
A Concrete Analysis of Wagner’s k-List
Algorithm over Zp

Antoine Joux1, Hunter Kippen2, and Julian Loss1

1 CISPA Helmholtz Center for Information Security, Germany, joux@cispa.de,
loss@cispa.de

2 University of Maryland, College Park, MD, USA, hkippen@umd.edu

Abstract. Since its introduction by Wagner (CRYPTO ‘02), the k-list
algorithm has found significant utility in cryptanalysis. One important
application thereof is in computing forgeries on several interactive sig-
nature schemes that implicitly rely on the hardness of the ROS problem
formulated by Schnorr (ICICS ‘01). The current best attack strategy for
these schemes relies the conjectured runtime of the k-list algorithm over
Zp. The tightest known analysis of Wagner’s algorithm over Zp is due
to Shallue (ANTS ‘08). However, it hides large polynomial factors and
leaves a gap with respect to desirable concrete parameters for the attack.
In this work, we develop a degraded version of the k-list algorithm which
provably enforces the heuristic invariants in Wagner’s original. In the
process, we devise and analyze a new list merge procedure that we dub
the interval merge. We give a thorough analysis of the runtime and suc-
cess probability of our degraded algorithm, and show that it beats the
projected runtime of the analysis by Shallue for parameters relevant to
the generalized ROS attack of Benhamouda et al. (EUROCRYPT ‘21).
For a 256-bit prime p, and k = 8, our degraded k-list algorithm runs in
time ≈ 270.4, while Shallue’s analysis states that the Wagner’s original
algorithm runs in time ≈ 298.3.

1 Introduction

In 2002, Wagner introduced a generalization of the venerable birthday
problem [30]. This generalized birthday problem tasks solvers with finding
xi ∈ Li, i ∈ {1, . . . , k} such that x1 + · · · + xk = 0 (mod p), where p is
a prime and each Li is a list of random elements in Zp. To solve this
problem, Wagner introduced a subexponential time algorithm dubbed
the k-tree (or k-list) algorithm. This algorithm (and its variants) see use
in cryptanalyzing myriad schemes and protocols.

Of particular importance, Wagner’s k-list algorithm can be applied to
attack the security of a variety of interactive signature schemes such as
threshold-, multi-, and blind signature schemes [6, 12,27,30].

Currently, the runtime of these attacks depends on the conjecture that
Wagner’s algorithm [30] is correct, and outputs a solution in time O(k ·

p
1

1+ℓ) where k = 2ℓ. Presently, the tightest analysis of the k-list algorithm
over Zp is due to Shallue [28]. Shallue was able to prove that Wagner’s
algorithm yields a solution with overwhelming probability in time O(k ·
p

1
ℓ). While Shallue’s analysis asymptotically matches the conjecture, it

hides large polynomial terms and leaves a substantial gap with respect to
concrete parameters. For example, the aforementioned attacks of Drijvers
et al. [12] and Benhamouda et al. [6] consider attacks on schemes over
256 and 512 bit groups which require anywhere from k = 4 to k = 64
lists. For these choices of parameters, the +1 term in the exponent can
easily determine the difference between whether or not the attacks are
feasible. In this work, we revisit Wagner’s algorithm and provide the first
meaningful analysis of its running time for practical values of k.

1.1 Contributions

We now give a more detailed overview of our problem statement and our
contributions. For clarity, we present the original version of Wagner’s k-
list algorithm in Figure 1. In his beautifully simple algorithm, k = 2ℓ

initial lists Lℓ
1, ..., L

ℓ
k of m random elements in Zp = Iℓ each are merged

together in pairs. The merging of pairs creates k/2 new lists Lℓ−1
1 , ..., Lℓ−1

k ,
where Li consist of sums of the form a + b where a ∈ L2i−1, b ∈ L2i and

a + b lies in the interval Iℓ−1 :=
[⌊
−p−1

2

⌋
,
⌊
p−1
2

⌋]
of half the size of Iℓ.

This step is now recursively repeated over ℓ many levels until a list L0
1 is

produced. The algorithm is deemed successful if 0 ∈ L0
1.

Existing Analyses and Their Limitations. Wagner’s original anal-
ysis of the k-list algorithm provides a heuristic that the algorithm should

succeed with constant probability in time O(k · p
1

1+ℓ) when elements in
the initial lists are sampled from Zp. The analysis relies on the heuris-
tic invariant that the elements in the lists are sampled uniformly and
independently from the increasingly shrinking domains at each level.

However, it is simple to verify that the heuristic does not hold. At each
level, the output lists take all pairs of elements that sum to fit inside the
smaller domain (mod p). As such, it is possible for multiple output list
elements to share an input element, which violates independence—lack of
uniformity follows from the sum itself, as the sum of two uniform random
variables is no longer uniform.

This presents a problem when attempting to analyze the algorithm
without using the heuristic assumptions. It is extremely difficult to cal-
culate the explicit probability distribution of output list elements due

2

k-list Algorithm

Input: k = 2ℓ lists Li of m random elements in Zp.
Output: x1, ..., xk s.t. xi ∈ Li and

∑
i xi = 0 (mod p).

For all j ∈ [k], set Lℓ
j := Lj . For all j ∈ [ℓ], set Ij :=[⌊

− p−1

2⌊log m⌋·(ℓ−j)+1

⌋
,
⌊

p−1

2⌊log m⌋·(ℓ−j)+1

⌋]
.

– For i = ℓ down to 1 do:
• For j ∈ [2i−1] do: Li−1

j = {a+ b (mod p) : a ∈ Li
2j−1, b ∈ Li

2j , a+
b ∈ Ii−1 (mod p)}

– If 0 ∈ L0
1, determine elements x1, ..., xk s.t.

∑
i xi = 0 and xi ∈ Li.

Return x1, ..., xk if such elements exist. Return ⊥ otherwise.

Fig. 1: The original version of Wagner’s k-list algorithm over Zp [30].

to the lack of independence (and no guarantees on the exact nature of
the dependence between list elements). Shallue worked around some of
these constraints by utilizing the theory of Martingales to bound the non-
uniformity and dependence of the elements in each merged list [28]. As
discussed above, this results in loose bounds on the runtime that do not
apply to practical values of k. Thus, his work leaves open the question
of giving concrete bounds on the running time of Wagner’s algorithm as
well as the attacks that build on it.

Our Approach: Analyzing a Degraded Algorithm. In this work,
we take a completely different approach to analyzing the running time of
Wagner’s algorithm. Instead of analyzing his algorithm directly, we in-
stead consider a degraded version of the k-list algorithm. Our algorithm
can be viewed as an all-around worse version of Wagner’s original al-
gorithm which provably achieves the heuristic invariant of the original
algorithm and matches its running time and success probability when k
is not too large. It does so through a modified list merge procedure that
we dub the Interval Merge. Like its name suggests, the interval merge
procedure first divides the input domain into suitably sized intervals and
selects a single element per interval from both input lists (if they exist).
Unique sums are then created from these selected elements. Finally, re-
jection sampling is employed to enforce the uniformity of elements in the
merged list. Naturally, this modification does not come for free. We incur
(at most) a constant factor loss per level of the tree. We present our main
theorem on the runtime of the degraded k-list algorithm.

3

Theorem 1. Given initials lists of size⌈
α

−(ℓ−1)
ℓ+1 · c

−(ℓ−1)(ℓ+2)
2(ℓ+1) · p

1
ℓ+1

⌋
,

the degraded k-list algorithm in Figure 3 runs in time

Θ

(
k · α

−(ℓ−1)
ℓ+1 · c

−(ℓ−1)(ℓ+2)
2(ℓ+1) · p

1
ℓ+1

)
,

and finds a solution with non-negligible probability, where α is the interval
scaling factor input to IntervalMerge and k = 2ℓ.

Note that we indeed manage to preserve the +1 in the denominator
of the exponent(s). This allows our degraded variant of the algorithm to
outperform Shallue’s analysis [28] in small parameter regimes relevant to
a wide variety of attacks on signature schemes.

For example, for a 256-bit prime p, and k = 8, our degraded k-list
algorithm runs in time ≈ 270.4, while Shallue’s analysis states that the
Wagner’s original algorithm runs in time ≈ 298.3. Furthermore, note that
Shallue’s analysis requires a technical assumption3 that limits the range of
parameter regimes in which it is valid. For a 256-bit p, Shallue’s analysis
holds only for k up to 8. However, in Figure 2, for ease of comparison, we
extended the graphs showing the complexity beyond the limit of Shallue’s
analysis. For these graphs we invoke Theorem 1 with c = (1/6), and
α = 0.79591 to calculate the required sizes of the initial lists, and plot
the runtimes on the y-axis. We justify these choices of parameters with
our analysis in Section 3. In combination with Shallue’s analysis, our new
algorithm substantiates the original performance claims from Wagner’s
paper for a wide range of parameters for both theory and practice.

1.2 Related Work

Other analyses of the k-list algorithm. Wagner’s k-list algorithm [30] has
been re-analyzed multiple times since its original publication. In effect,
there are two distinct versions of the algorithm, depending on the do-
main of the input list elements. The first considers lists of elements from
an arbitrary finite field Zp (which we discuss in this work). The second
instead considers initial lists consisting of binary vectors (or equivalently
from Z2n), where the summation operator is replaced by coordinate-wise

3 For the range of parameters we are considering, this assumption can be written as
log p > 70 log k.

4

4 64 128 256 512 1024
Number of Lists (k)

254

268

282

296

2110

2124

2138

Ru
nt

im
e

This work (p = 2256)
Shallue (p = 2256)

(a) Comparison for 256-bit p

4 64 128 256 512 1024
Number of Lists (k)

287

2115

2143

2171

2199

2227

2255

Ru
nt

im
e

This work (p = 2512)
Shallue (p = 2512)

(b) Comparison for 512-bit p

128256 512 1024 2048
log2(p)

250

277

2104

2131

2158

2185

2212

Ru
nt

im
e

This work (k = 1024)
Shallue (k = 1024)

(c) Comparison for k = 1024

Fig. 2: Runtime comparison between the degraded k-list algorithm (Fig-
ure 3), and the analysis of Wagner’s algorithm [30] by Shallue [28] varying
k for p = {2256, 2512} (a)(b), and varying p for k = 1024 (c). The dotted
segments indicates the extension of Shallue’s analysis beyond the range
where his technical assumption holds.

XOR. In this version, the goal of the k-list algorithm then becomes find-
ing xi ∈ Li, i ∈ {0, 1}n such that x1⊕ · · · ⊕xk = 0⃗. The sums depicted in
Figure 1 are replaced by finding list elements that match on an increasing
number of low-order bits. Wagner’s original analysis of this variant of the
k-list algorithm states that it expects to find a single solution in time
O(k · 2

n
1+ℓ) for k = 2ℓ.

For this variant of the algorithm, the analysis by Minder and Sin-
clair [24] is particularly illuminating. Minder and Sinclair were able to
prove that Wagner’s algorithm does indeed meet its conjectured runtime
in the binary vector case and outputs a solution with high probability.
Minder and Sinclair’s analysis of the failure probability of Wagner’s algo-
rithm relies on the fact the bits of random binary vectors are independent
of each other. This allows them to prove the uniformity of the elements in
all merged lists. With this, Minder and Sinclair are then able to bound the
covariance between any two candidate solutions to the algorithm. Thus,

5

they use Chebyshev’s inequality to show the number of solutions is tightly
concentrated around the expectation.

Note that the techniques used in Minder and Sinclair’s analysis does
not apply to arbitrary finite fields. In particular, the idea that the bits
of input elements are independent of each other. One could certainly
represent elements in Zp by their bit-decomposition, but an XOR of
two field elements in this representation will result in carries, breaking
uniformity. We remark that Minder and Sinclair do provide a variant of
their analysis for larger finite fields of prime powers Zpn for p prime, but
this incurs a penalty of

√
p on the runtime.

For the variant of the k-list algorithm acting on arbitrary finite fields,
Lyubashevsky provided an analysis suited to solve the integer subset-sum
problem [21]. Similarly to our proposed algorithm, Lyubashevsky only
uses a subset of all valid summations during list merging. For this con-

struction, the runtime is approximately O(k ·p
2

1+ℓ). Shallue’s analysis [28]
can be viewed as an improvement to the efficiency of Lyubashevsky’s, and
thus also incurs a penalty in terms of the runtime (O(k · p

1
ℓ)).

Applications of the k-list algorithm. Originally noted by Schnorr in 2001,
multiple discrete logarithm-based blind signatures (including Schnorr [27]
and Okamoto-Schnorr [26]) implicitly rely on an additional hardness as-
sumption known as the ROS problem [14, 27]. An efficient solver for the
ROS problem was noted to immediately produce a one more forgery at-
tack on these signature schemes. Wagner [30] showed that the k-list algo-
rithm for inputs over Zp, where p is the group modulus of the signature
scheme, can be used to solve the ROS problem. In order to craft the
proper inputs to the ROS solver, the attacker must use multiple parallel
signing sessions.

More recently, Benhamouda et al. [6] showed that the ROS problem is
solvable in polynomial time given that the dimension of the problem—the
number of concurrent signing sessions—is larger than log p. In addition
to their polynomial time attack, Benhamouda et al. introduced a gener-
alized variant that offered smooth trade-offs between the number of open
sessions and attack difficulty. They did so by first applying Wagner’s al-
gorithm (but terminating early) to constrain the size of inputs to the
ROS problem, and then applying their original polynomial time attack.
As a consequence, the runtime of Benhamouda et al.’s generalized attack
relies on the conjectured runtime of Wagner’s algorithm over Zp. In ad-
dition, Benhamouda et al. were able to show that their attack techniques
are able to be applied to threshold- and multi-signature schemes such as

6

those found in [15,19,22,29] by refining techniques presented by Drijvers
et al. [12].

The k-list algorithm has other cryptanalytic use cases. Many of these
applications make use of the binary, i.e. XOR version, of the algorithm.
Some direct applications help to break secret-key ciphers, to give a few
examples [10, 18, 20]. The hash function proposed [2] was shown to be
vulnerable to a k-list approach in [11], its successor FSB [1] was a SHA-3
candidate and despite additional precautions to withstand such attacks,
some vulnerabilities remained as shown in [8].

Extensions of the k-list algorithm. Generalizations of Wagner’s algorithm
have been considered in many different directions. The case where the
number of lists is not a power-of-two is considered in [25]. Its generaliza-
tion to quantum computers is considered in [16]. Another extension led to
the design of the representation technique giving improved algorithms for
the subset-sum problem and the binary decoding problem [3–5,7,9,13,17].

2 Preliminaries

For any nonnegative interval I = [a, b], b ≥ a ≥ 0, let −I denote the com-
plementary interval −I := [−b,−a]. Throughout the paper, we will need
to make reference to the occupancy of complementary pairs of intervals.

Definition 1. Given a complementary pair of intervals I,−I and two
lists L1, L2, we say the pair of intervals is fully occupied if there exist
elements x1 ∈ L1 and x2 ∈ L2, such that x1 ∈ I and x2 ∈ −I.

Definition 2. Given a complementary pair of intervals I,−I and two
lists L1, L2, we say the pair of intervals is half occupied if there exists an
element x1 ∈ L1 and for all x2 ∈ L2, x1 ∈ I and x2 /∈ −I or there exists
an element x2 ∈ L2 and for all x1 ∈ L1, x2 ∈ −I and x1 /∈ I.

Definition 3. The discrete Triangle distribution Tz−1 is defined by the
following probability mass function:

Tz−1(k) =


k+z
z2

−(z − 1) ≤ k ≤ −1
1
z k = 0
z−k
z2

1 ≤ k ≤ z − 1

We make use of a well known application of Azuma’s inequality, named
McDiarmid’s inequality.

7

Theorem 2 (McDiarmid’s Inequality [23]). A function f : X1 ×
· · · × Xn 7→ R satisfies the bounded differences property if there are
constants c1, c2, . . . , cn such that for all i = 1, 2, . . . , n and every x1 ∈
X1, x2 ∈ X2, . . . xn ∈ Xn, we have

sup
x′
i∈Xi

∣∣∣∣f(x1, . . . , xi−1, xi, xi+1, . . . , xn)−
f(x1, . . . , xi−1, x

′
i, xi+1, . . . xn)

∣∣∣∣ ≤ ci.

For such an f satisfying the bounded differences property, consider inde-
pendent random variables X1, X2, . . . , Xn where Xi ∈ Xi for all i. Then,
for any ϵ ≥ 0,

P [f(X1, X2, . . . , Xn)−E [f(X1, X2, . . . , Xn)] ≤ −ϵ] ≤ exp

(
− 2ϵ2∑n

i=1 c
2
i

)

3 Analysis of the Degraded k-List Algorithm

In this section, we present an analysis of a degraded version of the k-list
algorithm.

Degraded k-List Algorithm

Input: k = 2ℓ lists Li of m uniform and independent elements in Zp,
represented as integers in

[
−⌊ p

2
⌋, ⌊ p

2
⌋
]
, and interval scaling factor α > 0.

Output: x1, ..., xk s.t. xi ∈ Li and
∑

i xi = 0.

– For i = ℓ down to 2 do:
• For j ∈ [2i−1] do:

∗ Li−1
j = IntervalMerge(Li

2j−1, L
i
2j , α)

– L0
1 = {a+ b : a ∈ L1

1, b ∈ L1
2, a+ b = 0}

– If L0
1 ̸= ∅, determine elements x1, ..., xk s.t.

∑
i xi = 0 and xi ∈ Li.

Return x1, ..., xk if such elements exist. Return ⊥ otherwise.

Fig. 3: A degraded version of Wagner’s k-list algorithm that discards
elements to maintain the uniformity and independence of lists at each
level.

The performance of our algorithm is degraded (compared to Wagner’s
original algorithm) by discarding list elements at every level of the tree
(except the last). By carefully choosing which elements to discard, the
degraded algorithm maintains the uniformity and independence of list
elements at every level. We introduce two procedures, IntervalMerge and

8

RejectionSample, that replace the traditional list-merge operation up to
the last level of the tree (where the traditional list-merge is sufficient
to find the last collision). IntervalMerge preserves the independence of
output list elements by only combining one set of elements per matching
“interval” in the input lists. The list elements created by IntervalMerge are
sums of two uniform random variables, and as such are no longer uniform.
Thus, we employ rejection sampling to further sculpt the output list into
uniform and independent elements before inserting them into the output
list(s) at each level.

Achieving a comparable success probability to the heuristic version
requires the lists at the second to last level retain enough elements to
guarantee a collision at the output level with a noticeable probability.
As both IntervalMerge and RejectionSample discard list elements, the de-
graded algorithm will naturally require larger initial lists. Observe that
the interval merge can be implemented in time linear in the size of the
input lists. As we are only selecting (at most) a single pair of elements
per interval, only a linear scan through each list is required. As such,
we actually improve over Wagner’s original algorithm in this regard. The
lists need not be sorted nor stored in a hash table. Thus, the runtime of

our degraded k-list algorithm is O(k ·m(ℓ)
in), where m

(ℓ)
in is the size of the

initial input lists. For clarity, we restate our main runtime theorem here:

Theorem 1 Given initials lists of size⌈
α

−(ℓ−1)
ℓ+1 · c

−(ℓ−1)(ℓ+2)
2(ℓ+1) · p

1
ℓ+1

⌋
,

the degraded k-list algorithm in Figure 3 runs in time

Θ

(
k · α

−(ℓ−1)
ℓ+1 · c

−(ℓ−1)(ℓ+2)
2(ℓ+1) · p

1
ℓ+1

)
,

and finds a solution with non-negligible probability, where α is the interval
scaling factor input to IntervalMerge and k = 2ℓ.

Proof. For the degraded k-list algorithm described in Figure 3 to obtain
a solution, lists at the second-to-last level L1

1 and L1
2 must contain enough

elements such that a collision between the two lists is found. Thus, we
want to analyze the sizes of these lists. The main tool for that is the fact
that given input lists of size min, the IntervalMerge procedure in Figure 4
returns a list of size c · min for some constant 0 < c ≤ 1 with high
probability.

9

Let us denote by L(i)
in , the domain of the elements in list Li

j ∀ j. Let

us also denote by m
(i)
in , the number of elements in list Li

j ∀ j.
Then, for a collision to occur with constant probability, birthday

bounds require

(m
(1)
in)2 = Θ(|L(1)

in |). (1)

Observe that L(i)
in is the output range of the Interval Merge procedure

in Figure 4 as executed on the input lists at level i + 1. Thus, we have
that

L(i)
in =

[
−

⌊⌊
|L(i+1)

in |
α ·m(i+1)

in

⌉
/2

⌋
,

⌊⌊
|L(i+1)

in |
α ·m(i+1)

in

⌉
/2

⌋]

as the input interval [−a, a] is substituted for L(i+1)
in . Then,

|L(i)
in | = 2 ·

⌊⌊
|L(i+1)

in |
α ·m(i+1)

in

⌉
/2

⌋

= Θ

(
|L(i+1)

in |
α ·m(i+1)

in

)
(2)

In addition, as per our initial assumption, m
(i)
in = c · m(i+1)

in . Thus

m
(i)
in = cℓ−im

(ℓ)
in . Combining with (2), we now obtain a recurrence relation

on the size of the input intervals

|L(i)
in | = Θ

(
|L(i+1)

in |
αcℓ−i−1m

(ℓ)
in

)

|L(i)
in | = Θ

(
|L(ℓ)

in |∏ℓ−1
j=i αc

ℓ−j−1m
(ℓ)
in

)
(3)

Substituting (3) for |L(1)
in | in (1), we find that

(m
(1)
in)2 = Θ(|L(1)

in |)

(m
(1)
in)2 = Θ

(
|L(ℓ)

in |∏ℓ−1
j=1 αc

ℓ−j−1m
(ℓ)
in

)

(cℓ−1m
(ℓ)
in)

2 = Θ

(
|L(ℓ)

in |∏ℓ−1
j=1 αc

ℓ−j−1m
(ℓ)
in

)

(cℓ−1m
(ℓ)
in)

2 = Θ

(
p

αℓ−1c(ℓ−1)(ℓ−2)/2(m
(ℓ)
in)

ℓ−1

)
(4)

10

as |L(ℓ)
in | = p. Solving (4) for m

(ℓ)
in completes the proof, as the interval

merge procedure is called at most 2k times.

m
(ℓ)
in = Θ

(
α

−(ℓ−1)
ℓ+1 · c

−(ℓ−1)(ℓ+2)
2(ℓ+1) · p

1
ℓ+1

)
⊓⊔

Interval Merge

Input: Lists L1, L2 of min uniform and independent elements in [−a, a],
and interval scaling factor α > 0.
Output: List L12 of uniform and independent elements in
[−⌊⌊ 2a

α·min
⌉/2⌋, ⌊⌊ 2a

α·min
⌉/2⌋].

– Let L =
⌊

2a
α·min

⌉
.

– Let L 1
2
= ⌊L/2⌋.

– Let Nint =
⌊
2a
L

⌋
.

– Sample Nint random numbers ∈ [0, 1], r1, . . . , rNint .
– Let f be the linear function s.t. f(0) = −a and f(Nint) = a+ 1.
– For j = 1 to Nint do:

• Let Ij = [−a, a] ∩ [f(j − 1), f(j)] ∩ Z.
• Let x∗

1 be the first element of L1 ∈ Ij otherwise ⊥.
• Let x∗

2 be the first element of L2 ∈ −Ij otherwise ⊥.
• If x∗

1 ̸= ⊥ AND x∗
2 ̸= ⊥ then:

∗ If RejectionSample(T|Ij |−1, (x
∗
1 + x∗

2),L 1
2
; rj) = Accept then:

· Add (x∗
1 + x∗

2) to L12.
– Return L12.

Fig. 4: The interval merge procedure that takes the place of the tradi-
tional list merge operation in the degraded k-list algorithm in Figure 3

3.1 Analysis of IntervalMerge

The main source of degradation of initial list sizes is due to the
IntervalMerge procedure. The procedure is primarily designed to maintain
the independence and uniformity of elements in the merged list. To ensure
the degraded k-list algorithm terminates in the same number of iterations
as Wagner’s original, care must be taken to enforce similar constraints on
the range of elements in the merged list. The independence of output
elements is ensured by only allowing for sums of unique elements from
each input list. This is achieved by first partitioning the input domain

11

Rejection Sampling

Input: The probability mass function of a discrete triangle distribution
Tz−1 (Definition 3), candidate output element x12 distributed according to
Tz−1, a target interval bound a ≤ z − 1, and randomness r ∈ [0; 1].
Output: Accept OR Reject.

– If x12 /∈ [−a, a] Return Reject.

– Let p =
Tz−1(a)

Tz−1(x12)
.

– If r < p Return Accept, Otherwise Return Reject

Fig. 5: The rejection sampling procedure used during the execution of
an interval merge. The procedure is designed to accept with a uniform
probability.

into non-overlapping intervals of similar size. If (at most) one element is
used (and not reused) in a sum per interval, then the uniqueness of each
summand is guaranteed.

To bound the range of the output, we form the sums from comple-
mentary intervals symmetric about the origin. Then, to further shrink
the range and ensure that elements in the output list are distributed
uniformly, we apply rejection sampling to each sum. As such, the size
of the merged list is precisely the number of fully occupied (see defini-
tion 1) complementary intervals multiplied by the proportion of sums
that were accepted. The challenge is to have enough intervals such that
we sufficiently shrink the range of output elements (as in the original k-
list algorithm), while guaranteeing (with high probability) that enough
complementary intervals are fully occupied.

Constructing the Intervals. Defining the interval boundaries is not
straightforward. The input list elements are over a subset of the integers.
We cannot guarantee that the optimal number of intervals perfectly par-
titions the input domain. Additionally, the algorithm invariant requires
output elements to remain identically distributed. If intervals are allowed
to vary in size, we must enforce the identical distributions of output ele-
ments through our rejection sampling procedure.

More formally, for input elements drawn from [−a, a], IntervalMerge
splits the input domain of each list into sub-intervals of size L and L+1,
where

L = ⌊(2a)/(α ·min)⌉. (5)

12

Fig. 6: Example intervals created during interval merge (Figure 4) for
min = 5 input elements per list, and Nint = {4, 5}. Input elements are
sampled from an input domain of [−8, 8].

Here min is the number of elements in each input list. Note also that α
controls the (approximate) number of intervals we create, since we define
the number of intervals as Nint = ⌊(2a)/L⌋.

The interval boundaries are set by first defining the linear function f(),
where f(0) = −a and f(Nint) = a+1. Then, each interval Ij , j ∈ [Nint] is
constructed by taking the set of integers in [f(j−1), f(j)]. By inspection,
we see that these sets are intervals of size L or L+1. See Figure 6 for an
example.

Output Range and Distribution. The output range and distribution
of elements at every level of the degraded k-list algorithm is defined by
the rejection sampling procedure in Figure 5. We first note the following.

Remark 1. All elements x12 ∈ L12 inserted by the IntervalMerge procedure
in Figure 4 are independent.

This is fairly straightforward. The independence of output elements is
attained by construction, as each output element is formed from unique
summands. Each defined subinterval is non-overlapping, and (at most)
one element is used per subinterval per list.

The range and (exact) distribution is more involved. Elements in the
output list(s) at every level of the degraded k-list algorithm solely consist

13

of elements accepted by the rejection sampling procedure in Figure 5. In
this procedure, all elements outside the specified symmetric interval are
automatically rejected.

For elements inside the specified interval, we flatten the probabil-
ity distribution and make sure that the final distribution of outcomes is
uniform. This is shown by computing the probability that the rejection
sampling procedure outputs Accept:

P [RejectionSample(Tz−1, x12, a; r) = Accept]

=
z−1∑

i=−(z−1)

P [Accept | x12 = i] ·P [x12 = i]

=

a∑
i=−a

P

[
r ≤ Tz−1(a)

Tz−1(x12)

]
· Tz−1(x12) (6)

where RejectionSample is the rejection sampling procedure specified in
Figure 5, and (6) is due to the fact that the procedure always returns
Reject when x12 /∈ [−a, a]. Finishing the calculation yields

=
a∑

i=−a

Tz−1(a)

Tz−1(x12)
· Tz−1(x12) (7)

= (2a+ 1) · Tz−1(a)

Observe in (7) that for all i ∈ [−a, a], the probability of accepting given
x12 = i is Tz−1(a). Therefore, all elements accepted by the rejection sam-
pling procedure are assigned the same probability mass. As such, we can
state the following:

Remark 2. All elements x12 accepted by the RejectionSample procedure
in Figure 5 and inserted into L12 by the IntervalMerge procedure in Fig-
ure 4 are identically distributed. Each element is drawn from the uniform
distribution on [−L 1

2
,L 1

2
] where L 1

2
= ⌊L/2⌋, and L is as defined in (5).

We are using the RejectionSample procedure with two different input dis-
tributions, TL−1 or TL. Yet, in both cases, we have the exact same output
distribution.

Here, we are simply replacing the input a in Figure 5 with the interval
boundary (L 1

2
) supplied during the Interval Merge procedure in Figure 4.

Furthermore, the sums supplied to the rejection sampling procedure
are the sums of two independent uniform elements (a random variable that

14

is uniform over an interval is also uniform over any subinterval). Since the
elements come from intervals of size either L or L+1 which are symmetric
of each other around 0, the sums belong to either [−(L − 1);L − 1] or
to [−L;L]. The distribution is thus a discrete triangle distribution Tz−1

(Definition 3). Here, the parameter z is set to the size of the complemen-
tary intervals that the summands x∗1 and x∗2 inhabit. This can be either
L or L+ 1 as shown in Figure 6.

When the size of the intervals is L, the probability of the rejection
sampling procedure returning Accept is

(2L 1
2
+ 1) · TL−1(L 1

2
)

= (2⌊L/2⌋+ 1) · L − ⌊L/2⌋
L2

. (8)

Similarly, when the size of the intervals is L+ 1, we obtain

(2L 1
2
+ 1) · TL(L 1

2
)

= (2⌊L/2⌋+ 1) · (L+ 1)− ⌊L/2⌋
(L+ 1)2

. (9)

To simplify (8) and (9) we have two cases. One for when L is even, and
another for when L is odd. We show only the even case here for brevity.
When L is even, (8) becomes

(2(L/2) + 1) · (L)− (L/2)
(L)2

=
L+ 1

2L
≥ 1

2
, ∀ L ≥ 1. (10)

Similarly, (9) becomes

(2(L/2) + 1) · (L+ 1)− (L/2)
(L+ 1)2

=
L/2 + 1

L+ 1
≥ 1

2
, ∀ L ≥ 1. (11)

The odd case proceeds in the exact same manner, but replace ⌊L/2⌋
with (L − 1)/2 instead of L/2. In both cases, the total probability mass
for accepted sums is ≥ 1/2.

3.2 Output List Size

In IntervalMerge, for each subinterval, an element is added to L12 if and
only if that subinterval and its complement are fully occupied and the

15

sum of the first elements (in list order) passes the rejection sampling pro-
cedure. Therefore, we can view E [|L12|] as the expected number of fully
occupied pairs of complementary intervals (see Definition 1) multiplied
by the expected loss in probability mass incurred by rejection sampling.
To give a lower bound for |L12|, we make use of McDiarmid’s inequality
(Theorem 2).

Applying the inequality requires defining a function that satisfies the
bounded differences property. To this end, we define the function f as
a (2min + Nint)-input function that takes the values of the elements in
the lists L1 and L2 and the randomness rj ∀ j ∈ [Nint] supplied to the
rejection sampling procedure in Figure 5. The return value for f is then
set to the number of elements in the list L12 output by a single execution
of the interval merge procedure in Figure 4 for a given interval scaling
factor α.

Note that we must be careful when using the randomness to make sure
that adding or removing one doubly occupied interval does not create an
unwanted cascade of changes in the other decisions made in subsequent
invocations of the interval merge procedure. This can be done by assigning
each interval (at every level) its own randomness at the very beginning of
the algorithm independently of whether this interval contributes or not.
With this precaution in place, any change in the input list only has a
localized effect and can change the size of any list that depends on this
element by at most 1.

In addition, McDiarmid’s inequality is a consequence of constructing a
Doob Martingale that tracks the conditional expectation of f as its inputs
are sampled. The sums passed to RejectionSample are determined by list
order. As such, we ensure that for all i ∈ [min], the (2i− 1)-st input is
the i-th element of L1 and the input 2i-th input is the i-th element of L2.

The first step to applying McDiarmid’s inequality is to calculate the
expected value for f .

Lemma 1. Let X ∗ := [−a, a] ⊂ Z, and U∗ := [0, 1] ⊆ R and let L1

and L2 be list of min uniform elements from X ∗. Further, let N
(L)
int be

the number of sub-intervals of size L, let N (L+1)
int be the number of sub-

intervals of size L+1 and let Nint = N
(L)
int +N

(L+1)
int . Then, the expectation

of the function f : (X ∗)2min × (U∗)Nint 7→ N, where the input x2i−1 ∈ X ∗

is the i-th element of L1 and the input x2i ∈ X ∗ is the i-th element of
L2 for all i ∈ [min], and the return value is the number of elements in
the list L12 output by the interval merge procedure in Figure 4–given the

16

interval scaling factor α–is

E [f(X1, . . . , X2m, r1, . . . , rNint)] ≥
1

2
·

(
N

(L)
int ·

(
1−

(
1− L

2a+ 1

)min
)2

+N
(L+1)
int ·

(
1−

(
1− L+ 1

2a+ 1

)min
)2
)
.

Proof. The the expected number of output list elements (E [f]) for a sin-
gle execution of the Interval merge procedure can be found by counting
the (expected) number of times the rejection sampling procedure in Fig-
ure 5 returns Accept. However, the expected number of Accepts cannot be
computed directly without first knowing the number of sums x∗1+x∗2 that
were submitted to the rejection sampling procedure. As such, we make
use of the law of iterated expectation

E [f(X1, . . . , X2m, r1, . . . , rNint)] = E [# RejectionSample Accepts]

= E [E [# RejectionSample Accepts | Nsum]] . (12)

where Nsum is the number of sums x∗1 + x∗2 submitted to the rejection
sampling procedure.

The expected number of Accepts given the number of sums created
during the interval merge procedure is covered by our analysis of the
rejection sampling procedure in the previous section. By construction,
our rejection sampling procedure outputs a uniform distribution over a
target interval. Each outcome that results in an Accept is assigned a
constant probability mass (See (7) and Remark 2).

We state the following claim:

Claim. If the number of sums submitted to the RejectionSample procedure
in Figure 5 by the IntervalMerge procedure in Figure 4 is Nsum, where each
sum is distributed according to the triangle distributions TL−1 or TL, and
the target output interval is L 1

2
, then

E [# RejectionSample Accepts | Nsum] ≥ (1/2) ·Nsum,

where L is defined in (5), and L 1
2
= ⌊L/2⌋.

Proof (Claim). The claim follows from (10) and (11), which show that
the rejection sampling procedure outputs Accept with probability ≥ 1/2,
and the linearity of expectation.

17

Therefore, we can rewrite (12) as

E [f(X1, . . . , X2m, r1, . . . , rNint)] ≥ E [(1/2) ·Nsum] . (13)

So we now have simplified the expected value calculation of f() to be
at least half the (expected) number of sums x∗1 + x∗2 created.

A sum is only created when the pair of intervals at a particular it-
eration is fully occupied (Definition 1). Determining the number of fully
occupied intervals after sampling all input list elements is an instance of
the balls-into-bins problem.

Let Aj be the event that intervals Ij ,−Ij are fully occupied after all
2min input list elements are sampled. Then, we can define the indicators
Ij , where Ij = 1 when event Aj occurs. Then, the expected number of
created sums can be expressed by applying the linearity of expectation
to the sum of all Ij ,

E [Nsum] = E

Nint∑
j=0

Ij

 =

Nint∑
j=0

E [Ij] =
Nint∑
j=0

P [Aj]

= N
(L)
int ·P

[
A(L)

]
+N

(L+1)
int ·P

[
A(L+1)

]
(14)

were A(L) (resp. A(L+1)) is shorthand for the event Aj for any given
interval Ij of size L (resp. L + 1). Here (14) results from each interval
(and interval pair) of the same size having equal probability of occupation.

The probability of Aj occurring is the probability that after sampling
2min elements (min for each list), interval Ij is occupied by (at least) one
element from L1 and −Ij is occupied by (at least) one element from L2.
As these two sub-events are independent, we can calculate P [Aj] as

P [Aj] = P [Ij is occupied] ·P [−Ij is occupied]

= (1−P [Ij is unoccupied after sampling min elements])2

=

(
1−

(
1− |Ij |

2a+ 1

)min
)2

(15)

where 1 − |Ij |/(2a + 1) is the probability of a sampled element landing
outside a particular interval. Combining (13) and (14) with (15) completes

18

the proof.

E [f(X1, . . . , rNint)] ≥ E [(1/2) ·Nsum]

=
1

2
·
(
N

(L)
int ·P

[
A(L)

]
+N

(L+1)
int ·P

[
A(L+1)

])
=

1

2
·

(
N

(L)
int ·

(
1−

(
1− L

2a+ 1

)min
)2

+N
(L+1)
int ·

(
1−

(
1− L+ 1

2a+ 1

)min
)2
)

⊓⊔

Now, we can state the lower bound on the output list size of
IntervalMerge using McDiarmid’s inequality.

Applying McDiarmid’s Inequality.

Lemma 2. Let L1, L2, N
(L)
int , N

(L+1)
int , Nint be as in Lemma 1. For any

ϵ > 0, the size of the output list L12 of the IntervalMerge procedure in
figure 4 is at least

1

2
·

(
N

(L)
int ·

(
1−

(
1− L

2a+ 1

)min
)2

+N
(L+1)
int ·

(
1−

(
1− L+ 1

2a+ 1

)min
)2
)

− ϵ

with probability at least 1− exp
(
−2ϵ2/(8min +Nint)

)
.

Proof. The proof follows directly from applying McDiarmid’s inequality
(Theorem 2) to the expected size of the output list from IntervalMerge
(Lemma 1). To do so, we first make the following claim:

Claim. Let X ∗ := [−a, a] ⊂ Z, and U∗ := [0, 1] ⊆ R. Then, the function
f : (X ∗)2min × (U∗)Nint 7→ N, where the input x2i−1 ∈ X ∗ is the i-th
element of L1 and the input x2i ∈ X ∗ is the i-th element of L2 for all
i ∈ [min], and the return value is the number of elements in the list L12

output by the interval merge procedure in Figure 4–given the interval
scaling factor α–satisfies the bounded differences property in Theorem 2.
Furthermore, this property is satisfied with ci = 2 for all i ∈ [2min], and
ci = 1 for all i ∈ [2min + 1, 2min +Nint]. ⊓⊔

19

Proof (Claim). This can be seen as follows. Altering the value of a single
list element changes which particular interval it occupies. Depending on
the index of the element, it may change the value of the sum submitted
to the rejection sampling procedure. With this in mind, it is simple to
see how changing the value of a single list element can at most change
the output of f by ±2. If the element is contained in a half-occupied
(Definition 2) pair of intervals, then moving the element can make at
most one new pair of fully occupied intervals. This would raise the value
of f by 1, should the newly created sum pass the rejection sampling
procedure.

On the other hand, if the element is contained in a fully occupied pair
of intervals, then moving the element can in fact remove two elements
from the output list. Moving the element could leave its old interval pair
half-occupied, and if the interval the element is moved to is already fully
occupied, a different sum for that interval could be submitted to the re-
jection sampling procedure. This occurs when the element in question ap-
pears earlier in its list (thus selected for summation). If the new sum does
not pass the rejection sampling (as the randomness remains unchanged),
then this would lower the value of f by 2.

For the remaining Nint inputs to the function f , the value of f can
change by at most 1 as these inputs govern the randomness for the rejec-
tion sampling procedure. As such, modifying these inputs merely alters
the decision of the rejection sampling, which adds or subtracts an element
from the output list. ⊓⊔

Additionally, note the assumption that the input list elements are
sampled uniformly and independently. If we assign each list element to
one of the function inputs, then each input is an independent random
variable. Therefore, we satisfy all preconditions to applying the inequality.
Here we apply the inequality in its single-sided variant, as a lower bound
on the size of merged lists suffices for our analysis. Thus,

P[f(X1, . . . , X2m+Nint)−E [f(X1, . . . , X2m+Nint)] ≤ −ϵ]

≤ exp

(
− 2ϵ2∑2min

i=1 22 +
∑Nint

i=1 12

)

≤ exp

(
− 2ϵ2

8min +Nint

)

20

Now we can apply Lemma 1 to the expected value of f , and substitute
the length of the output list L12 for the exact value of f .

P

[
|L12| −

1

2
·

(
N

(L)
int ·

(
1−

(
1− L

2a+ 1

)min
)2

+N
(L+1)
int ·

(
1−

(
1− L+ 1

2a+ 1

)min
)2
)

≤ −ϵ

]

≤ exp

(
− 2ϵ2

8min +Nint

)
A bit of rearranging completes the proof.

P

[
|L12| >

1

2
·

(
N

(L)
int ·

(
1−

(
1− L

2a+ 1

)min
)2

+N
(L+1)
int ·

(
1−

(
1− L+ 1

2a+ 1

)min
)2
)

− ϵ

]

> 1− exp

(
− 2ϵ2

8min +Nint

)
(16)

⊓⊔

3.3 Determining Constants

In order to make a proper comparison to the analysis by Shallue [28], we
need to determine the constants involved. While the analysis in the previ-
ous section provides a complete characterization of the number of output
elements at every level, the effect of the interval merge algorithm on the
number of total initial list elements (and therefore the runtime) is unclear.
For starters, the number of elements in each input list min changes on
a per level basis. As such, the size of the subintervals L (Defined in (5))
necessarily changes as well.

We start by simplifying the result of Lemma 1 at the expense of some
tightness.

Corollary 1. Let notations be as in Lemma 1. Then

E [f(X1, . . . , X2m, r1, . . . , rNint)] ≥
1

2

(
Nint ·

(
1−

(
1− L

2a+ 1

)min
)2
)
.

21

This simplification is derived using the fact that

1−
(
1− L

2a+ 1

)
< 1−

(
1− L+ 1

2a+ 1

)
.

Using the definition of L in Equation (5), observe that

1−
(
1− L

2a+ 1

)
= 1−

(
1− ⌊(2a)/(α ·min)⌉

2a+ 1

)
≈ 1−

(
1− 1

α ·min

)
for large enough input element domain [−a, a]. Similarly, the number

of created intervals Nint can be approximated as

Nint =

⌊
2a

L

⌋
=

⌊
2a

⌊(2a)/(α ·min)⌉

⌋
≈ α ·min (17)

Note that as a continues to grow, the approximation becomes arbi-
trarily accurate. Thus, we can restate the above corollary as follows.

Corollary 2. Let notations be as in Lemma 1. Then

E [f(X1 . . . , rNint)] ⪆
1

2

(
α ·min

(
1−

(
1− 1

α ·min

)min
)2
)
.

Asymptotically, the relative error of this approximation can be made ar-
bitrarily close to 0.

We have now stated the expected value of f as a function of the
quantity α · min. Ideally, we want to state the expected value of f as a
fraction of min. This bounds the amount of elements lost to the interval
merge procedure at every level.

Observe that

lim
min→∞

1

2

(
α

(
1−

(
1− 1

α ·min

)min
)2
)

=
1

2

(
α
(
1− e−1/α

)2)
(18)

Thus, as min grows large, we can optimize the fraction of remaining
elements. Using numerical optimization, we found that (18) is maximized
when α ≈ 0.79591, for a maximum value of ≈ 0.20363. With this in mind,
we can then restate the corollary for a final time.

22

Corollary 3. Let notations be as in Lemma 1 and fix α = 0.79591. Then

E [f(X1 . . . , rNint)] ⪆ 0.20363 ·min

Asymptotically, the relative error of this approximation can be made ar-
bitrarily close to 0.

Note also that ‘min large enough’ is rather small, as convergence is
quite quick (when min = 10, the absolute error is 0.014 for α = 0.8). If we
apply the above corollary to Lemma 2, we obtain a concrete lower bound
on the number of output elements of each execution of the interval merge
procedure in Figure 4.

Lemma 3. Given two input lists L1, L2 of size min large enough, with
elements sampled uniformly and independently from [−a, a] ⊂ Z large
enough, for any ϵ > 0, the size of the output list L12 of the IntervalMerge
procedure in figure 4 is at least

0.20363 ·min − ϵ

for interval scaling parameter α = 0.79591 with probability at least 1 −
exp

(
−2ϵ2/(8.79591 ·min)

)
.

By choosing ϵ to be a small fraction ofmin, we can bound the probabil-
ity that the interval merge procedure returns a list of size c ·min for some
constant c. For concrete runtime parameters, we set c to (1/6) = 0.16̄.
Thus,

Corollary 4. Let notations be as in Lemma 3. The size of the output list
L12 of the IntervalMerge procedure in figure 4 is at least

(1/6) ·min

for interval scaling parameter α = 0.79591 with probability at least 1 −
exp (−0.00031 ·min).

Now, all that remains is to combine Corollary 4 with Theorem 1 to
obtain concrete parameters. Theorem 1 assumes that each input list is of
the same size at every level. If we obtain larger lists than desired from the
IntervalMerge procedure, then we can simply discard the excess—larger
internal list sizes will result in a higher probability of finding a collision
at the last level. With this in mind, we can find a lower bound on the
probability that our degraded k-list algorithm meets the claimed runtime.

23

Corollary 5. Let notations and input list sizes be as in Theorem 1 and
let c = 1/6, α = 0.79591. Then the success probability of the degraded
k-List algorithm in Figure 3 is lower bounded as

ℓ−1∏
i=1

(
1− e−0.00031·(1/6)ℓ−i−1·m(ℓ)

in

)2i
.

It can be verified that for all parameter settings used for Figure 2, this
probability is 1 within computer precision. This is because for all relevant

parameters, the term (1/6)ℓ ·m(ℓ)
in will be much larger than 2ℓ.

Proof. To begin, we need to calculate the joint probability that all lists
have the requisite number of elements. Let Bi

j be the event that list L
i
j in

the degraded k-list algorithm in Figure 3 has at least cℓ−im
(ℓ)
in elements

where m
(ℓ)
in is the number of elements in each input list. Now, we can

write the joint probability as

P

ℓ−1⋂
i=1

2i⋂
j=1

Bi
j

 = P

 2⋂
h=1

B1
h

∣∣∣∣ ℓ−1⋂
i=2

2i⋂
j=1

Bi
j

 ·P

ℓ−1⋂
i=2

2i⋂
j=1

Bi
j


=

P

B1
1

∣∣∣∣ 2⋂
j=1

B2
j

2

·P

ℓ−1⋂
i=2

2i⋂
j=1

Bi
j

 (19)

where (19) is due to the fact that the sizes of lists at level i are solely
dependent on the sizes of the lists at level (i + 1). In addition, the sizes
of each list at level i are independent and identically distributed when
conditioned on the event that lists at level (i + 1) are all the same size.
Note that i goes to ℓ− 1, as the lists at level ℓ are the initial input lists.

Their sizes are set to m
(ℓ)
in by definition.

We can continue decomposing the joint probability in (19), making use
of the exhibited Markov property. Completing the decomposition yields

ℓ−1∏
i=1

P

Bi
1

∣∣∣∣ 2⋂
j=1

Bi+1
j

2i

(20)

To obtain concrete parameters, we want to apply Corollary 4 to (20).
Note that Corollary 4 is calculating the probability that a list at level

i has at least (1/6) · m(i+1)
in elements given that the input lists at level

(i+ 1) have exactly m
(i+1)
in elements. In this regard, Corollary 4 provides

24

a lower bound on the probability. Therefore, we can state the following
for c = (1/6)

P

ℓ−1⋂
i=1

2i⋂
j=1

Bi
j

 ≥
ℓ−1∏
i=1

(
1− e−0.00031·m(i+1)

in

)2i

=

ℓ−1∏
i=1

(
1− e−0.00031·(1/6)ℓ−i−1·m(ℓ)

in

)2i
(21)

where the list size at level (i + 1), m
(i+1)
in is substituted for min in

the application of Corollary 4. Thus, for any fixed number of lists k =
2ℓ, the joint probability that the size of the lists at each level of the
degraded k-list algorithm depicted in Figure 3 shrink by at most (1/6) is
overwhelming in the number of inputs to the initial lists at level ℓ. ⊓⊔

Acknowledgements

This work is funded by the European Union, ERC-2023-STG-101116713.
Views and opinions expressed are however those of the author(s) only
and do not necessarily reflect those of the European Union. Neither the
European Union nor the granting authority can be held responsible for
them. Hunter Kippen is supported in part by the Clark Doctoral Fel-
lowship from the Clark School of Engineering, University of Maryland,
College Park.

25

References

1. Augot, D., Finiasz, M., Manuel, P.G.S., Sendrie, N.: Sha-3 proposal: Fsb (2009),
https://www.rocq.inria.fr/secret/CBCrypto/fsbdoc.pdf

2. Augot, D., Finiasz, M., Sendrier, N.: A fast provably secure cryptographic hash
function. Cryptology ePrint Archive, Report 2003/230 (2003), https://eprint.
iacr.org/2003/230

3. Austrin, P., Kaski, P., Koivisto, M., Nederlof, J.: Subset sum in the absence of con-
centration. In: Mayr, E.W., Ollinger, N. (eds.) 32nd International Symposium on
Theoretical Aspects of Computer Science, STACS 2015, March 4-7, 2015, Garch-
ing, Germany. LIPIcs, vol. 30, pp. 48–61. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik (2015). https://doi.org/10.4230/LIPICS.STACS.2015.48, https:
//doi.org/10.4230/LIPIcs.STACS.2015.48

4. Becker, A., Coron, J.S., Joux, A.: Improved generic algorithms for hard knap-
sacks. In: Paterson, K.G. (ed.) Advances in Cryptology – EUROCRYPT 2011.
Lecture Notes in Computer Science, vol. 6632, pp. 364–385. Springer, Heidel-
berg, Germany, Tallinn, Estonia (May 15–19, 2011). https://doi.org/10.1007/
978-3-642-20465-4_21

5. Becker, A., Joux, A., May, A., Meurer, A.: Decoding random binary linear codes
in 2n/20: How 1 + 1 = 0 improves information set decoding. In: Pointcheval, D.,
Johansson, T. (eds.) Advances in Cryptology – EUROCRYPT 2012. Lecture Notes
in Computer Science, vol. 7237, pp. 520–536. Springer, Heidelberg, Germany, Cam-
bridge, UK (Apr 15–19, 2012). https://doi.org/10.1007/978-3-642-29011-4_
31

6. Benhamouda, F., Lepoint, T., Loss, J., Orrù, M., Raykova, M.: On the (in)security
of ROS. Journal of Cryptology 35(4), 25 (Oct 2022). https://doi.org/10.1007/
s00145-022-09436-0

7. Bernstein, D.J., Jeffery, S., Lange, T., Meurer, A.: Quantum algorithms for
the subset-sum problem. In: Gaborit, P. (ed.) Post-Quantum Cryptography
- 5th International Workshop, PQCrypto 2013. pp. 16–33. Springer, Heidel-
berg, Germany, Limoges, France (Jun 4–7, 2013). https://doi.org/10.1007/

978-3-642-38616-9_2
8. Bernstein, D.J., Lange, T., Niederhagen, R., Peters, C., Schwabe, P.: FSBday.

In: Roy, B.K., Sendrier, N. (eds.) Progress in Cryptology - INDOCRYPT 2009:
10th International Conference in Cryptology in India. Lecture Notes in Computer
Science, vol. 5922, pp. 18–38. Springer, Heidelberg, Germany, New Delhi, India
(Dec 13–16, 2009)

9. Bonnetain, X., Bricout, R., Schrottenloher, A., Shen, Y.: Improved classical and
quantum algorithms for subset-sum. In: Moriai, S., Wang, H. (eds.) Advances in
Cryptology – ASIACRYPT 2020, Part II. Lecture Notes in Computer Science,
vol. 12492, pp. 633–666. Springer, Heidelberg, Germany, Daejeon, South Korea
(Dec 7–11, 2020). https://doi.org/10.1007/978-3-030-64834-3_22

10. Boura, C., Canteaut, A.: Zero-sum distinguishers for iterated permutations and
application to Keccak-f and Hamsi-256. In: Biryukov, A., Gong, G., Stinson,
D.R. (eds.) SAC 2010: 17th Annual International Workshop on Selected Ar-
eas in Cryptography. Lecture Notes in Computer Science, vol. 6544, pp. 1–17.
Springer, Heidelberg, Germany, Waterloo, Ontario, Canada (Aug 12–13, 2011).
https://doi.org/10.1007/978-3-642-19574-7_1

11. Coron, J.S., Joux, A.: Cryptanalysis of a provably secure cryptographic hash func-
tion. Cryptology ePrint Archive, Report 2004/013 (2004), https://eprint.iacr.
org/2004/013

26

https://www.rocq.inria.fr/secret/CBCrypto/fsbdoc.pdf
https://eprint.iacr.org/2003/230
https://eprint.iacr.org/2003/230
https://doi.org/10.4230/LIPICS.STACS.2015.48
https://doi.org/10.4230/LIPIcs.STACS.2015.48
https://doi.org/10.4230/LIPIcs.STACS.2015.48
https://doi.org/10.1007/978-3-642-20465-4_21
https://doi.org/10.1007/978-3-642-20465-4_21
https://doi.org/10.1007/978-3-642-29011-4_31
https://doi.org/10.1007/978-3-642-29011-4_31
https://doi.org/10.1007/s00145-022-09436-0
https://doi.org/10.1007/s00145-022-09436-0
https://doi.org/10.1007/978-3-642-38616-9_2
https://doi.org/10.1007/978-3-642-38616-9_2
https://doi.org/10.1007/978-3-030-64834-3_22
https://doi.org/10.1007/978-3-642-19574-7_1
https://eprint.iacr.org/2004/013
https://eprint.iacr.org/2004/013

12. Drijvers, M., Edalatnejad, K., Ford, B., Kiltz, E., Loss, J., Neven, G., Stepanovs,
I.: On the security of two-round multi-signatures. In: 2019 IEEE Symposium on
Security and Privacy. pp. 1084–1101. IEEE Computer Society Press, San Francisco,
CA, USA (May 19–23, 2019). https://doi.org/10.1109/SP.2019.00050

13. Esser, A., Zweydinger, F.: New time-memory trade-offs for subset sum: Improving
ISD in theory and practice. In: Hazay, C., Stam, M. (eds.) Advances in Cryptology
– EUROCRYPT 2023, Part V. Lecture Notes in Computer Science, vol. 14008,
pp. 360–390. Springer, Heidelberg, Germany, Lyon, France (Apr 23–27, 2023).
https://doi.org/10.1007/978-3-031-30589-4_13

14. Fuchsbauer, G., Plouviez, A., Seurin, Y.: Blind schnorr signatures and signed El-
Gamal encryption in the algebraic group model. In: Canteaut, A., Ishai, Y. (eds.)
Advances in Cryptology – EUROCRYPT 2020, Part II. Lecture Notes in Computer
Science, vol. 12106, pp. 63–95. Springer, Heidelberg, Germany, Zagreb, Croatia
(May 10–14, 2020). https://doi.org/10.1007/978-3-030-45724-2_3

15. Gennaro, R., Jarecki, S., Krawczyk, H., Rabin, T.: Secure distributed key genera-
tion for discrete-log based cryptosystems. Journal of Cryptology 20(1), 51–83 (Jan
2007). https://doi.org/10.1007/s00145-006-0347-3

16. Grassi, L., Naya-Plasencia, M., Schrottenloher, A.: Quantum algorithms for the
k-xor problem. In: Peyrin, T., Galbraith, S. (eds.) Advances in Cryptology – ASI-
ACRYPT 2018, Part I. Lecture Notes in Computer Science, vol. 11272, pp. 527–
559. Springer, Heidelberg, Germany, Brisbane, Queensland, Australia (Dec 2–6,
2018). https://doi.org/10.1007/978-3-030-03326-2_18

17. Howgrave-Graham, N., Joux, A.: New generic algorithms for hard knapsacks. In:
Gilbert, H. (ed.) Advances in Cryptology – EUROCRYPT 2010. Lecture Notes in
Computer Science, vol. 6110, pp. 235–256. Springer, Heidelberg, Germany, French
Riviera (May 30 – Jun 3, 2010). https://doi.org/10.1007/978-3-642-13190-5_
12

18. Joux, A.: Cryptanalysis of the EMD mode of operation. In: Biham, E. (ed.) Ad-
vances in Cryptology – EUROCRYPT 2003. Lecture Notes in Computer Science,
vol. 2656, pp. 1–16. Springer, Heidelberg, Germany, Warsaw, Poland (May 4–8,
2003). https://doi.org/10.1007/3-540-39200-9_1

19. Komlo, C., Goldberg, I.: Frost: Flexible round-optimized schnorr threshold signa-
tures Version from ”January 7, 2020” (2020), https://crysp.uwaterloo.ca/
software/frost/frost-extabs.pdf

20. Levieil, É., Fouque, P.A.: An improved LPN algorithm. In: Prisco, R.D., Yung,
M. (eds.) SCN 06: 5th International Conference on Security in Communication
Networks. Lecture Notes in Computer Science, vol. 4116, pp. 348–359. Springer,
Heidelberg, Germany, Maiori, Italy (Sep 6–8, 2006). https://doi.org/10.1007/
11832072_24

21. Lyubashevsky, V.: The parity problem in the presence of noise, decoding random
linear codes, and the subset sum problem. In: International Workshop and In-
ternational Workshop on Approximation, Randomization, and Combinatorial Op-
timization. Algorithms and Techniques (2005), https://api.semanticscholar.
org/CorpusID:7748280

22. Maxwell, G., Poelstra, A., Seurin, Y., Wuille, P.: Simple schnorr multi-signatures
with applications to bitcoin. Cryptology ePrint Archive, Report 2018/068 (2018),
https://eprint.iacr.org/2018/068

23. McDiarmid, C.: On the method of bounded differences, p. 148–188. London
Mathematical Society Lecture Note Series, Cambridge University Press (1989).
https://doi.org/10.1017/CBO9781107359949.008

27

https://doi.org/10.1109/SP.2019.00050
https://doi.org/10.1007/978-3-031-30589-4_13
https://doi.org/10.1007/978-3-030-45724-2_3
https://doi.org/10.1007/s00145-006-0347-3
https://doi.org/10.1007/978-3-030-03326-2_18
https://doi.org/10.1007/978-3-642-13190-5_12
https://doi.org/10.1007/978-3-642-13190-5_12
https://doi.org/10.1007/3-540-39200-9_1
https://crysp.uwaterloo.ca/software/frost/frost-extabs.pdf
https://crysp.uwaterloo.ca/software/frost/frost-extabs.pdf
https://doi.org/10.1007/11832072_24
https://doi.org/10.1007/11832072_24
https://api.semanticscholar.org/CorpusID:7748280
https://api.semanticscholar.org/CorpusID:7748280
https://eprint.iacr.org/2018/068
https://doi.org/10.1017/CBO9781107359949.008

24. Minder, L., Sinclair, A.: The extended k-tree algorithm. Journal of Cryptology
25(2), 349–382 (Apr 2012). https://doi.org/10.1007/s00145-011-9097-y

25. Nikolic, I., Sasaki, Y.: Refinements of the k-tree algorithm for the generalized
birthday problem. In: Iwata, T., Cheon, J.H. (eds.) Advances in Cryptology –
ASIACRYPT 2015, Part II. Lecture Notes in Computer Science, vol. 9453, pp.
683–703. Springer, Heidelberg, Germany, Auckland, New Zealand (Nov 30 – Dec 3,
2015). https://doi.org/10.1007/978-3-662-48800-3_28

26. Pointcheval, D., Stern, J.: Security arguments for digital signatures and blind sig-
natures. Journal of Cryptology 13(3), 361–396 (Jun 2000). https://doi.org/10.
1007/s001450010003

27. Schnorr, C.P.: Security of blind discrete log signatures against interactive attacks.
In: Qing, S., Okamoto, T., Zhou, J. (eds.) ICICS 01: 3rd International Conference
on Information and Communication Security. Lecture Notes in Computer Science,
vol. 2229, pp. 1–12. Springer, Heidelberg, Germany, Xian, China (Nov 13–16, 2001)

28. Shallue, A.: An improved multi-set algorithm for the dense subset sum problem.
In: Algorithmic Number Theory: 8th International Symposium, ANTS-VIII Banff,
Canada, May 17-22, 2008 Proceedings 8. pp. 416–429. Springer (2008)

29. Syta, E., Tamas, I., Visher, D., Wolinsky, D.I., Jovanovic, P., Gasser, L., Gailly,
N., Khoffi, I., Ford, B.: Keeping authorities “honest or bust” with decentralized
witness cosigning. In: 2016 IEEE Symposium on Security and Privacy. pp. 526–
545. IEEE Computer Society Press, San Jose, CA, USA (May 22–26, 2016). https:
//doi.org/10.1109/SP.2016.38

30. Wagner, D.: A generalized birthday problem. In: Yung, M. (ed.) Advances in Cryp-
tology – CRYPTO 2002. Lecture Notes in Computer Science, vol. 2442, pp. 288–
303. Springer, Heidelberg, Germany, Santa Barbara, CA, USA (Aug 18–22, 2002).
https://doi.org/10.1007/3-540-45708-9_19

28

https://doi.org/10.1007/s00145-011-9097-y
https://doi.org/10.1007/978-3-662-48800-3_28
https://doi.org/10.1007/s001450010003
https://doi.org/10.1007/s001450010003
https://doi.org/10.1109/SP.2016.38
https://doi.org/10.1109/SP.2016.38
https://doi.org/10.1007/3-540-45708-9_19

	A Concrete Analysis of Wagner's k-List Algorithm over Zp

