Fq and x ∈ F×

q (respectively); they are vectors

JxK = (JxK1, . . . , JxKN ) ∈ Fq
N and ⟨x⟩ = (⟨x⟩1, . . . , ⟨x⟩N ) ∈ F×

q
N

(respectively)
such that

x = JxK1 + · · ·+ JxKN mod q and x = ⟨x⟩1 · · · · · ⟨x⟩N mod q.

For a vector v ∈ Fn
q , its sharing JvK (or ⟨v⟩) is seen coordinate-wisely. All loga-

rithms are in base 2. We denote the security parameter by λ. The designation
PPT stands for probabilistic polynomial-time in the security parameter. Random
sampling from a finite set X according to the uniform distribution is denoted

by x
$←− X, whereas the symbol ← is used for assignments from deterministic

algorithms. We write [m,n] to denote the set of integers {m, . . . , n} with m < n.
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Two distributions {Dλ}λ and {D̃λ}λ are called (t, ε)-indistinguishable if, for
any algorithm A running in time at most t(λ), we have

|Pr[A(1λ, x) = 1 | x $←− Dλ]− Pr[A(1λ, x) = 1 | x $←− D̃λ]| ≤ ε(λ).

A (ℓ, t, ε)-pseudo-random generator (PRG) is a deterministic algorithm G that,
for all λ ∈ N, on input a bit-string x ∈ {0, 1}λ outputs G(x) ∈ {0, 1}ℓ(λ) with

ℓ(λ) > λ such that the distributions {G(x) | x $←− {0, 1}λ}λ and {r | r $←−
{0, 1}ℓ(λ)}λ are (t, ε)-indistinguishable. From such a generator, with ℓ(λ) = 2λ,
it is possible to construct a tree PRG [KKW18], which takes a root x ∈ {0, 1}λ as
input and generates N = 2t pseudo-random λ-bit strings in a structured fashion
as follows: x is the label of the root of a depth-t complete binary tree in which the
right/left child of each node is labeled with the λ most/least significant bits of
the output of the PRG applied to the root label. This structure allows revealing
N − 1 pseudo-random values of the leaves by revealing only log(N) labels of the
tree (by revealing the labels on the siblings of the paths from the root to the one
remaining leaf).

2.1 Commitment scheme

We define a commitment scheme as a pair of algorithms (Com,Verif) where:

– Com is a PPT taking as input a message m, that computes a commitment
C of m and returns C and opening information ρ.

– Verif is a deterministic polynomial-time algorithm taking as input a message
m, a commitment C and the opening information ρ, and returns a bit.

For all message m we have: ∀(C, ρ) $←− Com(m),Verif(m,C, ρ) = 1. A com-
mitment scheme is said (t, ε)-computationally hiding if, for any two messages

m1,m2, the distributions {c | c $←− Com(m1)} and {c | c
$←− Com(m2)} are (t, ε)-

indistinguishable. A commitment scheme is computationally binding if there ex-
ists a negligible function ν such that, for every PPT algorithm A, the probability
that the event{

m1 ̸= m2 ∧
Verif(,m1, C, ρ1) = Verif(m2, C, ρ2) = 1

∣∣∣ (m1,m2, ρ1, ρ2, C)
$←− A(1λ)

}
occurs is upper-bounded by ν(λ). In the following, we consider a commitment
scheme that outputs a 2λ bit-long commitment.

2.2 Zero-knowledge Arguments

A zero-knowledge protocol for a polynomial-time decidable binary relation R is
defined by two interactive algorithms, a prover P and a verifier V. Both algo-
rithms are given a common input x, and P is given an additional witness w such
that (x,w) ∈ R. The two algorithms then exchange messages until V outputs a

5



bit b (b = 1 to accept P’s claim and b = 0 to reject). This sequence of messages
and the answer b is referred to as a transcript and denoted ⟨P(x,w), Ṽ(x)⟩. In this
paper, we consider zero-knowledge argument of knowledge which are protocols
that allow a PPT prover to convince a PPT verifier that they know a witness
w. There are three security notions underlying a zero-knowledge argument of
knowledge.

Definition 1. Let t : N → N, ε, α, ζ : N → [0, 1], and R be a polynomial-time
decidable binary relation. A zero-knowledge argument (P,V) for R achieves:

– α-completeness, if for all λ ∈ N and all (x,w) ∈ R, with x ∈ {0, 1}λ,
Pr[⟨P(x,w),V(x)⟩ = 1] ≥ 1− α(λ) ( i.e. P succeeds in convincing V, except
with probability α). When α = 1, the protocol achieves perfect completeness.

– ε-(special) soundness, if for all PPT malicious prover P̃ such that for all
λ ∈ N and all x ∈ {0, 1}λ, ε̃(λ) := Pr[⟨P̃(x),V(x)⟩ = 1] > ε(λ), there exists
a PPT algorithm E (called the extractor) which, given rewindable black-box
access to P̃ outputs a witness w such that (x,w) ∈ R in time poly(λ, (ε̃−ε)−1)
with probability at least 1/2.

– (t, ζ)-zero-knowledge, if for every PPT malicious verifier Ṽ, there exists a
PPT algorithm S (called the simulator) which, given the input statement x ∈
{0, 1}λ and rewindable black-box access to Ṽ, outputs a simulated transcript
whose distribution is (t, ζ)-indistinguishable from ⟨P(x,w), Ṽ(x)⟩.

If the zero-knowledge property holds only for the genuine verifier V, then the
protocol is deemed honest-verifier zero-knowledge. In that case, S is given random
challenges instead of a rewindable black-box access to Ṽ.

2.3 MPC in the head

The concept of MPCitH [IKOS07] provides a method for constructing zero-
knowledge protocols using secure MPC protocols. Let f be some (one-way)
function and y some public output of the function. Assume we have a secure
MPC protocol Πf with N parties such that, for any x in the domain of the
function, the output of Πf is 1 if f(x) = y and 0 otherwise. Equivalently,
the binary relation R underlying f can be used to define the output of Πf :
Πf (x) = 1 ⇐⇒ (pp, x) ∈ R where pp are public parameters. A prover P
given a secret input x, generates a random N -out-of-N secret sharing of x, and
mentally simulates all the parties’ computation in Πf . P sends commitments of
each party’s view in the protocol (including input share, secret random tape, and
broadcast values). V selects N − 1 parties randomly and requests P to reveal
their views. Upon receiving them, V verifies their consistency with an honest
execution of Πf and the commitments. Since the views of only N −1 parties are
disclosed, this does not disclose any information about the secret x.

MPCitH with Helper. In this work, we use the MPCitH with Helper paradigm
introduced in [Beu20] by Beullens. This approach adds a trusted third party
(called the helper) to the MPC protocol which runs a pre-processing phase. To
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then remove the helper, one uses a cut-and-choose strategy. This approach is
typically useful when some correlated randomness has to be generated in the
MPC protocol. This randomness structure is desired for our sharing conversion:
P has to produce a random couple of sharing (JrK, ⟨s⟩) with r = s. To prove
the validity of this couple (i.e. r = s), we follow a cut-and-choose approach. P
produces M couples of sharing (Jr[ℓ]K, ⟨s[ℓ]⟩)ℓ∈[1,M ] and commits to them. Then
V asks to open all the couples except one and checks that each opened couple
encodes an identical value. Hence, V can trust the unopened sharing with a
soundness error of 1/M . Note that the protocol requires converting more than
one sharing (regardless of the emulated MPC protocol in the head). Indeed, to
achieve a negligible soundness, we repeat the protocol. Hence, instead of opening
M − 1 sharing, we remain unopened a subset of the M sharing.

Hypercube optimization. In [MGH+23], Melchor, Gama, Howe, Hülsing, Joseh,
and Yue developed a geometrical approach for the MPC emulation phase. When
dealing with additive and multiplicative secret sharing in finite fields, this opti-
mization fits pretty well (due to the commutativity of the addition and multi-
plication laws). In the traditional approach of MPCitH, P simulates N parties
during one emulation of one MPC protocol. By this hypercube approach, this
number of parties can be reduced to 1 + log2 N , with the same soundness error
(see [MGH+23] for more details). In fact, instead of simulating one MPC with
N parties, the prover emulates log2 N MPC with 2 parties (2PC), thus a total
of 2 log2 N parties, which can be optimized to 1 + (2 − 1) log2 N = 1 + log2 N .
Indeed, each MPC protocol should output the same result. Thus, once one pro-
tocol is computed, all but one parties (1 party here) is enough to determine the
evaluation of the last party in the other 2PC. This optimization makes the MPC
emulation less costly and allows us to take a larger number of parties (and get
smaller sizes). For example, for the same soundness error, when the traditional
approach needs to simulate 28 parties, we only need to emulate 9 parties. The
computational gain is attenuated by the number of repetitions since the total
number of parties to emulate is τ(1+ log2 N) ≈ λ(1+ 1/ log2 N), where τ is the
number of repetitions of the protocol to get negligible soundness.

Sharing on the integers. We also make use of a technique developed in [FMRV22]
by Feneuil, Maire, Rivain, and Vergnaud, to encode a binary secret x ∈ Fq over

the integers in the MPCitH paradigm, i.e. x =
∑N

i=1JxKi + ∆x with JxKi
$←−

[0, A− 1] (with no modular reduction) with some A≪ q. To avoid information
leakage, Feneuil et al. introduced the possibility for P to abort depending on the
(last) challenge of V. This induces a rejection rate in the protocol that can be
decreased by increasing A (but this increases the communication complexity).
Then they generalized this sharing to encode non-binary elements throughout
the construction of a digital signature from Boneh-Halevi-Howgrave-Graham
pseudo-random function. In this work, we use this last sharing to share on the
integers some vector in Fn

q . Contrary to the initial motivation, we take A > q,

and the rejection rate of the sharing becomes 1−
(
1− q−1

A

)n
. This approach is

only used when constructing a PKP argument of knowledge.
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3 Sharing Conversion and Design Principle

RSA in the Head. In the MPCitH paradigm, when the secret is shared additively,
multiplicative relations are costly to prove, and vice versa. Whence converting
secret sharing in the Head naturally comes to mind. However, there exists a
natural application where the conversion is not necessary, which seems to have
been overlooked in the literature. Indeed, assume that we want to prove the
knowledge of an RSA plaintext for a public exponent e, i.e. xe = y mod n where
n is some RSA modulus. Then we could imagine sharing x multiplicatively as
x =

∏N
j=1⟨x⟩j mod n and the corresponding MPC protocol consists simply in

locally computing ⟨x⟩e. Using straightforward techniques from MPCitH, this
simple observation improves the communication complexity of the seminal pro-
tocol from Guillou and Quisquater [GQ90] for the public exponent e = 3 from
around 20.4KB to 6.6KB for a 2048-bit modulus n and has similar efficiency.
The communication complexity could be made even smaller by increasing N
(but at the cost of an increased computational complexity). Interestingly, even
if the hypercube technique [MGH+23] could be applied here, this would result
in worse computation complexity. See annex B for the protocol and its security
proofs. To apply the hypercube optimization, we have to build the new shares
of the 1 + log2 N new parties, and each of these shares is the product of N/2
original shares. Assume d is the number of operations during the fast exponen-
tiation. Then, for each party, there are d + N

2 − 1 operations, hence a total of

(1+log2 N)(d+N
2 −1) operations, to compare with dN operations for our method

(since our protocol requires N fast exponentiation to perform). Therefore, our
method is asymptotically better, and e.g., when e = 3, d = 2 and as long as
N > 4, the hypercube optimization increases the computational cost.

Sharing conversion. Let ⟨x⟩ be a multiplicative sharing of some field element
x ∈ Fq. The aim is to securely compute an additive sharing JxK of x. For the
sharing conversion considered in the following, we need a uniformly random pre-
computed couple of sharing (JrK, ⟨s⟩) such that r = s ∈ F×

q . As explained in
section 2, we work in the MPCitH with helper paradigm and follow a cut-and-
choose approach. The MPC protocol is the following:

Input: The parties have ⟨x⟩.
Output: The parties get JxK.
Preprocessing phase: A trusted dealer generates random sharing r =

∑N
i=1JrKi,

s =
∏N

i=1⟨s⟩i, such that r = s. They give (JrKi, ⟨s⟩i) to party Pi for i ∈ [1, N ].
Online phase:
1. The parties compute ⟨α⟩ = ⟨x⟩/⟨s⟩ and broadcast it.
2. The parties locally compute αJrK := JxK.

Protocol 1: Sharing conversion protocol Πconv
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In practice, during the preprocessing phase, we start by generating

{JrKi}1≤i≤N
$←− Fq and {⟨s⟩i}1≤i≤N

$←− F×
q .

Then define r =
∑N

i=1JrKi, and compute ∆s such that r = ∆s
∏N

i=1⟨s⟩i := s. If
r = s = 0, i.e. ∆s = 0, we start again. In terms of communication complexity
(during the interaction between the prover and the verifier in the zero-knowledge
argument), this offline step introduces one auxiliary value ∆s to send. Since
there is also the value α to communicate when running Πconv (because it is a
broadcasted value), the sharing conversion protocol needs 2 field elements to
communicate for each single conversion (we can not reuse the couple of sharing
for another conversion).

Correctness and security. Πconv actually outputs an additive sharing of x if
r = s. It provides security in the semi-honest model (which is sufficient for the
MPCitH paradigm) and α does not reveal any information on the parties’ share
thanks to the randomness of s.

General protocol. We develop a 5-round protocol with helper, presented in
a general manner, and that can be adapted to each of the problems considered
in this work. Let f be a one-way function, along with y a public output of the
function. Let Πf be a secure MPC protocol with N parties such that, for any x
(assume x ∈ Fq) in the domain of the function, the output of Πf is 1 if f(x) = y
and 0 otherwise. Πf takes as input a secret sharing of x which is either JxK,
⟨x⟩, or a sharing on the integers from [FMRV22]. It also takes as input a couple
(or many couples) of secret sharing (JrK, ⟨s⟩) with r = s ∈ F×

q that is generated
during a pre-processing phase. For the PKP application, Πf takes as additional
input, some prime number q′ greater than q.

Soundness error. Let ε be the soundness of the protocol. We perform τ parallel
repetitions of the protocol to get a soundness error ετ < (1/2)λ. As explained in
the previous paragraph, each of these repetitions uses a cut-and-chose phase to
prove the helper. Instead of performing τ ≈ λ/ log2(N) parallel cut-and-chose
phases each resulting in trusting one couple of sharing (Jr[ℓ]K, ⟨s[ℓ]⟩) among M ,
we follow the more efficient approach from [KKW18] and perform a global cut-
and-choose phase resulting in τ trusted sharing among a larger M . The idea is
that V asks to reveal M − τ out of M master seeds. The remaining τ executions
of the pre-processing phase are used to emulate τ independent instances of the
MPC protocol. When opening all but one seed, a wrong couple of sharing will
not be detected with probability

1

N
+

(
1− 1

N

)
β, (1)

where β is the false positive probability of the MPC protocol. This β will be zero
when considering the DDLP and the fewnomial pre-image problem. If a cheating
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prover produces M − k ≤ τ wrong couples of sharing, they will not be detected
during the first phase (when revealing M − τ master seeds) with probability

(
k

M − τ

)(
M

M − τ

)−1

.

This leads to the soundness error

ε = max
M−τ≤k≤M

{(
k

M−τ

) (
1
N + (1− 1

N )β
)k−M+τ(

M
M−τ

) }

(see [KKW18] for additional details).

We describe the identification scheme 2 used in the remainder of the paper.
The protocol makes use of a pseudo-random generator PRG, a tree-based pseudo-
random generator TreePRG, four collision-resistant hash functions Hi for i ∈
[1, 4] and a commitment scheme (Com, Verif). The red part of the protocol has
to be adapted depending on the problem considered. We choose to use J·K in the
protocol for the sharing of x and f(x), but it can be substituted by ⟨·⟩.

Parameters selection. Recall that we are dealing with a preprocessing phase,
that is proved with a cut-and-choose strategy. The total number of parties to set
up is MN , which impacts the prover/verifier computational complexity, hence
we choose sets of parameters to keep a reasonable signing time. We start by fixing
a number of parties N to be either 25 or 28. Then we look for the best trade-off
between τ,M while keeping a soundness error below 2−λ. Decreasing τ leads to
better sizes but to higher M and so slower signatures. The MPC emulation does
not impact a lot the signing speed, since the hypercube optimization is consistent
with our scheme (see section 2). To have a relatively small computational cost,
we limit the number of parties for the MPC protocol to 25 for the first set of
parameters. Thanks to the hypercube optimization and a gain in the emulation
of the MPC protocol, we choose a second set of parameters with N = 28 parties
and get an acceptable running time. Note that our MPC protocols are easy to
implement and parallelize since most of the computation is done locally by the
parties, except for the broadcasting during the sharing conversion protocol 1. To
estimate the cut-and-choose’s impact on the computation cost of the tree expan-
sion, randomness generation, share preparation, and commitments computation,
we use the benchmark proposed in [Fen22a], assuming a 4-core processor.

4 Proving Knowledge of a Double Discrete Logarithm

We present the Double Discrete Logarithm Problem (DDLP) which has found
numerous applications in cryptography [CS97,ASM10,CG07,CGM16,BTV20].
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Prover P Verifier V
x ∈ Fq y = f(x)

mseed[0]
$←− {0, 1}λ

(mseed[e])e∈[1,M ] ← TreePRG(mseed[0])
For each e ∈ [1,M ]:

(seed
[e]
i , ρ

[e]
i )i∈[1,N ] ← TreePRG(mseed[e])

For each i ∈ [1, N ]:

(Jx[e]Ki, Jr[e]Ki, ⟨s[e]⟩i)← PRG(seed
[e]
i ) ▷ Jx[e]Ki, Jr[e]Ki ∈ Fq, ⟨s[e]⟩i ∈ F×

q

com
[e]
i = Com(seed

[e]
i ; ρ

[e]
i )

∆x[e] = x−
∑

iJxK[e]i

r[e] =
∑

iJrK
[e]
i

∆s[e] = r[e]/
∏

i⟨s⟩
[e]
i

s[e] = ∆s[e]
∏

i⟨s⟩
[e]
i

he = H1(∆s[e], com
[e]
1 , . . . , com

[e]
N )

h = H2(h1, . . . , hM )
h−−−−−−−−−−−−−−−−−−→

J
$←− {J ⊂ [1,M ] ; |J | = τ}

J←−−−−−−−−−−−−−−−−−−

For each e ∈ J :

The parties computes Πf (Jx[e]K,∆x[e])

h′
e = H3(∆x[e], Jy[e]K, α[e]) ▷ α[e] is the broadcasted value in

Πconv called in Πf

h′ = H4((h
′
e)e∈J)

h′, (mseed[e])e∈[1,M]\J−−−−−−−−−−−−−−−−−−→
L = {ℓe}e∈J

$←− [1, N ]τ

L←−−−−−−−−−−−−−−−−−− (seed
[e]
i , ρ

[e]
i )i ̸=ℓe

∆x[e],∆s[e], α[e], com
[e]
ℓe


e∈J−−−−−−−−−−−−−−−−−−→
For each e ̸∈ J :

Compute he using mseed[e]

For each e ∈ J :
For all i ̸= ℓe

com
[e]
i = Com(seed

[e]
i ; ρ

[e]
i )

Rerun the party i

as the prover to get Jy[e]Ki
Jy[e]Kℓe = y −

∑
i ̸=ℓe

Jy[e]Ki
he = H1(∆s[e]

com
[e]
1 , . . . , com

[e]
N )

h′
e = H3(∆x[e], Jy[e]K, α[e])

Check h = H2(h1, . . . , hM )
Check h′ = H4((h

′
e)e∈J)

Return 1

Protocol 2: Identification scheme of a pre-image for a function f .

Double Discrete Logarithm Problem (DDLP).

Let G be a cyclic group of prime order q with some generator g ∈ G, and
let h ∈ F∗

q of prime order p with p|(q − 1). Given (y, g, h) ∈ G \ {1G} ×
G× F∗

q , the DDLP asks to find some x ∈ F×
p such that y = gh

x

.

11



We first propose a direct application of our sharing conversion technique. How-
ever, even if it improves the state-of-the-art in terms of communication com-
plexity (compared to schemes with the same assumptions), we present this
scheme primarily for pedagogical purposes. Indeed, we then build an efficient
zero-knowledge argument of knowledge based on a forward-backward technique.

First construction. Consider the function f : F×
p → G, x 7→ f(x) = gh

x

realizing
the “double discrete exponentiation”. We present an MPC protocol ΠDDLP to
securely compute the corresponding binary relation (via the computation of a
multiplicative sharing of f(x) ∈ G).

Input: y ̸= 1G in a cyclic group G of prime order q, h ∈ F∗
q of prime order p with

p|(q − 1), and an additive sharing of x ∈ F×
p .

Output: 1 if y = gh
x

, 0 otherwise.

1. Parties locally compute a multiplicative sharing ⟨hx⟩ via hx =
∏N

j=1 h
JxKj mod q.

2. Parties convert it into an additive sharing JhxK over Fq using Πconv 1.

3. Parties locally compute ⟨gh
x

⟩ via gh
x

=
∏N

j=1 g
JhxKj .

4. Parties broadcast ⟨gh
x

⟩ and output 1 if gh
x

= y and 0 otherwise.

Protocol 3: MPC protocol ΠDDLP

The correctness of ΠDDLP comes from the fact that hx = h
∑N

j=1JxKj mod p =∏N
j=1 h

JxKj since h has order p. The same reasoning holds for step 3 because g has

order q. Plugging ΠDDLP into the red part of protocol 2, with α[e] = h[e]/s[e],
we readily get a zero-knowledge argument of knowledge of a solution to the
given DDLP instance. Note that we should also slightly adapt protocol 2 since

x ∈ Fp (with p ≤ q), and y[e] := gh
x [e]

is shared multiplicatively, but this is
straightforward.

To estimate the communication complexity, we remark that for each iteration of
the protocol, three values have to be communicated: the auxiliary value ∆x ∈ Fp

to fix the secret, and (∆s, α) ∈ F2
q from the sharing conversion protocol 1 (there

is a sole conversion). This leads to a total communication cost of at most:

4λ+ λτ log2
M

τ
+ τ [2 log2(q) + log2 p+ λ log2 N + 2λ] bits,

where M the number of parallel phases in the cut-and-choose, and τ the number
of unrevealed phases (see section 3).

Theorem 1 (Security Proofs).
Considered an instance (y, g, h) ∈ G \ {1G} × G × F∗

q of the DDLP. Then, the
identification scheme 2 combined with MPC protocol 3 is an honest-verifier zero-
knowledge argument of knowledge of x ∈ F×

p such that gh
x

= y, with perfect

12



completeness, and special soundness ε equals to

max
M−τ≤k≤M

{ (
k

M−τ

)(
M

M−τ

)
Nk−M+τ

}
.

Proofs can be found in appendix C.

In [BTV20], the authors considered the case of a group G of prime order
q = (4p + 18)p + 1 where p is the Sophie Germain prime p = 21535 + 554415
that divides q−1. Their arguments involve 2⌈log2(2(⌈log2(ℓ)⌉+1)⌉+8 elements
in G and 5 elements in Fq. Taking G as the subgroup of order q in F∗

ℓ for
ℓ = 1572q + 1, one obtains an argument of size 10.2KB for [BTV20] and of
size 24.6KB for [Sta96] (for a soundness error of 2−128). Table 1 presents the
communication complexity of our arguments. Note that they are always shorter
than those from [Sta96] and provide better security guarantees than [BTV20]
(as mentioned in the introduction). Contrary to [BTV20], we could compress
our argument size and construct parameter sets with argument size below 10KB
(but at the cost of an increase in computational complexity for the prover and
the verifier). We propose another set of parameters, more adapted to our scheme,
by considering p, q as ∼2048-bit prime.

Second construction. Actually, we could greatly improve the performance of our
zero-knowledge argument of knowledge by considering another approach. This
is based on an idea of Joux [Jou23], a forward-backward technique. Again, we
start by sharing x additively. Then the prover P commits to the values

yi :=

((
gh

JxK1
)hJxK2

). .
.


hJxKi

for i ∈ [1, N ].

The correctness of this approach relies on the fact that yN = y. The verifier

V sends a challenge i∗
$←− [1, N ]. The prover P answers by sending the seeds

{seedi}i ̸=i∗ (i.e. opens all the shares of x except the i∗th) to V. This last can
recompute all the committed values by a forward-backward technique: they it-
eratively compute yi as

– yh
JxKi

i−1 if 1 ≤ i ≤ i∗ − 1;

– y−hJxKi+1

i+1 if i∗ ≤ i ≤ N − 1;

with y0 = g and yN = y. In particular, V can check the consistency of the
subsequences {y1, . . . , yi∗−1} and {yi∗ , . . . , yN = y} thanks to the revealed seeds,
but V can not check the whole sequence {y1, . . . , yN} since JxKi∗ is missing to
link yi∗−1 and yi∗ . Hence, except if a malicious prover is cheating on JxKi∗ , they
are detected. This yields the following MPC protocol 4, where a party Pi uses
the output of Pi−1 to compute their output (for 1 < i ≤ N).

The overall zero-knowledge argument of knowledge protocol with its security
proofs can be found in appendix A.
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Input: y ̸= 1G in a cyclic group G of prime order q, h ∈ F∗
q of prime order p with

p|(q − 1), and an additive sharing of x ∈ F×
p .

Output: 1 if y = gh
x

, 0 otherwise.

1. Party P1 computes y1 = gh
JxK1

and broadcast it.
2. For each i ∈ [2, N ]:

Party Pi computes yi = yhJxKi
i−1 and broadcast it.

3. If yN = y parties output 1, otherwise 0.

Protocol 4: MPC protocol with the forward-backward technique

Performances. Since no more cut-and-choose has to be produced, the argument
size is shortened compared to the sharing conversion approach (and only one
element field has to be communicated). This leads to the performances in table
1, where the communication complexity of the argument proof is reduced by
77% compared to [Sta96], and beats the bulletproof approach of [BTV20].

protocol
Parameters

Argument size (KB)
log2 q τ N M

protocol 3 2048 16 28 4096 16.6

protocol 3 2048 17 28 1744 17.2

protocol 4 3072 16 28 4096 5.6

protocol 4 3072 17 28 1744 5.9

Table 1: Achieved performances of our zero-knowledge protocol for proving the
knowledge of a solution of a DDLP instance.

5 Proving Knowledge of a PKP Solution

We denote Sn the symmetric group of degree n. For a permutation π ∈ Sn and
a vector v ∈ Fn

q , π(v) is the action of the permutation on the coordinates of v.

Permuted Kernel Problem (PKP/IPKP).

Let (q,m, n) be positive integers, H ∈ Fm×n
q a random matrix, and a

vector v ∈ Fn
q . The PKP is to find a permutation π ∈ Sn, such that

Hπ(v) = 0. The inhomogeneous version of the problem (IPKP) is, given a
target vector y ∈ Fm

q , to find a permutation π ∈ Sn, such thatHπ(v) = y.

We consider the PKP variant, but this work can be straightly extended for
the IPKP (without loss of performances since y is public). We want to prove the
knowledge of a solution to a PKP instance, i.e., some x ∈ Fn

q and π ∈ Sn such
that Hx = 0 and π(v) = x. For this purpose, we adapt the protocol 2 as follows:

14



– the input x ∈ Fn
q is a vector, so we should consider one conversion by coor-

dinate;
– the sharing of x is over the integers, so Jx[e]Kj ∈ [0, A− 1]n for some A > q.

Thus, we should add a rejection rule as explained in section 2;

– V sends an additional challenge g
$←− F×

q′ (as an evaluation point) at the same
time as the challenge J , where q′ is a prime greater than q whose choice is
explained afterward.

Proving the knowledge of a permutation. Consider the polynomial fx,v(X) =∑n
i=1 X

xi −
∑n

i=1 X
vi of degree at most q− 1 (xi, vi denotes the components of

the vectors x, v), and some uniformly random element g ∈ Fq′ . If x = π(v) for
some π ∈ Sn, then fx,v is identically zero. If there is no permutation π ∈ Sn such
that π(v) = x, then via the Schwartz-Zippel lemma [Sch80,Zip79], the probability
that fx,v(g) = 0 mod q′ is bounded by (q − 1)/q′. Indeed, the probability that a
random polynomial in Fq′ [X] of degree at most q − 1 be vanished by a random
element in Fq′ is at most (q − 1)/q′.

Initially, the sharing over the integers was introduced to share small values.
In this work, when computing fx,v(g) over Fq′ in a distributed way, the challenge
g may not satisfy gq = 1 mod q′ and then the modular sharing would lead to a
wrong computation. This is the motivation for using a sharing over the integers
for x.

Slack management. Recall that the verifier knows that JxiKj ∈ [0, A − 1] (this
is verified for open parties) and they check that −A + q ≤ xi − JxiKj∗ ≤ 0.
This implies that they are convinced by the fact that −A + q ≤ xi ≤ A − 1.
In particular, the degree of the polynomial is bounded by A − 1, whence the
slack. Indeed, the degree should be bounded by q − 1, but a malicious prover
may choose some x whose coordinates are upper bounded by A− 1. This is not
a problem as long as the modulus q′ is large enough compared to A (for the
Schwartz-Zippel lemma). This leads to the next MPC protocol.

MPC protocol. We describe the MPC protocol ΠPKP to plug in the red part
of protocol 2. As input, x is shared among the parties via a secret sharing over

the integers, i.e., JxKj
$←− [0, A − 1]n for j ∈ [1, N ]. The rejection rate of the

sharing is 1−
(
1− q−1

A

)n
(see section 2). Parties also get some g ∈ F×

q′ with q′ a
prime number greater than β(A− 1), where 1/β is the false positive probability
of the MPC protocol. We present the following MPC protocol ΠPKP to securely
compute the corresponding binary relation via the computation of a sharing of
{Hx, fx,v(g)}.

Notice that the correctness of gxi = g
∑N

j=1JxiK mod q′ follows from the shar-
ing over the integers (and would not be necessarily true if xi was shared as∑N

j=1JxiKj mod q).

Size. For each coordinate, there is one conversion (so two values over Fq′) and
one auxiliary value for the secret (over [0, A−1]). Hence, the obtained argument
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Input: x ∈ Fn
q shared over the integers as x =

∑N
j=1JxKj , H ∈ Fm×n

q , g
$←− F×

q′ with

q′ the next prime after β(A− 1).
Output: 1 if Hx = 0 mod q and π(x) = v for some π ∈ Sn, 0 otherwise.

1. From the sharing over the integers of each xi, parties locally compute ⟨gxi⟩, a
multiplicative sharing of gxi =

∏N
j=1 g

JxiKj mod q′, for each i ∈ [1, n].

2. Parties convert it into an additive sharing JgxiK using Πconv 1, for each i ∈ [1, n].
3. Parties locally compute their share of Jfx,v(g)K =

∑n
i=1Jg

xiK−
∑n

i=1 g
vi mod q′.

4. Parties locally compute their share of JHxK = HJxK mod q.
5. Parties broadcast JHxK and Jfx,v(g)K. If Hx = 0 and fx,v(g) = 0, parties output
1, otherwise 0.

Protocol 5: MPC protocol ΠPKP

size is

4λ+ λτ log2
M

τ
+ τ [n(2 log2 q

′ + log2(A− 1)) + λ log2 N + 2λ] bits,

where M is the number of parallel phases in the cut-and-choose, and τ the
number of unrevealed phases.

Theorem 2 (Security Proofs).
Considered an instance (H, v) ∈ Fm×n

q ×Fn
q of the PKP. Then, the identification

scheme protocol 2 combined with MPC protocol 5 is an honest-verifier zero-
knowledge argument of knowledge of (x, σ) ∈ Fn

q × Sn such that Hx = 0 and

σ(x) = v, with
(
1− q−1

A

)τ n
-completeness and special soundness ε equals to

max
M−τ≤k≤M


(

k
M−τ

) (
1
N + (1− 1

N ) 1
q′

)k−M+τ

(
M

M−τ

)
 .

The proof of Theorem 2 can be found in annex E.

Performances. The security of the PKP/IPKP has been well-studied for many
years (see section 1). We consider the parameter sets proposed in [BFK+19] to
achieve 128 bits of security, i.e. n = 61, m = 28, q = 997. The choice of the
remaining parameters τ and M are chosen as a trade-off between argument size
and signing speed. We fix β = 28, i.e., q′ is the next prime after 28(A − 1).
Hence, the rate of false-positive when checking the existence of a permutation
is smaller than 1/28. Based on the benchmark realized in [Fen22b], the first set
of parameters achieves around 20ms for the signing/verification speed, and the
second set around 200ms.

6 Proving Knowledge of a Fewnomial Pre-image

We propose a new (candidate) post-quantum one-way function and a digital
signature scheme constructed as an argument of knowledge of a pre-image of
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Parameters
Argument size (KB) Rej. rate

τ N A M

19 28 214q 1289 13.3 0.068

27 25 214q 541 16.9 0.096

Table 2: Obtained performances for proving the knowledge of a witness of a PKP
instance.

the public key using the MPCitH paradigm. Our goal is to design a simple and
somewhat minimalistic scheme.

We consider a prime number p and the simplest one-way polynomials defined
over the finite field Fp. Those polynomials are called fewnomials and are simply
polynomials with a relatively low number of monomials compared to their degree.
If one considers a fewnomial with t ≥ 2 monomials of large degrees over Fp, the
best known classical algorithm has arithmetic complexity O(p(t−1)/t) [BCR13].
Combining this algorithm with Grover’s algorithm [Gro96], leads to the best-
known quantum algorithm with complexity O(p(t−1)/2t).

Fewnomial Inversion Problem (FIP).

Let q be a Sophie Germain prime number where p = 2q+1 is also a prime
number. Let t ≥ 2 be an integer and f : Fp → Fp be a fewnomial with t
monomials defined as f(X) =

∑
i∈S Xi where S is a set of t integers in

[⌈q/2⌉, q − 1]. The Fewnomial Inversion Problem is given y = f(x) ∈ Fp

to find x′ ∈ Fp such that y = f(x′).

We construct a digital signature scheme based on the hardness of the FIP.
Note that we consider the case of unitary monomials but adding non-zero (pub-
lic) coefficients does not change the following analysis and performances. The
choice of t and p will be discussed later on. It is worth mentioning that the
monomial Xn mod p would be easy to invert except if we replace the prime p
by a modulus with unknown factorization, and this would be essentially an RSA
instance with a larger modulus (and we can use the construction outlined in
section 3)

MPC protocol. The prover/signer shares x multiplicative. We present the MPC
protocol ΠFIP to plug in protocol 2, in which parties securely compute the
corresponding binary relation via the computation of a sharing of f(x).

Proof size. In the MPC protocol 6, parties apply the conversion protocol for
each i ∈ S× and each conversion requests to communicate 2 field elements as
explained in section 3. The rest of the communication is standard. Hence, the
communication cost of the protocol is

4λ+ λτ log2
M

τ
+ τ [(1 + 2s) log2 p+ λ log2 N + 2λ] bits,
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Input: x ∈ F×
p shared multiplicative, i.e. x =

∏N
j=1⟨x⟩j mod p. A fewnomial

f : X →
∑

i∈S Xi, with a finite subset S ⊂ Nt, and some public value y ∈ Fp.
Output: 1 if f(x) = y, and 0 otherwise.

1. Parties locally compute ⟨xi⟩ via xi =
∏N

j=1⟨x⟩
i
j mod p for i ∈ S×.

2. For each i ∈ S×, parties convert ⟨xi⟩ into an additive sharing JxiK using Πconv 1.
3. Parties locally compute Jf(x)K =

∑
i∈SJxiK.

4. Parties broadcast Jf(x)K, and output 1 if f(x) = y and 0 otherwise.

Protocol 6: MPC protocol ΠFIP

where s is the size of S×, M the number of parallel phases in the cut-and-choose,
and τ the number of unrevealed phases (see Section 3).

Theorem 3 (Security Proofs).
Considered an instance (f, y) ∈ Fp[X]× Fp of the FIP. Then, the identification
scheme protocol 2 combined with MPC protocol 6 is an honest-verifier zero-
knowledge argument of knowledge of x ∈ Fp such that f(x) = y, with perfect
completeness, and special soundness ε equals to

max
M−τ≤k≤M

{ (
k

M−τ

)(
M

M−τ

)
Nk−M+τ

}
.

Proof can be found in annex D.

Fiat-Shamir heuristic. We apply the Fiat-Shamir transform [FS87] to get a
non-interactive protocol, and so a signature scheme. Since our protocols have 5
rounds, we have to take into consideration the attack of Kales and Zaverucha [KZ20]
for the security of the signature. The forgery cost of the signature scheme is then
given by

min
M−τ≤k≤M

{(
M

M−τ

)(
k

M−τ

) +Nk−M+τ

}
.

Signature scheme. To build a signature, we choose x ∈ F×
p as the private key

and y = f(x) mod p as the public key. To achieve a forgery cost of 1/ε, we could
increase τ , but this would not lead to an efficient scheme. Instead, we transform
our 5-round protocol into a 3-round before applying the Fiat-Shamir transform,
hence [KZ20] attack does not apply anymore. The 5-to-3-round convert’s idea
is to emulate M MPC protocols before the first round of communication, i.e.,
before getting the challenge for the cut-and-choose. After values are committed,
V sends both challenges during the same round. It leads to an overhead in
terms of signing speed, i.e., there are M(1+ log2(N)) parties to emulate instead
of τ(1 + log2 N), but the hypercube optimization attenuates it. Moreover, the
communication cost is slightly greater for the 3-round version, the size of the
signature scheme is then

4λ+ 3λτ log2
M

τ
+ τ [(1 + 2s) log2 p+ λ log2 N + 2λ] bits,
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with s the size of S×, M the number of parallel phases in the cut-and-choose,
and τ the number of unrevealed phases. The resulting 3-round protocol is also an
honest-verifier zero-knowledge proof with the same soundness. It can be checked
that the round reduction described here does not impact the proofs of Theorem 3
in annex D.

Performances. As mentioned above, considering a fewnomial with t ≥ 2 mono-
mials over Fp, the best (classical) known algorithm has arithmetic complexity
O(p(t−1)/t) [BCR13]. Hence, there is a trade-off between the size of the modulus
p and the number of monomials t to consider achieving (classical) 128 bits of
security. The optimal one to minimize the proof size is a trinomial over a prime
of 170 bits. Based on the benchmark realized in [Fen22b], the estimated sign-
ing/verification speed is around 15ms for the first set of parameters and 200ms
for the second set.

Parameters
Signature size (KB)

τ N M

28 25 389 12.2

18 28 1251 10.6

Table 3: Achieved signature size based on FIP.
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A Zero-Knowledge Argument of Knowledge for the
DDLP with MPC Protocol 4

We first described the zero-knowledge argument of knowledge protocol for the
DDLP where protocol 4 is plugged in the red part of the next protocol 7.

Prover P Verifier V
x ∈ Fq y = gh

x

mseed
$←− {0, 1}λ

(seedi, ρi)i∈[1,N ] ← TreePRG(mseed)
For each i ∈ [1, N ]:

JxKi ← PRG(seedi)
comi = Com(seedi; ρi)

∆x = x−
∑

iJxKi
The parties computes Πf (JxK,∆x)
h = H1(com1, . . . , comN ,∆x, {yi}i∈[1,N ])

h−−−−−−−−−−−−−−−−−−→
ch = i∗

$←− [1, N ]
i∗←−−−−−−−−−−−−−−−−−−

(seedi, ρi)i̸=i∗ , ∆x, comi∗
−−−−−−−−−−−−−−−−−−→

For all i ̸= i∗

comi = Com(seedi; ρi)
Run the forward-backward technique

to get y1, . . . , yN
Check h
Return 1

Protocol 7: Identification scheme of a solution of a DDLP instance

Theorem 4 (Security Proofs).
Considered an instance (y, g, h) ∈ G \ {1G} × G × F∗

q of the DDLP. Then, the
identification scheme 7 combined with MPC protocol 4 is a zero-knowledge argu-
ment of knowledge of x ∈ F×

p such that gh
x

= y, with perfect completeness, and

special soundness ε equals to 1
N .

Proof. Completeness. For any sampling of the random coins of P and V, if the
computation described in protocol 7 combined with protocol 4 is honestly per-
formed, all the checks of V pass. The completeness is hence perfect.
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Special soundness. For the sake of simplicity, we assume that the commit-
ment scheme is perfectly binding, otherwise if it was computationally binding,
we would have to deal with extra cases where the extractor would produce a
commitment collision. Assume that we can extract two successful transcripts T1

and T2 (meaning that they pass all the tests of the V) with the same commitment
h, and with different challenges chT1 = i∗T1

̸= i∗T2
= chT2 . Either the revealed

shares are not consistent between the two transcripts, and then we find a hash
collision, or the openings are unique and hence the underlying witness is uniquely
defined. Let JxK(1) be the sharing of x from the first transcript, and JxK(2) the

sharing from the second transcript. Then, define JxKi = JxK(1)i if i ̸= i∗T1
, and

JxKi∗T1
= JxK(2)i∗T1

. This witness
∑N

i=1JxKi enables us to build a solution for the

DDLP instance.
Now, we construct the extractor that outputs these transcripts, and then

we analyze it. This has been already done in [FJR23,FMRV22], we provide a
summary. We assume that this extractor only gets transcripts with consistent
shares since otherwise, the extractor would find a hash collision. We denote by
Rh the randomness of P̃ which is used to generate the initial commitment h,
and rh is a possible realization of Rh. Then we describe the following extractor
E :

Repeat +∞ times:

Run P̃ with honest V to get transcript T1

If T1 is not a successful transcript, go to the next iteration
Do η times:

Run P̃ with honest V and same rh as T1 to get transcript T2

If T2 is a successful transcript, i∗T1
̸= i∗T2

and (T1, T2) reveals a good witness,
Return (T1, T2)

In the following, we analyze the complexity of E by computing the average
number of calls to P̃. We denote succP̃ the event that P̃ succeeds in convincing
V, and by hypothesis Pr[succP̃ ] = ε̃. Since ε̃ > ε, there exists some α ∈ (0, 1)
such that (1− α)ε̃ > ε. Let rh be a possible realization of Rh. We will say that
rh is good if

Pr[succP̃ | Rh = rh] ≥ (1− α) ε̃ . (2)

By the Splitting lemma we have

Pr[Rh good | succP̃ ] ≥ α . (3)

Let’s assume we sample a successful transcript T1 with some realization rh
of Rh. Assume rh is good. There exists a successful transcript T2 with i∗T2

̸= i∗T1

because Pr[succP̃ | Rh = rh] ≥ (1 − α) ε̃ > ε = 1
N . Hence, there exists a

unique and well-defined witness JxK corresponding to these transcripts. Let us
assume that the witness JxK in T1 is a bad witness (i.e. gh

x ̸≡ y mod q where
x :=

∑
iJxKi). To have a successful transcript, the best strategy for the prover is

to cheat for the simulation of one party, and the probability of being successful
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is at most 1/N . Thus, Pr[succP̃ | Rh = rh] ≤ 1
N = ε, meaning that rh is not

good. By contraposition, we get that if rh is good, then JxK is a good witness.
Now, given a good Rh, we estimate the probability that one iteration of the

inner loop finds a successful transcript T2 (denoted as succT2

P̃ ) such that i∗T1
̸= i∗T2

:

Pr[succT2

P̃ ∩ (i∗T1
̸= i∗T2

) | Rh good]

= Pr[succT2

P̃ | Rh good]− Pr[succT2

P̃ ∩ (i∗T1
= i∗T2

) | Rh good]

2
≥ (1− α)ε̃− Pr[i∗T1

= i∗T2
| Rh good]

= (1− α)ε̃− Pr[i∗T1
= i∗T2

]

= (1− α)ε̃− 1/N

≥ (1− α)ε̃− ε .

Let define p0 := (1−α) ε̃−ε. By running P̃ η times with the same rh as for the
successful transcript T1, we obtain a second successful non-colliding transcript
T2 with probability at least 1/2 when

η ≈ ln(2)

ln
(

1
1−p0

) ≤ ln(2)

p0
. (4)

Let C denotes the total number of calls to P̃ from the extractor. While en-
tering a new iteration, the extractor makes one call to P̃ to obtain T1. Then, if
T1 is not successful, which occurs with probability (1−Pr[succP̃ ]), the extractor

continues to the next iteration and makes an average of E[C] calls to P̃. Oth-
erwise, if T1 is successful, which occurs with probability Pr[succP̃ ], either rh is
good which occurs with probability α (equation 3), and the extractor makes at
most η calls to P̃ in the inner loop of E and output a pair (T1, T2) with prob-
ability 1/2. Or the extractor makes η calls to P̃ in the inner loop of E without
stopping, with probability at most (1 − α

2 ). The average number of calls to P̃
hence satisfies:

E[C] ≤ 1 + (1− Pr[succP̃ ])E[C] + Pr[succP̃ ]
(
η +

(
1− α

2

)
E[C]

)
≤ 1 + (1− ε̃)E[C] + ε̃

(
η +

(
1− α

2

)
E[C]

)
≤ 1 + ε̃ η + E[C]

(
1− ε̃ α

2

)
≤ 2

α ε̃
(1 + ε̃η)

4
≤ 2

α ε̃

(
1 + ε̃

ln(2)

(1− α) ε̃− ε

)
By picking α = 1

2

(
1− ε

ε̃

)
, we get

E[C] ≤ 4

ε̃− ε

(
1 + ε̃

2 ln(2)

ε̃− ε

)
.
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Zero-knowledge. We build a PPT simulator S (i.e. an algorithm that outputs
transcripts that are indistinguishable from real transcripts without knowing a
valid witness) that has oracle access to some PPT Ṽ, and works as follows:

1. Sample a challenge i∗
$←− [1, N ].

2. Sample mseed
$←− {0, 1}λ.

3. Compute parties’ seeds (seed1, ρ1), . . . , (seedN , ρN ) with TreePRG(mseed).
4. For each party i ∈ [1, N ]\{i∗}:

– JxKi ← PRG(seedi)
– comi = Com(seedi; ρi)

5. Simulate the forward-backward execution with {JxKi}i ̸=i∗ , and get {yi}i∈[1,N ].
6. Sample a random commitment comi∗

7. ∆x
$←− F×

p

8. Call Ṽ with the hash digest h of ∆x, {yi}i∈[1,N ], and of the commitments

of the seed and associated randomness of each party. Get a challenge ĩ∗. If
ĩ∗ ̸= i∗, then S restarts the simulation from scratch.

9. Output the transcript(
h, (seedi, ρi)i̸=i∗ , comi∗ , {yi}i∈[1,N ], ∆x

)
.

The output transcript is identically distributed to the genuine transcript except
for the commitment of the party i∗. Distinguishing them means breaking the
commitment hiding property or the PRG security. The above simulator S is a
PPT algorithm since the challenge set [1, N ] (from which i∗ is sampled) has a
size that is polynomial in the security level.

B Zero-Knowledge Argument of Knowledge of an RSA
Plaintext

First, we formally describe the MPC protocol 8 that is realized by the parties
emulated by the prover, and that has been mentioned in the introduction of
section 3.

Input: RSA ciphertext, modulus and public exponent (y, n, e). A multiplicative

sharing x =
∏N

j=1⟨x⟩j mod n of some element x ∈ Z/nZ.
Output: 1 if xe = y mod n, 0 otherwise.

1. Each party i locally computes their multiplicative share ⟨x⟩ei and broadcast it.
2. If xe = y mod n parties output 1, otherwise 0.

Protocol 8: MPC protocol ΠRSA

Now, we slightly adapt the protocol 7 to get a zero-knowledge argument
of knowledge protocol of an RSA plaintext. We consider the protocol 7 where
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protocol 8 is plugged in the red part and with two minor modifications. Instead
of committed to {yi}i∈[1,N ], P commits to ⟨y⟩. Therefore, instead of applying
the forward-backward technique, V reruns the MPC protocol 8 for all the parties
i ̸= i∗ and sets yi∗ = y/

∏
i ̸=i∗⟨y⟩i.

Proofs of security are identical to those in Theorem 4. The completeness and
the soundness proofs are the same (both arguments of knowledge rely on the
same protocol 7). Step 5 in the simulator S has to be substituted by “Simulate
the computation of all the parties i ̸= i∗ to get {⟨x⟩ei}i̸=i∗ , and fix ⟨x⟩ei∗ :=
y/

∏
i ̸=i∗⟨x⟩ei“.

C Proof of Theorem 1

Proof (Theorem 1). Completeness. For any sampling of the random coins of P
and V, if the computation described in the protocol 2 combined with protocol 3
is honestly performed, all the checks of V pass. The completeness is hence perfect.

Soundness. To prove the special soundness, one builds an efficient knowledge
extractor that returns 3 specific transcripts, from which we can extract a solution
of the DDLP instance. This extractor has rewindable black-box access to P̃. As-
sume that we can get three transcripts Ti = (h, J (i),Rsp

(i)
1 , {ℓ(i)j }j∈J(i) ,Rsp

(i)
2 )

for i ∈ {1, 2, 3} from P̃ with the same first commitment. We additionally require

that there exists j0 ∈ (J (1)∩J (2))\J (3) such that ℓ
(1)
j0
̸= ℓ

(2)
j0

. Moreover, T1 and T2

are supposed to be successful transcripts (i.e. which pass all the tests of V). Fi-
nally, we assume that seed[j0] from Rsp

(3)
1 is consistent with the (x[j0], r[j0], s[j0])

from T1 and T2.
We show how to extract a solution of the DDLP instance (y, g, h) from the

three transcripts. First, we can assume that all the revealed shares are mutually
consistent between the three transcripts. Otherwise, we find a hash collision
(since they have the same first commitment). Thus, we know all the shares for
the iteration j0 from T1 and T2. For the sake of clarity, we only consider the
variables of the j0-th iteration, and this notation is omitted in the following.
Consider x′ :=

∑N
j=1JxKj mod p as a natural candidate solution for x. Then,

following the MPC protocol 3 we compute:

– hx′
= h

∑N
j=1JxKj =

∏N
j=1 h

JxKj =
∏N

j=1⟨hx⟩j mod q

– the broadcasting of ⟨α⟩ = ⟨hx⟩
⟨s⟩ i.e. α = hx

s mod q

– an additive sharing of hx via αJrK = hx

s JrK = JhxK, since from the checked
equations at the end of T3 we get that r = s.

– y =
∏N

j=1⟨y⟩j mod q with ⟨y⟩j = gJhxKj mod q.

Hence, gh
x′

= g
∏N

j=1⟨h
x⟩j = g

∑N
j=1JhxKj =

∏N
j=1 g

JhxKj =
∏N

j=1⟨y⟩j = y mod q.
Therefore, x′ is a solution of the considered DDLP.

Our protocol 2 has the same structure as the protocol 5 in [FJR23], with the
same first challenge for revealing M − τ out of M cut-and-choose phases, and
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the second challenge for opening N − 1 views. Hence, we can use the extractor
described in appendix E of [FJR23] for producing the above three transcripts
T1, T2, T3 by calling in average at most

4

ε̃− ε

(
1 + ε̃

8M

ε̃− ε

)
times P̃ (the analysis of the average number of calls to P̃ is also identical).

Honest-verifier zero-knowledge. We build a PPT simulator S (i.e. an algo-
rithm that outputs transcripts that are indistinguishable from real transcripts
without knowing a valid witness) given random challenges J and L (because we
assume an honest verifier), and works as follows:

1. Sample J
$←− {J ⊂ [1,M ]; |J | = τ} and L = {ℓe}e∈J

$←− [1, N ]τ

2. Sample mseed[0]
$←− {0, 1}λ

3. (mseed[e])e∈[1,M ] ← TreePRG(mseed[0])
4. For e ∈ [1,M ]\J , follow honestly the protocol and deduce he.
5. For e ∈ J :

– Compute (seed
[e]
1 , ρ

[e]
1 ), . . . , (seed

[e]
N , ρ

[e]
N ) with TreePRG(mseed[e]).

– For each party j ∈ [1, N ]\{ℓe}:
– (Jx[e]Kj , Jr[e]Kj , ⟨s[e]⟩j)← PRG(seed

[e]
j )

– com
[e]
j = Com(seed

[e]
j ; ρ

[e]
j )

– Sample ∆x[e] $←− Fp, Jx[e]Kℓe
$←− Fp, Jr[e]Kℓe

$←− Fq, ⟨s[e]⟩ℓe
$←− F×

q

– ∆s[e] =
∑N

j=1Jr
[e]Kj/

∏
j⟨s⟩

[e]
j mod q

– α[e] = h
∑N

j=1Jx[e]Kj+∆x[e]

/(∆s[e]
∏N

j=1⟨s[e]⟩j) mod q

– ⟨ghx[e]

⟩j = gα
[e]Jr[e]Kj mod q

– Adapt the output of the party ℓe: ⟨gh
x[e]

⟩ℓe = y/
∏

j ̸=ℓe
⟨ghx[e]

⟩j mod q

– Sample a random commitment com
[e]
ℓe

– Compute

– he = H1(∆s[e], com
[e]
1 , . . . , com

[e]
n )

– h′
e = H3(∆x[e], ⟨ghx[e]

⟩, α[e])

6. Compute

– h = H2(h1, . . . , hM )
– h′ = H4((h

′
e)e∈J)

7. Outputs the transcript(
h, h′, (mseed[e])e∈[1,M ]\J , ((seed

[e]
i , ρ

[e]
i )i ̸=ℓe , com

[e]
ℓe
, ∆x[e], ∆s[e], α[e])e∈J

)
.

The distribution of the output transcript is identical to a real one, except for
the commitment of the party ℓe in each execution e ∈ J . Distinguishing them
means breaking the commitment hiding property or the PRG security.
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D Proof of Theorem 3

Proofs of completeness, special soundness, and honest-verifier zero-knowledge are
identical to those in annex C (they both use the same protocol 2), with a slight
adaptation. In the soundness, we adapt to the FIP the proof that the natural
solution x′ extracted from the first two transcripts satisfies f(x′) = y mod p. In
the simulator S, step 5 has to be adapted to the FIP.

E Proof of Theorem 2

Proof. Completeness. For any sampling of the random coins of P and V, if the
computation described in the protocol 2 (with the slight adaptation described
in section 5 for the first challenge and the rejection rule) combined with MPC
protocol 5 is honestly performed and if there is no abort, all the checks of V
pass. Since the probability of abortion is 1 −

(
1− q−1

A

)τ n
(see section 2), the

completeness probability is hence equals to
(
1− q−1

A

)τ n
.

Special soundness. Compared to the DDLP identification scheme, the ongoing

scheme has a larger first challenge J ∪ {g $←− Fq′} where J is the cut-and-choose
challenge, but the second challenge is the same. Consider the same extractor
E as in annex C which outputs some specific three transcripts T1, T2, T3. De-

fine J (i) ∪ {g(i) $←− Fq′} the first challenge in transcript Ti for i ∈ [1, 3]. Thus,
J (1), J (2) and J (3) satisfy the conditions enumerated in proof of Theorem 1, but
g(1), g(2) and g(3) are random. As detailed in proof of Theorem 1, T1 and T2

aims to recover some natural candidate solution x′. T3 provides a valid couple
of sharing (JrK, ⟨r⟩). All together, we can reconstruct the polynomial fx′,v(X).
Since T1 is successful, fx′,v(g

(1)) = 0 mod q′.

Honest-verifier zero-knowledge. We detail the change to carry out in the sim-

ulator S from annex C. First, we shall sample g
$←− Fq′ during step 1. We adapt

step 5 accordingly to MPC protocol 5. Finally, we add “Abort with probability
1−

(
1− q−1

A

)nτ
” before step 7. The final analysis still holds.
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