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Abstract

A recent work by Ball, Li, Lin, and Liu [Eurocrypt’23] presented a new instantiation of
the arithmetic garbling paradigm introduced by Applebaum, Ishai, and Kushilevitz [FOCS’11].
In particular, Ball et al.’s garbling scheme is the first constant-rate garbled circuit over large
enough bounded integer computations, inferring the first constant-round constant-rate secure
two-party computation (2PC) over bounded integer computations in the presence of semi-honest
adversaries.

The main source of difficulty in lifting the security of garbling schemes-based protocols to
the malicious setting lies in proving the correctness of the underlying garbling scheme. In this
work, we analyze the security of Ball et al.’s scheme in the presence of malicious attacks.

• We demonstrate an overflow attack, which is inevitable in this computational model, even if
the garbled circuit is fully correct. Our attack follows by defining an adversary, corrupting
either the garbler or the evaluator, that chooses a bad input and causes the computation
to overflow, thus leaking information about the honest party’s input. By utilizing overflow
attacks, we show that 1-bit leakage is necessary for achieving security against a malicious
garbler, discarding the possibility of achieving full malicious security in this model. We
further demonstrate a wider range of overflow attacks against a malicious evaluator with
more than 1 bit of leakage.

• We boost the security level of Ball et al.’s scheme by utilizing two variants of Vector Obliv-
ious Linear Evaluation, denoted by VOLEc and aVOLE. We present the first constant-
round constant-rate 2PC protocol over bounded integer computations, in the presence of a
malicious garbler with 1-bit leakage and a semi-honest evaluator, in the {VOLEc,aVOLE}-
hybrid model and being black-box in the underlying group and ring. Compared to the
semi-honest variant, our protocol incurs only a constant factor overhead, both in compu-
tation and communication. The constant-round and constant-rate properties hold even in
the plain model.
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1 Introduction

Secure two-party computation (2PC) [Yao86] allows two mutually untrusting parties to jointly
compute arbitrary public functions with their private inputs while only revealing the output. It
has been deployed in many real-world use cases, including medicine, privacy-preserving machine
learning, and many more.

While 2PC can be built based on multiple approaches, instantiating it using garbled circuits is
one of the most popular methods due to its simplicity, flexibility, and high practicality in constant-
round 2PC. In these protocols, a garbler (denoted by G) generates an encoded version of the
publicly agreed circuit C, referred to as a garbled circuit (GC). G further generates a set of garbled
labels encoding all potential wire values of every input wire. Next, an evaluator (denoted by E)
can evaluate the GC on a single input to get the corresponding output upon obtaining the GC and
the garbled input labels.

A garbled circuit is a cryptographic object consisting of three algorithms: (1) circuit encoding,
(2) input encoding, and (3) evaluation, where security is followed by privacy and correctness.
Namely, privacy implies that the former two encoding algorithms can be simulated without accessing
the input to the computation x, whereas correctness ensures that the evaluator learns C(x). Garbled
circuits easily imply passive (semi-honest) 2PC, given that the parties have access to parallel semi-
honest oblivious-transfer [LP09] or oblivious linear evaluation, where the communication rate is
O(κ) for a security parameter κ.1

Yao’s Boolean GC. The classic approach for designing garbled circuits, commonly known as Yao’s
GC, considers garbling Boolean circuits consisting of AND and XOR gates. It was first introduced
by Yao in 1986 [Yao86] and later refined in [LP09] as a scheme requiring 4κ bits of communica-
tion per gate. Following these, a long line of work has devoted substantial effort to improving the
communication overhead. Notable improvements include row reduction (GRR3) [NPS99], which
reduced the communication per gate to 3κ; free XOR [KS08], which eliminated the communica-
tion for XOR gates; half-gates [ZRE15], which reduced the communication per AND gate to 2κ
while being compatible with free XOR; and most recently, the three halves [RR21], which achieves
the state of the art 1.5κ bits per AND gate. This great effort did not improve the asymptotic
communication rate for arbitrary circuits. Namely, the communication rate remained O(κ).
Arithmetic GC over bounded integer computations. To break the barrier of O(κ) rate, a natural
attempt is to design garbling schemes for computations defined beyond Boolean circuits, e.g., a
circuit defined over some ring R. One such endeavor led by Ball et al. [BMR16] to generalize free
XOR to the bounded integer computations. The model of computation considers circuits defined
over the integer ring Z with addition and multiplication gates and a pre-defined bound B, where
any wire value falls within [−B,B]. Nevertheless, this effort did not achieve any asymptotic
rate improvement due to employing bit decomposition techniques. Other attempts (e.g. [AIK04,
IW14]) studied new approaches for arithmetic GC. However, their scope was limited to arithmetic
formulas and branching programs. The first construction for arbitrary arithmetic circuits over
bounded integer computations, which took a different route from Yao’s paradigm, was proposed
by Applebaum, Ishai, and Kushilevitz (AIK) [AIK11]. Their construction is based on the Learning
With Errors (LWE) assumption while still requiring O(κ) rate. This rate is due to a so-called key

1Communication rate for passive protocols compares the number of bits transferred within the protocol execution
vs. the size of the computed circuit. In this work, we use the terminology “rate” to express the overhead from
insecure execution to passive/active secure execution in communication only.
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extension (KE) gadget that enables E to expand a short garbled label to a long one while encoding
the same value. At the core of this construction lies a key and message homomorphic encryption
scheme, and AIK illustrated how to instantiate this encryption scheme with LWE. Building on
[AIK11], a recent work by Ball et al. [BLLL23] improved over the AIK paradigm by introducing
an alternative instantiation of their KE gadget based on the Decisional Composite Residuosity
(DCR) assumption over Paillier groups [Pai99, DJ01]. Notably, [BLLL23]’s GC over B-bounded
integer computations achieves O(1) rate for a large enough bound B = B(λ). This implies the first
semi-honest constant-round constant-rate 2PC protocol in this computational model. Henceforth,
we use the term BLLL’s GC to denote the constant-rate GC scheme in [BLLL23]. We note that
[BLLL23] additionally proposed GC schemes for other models, but only the GC for bounded integer
computations achieves a constant rate.

Active 2PC via Yao’s GC. Lifting the security of the Yao semi-honest protocols to the active (aka,
malicious) setting is challenging due to the intricate task of proving the correctness of a garbled
circuit. In theory, boosting passive to active is feasible with a constant communication overhead
due to the GMW compiler [GMW87] and succinct proofs. Nevertheless, its high computation cost
keeps encouraging researchers to develop more desirable solutions. Many of these works, explicitly
or implicitly, exploit the fact that Yao’s GC is naturally secure against a malicious E. Namely,
the main focus becomes forcing a malicious G to provide a correct GC. Within the developed
methods, the cut-and-choose paradigm [LP07, HKE13, Lin16] addresses some of the practicality
concerns by repeating the garbling procedure multiple times but inflates the overheads by a factor
of statistical parameter λ to achieve 2−λ error. A different approach applies authentication to the
wire labels [IKO+11, HIV17, WRK17, DILO22, CWYY23], while achieving constant communication
overhead.

With the aim of reducing the concrete communication overhead, another line of work weakens
the standard security notion, allowing the adversary to learn one bit of information about the
honest party’s input. This notion is denoted by security with 1-bit leakage. Several variants
of this notion have been considered in the literature, such as the dual execution paradigm [MF06,
HKE12, KMRR15, RR16] and one-sided leakage [HIV17]. This security relaxation enables constant
communication factor overheads where the concrete factors are smaller than 2.

1.1 Our Contributions

Motivated by the recent breakthrough achieved by BLLL’s GC, we focus on constructing constant-
rate constant-round 2PC over bounded integer computations in the presence of static malicious
adversaries. Our focus is not only feasibility but also practicality. We list our following contribu-
tions:

• Observing a security subtlety in the bounded computational model. We discuss
an issue in the bounded integer computation model, which is inherited by the nature of the
computation. Namely, a B-bounded input may still cause an internal wire value to overflow.
Nevertheless, the model does not specify what should be the output in case of an inadmissible
input, partly because a party cannot tell whether an input is admissible without viewing the
other party’s input. While this is not required in the semi-honest setting, it eliminates the
possibility of obtaining full security in the active setting, as an adversary may choose its input
maliciously. We stress that this issue holds even if the attack is limited to only modifying the
input to the computation.
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• Understanding the active security of BLLL garbling. We demonstrate a new class
of attacks coined overflow attacks and show that these attacks are inevitable in BLLL’s GC
because even with a fully correct GC, both G and E can exploit this attack to compromise
the privacy of the honest party’s inputs. This attack implies that the best notion of security
in the bounded integer model via BLLL’s GC in the presence of a malicious G and a semi-
honest E is security with 1-bit leakage, as the leakage boils down to whether E aborted or
not. We further show that this is not necessarily the case in the presence of a malicious E,
which may leak the entire input of G by demonstrating a larger class of attacks overflowing
multiple wires.

• Lifting BLLL’s GC to the active setting. We construct a practical 2PC protocol over
bounded integer computations, achieving the above best notion of security using two hybrids
(see Theorem 1). The first hybrid refers to Vector Oblivious Linear Evaluation correlations2

(VOLEc) functionality [BCGI18, BCG+20, LWYY22] that can be instantiated based on the
LPN assumption with sublinear communication cost, whereas the second hybrid refers to the
so-called authenticated VOLE3 (aVOLE) functionality that our protocol uses to allow the
evaluator to learn his garbled input labels. We do not instantiate the aVOLE functionality
since its effect on the overall cost vanishes with the circuit’s size as its complexity grows
with E’s input size. Therefore, even general malicious 2PC can be used here. Overall,
our protocol is constant-round and maintains both constant computation and communication
multiplicative overheads compared to the semi-honest variant in the {VOLEc, aVOLE}-hybrid
model, where the VOLE correlations can be generated in a circuit-independent pre-processing
phase. Moreover, our protocol achieves a constant communication rate even in the plain model
and only uses black-box access to the underlying group and ring. To construct our protocol,
we transfer the VOLE-based ZK (e.g., [DIO21]) to the integer ring ZNζ where N is an RSA
modulus and ζ ∈ Z+, as well as design a customized Σ-protocol [Sch90], which could have
independent interests.

Theorem 1 (Informal, Main). Assuming DCR assumption over Z∗
Nζ+1 where N = pq is a safe RSA

modulus and ζ is a sufficiently large integer. There exists a constant-rate constant-round secure two-
party computation protocol for any circuit C over B-bounded integer computations in the {VOLEc,
aVOLE}-hybrid model instantiated via BLLL’s GC [BLLL23], where the computation is linear in
|C|. The protocol is secure against malicious G with 1-bit leakage and semi-honest E.

1.2 Technical Overview

In this section, we informally explain our techniques while neglecting less important details; we
refer to Section 3 for a complete overview of BLLL’s GC.

Overflow attacks. We begin with an overview of the subtlety within the bounded integer com-
putation model. While considering active adversaries, we noticed that B-bounded inputs do not
guarantee that all wires will be B-bounded, where an intermediate wire can overflow. Such an

2Where VOLE correlations over ring ZNζ sample correlated randomness for the sender and receiver. The sender
will obtain u,w ∈ Zn

Nζ and the receiver will obtain ∆ ∈ ZNζ ,v ∈ Zn
Nζ such that v = w + u∆. See Figure 1

and Section 1.2 for details.
3Authenticated VOLE works similarly to (non-randomized) VOLE. In aVOLE, the sender inputs four vectors

a, b, c,d and the receiver sends two elements x,∆ to learn ax+ b,a∆+ c, b∆+ d. See Figure 6 and Section 5.5 for
details.
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Functionality FN,ζ
VOLEc

Let ZNζ denote the ring of integers modulus Nζ where N = pq is an RSA modulus and ζ ∈ Z+. Functionality

interacts with G, E and the adversary A as follows:

Initialize. Upon receiving (init) from G and E, if E is honest, sample ∆
$← ZNζ , else receive ∆ from A. Store

∆ and send it to E. Ignore subsequent (init).

Extend. Upon receiving (extend, n) from G and E, do the following:

• If E is honest, sample v
$← Zn

Nζ , else receive v ∈ Zn
Nζ from A.

• If G is honest, sample u
$← Zn

Nζ and compute w := v − u∆ ∈ Zn
Nζ , else receive u ∈ Zn

Nζ and w ∈ Zn
Nζ

from A and compute v := w + u∆ ∈ Zn
Nζ .

• Send (u,w) to G and v to E.

Figure 1: The VOLE correlation functionality

overflow may occur even if the garbled circuit is constructed correctly and, in the presence of cor-
rupting, either G or E. I.e., the adversary can set B-bounded inputs but try to cause the evaluation
of GC to suffer from overflows on intermediate wires. We call these inputs legal but inadmissible.
Now, since the evaluation procedure of BLLL’s GC heavily relies on all wires being B-bounded,
overflow attacks can help a malicious E to break the privacy guarantee of BLLL’s GC scheme and
a malicious G to cause an input-dependent select-failure abort as follows:

• Malicious E (see Section 4.2): While evaluating a BLLL’s GC, E obtains a garbled label
encoding a private value on each wire. There are O(|C|) wires in the BLLL’s GC having the
following property: if the wire encoding a value w, the garbled label during evaluation will
reveal w + r to E where r is uniformly chosen from a larger fixed bound Be such that w + r
statistically hides w. Note that w + r can only be leaked to E if w is bounded by B. When
E uses bad inputs and w overflows, w + r no longer hides w, so it should not be leaked to
E. Essentially, E can select his inputs and monitor whether each wire overflows to make G’s
inputs leak.

• Malicious G (see Section 4.3): While evaluating a BLLL’s GC, E needs to decode O(|C|)
garbled labels from domain ZNζ to Z.4 In particular, E can decode these labels because they
are B-bounded, so they will not wrap around the domain ZNζ . When G uses bad inputs,
the value could wrap around if some wire overflows. Hence, E might incorrectly decode the
garbled labels and fail to evaluate the garbled tables, which will abort the execution. Thus,
G can cause a selective failure attack, learning whether an overflow occurs, which can be
captured as applying a predicate on E’s inputs.

VOLE correlations and authenticated VOLE over ZNζ as hybrid functionalities. Vector
Oblivious Linear Evaluation (VOLE) allows a receiver (E in our protocol) to learn a linear combina-
tion of two vectors held by a sender (G in our protocol). In the case where the sender’s vectors and
the receiver’s evaluation point are (pseudo-)random, known as VOLE correlation (VOLEc)5, recent

4The computation in this scheme is embedded into a sufficiently large integer ring ZNζ where N is an RSA
modulus.

5We note that prior works use this terminology interchangeably.
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works (e.g., [BCGI18]) show that it can be instantiated via the Learning Parity with Noise (LPN)
assumption with sublinear communication cost, known as the Pseudorandom Correlation Genera-
tor (PCG) paradigm. Our 2PC protocol relies on “authenticating” G’s randomness in BLLL’s GC
using VOLE correlations. In particular, we need to use VOLE correlations defined over ZNζ where
N is an RSA modulus and ζ ∈ Z+. Recently, Liu et al. [LWYY22] showed that the decisional
LPN problem over the integer ring ZNζ is as hard as the LPN problems over the fields Fp and Fq

(see Lemma 1 in Section 2.3). Therefore, it is sufficient to generate VOLE correlations over ZNζ

via the standard PCG paradigm to achieve sublinear cost in communication. Formally, this func-
tionality is defined in Figure 1. For completeness, we include the definitions of LPN assumptions
and the lemma regarding the hardness of LPN over ZNζ in Section 2.

Our protocol also uses another hybrid functionality called authenticated VOLE (aVOLE) to
allow E to learn his input garbled labels (as the OT in Yao). The authenticated VOLE is just a
small modification over the standard (non-randomized) VOLE where G holds 4 vectors a, b, c,d
and E holds two elements x,∆ such that E can learn ax + b,a∆+ c, b∆+ d. Crucially, the cost
of instantiating this functionality is only proportional to E’s input size, so we do not instantiate it.
See Figure 6 and Section 5.5 for more discussions.

Our protocol. Overflow attacks imply that the best we can hope while boosting the security of
BLLL’s GC is 1-bit leakage security in the presence of malicious G and a semi-honest E. We notice
that to achieve this security notion, we only need to guarantee that E must obtain a result of the
intended computation whenever it evaluates the circuit and does not abort. This means that a
malicious G can either learn the output of C or that E had aborted.

Interestingly, we observe that this can be guaranteed by an almost correct rather than fully
correct BLLL’s GC (see Section 4.3). By simplifying the statements, we can design custom zero-
knowledge proofs (ZKP) at a very low cost. To see how it works, recall that the BLLL garbling
procedure includes the following operations: (1) sample uniform randomness in ZNζ ; (2) add two
random samples over ZNζ ; (3) multiply two random samples over ZNζ ; and (4) use two random
samples a, b to construct an element in the group Z∗

Nζ+1 as τa(N +1)b where τ is a public uniform

2N ζ-th residue. The operation (4) generates the garbled tables for the KE gadgets. BLLL’s
GC utilizes the homomorphism of this ciphertext format where (τa1(N + 1)b1)k(τa2(N + 1)b2) =
τa1k+b1(N + 1)a2k+b2 . By obtaining k, a1k + b1 from the GC evaluation, E can obtain a2k + b2 by
solving the discrete logarithm of (N + 1)a2k+b2 to the base N + 1, which is known to be easy and
commonly used in the Paillier cryptosystem [Pai99, DJ01].

Inspired by the authenticated garbling method of [WRK17], we observe that the randomness
used in the garbling procedure of BLLL’s GC can be generated in an authenticated manner by
VOLE correlations over ZNζ in a circuit-independent pre-processing phase. Namely, the ideal
functionality FN,ζ

VOLEc can be used to generate a pool of committed randomness over ZNζ , which can
replace operation (1). Later, during the GC generation procedure, G and E consume the committed
randomness to authenticate the garbled circuit. I.e., G will use the committed randomness to
produce correlated (and new committed) randomness for operations (2-3), and use special-purpose
ZK proofs to validate that the computation of (4) is done almost correctly. In slightly more detail:

• To support operations (2-3): We transform the existing VOLE-based ZK proofs to the
ring ZNζ domain (see Section 5.1), used to prove the correctness of addition/multiplication
operations. The proof of each operation requires sending only O(1) elements and performing
O(1) ring operations.
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• To support operation (4): We observe that as long as a committed random element
b ∈ ZNζ is indeed used to generate a garbled table ciphertext τa(N + 1)b ∈ Z∗

Nζ+1 of some
KE gadget, it ensures that E will perform an intended computation of the KE gadget upon
evaluating it. Namely, an erroneous garbled table of form ε(N + 1)b is harmless under 1-bit
leakage where ε can be an arbitrary error that is not dividable byN+1 in Z∗

Nζ+1 . By exploiting

the order of N + 1 in the group Z∗
Nζ+1 is exactly N ζ , we adjust the well-known Schnorr’s Σ-

protocol [Sch90] for the knowledge of the discrete logarithm to achieve this (see Section 5.2).
Roughly speaking, the crucial adjustment requires G to open the committed randomness in
the response phase of Σ-protocol. The adjusted Σ-protocol is also very cheap and requires
sending only O(1) group elements, and performing O(1) exponentiation in Z∗

Nζ+1 (and O(1)
additions/multiplications in ZNζ ).

To conclude, our protocol is constant-round6 and constant-rate, with constant factor blowup in both
computation and communication (compared to [BLLL23]) in the {FN,ζ

VOLEc,F
N,ζ
aVOLE}-hybrid model,

and only uses black-box access to the underlying group ZNζ and ring Z∗
Nζ+1 . The cost of our protocol

is dominated by a total number of O(|C|) operations (4), achieving constant factor blowup. Finally,

by using LPN assumption over ZNζ to instantiate FN,ζ
VOLEc with sublinear communication cost in

O(|C|), our protocol preserves a constant rate of communication, and constant-round, even in the
plain model.

2 Notations and Definitions

Our work uses the following notations:

λ is the statistical security parameter (e.g., 40).

κ is the computational security parameter (e.g., 128).

x ≜ y denotes that x is defined as y. x := y denotes that y is assigned to x.

We denote that x is uniformly drawn from a set S by x
$← S.

We denote {1, . . . , n} by [n], {a, . . . , b} by [a, b].

We denote vectors by bold lower-case letters (e.g., a), where ai (or a[i]) denotes the ith component
of a (starting from 1).

We denote sets by bold upper-case letters (e.g., A). In some cases, the elements in the set will be
indexed via integer tuples (e.g., Ai,j,k).

N denotes a safe RSA modulus. That is, N = pq where p, q are equal-length large primes (e.g.,
1024-bits). Moreover p = 2p′ + 1 and q = 2q′ + 1 where p′, q′ are also primes. W.l.o.g., we
assume p < q. Formally, p, q are sampled according to the security parameter λ.

≈c denotes the computational indistinguishability. ≈s denotes the statistical indistinguishability;
see [Gol09] for more details.

6In the random oracle model, our protocol only requires 2 rounds by applying the Fiat-Shamir transforma-
tion [FS87], in the {FN,ζ

VOLEc,F
N,ζ
aVOLE}-hybrid model, when both parties receive the output.
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2.1 Secure Two-Party Computation with 1-Bit Leakage

We extend the classic security definition and define secure two-party computation with 1-bit leakage
in the Ideal/Real simulation paradigm. Since we focus on the 2PC protocol instantiated via GC,
we directly name the two parties: G (as the garbler) and E (as the evaluator). In particular, we
consider static corruptions by malicious adversaries who can corrupt G and may deviate from the
protocol arbitrarily and semi-honest adversaries corrupting E.

Real Execution. A two-party protocol Π is executed by G and E. The adversary A receives the
inputs of G and an auxiliary input z and will interact with E on behalf of the corrupted G. E
follows the instructions in Π. Let the random variable ViewA

Π,A(z)(x, y, κ) denote the entire view
of A in the execution of Π where G holds input x, E holds input y and both hold the security
parameter as 1κ. Let the random variable outE

Π,A(z)(x, y, κ) denote the output of E. Define the
tuple of correlated random variables as:

RealΠ,A(z)(x, y, κ) ≜
(
ViewA

Π,A(z)(x, y, κ),out
E
Π,A(z)(x, y, κ)

)
Ideal Execution. In the ideal execution, G and E interact with an ideal functionality, also known
as a trusted third-party (TTP), where G holds input x, E holds input y, and both hold the security
parameter as 1κ. The adversary A receives the inputs of G and an auxiliary input z and will
interact with the ideal functionality on behalf of the corrupted G. The execution is as follows:

1. The honest E sends the input y to TTP.

2. A sends any input x̃ to TTP. A also specifies a predicate as g.

3. TTP computes b := g(x̃, y). If b = 1, it sends abort to A and E and jumps to the last step;
otherwise, it executes the next step.

4. TTP evaluates the function f(x̃, y). Let res denote the output.

5. TTP sends res to A and E.

6. The honest party outputs whatever is returned from TTP. A outputs a random variable of
its view.

Note that if the predicate g is evaluated to 0, TTP directly sends res to A and E. I.e., A cannot
trigger an abort upon receiving res. This is because when 2PC is instantiated via GC, (semi-honest)
E will learn the output first. Let the random variable outA

f,A(z)(x, y, κ) denote the output of A in

the ideal execution. Let the random variable outE
f,A(z)(x, y, κ) denote the output of the honest E

in the ideal execution. Define the tuple of correlated random variables as:

Idealf,A(z)(x, y, κ) ≜
(
outA

f,A(z)(x, y, κ),out
E
f,A(z)(x, y, κ)

)
Definition 1. A protocol Π for function f is said to securely compute f with 1-bit leakage for the
malicious G if for every PPT adversary A corrupting G, there exists a PPT simulator S corrupting
G such that{

RealΠ,A(z)(x, y, κ)
}
x,y,z∈{0,1}∗,κ∈N ≈c

{
Idealf,S(z)(x, y, κ)

}
x,y,z∈{0,1}∗,κ∈N
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In the above definition of the ideal execution with 1-bit leakage for a malicious G, A can specify
an arbitrary predicate g. In some cases, including in this work, A can only specify a subclass of
predicates. In this case, we restrict g according to this class of predicates in the security proof.

Let the random variable ViewE
Π(x, y, κ) denote the entire view of E in the execution of Π where

G holds input x, E holds input y, and both hold the security parameter as 1κ. Let the random
variable outE

f (x, y, κ) denote the output of E in the ideal execution where G holds input x, E holds
input y, and both hold the security parameter as 1κ. We also require the protocol to be secure
against a semi-honest E in the standard way specified in Definition 2.

Definition 2. A protocol Π for function f is said to securely compute f for the semi-honest E if
there exists a PPT simulator S such that{

ViewE
Π(x, y, κ)

}
x,y,z∈{0,1}∗,κ∈N ≈c

{
S
(
y,outE

f (x, y, κ), 1
κ
)}

x,y,z∈{0,1}∗,κ∈N

2.2 Cryptographic Hardness Assumptions

For completeness, we define the cryptographic intractability problems or assumptions upon which
this work relies in this section.

Definition 3 (Decisional Composite Residuosity (DCR) Assumption [Pai99, DJ01, BLLL23]). Let
λ be the security parameter, let SP(λ) ≜ {k | k is a λ-bits prime ∧ k = 2k′ + 1 ∧ k′ is a prime}.
Let p, q

$← SP(λ) where p = 2p′ + 1 and q = 2q′ + 1. Let N = pq over Z. Let ζ = ζ(λ) be a
polynomial. Let QRNζ+1 ≜ {a2 | a ∈ Z∗

Nζ+1} be the subgroup of quadratic residues in Z∗
Nζ+1. Let

HCNζ+1 ≜ {a2Nζ | a ∈ Z∗
Nζ+1} be the cyclic subgroup of size p′q′ of Z∗

Nζ+1. DCRζ states that the
following indistinguishability holds:

{N, u} ≈c {N, v}
∣∣∣u $← QRNζ+1 , v

$← HCNζ+1

We note that our work does not explicitly use the DCR assumption but uses it implicitly due
to the use of BLLL’s GC of bounded integer computation as a subroutine, in a non-black-box way.

Definition 4 (Decisional Learning Parity with Noise (LPN) Assumption [LWYY22, BFKL94]).
Let D(R) = {Dt,N (R)}t,N∈N denote a family of (noise) distributions over a ring R such that for

any t,N ∈ N, Im (Dt,N (R)) ⊆ RN . Let C be a probabilistic code generation algorithm such that
C(k,N,R) outputs a matrix A ∈ RN×k. For dimension k = k(κ), number of samples N = N(κ),
Hamming weight of a noise vector t = t(κ), and a ring R, the decisional (D,C,R)-LPN(k,N, t)
assumption states that the following indistinguishability holds:

{A,A · s+ e} ≈c {A,u}
∣∣∣A $← C(k,N,R), s $← Rk, e

$← Dt,N (R),u $← RN

In this work, we only consider C as random linear codes (i.e., uniformly sampling A). Thus, we
omitC from the notation. In particular, we only consider the following families of noise distribution:

• Exact Hamming Weights: HW. HW(R) = {HWt,N (R)} is the family of distributions
sampled as follows: For a length-N vector, sample t uniform positions, and put 0 on other
N − t positions. For each of those t positions, sample a uniform element from R \ {0} and
put it on.
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• Independent Exact Hamming Weights: IndHW. Let R be integer ring modulus pζ1qζ2 ,
i.e., Zpζ1qζ2 where p, q are distinct primes and ζ1, ζ2 are positive integers. An element
x in Zpζ1qζ2 can be uniquely decomposed into a vector of length ζ1 + ζ2 as decom(x) =
(x1, . . . , xζ1 , xζ1+1, . . . , xζ1+ζ2) where xi∈[ζ1] ∈ Fp and xi∈[ζ1+1,ζ1+ζ2] ∈ Fq such that x =

decom(x)T×b where b = (1, . . . , pζ1 , pζ1q, . . . , pζ1qζ2−1). IndHW(Zpζ1qζ2 ) =
{
IndHWt,N (Zpζ1qζ2 )

}
is the family of distributions sampled as follows:

1. Sample ζ1 length-N vectors where each xi∈[ζ1] $← HWt,N (Fp).

2. Sample ζ2 length-N vectors where each xi∈[ζ1+1,ζ1+ζ2]HWt,N (Fq).

3. Output a length-N vector x ≜ (x1, . . . ,xζ1+ζ2)× b.

2.3 VOLE Correlations over ZNζ

Vector Oblivious Linear Evaluation (VOLE) allows a receiver (E in our protocol) to learn a linear
combination of two vectors held by a sender (G in our protocol). In 2PC via BLLL’s GC, even
restricted to semi-honest security, we require VOLE to allow E to obtain garbled labels of his inputs.

In the case where the sender’s vectors and the receiver’s evaluation point are (pseudo-)random,
known as VOLE correlation, recent works (e.g., [BCGI18]) show that it can be instantiated via the
LPN assumption with sublinear communication, known as the Pseudorandom Correlation Gener-
ator (PCG) paradigm. Our 2PC protocol essentially relies on “authenticating” G’s randomness in
GC using VOLE correlation. I.e., G will commit her randomness using VOLE correlation before
GC’s generation.

Generate VOLE correlations over ZNζ from LPN assumption over ZNζ . Crucially, PCG
paradigm relies on the LPN assumption. Most of the previous works focus on generating VOLE
correlations over fields. Namely, they study the LPN assumption over fields. There are works
(e.g., [BBMHS22]) considering correlations over integer rings but restricted to Z2k . We need to
generate VOLE correlations over the integer ring ZNζ where N = pq is an RSA modulus, and ζ
is a positive integer. Recently, Liu et al. [LWYY22] show that decisional LPN problem over the
integer ring ZNζ is as hard as LPN problems over the fields Fp and Fq (see Lemma 1). Therefore,
it is sufficient to generate VOLE correlation over ZNζ via the standard PCG paradigm. Formally,
this functionality is defined in Figure 1.

Lemma 1 (Equivalence of Decisional LPN over Zpλ1qλ2 and Fp/Fq). Both decisional (HW,Fp)-
LPN (k,N, t) and decisional (HW,Fq)-LPN (k,N, t) are hard if and only if decisional (IndHW,Zpλ1qλ2 )-
LPN (k,N, t) is hard.

2.4 Garbling Scheme for Bounded Integer Computations

We include the garbling scheme defined in [BLLL23] for bounded integer computation.
Bounded integer computation is a model of computation considering a circuit C with n input

wires and a positive integer bound B. C consists of fan-in 2 addition and multiplication gates. Each
wire of the circuit saves a value in Z, but the value only belongs to the set Z≤B ≜ {−B, . . . , B}. A
circuit C and a bound B induce an admissible input set χ ⊆ Zn

≤B. Namely, if x ∈ χ, evaluating C
on x over Z ensures that any wire in the circuit will be in Z≤B.
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Formally, consider classes of circuits C = {Cλ}λ where each Cλ contains circuits with polynomial
(in λ) number of gates defined as above. Let B = B(λ) be bounded by 2poly(λ) for some fixed
polynomial. A garbling scheme’s syntax and semantics are defined in Definition 5.

Definition 5 (Garbling Scheme). A garbling scheme for C = {Cλ}λ over Z≤B, with a label space
L = L(λ) consists of three efficient algorithms:

• Setup(1λ) takes a security parameter λ as inputs, and outputs public parameters pp, which
define a ciphertext space ε, and specify a polynomial dimension ℓ for keys and labels.

• Garblepp(1λ, C) takes a security parameter λ, and a circuit C ∈ Cλ with input length n as
inputs. It outputs n key pairs {ki

0,k
i
1}i∈[n] ∈ L≤ℓ of dimension up to ℓ and a garbled circuit

Ĉ. Crucially, ℓ is specified by pp and independent of circuit size |C|,

• Evalpp({Li}i∈[n], Ĉ) takes n garbled labels Li ∈ L≤ℓ, and a garbled circuit Ĉ as inputs. It
outputs an evaluation result y ∈ Z≤B.

Correctness. A garbling scheme is correct if for all λ ∈ N, pp := Setup(1λ), circuit C ∈ Cλ

with n input wires, and input x ∈ χ where χ is the admissible input set induced by C and B(λ), the
following holds:

Pr

[
Evalpp({Li}i∈[n], Ĉ)
= C(x)(over Z)

∣∣∣∣ {ki
0,k

i
1}i∈[n], Ĉ := Garblepp(1λ, C),

Li := ki
0 · xi + ki

1 (over L)

]
= 1

Privacy. A garbling scheme is secure if there exists an efficient simulator S such that for all
sequence of circuits {Cλ}λ where each Cλ ∈ Cλ with n = n(λ) input wires, and sequence of inputs
{xλ}λ where each xλ is of length n and belong to the admissible input set induced by Cλ and B(λ),
the following indistinguishability holds:{

pp,S(1λ, pp, C, y)
}

≈c

{
pp, {Li}i∈[n], Ĉ

} ∣∣∣∣∣∣
pp := Setup(1λ),

{ki
0,k

i
1}i∈[n], Ĉ := Garblepp(1λ, C),

Li := ki
0 · xi + ki

1 (over L), y = C(x)

Finally, we define communication rate for garbling schemes in the bounded computational model
as a measure to establish communication efficient schemes.

Definition 6 (Rate). We define the rate in the standard way. Given a garbling scheme GC for
B-bounded integer computation, the rate of GC is defined as:

rate = max
C,x

|Ĉ|+ |Lx|
|C| logB

where Lx is the garbled labels encoding x. Similarly, for a 2PC protocol between G and E, let the
total communication be comm(C, B, λ,x)-bits, the rate of this 2PC protocol for B-bounded integer
computations is defined as:

rate = max
C,x

comm(C, B, λ,x)

|C| logB
Lemma 2 (Constant-Rate GC over Bounded Integer Computations [BLLL23]). For B = B(λ), let
N = N(λ) be an RSA modulus and ζ be a sufficient large integer, let κDCR = logN , assuming DCRζ

assumption, there exists a correct and private garbling scheme for B-bounded integer computations
with rate O(1 + κDCR

logB ).
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Gadget for addition gate

Consider an addition gate with inputs wire x, y and out wire z where z = x+ y:

• Gb: Let the key pair assigned to z be (kz
0,k

z
1) ∈ Rn ×Rn for some n ∈ Z+. G uniformly samples r ∈ Rn,

then sets key pairs of x and y as:

(kx
0 ,k

x
1) := (kz

0, r) (ky
0 ,k

y
1) := (kz

0,k
z
1 − r)

• Ev: If E obtains Lx = kz
0x+ r ∈ Rn and Ly = kz

0y + kz
1 − r ∈ Rn, E calculates:

Lz := Lx +Ly = kz
0(x+ y) + kz

1, note that Lz ∈ Rn

Gadget for multiplication gate

Consider an addition gate with inputs wire x, y and out wire z where z = x · y:

• Gb: Let the key pair assigned to z be (kz
0,k

z
1) ∈ Rn×Rn for some n ∈ Z+. G uniformly samples r,u ∈ Rn

and s ∈ R, and sets the key pairs of x and y as:

(kx
0 ,k

x
1) := ((kz

0,k
z
0s) , (r,u)) (ky

0 ,k
y
1) := ((1, r) , (s, rs− kz

1 − u))

• Ev: If E obtains

Lx = (Lx
0 = kz

0x+ r ∈ Rn,Lx
1 = kz

0xs+ u ∈ Rn)

Ly = (Ly
0 = y + s ∈ R,Ly

1 = r(y + s)− kz
1 − u ∈ Rn)

E calculates Lz:

Lz := Lx
0 · Ly

0 −Lx
1 −Ly

1 = kz
0(x · y) + kz

1, note that Lz ∈ Rn

Figure 2: Information-theoretic add/mult gadgets from the AIK paradigm [AIK11]

3 A Review of Constant-Rate BLLL’s GC

Given that BLLL’s GC, building on AIK, dramatically deviates from the standard Yao’s paradigm,
we provide a concise overview of this scheme in this section. Recall that the bounded integer
computation model requires that, for a class of admissible inputs over Z, all wire values fall within
the range [−B,B] for some predefined positive integer B. Naturally, the computation can be
embedded into a large enough modular integer ring.

The AIK paradigm for arithmetic garbling. BLLL’s GC follows the AIK paradigm [AIK11] for
arithmetic garbing. Unlike Yao’s GC, the AIK paradigm generates the GC backward, i.e., in the
reverse topology order. To garble a circuit C defined over some integer ring R (i.e., the computation
is defined over the integer ring R), the AIK paradigm generates GC from the following components:

• Affine garbled labels: The AIK GC encodes garbled labels using affine functions. That
is, for each wire w in C, G assigns it with a pair of keys (kw

0 ,k
w
1 ) ∈ Rn × Rn for some

positive integer n. During the evaluation, E obtains a garbled label encoding w defined by
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Lw ≜ kw
0 w + kw

1 . The key pair (kw
0 ,k

w
1 ) is denoted by the garbled key pair7 for wire w. In

particular, n = |kw
0 | = |kw

0 | denotes the length of the garbled key pair.

• Information-theoretic addition/multiplication gadgets: For a gate with input wires
x, y and output wire z, E holding Lx and Ly should learn Lz. The AIK GC achieves this
in an information-theoretic way without communication. Essentially, G selects the garbled
key pairs of two input wires after the garbled key pair of the output wire is assigned. The
complete scheme is presented in Figure 2. Note that the gate can have unlimited fan-out.
Hence, the garbled key pair of wire z is constructed as the concatenation of all garbled key
pairs of the wire z provided as inputs to the next layer.

• Key extension gadgets: While the constructions for addition/multiplication gadgets are
information-theoretic, the length of the garbled key pairs grows exponentially backward be-
cause (1) the length for one garbled key pair of the inputs of a multiplication gate doubles
and (2) a gate (including an input gate) can have unlimited fan-out. Thus, transferring gar-
bled labels of inputs of C from G to E will require exponential costs. To tackle this issue,
the AIK GC scheme introduced a garbled gadget called the key extension (KE) gadget. A
KE gadget allows E to expand a short, so-called “version-A”, gabled label Lw,A ∈ Rns to
a longer “version-B” garbled label Lw,B ∈ Rnl (where nl > ns and ns is a small constant),
while encoding an identical value w. In other words, it can be viewed as augmenting C with
extra “identical” gates. Recursively applying the KE gadgets will result in a KE gadget that
allows E to expand a length n garbled label into any length. We emphasize that, since G
garbles the circuit backward, a KE gadget helps G to shrink the length of the garbled key
pair. That is, the length of the garbled key pair will no longer grow exponentially. Unlike the
addition and multiplication gadgets, a KE gadget requires garbled tables to be transferred
from G to E. [AIK11] showed how to build KE gadgets from the Learning With Errors (LWE)
assumption. Building on [AIK11], [BLLL23] further showed how to build them based on the
DCR assumption. Essentially, optimizing the communication cost requires building improved
KE gadgets.

The complete garbling procedure of the AIK paradigm can be roughly viewed as follows: G
assigns the output wires with garbled key pair (1, 0).8 G assigns the corresponding garbled key pair
to each gate backward in a gate-by-gate manner. For the output wire of each gate (including an
input gate), G applies a KE gadget to shrink the length of the garbled key pair to a value smaller
than (or equal to) ns. Finally, G obtains garbled key pairs for the input wires of input gates, each
of a maximum length of ns, where ns is a small constant. Then E can evaluate the circuit by
obtaining the garbled labels of the inputs and the truth tables generated by the KE gadgets.

A general paradigm to construct KE. Both [AIK11] and [BLLL23] utilize an encryption scheme with
linear homomorphism to implement the KE gadget. Consider an integer ring R and an encryption
scheme with the procedures enc and dec, where enc takes a key k ∈ R and a vector of messages
m ∈ Rn (n > 2) as its input and outputs a ciphertext denoted by enc(k,m). The encryption
scheme supports linear evaluation over keys and plaintexts. Namely, given a constant element
β ∈ R, a ciphertext enc(k1,m1) that encrypts m1 under the key k1 and a ciphertext enc(k2,m2)

7We note that unlike in Yao’s GC where, kw
0 and kw

1 respectively represent the bits 0 and 1, in the AIK paradigm,
these keys have nothing related to encoding 0 and 1.

8Thus, the output label encoding wire w is just w.
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that encrypts m2 under the key k2, one can compute a ciphertext enc(k1β + k2,m1β + m2) by
computing (β × enc(k1,m1)) + enc(k2,m2) where β is embedded inside the ciphertext space
and ×,+ are operations defined over the ciphertext space. Recall that our goal is to let E with
Lw,A ≜ aw + b obtain Lw,B ≜ cw + d where (a, b) and (c,d) are garbled key pairs assigned to
the input and output wires of the KE gadget. Assume that E obtains the garbled label Lw,A =
aw + b = (w + r, s1(w + r) + s2) during the evaluation, where a ≜ (1, s1) and b ≜ (r, s1r + s2),
and r, s1, s2 are sampled by G (the precise way of sampling r, s1, s2 is instantiated per GC and it
will be addressed soon). In addition, G sends E the following ciphertexts as the garbled tables:

enc (s1, c) enc (s2,−c · r + d)

E can first utilize the linear homomorphism to obtain a new ciphertext:

(w + r) × enc (s1, c) + enc (s2,−c · r + d) ≜ enc (s1 (w + r) + s2, c · w + d)

then decrypts the new ciphertext using key s1(w+ r)+ s2 and learns c ·w+d. This achieves a KE
gadget that can expand a length-2 garbled label to a length-n garbled label. While the paradigm
is simple and elegant, instantiating it is non-trivial. This is mainly because we need to ensure x+ r
and s1(x+ r) + s2 are allowed to be revealed without compromising privacy.

BLLL’s GC for the bounded integer computation. The crucial observation of the BLLL’s GC is
that the AIK paradigm for bounded computation can be instantiated by carefully selecting the
integer ring R accompanied by a customized KE gadget that is instantiated via a lightweight,
customized encryption scheme defined based on the DCR assumption. Consider two large enough
(e.g., 1024-bits) primes p = 2p′ + 1 and q = 2q′ + 1 of equal length,9 where p′, q′ are also primes,
and the corresponding RSA modulus N = pq. Given that the computation is B-bounded, select
Be = Bλω(1), Bmsg = NBeλ

ω(1) and some sufficiently large integer ζ such that N ζ > 2Bmsg + 1.

For a small constant Ψ (e.g., 10), G and E sample τ1, . . . , τΨ
$←
{
a2N

ζ | a ∈ Z∗
Nζ+1

}
as part of the

encryption parameters (see Definition 3 in Section 2.2 for the reason of using this space).
BLLL’s GC embeds the B-bounded integers into the integer modular ring ZNζ . This is allowed

because N ζ > 2B + 1. Essentially, BLLL’s GC applies the AIK paradigm over ZNζ and further
shows a KE gadget that can expand the garble label defined over ZNζ . To achieve this, BLLL’s
GC relies on an encryption scheme where the enc algorithm takes a key k ∈ Z and a vector
message m ∈ ZΨ

Nζ as input and outputs a ciphertext in (Z∗
Nζ+1)

Ψ. More specifically, consider
m = (m1, . . . ,mΨ), procedure enc is defined as10:

enc(k,m) ≜
(
τk1 (N + 1)2m1 , . . . , τkn(N + 1)2mn

)
over Z∗

Nζ+1

Note that the order of N + 1 within the group Z∗
Nζ+1 is N ζ . The decryption procedure is done by

element-wise (1) multiplication each term with τ−k
i∈[n], and (2) solving the discrete logarithm to the

base N+1 in the group Z∗
Nζ+1 , which is known to be easy [Pai99, DJ01]. Moreover, this encryption

9Formally, p, q are selected with the security parameter λ given as an argument.
10The factor 2 in the equation is guided by the DCR assumption (see Section 2.2).
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scheme supports linear evaluations over keys and plaintexts. Namely, given an integer β ∈ Z.

enc(k1β + k2, βm1 +m2)

=
(
τk1β+k2
1 (N + 1)2m1,1β+2m2,1 , . . . , τk1β+k2

n (N + 1)2m1,nβ+2m2,n

)
=
(
τk1β1 (N + 1)2m1,1β, . . . , τk1βn (N + 1)2m1,nβ

)
⊗
(
τk21 (N + 1)2m2,1 , . . . , τk2n (N + 1)2m2,n

)
= enc(k1,m1)

β ⊗ enc(k2,m2)

where ⊗ is the element-wise product over Z∗
Nζ+1 . Recall that we still need to address how to select

r, s1, s2 in the paradigm for constructing the KE gadget we presented above. Here, for each KE

gadget expanding a length-2 garbled label to a length-Ψ garbled label, G samples r
$← [−Be, Be],

s1
$← {0, . . . , N} and s2

$← [−Bmsg, Bmsg]. Crucially, for any w ∈ [−B,B], (1) w + r statistically
hides w; and (2) s1(x+ r) + s2 statistically hides s1(x+ r). Hence, x+ r and s1(x+ r) + s2 can be
revealed to E.

A small subtlety arises here as the garbled labels are defined over ZNζ . However, the key (and the
homomorphism operation) is defined over Z. Interestingly, this is not an issue because N ζ is large
enough and w is B-bounded. For example, since w ∈ [−B,B], we have w+ r ∈ [−B−Be, B+Be].
Now, since N ζ > 2B + 2Be + 1, by obtaining the value w + r ∈ ZNζ , E can recover w + r value in
Z. Henceforth, we will use (α)Z to denote the procedure to map a value α in ZNζ to a value in Z,
specified by BLLL’s GC.

Finally, note that the encryption scheme above is not a standard Paillier encryption [Pai99]. In
fact, it is not even a randomized encryption. However, it is sufficient because each key is used in a
single instance of enc.11

Constant-rate property. The constant-rate property of BLLL’s GC comes from that the garbled
truth tables of the KE gadget are constant-rate. Namely, element in Z∗

Nζ+1 has length logN ζ+1

and:

logN ζ+1 = O(logN + logBmsg) = O(logN + logNBλω(1))

= O(logN + logB + ω(log λ))

= O(κ+ logB)

4 Overflow Attacks via BLLL’s GC

In this section, we demonstrate why the natural 2PC protocol for bounded integer computations,
instantiated via BLLL’s GC, is not secure against a malicious adversary, corrupting either G or
E. In contrast, the 2PC semi-honest protocol instantiated via Yao Boolean GC implies security
against a malicious E.

Ill-defined computation model. Before showing concrete attacks, we note that B-bounded integer
computation regarding malicious 2PC is not well-defined. This is because the computational model

11We note that “the single instance” term views enc as a complete object. Indeed, a key k will be reused by different
τi∈[Ψ] within a single enc.
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should properly define what should happen if the computation is applied to an inadmissible in-
put (where intermediate wires overflow B). This is not required in the semi-honest setting since
the definitions can condition over an admissible input. Nevertheless, what we show in this sec-
tion eliminates the possibility of defining the result of computing on inadmissible inputs as abort
when instantiating the garbling scheme with the BLLL GC. Also, it is insufficient to output the
computation result over ZNζ .

4.1 Reducing the Malicious Security of E to the Privacy of the GC: Yao vs.
BLLL

Recall that the natural 2PC protocol instantiated via GC is as follows:

1. G garbles a circuit upon the bounded integer computation (resp. Boolean computation) using
BLLL’s (reps. Yao’s) GC to obtain the garbled (truth) tables and the garbled labels for each
input wire that can encode any possible value in [−B,B] (resp. {0, 1}).

2. G and E using VOLE (resp. OT) to let E learn the garbled labels encoding E’s chosen inputs.

3. G sends E all garbled (truth) tables and garbled labels encoding her inputs.

4. E evaluates the GC and sends the garbled output labels to G12.

We further recall why a 2PC instantiated via Yao’s GC can achieve malicious security for E. The
fundamental reason behind this argument lies in reducing the security of E to the privacy of Yao’s
GC. Recall that this argument requires the existence of a simulator that samples fake garbled truth
tables and fake garbled input labels given only the output of the computation but not the inputs.

Specifically, regardless of the attack strategy of E or how he fixes his input, he cannot learn
anything beyond a single garbled input label per wire and, thus, at most, a single output value,
where the GC evaluation always succeeds. Therefore, the view of a malicious E∗ can be simulated
trivially using the simulator of Yao’s GC. More formally, the simulator interacting with any ma-
licious E∗ can (1) extract E∗’s inputs by emulating the ideal OT calls; (2) submit the inputs to
the ideal 2PC functionality; (3) learn the output of the computation; and (4) call the simulator of
Yao’s GC to sample fake garbled truth tables and fake garbled labels of inputs, and send these to
E∗.

We next focus on BLLL’s GC. Here the privacy argument relies on the existence of a simulator
that simulates the fake garbled tables (generated within the KE gadgets), and the fake garbled
labels, but conditioned on the garbled labels encoding admissible inputs! Note that it still holds
that a malicious E∗ receives fake garbled tables and input labels while his input is being extracted
via emulating the ideal VOLE calls. However, it is no longer true that the simulator can call the
simulator of BLLL’s GC to sample the fake objects because E∗ can use a different input, such that
the computation is no longer B-bounded. We remark that it is useless to restrict E’s input to
be well-bounded by B because some of the intermediate values of the joint computation can still
overflow.

Essentially, the KE gadgets of BLLL’s GC will let E learn w + r where w is the private value
held by the circuit, and it is B-bounded, and r is large enough such that w + r statistically hides

12Unlike Yao’s GC, BLLL’s GC does not hold authenticity but this can be added easily by changing the garbled
key pair on the output from (1, 0) to ((1, a), (0, b)) where a, b are sampled from ZNζ by G.
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w. I.e., r is sampled within [−Be, Be] where Be = Bλω(1). Thus, the security simulator of BLLL’s
GC can sample the distribution of w + r by choosing a uniform element in [−Be, Be]. However, if
w is no longer a value in [−B,B], the statistical distance between w + r and a uniform element in
[−Be, Be] may be non-negligible.

4.2 Overflow Attacks by Malicious E: a Toy Example

We present a concrete toy example attack that explains how a malicious E∗ could compromise
the privacy of the honest G by carefully selecting his inputs. Our attack indicates the challenges
in boosting security for E beyond semi-honest. In the rest of this paper, we will only focus on a
malicious G.

Consider 2PC over B-bounded integer computations where B = 2. That is, the parties use
inputs within [−2, 2] and compute the circuits over Z where all the intermediate wires fall within
[−2, 2] as well. Recall that in BLLL’s GC, the parties need to set up some public parameters,
including Be = Bλω(1). Let λ = 40 and Be = 280. Now, consider a circuit C that includes an
intermediate wire w holding the value w = (xy)80 where x is G’s input, and y is E’s input. Assume
that w is used as an input of a KE gadget. Namely, E learns w+ r (over large enough ZNζ ) where
r is sampled from [−280, 280]. Let the honest E hold the input y = 0. This implies w = 0 no matter
what G inputs for x. Indeed, any x ∈ [−2, 2] with y = 0 forms an admissible input. In particular,
w + r will always be just r as a uniform distribution over [−280, 280] so E should not obtain any
information on x by observing (xy)80 + r.

However, a malicious E∗ can simply use ỹ = 1 as his input. Namely, w = (xỹ)80 = x80.
Obviously, if x ∈ {0,±1}, w + r will be within [−Be, Be] with overwhelming probability over r.
However, if x ∈ {±2}, w + r will be within [−Be, Be] with probability roughly 1

2 over r. Say
differently, if E∗ observes that w + r does not belong to [−Be, Be], he learns that x ∈ {±2}. Thus,
E∗ gains information about x simply by setting his input to 1 and monitoring (xỹ)80 + r. We
remark that 1 ∈ [−2, 2], so this input is legal. We denote this attack by an overflow attack because
E∗ compromises G’s privacy by causing an overflow by maliciously choosing his B-bounded inputs.

One might think that the above toy example is contrived. Specifically, when B = 2, by setting
ỹ = 1, E learns whether (x, ỹ) is admissible. Namely, if x ∈ {0,±1}, (x, ỹ) is an admissible
input; otherwise, if x ∈ {±2}, it is not. Therefore, this leakage may already be covered by the
intended computation. We emphasize that the leakage of an overflow attack is beyond the intended
computation. In particular, consider the same attack with x1, x2, y1, y2 where there are wires
w1 = (x1y1)

80 and w2 = (x2y2)
80. By changing the honest input (y1, y2) = (0, 0) to (ỹ1, ỹ2) =

(1, 1), E can use overflow to distinguish the following three cases regarding G’s inputs (x1, x2): (a)
({0,±1}, {±2}), (b) ({±2}, {0,±1}), or (c) ({±2}, {±2}). This leakage is beyond learning whether
((x1, x2), (1, 1)) is an inadmissible input, which does not help to distinguish the above three cases.
We conclude with the following remark:

Remark 1 (Generality). The above example can be generalized to any bound B. Consider Be = B2λ

and a circuit C where there exists an intermediate wire w = (xy)2λ such that x is G’s input, y is
E’s input and y = 0 in the honest case. By injecting ỹ = 1, a malicious E∗ can gain information
regarding the range of x based on whether w+ r overflows Be, which should not happen when y = 0
because w + r should be uniform and always bounded by Be. Note that this attack is not restricted
to a power of xy and is feasible for other computations.

Notably, the overflow attack breaks privacy but may also harm correctness, as it may prevent
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E∗ from obtaining the correct next garbled labels. Nevertheless, in some cases, the overflow does
not prevent E∗ from continuing to evaluate the KE gadgets. To further see this point, recall that
the garbled tables of a KE gadget (for a single entry) are of the form:

τ s1(N + 1)2c1 τ s2(N + 1)−2c1r+2d1 over Z∗
Nζ+1

where the garbled label of the input obtained by E will be:

w + r s1(w + r) + s2 over ZNζ

In the honest execution, E can recover w + r and s1(w + r) + s2 from the ZNζ domain and use
homomorphism to obtain c1w+ d1 over ZNζ , as the garbled output labels of the KE gadget. Now,
when an overflow happens, recovering w + r and s1(w + r) + s2 can be more challenging as they
may wrap around the domain of ZNζ . Nevertheless, it does not mean that E∗ fails to recover these
values since the wrapping may be small and E∗ can just brute force it.

An interesting case happens when w indeed overflows over integers, however, due to the com-
putation being taken over the ring ZNζ , it wraps around the space and ends up as [−B,B] over
ZNζ . In this case, a malicious E∗ cannot detect whether an overflow occurred regardless of the
choice of randomness r, s1, s2. We denote this type of overflow an undetectable overflow. It is easy
to see that in this case, the security of a malicious E∗ can be reduced to the privacy of BLLL’s GC
since the simulator can use the simulator of BLLL’s GC to generate faked garbled tables and faked
garbled labels of inputs.

Given the above discussion, a malicious E may learn O(|C|) leaked bits regarding G’s inputs
since he can observe whether each wire overflows.

A Conjecture Ideal World Capturing Malicious E. Inspired by covert security [AL07], we
conjecture that the ideal world that captures the 2PC näıvely instantiated via BLLL’s GC for a
malicious E can only be defined as in Figure 3. We note that the simulator is trivial here as it can
(1) extract E∗’s inputs ỹ via emulating VOLE; (2) send ỹ to the ideal functionality; (3) if the ideal
functionality returns the output of the computation, call the simulator of BLLL’s GC to sample
fake garbled tables and fake garbled input labels and send them to E∗; else, if the ideal functionality
returns the entire input x, play the role of an honest G with E∗.

4.3 Overflow Attacks by Malicious G: the Lower Bound

We already presented how a malicious E can utilize overflow attacks to compromise the privacy of
the honest G’s inputs. Indeed, a malicious G can also launch a similar attack by using some legal
B-bounded inputs, even while providing a correct BLLL’s GC. However, the consequence of this
attack changes.

Consider a malicious G∗ that provides a correct garbled BLLL’s GC but uses some bad inputs.
In this case, G∗ may observe whether the honest E aborts the execution, which implies whether an
overflow occurred, even without identifying the precise wire that overflowed. Note that aborting
the execution may be inevitable because E may not be able to evaluate the KE gadget when the
overflow is too large. This attack rules out achieving full security against a malicious G since this
abort event is correlated with E’s input. More precisely, the best security notion we can hope to
achieve in the presence of a malicious G is security with leakage. In this work, we observe that this
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F2PC

F2PC is augmented with public parameters: B,N, ζ and a circuit C; and interacts with two parties G, E and an

adversary S (only corrupts E) in the following ways:

1. G’s input: Receive x ∈ [−B,B]∗ (embedded in ZNζ ) from G.

2. E’s input: Receive y ∈ [−B,B]∗ (embedded in ZNζ ) from E. If E is corrupted, receive y from S.

3. Evaluate: Evaluates gate-by-gate to obtain res := C(x,y) over ZNζ .

4. Output:

• If E is honest: output res to both parties.

• If E is corrupted: If there exists a value on some wire w ∈ ZNζ where w /∈ [−B,B] (this only happens

when E is corrupted), send x to S; otherwise, send res to S. If S sends continue, send res to G.

Figure 3: A conjecture ideal achieved by 2PC via BLLL’s GC for malicious E

leakage can be as small as only 1-bit, capturing the malicious G attacks. That is, a malicious G
cannot change the intended computation circuit but rather learn whether E aborted.

Leakage class of predicates in the presence of a correct GC. Recall that 1-bit leakage is captured by
allowing the ideal adversary to submit a leakage predicate. We first analyze what class of leakage
predicates can be submitted if we assume that the malicious G∗ constructs a correct BLLL’s GC,
which naturally serves as a lower bound on the class of leakage predicates that a malicious 2PC
protocol via BLLL’s GC can tolerate as the attacks are only selective due to bad inputs.

Note that the only parameters G∗ can specify for each KE gadget are r, s1, s2. Now, since the
BLLL’s GC is constructed correctly, E must obtain the garbled labels (L0, L1) = (w + r, s1(w +
r) + s2) for the input wire of the KE gadget, where w is a value defined by the circuit C. If either
L0 or L1 overflows, E aborts. We notice that when r, s1, s2 are selected within the correct bounds
(see Section 3), even if the computation can wrap around the domain ZNζ , a well-bounded L0

implies a well-bounded L1. Here, the well-bounded notion includes the scenario of undetectable
overflows. I.e., w + r ∈ [−B − Be + N ζT,B + Be + N ζT ] for some integer T . Moreover, when E
decodes these two values in Z as (L0)Z and (L1)Z, it implies that E can use (L1)Z as the key to
correctly decrypt Ψ ciphertexts:{

(τ s1i (N + 1)2ci)(L0)Z · (τ s2i (N + 1)−2cir+2di)
}
i∈[Ψ]

where (c,d) are the garbled key pair of the output wire of this KE gadget, and τ1, . . . , τΨ are public

parameters sampled from
{
a2N

ζ |a ∈ Z∗
Nζ+1

}
(which will be reused across different KE gadgets).

Thus, E aborts if and only if L0 overflows. Hence, the predicate that the ideal malicious G can
submit to the ideal functionality is a disjunction of the following predicate clauses:

• For each KE gadget13 over wire w = w(x,y) defined by the circuit C, a malicious G can select
r ∈ [−Be, Be] to add a clause checking whether:

L0(x,y) ≜ w(x,y) + r
?
∈ [−B −Be, B +Be] over ZNζ .

13Due to the unlimited fan-out, each wire can have many KE gadgets assigned to it.
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Note that the above leakage predicate is a disjunction of small predicate clauses. In particular, if
there are two wires being overflowed, while there are 2 clauses being set to 1, the adversary can
only learn that there exists at least one 1-clause.

Enlarging the class of leakage predicates by relaxing correctness. Ensuring correct garbling with
respect to the above class of leakage predicates is challenging. In this work, we circumvent this
difficulty by allowing a larger class of predicates, where the leakage a malicious G can obtain remains
a single bit.

Specifically, we present in Section 5 a non-trivial 2PC protocol via BLLL’s GC that is secure
against a malicious G with 1-bit leakage, preserving constant-rate with low cost. This comes at
the price of tolerating a slightly larger class of 1-bit leakage predicates. The crucial observation lies
in allowing G to inject some small errors inside GC, which will not affect the correct evaluation if
E does not abort. In other words, we will only force a malicious G to provide an almost correct
BLLL’s GC rather than a fully correct one. We observe that if we can force G to provide garbled
tables (of a KE gadget) that encrypt the correct intended plaintexts, it is already sufficient to
ensure that E will obtain a correct garbled label for the KE output wire. In slightly more detail,
recall that the garbled tables of a KE gadget (for a single entry) are of the form:

τ s1(N + 1)2c1 τ s2(N + 1)−2c1r+2d1 over Z∗
Nζ+1

where (c1, d1) is one entry of the garbled output key pair and r, s1, s2 are selected by G. Assume
that E holds the garbled input label (L0, L1) = (w+ r, s1(w+ r) + s2) over ZNζ . We notice that if
we can ensure that (1) L0 equals to w + r −N ζT for some integer T (i.e., a correct input garbled
label); and (2) the garbled tables encrypt the values 2c1 and −2c1r + 2d1, then we have:

(L0)Z = w + r −N ζT −N ζt where t ∈ {0, 1}
(N + 1)2c1(L0)Z · (N + 1)−2c1r+d1 = (N + 1)2c1w+d

since ord(N + 1) = N ζ in Z∗
Nζ+1 . This implies that E must obtain c1w + d as the garbled output

label of the KE gadget given that E can decrypt the ciphertext, which already provides a correct
KE gadget. Namely, G cannot force E to output an ill-formed garbled label (e.g., w + 1). As a
result, we do not need to force G to provide bounded r, s1, s2 or even bind s1, s2 within τ s1 , τ s2

in the garbled tables. We remark that additional details to explain why this is true, e.g., how to
ensure E obtains a correct L0 and how we utilize this fact, will be covered and discussed explicitly
in Section 5. Informally, since the garbled labels are defined over ZNζ and the order of N + 1 is
also N ζ modulus Z∗

Nζ+1 , we can operate over the space ZNζ to “authenticate” an almost correct
BLLL’s GC.

We conclude this discussion by emphasizing that an almost correct BLLL’s GC will allow a
malicious G to specify a leakage predicate of a slightly larger class than the one induced by a
fully correct BLLL’s GC. This is because a malicious G can further select unbounded r, s1, s2 and
use ill-formed multiplication terms τ si∈[2] in the garbled tables to trigger E’s abort. Note that this
implies that the leakage predicate will include more clauses but will still be defined as a disjunction.
Namely, our protocol complements the lower bound of 1-bit leakage but leaves a gap concerning the
minimal leakage predicate class. Given that the GMW compiler, instantiated with succinct proofs,
can complement this tighter leakage class of predicate (again, with an undesirable non-black-box
computation cost), we leave it as a valuable open problem to extend our protocol to support the
tighter leakage predicate class or show that this expansion on the leakage predicate class is harmless.
We will further discuss the challenges in Section 5.
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5 Secure Two-Party Computation over Bounded Integer Compu-
tations for Malicious G with 1-Bit Leakage

We formally describe how to design secure two-party computation for bounded integer computation
based on BLLL GC and several non-trivial correctness mechanisms to achieve malicious security
for G with 1-bit leakage. Informally, our protocol forces G to provide an almost correct BLLL’s
GC (see Section 4.3).

5.1 IT-MACs over ZNζ

Our protocol requires G to commit the randomness she used to select the garbled key pairs for each
wire. As the garbled key pairs of two different wires can be correlated (e.g., the garbled key pairs of
an input and an output wires of a multiplication gate), we use ZK proofs to ensure the correctness
of the GC. To run these proofs, G and E should be able to perform some basic operations over the
commitments, instantiated by VOLE correlation.

IT-MAC commitments over ZNζ . VOLE correlations (see Figure 1) can be viewed as random
Information Theoretic Message Authentication Codes (IT-MACs) [BDOZ11, NNOB12]. An IT-
MAC of x ∈ ZNζ is a correlated distributed tuple where G holds a value x and a MAC of x as

mac(x)
$← ZNζ , and E holds a global key14 ∆

$← ZNζ and a local key of x as key(x) = x∆+mac(x).
We denote the IT-MAC of x as [x]∆ = ⟨mac(x), x; key(x)⟩ or [x]. Each VOLE correlation over ZNζ

is an IT-MAC [r] where r is a uniform sample. A random IT-MAC [r] can be “consumed” and
updated into an IT-MAC [x] using a standard technique [Bea95]. Namely, G can send x− r to E,
and then both parties can adjust [r] to [x]. IT-MACs (in particular, over ZNζ ) hold the following
notable properties:

• Perfect hiding: For [x], key(x) and ∆ include no information among x since key(x) is
one-time padded by a uniform mac(x).

• Statistical binding: For [x], G can open it by sending x,mac(x) where E can check key(x)
?
=

x∆+mac(x). A malicious G can only open x to a different value x′ with probability up to 1
p

as proven in Lemma 3. This is sufficient for our security argument since p is a large enough
prime (in λ).

• Linear homomorphism: IT-MACs can be linearly evaluated locally as:

– Holding [x] and [y], two parties can locally generate [x + y]∆ as ⟨mac(x) + mac(y), x +
y; key(x) + key(y)⟩.

– Holding c ∈ ZNζ , two parties can locally generate [c]∆ as ⟨0, c; c∆⟩.
– Holding c ∈ ZNζ and [x], two parties can locally generate [cx] as ⟨c·mac(x), cx; c·key(x)⟩.

Lemma 3 (Statistical Binding for IT-MACs over ZNζ ). Let N = pq be an RSA modulus where
p < q and ζ ∈ Z+. An IT-MAC [x] over ZNζ can only be opened to a different value x′ ̸= x with
probability up to 1

p .

14I.e., ∆ is identical and reused among all IT-MACs.
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Proof. To successfully open [x] to x′ ̸= x, A has to send x′,m′
x ∈ ZNζ such that

x′∆+m′
x ≡ kx ≡ x∆+mx (mod N ζ)

⇔ (x′ − x)∆ ≡ mx −m′
x (mod N ζ)

Recall that ∆
$← ZNζ . We only need to analyze that, for a given x′ − x and mx −m′

x, how many
∆s can satisfy the above equation. For any a = x′−x ̸= 0, a ∈ ZNζ , consider the following function
fa(χ) = aχ where a, χ ∈ ZNζ and multiplication over ZNζ . Note that this function is a group
homomorphism from ZNζ to ZNζ (the additive group). To succeed the game, A has to choose
mx − m′

x from Im(fa) and, more importantly, ∆ has to satisfy a∆ = mx − m′
x. Therefore, let

Sa,mx−m′
x
≜ {y|y ∈ ZNζ ∧ ay = mx −m′

x}, the probability A can succeed will be
|Sa,mx−m′

x
|

|Z
Nζ | . From

the first isomorphism theorem, |Sa,mx−m′
x
| · |Im(fa)| = |ZNζ |, it implies the above probability is

1
|Im(fa)| . Since Im(fa) is a subgroup of ZNζ , from the Lagrange’s theorem, |Im(fa)| is dividable by

|ZNζ | = pζqζ . Also, note that Im(fa) > 1 since a ̸= 0, so the above probability will be at most
1
p .

Zero-Knowledge proofs for multiplication triples of IT-MACs over ZNζ . While G and E can evaluate
IT-MACs linearly without communication, in our protocol, we also need G and E to multiply two
IT-MACs. This can be done by the standard commit-and-prove paradigm. Formally, this means
that G and E holding [x], [y], [z] over ZNζ where G needs to convince E in ZK that z = xy. While
there are many different techniques to do this, e.g. [BMRS21, WYKW21, DIO21], we find that
a technique called Line-point Zero-Knowledge (LPZK) over fields [DIO21] can also support rings
ZNζ . LPZK only requires 2 ring elements of communications to prove each multiplication triple.
We note that the LPZK does not directly work for some rings, e.g. Z2k (see [BBMHS22]). In
LPZK, giving [r], [x], [y], [z] where r is a new pseudo-random IT-MAC (e.g., from FVOLEc), the key
observation comes from the following equation:

Known by E︷ ︸︸ ︷
key(r) + key(x)key(y)− key(z)∆

=mac(r) + r∆+ (mac(x) + x∆)(mac(y) + y∆)− (mac(z) + z∆)∆

=(xy − z)∆2 + (ymac(x) + xmac(y)−mac(z) + r)︸ ︷︷ ︸
Known by G

∆+mac(x)mac(y) +mac(r)︸ ︷︷ ︸
Known by G

Namely, if xy−z = 0, G can send C1 ≜ ymac(x)+xmac(y)−mac(z)+ r and C0 ≜ mac(x)mac(y)+
mac(r) and E will check

key(r) + key(x)key(y)− key(z)∆
?
= C1∆+ C0 (1)

Since C1, C0 are one-time padded by r,mac(r), ZK property trivially holds. Note that a malicious
G has full controls over x, y, z, r,mac(x),mac(y),mac(z),mac(r) (see Figure 1). For soundness
property, if xy − z ̸= 0, to pass the check in Equation (1), the adversary A needs to send C ′

1 and
C ′
0 such that

(xy − z)︸ ︷︷ ︸
Chosen by A

∆2 + (ymac(x) + xmac(y)−mac(z) + r + C ′
1)︸ ︷︷ ︸

Chosen by A

∆

+mac(x)mac(y) +mac(r) + C ′
0︸ ︷︷ ︸

Chosen by A

= 0
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That is, ∆ is the root of a quadratic equation specified by A. Recall that ∆ is uniformly chosen. If
the quadratic equation is defined over fields, there will be at most 2 roots so statistical soundness
holds for large enough fields. In Lemma 4, we prove that there will be at most 2pζ−1qζ roots
for a quadratic equation defined over ring ZNζ . This implies LPZK technique can be applied for
IT-MACs over ZNζ with soundness error 2

p where p is sufficiently large (e.g., 1024-bits).

Lemma 4 (Number of Roots for Quadratic Equations over ZNζ ). Let N = pq be an RSA modulus
where p < q and ζ ∈ Z+. For any a, b, c ∈ Z such that N ζ ∤ a, the following equation has at most
2pζ−1qζ solutions.

aχ2 + bχ+ c ≡ 0 (mod N ζ) (2)

Proof. Based on the Chinese Remainder Theorem, we need to solve the following two equations.
In particular, the number solutions (in ZNζ ) for the original Equation (2) will be the product of
the numbers of solutions in Equation (3) (in Zpζ ) and Equation (4) (in Zqζ ).

aχ2 + bχ+ c ≡ 0 (mod pζ) (3)

aχ2 + bχ+ c ≡ 0 (mod qζ) (4)

Note that since N ζ ∤ a, pζ | a and qζ | a cannot be satisfied at the same time. I.e., at least one
of Equation (3) and Equation (4) must still be a quadratic equation. Now assume pζ ∤ a and focus
on Equation (3).

We now prove the following sub-lemma: for each solution xi ∈ Zpζ of the Equation (3), there
are at most two different elements in Zp denoted by r1, r2 that are congruent to xi modulus p (when
embedding xi in Z naturally). I.e., either xi ≡ r1 (mod p) or xi ≡ r2 (mod p). We prove it by
contradiction. Assume there are three different elements denoted by r1, r2, r3 and x1, x2, x3 are the
solutions of Equation (3) and respectively congruent to r1, r2, r3 modulus p. We have:

ax21 + bx1 + c ≡ 0 (mod pζ) (5)

ax22 + bx2 + c ≡ 0 (mod pζ) (6)

Subtracting Equation (6) from Equation (5), we have:

a(x21 − x22) + b(x1 − x2) ≡ 0 (mod pζ)

⇔ (x1 − x2) (a(x1 + x2) + b) ≡ 0 (mod pζ)

Note that because x1 − x2 ̸≡ 0 (mod p), x1 − x2 has inverse in Zpζ , inferring:

a(x1 + x2) + b ≡ 0 (mod pζ) (7)

Similarly, we have:

a(x1 + x3) + b ≡ 0 (mod pζ) (8)

Subtracting Equation (8) from Equation (7), we have:

a(x2 − x3) ≡ 0 (mod pζ) (9)

Again, x2 − x3 has inverse in Zpζ , this implies a ≡ 0 (mod pζ), which is contradicted to our

assumption that pζ ∤ a. Hence, the sub-lemma is proven.
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The sub-lemma implies that, in the case where pζ ∤ a, there are at most 2pζ−1 solutions of Equa-
tion (3) in Zpζ because all the solutions can only be congruent to two different values (i.e., r1, r2)

modulus p. That is, there are at most pζ−1 elements in Zpζ being congruent to r1 (resp. r2) in

modulus p. Similarly, in the case where qζ ∤ a, there are at most 2qζ−1 solutions of Equation (4) in
Zqζ . To obtain the upper bound of the number of solutions of Equation (2), consider the following
four scenarios:

• pζ ∤ a ∧ qζ ∤ a: There are at most 4pζ−1qζ−1 solutions.

• pζ ∤ a ∧ qζ | a: There are at most 2pζ−1qζ solutions since the number of solutions of Equa-
tion (4) is trivially upper bounded by the size of Zqλ .

• pζ | a ∧ qζ ∤ a: There are at most 2pζqζ−1 solutions since the number of solutions of Equa-
tion (3) is trivially upper bounded by the size of Zpλ .

• pζ | a ∧ qζ | a: This is impossible since N ζ = pζqζ ∤ a.

Assuming p < q, the over upper bound is 2pζ−1qζ .

In summary, in the FN,ζ
VOLEc-hybrid, G and E can:

• Generate IT-MAC [r] from FN,ζ
VOLEc where r is uniform and unknown to E.

• Generate IT-MAC [x] where x is G-chosen by communicating 1 element.

• Open IT-MAC [x] to x by communicating 2 elements.

• Perform linear operations over IT-MACs for free.

• Obtain IT-MAC [xy] given [x] and [y] by communicating 3 elements.

The communication of the above operations is uni-directional once the VOLE correlations are
generated. The computation complexity for both parties is O(1) additions/multiplications in ZNζ .
We conclude by remarking that our arguments hold only when G has no knowledge of ∆, which is
the case in our protocol.

5.2 Protocol to Bind IT-MACs with Key Extension Gadgets

The operations presented in Section 5.1 allow G and E to perform additions and multiplications
on the IT-MACs. However, to garble a circuit as in BLLL’s GC, G must also use the randomness
committed within the IT-MACs to construct the garbled tables of KE gadgets. Clearly, a malicious
G can provide badly generated garbled tables, so we need to design a mechanism to force G to use
the committed randomness. Recall that for KE gadgets (see Section 3), G sends ciphertexts Cs

defined over Z∗
Nζ+1 . Let the public parameter τ be τ

$← {a2Nζ |a ∈ Z∗
Nζ+1} then, each ciphertext

C is defined as15 τ s · (N + 1)m over ZNζ+1 , where s and m are determined (over ZNζ ) by the
randomness of G. Therefore, s and m can also be committed within the IT-MACs as [s] and [m].
We now present a protocol to ensure that G indeed uses [m] to construct the garbled tables for
the KE gadgets. We note that a malicious G can use a different [s] or even an element in ZNζ+1

15We recall that there are Ψ different τ values.
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that is not generated by τ . In Section 4.3, we have already informally justified why the evaluator
does not need to monitor this attack, and why it affects neither privacy (up to 1 bit of leakage) nor
correctness. Our observation is crucial for feasibility and reducing communication overhead, which
leads to a non-trivial Σ-protocol formalization discussed below.

Remark 2 (A gap between soundness and correctness). Our special-purpose object (Definition 7)
can be viewed as a customized interactive proof rather than a classical one. More specifically, unlike
a classical proof, the language recognized by the correctness property in our customized interactive
proof is a subset of the language recognized by the soundness property. That is, given [s], [Γ], C,
correctness holds for C = τ s(N + 1)Γ, while soundness only prevents a malicious G∗ from using
C = CU (N + 1)Γ

′
where CU ∈ U and Γ′ ̸= Γ. In particular, for a C = CU (N + 1)Γ where CU ∈ U ,

our definition does not explicitly say whether E will output C. Say differently; we only need to
prevent a malicious G∗ from using a ciphertext (i.e., the KE gadget) that encrypts a wrong message
but not using a wrong key. This suffices since (1) a corrupting key will only cause up to 1-bit
leakage, and (2) a correct message ensures a correct execution.

Before continuing with the definition and protocol, we recall the decomposition property of an
element in Z∗

Nζ+1 .

LU decomposition over Z∗
Nζ+1. Recall that Z∗

Nζ+1 , is a direct product L× U , where L is the cyclic

of order N ζ generated by (N + 1) and U is isomorphic to Z∗
N of order (p − 1)(q − 1). That is,

given an element C in Z∗
Nζ+1 , it can be uniquely decomposed into CL ∈ L and CU ∈ U such

that CL · CU = C. Moreover, CL = (N + 1)kC for some unique kC ∈ ZNζ . We define auxiliary
functions LU, returning CL, CU given an element C ∈ Z∗

Nζ+1 , and LUk that outputs the discrete
logarithm of CL to the base N + 116. Clearly, for any C ∈ Z∗

Nζ+1 , let (CL, CU ) := LU(C), we have
LUk(CL) = LUk(C) and LUk(CU ) = 0.

Special-purpose Σ-protocol in the VOLEc-hybrid. To ensure correctness on the garbler’s
side, we abstract out the following guarantees. Assume that G and E hold an IT-MAC [Γ] and
an element C ∈ Z∗

Nζ+1 generated by the KE gadget forwarded from G. Then G can convince E in
ZK that LUk(C) = Γ. The syntax and security properties of this cryptographic object are defined
in Definition 7.

Definition 7 (Special-purpose Σ-protocol in the VOLEc-hybrid). G and E have access to all public

parameters pp including λ,N = pq, ζ, τ
$←
{
a2N

ζ |a ∈ Z∗
Nζ+1

}
and an ideal access to FN,ζ

VOLEc (Figure

1) where FN,ζ
VOLEc outputs a global key ∆ ∈ ZNζ to E. G and E hold an IT-MAC [Γ]∆ ∈ ZNζ (which

is generated from the basic IT-MAC operations presented in Section 5.1, and in particular, only
requires communication from G to E), and G has an additional input s ∈ ZNζ . Interactive PPT

algorithms ⟨Gpp,FN,ζ
VOLEc([Γ], s), Epp,FN,ζ

VOLEc([Γ])⟩ form a special-purpose Σ-protocol (for KE gadgets) in
the VOLEc-hybrid (or in short, SP Σ-protocol), if after the execution, G outputs nothing and E
outputs either abort or C ∈ Z∗

Nζ+1, and the following properties hold.

1. Correctness. A special-purpose Σ-protocol (for KE gadgets) in the VOLEc-hybrid is correct
if

Pr
[
⟨Gpp,FN,ζ

VOLEc([Γ], s), Epp,FN,ζ
VOLEc([Γ])⟩ = τ s(N + 1)Γ

]
= 1

16Functions LU and LUk are purely used for explanation and analysis. Note that the DCR assumption implies
there is no computationally efficient way to calculate them.
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2. Statistical soundness. A special-purpose Σ-protocol (for KE gadgets) in the VOLEc-hybrid
is sound if, for any malicious algorithm G∗

Pr
[
LUk(C) ̸= Γ

∣∣∣ ⟨G∗, Epp,FN,ζ
VOLEc([Γ])⟩ = C ∈ Z∗

Nζ+1

]
< negl(λ)

where negl(·) is some negligible function.

3. Statistical honest verifier zero-knowledge (SHVZK). A special-purpose Σ-protocol (for
KE gadgets) in the VOLEc-hybrid is SHVZK if there exists a PPT algorithm SE that takes
public parameters pp, E’s inputs, and τ s(N +1)Γ over Z∗

Nζ+1 as inputs that can output a view
satisfying:

SE(pp, key(Γ),∆, C)

≈s ViewE

∣∣∣∣∣ C := ⟨Gpp,FN,ζ
VOLEc([Γ], s), Epp,FN,ζ

VOLEc([Γ])⟩,
ViewE = ViewE⟨Gpp,FN,ζ

VOLEc([Γ], s), Epp,FN,ζ
VOLEc([Γ])⟩

Remark 3 (Coping with multiple correlated instances). In Definition 7, we say G and E hold an
IT-MAC [Γ]. Formally, this means that G and E agree on some IT-MAC tuple generated by the
operations defined in Section 5.1, which only requires uni-directional communication from G to E
in the VOLEc-hybrid. Note that G and E can hold many other IT-MACs besides [Γ] while they
should not affect the correctness/security properties. E.g., even though a malicious G∗ can have
many instances of IT-MACs, this should not break the soundness. Informally, this is because the
VOLE correlations G∗ received from FN,ζ

VOLEc are independent of the global key ∆ held by E, as each

VOLE correlation is one-time padded by a uniform sample (i.e., the local key chosen by FN,ζ
VOLEc).

Our SP Σ-protocol shares similarities with the classic discrete logarithm proof [Sch90], where
the differences are (1) there are two bases τ and N + 1, and (2) we need to bind G’s discrete
logarithm on N + 1 to [Γ]. We adjust Schnorr’s protocol as follows: (1) G needs to provide two
answers for the random challenge from E, one for the base τ and one for the base N + 1, and (2)
G also needs to open the IT-MAC to authenticate its answer with respect to the base N + 1. We
formally define the protocol in Figure 4 and the security claim in Theorem 2. We remark that since
G needs to reply with νs+ σ over Z and s must be kept private, σ has to be sampled from a large
enough domain such that νs + σ statistically hides νs. Note that νs ∈ {0, . . . , (N ζ − 1)2} over Z,
and we can select σ from {0, . . . , Bσ} where Bσ = N2ζλω(1). Essentially, this does not affect the
rate.

Theorem 2. Protocol in Figure 4 is a SP Σ-protocol in the VOLEc-hybrid per Definition 7 with the
following efficiency features: O(1) communication in Z∗

Nζ+1, O(1) computation of exponentiation
in Z∗

Nζ+1, and 3 rounds.

Proof. We only focus on proving statistical soundness and statistical honest verifier zero-knowledge,
as correctness trivially holds.

Statistical soundness: Consider a G∗ that causes E to output an invalid C ∈ Z∗
Nζ+1 . G

∗ must
send C and some D ∈ Z∗

Nζ+1 in Step 3. Now consider kC = LUk(C) and kD = LUk(D). Crucially,
note that G∗’s views are independent of ∆ because each VOLE correlation obtained by G∗ from the
ideal VOLEc call is one-time padded by a uniform sample (see Figure 1). By the binding property
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Special-purpose Σ-protocol in the VOLEc-hybrid

G and E have access to all public parameters including N = pq, ζ, τ
$←

{
a2Nζ

|a ∈ Z∗
Nζ+1

}
and hybrid access to

FN,ζ
VOLEc. Let G and E hold IT-MACs [Γ] over ZNζ . G holds s ∈ ZNζ . G and E proceed as follows:

Commit Phase

1. G samples σ
$← {0, . . . , Bσ} where Bσ is large enough such that σ statistically hides y ∈

{
0, . . . , (Nζ − 1)2

}
.

I.e., Bσ = N2ζλω(1).

2. G and E obtain a fresh random IT-MAC [Λ] over ZNζ generated by FN,ζ
VOLEc.

3. G sends C = τs(N + 1)Γ and D = τσ(N + 1)Λ over Z∗
Nζ+1 .

Challenge Phase

4. E samples a random challenge ν ∈ ZNζ and sends ν to G.

Response Phase

5. G and E locally calculate [η] := [νΓ + Λ] = ν[Γ] + [Λ] over ZNζ .

6. G sends ϕ = νs+ σ over Z; and opens [η] = [νΓ + Λ] over ZNζ to E. If the opening fails, E outputs abort

and halts permanently.

7. E checks Cν · D ?
= τϕ(N + 1)η mod Nζ+1. If so, E outputs C. Otherwise, E outputs abort and halts

permanently.

Figure 4: Special-purpose Σ-protocol in the VOLEc-hybrid

and soundness analysis for operations over the IT-MAC (see Section 5.1), except with probability
O(1p), [η] ≜ ν[Γ] + [Λ] implies that:

η ≡ νΓ + Λ (mod N ζ) (10)

If E does not abort, the check in Step 7 must pass, so:

η ≡ νkC + kD (mod N ζ) (11)

Subtracting Equation (11) from Equation (10), we have:

ν(kC − Γ) ≡ Λ− kD (mod N ζ) (12)

Note that if kC ̸= Γ, G∗ has to guess ν, which is uniformly chosen by E. Similar to the binding
argument of IT-MACs over ZNζ (see Lemma 3), if kC ̸= Γ, Equation (12) will be satisfied with
probability up to 1

p . In conclusion, for any malicious G∗, if E outputs C ∈ Z∗
Nζ+1 , the probability

that LUk(C) ̸= Γ is O(1p), which is negligible. Hence, the soundness holds.

Statistical honest verifier zero-knowledge: The proof follows by constructing a PPT simu-
lator S. In the honest execution, E’s view is:

{kΛ, C,D, ν, kη, ϕ, η,mη}
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The simulator S samples ϕ′ $← {0, . . . , Bσ}, ν, η′, k′Λ
$← ZNζ and computes:

D′ := τϕ
′
(N + 1)η

′
C−ν over Z∗

Nζ+1

k′η := ν · kΓ + k′Λ over ZNζ

m′
η := k′η − η′ ·∆ over ZNζ

S outputs {k′Λ, C,D′, ν, ϕ′, η′,m′
η}. We now argue why the simulated transcripts are statistically

close to the real transcripts. We define three hybrids, Hyb1-3 where the first hybrid is exactly the
real-world distribution, the last hybrid is exactly the simulated distribution by S, and show their
indistinguishability:

• Hyb1: This hybrid generates the entire transcripts according to the protocol (The random
variables in transcripts are underlined):

– Sample σ
$← {0, . . . , Bσ}.

– Sample kΛ,Λ
$← ZNζ . Let mΛ := kΛ − Λ∆ over ZNζ .

– Let C := τ s(N + 1)Γ over Z∗
Nζ+1 , D := τσ(N + 1)Λ over Z∗

Nζ+1 .

– Sample ν
$← ZNζ .

– Let kη := ν · kΓ + kΛ over ZNζ .

– Let ϕ := ν · s + σ over Z. Let η := ν · Γ + Λ over ZNζ , and mη := ν · mΓ + mΛ =

ν(kΓ − Γ∆) + kΛ − Λ∆ = kη − η∆ over ZNζ .

• Hyb2: This hybrid generates the entire transcripts as Hyb1, except to first generate η uniformly
then set Λ accordingly. Note that in Hyb1, η distributes uniformly as it is one-time padded
by uniform Λ. Therefore, the distributions of transcripts in Hyb1 and Hyb2 are identical. The
detailed procedures are as follows (The random variables in transcripts are underlined):

– Sample σ
$← {0, . . . , Bσ}.

– Sample ν
$← ZNζ .

– Sample η
$← ZNζ . Let Λ = η − ν · Γ over ZNζ .

– Sample kΛ
$← ZNζ .

– Let C := τ s(N +1)Γ over Z∗
Nζ+1 , D := τσ(N +1)Λ over Z∗

Nζ+1 . Since the order of N +1

is N ζ in Z∗
Nζ+1 , D can be calculated as D := τσ(N +1)η−ν·Γ over Z∗

Nζ+1 where η− ν · Γ
is calculated over Z.

– Let kη := ν · kΓ + kΛ over ZNζ .

– Let ϕ := ν · s+ σ over Z, and mη := kη − η∆ over ZNζ .

• Hyb3: This hybrid generates the entire transcripts as Hyb2, except to first generate ϕ uni-
formly from {0, . . . , Bσ} then set σ accordingly. Note that in Hyb2, σ statistically hides ν · s
regardless of ν and s. Hence, the distribution of ϕ in Hyb2 is statistically close to the uniform
distribution over {0, . . . , Bσ}, inferring the distribution of transcripts in Hyb2 and Hyb3 are
statistically close. The detailed procedures are as follows (The random variables in transcripts
are underlined):
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– Sample ϕ
$← {0, . . . , Bσ}.

– Sample ν
$← ZNζ .

– Sample η
$← ZNζ .

– Let σ := ϕ− ν · s over Z.

– Sample kΛ
$← ZNζ .

– Let C := τ s(N + 1)Γ over Z∗
Nζ+1 , D := τϕ−ν·s(N + 1)η−ν·Γ over Z∗

Nζ+1 , where ϕ − ν · s
and η− ν ·Γ are calculated over Z. Hence, D can be calculated as D := τϕ(N +1)ηC−ν

over Z∗
Nζ+1 .

– Let kη := ν · kΓ + kΛ over ZNζ , and mη := kη − η∆ over ZNζ .

Clearly, Hyb3 is precisely the simulator S through a straightforward renaming process. By a hybrid
argument, we have that Hyb1 (the real E’s views) and Hyb3 (the simulated E’s views) are statistically
indistinguishable.

Parallel SP Σ-protocol instances. Our 2PC protocol requires multiple parallel instances of the
SP Σ-protocol. Indeed, this can be done directly with multiple parallel instances of the protocol
defined in Figure 4 where E issues a new random challenge ν per instance.17 We observe that ν
can be reused across different parallel instances simply because each check performed by E is done
separately. See Definition 8.

Definition 8 (Parallel Special-purpose Σ-protocol in the VOLEc-hybrid). G and E have access

to all public parameters pp including λ,N = pq, ζ,Ψ, τ1, . . . , τΨ
$←

{
a2N

ζ |a ∈ Z∗
Nζ+1

}
and hybrid

access to FN,ζ
VOLEc (Figure 1) where FN,ζ

VOLEc outputs a global key ∆ ∈ ZNζ to E. G and E hold n IT-
MACs [Γ]∆ ∈ Zn

Nζ (which are generated from the basic IT-MAC operations presented in Section 5.1,
and in particular, only require communication from G to E) and agree on n indexes idx ∈ [Ψ]n, and

G has n additional inputs s ∈ Zn
Nζ . Interactive PPT algorithms ⟨Gpp,FN,ζ

VOLEc([Γ], s), Epp,FN,ζ
VOLEc([Γ])⟩

form a parallel special-purpose Σ-protocol (for KE gadgets) in the VOLEc-hybrid (or in short,
parallel SP Σ-protocol), if after the execution, G outputs nothing and E outputs either abort or
C ∈ (Z∗

Nζ+1)
n, and the following properties hold.

1. Correctness. A parallel special-purpose Σ-protocol (for KE gadgets) in VOLEc-hybrid is
correct if

Pr
[
⟨Gpp,FN,ζ

VOLEc([Γ], s), Epp,FN,ζ
VOLEc([Γ])⟩ = (τ siidx i

(N + 1)Γi)i∈[n]

]
= 1

2. Statistical soundness. A parallel special-purpose Σ-protocol (for KE gadgets) in the VOLEc-
hybrid is sound if, for any malicious algorithm G∗

Pr
[
∃i ∈ [n], LUk(Ci) ̸= Γi

∣∣∣ ⟨G∗, Epp,FN,ζ
VOLEc([Γ])⟩ = C

]
< negl(λ)

where negl(·) is some negligible function.

17A small subtlety arises here since we also need to argue that ∆ is independent of each ν in the proof, which is
trivially true.
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Parallel SP Σ-protocol in the VOLEc-hybrid

G and E have access to all public parameters including N = pq, ζ,Ψ, τ1, . . . , τΨ
$←

{
a2Nζ

|a ∈ Z∗
Nζ+1

}
and hybrid

access to FN,ζ
VOLEc. G and E agree on n indexes idx ∈ [Ψ]n. Let G and E hold n IT-MACs [Γ] over (ZNζ )n. G holds

s ∈ Zn
Nζ . G and E proceed as follows:

Commit Phase

1. G samples σ1, . . . , σn
$← {0, . . . , Bσ} where Bσ is large enough such that σ statistically hides y ∈{

0, . . . , (Nζ − 1)2
}
. I.e., Bσ = N2ζλω(1).

2. G and E obtain n fresh random IT-MACs [Λ] generated by FN,ζ
VOLEc.

3. For each i ∈ [n], G sends Ci = τsi
idxi

(N + 1)Γi and Di = τσi
idxi

(N + 1)Λi .

Challenge Phase

4. E samples a random challenge ν ∈ ZNζ and sends ν to G.

Response Phase

5. For each i ∈ [n], G and E locally calculate [ηi] := [νΓi + Λi] = ν[Γi] + [Λi].

6. For each i ∈ [n], G sends ϕi = νsi + σi over Z; and opens [ηi] = [νΓi + Λi] over ZNζ to E. If any opening

fails, E outputs abort and halts permanently.

7. For each i ∈ [n], E checks Cν
i ·Di

?
= τϕi

idxi
(N + 1)ηi mod Nζ+1. If so, E outputs C. Otherwise, E outputs

abort and halts permanently.

Figure 5: Parallel Special-purpose Σ-protocol in the VOLEc-hybrid

3. Statistical honest verifier zero-knowledge (SHVZK). A parallel special-purpose Σ-
protocol (for KE gadgets) in the VOLEc-hybrid is SHVZK if there exists a PPT algorithm
SE that takes public parameters pp, E’s inputs, and τ s(N + 1)Γ over Z∗

Nζ+1 as inputs that
can output a view satisfying:

SE(pp, idx, key(Γ),∆,C)

≈s ViewE

∣∣∣∣∣ C := ⟨Gpp,FN,ζ
VOLEc([Γ], s), Epp,FN,ζ

VOLEc([Γ])⟩,
ViewE = ViewE⟨Gpp,FN,ζ

VOLEc([Γ], s), Epp,FN,ζ
VOLEc([Γ])⟩

Theorem 3. The protocol presented in Figure 5 is a parallel SP Σ-protocol in the VOLEc-hybrid
per Definition 8.

Proof. Similar to the proof of Theorem 2. In particular, soundness error remains O(1p) because
these are n parallel instances.

Sufficiency of binding only discrete logarithm to the base N +1. Consider the event that E outputs
C ∈ Z∗

Nζ+1 and let (CL, CU ) := LU(C).18 Indeed, the soundness of this protocol only guarantees

that (N + 1)Γ = CL and does not guarantee that τ s = CU . This is what we refer to as an almost
correct BLLL’s GC in Section 4.3. Looking ahead, this is the only place where a malicious G can

18We note that this does not imply that E can factor C into CL and CU .
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inject errors in BLLL’s GC to specify a leakage predicate. Recall that this does not weaken the
1-bit leakage privacy as it guarantees that the KE gadget will operate correctly, as formally defined
in Lemma 5.

Lemma 5 (Almost Correct KE Gadgets). Given two ciphertexts CT 0,CT 1 ∈ Z∗
Nζ+1 of some KE

gadget, which is used to encode the entry (c1, d1) of the output garbled key pair where c1, d1 ∈
ZNζ . Let (CT 0,L,CT 0,U ) := LU(CT 0) and (CT 1,L,CT 1,U ) := LU(CT 1). If LUk(CT 0) = c1 and
LUk(CT 1) = −c1r + d where r ∈ ZNζ , assume that E obtains (L0 = w + r, ϵ) over ZNζ as the
garbled label of this KE gadget input, conditioned on E not aborting. Then E must obtain c1w+ d1
over ZNζ as the garbled label of this KE gadget output, independent of the concrete values within
CT 0,U ,CT 1,U , ϵ, r.

Proof. Note that L0 = w + r −N ζT for some integer T . Then, when E evaluates this KE gadget,
E will decode L0 to Z as (L0)Z = L0 − N ζt for t ∈ {0, 1}. E will also decode ϵ to Z as ϵZ. In
particular, E will use key ϵZ to decrypt ciphertext:

CT
(L0)Z
0 CT 1 = CT

(L0)Z
0,U CT 1,U (N + 1)c1(L0)Z−c1r+d = CT

(L0)Z
0,U CT 1,U (N + 1)c1w+d1

since ord(N + 1) = N ζ in Z∗
Nζ+1 . Then, during decryption, E will solve the discrete logarithm to

the base N + 1 in Z∗
Nζ+1 of ciphertext:

CT ′ = τ−ϵZCT
(L0)Z
0 CT 1 = τ−ϵZCT

(L0)Z
0,U CT 1,U (N + 1)c1w+d1

Note that LUk(τ) = LUk(CT 0,U ) = LUk(CT 1,U ) = 0 since τ,CT 0,U ,CT 1,U ∈ U . Therefore, if
E can solve the discrete logarithm to the base N + 1 of CT ′, which is LUk(CT

′), it must be
c1w + d1 ∈ ZNζ .

Challenges for achieving a fully correct KE. Our protocol complements the lower bound of 1-bit
leakage but leaves a gap from the minimal leakage predicate class. To get the minimal class, it
is sufficient to upgrade our almost correct KE gadget to a fully correct KE gadget. This requires
overcoming the following two challenges, which we pose as open problems:

• A range proof of committed r, s1, s2. One needs to design ZKP that allows G to convince
E that the parameters r, s1, s2 of each KE gadget are selected within the intended bounds,
namely, a range proof over IT-MACs [r], [s1], [s2]. The challenge is to design such a proof while
obtaining constant-rate and constant-round, inferring not using a trivial bit decomposition.

• A mechanism to bind the IT-MAC [s] to τ s in the garbled tables. Our SP Σ-protocol
fails to bind the IT-MAC [s] with τ s, which corresponds to the LU decomposition of each
garbled table entry. The challenge is that the order of τ in Z∗

Nζ+1 is not dividable by N ζ ,
and unknown to both parties. This infers that trivially adding this guarantee by opening the
answer νs+σ using IT-MAC in Figure 4, similar to the way the protocol opens νΓ+Λ, does
not work.

5.3 Extra Notations

We extend the notations from BLLL’s GC to describe our protocol. We remind the reader of some
crucial notations:
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• Each wire in the circuit is assigned with a garbled key pair. In particular, our protocol
will require G to commit to each garbled key pair using IT-MACs, which we refer to as a
committed garbled key pair.

• The parties need to define key extension (KE) gadget(s) to reduce the length of a garbled
key pair while garbling backward. For that, G has to send garbled tables to E. Recall that
each KE gadget reduces the length of a garbled key pair from Ψ to 2 and requires G to send
2Ψ elements in Z∗

Nζ+1 . We refer to each such element as a garbled table entry of a KE
gadget.

• When E evaluates the GC, he starts with the garbled labels of each input and then gate-
by-gate obtains the garbled label of each wire.

5.4 Circuits Representation

We define the circuit in the standard gate-by-gate representation. A circuit consists of wires and
fan-in 2 gates. Each wire is assigned with a unique wire ID as the metadata. We consider 4
types of gates denoted by op = add, mult, input, output where input, output gates have fan-in
1. Similarly, each gate is assigned a unique gate ID opid and is represented as a tuple consisting
of the gate type, gate ID, and the associated wire ID(s), with the input wire ID(s) listed before
the output wire ID. For example, the gate (add, addid ,widx,widy,widz) denotes an addition gate
where widz := widx + widy. When G and E want to perform 2PC over some circuit C, they will
have a list of these tuples. W.l.o.g., we assume the gates are listed in some topological order.

5.5 Our 2PC Protocol

We are now ready to present our 2PC protocol for bounded integer computations instantiated by
BLLL’s GC.

Generating the public parameters. Our protocol starts with securely generating the public param-
eters for establishing the trusted setup (e.g. [FLOP18] for securely generating RSA modulus). We
refer readers to [BLLL23] for the details on selecting these parameters. Besides the public pa-
rameters for BLLL’s GC, G and E need to generate the public parameters for the special-purpose
Σ-protocol we presented in Section 5.2. Overall, for a given security parameter λ and bound
B = B(λ), G and E jointly sample the following public parameters:

1. A sufficiently large RSA modulus N = pq.

2. A bound Be = Bλω(1); a bound Bmsg = NBeλ
ω(1).

3. A sufficiently large integer ζ such that N ζ > 2Bmsg + 1.

4. A bound Bσ = N2ζλω(1).

5. τ1, . . . , τΨ
$←
{
a2N

ζ | a ∈ Z∗
Nζ+1

}
where Ψ is a constant (e.g., 10).

These public parameters are selected before the circuit C is known. In particular, they are inde-
pendent of the circuit size |C| and can be reused across several instances of (different) B-bounded
circuits.
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Functionality FN,ζ
aVOLE

Let ZNζ denote the ring of integers modulus Nζ . Functionality interacts with G, E, and the adversary A as

follows:

Evaluate. Upon receiving (evaluate, n,u0,w0,u1,w1) from G and (evaluate, n,∆, x) from E where

u0,w0,u1,w1 ∈ Zn
Nζ and ∆, x ∈ ZNζ :

• Output v0 := u0∆+w0,v1 := u1∆+w1,y := u0x+ u1 to E.

Figure 6: The authenticated VOLE functionality

Authenticated VOLE. Similar to the role of oblivious transfer (OT) in Yao’s GC protocol, G and E
use VOLE for E to learn his garbled input labels, even in the semi-honest case. Recall that in the
VOLE functionality (over ZNζ ), G holds two length-n vectors u0,u1 and E holds an input x, where
E learns u0x+ u1. To further force G to use consistent garbled key pairs with the IT-MACs (i.e.,
G and E hold [u0], [u1]), we need a slightly modified version of VOLE. Namely, G holds two extra
length-n vectors w0,w1 and E holds ∆ (the global key of the IT-MACs), where E learns u0∆+w0

and u1∆+w1. Note that these two vectors are exactly the local key vectors of the IT-MACs held
by E (i.e., key(u0) and key(u1)), where E can abort if G cheats by providing wrong garbled key
pairs (which are not authenticated using the IT-MACs). Figure 6 presents this functionality. In
this work, we do not instantiate this functionality but use it as a hybrid19. We emphasize that our
protocol only uses this functionality with length vectors proportional to the input size, independent
of the circuit size.

Sub-procedure: Expand. We describe a sub-procedure called Expand that our protocol Π uses
to (1) shrink a long committed garbled key pair using KE gadgets while garbling backward; (2)
prove that the garbled tables of the KE gadgets are constructed almost correctly using the parallel
SP Σ-protocol we presented in Section 5.2; and (3) enable E to locally evaluate the KE gadgets.
Expand has the following three (interactive) algorithms:

• Expand.Gb: This algorithm, defined in Figure 7, is an interactive sub-protocol between G and
E. Our protocol Π calls this sub-protocol once per gate (except for the output gate), while
garbling backward. Gb takes gate type, gate ID, and two length-m vectors of IT-MACs forming
a committed garbled key pair as inputs, then outputs two length-(≤ 2) vectors of IT-MACs
forming a compressed committed garbled key pair. This is achieved by recursively applying
the KE gadgets, as shown by [BLLL23]. Note that the recursion is required because each KE
gadget can only shrink two length-Ψ vectors into two length-2 vectors, where m can be larger
than Ψ. This recursion20 is reflected as the last “goto” instruction in Figure 7. Compared
with the KE gadget in [BLLL23], we further require G to commit the randomness she uses
for each KE gadget (i.e., indexed r, s1, s2 in Sub-step 2a). This committed randomness,
accompanied by the already committed garbled key pair of the KE output, determines the
committed garbled input key pair of each KE (see Sub-step 2b), as well as the keys and

19Indeed, FN,ζ
aVOLE can be reduced to two FN,ζ

VOLEc instances in a classic way [Bea90], this reduction only works in the
presence of passive adversaries.

20We choose the final length of the vector as 2 (see Step 1) purely for simplicity, where it can be adjusted to any
other constant.
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plaintexts associated with the garbled tables generated by the KE gadgets (see Sub-step 2c).
In particular, by holding the IT-MAC committing the plaintext [m] of each garbled table
entry C ∈ Z∗

Nζ+1 , G and E can utilize the parallel SP Σ-protocol presented in Section 5.2
to ensure that LUk(C) = m. Expand.Gb captures the commit phase of the parallel SP Σ-
protocol. That is, for each garbled table entry, G will prepare and send the messages related
to the commit phase. Each party will record the messages (indexed by gate type, etc.) for
future use (see Step 3). We emphasize that Expand.Gb only requires communication from G
to E.

• Expand.Sigma: This algorithm is an interactive sub-protocol between G and E as defined
in Figure 8, where E issues a random challenge for the parallel SP Σ-protocol, then G responds
for every garbled table entry (committed in Expand.Gb). Expand.Gb captures the challenge
and response phases of the parallel SP Σ-protocol. We emphasize that after E issues the
random challenge, Expand.Sigma only requires communication from G to E. Note that the
random challenge can be replaced by the Fiat-Shamir heuristic [FS87] assuming random oracle
(RO).

• Expand.Ev: This algorithm, defined in Figure 9, is a sub-function used only by E once per
gate (except for the output gate). This sub-function is identical to the Eval algorithm for
BLLL’s GC, except that E checks each garbled label to ensure it is well-bounded and halts
accordingly.

Our protocol Π: primary components. We formalize our protocol algorithmically. G and E
start with public parameters, a circuit C as a sequence of tuples under the standard gate-by-gate
representation (see Section 5.4). We only consider single-output circuits to simplify the presenta-
tion, but our protocol can be generalized to multiple outputs straightforwardly. Our protocol Π is
composed of three primary components:

0. G and E generate VOLE correlations. In Step 0 (embedded in the first primary com-
ponent in Figure 10), G and E instantiate the VOLE correlation functionality over ZNζ to
generate enough (pseudo-)random VOLE instances. These VOLE correlations are used as
(pseudo-)random IT-MACs, to set up a pool of committed randomness that G and E can
consume. The overall number of VOLE correlations required by the parties need is O(|C|).
This step is a circuit-independent pre-processing phase.

1. G garbles an almost correct BLLL’s GC (see Figure 10). In the first primary com-
ponent, G generates a BLLL’s GC in an authenticated manner. Step 1 is adjusted from the
BLLL’s GC garbling procedure, the difference lies in that each operation insides is replaced
by either an IT-MAC operation or the commit phase of the parallel SP Σ-protocol (captured
by sub-protocol Expand.Gb). Step 1 only requires uni-directional communication from G to
E. Step 2 captures the challenge and response phases of the parallel SP Σ-protocol (captured
by sub-protocol Expand.Sigma), which requires a round-trip communication. By Fiat-Shamir
transform, assuming RO, this can be achieved with uni-directional communication from G to
E. If E aborts in the first component, the abort is independent of E’s inputs; otherwise, it
means that E holds an almost correct BLLL’s GC.
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Sub-protocol Expand.Gb

G and E have access to all public parameters and hybrid access to FN,ζ
VOLEc,F

N,ζ
aVOLE. G and E proceed as follows:

Gb (op = add/mult/input, opid ,m, [k0] , [k1])

1. If m ≤ 2, G and E exit the sub-protocol with [k0] , [k1] where |k0| = |k1| = m.

2. G and E set two empty vectors [k′
0] , [k

′
1] of IT-MACs. Let m′ = ⌈m

Ψ
⌉, for each j ∈ {0, . . .m′ − 1}, do the

followings:

(a) G and E fetch and consume fresh VOLE correlations [αj ], [βj ], [γj ]. G samples rj
$← {−Be, . . . , Be},

s1,j
$← {0, . . . , N} and s2,j

$← {0, . . . , Bmsg}. G sends δrj = (rj − αj) mod Nζ , δs1,j = (s1,j − βj)

mod Nζ and δs2,j = (s2,j − γj) mod Nζ to E. Parties then construct

[rj ] = [αj ] + δrj , [s1,j ] = [βj ] + δs1,j , [s2,j ] = [γj ] + δs2,j

(b) Let [k′
0] := [k′

0] ∥[1]∥[s1,j ] and [k′
1] := [k′

1] ∥[rj ]∥ ([s1,j ] · [rj ] + [s2,j ]).

(c) For i ∈ [Ψ] (when j = m′ − 1, adjust the range accordingly), let [Γj,0,i] := 2 · [k0,jΨ+i] and [Γj,1,i] :=

−2 · [rj ] · [k0,jΨ+i] + 2 · [k1,jΨ+i], G sends:

Cj,0,i := τ
s1,j
i (N + 1)Γj,0,i , Cj,1,i := τ

s2,j
i (N + 1)Γj,1,i mod Nζ+1

(d) G samples σ1,j , σ2,j
$← {0, . . . , Bσ}. For i ∈ [Ψ] (when j = m′ − 1, adjust the range accordingly), G

and E fetch and consume fresh VOLE correlations [Λj,0,i] and [Λj,1,i]. G sends:

Dj,0,i := τ
σ1,j

i (N + 1)Λj,0,i , Dj,1,i := τ
σ2,j

i (N + 1)Λj,1,i mod Nζ+1

3. G saves tuple (expand, op, opid ,m′,m, s1, s2,σ1,σ2, [Γ] , [Λ]).

E saves tuple (expand, op, opid ,m′,m, [Γ] , [Λ] ,C,D).

4. Let m := 2m′, [k0] := [k′
0] and [k1] := [k′

1]. Goto step 1.

Figure 7: The sub-protocol Gb in the sub-procedure Expand
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Sub-protocol Expand.Sigma

G and E have access to all public parameters and ideal access to FN,ζ
VOLEc,F

N,ζ
aVOLE. G and E proceed as follows:

Sigma()

1. E samples ν
$← {0, . . . , Nζ − 1} and sends ν to G. G receives ν from E.

2. G fetches tuples

(expand, op = add/mult/input, opid ,m′,m, s1, s2,σ1,σ2, [Γ] , [Λ])

G concurrently sends the following messages indexed by (op, opid,m′):

• For each j ∈ {0, . . . ,m′ − 1}, G fetches s1,j , s2,j , σ1,j , σ2,j , G sends ϕ1,j := ν · s1,j + σ1,j over Z and

ϕ2,j := ν · s2,j + σ2,j over Z.

• For each j ∈ {0, . . . ,m′ − 1} and each i ∈ [Ψ] (when j = m′ − 1, adjust the range accordingly), G

fetches [Γj,0,i], [Γj,1,i], [Λj,0,i], [Λj,1,i] and locally computes [ηj,0,i] := [ν · Γj,0,i + Λj,0,i] and [ηj,1,i] :=

[ν · Γj,1,i + Λj,1,i]. G opens [ηj,0,i] and [ηj,1,i].

3. E fetches tuples

(expand, op = add/mult/input, opid ,m′,m, [Γ] , [Λ] ,C,D)

E concurrently receives messages from G indexed by (op, opid,m′) and performs the following checks:

(a) For each j ∈ {0, . . . ,m′ − 1}, E receives ϕ1,j , ϕ2,j ∈ Z.

(b) For each j ∈ {0, . . . ,m′ − 1} and each i ∈ [Ψ] (when j = m′ − 1, adjust the range accordingly), E

fetches [Γj,0,i], [Γj,1,i], [Λj,0,i], [Λj,1,i] and locally computes [ηj,0,i] := [ν · Γj,0,i + Λj,0,i] and [ηj,1,i] :=

[ν · Γj,1,i + Λj,1,i]. E obtains opening of [ηj,0,i] and [ηj,1,i] from G. If the opening fails, E outputs

abort and halts permanently. Otherwise, E fetches Cj,0,i, Cj,1,i, Dj,0,i, Dj,1,i and checks:

(Cj,0,i)
ν ·Dj,0,i

?
= τ

ϕ1,j

i · (N + 1)ηj,0,i mod Nζ+1

(Cj,1,i)
ν ·Dj,1,i

?
= τ

ϕ2,j

i · (N + 1)ηj,1,i mod Nζ+1

If one of the checks fails, E outputs abort and halts permanently.

Figure 8: The sub-protocol Sigma in the sub-procedure Expand
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Sub-function Expand.Ev

G and E have access to all public parameters and ideal access to FN,ζ
VOLEc,F

N,ζ
aVOLE. G and E proceed as follows:

Ev(op = add/mult/input, opid ,L)

1. Let m′ := |L|
2
, E fetches the tuple

(expand, op, opid ,m′,m, [Γ] , [Λ] ,C,D)

If no such tuple exists, E outputs L.

2. E sets an empty vector L′.

3. For each j ∈ {0, . . .m′ − 1} in order: Let α = L2j+1 and β = L2j+2. If α is not in range [−B −Be, B +Be]

(over ZNζ ) or β is not in range [−N(B + Be), N(B + Be) + Bmsg] (over ZNζ ), E outputs abort and halts

permanently. Otherwise, decode α and β from ZNζ to Z as αZ and βZ, then for each i ∈ [Ψ] in order (when

j = m′ − 1, adjust the range accordingly), do the followings:

(a) E fetches Cj,0,i, Cj,1,i and computes ct := (Cj,0,i)
αZ · Cj,1,i · τ−βZ

i mod Nζ+1.

(b) E solves discrete logarithm of ct to the base N + 1 modulus Nζ+1 using algorithm in [DJ01]. If the

algorithm does not solve the discrete logarithm (correctly), E outputs abort and halts permanently.

Otherwise, let the solution be x over ZNζ . Let L′ := L′∥x.

4. Let L := L′. Goto step 1.

Figure 9: The sub-function Ev (used by E only) in the sub-procedure Expand
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2. E obtains the garbled labels of the input (see Figure 11a). In the second primary
component, E obtains garbled labels of inputs of C. In this component, E can abort if G
fails to provide correct garbled labels generated from the committed garbled key pairs. The
communication is uni-directional from G to E in the FN,ζ

aVOLE-hybrid model. If E aborts in the
second component, the abort is independent of E’s inputs.

3. E evaluates the circuit (see Figure 11b). E evaluates the GC as BLLL’s GC. The
difference lies in E may abort if E catches overflows on garbled labels or incorrectly evaluates
some KE gadget (captured by sub-protocol Expand.Ev). The communication is uni-directional
from E to G. If E aborts in the third component, the abort depends on E’s inputs.

See Section 5.6 for the fined-grained descriptions.

Proof overview. The security of Π can be shown using the following arguments:

Correct execution (see Lemma 6). Intuitively, to argue our protocol is secure against malicious
G with 1-bit leakage, we need to argue: if E does not abort and output res, res w.h.p. must be
calculated using the malicious G’s chosen inputs x̃ and E’s inputs y over the intended computation
C. I.e., a malicious G cannot forge the intended computation task. Informally, this is because if
G does not use an almost correct BLLL’s GC, she will be caught before E starts the evaluation,
i.e., before the third component of Π. Conditioned over the GC is almost correct, we need to
argue that the garbled labels obtained by E are “well-formed”. Namely, they indeed encode a value
generated from committed garbled key pairs. This trivially holds because we require G (1) to prove
the correctness of the committed IT-MAC values related to E’s input garbled key pair (see Step 3);
(2) to open IT-MACs of gabled labels of her inputs (see Step 4).

Well-defined leakage predicate. Note that E’s abort before evaluation (i.e., the third component
of Π) is independent of E’s inputs. Thus, the leakage predicate is well-defined by the evaluation
procedure of BLLL’s GC. In particular, a malicious G∗ can choose some parameters (i.e., errors
in an almost correct GC). Note that these parameters can be extracted by a simulator because

all the randomness G∗ used is committed under IT-MACs. The simulator, by emulating FN,ζ
VOLEc

hybrid for G∗, can extract them trivially as the hiding property of the IT-MAC no longer holds.
See Section 5.7 for a formal captured leakage predicate using a family of wrapper functions.

Simulatable E’s view. To ensure that our protocol preserves security for the semi-honest E, we
need to construct a simulator to sample the entire views of E from knowing the computation result.
This can be easily reduced to the security of BLLL’s GC and SHVZK property of the parallel
SP Σ-protocol. Informally, the simulator can first use the simulator of BLLL’s GC to generate
fake garbled tables and fake garbled labels, then call the simulator of SHVZK to generate the fake
proofs. By knowing the global key ∆, the simulator can easily open an IT-MACs commitment
to any value and perform wrong multiplication operations. Formally, the security claims of our
protocols are provided in Theorems 4 and 5.

Lemma 6 (Correct Execution). For every protocol execution between an adversary G∗ and E, as
defined in Figures 7 to 9 and Figures 10, 11a and 11b, such that E outputs res (embedded into
ZNζ ), there exists a well defined x̃ that correspond to the committed values in Step 4, and y that
denote E’s inputs, such that res = C(x̃,y) with overwhelming probability.

Proof. To prove the lemma, we introduce the idea of well-formed garbled labels and conclude with
several remarks.
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Protocol Π: First Component

G and E have access to all public parameters including N, ζ. G and E have ideal access to FN,ζ
VOLEc,F

N,ζ
aVOLE. G and

E with a circuit C, proceed as follows:

0. Initialize: G and E send (init) to FN,ζ
VOLEc, which returns ∆ to E. G and E send (extend, n = O(|C|)) to

FN,ζ
VOLEc to generate enough VOLE correlations.

1. G garbles an authenticated BLLL’s GC: G and E set up committed garbled key pairs on each wire gate-

by-gate backward. in the following way:

• The output gate: For the output gate (output, outputid ,wido), save tuple

(gb, output, outputid ,wido, 1, ([1], [0])).

• Addition gates: For an addition gate (add, addid ,widx,widy,widz), G and E set up two empty vectors

[k0] and [k1] of IT-MACs. For each successor gates using widz as inputs in the pre-determined order:

– For a saved tuple (gb, output,−,widz ,−, ([L] , [R])), let [k0] := [k0] ∥ [L] and [k1] := [k1] ∥ [R].

– For a saved tuple (gb, add/mult,−,widz ,−,−,−, ([L] , [R]) ,−), let [k0] := [k0] ∥ [L] and [k1] :=

[k1] ∥ [R].

– For a saved tuple (gb, add/mult,−,−,widz ,−,−,−, ([L] , [R])), let [k0] := [k0] ∥ [L] and [k1] :=

[k1] ∥ [R].

Finally, let |k0| = |k1| = m. G and E call the sub-protocol Expand.Gb(add, addid ,m, [k0] , [k1]), which

(if not halt) returns shrunk [kz
0] and [kz

1]. Let n = |kz
0| = |kz

1| ≤ 2. G and E fetch and consume fresh

VOLE correlations [r] where |r| = n. Let

[kx
0 ] = [ky

0 ] := [kz
0] , [k

x
1 ] := [r] , [ky

1 ] := [kz
1]− [r] (13)

Save (gb, add, addid ,widx ,widy , n, n, ([k
x
0 ] , [k

x
1 ]) , ([k

y
0 ] , [k

y
1 ])).

• Multiplication gates: For a multiplication gate (mult,multid ,widx,widy,widz), G and E generate

[k0] and [k1] the same as the addition gate (traversing successor gates using widz as inputs). Let

|k0| = |k1| = m. G and E call the sub-protocol Expand.Gb(mult,multid ,m, [k0] , [k1]), which (if not

halt) returns shrunk [kz
0] and [kz

1]. Let n = |kz
0| = |kz

1| ≤ 2. G and E fetch and consume fresh VOLE

correlations [r] , [u] , [s] where |r| = |u| = n. Let

[kx
0 ] := [kz

0] ∥ [kz
0] · [s] [kx

1 ] := [r] ∥ [u] (14)

[ky
0 ] := [1]∥ [r] [ky

1 ] := [s]∥ ([r] · [s]− [kz
1]− [u]) (15)

Save (gb, mult,multid ,widx ,widy , 2n, n+ 1, ([kx
0 ] , [k

x
1 ]) , ([k

y
0 ] , [k

y
1 ])).

• Input gates: For an input gate (input, inputid ,wid i), G and E generate [k0] and [k1] the same as the

addition gate (traversing successor gates using wid i as inputs). Let |k0| = |k1| = m. G and E call the

sub-procedure Expand.Gb(input, inputid ,m, [k0] , [k1]) which (if not halt) will return [kz
0] and [kz

1].

Let n = |kz
0| = |kz

1| ≤ 2. Save (gb, input, inputid ,widi , n, ([k
z
0] , [k

z
1])).

2. G and E executes the sub-protocol Expand.Sigma() to check the KE gadgets are generated almost correctly.

Note that E may halt in this step.

Figure 10: The first component of our protocol Π. Note that Equations (13) to (15) are the same
as add/mult gadgets from the AIK paradigm presented in Figure 2.
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Protocol Π: Second Component

G and E continue from Figure 10 as follows:

3. E obtains garbled labels of E’s input gates: For each input gate (input, inputid ,widi) owned by E, G and

E fetch the tuple (gb, input, inputid ,widi , ni,
([
ki
0

]
,
[
ki
1

])
). Note that E has an input on this gate as

y ∈ [−B,B] (and embedded in ZNζ ). G sends (evaluate, ni,mac(ki
0),k

i
0,mac(ki

1),k
i
1) to FN,ζ

aVOLE. E sends

(evaluate, ni,∆, y) to FN,ζ
aVOLE and obtains v0,v1,L

i from FN,ζ
aVOLE. If v0 ̸= key(ki

0) or v1 ̸= key(ki
1), E

outputs abort and halts permanently; otherwise, E saves the tuple (ev, input, inputid ,Li).

4. E obtains garbled labels of G’s input gates: For each input gate (input, inputid ,widi) owned by G, G and E

fetch the tuple (gb, input, inputid ,widi , ni,
([
ki
0

]
,
[
ki
1

])
). G commits x as [x] where x is the input of G (via

consuming 1 VOLE correlation). G and E compute [Li] :=
[
ki
0

]
· [x] +

[
ki
1

]
. G then opens

[
Li

]
. If G fails

to open the IT-MACs, E outputs abort and halts permanently. Otherwise, E will obtain Li := ki
0 · x+ ki

1.

E saves the tuple (ev, input, inputid ,Li).

(a) The second component

Protocol Π: Third Component

5. E evaluates the garbled circuit: E evaluates the circuit gate-by-gate forward in the following ways:

• Input gates: For an input gate (input, inputid ,wid i), E fetches the tuple
(
ev, input, inputid ,Li

)
. E

calls the sub-procedure Expand.Ev(input, inputid ,−,Li), which (if not halt) will return expanded Lex.

For each successor gates using wid i as inputs in the pre-determined order:

– For a saved tuple (gb, output, outputid ,widi , 1, · · · ), let Lex = Lo∥L′ where |Lo| = 1. Save

(ev, output, outputid ,Lo). Let Lex := L′.

– For a saved tuple (gb, op = add/mult, opid ,widi ,−, nx, · · · ), let Lex = Lx∥L′ where |Lx| = nx.

Save (ev, op, opid , le,Lx). Let Lex := L′.

– For a saved tuple (gb, op = add/mult, opid ,−,widi ,−, ny, · · · ), let Lex = Ly∥L′ where |Ly| = ny.

Save (ev, op, opid , ri,Ly). Let Lex := L′.

• Addition/Multiplication gates: For an add/mult gate (op = add/mult, opid ,widx,widy,widz), E

fetches the tuples (ev, op, opid , le,Lx) and (ev, op, opid , ri,Ly). E evaluates the addition/multi-

plication gadget using Lx and Ly (see Figure 2) and obtains L. E calls the sub-procedure Expand.Ev

(op, opid ,L), which (if not halt) will return expanded Lex. For each successor gates using widz as

inputs in the pre-determined order, split Lex into correct positions using the similar procedure of

input gates.

6. E sends the circuit’s output: For the output gate (output, outputid ,wido), E fetches the tuple

(ev, output, outputid , res). If res is not in range [−B,B] (over ZNζ ), E outputs abort and halts per-

manently; otherwise, E sends res to G.

7. G and E output res (decoded to Z).

(b) The third component

Figure 11: The second and third components of our protocol Π
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Definition 9 (Well-Formed Garbled Labels). Given a committed garbled key pair ([k0], [k1]) of
some wire, we say that a garbled label L of this wire is well-formed if L = k0w + k1 for some
(private) w ∈ ZNζ . In particular, we denote L as a well-formed garbled label encoding w.

Remark 4 (Well-formed inputs). Conditioned on E not aborting, he obtains w.h.p. well-formed
garbled labels for all input wires. Formally, for each input wire with a committed garbled key pair
[ki

0], [k
i
1]:

• If this wire is associated with E’s input, E w.h.p. obtains a well-formed garbled label as

Li := ki
0y+ki

1 for some y ∈ ZNζ (chosen by E). This is because if G uses different k̃i
0 or k̃i

1,
G needs to break the binding property of IT-MACs (see Step 3), inferring an error probability
O(1p).

• If this wire is associated with G’s input, E w.h.p. obtains a well-formed garbled label as
Li := ki

0x + ki
1 for some x ∈ ZNζ (chosen by G). This is ensured by the binding property

of the IT-MACs [ki
0x + ki

1] and LPZK’s soundness over the operation [ki
0][x] (see Step 4),

inferring an error probability O(1p).

Remark 5 (KE gadgets). Conditioned on E not aborting, then for each KE gadget, let the commit-
ted garbled key pair of input be [ki

0], [k
i
1] and the committed garbled key pair of output be [ko

0], [k
o
1].

If E holds a well-formed garbled label of the input as Li = ki
0w + ki

1 for some private w ∈ ZNζ , E
w.h.p. obtains a well-formed garbled label of the output encoding the same w as Lo = ko

0w + ko
1.

This is ensured by the statistical soundness of the parallel SP Σ-protocol and Lemma 5, inferring
an error probability O(1p).

Remark 6 (Addition gates). Conditioned on E not aborting, then for each addition gate, let the
committed garbled key pairs of input be [kx

0 ], [k
x
1 ], [k

y
0], [k

y
1] and the committed garbled key pair of

output be [kz
0], [k

z
1]. If E holds well-formed garbled labels of the input as Lx = kx

0x + kx
1 and

Ly = ky
0y + ky

1 for some private x, y ∈ ZNζ , E w.h.p. obtains a well-formed garbled label of the
output encoding x+y as Lz = kz

0(x+y)+kz
1. This is trivially ensured by correctly selecting garbled

key pairs (see Equation (13)), inferring an error probability 0.

Remark 7 (Multiplication gates). Conditioned on E not aborting, then for each multiplication
gate, let the committed garbled key pairs of input be [kx

0 ], [k
x
1 ], [k

y
0], [k

y
1] and the committed garbled

key pair of output be [kz
0], [k

z
1]. If E holds well-formed garbled labels of the input as Lx = kx

0x+ kx
1

and Ly = ky
0y + ky

1 for some private x, y ∈ ZNζ , E w.h.p. obtains a well-formed garbled label
of the output encoding xy as Lz = kz

0xy + kz
1. This is ensured by the LPZK’s soundness over

the multiplication operations over IT-MACs (see Equations (14) and (15)), inferring an error
probability O(1p).

Remark 4 properly defines the inputs of G∗ and E. Furthermore, we can apply an inductive
gate-by-gate argument using Remarks 5 to 7 that ensures correctness. Therefore, the overall error
probability will be O(1p).

Theorem 4 (Malicious G). Let pp denote that public parameters, for any circuit C defined over
B-bounded integer computations. Then protocol Π specified in Figures 7 to 9 and Figures 10, 11a
and 11b securely computes C (embedded within ZNζ ) with 1-bit leakage in the presence of malicious

G in the {FN,ζ
VOLEc,F

N,ζ
aVOLE}-hybrid model, where the leakage predicate is defined by the wrapper

function Wrappp,C specified in Figure 12 (in Section 5.7).
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Proof. By constructing the simulator for a malicious G∗. Recall that the ideal trusted third party
(TTP) is defined in Section 2.1.

The simulator S interacts with the ideal trusted third party by running G∗ as a subroutine.
S emulates all the ideal functionalities for G∗ and interacts with G∗ by emulating the role of the
honest E in the following way:

1. S emulates the ideal call to FN,ζ
VOLEc. It samples a global key ∆

$← ZNζ for the emulated E and
generates VOLE correlations for G∗ and emulated E. Note that for each VOLE correlation
[α] generated by FN,ζ

VOLEc, S knows α.

2. Extract configuration for the leakage predicate. S interacts with G∗ by emulating the
honest E for the Step 1 of the real protocol where G∗ generates an authenticated BLLL’s
GC gate-by-gate backward. If the emulated E halts during this step, S sends abort to TTP,
stops interacting with G∗, and outputs whatever G∗ outputs. Note that if the emulated E
does not halt, for each KE gadget (expanding from length 2 to ℓ ≤ Ψ, indexed by op, opid ,
etc.): G∗ commits to [r̃], [s̃1], [s̃2] (see Figure 7), by sending r̃−α, s̃1−β, s̃2−γ in Sub-step 2a

of Figure 7. S can extract r̃, s̃1, s̃2 trivially as α, β, γ are generated by FN,ζ
VOLEc, which is

emulated by S. Similarly, G∗ chooses 2ℓ of [Γ̃]s and 2ℓ of [Λ̃]s but S can trivially extract Γ̃s
and Λ̃s.

3. S interacts with G∗ by emulating an honest E for Step 2 of the real protocol, which captures
the challenge and response phases in the parallel SP Σ-protocol. If the emulated E halts
during this step, S sends abort to TTP, stops interacting with G∗, and outputs whatever G∗

outputs.

4. S emulates the ideal call for the FN,ζ
aVOLE for G∗ and emulated E, where the emulated E always

uses 0 and ∆ as input (i.e., Step 3 of the real protocol). If the emulated E halts (because
G∗ fails to open IT-MACs), S sends abort to TTP, stops interacting with G∗, and output
whatever G∗ outputs.

5. Extract G∗’s inputs x̃. S interacts with G∗ by emulating an honest E for Step 4 of the
real protocol, which is used to transfer garbled labels on G’s input. If the emulated E halts
during this step, S sends abort to TTP, stops interacting with G∗, and outputs whatever G∗

outputs. Note that, for each G’s input gate, G∗ will construct [x̃] by sending x̃−α where α is

generated by FN,ζ
VOLEc, which is emulated by S. Thus, S can trivially extract each x̃. Denote

all extracted inputs by x̃.

6. S executes the wrapper function Wrappp,C , provide configuration parameters. I.e., for each
input/add/mult gate (op = input/add/mult, opid , · · · ) in C, let the extension constant21 of
this gate be k. Let m := k. Proceed as follows:

(a) If m ≤ 2, finish the configuration for this gate. Otherwise, let m′ = ⌈mΨ ⌉.

(b) S fetches the tuple (expand, op, opid ,m′,m,−,−, C̃,−) stored by the emulated E (came
from emulated Expand.Gb where G∗ sent C).

(c) For each i ∈ [m′], S inputs r̃i, s̃1,i, s̃2,i ∈ ZNζ , which are extracted from Step 2.

21Defined in Sub-step 1(a)ii of the discussion for our protocol, which is well-defined by public parameters and C.
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(d) For each i ∈ [m′] and each j ∈ [Ψ] (when j = m′ − 1, adjust the range accordingly),

S inputs Hj,0,i := C̃j,1,i(N + 1)−Γ̃j,0,i over Z∗
Nζ+1 and Hj,1,i := C̃j,1,i(N + 1)−Γ̃j,1,i over

Z∗
Nζ+1 where Γ̃j,0,i and Γ̃j,1,i are extracted from Step 2.

(e) Let m := 2m′ and goto step (a).

Note that the above steps precisely map the interface defined in Wrappp,C (see Figure 12).
After configuring, Wrappp,C outputs a predicate g to S.

7. S sends extracted inputs x̃ from Step 5 to TTP on behalf of G. S sends predicate g to TTP.

8. If S receives abort from TTP, S stops interacting with G∗, and outputs whatever G∗ outputs.
Otherwise, S receives the computation result as res (in ZNζ ) from TTP. S sends res to G∗,
and outputs whatever G∗ outputs.

We now argue that, for any PPT adversary G∗, the joint distribution generated by G∗ and E
in a real execution is statistically close to the distribution generated by SG∗

and ideal E. We argue
this by a simple case analysis:

1. Case 1: If the real E aborts the protocol before evaluating the BLLL GC, it means that G∗

fails on (1) proving the relationship of IT-MACs while operating on IT-MACs, (2) proving
the parallel SP Σ-protocol, or (3) using an ill-formed garbled label of her inputs. If this
happens, the emulated E inside S must also catch this misbehavior before Step 6. Namely, S
will send abort to the TTP, so the ideal E also outputs abort. In this case, the distribution
is identical between the real world and the ideal world.

2. Case 2: If the real E starts to evaluate the BLLL GC, the emulated E will not abort. Namely,
S will submit extracted inputs and build a leakage predicate using the extracted parameters
using the corresponding wrapper function, then submit them to TTP. By Lemma 3, soundness
of LPZK and soundness of Theorem 3, the BLLL GC must be almost correct except with up
to O(1p) probability of error.

• If the error event happens, in the worst case, assume the distribution between the real
world and the ideal world are totally different. However, this will only happen with up
to O(1p) probability.

• If the error event does not happen, the BLLL GC must be almost correct. We further
analyze the output of the real E and the ideal E. Note that the extraction of leakage
predicate parameters and G’s input are perfect. If the real E aborts, there are the
following possibilities:

– Some garbled label of a KE gadget input overflows. In this case, TTP must send
abort to the ideal E since the corresponding clause (see Sub-step 2a in Figure 12)
in the leakage predicate must be 1.

– Some KE gadget cannot be decrypted. In this case, TTP must send abort to the
ideal E since the corresponding clause (see Sub-step 2b in Figure 12) in the leakage
predicate must be 1.

– The output of C is not B-bounded. In this case, TTP must send abort to the ideal
E since the corresponding clause (see Step 2 in Figure 12) in the leakage predicate
must be 1.
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If the real E does not abort and output res (and send res to G∗ in the real world),
by Lemma 6, res must be C(x̃,y). Namely the ideal E also outputs res (and S will
send res to G∗ the S interacts with). Thus, in this sub-case, the distribution is identical
between the real world and the ideal world.

To conclude, for any PPT adversary G∗, the joint distribution generated by G∗ and E in a real
execution is statistically close to the distribution generated by SG∗

and ideal E. In particular, the
distance is O(1p).

Theorem 5 (Semi-honest E). Let pp denote that public parameters, for any circuit C defined
over B-bounded integer computations and assume the DCR assumption. Then protocol Π specified
in Figures 7 to 9 and Figures 10, 11a and 11b securely computes C (embedded within ZNζ ) in the

presence of semi-honest E in the {FN,ζ
VOLEc,F

N,ζ
aVOLE}-hybrid model.

Proof. By constructing a semi-honest simulator S for E, which also emulates the ideal calls of
FN,ζ
VOLEc and FN,ζ

aVOLE. S samples the views of an honest E as follows:

1. S emulates FN,ζ
VOLEc for E and generates VOLE correlations for him. Note that this means S

knows the global key ∆ of IT-MACs and the local key of each IT-MAC.

2. S uses honest E’s input y to learn the computation result res. S calls the security simulator of
BLLL’s GC with res to create faked garbled tables and fake garbled labels of inputs of C. Note
that the fake garbled labels of inputs are the messages outputs by FN,ζ

aVOLE. Assuming DCR,
the faked garbled tables and fake garbled labels will be computationally indistinguishable
from the true garbled tables and true garbled labels

3. S simulates the operations over IT-MACs trivially since it holds ∆ and local keys of all IT-
MACs. It can prove wrong multiplication relationships and open IT-MAC commitment to
any value.

4. S uses the SHVZK simulator of parallel SP Σ-protocol to simulate the messages related to
the SP Σ-protocol with the fake garbled tables as inputs. By the proof of Theorem 3, the
simulated view will be statistically close to the real views with O(1p) differences.

By a simple hybrid argument, assuming DCR, the simulated and real views of E are computationally
indistinguishable.

Overhead. The overall efficiency analysis of our protocol is discussed in Section 1.2. We tally
the detailed costs of our protocol Π:

• Constant-round: Π is constant-round in the {FN,ζ
VOLEc,F

N,ζ
aVOLE}-hybrid model. In detail, the

first component of Π in Figure 10 requires 3 rounds where the second round is a random
challenge from E to G; the second component of Π in Figure 11a requires 1 round from G to
E; the third component of Π in Figure 11b requires 1 round from E to G (which allows G

to obtain the output). Overall, Π is 5-round in the {FN,ζ
VOLEc,F

N,ζ
aVOLE}-hybrid model (which

can be piggy backed to 4 rounds). Furthermore, the round complexity can be reduced to 2-

round in the random oracle model and {FN,ζ
VOLEc,F

N,ζ
aVOLE}-hybrid, by applying the Fiat-Shamir

transformation [FS87] to the second message.

43



• Constant-rate: Π preserves the constant-rate property of BLLL’s GC in the plain model.
We analyze the concrete communication of Π compared to the semi-honest 2PC instantiated
via BLLL’s GC:

– Π requires generating O(|C|) VOLE correlations by ideal calls to FN,ζ
VOLEc while this phase

does not exist in the semi-honest protocol. However, this cost is sublinear in the circuit
size and, therefore, does not affect the asymptotic rate.

– Π is required to communicate, per garbled table entry:

∗ 6 elements in ZNζ to commit and construct the garbled key pairs of the KE gadget
input in Sub-steps 2a and 2b of Figure 7, which is amortized among the Ψ garbled
table entries.

∗ 3 elements in ZNζ to compute a multiplication for two IT-MACs in Sub-step 2c
of Figure 7.

∗ 2 elements in Z∗
Nζ+1 to transfer the garbled tables in Sub-step 2c of Figure 7.

∗ 2 elements in Z∗
Nζ+1 for the commit-phase of the parallel SP Σ-protocol in Sub-

step 2d of Figure 7.

∗ 2 elements in [−Bσ, Bσ] for the response-phase of parallel SP Σ-protocol in Step 2
of Figure 9, which is amortized among up to Ψ garbled table entries.

∗ 4 elements in ZNζ for the response-phase of parallel SP Σ-protocol to open IT-MAC
commitments in Step 2 of Figure 9.

While the semi-honest protocol only communicates 2 Z∗
Nζ+1 elements to transfer the

garbled tables. The blow-up will be upper-bounded by:

O(log(N ζ ·N ζ+1 ·Bσ))

log(N ζ+1)
=
O(log(N ζ ·N ζ+1 ·N2ζλω(1)))

log(N ζ+1)

=
O(ζ logN + ω(log λ))

ζ logN

=O(1)

– Π required is to communicate per multiplication gate:

∗ Up to 12 elements in ZNζ to compute multiplications for IT-MACs in Equations (14)
and (15) of Figure 10.

While the semi-honest variant has no communication, this will add a term to the rate.
Recall that each wire encodes a B-bounded value. This addition term is upper-bounded
by:

O(logN ζ)

logB
=
O(logB + logN + ω(log λ))

logB
=
O(logB + κ)

logB
= O(1)

– A random challenge from E to G does not affect the rate.

– Π requires communications to let E obtain the garbled labels on inputs of C in Figure 11a.
However, this cost is only proportional to the input size, not the circuit size. It will not
affect the rate.

To summarize, Π has the same asymptotic rate as the semi-honest variant, yet the concrete
constants are to be determined.
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• Computation: The computation cost of our protocol is dominated by the number of ex-
ponentiations in Z∗

Nζ+1 in the {FN,ζ
VOLEc,F

N,ζ
aVOLE}-hybrid model, where we require a constant

multiplicative factor for both parties, compared to the semi-honest protocol. Our overhead
is implied by the commit and response phases of the parallel SP Σ-protocol (see Figures 7
and 8).

5.6 Our Protocol Π: Step-by-Step

In the protocol execution, the parties record the following three types of tuples:

• (gb, · · · ): This type of tuple is used to maintain the IT-MACs (over ZNζ ) related to the
committed garbled key pairs. Note that what E maintains are the keys of the IT-MACs,
which are used to commit the garbled key pairs.

• (expand, · · · ): This type of tuple is used to maintain the IT-MACs, garbled tables, and the
messages related to our parallel SP Σ-protocol. Note that E will use the information in this
type of tuple to verify the proofs and evaluate the KE gadgets.

• (ev, · · · ): This type of tuple is used for E only to maintain the garbled labels related to the
evaluation procedure.

Our protocol Π is composed of three primary components, each encompassing several steps and
sub-steps:

0. G and E generate VOLE correlations. In Step 0 (embedded in the first primary com-
ponent in Figure 10), G and E instantiate the VOLE correlation functionality over ZNζ to
generate enough (pseudo-)random VOLE instances that are needed for the entire protocol.
These VOLE correlations are used as (pseudo-)random IT-MACs, which set up a pool of com-
mitted randomness that G and E can consume. We do not specify precisely how many VOLE
correlations G and E need to generate. Essentially, for circuit C, it is O(|C|), so the communi-
cation needed to generate these VOLE correlations will be sublinear in |C| (see Section 2.3).
We note that this can be viewed as a circuit-independent pre-processing phase.

1. G garbles an almost correct BLLL’s GC. In the first primary component, G garbles an
authenticated BLLL’s GC; see Figure 10. The goal of this component is to allow G to (1)
commit the garbled key pairs of each wire; (2) prove that the garbled key pairs associated with
each addition/multiplication gate are selected correctly; (3) provide garbled tables for each
KE gadget; and (4) prove that the garbled tables are generated almost correctly. Recall that G
already holds the pool of authenticated randomness committed via IT-MACs. Here, G needs
to consume these random IT-MACs to generate correlated randomness using the operations
presented in Section 5.1. Furthermore, G needs to prove the correctness of the garbled tables
using the parallel SP Σ-protocol, which is specified in the sub-procedure Expand. We provide
some fine-grained discussions for each step and accompanied sub-steps as follows:

(a) In Step 1, G selects garbled key pairs for each wire authenticated via IT-MACs. More
precisely, for each gate in the reverse topology order:

i. If the gate is the output gate, G and E locally set the committed garbled key pair
as IT-MACs ([1], [0]); otherwise, continue as follows.
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ii. Let this gate use wire z as an output. Then, G and E collect all this wire’s committed
garbled key pairs for inputting other gates. G and E concatenate them into a vector
of committed garbled key pair denoted by [k0] and [k1]. Let m = |k0| = |k1|. Note
that m is determined by the parameters of KE gadgets and the circuit’s topology
and is independent of the inputs of both parties. In particular, given the parameters
of the KE gadgets (before the 2PC starts), each gate induces an associated m.
Henceforth, we denote m as the extension factor of the associated gate.

iii. G and E use the sub-protocol Expand.Gb to shrink the committed garbled key pair
([k0], [k1]) backwards. Namely, Expand.Gb outputs a length-(≤ 2) committed gar-
bled key pair denoted by [kz

0] and [kz
1], which is the committed garbled key pairs

of the input wire of the (recursively-combined) KE gadget. Recall that Expand.Gb
only requires communication from G to E.

iv. If the gate is an addition gate or a multiplication gate, the committed garbled key
pairs [kz

0] and [kz
1] will be also used as the committed garbled key pairs of the

output wire of this gate. G and E further consume VOLE correlations to generate
the garbled key pairs of the two input wires. I.e., they operate over the IT-MACs
including ([kz

0], [k
z
1]) and VOLE correlations to generate IT-MACs of ([kx

0 ], [k
x
1 ]) and

([ky
0], [k

y
1]) (see Equations (13) to (15)). This requires communication from G to E.

We note that in Step 1, the communication is only from G to E, which includes (1) con-
structing IT-MACs for G’s chosen values in Expand.Gb; (2) operating multiplication over
the IT-MACs in Expand.Gb and Equations (14) and (15); (3) the garbled tables of KE
gadgets in Expand.Gb; and (4) the messages related to the commit phase of the parallel
SP Σ-protocol in Expand.Gb. Informally, E is executing a partial garbling procedure of
BLLL’s GC where the randomness is set to be the local keys of corresponding IT-MACs.
After Step 1, G and E hold committed garbled key pairs of all wires, including all input
gates.

(b) In Step 2, G and E execute the sub-procedure Expand.Sigma allowing E to get convinced
that the garbled tables are generated almost correctly. Recall that once E sends a
random challenge, the following communication is only from G to E in this step. The
random challenge can be replaced by the Fiat-Shamir transformation [FS87] assuming
random oracle (RO), resulting in the uni-directional communication from G to E.

We note that in this component, E will abort and halt if G fails to prove the relationship of
IT-MACs (i.e., opening), or the relationship between the IT-MACs and the garbled tables
as defined in the parallel SP Σ-protocol. Crucially, this abort is independent of E’s private
input to C.

2. E obtains the garbled labels of the input. In the second component, G and E will use
FN,ζ
aVOLE and operations over IT-MACs to allow E to learn the garbled labels of each C’s input.

The protocol is formalized in Figure 11a.

(a) In Step 3, E learns the garbled labels of his input using FN,ζ
aVOLE. Recall that the garbled

key pair of each input has already been committed using the IT-MACs. Thus, by linearly
reevaluating the values and MACs of IT-MACs provided by G on ∆, E can detect if G
forges the values. Note that, in the honest execution, the linear evaluations should
provide vectors the same as the local keys of IT-MACs held by E.
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(b) In Step 4, E learns the garbled labels of G’s input. This is a straightforward step as G
can commit to each of her inputs using an IT-MAC, and then the parties compute the
linear evaluation of the committed garbled key pair associated with this input over G’s
committed input and then open the committed garbled labels.

We note that in this component, E will abort and halt if G cheats on the operations that are
used to compute the garbled labels of G’s input or submits a wrong committed garbled key
pairs on some E’s input wire to FN,ζ

aVOLE. Crucially, this abort is independent of E’s private
input of C.

3. E evaluates the circuit. In the last component, E evaluates the circuit using the evaluation
protocol in BLLL’s GC. The protocol is formalized in Figure 11a. Here, E halts if (1) E notices
that some values are not in predetermined bounds (specified in the public parameters); or
(2) E cannot decrypt the ciphertext generated from garbled tables. This halt is dependent on
E’s private input of C. Indeed, this is precisely where a malicious G can learn an extra bit of
information based on the behavior of E.

5.7 Define the Leakage Predicate via a Wrapper

Our protocol achieves 1-bit leakage for malicious G where A can only specify a subclass of the
predicate. We now formally describe what kinds of predicate an ideal A will submit to the trusted
third party. Note that in our protocol, this predicate is used to capture E’s abort while evaluating
the circuit in Figure 11b because E’s aborts in Figures 10 and 11a are independent of both parties’
inputs. E will abort in Figure 11b because of two events:

1. Some garbled labels of KE gadgets inputs are not in bounds. This happens because
a malicious G can use bad inputs to trigger overflows (see Section 4). A malicious G can also
choose randomness r̃j , s̃1,j , s̃2,j for each KE gadget arbitrarily (see Sub-step 2a in Figure 7
and Step 3 in Figure 9).

2. Some KE gadgets cannot be evaluated correctly. This happens because of the same
reasons above. Besides, as we discussed in Section 5.2, a malicious G can provide some
C̃ ∈ Z∗

Nζ+1 in the garbled tables of KE gadgets such that C̃U is not equal to τ
sk∈[2],j

i where

[sk∈[2],j ] is committed and (C̃L, C̃U ) := LU(C̃) (see Sub-step 2c in Figure 7 and Sub-step 3b
in Figure 9).

We remark that all these parameters are selected by malicious G before the protocol component
in Figure 11b starts. I.e., it is a predicate on inputs of C where the definition is independent
of inputs. In other words, the leakage predicate G∗ can specify is just a predicate induced by
the evaluation procedure of E. In particular, G∗ can provide some parameters to configure each
KE gadget. Note where the KE gadgets are placed and how the KE gadgets are structured are
determined by C and public parameters. Therefore, we define a family of stateful wrapper functions
indexed by public parameters and C in Figure 12 that captures the leakage predicate g that the
ideal A can select. Looking ahead, the simulator will use these wrapper functions to help construct
the leakage predicate g. Namely, the wrapper functions are just a way to describe a predicate and
parties will not use them in the real executions.
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Wrapper Function Wrappp,C

The wrapper function is indexed with the public parameters and a circuit C. It is a stateful function that interacts

with some virtual entity (denoted by a user) that is used to describe or generate a predicate. It takes parameters

as inputs, which are used to configure a predicate, and will output a predicate g where g has the same length of

input of C and is configured by the submitted parameters.

1. Configure parameters: For each input/add/mult gate (op = input/add/mult, opid , · · · ) in C, let the exten-

sion factor of this gate be ka. Let m := k. The user can provide the following parameters to configure the

predicate:

(a) If m ≤ 2, finish the configuration for this gate. Otherwise, let m′ = ⌈m
Ψ
⌉.

(b) For each i ∈ [m′], the user inputs ri, s1,i, s2,i ∈ ZNζ .

(c) For each i ∈ [m′] and each j ∈ [Ψ] (when j = m′ − 1, adjust the range accordingly), the user inputs

Hj,0,i, Hj,1,i ∈ Z∗
Nζ+1 where LUk(Hj,0,i) = 0 and LUk(Hj,1,i) = 0.

(d) The wrapper function saves tuple (op, opid ,m, r, s1, s2,H).

(e) Let m := 2m′ and goto Step (a).

2. Output predicate g: Output a predicate g(x,y) defined as a disjunction of the following predicate clauses:

• For each input/add/mult gate (op = input/add/mult, opid , · · · ) in C, let the output of this gate be

h(x,y) over ZNζ where h is well-defined by C. The wrapper function fetches all the configuration

tuples matching (op, opid ,m, r, s1, s2,H), let m′ := ⌈m
Ψ
⌉:

(a) Overflow: For each i ∈ [m′]: Let αi(x,y) = h(x,y) + ri over ZNζ and βi(x,y) = s1,i(h(x,y) +

ri) + s2,i over ZNζ . Add the following clauses:

αi(x,y)
?
∈ [−B −Be, B +Be]

βi(x,y)
?
∈ [−N(B +Be), N(B +Be) +Bmsg]

Map αi(x,y) and βi(x,y) from ZNζ to Z as αi
Z(x,y) and βi

Z(x,y).

(b) Undecryptable: For each i ∈ [m′] and each j ∈ [Ψ] (when j = m′ − 1, adjust the range accord-

ingly), add the following clause:

H
αi
Z(x,y)

j,0,i Hj,1,iτ
−βi

Z(x,y)

j

?

̸= 1

• Unbounded result: Add the clause C(x,y)
?
∈ [−B,B].

aDefined in Sub-step 1(a)ii of the discussion for our protocol (see Section 5.6), which is well-defined by public
parameters and C.

Figure 12: The family of wrapper functions defining the leakage predicate
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