
Polynomial Commitments from Lattices: Post-Quantum Security, Fast
Verification and Transparent Setup

Valerio Cini1, Giulio Malavolta2, Ngoc Khanh Nguyen3, and Hoeteck Wee1

1 NTT Research, Sunnyvale, CA, USA
2 Bocconi University, Milan, Italy

3 King’s College London, London, UK

Abstract. Polynomial commitment scheme allows a prover to commit to a polynomial f ∈ R[X] of degree
L, and later prove that the committed function was correctly evaluated at a specified point x; in other words
f(x) = u for public x, u ∈ R. Most applications of polynomial commitments, e.g. succinct non-interactive ar-
guments of knowledge (SNARKs), require that (i) both the commitment and evaluation proof are succinct (i.e.,
polylogarithmic in the degree L) - with the latter being efficiently verifiable, and (ii) no pre-processing step is
allowed.

Surprisingly, as far as plausibly quantum-safe polynomial commitments are concerned, the currently most ef-
ficient constructions only rely on weak cryptographic assumptions, such as security of hash functions. Indeed,
despite making use of the underlying algebraic structure, prior lattice-based polynomial commitments still seem
to be much behind the hash-based ones. Moreover, security of the aforementioned lattice constructions against
quantum adversaries was never formally discussed.

In this work, we bridge the gap and propose the first (asymptotically and concretely) efficient lattice-based polyno-
mial commitment with transparent setup and post-quantum security. Our interactive variant relies on the standard
(Module-)SIS problem, and can be made non-interactive in the random oracle model using Fiat-Shamir transfor-
mation. In addition, we equip the scheme with a knowledge soundness proof against quantum adversaries which
can be of independent interest. In terms of concrete efficiency, for L = 220 our scheme yields proofs of size 2X
smaller than the hash-based FRI commitment (Block et al., Asiacrypt 2023), and 70X smaller than the very recent
lattice-based construction by Albrecht et al. (Eurocrypt 2024).

1 Introduction

Succinct arguments allow an untrusted prover to convince a verifier that a given computation is correctly executed,
while incurring communication and possibly verification time, that are much smaller than the computation size
[Kil92,Mic94]. In the past decade, we have seen substantial theoretical and practical interest as well as remarkable
progress in the construction of efficient succinct arguments, achieving different trade-offs between (transparent or
trusted) setup, underlying assumptions and efficiency. In this work, we focus on succinct non-interactive arguments
of knowledge (SNARKs) –such as those in [BBHR18a,BBHR18b,AHIV17,COS20,GLS+23,BCS23]– that simultane-
ously satisfy all of the following requirements:

(1) supports computation in all of NP;
(2) achieves communication and verification time that are sublinear, ideally poly-logarithimic, in computation size;
(3) non-interactive or interactive and public-coin;
(4) relies on a transparent setup (that is, a common random string);
(5) achieves fast prover time that is quasi-linear in computation size;
(6) relies on well-studied hardness assumptions;
(7) relies on post-quantum assumptions only.

Each of these properties is highly desirable from both a theoretical and practical stand-point. Moreover, properties
(1) – (6) are crucial for various real-world applications, and indeed, several of the SNARKs currently in deployment
[BBHR18b,AHIV17,Pol22] do satisfy all of (1) – (7). We refer to Fig 1 for a brief summary of prior SNARK construc-
tions.



Reference (1) (2) (3) (4) (5) (6) (7)

[Kil92,Mic94] ✓ ✓ ✓ ✓ ✓ ✓H
[Gro16] ✓ ✓ ✓ ✓
[BCC+16] ✓ ✓ ✓ ✓ ✓
[GWC19,CHM+20] ✓ ✓ ✓ ✓ ✓
[BFS20,BHR+21,Lee21] ✓ ✓ ✓ ✓ ✓ ✓
[BLNS20,BS23] ✓ ✓ ✓ ✓ ✓ ✓L
[CJJ22] ✓ ✓ ✓ ✓ ✓ ✓L
[ACL+22,CLM23] ✓ ✓ ✓ ✓ ✓ ✓L
[FMN23] ✓ ✓ ✓ ✓L
[AFLN23] ✓ ✓ ✓ ✓ ✓ ✓L
[BBHR18b,AHIV17,COS20,GLS+23,BGK+23] ✓ ✓ ✓ ✓ ✓ ✓ ✓H
[BCS23] ✓ ✓ ✓ ✓ ✓ ✓ ✓L

This work ✓ ✓ ✓ ✓ ✓ ✓ ✓✓L

Fig. 1. A brief (and incomplete) survey of prior SNARKs. The columns correspond to: (1) all of NP, (2) sublinear communica-
tion/verification, (3) non-interactive, (4) transparent set-up, (5) quasi-linear prover, (6) well-studied hardness, (7) post-quantum
assumptions. In (7), L: lattices, H: hash functions, and a ✓✓ indicates security against quantum adversaries.

Assumptions 215 220 225 230

FRI [BGK+23] RO 932KB 1.4MB 2MB -
[FMN23] PowerBASIS, RO - 3.4MB - 8.3MB
SLAP [AFLN23] M-SIS, RO - 36.5MB - 767MB

This work M-SIS, RO 120KB 501KB 1.51MB 5.17MB

Fig. 2. Efficiency comparison of plausibly post-quantum polynomial commitments over finite fields for the 128-bit security level
(apart from [BGK+23, Figure 6], where the sizes correspond to 80 bits of security), and degrees L ∈ {215, 220, 225, 230}. For
each construction, the Fiat-Shamir loss of Q ≈ 264 random oracle queries is taken into account. Data is taken as reported in the
respective works.

So far, almost all known schemes satisfying (1) – (7), including the aforementioned schemes in deployment, rely
on hash functions, with the only exception being the recent work of Bootle, Chiesa and Sotiraki [BCS23], hence-forth
BCS23, which is based on lattice assumptions. While the BCS23 scheme seems to be concretely less efficient than
prior hash-based schemes,4 anecdotal evidence –notably the adoption of lattice-based schemes in the NIST PQC com-
petition as the primary algorithms for both key encapsulation and signatures— suggests that lattice-based schemes
could ultimately outperform hash-based ones with respect to many efficiency metrics. Indeed, putting property (2)
aside, a recent lattice-based proof system by Beullens and Seiler [BS23] with linear-time verification achieves proof
size that beats prior hash-based schemes by an order of magnitude.

The currently most efficient constructions of SNARKs follow a common building template, i.e. combining an
information-theoretic proof system called Polynomial IOP (PIOP) [CHM+20], together with an extractable polyno-
mial commitment scheme [KZG10]. The latter one allows a party to commit to a polynomial f of degree L, and later
prove knowledge of the committed function that was correctly evaluated at a given point x, i.e. f(x) = u, where
x and u are known to the verifier. Thus, it suffices to construct an extractable polynomial commitment scheme that
satisfies (2)–(7).

1.1 Our Results

We present a new, simple and direct construction of lattice-based extractable polynomial commitments satisfying
properties (2) – (7), with polylog(L) communication and verification times, matching the asymptotic efficiency of the
BCS23 scheme. The security of our scheme relies on the standard (Module)-SIS assumption. Our construction com-
bines FRI-style folding [BBHR18a,BHR+21] with lattice homomorphism, a significant departure from the BCS23 ap-
proach which translates previous pairing-based schemes based on Bulletproofs to the lattice setting [Lee21,BBB+17,BCC+16].

4 We note that no concrete proof sizes were provided in [BCS23].

2



The simplicity of our construction together with the tight integration of lattice techniques further enables us to
achieve the following improvements over the BCS23 scheme.

No pre-processing. Our polynomial commitment scheme achieves sublinear verification times without any pre-
processing. This property is useful for building SNARKs for succinct R1CS instances with fast verification without
pre-processing.

Concrete efficiency. We combine a variant of our scheme with optimizations developed in the context of lattice-
based zero knowledge [LNS21,LNP22] to obtain a concretely-efficient scheme withO( 3

√
L) proof size and verification

complexity. In terms of concrete efficiency, for polynomials of degree L = 220, our scheme produces proofs of
size 2X smaller than the hash-based non-interactive FRI commitment [BGK+23], 6X smaller than the lattice-based
construction by Fenzi, Moghaddas, and Nguyen [FMN23] (which requires a trusted setup and relies on a non-standard
assumption), and 70X smaller than the very recent work by Albrecht et al. [AFLN23] (which requires a trusted setup).
We provide a summary comparison in Figure 2.

Post-quantum security. We show that our scheme is secure against quantum adversaries under the LWE as-
sumption, by combining the quantum rewinding framework from [CMSZ22,LMS22], with the notion of constructive
post-quantum reduction from [BBK22]. Ours is the first polynomial commitment with a proof of security against a
quantum adversary, and furthermore we obtain a negligible soundness error, filling a gap left open in [LMS22].

Our polynomial commitment enjoys several additional advantages over BCS23: (i) our scheme naturally supports
multilinear polynomials, and can therefore be used in conjunction with proof systems such as Hyperplonk [CBBZ23],
or lookup arguments [STW23], (ii) we show explicitly how to achieve negligible soundness (whereas BCS23 would
require parallel repetition [AF22]), (iii) our scheme uses a single polynomial-sized modulus, which comes in handy
when optimizing ring arithmetic in hardware, whereas BCS23 requires using two moduli, and the latter one is of
super-polynomial size.

While the concrete efficiency of our optimized scheme is still ≈ 10X worse than the lattice-based proof system
from [BS23], we believe that techniques of this work can pave a path towards practical quantum-safe polynomial
commitments from lattices.

1.2 Related Works

A notion of a polynomial commitment scheme was introduced by Kate, Zaverucha and Goldberg [KZG10], who
also proposed the first concrete instantiation from pairings. The widely-used KZG commitment is a core building
block of SNARKs [MBKM19,CHM+20,BCHO22], and cryptocurrency applications [Ard23]. Unfortunately, it seems
non-trivial to build a lattice analogue of KZG, and thus other approaches of building lattice-based polynomial com-
mitments were considered.

The most intuitive way to construct a polynomial commitment from lattices is to come up with a lattice-based
commitment scheme, together with a split-and-fold interactive proof of polynomial evaluation, which can then be
made non-interactive using the Fiat-Shamir transformation [FS87]. For instance, polynomial evaluation relation
f(x) = u can be seen as a linear equation

[
1 x x2 · · · xL

] f0...
fL

 = u (1)

where (f0, f1, . . . , fL) is the coefficient vector of L. Then, one could naively apply an inner-product argument, such
the lattice adaptation of Bulletproofs [ACK21,AL21,BLNS20], to prove (1). The main bottleneck of the aforementioned
works is verification complexity being linear in L. This issue has been recently overcome with two orthogonal
approaches: (i) [BCS23] proposed a new delegation protocol inspired by Dory [Lee21] that requires pre-processing,

3



(ii) [CLM23] introduced more structure on the commitment that allows fast verification at the cost of relying on a
new Vanishing-SIS assumption.

An alternative approach for proving polynomial evaluations in a split-and-fold fashion was introduced in FRI
[BBHR18a], and later adapted to the lattice setting in [FMN23]. In order to achieve fast verification, the latter
work relies on a new PowerBASIS assumption, which is an extension of the BASIS assumption [WW23] with addi-
tional power structure. Moreover, the construction seems to be impractical due to the requirement on trusted setup,
quadratic common reference string (CRS), and quadratic prover runtime. A very recent follow-up work by Albrecht et
al. [AFLN23] managed to reduce the CRS size, have a quasi-linear prover runtime, and rely on a standard Module-SIS
assumption. Nevertheless, the need of a trusted setup still remains.

Finally, there is a line of recent works on lattice-based functional commitments [ACL+22,BCFL22,dCP23,FLV23,WW23]
which can be naively used to prove (1). However, vast majority of those constructions requires pre-processing (i.e.
knowing x in advance). Moreover, only [ACL+22,BCFL22,FLV23] are extractable (although under a knowledge as-
sumption) but a trusted setup is needed.

Additional related work. The study of succinct arguments with concrete efficiency was initiated in the works of
[IKO07,Gro10,SMBW12]. Our protocol falls under the broader framework of compressed Σ-protocols [ACK21], and
the use of folding is also closely related to sum-check protocols [LFKN90,BCS21].

1.3 Paper Organization

We provide a technical overview of our results in Section 2. Preliminaries and notation are described in Section 3. In
Section 4 and Section 5 we describe our new commitment scheme together with a proof of evaluation. We then show
how to instantiate a polynomial commitment scheme in Section 6. In Appendix A we propose a concretely efficient
version of our protocol using cyclotomic rings. Finally, we provide a knowledge soundness proof against quantum
adversaries in Appendix B.

2 Technical Overview

In this section, we provide an overview of our results and main techniques. In the following, we denote L to be
the length of the witness, λ is a security parameter, and κ denotes a statistical security parameter, where 2−κ will
roughly be the knowledge soundness error. Here, we denote by ∥ · ∥ the infinity norm.

2.1 Succinct, extractable commitments from SIS

We start by constructing a succinct, extractable commitment based on hardness of the Shortest Integer Solution (SIS)
problem [Ajt96]. Concretely, the commitment to a vector of lengthL has size poly(λ, logL), and admits a public-coin
interactive proof of knowledge with communication poly(λ, logL), where λ is a security parameter. Binding holds
under the SIS assumption, and since the focus of this work is on succinctness and not zero-knowledge, we do not
require hiding.

More generally, the scheme takes as input an additional parameter r, and achieves:

– O( logL
log r ) rounds and communication r · poly(λ);

– prover time r · L · poly(λ) and verification time r · poly(λ).

Homomorphic SIS commitment. We start with the standard SIS commitment for vectors f ∈ ZL
q given by

f 7→ A ·G−1(f) ∈ Zn
q

where A ∈ Zn×L log q
q and G = IL ⊗ g⊤ ∈ ZL×L log q

q is the gadget matrix. The opening of a commitment t to f is
a low-norm vector s ∈ ZL log q such that

A · s = t mod q and G · s = f mod q.

4



Binding follows readily from SIS. Next, observe that the scheme satisfies the following homomorphism property:
given commitments tb to fb and openings sb, where b ∈ {0, 1}, along with any small scalars c0, c1 ∈ Zq , we can
compute a commitment c0 · t0 + c1 · t1 to c0 · f0 + c1 · f1 with opening c0 · s0 + c1 · s1.5

Tree-based variant. Following [PSTY13,LLNW16], we define a tree-like6 variant of the preceding scheme. Fix

Algebraic Point of View Tree-based Point of View

(Iκ ⊗A) ·G−1
rκn

(
(Irκ ⊗A) ·G−1

r2κn
(f)

)

(Irκ ⊗A) ·G−1
r2κn

(f)

f

t = (Iκ ⊗A) ·G−1
rκn

(
(Irκ ⊗A) ·G−1

r2κn
(f)

)

(Iκ ⊗A) ·G−1
rκn(f0)

f00 f01

(Iκ ⊗A) ·G−1
rκn(f1)

f10 f11

Fig. 3. Graphic representation of the tree-like variant for ℓ = 1 and r = 2. The vector f is parsed as f = (f0, f1), where fi ∈ Zrκn
q ,

and fi = (fi0, fi1), where fij ∈ Zκn
q . The expressions on the left hand side represent the concatenation of the nodes at the given

depth.

A ∈ Zn×rn log q
q . Then, (IL/rn ⊗A) ·G−1(f) ∈ ZL/r

q yields a commitment for f with compression factor r; using
a r-ary tree of depth ℓ + 1 then yields compression factor rℓ+1. Concretely, the commitment t ∈ Zκn

q to a vector
f ∈ Zrℓ+1κn

q is given by:

t := (Iκ ⊗A) ·G−1rκn

(Irκ ⊗A) ·G−1r2κn

(
· · ·G−1

rℓκn

(
(Irℓκ ⊗A) ·G−1

rℓ+1κn
(f)︸ ︷︷ ︸

sℓ

))
︸ ︷︷ ︸

s0

. (2)

The opening are short vectors (s0, . . . , sℓ) where sj ∈ Zrj+1κn log q , satisfying

(Iκ ⊗A) · s0 = t mod q,

Grj+1κn · sj = (Irj+1κ ⊗A) · sj+1 for all j ∈ [0, ℓ− 1],

Grℓ+1κn · sℓ = f mod q,

∥sj∥ ≤ β for all j ∈ [0, ℓ].

A key observation in this work is that the commitment scheme satisfies the following “folding-homomorphic” prop-
erty: given a commitment t to f and its opening (s0, . . . , sℓ), as well as any C ∈ {0, 1}κr×κ (a “folding challenge”),
then we can compute a commitment to (C⊤ ⊗ I) · f ∈ Zrℓκn

q (a “folded function”). Concretely,

t∗ := (C⊤ ⊗G) · s0 (a “folded commitment”)

5 Note that if we had defined the opening to be f and have the verifier check that A ·G−1(f)
?
= t, then the scheme would not

satisfy homomorphism because G−1(f0) +G−1(f1) ̸= G−1(f0 + f1).
6 Our construction can be thought of as a r-ary tree instantiated with the hash function: HA(x) = A ·G−1(x), for a uniformly

random A.

5



is a commitment to f∗ := (C⊤ ⊗ I) · f ∈ Zrℓκn
q with opening

(s∗0, . . . , s
∗
ℓ−1) :=

(
(C⊤ ⊗ I) · s1, . . . , (C⊤ ⊗ I) · sℓ

)
.

t = (Iκ ⊗A) ·

s0︷ ︸︸ ︷
G−1

rκn

(
(Irκ ⊗A) ·G−1

r2κn(f)

)

(Iκ ⊗A) ·G−1
rκn(f0)

f00 f01

(Iκ ⊗A) ·G−1
rκn(f1)

f10 f11

C
t∗ = (Ir ⊗A) ·G−1

rκn(f
∗)

f∗0 f∗1

Fig. 4. Graphic representation of one round of “homomorphic-folding” via the “folding challenge” C, for ℓ = 1 and r = 2. For
each i ∈ Zr , the challenge C is used to “collapse” all i-th sibling leaves of the old tree into a single leaf of the new tree, i.e.,
f∗b = C⊤ · (f0b, f1b). Notice that the new tree (right) has depth one less than the old one (left).

The proof is a straightforward application of the mixed-product property, which tells us C⊤ ⊗ I “commutes”
with I⊗A (see (11) for a precise statement). Moreover, ∥s∗j∥ ≤ rκβ for any j ∈ [0, ℓ− 1].

Looking ahead, we will use the fact that to compute t∗, it suffices to know the short partial opening s0 ∈ Zrκn log q .
Considering for a moment the tree-based viewpoint pictured in Figure 3, the “folding procedure” can be described

as follows: for each i ∈ Zr , the challenge C is used to “collapse” all i-th sibling leaves together into a single leaf of
a new tree. This is described pictorially in Figure 4. Using the algebraic structure of the hash function, such folding
propagates to every node of the tree. Moreover, there is a r-fold decrease in the number of leaves of the new tree
compared to those of the initial tree. Thus, in the process the depth of the tree is decreases by 1. Since the algebraic
point of view, together with the tensor product notation, is more amenable to be used to work with, we are going to
use the algebraic prospective only in the rest of the paper.

Proof of knowledge via folding. Proof of knowledge proceeds recursively in ℓ rounds via FRI-style folding
[BBHR18a] (also used in [BHR+21,FMN23]): to prove knowledge of an opening to f ∈ Zrℓ+1κn

q for a commitment
t ∈ Zκn

q :

– the prover sends y := s0 ∈ Zrκn log q ;
– the verifier checks that ∥y∥ is small and that (Iκ⊗A) ·y = t; then sends a random challenge C← {0, 1}κr×κ;
– both parties derive the new commitment t∗ := (C⊤ ⊗ G) · y, and the prover derives an opening of t∗ to

f∗ := (C⊤ ⊗ I) · f via the above-mentioned folding homomorphism property.

We repeat the above protocol ℓ times until we arrive at a commitment to a vector of length κn, for which the prover
can simply send its opening, which will have norm at most (rκ)ℓβ.

Next, we need to construct a knowledge extractor that outputs f along with an opening to f . The knowledge
extractor is also constructed recursively, following the coordinate-wise extraction strategy from [BBC+18,FMN23].
Informally, this means that we need to compute an opening of t to f given openings of t∗k to f∗ corresponding to
different challenges Ck .

The idea is to first run the cheating prover in the recursive step to obtain openings for some challenge C0, and
then rewind the cheating prover many times, so as to obtain openings for challenges C1, . . . ,Crκ, where Ck agrees

6



with C0 in all columns except column k. We can then argue that with probability 1 − rκ · 2−κ, we can recover
f (respectively short sj , j ∈ [ℓ]) given ((C⊤k − C⊤0 ) ⊗ I) · f (respectively ((C⊤k − C⊤0 ) ⊗ I) · sj , j ∈ [ℓ]) for all
k ∈ [rκ]. In each recursive step, we will need to rewind the cheating prover roughly (rκ) times, which means the
overall extractor will need to make (rκ)ℓ queries to a cheating prover. For vectors of length L ≈ rℓ, the number of
queries is bounded by ≈ L2 as long as we choose r ≥ κ.

As for the norm of the extracted openings, they increase by a factor of two after each recursive step. Since
the initial opening, which is the last prover message, has norm (rκ)ℓβ, this means that the coefficients of the final
extracted opening must be (in the absolute value) at most (2rκ)ℓβ. Moreover, the proof system modulus q has to be at
least larger than (twice) the extracted norm to ensure binding, and thus q = (2rκ)ℓβ ·poly(λ). By setting parameters
(r, k, ℓ) as above, we get q = L2 · poly(λ). This is a significant improvement over BCS23, where a super-polynomial
modulus q = O(Llog λ) is required for the soundness analysis.

Finally, we give a rough estimation on the proof size of the protocol. First, to obtain negligible soundness error, we
select r = κ = O(λ), and consequently ℓ = O( logL

log λ ). Furthermore, for security of the underlying SIS assumption,
we require at least n = O(λ). Since for now we were using a gadget matrix with base two, we have β = 1. By
assuming q = O((2rκ)ℓβ) = O(L2), the total size of all the prover messages can be asymptotically bounded by

O

(
λ3 · log

3 L

log λ

)
bits. (3)

2.2 Upgrading to polynomial commitments

Next, we describe how to modify our extractable commitment scheme so that the prover can prove evaluation of
the committed function f ∈ Zrℓ+1κn

q as a multilinear polynomial, with a small increase in communication and
computation. Namely, in addition to the commitment t, both the prover and the verifier receive x0, . . . ,xℓ ∈ Zr

q and
u ∈ Zκn

q , and we want to check that7

(Iκn ⊗ x⊤ℓ ) · (Irκn ⊗ x⊤ℓ−1) · · · (Irℓκn ⊗ x⊤0 ) · f = u (4)

Observe that the computation as described above has the same r-ary depth ℓ tree structure as our commitment in (2).
It is easy to see that for n = 1, κ = 1, r = 2, this captures polynomial evaluation for both multi-linear polynomials
in ℓ+ 1 variables and univariate polynomials of degree 2ℓ+1, where f corresponds to the coefficient vector of these
polynomials.

Proof of evaluation via folding. We proceed recursively via FRI-style folding as before:

– the prover sends v := (Irκn ⊗ x⊤ℓ−1) · · · (Irℓκn ⊗ x⊤0 ) · f in addition to y;
– verifier checks that (Iκn ⊗ x⊤ℓ ) · v = t in addition to the previous checks on y, then sends C← {0, 1}rκ×κ as

before;
– both parties compute u∗ := (C⊤ ⊗ I) · v in addition t∗;
– the prover derives the opening of t∗ to f∗ as before.

The prover proceeds then recursively to prove that the committed function in t∗ evaluates at (xℓ−1, . . . ,x0) to u∗.
Completeness relies on the following equality, which again follows from the mixed-product property:

(Iκn ⊗ x⊤ℓ−1) · · · (Irℓ−1κn ⊗ x⊤0 ) ·

f∗︷ ︸︸ ︷
(C⊤ ⊗ I) · f)

=

u∗︷ ︸︸ ︷
(C⊤ ⊗ I) ·

v︷ ︸︸ ︷
(Irκn ⊗ x⊤ℓ−1) · · · (Irℓκn ⊗ x⊤0 ) · f .

7 Note that the computation is over Zq , which matches the SIS modulus used in our commitment scheme. In contrast, BCS23
considers polynomials over Zp, where p is smaller than the SIS modulus. Moreover, there are no norm bounds on the vectors
f or x0, . . . ,xℓ, unlike the multi-variate polynomial commitments in [ACL+22].

7



P
(
(A, t,x0,x1,x2,u),

(s0, s1, s2)

)
V
(
(A, t,x0,x1,x2,u)

)
y0 := s0
v0 := (Irκn ⊗ x⊤

1 ) · (Ir2κn ⊗ x⊤
0 ) · f

y0,v0 -
C1 ← Crκ×κ

C1�
y1 := (C⊤

1 ⊗ Irn log q) · s1
v1 := (Irκn ⊗ x⊤

0 ) · (C⊤
1 ⊗ Ir2n) · f

y1,v1 -
C2 ← Crκ×κ

C2�
y2 := (C⊤

2 ⊗ Irn log q) · (C⊤
1 ⊗ Ir2n log q) · s2

v2 := (C⊤
2 ⊗ Irn) · (C⊤

1 ⊗ Ir2n) · f
y2,v2 -

Accept if all the following hold:
(Iκ ⊗A) · y0 = t

(Iκ ⊗A) · y1 = (C⊤
1 ⊗ In) ·Grκn · y0

(Iκ ⊗A) · y2 = (C⊤
2 ⊗ In) ·Grκn · y1

Grκn · y2 = v2

(Iκn ⊗ x⊤
2 ) · v0 = u

(Iκn ⊗ x⊤
1 ) · v1 = (C⊤

1 ⊗ In) · v0

(Iκn ⊗ x⊤
0 ) · v2 = (C⊤

2 ⊗ In) · v1

∥y0∥ ≤ β0

∥y1∥ ≤ β1

∥y2∥ ≤ β2

Fig. 5. Proof of knowledge of short (s0, s1, s2) ∈ Zrκn log q
q × Zr2κn log q

q × Zr3κn log q
q which satisfy Equations (5) and (6). Here,

C := {0, 1}.

Formally, we define a relation Rℓ,βℓ
over instances (A,x0, . . . ,xℓ,u, t), where the witness is an opening (with norm

at most βℓ) of t to f such that f satisfies (4). Then, the recursive step can be viewed as a reduction from Rℓ,βℓ
to

Rℓ−1,βℓ−1
(cf. Section 5).

For the ease of presentation, we describe the combined protocol for ℓ = 2 in Figure 5 (and the more general
setting in Figure 6); this protocol also serves as the starting point of our concretely-efficient scheme. The relation is
specified by x0,x1,x2 ∈ Zr

q , f ∈ Zr3κn
q and the output is

u := (Iκn ⊗ x⊤2 ) · (Irκn ⊗ x⊤1 ) · (Ir2κn ⊗ x⊤0 ) · f ∈ Zκn
q . (5)

That is, the goal is to show (5) holds given commitment

t = (Iκ ⊗A) ·G−1rκn

(
(Irκ ⊗A) ·

s1︷ ︸︸ ︷
G−1r2κn

(
(Ir2κ ⊗A) ·G−1r3κn(f)︸ ︷︷ ︸

s2

))
︸ ︷︷ ︸

s0

∈ Zκn
q . (6)

In other words, the protocol described in Figure 5 can be seen as the sequential repetition of above protocol twice,
followed by the trivial protocol where the prover simply sends the witness to the verifier.

Optimizations. The protocol above can be further optimized as follows. First, there is no need to set t as a commit-
ment, if we already send the partial opening s0 in the clear. Hence, we can simply treat s0 (or more efficiently, Gs0)

8



as a commitment to f . Moreover, for both asymptotic and concrete efficiency, it is more beneficial to consider gadget
matrices with larger bases than 2, such as q1/α where α = O(1). Hence, we manage to asymptotically reduce the
proof size to

O

(
λ3 · log

2 L

log λ

)
bits. (7)

Finally, for flexibility reasons, one may use different dimensions (ri)i for the matrices (Ai)i, which could slightly
reduce the total proof size.

2.3 Concrete Efficiency via Cyclotomic Rings

Despite asymptotic efficiency, the previously described protocol seems to provide concretely large proofs. Indeed,
when setting realistic parameters, such as L = 220 and λ = 128, the expression calculated in Eq. (7) becomes around
223, which would result in at least a few tens, if not hundred, megabytes. The dominant term is undoubtedly λ3,
which consists of the following three terms: (i) dimension n responsible for SIS hardness, (ii) folding factor r, and
(iii) soundness amplification factor κ. Recall that the last parameter is responsible for keeping the soundness error
rκ ·2−κ negligible, where the “2” comes from the size of the set C = {0, 1}. Obviously, to reduce κ one could naively
pick a larger set of integers C but this comes at the cost of the increased norm of the prover messages, and thus the
proof system modulus.

Motivated by the above limitations, we translate our protocol to the setting of power-of-two cyclotomic rings
Rq := Zq[X]/(Xd+1)where d = O(λ). This allows us to pick an exponential-sized set C of short-norm polynomials,
e.g. with coefficients in {0, 1}. Consequently, we can set κ = 1, and thus gain a potential factor of λ improvement
in the proof size, while keeping the prover messages relatively short.

Unfortunately, a serious issue arises when performing knowledge extraction. Indeed, for the previous protocol
we relied on a crucial property of C = {0, 1} that an inverse of any two distinct challenges is short. In the ring
setting, such sets can have at most polynomial size [AL21], which would limit us to κ = O(λ/ log λ). Of course, one
could stick with exponential-sized challenge spaces C of binary polynomials and stubbornly continue the knowledge
soundness argument as before. Then, instead of trying to extract a short witness s̄ which satisfies some relations, we
would extract a (possibly large) witness s̄, together with a scalar c̄ called slack, such that c̄·s̄ is short. We show that our
commitment scheme is binding with respect to such relaxed openings. However, performing an analogue extraction
strategy from Section 2.1 in the ring setting yields a slack c̄ of huge norm O(λ2

ℓ

). Since, for binding purposes, the
proof system modulus has to be larger than the slack norm, when setting ℓ = logL we get that log q = O(L),
and thus the protocol loses the succinctness property. Concretely, this becomes problematic even for relatively small
values of ℓ.

Since here we are interested in concrete efficiency, we consider the protocol in Figure 5 as a base case of our
polynomial commitment scheme with communication and verifier complexity O( 3

√
L) and ℓ = 2. In addition, to

further decrease the slack norm, we substitute the second part of the protocol with a new exact proof of knowledge
of a short vector s ∈ Rrm

q which satisfies

(Ir ⊗A) · s = t and ∥s∥ ≤ β. (8)

Here, “exact” means that the extracted vector s is indeed short, and thus no slack is required. To this end, we apply the
approximate range proof methodology from [BL17,LNS21], which says that if a random projection #»p = P · #»v mod q
is short, where P ← χλ×m is a uniformly random matrix with small coefficients over Zq and #»v ∈ Zm

q , then with
an overwhelming probability #»v must also be short.

The protocol starts by the verifier sending the projection matrix P ← χλ×md, to which the prover replies with
the projection

#»p := (Ir ⊗ P ) · #»s ∈ Zrλ
q , (9)

where #»s := ( #»s 1, . . . ,
#»s r) ∈ Zrmd

q is the coefficient vector of s. The verifier can manually check that #»p is short,
which intuitively proves that #»s must be short as long as we prove well-formedness of the projection #»p .

By applying the Zq-to-Rq transformation presented in [LNP22], we reduce proving (9) to proving a tensor-type
equation over Rq :

(Ir ⊗N) · s = γ (10)

9



where N and γ can be computed by the verifier (we omit the exact formulas for the sake of presentation). Finally,
proving Equations (8) and (10) follows exactly as in Section 2.1. The overall ring-based protocol is summarized in
Figure 7 and described in Appendix A.

We highlight that in the knowledge extraction of our O( 3
√
L)-size protocol we still need to account for slack.

Indeed, our exact proof system is only applied in the second phase, while the first one remains the same as in Figure 5.
To completely remove slack from the extraction analysis, one would need to be able to efficiently prove this type of
statements over Zq :

#»p := (Ir ⊗ P1) · (Ir2 ⊗ P2) · #»s .

One may try to follow our methodology for the “single-tensor” case presented above. Unfortunately, it is non-trivial
whether one could reduce the equation (using techniques from [LNP22] or otherwise) to an equivalent tensor-type
statement over Rq . Hence, in the security analysis we need to deal with the slack norm, but it is greatly reduced
thanks to the exact proof in the second part of the protocol.

2.4 Post-Quantum Security

Proving post-quantum security of our polynomial commitment boils down to finding an extractor that, given a (quan-
tum) adversary that succeeds in the protocol with non-negligible probability, recovers a valid committed polynomial
with a similar probability. The main challenge in these settings is that, in general, one cannot freely rewind quantum
algorithms, without violating the no-cloning theorem. Fortunately a series of work have developed the necessary
technical toolkit to carry over rewinding arguments in the quantum settings. Relevantly for us, the work of [LMS22],
which in turn builds in the framework of [CMSZ22], shows a general theorem for rewinding folding-like protocols.
Specifically, they show that if a protocol is (i) recursive special sound and (ii) last-round collapsing8, then it is indeed
possible to rewind the attacker and recover a witness via a quantum extractor, which is the moral analogue of the
classical algorithm.9

To understand the challenge, let us first see what goes wrong in applying the theorem of [LMS22] to our set-
tings. First of all, it is actually easy to show that our protocol is last-round collapsing. As we have seen, our proto-
col is obtained by sequentially composing a 2-round subroutine: the partial transcript (z0, c1, . . . , zi−1, ci) for the
first i rounds determines a “partial statement/witness pair” (xi, wi). The “partial witness” wi can be computed by
the prover given the initial witness w0 and the protocol transcript. Loosely speaking, last-round collapsing says
that measuring the register that contains wi should be “undetectable” (provided it is a valid witness). Given recent
works [LZ19,LMZ23] that show that the SIS-function is collapsing [Unr16], a sufficient condition to achieve the
last-round collapsing property is that

xi“contains a SIS-hash of” wi.

Roughly speaking, in our protocol, we have
(I⊗A) · wi = xi

Hence, the above condition is verified, and undetectability of the measurement follows immediately by the LWE
assumption, by invoking [LZ19,LMZ23].

However, the trouble starts when considering recursive special soundness. The somewhat subtle point here is
that the regular notion of special soundness describes an extractor that, given responses for uniformly sampled
challenges, is able to recover the witness. Instead, our protocol satisfies the weaker notion of coordinate-wise special
soundness, where the extractor is only guaranteed to work if the adversary provides correct answers for challenges
sampled from a highly correlated distribution. The specifics of this distributions are irrelevant for the purpose of this
discussion, and it suffices to remark that the extractor from [LMS22] crucially relies on the fact that the queries to
the adversary are (close to) independently sampled. As a result, when applied to our protocol, there is no guarantee
that the extractor of [LMS22] succeeds.

8 It is also implicitly required that the last round of the protocol corresponds to the plain witness of the “folded” relation. In this
overview we gloss over this property, since it is trivially satisfied by our protocol.

9 The work of [LMS22] has to deal with several technical nuances, such as truncating the extractor to ensure that it can be
implemented by a polynomial-size quantum circuit, which also show up in our settings. However, in this overview we largely
ignore such issues, and we refer the reader to the technical sections for more details.

10



We bypass this technical hurdle by combining the rewinding strategy of [LMS22], with the techniques introduced
by a recent work of Bitansky et al. [BBK22]. This work introduces a general strategy to translate classical reductions to
post-quantum strategies. Relevantly for us, they show a method to simulate a reduction against a stateless adversary,
even when the actual adversary can maintain a state across several queries. This allows us to treat the quantum
adversary as if they “forgot” about previous queries, and therefore their response is (statistically close to) independent
for each individual query. Carefully combining this simulator with (a variant of) the extraction strategy of [LMS22],
yields the final extractor.

3 Preliminaries

Notations. We use boldface lower case for row vectors (e.g. r) and boldface upper case for matrices (e.g. R). For
integral vectors and matrices (i.e., those over Z), we use the notation ∥r∥, ∥R∥ to denote the maximum absolute
value over all the entries. We use v ← D to denote a random sample from a distribution D, as well as v ← S
to denote a uniformly random sample from a set S. We use ≈s and ≈c as the abbreviation for statistically close
and computationally indistinguishable. For integers a ≤ b, we denote [a, b] := {a, a + 1, . . . , b}, and in particular
[n] := [1, n] for n ≥ 1. Let α, δ, q ∈ Z,

gα,q = (1, δ, δ2, . . . , δα−1) ∈ Zα,

where α = logβ q. The gadget matrix Gn,α,q = gα,q ⊗ In ∈ Zn×n·α. For any t ∈ Z, the function G−1n,α,q :
Zn×t
q → {0, 1}n·α×t expands each entry a ∈ Zq of the input matrix into a column of size α consisting of the base-δ

representation of a. For any matrix A ∈ Zn×t
q it holds that Gn,α,q ·G−1n,α,q(A) = A mod q. We drop parameters α

and q when they are clear from context.

Properties of Kronecker product. If A, B, C, and D, are matrices of such size that one can form the matrix
products A ·C, and B ·D, then

(A⊗B) · (C⊗D) = (A ·C)⊗ (B ·D).

This is called the mixed-product property because it mixes the ordinary matrix product and the Kronecker product.
An easy corollary is the following statement, which is a formalization of the statement “X⊗I and I⊗Y commutes”:

(X⊗ It·nrow(Y)) · (It·ncol(X) ⊗Y) = (It·nrow(X) ⊗Y) · (X⊗ It·ncol(Y)) (11)

3.1 Commitment Scheme

Definition 1. A (non-interactive) commitment scheme overM with slack space S is a tuple of polynomial-time prob-
abilistic algorithms CM = (Setup,Commit,Open) with the following syntax.

– Setup(1λ, d)→ pp: Sample public parameters given a security parameter λ and message length d.
– Commit(pp, f)→ (C, st): Use the public parameters pp to compute a commitment C to a message f ∈M and an

auxiliary state st.
– Open(pp, C, f, st, s)→ b: Takes public parameters pp, a commitment C , a message f ∈M, an auxiliary state st,

and a relaxation factor s ∈ S and outputs a bit b indicating whether C is a valid commitment to f under pp.

We require commitment schemes to satisfy the following completeness and (relaxed) binding properties.
Definition 2 (Completeness). A commitment scheme CM = (Setup,Commit,Open) satisfies completeness if for all
λ, d ∈ N, and for every f ∈M

Pr

[
Open(pp, C, f, st,⊥) = 1

∣∣∣∣ pp← Setup(1λ, d)
(C, st)← Commit(pp, f)

]
≥ 1− negl(λ).

Definition 3 (Relaxed Binding). A commitment scheme CM = (Setup,Commit,Open) satisfies relaxed binding if
for every PPT adversary A

Pr

 f ̸= f ′ with f, f ′ ∈M
∧

Open(pp, C, f, st, s) = Open(pp, C, f ′, st′, s′)

∣∣∣∣∣∣ pp← Setup(1λ, d)
(C, (f, st, s), (f ′, st′, s′))← A(pp)

 ≤ negl(λ).

11



3.2 Interactive Proofs

Let R ⊆ {0, 1}∗×{0, 1}∗×{0, 1}∗ be a ternary relation. If (pp, x, w) ∈ R, we say that pp are the public parameters,
x is a statement and w is a witness for x. For fixed pp and x, we define the set R(pp, x) := {w : (pp, x, w) ∈ R}.

Definition 4 (Interactive Proof System). Let ℓ ≥ 0 be an integer. A (2ℓ+1)-message public-coin argument system
Π = (Setup,P,V) for a relation R consists of a PPT algorithm Setup and a (2ℓ + 1)-message protocol between an
interactive PPT prover P and an interactive PPT verifier V , is associated to a tuple of spaces (X,W, (Zi−1, Ci)i∈[ℓ], Zℓ),
and has the following structural properties:

– The Setup algorithm takes as input the security parameter 1λ and outputs some public parameters pp.
– Both P and V receive as input the public parameters pp and a statement x0 = x ∈ X . The prover P additionally

receives a witness w0 = w ∈W .
– The public parameters, the statement x0, and the 2ℓ+1messages sent by P and V in the protocol, called collectively

a transcript is labelled by
(pp, x0, z0, c1, . . . , zℓ−1, cℓ, zℓ),

where zi ∈ Zi is sent by P , and ci ∈ Ci is sent by V .
– The challenges ci are sampled by V uniformly randomly from Ci.

A transcript (pp, x0, z0, c1, . . . , zℓ−1, cℓ, zℓ) is said to be accepting forΠ if it holds that V(pp, x0, z0, c1, . . . , zℓ−1, cℓ,
zℓ) = 1.

We recall a few basic properties of interactive proof systems: completeness and knowledge soundness.

Definition 5 (Completeness). A proof system Π = (Setup,P,V) for the relation R has statistical completeness
with correctness error ϵ if for all adversaries A,

Pr

b = 0 ∧ (pp, x, w) ∈ R

∣∣∣∣∣∣
pp← Setup(1λ)
(x,w)← A(pp)

(tr, b)← ⟨P(pp, x, w),V(pp, x)⟩

 ≤ ϵ(λ).
Furthermore, we say that Π satisfies perfect completeness if ϵ = 0.

Definition 6 (Knowledge Soundness). A proof system Π = (Setup,P,V) is knowledge sound with knowledge
error κ for the relation R∗ if there exists an expected PPT extractor E such that for any stateful PPT adversary P∗:

Pr

b = 1 ∧ (pp, x, w) ̸∈ R∗

∣∣∣∣∣∣∣∣
pp← Setup(1λ)
(x, st)← P∗(pp)

(tr, b)← ⟨P∗(pp, x, st),V(pp, x)⟩
w ← EP∗(pp, x)

 ≤ κ(λ).
Here, the extractor E has a black-box oracle access to the (malicious) prover P∗ and can rewind it to any point in the
interaction.

An additional property that one might require is that the proof system is “friendly to recursive composition”.
We formalize such a property in the following definition, which is inspired by the notion of reduction of knowledge,
recently introduced by Kothapalli and Parno [KP23].

Definition 7 (Recursive-Friendly Proof System). A (2ℓ+1)-message public-coin argument systemΠ = (Setup,P,V)
for a relation R is said to be recursive friendly if for all i ∈ [0, ℓ − 1] there exists associated relation Rℓ−i, and deter-
ministic algorithms Pi, Vi, NextWi, and NextXi such that

– Rℓ = R,
– Pi(pp, xi, wi)→ zi: Takes as input public parameters pp, and statement-witness pair (xi, wi). It returns zi, i.e., the
i-th prover’s message.

– Vi(pp, xi, zi)→ bi: Takes as input public parameters pp, statement xi, and message. zi. It returns a bit bi.

12



– NextWi(pp, xi, wi, ci+1)→ wi+1: Takes as input public parameters pp, statement-witness pair (xi, wi) and chal-
lenge ci+1. It produces a new witness wi+1 associated with Rℓ−i−1.

– NextXi(pp, xi, zi, ci+1) → xi+1: Takes as input public parameters pp, statement xi, prover’s message zi, and
challenge ci+1. It produces a new statement xi+1 associated with Rℓ−i−1.

– The last prover’s message corresponds to the reduced witness associate to R0, i.e., zℓ := wℓ.
– V accepts if b0, . . . , bℓ−1 = 1 and (pp, xℓ, wℓ) ∈ R0.

A recursive-friendly argument system forR is said to be round-by-round complete for the tuple of relations (Rℓ−i)i∈[0,ℓ]
if for all i ∈ [0, ℓ− 1]

– bi = 1 whenever (pp, xi, wi) ∈ Rℓ−i,
– (pp, xi+1, wi+1) ∈ Rℓ−i−1 whenever (pp, xi, wi) ∈ Rℓ−i.

It is easy to show that round-by-round completeness implies (standard) completeness of the proof system.

Theorem 1. LetΠ = (Setup,P,V) be a (2ℓ+1)-message public-coin recursive friendly argument system for a relation
R with associated relations (Rℓ−i)i∈[0,ℓ]. If Π is round-by-round for the tuple of relations (Rℓ−i)i∈[0,ℓ], then Π is
complete for the relation R.

A formal proof of Theorem 1 can be found in Appendix C.

3.3 Polynomial Commitment Scheme

Polynomial commitment schemes extend commitments with the ability to prove evaluations of the committed func-
tion.

Definition 8. Let PC = (SetupCM,Commit,Open,SetupIP,P,V) be a tuple of algorithms. PC is a functional com-
mitment scheme for function class F with slack space S if

– (SetupCM,Commit,Open) is a commitment scheme over the function class

M := F

with slack space S .
– (SetupIP,P,V) is a proof system (Definition 4) for the relation

(pp, (ppCM, C,x,u), (f, st)) ∈ R ⇐⇒ Open(ppCM, C, f, st,⊥) = 1 ∧ f(x) = u

The class of functionF , supported by a polynomial commitment scheme will be a set of polynomials. See Section 6 for
the classes of polynomials that we consider. We say that the polynomial commitment scheme satisfies the evaluation
completeness and knowledge soundness properties if (SetupIP,P,V) is complete and knowledge sound respectively.

3.4 Coordinate-Wise Special Soundness

We recall the notion of coordinate-wise special soundness from [FMN23]. Let S be a finite set and ξ ∈ N denote
the number of coordinates. First, take two vectors x := (x1, . . . , xξ),y := (y1, . . . , yξ) ∈ Sξ . Then, we define the
following relation “≡i” for fixed i ∈ [ξ] as:

x ≡i y ⇐⇒ xi ̸= yi ∧ ∀j ∈ [ξ]\{i}, xj = yj .

In other words, vectors x and y have the same entries in all coordinates apart from the i-th one. For ξ = 1, the
relations boil down to checking whether two elements are distinct. Next, we define the set

Γ (S, ξ) :=
{
(x1, . . . ,xξ+1) ∈ (Sξ)ξ+1 : ∃k ∈ [ξ + 1],∀i ∈ [ξ],∃j ∈ [ξ + 1]\{k},xk ≡i xj

}
Now, we can define (round-by-round) coordinate-wise special soundness for recursive-friendly proof system, adapt-
ing the definition from [FMN23].

13



Definition 9 (Round-by-Round Coordinate-Wise Special Soundness). Let Π = (Setup,P,V) be a (2ℓ +
1)-message public-coin recursive friendly argument system for relation R. The protocol Π is said to be round-by-
round ξ-coordinate-wise special sound for relations (R∗ℓ−i)i∈[0,ℓ] if the challenge space equals Sξ and for any i ∈
[0, ℓ − 1] there exists an extractor Exti that given as input (pp, xi) and (ξ + 1) transcripts (zi, c

(k)
i+1), where the

challenges together lie in Γ (S, ξ) and such that bi = 1, where bi ← Vi(pp, xi, zi), together with w
(k)
i+1 such that(

pp,NextXi(pp, xi, (zi, c
(k)
i+1)), w

(k)
i+1

)
∈ R∗ℓ−i−1, returns wi such that (pp, xi, wi) ∈ R∗ℓ−i.

It is easy to show that round-by-round coordinate-wise special soundness implies implies coordinate-wise spe-
cial soundness as defined in [FMN23, Definition 2.30]. Furthermore, it was shown in [FMN23, Lemma 2.31] that
coordinate-wise special soundness implies knowledge soundness in the interactive setting, against a classical adver-
sary. Putting everything together, we obtain the following result.

Theorem 2. Let Π = (Setup,P,V) be a (2ℓ + 1)-message public-coin recursive friendly argument system for a
relation R with associated relations (Rℓ−i)i∈[0,ℓ]. If Π is round-by-round ξ-coordinate-wise special sound for the tuple
of relations (R∗ℓ−i)i∈[0,ℓ] and (ξ +1)ℓ = poly(λ), thenΠ is knowledge sound for the relationR∗ℓ with knowledge error
ℓξ/|S|.

A formal proof of Theorem 2 can be found in Appendix C.
We skip writing ξ when it is clear from the context. Also, the definition can be easily extended to support different

arities ξ1, . . . , ξℓ.
Next, we show a technical lemma which uses the coordinate-wise property defined above.

Lemma 1. Let ξ ≥ 1. Given C0,C1, . . . ,Cξ ∈ Γ ({0, 1}h, ξ), i.e., satisfying the coordinate-wise property, we can
compute a matrix H ∈ {0,±1}h(ξ+1)×ξ such that:

[C0 | C1 | · · · | Cξ] ·H = Iξ

Proof. Let ei denote the i-th unit vector in Zh(ξ+1). Without loss of generality, we can assume C0 and Ci only differ
in the k-th row. Therefore, the only non-zero row of C̄i := C0 −Ck is the k-th one. Moreover, since both C0 and
Ck are binary matrices, C̄k ∈ {0,±1}ξ×h. Let sk ∈ [h] be such that C̄k[k, sk] ̸= 0 and

hk := C̄k[k, sk] · (esk − esk+kh) ∈ Zh(ξ+1).

Therefore, by defining
H := [h1 | . . . | hξ] ∈ Zh(ξ+1)×ξ,

we obtain that
[C0 | C1 | · · · | Cξ] ·H = Iξ.

as claimed. This concludes the proof. ⊓⊔

4 Basic Commitment Scheme

Let CM = (Setup,Commit,Open) be a tuple of algorithms defined as follows

– Setup(1λ, L = rℓ+1κnτ) : Let r, κ, n, τ, ℓ, α ∈ N. Sample A←Zn×rnα
q . Set pp = {A}, and return pp.

– Commit(pp, f ∈ Zrℓ+1κnτ
q ): Compute

t = (Iκτ ⊗A) ·G−1rκnτ

(
(Irκτ ⊗A) ·G−1r2κnτ

(
· · ·G−1

rℓκnτ

(
(Irℓκτ ⊗A) ·G−1

rℓ+1κnτ
(f)
)))
∈ Zκnτ

q

and
sj := G−1rj+1κnτ

(
(Irj+1κτ ⊗A) ·G−1rj+2κnτ

(
· · ·G−1

rℓκnτ

(
(Irℓκτ ⊗A) ·G−1

rℓ+1κnτ
(f)
)))

∈ Zrj+1κnτα

for j ∈ [0, ℓ]. Set st = (sj)j∈[0,ℓ] and return (t, st).

14



Parameters Explanation
λ security parameter
q modulus
L bound on the dimension of the committed vector
n height of the matrix A
r “folding” factor
α width of the vector g⊤

κ statistical parameter
ℓ number of nested G−1(·)
δ bound on norm of G’s preimages
β bound check on norm of opening

Table 1. Summary of parameters and notation used in Sections 4 and 5 and Appendix A

– Open(pp, t, f , st,⊥): Parse st = (sj)j∈[0,ℓ]. Return 1 if and only if

(Iκτ ⊗A) · s0 = t mod q,

Grj+1κnτ · sj = (Irj+1κnτ ⊗A) · sj+1 for all j ∈ [0, ℓ− 1],

Grℓ+1κnτ · sℓ = f mod q,

∥sj∥ ≤ β for all j ∈ [0, ℓ].

4.1 Completeness and Security Analysis

Next, we show that the basic commitment scheme satisfies completeness and binding.

Theorem 3 (Completeness). The commitment scheme CM, with β ≥ δ, is complete.

Proof. This follows trivially from the definition of G−1(·). ⊓⊔

Theorem 4 (Binding). The commitment scheme CM is binding assuming SISn,rnα,q,β′ with β′ ≥ 2β.

A formal proof of Theorem 4 can be found in Appendix D.

5 Basic Construction

In this section, we construct a simple and asymptotically efficient protocol for proving that f ∈ Zrℓ+1κnτ
q is such that

(Iκn ⊗Xℓ) · (Irκn ⊗Xℓ−1) · · · (Irℓκn ⊗X0) · f = u mod q

where Xj ∈ Zτ×rτ
q and u ∈ Zκnτ

q . In order to do so, consider the following relation

Rℓ,βℓ
:=


pp := (q, n, α, τ, κ, r),

(A, t, (Xj)j∈[0,ℓ],u),
((sj)j∈[0,ℓ], f)


∣∣∣∣∣∣∣∣

∀j ∈ [0, ℓ], ∥sj∥ ≤ βℓ,
∀j ∈ [0, ℓ− 1],Grj+1κnτ · sj = (Irj+1κτ ⊗A) · sj+1,

(Iκτ ⊗A) · s0 = t, Grℓ+1κnτ · sℓ = f ,∏ℓ
j=0(Irjκn ⊗Xℓ−j) · f = u

,
where instance x and witness w are respectively

x = x0 :=
(
A ∈ Zn×rnα

q , t ∈ Zκnτ
q , (Xj ∈ Zτ×rτ

q )j∈[0,ℓ],u ∈ Zκnτ
q

)
w = w0 :=

(
(sj ∈ Zrj+1κnτα)j∈[0,ℓ], f ∈ Zrℓ+1κnτ

q

)
Notice that the witness corresponds to the output of the opening algorithm Open of the commitment scheme from
Section 4. In Section 5.1 we construct a recursive-friendly proof system Π (see Fig. 6) for the relation Rℓ,β , and in
Section 5.2 deduce completeness and knowledge soundness of Π .

15



5.1 Building Block and Construction

Recall that a recursive-friendly (2ℓ + 1)-message argument system for relation R = Rℓ,βℓ
is described by a tuple

of relations Rℓ−i,βℓ−i
and deterministic algorithms Pi,Vi,NextXi,NextWi, for i ∈ [0, ℓ − 1], that allow to reduce

the task of checking that an instance (xi, wi) ∈ Rℓ−i,βℓ−i
to that checking that (xi+1, wi+1) ∈ Rℓ−i−1,βℓ−i−1

. For
i ∈ [0, ℓ], let βℓ−i−1 = (rκ)iβ . We start by describing algorithms Pi,Vi,NextXi, and NextWi, for i ∈ [0, ℓ− 1].

Reducing Rℓ−i,βℓ−i
to Rℓ−i−1,βℓ−i−1

.

– Let

xi =
(
A, t(i), (Xj)j∈[0,ℓ−i],u

(i)
)

and
wi =

(
(s

(i)
j )j∈[0,ℓ−i−1], f

(i)
)

– Pi, on input pp, xi, wi, returns zi = (yi,vi), where

yi := s
(i)
0 ∈ Rrκnτα

q

vi := (Irκn ⊗Xℓ−i−1) · · · (Irℓ−iκn ⊗X0) · f (i) ∈ Zrκnτ
q

– Vi on input pp, xi, zi, sets bi = 1 if the following checks pass

(Iκτ ⊗A) · yi
?
= t(i) mod q

∧
∥yi∥

?
≤ βℓ−i,

(Iκn ⊗Xℓ−i) · vi
?
= u(i) mod q.

(12)

Else, it sets bi = 0.
– A uniformly random challenge ci+1 = Ci+1 ∈ {0, 1}rκ×κ is sampled.
– NextXi, on input pp, xi, zi, ci+1, sets

xi+1 :=
(
A, t(i+1), (Xj)j∈[0,ℓ−i−1],u

(i+1)
)

(13)

where

t(i+1) := (C⊤i+1 ⊗ Inτ ) ·Grκnτ · yi, u(i+1) := (C⊤i+1 ⊗ Inτ ) · vi. (14)

– NextWi, on input (pp, xi, wi, ci+1) sets

wi+1 :=
(
(s

(i+1)
j )j∈[0,ℓ−i−1], f

(i+1)
)

(15)

where

s
(i+1)
j := (C⊤i+1 ⊗ Irj+1nτα) · s

(i)
j+1 ∈ Zrj+1κnτα for j ∈ [0, ℓ− i− 1]

f (i+1) := (C⊤i+1 ⊗ Irℓ−inτ ) · f (i) ∈ Zrℓ−iκnτ
q

(16)

The overall protocol Π is described in Figure 6: the initial statement and witness are parsed as

x = x0 =
(
A, t, (Xj)j∈[0,ℓ],u

)
=
(
A, t(0), (Xj)j∈[0,ℓ],u

(0)
)
,

w = w0 =
(
(sj)j∈[0,ℓ], f

)
=
(
(s

(0)
j )j∈[0,ℓ], f

(0)
)
.

In Section 5.2, we will show thatΠ is round-by-round complete (Lemma 2) and round-by-round coordinate-wise
special sound (Lemma 3). These results imply, by Theorem 1 and 2, that Π is complete and knowledge sound.

16



P(pp, x0, w0) V(pp, x0)

z0 -
c1 ← C1

c1�
...
...

zi ← Pi(pp, xi, wi) zi -
ci+1 ← Ci+1

ci+1�
wi+1 ← NextWi(pp, xi, wi, ci+1) bi ← Vi(pp, xi, zi)
xi+1 ← NextXi(pp, xi, zi, ci+1) xi+1 ← NextXi(pp, xi, zi, ci+1)

...

...
zℓ = wℓ -

Accept if:
bi = 1 for all i ∈ [0, ℓ− 1]
(pp, xℓ, wℓ) ∈ R0

xi =
(
A, t(i), (Xj)j∈[0,ℓ−i],u

(i)
)

wi =
(
(s

(i)
j )j∈[0,ℓ−i−1], f

(i)
)

Rℓ−i,βℓ−i :=

(xi, wi)

∣∣∣∣∣∣∣∣∣
∀j ∈ [0, ℓ− i], ∥s(i)j ∥ ≤ βℓ−i,

∀j ∈ [0, ℓ− i− 1],Grj+1κnτ · s
(i)
j = (Irj+1κτ ⊗A) · s(i)j+1,

(Iκτ ⊗A) · s(i)0 = t, Grℓ−i+1κnτ · s
(i)
ℓ−i = f (i),∏ℓ−i

j=0(Irjκn ⊗Xℓ−i−j) · f (i) = u(i)



Pi(pp, xi, wi)→ zi : Vi(pp, xi, zi)→ bi :

yi := s
(i)
0 bi,0 := [(Iκτ ⊗A) · yi = t(i)]

vi :=
∏ℓ−i

j=1(Irjκn ⊗Xℓ−i−j) · f (i) bi,1 := [(Iκn ⊗Xℓ−i) · vi = u(i)]

zi := (yi,vi) bi,2 := [∥yi∥ ≤ βℓ−i]
bi := bi,0 ∧ bi,1 ∧ bi,2

NextWi(pp, xi, wi, ci+1)→ wi+1 : NextXi(pp, xi, zi, ci+1)→ xi+1 :

For all j ∈ [0, ℓ− i− 1] : t(i+1) := (C⊤
i+1 ⊗ Inτ ) ·Grκnτ · yi

s
(i+1)
j := (C⊤

i+1 ⊗ Irj+1nτα) · s
(i)
j+1 u(i+1) := (C⊤

i+1 ⊗ Inτ ) · vi

f (i+1) := (C⊤
i+1 ⊗ Irℓ−inτ ) · f (i) xi+1 :=

(
A, t(i+1),u(i+1)

(Xj)j∈[0,ℓ−i−1]

)
wi+1 :=

(
(s

(i+1)
j )j∈[0,ℓ−i−1], f

(i+1)
)

Fig. 6. The top part describes the interface of a generic recursive-friendly proof system, the middle part recalls statement, witness,
and relation used in the i-th round of the interaction, and the bottom part describes the instatiation of the generic algorithms in
our proof system Π . The messages (zi, ci+1) = ((yi,vi),Ci+1) correspond to reducing Rℓ−i,βℓ−i to Rℓ−i−1,βℓ−i−1 , and the
message wℓ = (yℓ,vℓ) corresponds to the witness for R0,β0 . The challenge space is {0, 1}rκ×κ.

17



5.2 Completeness and Security Analysis

Lemma 2 (Round-by-Round Completeness). The recursive-friendly proof system Π is round-by-round complete
for the tuple of relations (Rℓ−i)i∈[0,ℓ] = (Rℓ−i,βℓ−i

)i∈[0,ℓ], where βℓ−i = (rκ)iβ.

Proof. Let pp = (q, n, α, τ, κ, r) and i ∈ [0, ℓ− 1]. We need to show that

1. bi = 1 whenever (pp, xi, wi) ∈ Rℓ−i,βℓ−i
,

2. (pp, xi+1, wi+1) ∈ Rℓ−i−1 whenever (pp, xi, wi) ∈ Rℓ−i,βℓ−i
.

Let

xi =
(
A, t(i), (Xj)j∈[0,ℓ−i],u

(i)
)

wi =
(
(s

(i)
j )j∈[0,ℓ−i−1], f

(i)
)

and

xi+1 =
(
A, t(i+1), (Xj)j∈[0,ℓ−i−1],u

(i+1)
)

wi+1 =
(
(s

(i+1)
j )j∈[0,ℓ−i−1], f

(i+1)
)

computed as in Section 5.1.
Since (pp, xi, wi) ∈ Rℓ−i,βℓ−i

, in particular one has that

(Iκτ ⊗A) ·

yi︷︸︸︷
s
(i)
0 = t(i), ∥

yi︷︸︸︷
s
(i)
0 ∥ ≤ βℓ−i,

(Iκn ⊗Xℓ−i) ·

vi︷ ︸︸ ︷
ℓ−i∏
j=1

(Irjκn ⊗Xℓ−i−j) · f (i) =
ℓ−i∏
j=0

(Irjκn ⊗Xℓ−i−j) · f (i) = u(i).

Therefore, the constraints checked by Vi in Eq. (12) are all satisfied and bi = 1. Next, let us consider the relation
Rℓ−i−1,βℓ−i−1

and verify that indeed (xi+1, wi+1) ∈ Rℓ−i−1,βℓ−i−1
. We need to verify that the following constraints

hold

Rℓ−i−1,βℓ−i−1
:


∀j ∈ [0, ℓ− i− 1], ∥s(i+1)

j ∥ ≤ βℓ−i−1,
∀j ∈ [0, ℓ− i− 2],Grj+1κnτ · s

(i+1)
j = (Irj+1κτ ⊗A) · s(i+1)

j+1 ,

(Iκτ ⊗A) · s(i+1)
0 = t(i+1), Grℓ−iκnτ · s

(i+1)
ℓ−i−1 = f (i+1),∏ℓ−i−1

j=0 (Irjκn ⊗Xℓ−i−j−1) · f (i+1) = u(i)


As far as the norm is concerned, for all j ∈ [0, ℓ− i− 1], one has

∥s(i+1)
j ∥ = ∥(C⊤i+1 ⊗ Irjτnα) · s

(i)
j+1∥

≤ ∥Ci+1∥ · rκ · ∥s(i)j+1∥
= rκβℓ−i

= rκ · (rκ)iβ
= (rκ)i+1β

= βℓ−i−1.

For the remaining checks, we are going to repeatedly make use of the identity from Eq. (11).
For j ∈ [ℓ− i− 1], we start with the identity

(Iriκτ ⊗Gn) · s(i)j = (Irj+1κτ ⊗A) · s(i)j+1.

18



Multiplying both sides by C⊤i+1 ⊗ Irjnτ on the left, which “commutes” with both Irjκτ ⊗Gn and Irj+1κτ ⊗A as
formalized in (11) to yield

(Irjκτ ⊗Gn) ·

s
(i+1)
j−1︷ ︸︸ ︷

(C⊤i+1 ⊗ Irjnτα) · s
(i)
j = (Irjκτ ⊗A) ·

s
(i+1)
j︷ ︸︸ ︷

(C⊤i+1 ⊗ Irj+1nτα) · s
(i)
j+1

Similarly, if we start with the identities

(Irκτ ⊗Gn) · s(i)0 = (Irκτ ⊗A) · s(i)1

(Irℓ−i+1κτ ⊗Gn) · s(i)ℓ−i = f (i)∏ℓ−i
j=1(Irjκn ⊗Xℓ−i−j) · f (i) = vi

and again multiply both sides on the left by C⊤i+1 ⊗ Inτ , C⊤i+1 ⊗ Irℓ−inτ , and C⊤i+1 ⊗ Inτ respectively, which
“commute” with Irκτ ⊗A, Irℓ−i+1κτ ⊗G, and Irjκn ⊗Xℓ−i−j respectively, yields

t(i+1)︷ ︸︸ ︷
(C⊤i+1 ⊗ Inτ ) · (Irκτ ⊗Gn) · s(i)0 = (Iκτ ⊗A) ·

s
(i+1)
0︷ ︸︸ ︷

(C⊤ ⊗ Irnτα) · s(i)1 ,

(Irℓ−iκτ ⊗Gn) ·

s
(i+1)
ℓ−i−1︷ ︸︸ ︷

(C⊤i+1 ⊗ Irℓ−i−1nτα) · s
(i)
ℓ−i =

f (i+1)︷ ︸︸ ︷
(C⊤i+1 ⊗ Irℓ−inτ ) · f (i),

∏ℓ−i
j=1(Irjκn ⊗Xℓ−i−j) ·

f (i+1)︷ ︸︸ ︷
(C⊤i+1 ⊗ Irℓ−inτ ) · f (i) =

ui+1︷ ︸︸ ︷
(C⊤i+1 ⊗ Inτ ) · vi .

This concludes the proof. ⊓⊔

By Theorem 1, this directly implies that Π is complete for the relation Rℓ,βℓ
.

Theorem 1 (Completeness). The recursive-friendly proof system Π is complete for the relation Rℓ,βℓ
.

Next, we prove that Π is round-by-round coordinate-wise special sound.

Lemma 3 (Round-by-Round Coordinate-Wise Special Soundness). The recursive-friendly proof system Π is
round-by-round coordinate-wise special sound for the tuple of relations (R∗ℓ−i)i∈[0,ℓ] = (Rℓ−i,β∗

ℓ−i
)i∈[0,ℓ], where β∗ℓ−i =

2ℓ−iβ∗0 .

Proof. Let pp = (q, n, α, τ, κ, r). For i ∈ [0, ℓ − 1], we define an efficient extractor Exti that given rκ + 1 tuple of
the form

xi =
(
A, t(i), (Xj)j∈[0,ℓ−i],u

(i)
)

(
zi, c

(k)
i+1

)
= ((yi,vi),Ci+1,k) ,

w
(k)
i+1 =

(
(s

(i+1)
j,k )j∈[0,ℓ−i−1], f

(i+1)
k

)
such that

1. bi = 1, where bi ← Vi(pp, xi, zi),
2. (Ci+1,k)k∈[0,rκ] ∈ Γ ({0, 1}κ, rκ), and
3.
(
pp, x

(k)
i+1, w

(k)
i+1

)
∈ Rℓ−i−1,β∗

ℓ−i−1
for all k ∈ [0, rκ], where x(k)i+1 = NextXi

(
pp, xi, zi, c

(k)
i+1

)
,

19



outputs wi such that (pp, xi, wi) ∈ Rℓ−i,β∗
ℓ−i

, where β∗ℓ−i = 2ℓ−iβ∗0 .
Since (Ci+1,k)k∈[0,rκ] ∈ Γ ({0, 1}κ, rκ), by Lemma 1, we know that exists Hi+1 ∈ {0, 1}κ(rκ+1)×rκ such that[

Ci+1,0 | Ci+1,1 | · · · | Ci+1,rκ

]
·Hi+1 = Irκ.

The extractor Extrbri outputs wi := ((s
(i)
j )j∈[0,ℓ−i], f

(i)), where

s
(i)
0 := yi, f (i) := (H⊤i+1 ⊗ Irℓ−inτ ) ·


f
(i+1)
0

...
f
(i+1)
rκ

 ,
and

s
(i)
j := (H⊤i+1 ⊗ Irjnτα) ·


s
(i+1)
j−1,0

...
s
(i+1)
j−1,rκ

 for j ∈ [ℓ− i].

We claim thatwi = ((s
(i)
j )j∈[0,ℓ−i], f

(i)) is a valid witness for the statement xi with respect to the relation Rℓ−i,β∗
ℓ−i

.
For that, we need to check that

Rℓ−i,β∗
ℓ−i

:


∀j ∈ [0, ℓ− i], ∥s(i)j ∥ ≤ β∗ℓ−i,

∀j ∈ [0, ℓ− i− 1],Grj+1κnτ · s
(i)
j = (Irj+1κτ ⊗A) · s(i)j+1,

(Iκτ ⊗A) · s(i)0 = t(i), Grℓ−i+1κnτ · s
(i)
ℓ−i = f (i),∏ℓ−i

j=0(Irjκn ⊗Xℓ−i−j) · f (i) = u(i)


By construction of Hi+1, for all j ∈ [ℓ− i] we have that

∥s(i)j ∥ ≤ 2 ·

∥∥∥∥∥∥∥∥

s
(i+1)
j−1,0

...
s
(i+1)
j−1,rκ


∥∥∥∥∥∥∥∥ ≤ 2 · 2ℓ−i−1β∗0 = 2ℓ−iβ∗0 = β∗ℓ−i.

Therefore, the norm bound is satisfied. Further, by assumption since bi = 1, we have that yi satisfies Eq. (12), i.e.,

(Iκτ ⊗A) ·
s
(i)
0︷︸︸︷
yi = t(i)

We now consider a bunch of identities, which all follows from the fact that, by assumption (x
(k)
i+1, w

(k)
i+1) ∈ Rℓ−i−1,β∗

ℓ−i−1

for all k ∈ [0, rκ]. Parse
x
(k)
i+1 =

(
A, t

(i+1)
k , (Xj)j∈[0,ℓ−i−1],u

(i+1)
k

)
Start by considering the identity

(I(rκ+1)κτ ⊗A) ·


s
(i+1)
0,0

...
s
(i+1)
0,rκ

 =


t
(i+1)
0

...
t
(i+1)
rκ

 =


C⊤i+1,0

...
C⊤i+1,rκ

⊗ Inτ

 · (Irκτ ⊗Gn) · yi.

Multiplying both sides by H⊤i+1⊗Inτ on the left, which “commutes” with I(rκ+1)κτ ⊗A as formalized in (11), yields

(Irκτ ⊗A) ·

s
(i)
1︷ ︸︸ ︷

(H⊤i+1 ⊗ Irnτα) ·


s
(i+1)
0,0

...
s
(i+1)
0,rκ

 = (Irκτ ⊗Gn) ·
s
(i)
0︷︸︸︷
yi

20



Next, for any j ∈ [ℓ− i− 1], starting with identity

(I(rκ+1)rjκτ ⊗Gn) ·


s
(i+1)
j−1,0

...
s
(i+1)
j−1,rκ

 = (I(rκ+1)rjκτ ⊗A) ·


s
(i+1)
j,0

...
s
(i+1)
j,rκ


and again multiplying both sides by H⊤i+1 ⊗ Irjnτ on the left, we get

(Irj+1κτ ⊗Gn) ·

s
(i)
j︷ ︸︸ ︷

(H⊤i+1 ⊗ Irjnτα) ·


s
(i+1)
j−1,0

...
s
(i+1)
j−1,rκ

 = (Irj+1κτ ⊗A) ·

s
(i)
j+1︷ ︸︸ ︷

(H⊤i+1 ⊗ Irj+1nτα) ·


s
(i+1)
j,0

...
s
(i+1)
j,rκ


Similarly, one can observe multiplying by H⊤i+1 ⊗ Irℓ−i−1nτ on the left the identity

(I(rκ+1)rℓ−i−1κτ ⊗Gn) ·


s
(i+1)
ℓ−i,0

...
s
(i+1)
ℓ−i,rκ

 =


f
(i+1)
0

...
f
(i+1)
rκ


yields

(Irℓ−iκτ ⊗Gn) ·

s
(i)
ℓ−i−1︷ ︸︸ ︷

(H⊤i+1 ⊗ Irℓ−inτα) ·


s
(i+1)
ℓ−i,0

...
s
(i+1)
ℓ−i,rκ

 =

f (i)︷ ︸︸ ︷
(H⊤i+1 ⊗ Irℓ−i−1nτ ) ·


f
(i+1)
0

...
f
(i+1)
rκ


Finally, if we consider identity

Irκ+1 ⊗
ℓ−i−1∏
j=0

(Irjκn ⊗Xℓ−i−j−1)

 ·

f
(i+1)
0

...
f
(i+1)
rκ

 =


u
(i+1)
0

...
u
(i+1)
rκ

 =


C⊤i+1,0

...
C⊤i+1,rκ

⊗ Inτ

 · vi,

multiplying both sides by (Irκn ⊗Xℓ−i) · (H⊤i+1 ⊗ Inτ ) on the left, we get

ℓ−i∏
j=0

(Irjκn ⊗Xℓ−i−j) · f (i) = (Irκn ⊗Xℓ−i) ·
ℓ−i−1∏
j=0

(Irj+1κn ⊗Xℓ−i−j−1) ·

f (i)︷ ︸︸ ︷
(H⊤i+1 ⊗ Irℓ−i−1nτ ) ·


f
(i+1)
0

...
f
(i+1)
rκ


= (Irκn ⊗Xℓ−i) · vi

= u(i).

where in the last equality we have used the fact that vi satisfies Eq. (12), as bi = 1.
This shows that wi =

(
(s

(i)
j )j∈[0,ℓ−i−1], f

(i)
)

is indeed a valid witness for the statement xi with respect to the
relation Rℓ−i,β∗

ℓ−i
and concludes the proof. ⊓⊔

Setting β∗0 = β0 = (rκ)ℓβ, by Theorem 2, this directly implies that Π is knowledge sound for the relation
Rℓ,(2rκ)ℓβ .

21



log q n β ℓ τ κ α

O
( logL
log r

log(rλ)
)

O(λ) O
( logL
log r

log(rλ)
)

O

(
logL

log r

)
O(1) O(λ) O(1)

Table 2. Parameters as a function of L, r, and λ.

Theorem 2 (Knowledge Soundness). The proof system Π for the relation Rℓ,β is knowledge sound for the relation
Rℓ,(2rκ)ℓβ , with soundness error at most

ℓrκ

2κ
.

Remark 1. In particular, this term becomes negligible for κ = O(λ).

5.3 Parameters and Efficiency Analysis

The commitment and proof size (in bits) are

commitment size =κnτ log q︸ ︷︷ ︸
|t|

proof size =

ℓ∑
i=0

rκnτα⌈log((rκ)iβ)⌉︸ ︷︷ ︸
|yi|

+ rκnτ log q︸ ︷︷ ︸
|vi|


≈rκnτ

(
(ℓ+ 1)ℓ

2
α log(rκ) + (ℓ+ 1)α log β + (ℓ+ 1) log q

)

The prover runtime is dominated by the time required to compute the different s(i)j . In order to compute them, it has
to perform

ℓ−1∑
j=1

ℓ−j∑
i=0

ri+1nτα ≤ nτα
ℓ∑

j=1

jrℓ+1−j

= nταrℓ+1
ℓ∑

j=1

jr−j

multiplication of matrices of size κ×rκ by vectors of size rκ. Notice that the last sum can be bounded by 1/r
(1−1/r)2 ≤

4/r, since r ≥ 2. The verifier overhead is dominated by performing ℓnτ multiplication of binary matrices of size
κ× rκ by Zq vectors of size rκ and ℓκn multiplication of matrices of size τ × rτ and n× rnα by vectors of size rτ
and rnα respectively.

22



r = O(1) r = O(λ) r = Lϵ

soundness error λ · logL
2λ

λ2 · logL
2λ · log λ O

(
λ · Lϵ

2λ

)
commitment size O

(
λ2 · logL · log λ

)
O
(
λ2 · logL

)
O(λ2 · logL)

proof size O
(
λ2 · (logL)2 · log λ

)
O

(
λ3 · (logL)

2

log λ

)
O(λ2 · Lϵ · logL)

prover runtime L · poly(λ) L · poly(λ) L1+ϵ · poly(λ)

verifier runtime logL · poly(λ) logL · poly(λ) Lϵ · poly(λ)

extractor runtime L · λlogL · poly(λ) L2 · poly(λ) L · poly(λ)

Table 3. Asymptotic efficiency, as a function of L and λ, for different choices of r, where ϵ ∈ (0, 1).

Setting parameters as in Table 2, we get that soundness error, commitment size, proof size, prover runtime, verifier
runtime, and extractor runtime are respectively

soundness error ≤ λ · r · logL
2λ · log r

commitment size = O

(
λ2 · logL

log r
· log(rλ)

)
proof size = O

(
λ2 · r ·

(
logL

log r

)2

· log(rλ)

)

prover runtime ≤ r2 · L ·
logN/ log r∑

j=1

jr−j · poly(λ)

verifier runtime ≤ r · logL
log r

· poly(λ)

extractor runtime ≤ (r · λ)logL/ log r · poly(λ) = L · λlogL/ log r · poly(λ)

For different choices of r, we get different trade-offs as shown in Table 3.

6 Polynomial Commitment

Combining the commitment scheme from Section 4 , together with the protocol from Section 5, we obtain a polyno-
mial commitment for the class of functions characterized as follows:
– the function is specified by f ∈ Zrℓ+1κnτ

q ,
– the input domain for the function is Zη

q , for some η ∈ N,
– given an input Xi ∈ Zτ×rτ

q , the output of the function is given by

(Iκn ⊗Xℓ) · (Irκn ⊗Xℓ−1) · · · (Irℓκn ⊗X0) · f

Using such a structure, we can represent the evaluation of both multi-linear polynomials and univariate polyno-
mials via the inner-product of f , the vector of coefficients of the given polynomial f , with a vector of the form

x⊤ℓ · (Irℓ ⊗ x⊤ℓ−1) · · · (Irℓ···r1 ⊗ x⊤0 )

23



for an appropriate choice of parameters. In particular,

– for multi-linear polynomials Zq[X0, X1, . . . , Xη] evaluated at (x0, x1, . . . , xη), just set x⊤i = [1 xi] ∈ Z2
q , for

i ∈ [0, η].
– for univariate polynomials evaluated at x ∈ Zq of degree < r0 · · · rℓ, set xi[ji] = xRi(ji−1), with xi ∈ Zri

q , for
i ∈ [0, ℓ].

This is formalized in Lemma 13 and proven in Appendix E.

Theorem 3 (Univariate Polynomials). Letn, β, ℓ, τ, κ, α as in Section 5.3 with r = λ andL = N Assume SISn,(ℓ+1)rnα,q,β′

with β′ ≥ (2rλ)ℓβ. Then, there is a knowledge sound functional commitment scheme for the function classF = Z<N
q [X]

of univariate polynomials of degree < N and input domain Zq , with the following efficiency:

– soundness error
λ2 · logN
2λ · log λ

,

– commitment size O(λ2 · logN),

– proof size O
(
λ3

(logN)2

log λ

)
,

– prover runtime N · poly(λ), and
– verifier runtime logN · poly(λ).

Theorem 4 (Multi-Linear Polynomials). Let n, β, ℓ, τ, κ, α as in Section 5.3 with r = λ and L = 2η Assume
SISn,(ℓ+1)rnα,q,β′ with β′ ≥ (2rλ)ℓβ. Then, there is a knowledge sound functional commitment scheme for the func-
tion class F = Z<2

q [X1, . . . , Xη] of multi-linear polynomials in η variables and input domain Zη
q , with the following

efficiency:

– soundness error
λ2 · η

2λ · log λ
,

– commitment size O(λ2 · η),

– proof size O
(
λ3

η2

log λ

)
,

– prover runtime 2η · poly(λ), and
– verifier runtime η · poly(λ).

References

ACK21. Thomas Attema, Ronald Cramer, and Lisa Kohl. A compressed Σ-protocol theory for lattices. In Tal Malkin and Chris
Peikert, editors, CRYPTO 2021, Part II, volume 12826 of LNCS, pages 549–579, Virtual Event, August 2021. Springer,
Heidelberg. 3, 4

ACL+22. Martin R. Albrecht, Valerio Cini, Russell W. F. Lai, Giulio Malavolta, and Sri Aravinda Krishnan Thyagarajan. Lattice-
based SNARKs: Publicly verifiable, preprocessing, and recursively composable - (extended abstract). In Yevgeniy Dodis
and Thomas Shrimpton, editors, CRYPTO 2022, Part II, volume 13508 of LNCS, pages 102–132. Springer, Heidelberg,
August 2022. 2, 4, 7

AF22. Thomas Attema and Serge Fehr. Parallel repetition of (k1, . . . , kµ)-special-sound multi-round interactive proofs. In
Yevgeniy Dodis and Thomas Shrimpton, editors, CRYPTO 2022, Part I, volume 13507 of LNCS, pages 415–443. Springer,
Heidelberg, August 2022. 3

AFLN23. Martin R. Albrecht, Giacomo Fenzi, Oleksandra Lapiha, and Ngoc Khanh Nguyen. Slap: Succinct lattice-based
polynomial commitments from standard assumptions. Cryptology ePrint Archive, Paper 2023/1469, 2023. https:
//eprint.iacr.org/2023/1469. 2, 3, 4, 39

AHIV17. Scott Ames, Carmit Hazay, Yuval Ishai, and Muthuramakrishnan Venkitasubramaniam. Ligero: Lightweight sublinear
arguments without a trusted setup. In Bhavani M. Thuraisingham, David Evans, Tal Malkin, and Dongyan Xu, editors,
ACM CCS 2017, pages 2087–2104. ACM Press, October / November 2017. 1, 2

Ajt96. Miklós Ajtai. Generating hard instances of lattice problems (extended abstract). In 28th ACM STOC, pages 99–108.
ACM Press, May 1996. 4

24

https://eprint.iacr.org/2023/1469
https://eprint.iacr.org/2023/1469


AL21. Martin R. Albrecht and Russell W. F. Lai. Subtractive sets over cyclotomic rings - limits of Schnorr-like arguments
over lattices. In Tal Malkin and Chris Peikert, editors, CRYPTO 2021, Part II, volume 12826 of LNCS, pages 519–548,
Virtual Event, August 2021. Springer, Heidelberg. 3, 9

ALS20. Thomas Attema, Vadim Lyubashevsky, and Gregor Seiler. Practical product proofs for lattice commitments. In Daniele
Micciancio and Thomas Ristenpart, editors, CRYPTO 2020, Part II, volume 12171 of LNCS, pages 470–499. Springer,
Heidelberg, August 2020. 32

Ard23. Andy Arditi. Kzg in practice: Polynomial commitment schemes and their usage in scaling ethereum, 2023.
https://scroll.io/blog/kzg. 3

BBB+17. Benedikt Bünz, Jonathan Bootle, Dan Boneh, Andrew Poelstra, Pieter Wuille, and Greg Maxwell. Bulletproofs: Short
proofs for confidential transactions and more. Cryptology ePrint Archive, Report 2017/1066, 2017. https://eprint.iacr.
org/2017/1066. 2

BBC+18. Carsten Baum, Jonathan Bootle, Andrea Cerulli, Rafaël del Pino, Jens Groth, and Vadim Lyubashevsky. Sub-linear
lattice-based zero-knowledge arguments for arithmetic circuits. In Hovav Shacham and Alexandra Boldyreva, editors,
CRYPTO 2018, Part II, volume 10992 of LNCS, pages 669–699. Springer, Heidelberg, August 2018. 6

BBHR18a. Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. Fast reed-solomon interactive oracle proofs of
proximity. In Ioannis Chatzigiannakis, Christos Kaklamanis, Dániel Marx, and Donald Sannella, editors, ICALP 2018,
volume 107 of LIPIcs, pages 14:1–14:17. Schloss Dagstuhl, July 2018. 1, 2, 4, 6

BBHR18b. Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. Scalable, transparent, and post-quantum secure
computational integrity. Cryptology ePrint Archive, Report 2018/046, 2018. https://eprint.iacr.org/2018/046. 1, 2

BBK22. Nir Bitansky, Zvika Brakerski, and Yael Tauman Kalai. Constructive post-quantum reductions. In Yevgeniy Dodis
and Thomas Shrimpton, editors, CRYPTO 2022, Part III, volume 13509 of LNCS, pages 654–683. Springer, Heidelberg,
August 2022. 3, 11, 42, 48

BCC+16. Jonathan Bootle, Andrea Cerulli, Pyrros Chaidos, Jens Groth, and Christophe Petit. Efficient zero-knowledge argu-
ments for arithmetic circuits in the discrete log setting. In Marc Fischlin and Jean-Sébastien Coron, editors, EURO-
CRYPT 2016, Part II, volume 9666 of LNCS, pages 327–357. Springer, Heidelberg, May 2016. 2

BCFL22. David Balbás, Dario Catalano, Dario Fiore, and Russell W. F. Lai. Functional commitments for circuits from falsifiable
assumptions. Cryptology ePrint Archive, Report 2022/1365, 2022. https://eprint.iacr.org/2022/1365. 4

BCHO22. Jonathan Bootle, Alessandro Chiesa, Yuncong Hu, and Michele Orrù. Gemini: Elastic SNARKs for diverse environ-
ments. In Orr Dunkelman and Stefan Dziembowski, editors, EUROCRYPT 2022, Part II, volume 13276 of LNCS, pages
427–457. Springer, Heidelberg, May / June 2022. 3

BCS21. Jonathan Bootle, Alessandro Chiesa, and Katerina Sotiraki. Sumcheck arguments and their applications. In Tal Malkin
and Chris Peikert, editors, CRYPTO 2021, Part I, volume 12825 of LNCS, pages 742–773, Virtual Event, August 2021.
Springer, Heidelberg. 4

BCS23. Jonathan Bootle, Alessandro Chiesa, and Katerina Sotiraki. Lattice-based succinct arguments for NP with
polylogarithmic-time verification. In Helena Handschuh and Anna Lysyanskaya, editors,CRYPTO 2023, Part II, volume
14082 of LNCS, pages 227–251. Springer, Heidelberg, August 2023. 1, 2, 3

BFS20. Benedikt Bünz, Ben Fisch, and Alan Szepieniec. Transparent SNARKs from DARK compilers. In Anne Canteaut and
Yuval Ishai, editors, EUROCRYPT 2020, Part I, volume 12105 of LNCS, pages 677–706. Springer, Heidelberg, May 2020.
2

BGK+23. Alexander R. Block, Albert Garreta, Jonathan Katz, Justin Thaler, Pratyush Ranjan Tiwari, and Michal Zajac. Fiat-
shamir security of fri and related snarks. Cryptology ePrint Archive, Paper 2023/1071, 2023. https://eprint.iacr.org/
2023/1071. 2, 3

BHR+21. Alexander R. Block, Justin Holmgren, Alon Rosen, Ron D. Rothblum, and Pratik Soni. Time- and space-efficient
arguments from groups of unknown order. In Tal Malkin and Chris Peikert, editors, CRYPTO 2021, Part IV, volume
12828 of LNCS, pages 123–152, Virtual Event, August 2021. Springer, Heidelberg. 2, 6

BL17. Carsten Baum and Vadim Lyubashevsky. Simple amortized proofs of shortness for linear relations over polynomial
rings. Cryptology ePrint Archive, Report 2017/759, 2017. https://eprint.iacr.org/2017/759. 9, 28

BLNS20. Jonathan Bootle, Vadim Lyubashevsky, Ngoc Khanh Nguyen, and Gregor Seiler. A non-PCP approach to succinct
quantum-safe zero-knowledge. In Daniele Micciancio and Thomas Ristenpart, editors, CRYPTO 2020, Part II, volume
12171 of LNCS, pages 441–469. Springer, Heidelberg, August 2020. 2, 3

BS23. Ward Beullens and Gregor Seiler. LaBRADOR: Compact proofs for R1CS from module-SIS. In Helena Handschuh and
Anna Lysyanskaya, editors, CRYPTO 2023, Part V, volume 14085 of LNCS, pages 518–548. Springer, Heidelberg, August
2023. 2, 3, 38

CBBZ23. Binyi Chen, Benedikt Bünz, Dan Boneh, and Zhenfei Zhang. HyperPlonk: Plonk with linear-time prover and high-
degree custom gates. In Carmit Hazay and Martijn Stam, editors, EUROCRYPT 2023, Part II, volume 14005 of LNCS,
pages 499–530. Springer, Heidelberg, April 2023. 3

25

https://eprint.iacr.org/2017/1066
https://eprint.iacr.org/2017/1066
https://eprint.iacr.org/2018/046
https://eprint.iacr.org/2022/1365
https://eprint.iacr.org/2023/1071
https://eprint.iacr.org/2023/1071
https://eprint.iacr.org/2017/759


CHM+20. Alessandro Chiesa, Yuncong Hu, Mary Maller, Pratyush Mishra, Psi Vesely, and Nicholas P. Ward. Marlin: Prepro-
cessing zkSNARKs with universal and updatable SRS. In Anne Canteaut and Yuval Ishai, editors, EUROCRYPT 2020,
Part I, volume 12105 of LNCS, pages 738–768. Springer, Heidelberg, May 2020. 2, 3

CJJ22. Arka Rai Choudhuri, Abhishek Jain, and Zhengzhong Jin. SNARGs forP from LWE. In 62nd FOCS, pages 68–79. IEEE
Computer Society Press, February 2022. 2

CLM23. Valerio Cini, Russell W. F. Lai, and Giulio Malavolta. Lattice-based succinct arguments from vanishing polynomials
- (extended abstract). In Helena Handschuh and Anna Lysyanskaya, editors, CRYPTO 2023, Part II, volume 14082 of
LNCS, pages 72–105. Springer, Heidelberg, August 2023. 2, 4

CMSZ22. Alessandro Chiesa, Fermi Ma, Nicholas Spooner, and Mark Zhandry. Post-quantum succinct arguments: Breaking the
quantum rewinding barrier. In 62nd FOCS, pages 49–58. IEEE Computer Society Press, February 2022. 3, 10, 42, 47

COS20. Alessandro Chiesa, Dev Ojha, and Nicholas Spooner. Fractal: Post-quantum and transparent recursive proofs from
holography. In Anne Canteaut and Yuval Ishai, editors, EUROCRYPT 2020, Part I, volume 12105 of LNCS, pages 769–793.
Springer, Heidelberg, May 2020. 1, 2

dCP23. Leo de Castro and Chris Peikert. Functional commitments for all functions, with transparent setup and from SIS. In
Carmit Hazay and Martijn Stam, editors, EUROCRYPT 2023, Part III, volume 14006 of LNCS, pages 287–320. Springer,
Heidelberg, April 2023. 4

DFM20. Jelle Don, Serge Fehr, and Christian Majenz. The measure-and-reprogram technique 2.0: Multi-round fiat-shamir and
more. In Daniele Micciancio and Thomas Ristenpart, editors, CRYPTO 2020, Part III, volume 12172 of LNCS, pages
602–631. Springer, Heidelberg, August 2020. 48

DKL+18. Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim Lyubashevsky, Peter Schwabe, Gregor Seiler, and Damien Stehlé.
Crystals-dilithium: A lattice-based digital signature scheme. IACR Trans. Cryptogr. Hardw. Embed. Syst., 2018(1):238–
268, 2018. 38, 39

FLV23. Ben Fisch, Zeyu Liu, and Psi Vesely. Orbweaver: Succinct linear functional commitments from lattices. In Helena
Handschuh and Anna Lysyanskaya, editors, CRYPTO 2023, Part II, volume 14082 of LNCS, pages 106–131. Springer,
Heidelberg, August 2023. 4

FMN23. Giacomo Fenzi, Hossein Moghaddas, and Ngoc Khanh Nguyen. Lattice-based polynomial commitments: Towards
asymptotic and concrete efficiency. Cryptology ePrint Archive, Paper 2023/846, 2023. https://eprint.iacr.org/2023/846.
2, 3, 4, 6, 13, 14, 38, 49, 50

FS87. Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to identification and signature problems. In
Andrew M. Odlyzko, editor, CRYPTO’86, volume 263 of LNCS, pages 186–194. Springer, Heidelberg, August 1987. 3

GHL22. Craig Gentry, Shai Halevi, and Vadim Lyubashevsky. Practical non-interactive publicly verifiable secret sharing with
thousands of parties. In Orr Dunkelman and Stefan Dziembowski, editors, EUROCRYPT 2022, Part I, volume 13275 of
LNCS, pages 458–487. Springer, Heidelberg, May / June 2022. 28, 38

GLS+23. Alexander Golovnev, Jonathan Lee, Srinath T. V. Setty, Justin Thaler, and Riad S. Wahby. Brakedown: Linear-time and
field-agnostic SNARKs for R1CS. In Helena Handschuh and Anna Lysyanskaya, editors, CRYPTO 2023, Part II, volume
14082 of LNCS, pages 193–226. Springer, Heidelberg, August 2023. 1, 2

Gro10. Jens Groth. Short pairing-based non-interactive zero-knowledge arguments. In Masayuki Abe, editor, ASI-
ACRYPT 2010, volume 6477 of LNCS, pages 321–340. Springer, Heidelberg, December 2010. 4

Gro16. Jens Groth. On the size of pairing-based non-interactive arguments. In Marc Fischlin and Jean-Sébastien Coron,
editors, EUROCRYPT 2016, Part II, volume 9666 of LNCS, pages 305–326. Springer, Heidelberg, May 2016. 2

GWC19. Ariel Gabizon, Zachary J. Williamson, and Oana Ciobotaru. PLONK: Permutations over lagrange-bases for oe-
cumenical noninteractive arguments of knowledge. Cryptology ePrint Archive, Report 2019/953, 2019. https:
//eprint.iacr.org/2019/953. 2

IKO07. Yuval Ishai, Eyal Kushilevitz, and Rafail Ostrovsky. Efficient arguments without short pcps. In Conference on Compu-
tational Complexity (CCC 2007), pages 278–291, 2007. 4

Kil92. Joe Kilian. A note on efficient zero-knowledge proofs and arguments (extended abstract). In 24th ACM STOC, pages
723–732. ACM Press, May 1992. 1, 2

KP23. Abhiram Kothapalli and Bryan Parno. Algebraic reductions of knowledge. In Helena Handschuh and Anna Lysyan-
skaya, editors, CRYPTO 2023, Part IV, volume 14084 of LNCS, pages 669–701. Springer, Heidelberg, August 2023. 12

KZG10. Aniket Kate, Gregory M. Zaverucha, and Ian Goldberg. Constant-size commitments to polynomials and their ap-
plications. In Masayuki Abe, editor, ASIACRYPT 2010, volume 6477 of LNCS, pages 177–194. Springer, Heidelberg,
December 2010. 2, 3

Lee21. Jonathan Lee. Dory: Efficient, transparent arguments for generalised inner products and polynomial commitments.
In Kobbi Nissim and Brent Waters, editors, TCC 2021, Part II, volume 13043 of LNCS, pages 1–34. Springer, Heidelberg,
November 2021. 2, 3

LFKN90. Carsten Lund, Lance Fortnow, Howard J. Karloff, and Noam Nisan. Algebraic methods for interactive proof systems.
In 31st FOCS, pages 2–10. IEEE Computer Society Press, October 1990. 4

26

https://eprint.iacr.org/2023/846
https://eprint.iacr.org/2019/953
https://eprint.iacr.org/2019/953


LLNW16. Benoı̂t Libert, San Ling, Khoa Nguyen, and Huaxiong Wang. Zero-knowledge arguments for lattice-based accumula-
tors: Logarithmic-size ring signatures and group signatures without trapdoors. In Marc Fischlin and Jean-Sébastien
Coron, editors, EUROCRYPT 2016, Part II, volume 9666 of LNCS, pages 1–31. Springer, Heidelberg, May 2016. 5

LMS22. Russell W. F. Lai, Giulio Malavolta, and Nicholas Spooner. Quantum rewinding for many-round protocols. In Eike
Kiltz and Vinod Vaikuntanathan, editors, TCC 2022, Part I, volume 13747 of LNCS, pages 80–109. Springer, Heidelberg,
November 2022. 3, 10, 11, 40

LMZ23. Jiahui Liu, Hart Montgomery, and Mark Zhandry. Another round of breaking and making quantum money: How to
not build it from lattices, and more. In Carmit Hazay and Martijn Stam, editors, EUROCRYPT 2023, Part I, volume
14004 of LNCS, pages 611–638. Springer, Heidelberg, April 2023. 10, 41

LNP22. Vadim Lyubashevsky, Ngoc Khanh Nguyen, and Maxime Plançon. Lattice-based zero-knowledge proofs and applica-
tions: Shorter, simpler, and more general. In Yevgeniy Dodis and Thomas Shrimpton, editors, CRYPTO 2022, Part II,
volume 13508 of LNCS, pages 71–101. Springer, Heidelberg, August 2022. 3, 9, 10, 28

LNS21. Vadim Lyubashevsky, Ngoc Khanh Nguyen, and Gregor Seiler. Shorter lattice-based zero-knowledge proofs via one-
time commitments. In Juan Garay, editor, PKC 2021, Part I, volume 12710 of LNCS, pages 215–241. Springer, Heidelberg,
May 2021. 3, 9, 28

LS15. Adeline Langlois and Damien Stehlé. Worst-case to average-case reductions for module lattices. Des. Codes Cryptogr.,
75(3):565–599, 2015. 28

LS18. Vadim Lyubashevsky and Gregor Seiler. Short, invertible elements in partially splitting cyclotomic rings and applica-
tions to lattice-based zero-knowledge proofs. In Jesper Buus Nielsen and Vincent Rijmen, editors, EUROCRYPT 2018,
Part I, volume 10820 of LNCS, pages 204–224. Springer, Heidelberg, April / May 2018. 28

LZ19. Qipeng Liu and Mark Zhandry. Revisiting post-quantum Fiat-Shamir. In Alexandra Boldyreva and Daniele Micciancio,
editors, CRYPTO 2019, Part II, volume 11693 of LNCS, pages 326–355. Springer, Heidelberg, August 2019. 10, 41

MBKM19. Mary Maller, Sean Bowe, Markulf Kohlweiss, and Sarah Meiklejohn. Sonic: Zero-knowledge SNARKs from linear-size
universal and updatable structured reference strings. In Lorenzo Cavallaro, Johannes Kinder, XiaoFeng Wang, and
Jonathan Katz, editors, ACM CCS 2019, pages 2111–2128. ACM Press, November 2019. 3

Mic94. Silvio Micali. CS proofs (extended abstracts). In 35th FOCS, pages 436–453. IEEE Computer Society Press, November
1994. 1, 2

MR09. Daniele Micciancio and Oded Regev. Lattice-based Cryptography, pages 147–191. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2009. 38

NC11. Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quantum Information: 10th Anniversary Edition.
Cambridge University Press, 2011. 39

Pol22. Polygon Zero Team. Plonky2: Fast recursive arguments with PLONK and FRI, 2022. https://github.com/mir-
protocol/plonky2/blob/main/plonky2/plonky2.pdf. 1

PSTY13. Charalampos Papamanthou, Elaine Shi, Roberto Tamassia, and Ke Yi. Streaming authenticated data structures. In
Thomas Johansson and Phong Q. Nguyen, editors, EUROCRYPT 2013, volume 7881 of LNCS, pages 353–370. Springer,
Heidelberg, May 2013. 5

SMBW12. Srinath T. V. Setty, Richard McPherson, Andrew J. Blumberg, and Michael Walfish. Making argument systems for
outsourced computation practical (sometimes). In NDSS 2012. The Internet Society, February 2012. 4

STW23. Srinath Setty, Justin Thaler, and Riad Wahby. Unlocking the lookup singularity with lasso. Cryptology ePrint Archive,
Paper 2023/1216, 2023. https://eprint.iacr.org/2023/1216. 3

Unr16. Dominique Unruh. Computationally binding quantum commitments. In Marc Fischlin and Jean-Sébastien Coron,
editors, EUROCRYPT 2016, Part II, volume 9666 of LNCS, pages 497–527. Springer, Heidelberg, May 2016. 10, 41

WW23. Hoeteck Wee and David J. Wu. Succinct vector, polynomial, and functional commitments from lattices. In Carmit
Hazay and Martijn Stam, editors, EUROCRYPT 2023, Part III, volume 14006 of LNCS, pages 385–416. Springer, Heidel-
berg, April 2023. 4

A More Efficient Constructions over Cyclotomic Rings

In this section we provide a concretely efficient proof of polynomial evaluation over power-of-two cyclotomic rings.
Asymptotically, the protocol achievesO( 3

√
L) communication and verifier complexity. However, due to small growth

in stretch and slack, we manage to obtain concretely small parameters.

Background. We work over the ring Rq := Zq[X]/(Xd + 1), where d is a power-of-two and q is an odd prime. For
a polynomial p ∈ Rq , we will use the arrow notation, e.g. #»p ∈ Zd

q , to denote its coefficient vector. The notation

27

https://eprint.iacr.org/2023/1216


extends naturally to vectors over Rq . Conversely, for a vector #»p over Zq of length divisible by d, we define p to be
the polynomial vector over Rq with the coefficient vector Zq .

Similarly as before, for f =
∑d−1

i=0 fi ·Xi ∈ Rq , we define the infinity norm ∥f∥ := maxi∈[0,d−1] |fi|. Definition
of the norm extends naturally to vectors and matrices over Rq . We use the well-known facts that for any f, g ∈ Rq ,
∥f ·g∥ ≤ d·∥f∥·∥g∥. In this section, we work with primes q ≡ 5 (mod 8). Then, by the main result of Lyubashevsky
and Seiler [LS18] we know that any non-zero f ∈ Rq such that ∥f∥ <

√
q/2 is invertible overRq . Hence, we define

the challenge space
C := {c ∈ Rq : ∥c∥ ≤ κ}

for κ <
√
q/8. Then, any difference of two distinct challenges in C is invertible over Rq .

For proving shortness of the committed vectors, we will use a strategy called approximate range proof [BL17,LNS21,GHL22].
Namely, to prove that an integer vector #»s ∈ Zm

q is short, the prover asks the verifier for a random ternary matrix
P ← χλ×m, where χ is the distribution over {−1, 0, 1} so that χ(−1) = χ(1) = 1/4 and χ(0) = 1/2, and then
outputs a short projection #»y := P · #»s ∈ Zλ

q . The verifier finally checks that #»y has short coefficients. The core
argument in approximate range proofs is that if #»s has large coefficients, then so does P · #»s (with an overwhelming
probability over P ).

To facilitate from approximate range proofs, one should be able to prove linear relations over Zq , e.g. #»y = P · #»s .
To this end, we apply the transformation from [LNP22], which maps relations from Zq to Rq . Concretely, let σ−1 :
R→ R be the Galois automorphism which mapsX 7→ X−1. Then, for any two polynomials f, g ∈ Rwith coefficient
vectors #»

f and #»g respectively, the constant coefficient of σ−1(f) · g ∈ R is equal to ⟨ #»

f , #»g ⟩. This means that proving
linear equations over Zq can be translated into proving statements about (constant coefficients of) elements in Rq .
An identical result holds for vectors over Rq , where for an arbitrary f ∈ Rq , σ−1(f) ∈ Rn

q is the vector with σ−1
applied to each component separately. For a polynomial in Rq , we use “tilde” to denote its constant coefficient, e.g.
f̃ ∈ Zq .

As before, we consider the gadget vector g⊤ = (1, δ, δ2, . . . , δα−1) ∈ Rα, where α := ⌈logδ q⌉. For n ≥ 1, we
denote Gn := In ⊗ g⊤ ∈ Rn×αn.

Hardness assumption. Binding and the coordinate-wise special soundness properties will rely on the hardness of the
Module SIS problem [LS15]. Namely, the (infinity-norm) MSISn,m,q,d,β problem asks an adversary, which is given a
uniformly random matrix A← Rn×m

q , to find a non-zero short vector z ∈ Rm
q , such that ∥z∥ ≤ β and A · z = 0.

Technical lemma for soundness. Looking ahead, to prove coordinate-wise special soundness, we will use the ring
version of Lemma 1.
Lemma 4. Let ξ ≥ 1. Given c0, . . . , cξ ∈ Γ (C, ξ), i.e., satisfying the coordinate-wise property, we can compute a
matrixH = (hi)i∈ξ ∈ R(ξ+1)×ξ

q and a vector c∗ ∈ (R×q )
ξ such that:

[c0 | c1 | · · · | cξ] ·H = Iξ

and ∥c∗i ∥ ≤ 2κ for any i ∈ [ξ]. Moreover, for i ∈ [ξ], r ≥ 1 and any vector y ∈ Rr(ξ+1)
q ,

∥c∗i · (h⊤i ⊗ Ir) · y∥ ≤ 2 · ∥y∥.

Proof. Let ei denote the i-th unit vector in Rξ+1
q . Assume without loss of generality that c0 differs from any other

ci exactly in the i-th coordinate. Hence, for each i we can write c0 − ci = (c0,i − ci,i) · ei. We know that 0 <

∥c0,i − ci,i∥ ≤ 2κ <
√
q/2 and thus c∗i := c0,i − ci,i is invertible over Rq . Thus, define

hi :=
1

c∗i
· (e1 − ei+1) ∈ Zξ+1. (17)

By setting H = [h0 | h1 | · · · | hξ] and c∗ := (c∗1, . . . , c
∗
ξ) the first part of the statement follows. As for the latter

one, note that for y := (y0, . . . ,yξ) and i ∈ [ξ] we have

∥c∗i · (h⊤i ⊗ Ir) · y∥ = ∥c∗i ·
1

c∗i
· (y0 − yi)∥ ≤ 2 · ∥y∥.

⊓⊔

28



Relation. Let n, r0, r1, r2 ∈ N and denote L = r0r1r2n. The difference from the previous protocol is that now we
will consider different matrices A1,A2, as this gives more flexibility when setting concrete parameters. The binding
property follows straightforwardly as before. The relation we are interested in can be described as follows.

Rβ :=


pp := (q, d, n, α, r0, r1, r2),

((A1,A2), t,x0,x1,x2, u),
(s1, s2)


∣∣∣∣∣∣∣∣

maxi∈[2] ∥si∥ ≤ β,
t = (Ir0 ⊗A1) · s1,

Gr0r1n · s1 = (Ir0r1 ⊗A2) · s2,
x⊤0 · (Ir0 ⊗ x⊤1 ) · (Ir0r1 ⊗ x⊤2 ) ·Gr0r1r2n · s2 = u

. (18)

where (A1,A2) ∈ Rn×r1nα
q ×Rn×r2nα

q , (x0,x1,x2) ∈ Rr0
q ×Rr1

q ×Rr2n
q and (s1, s2) ∈ Rr0r1nα

q ×Rr0r1r2nα
q .

Remark 2. Notice that we use a different indexing of the vector xi here compared to the one used in Section 5.

A.1 Construction

In Figure 7 we provide a protocol for proving Rβ . In the following, we provide intuition and prove completeness on
the fly. The prover starts by sending v0 ∈ Rr0

q , where

v0 := (Ir0 ⊗ x⊤1 ) · (Ir0r1 ⊗ x⊤2 ) ·Gr0r1r2n · s2.

The verifier checks whether
x⊤0 · v0

?
= u.

If so, it responds by outputting c1 ← Cr0 . Then, the prover computes

y1 :=
(
c⊤1 ⊗ Ir1nα

)
· s1 ∈ Rr1nα

q and e :=
(
c⊤1 ⊗ Ir1r2nα

)
· s2 ∈ Rr1r2nα

q .

Before we describe the next move, we present certain properties of y1 and e by a sequence of claims. To derive all
of them, we continuously apply the mixed-product property of Kronecker product.

Claim. A1 · y1 = (c⊤1 ⊗ In) · t.

Proof. By definition of y1, we obtain

A1 · y1 = (I1 ⊗A1) ·
(
c⊤1 ⊗ Ir1nα

)
· s1 = (c⊤1 ⊗ In) · (Ir0 ⊗A1) · s1 = (c⊤1 ⊗ In) · t.

⊓⊔

Claim. Gr1n · y1 = (Ir1 ⊗A2) · e.

Proof. By definition of y1 and e:

Gr1n · y1 = (I1 ⊗Gr1n) ·
(
c⊤1 ⊗ Ir1nα

)
· s1

= (c⊤1 ⊗ Ir1n) · (Ir0 ⊗Gr1n) · s1
= (c⊤1 ⊗ Ir1n) ·Gr0r1n · s1
= (c⊤1 ⊗ Ir1n) · (Ir0r1 ⊗A2) · s2
= (c⊤1 ⊗ Ir1n) · (Ir0 ⊗ (Ir1 ⊗A2)) · s2
= (Ir1 ⊗A2) · (c⊤1 ⊗ Ir1r2nα) · s2
= (Ir1 ⊗A2) · e.

⊓⊔

Claim. x⊤1 · (Ir1 ⊗ x⊤2 ) ·Gr1r2n · e = c⊤1 · v0.

29



P (pp, ((A1,A2), (t,x0,x1,x2, u)), (s1, s2)) V (pp, ((A1,A2), t,x0,x1,x2, u))

v0 := (Ir0 ⊗ x⊤
1 ) · (Ir0r1 ⊗ x⊤

2 ) ·Gr0r1r2n · s2
v0 -

c1 ← Cr0
c1�

y1 :=
(
c⊤1 ⊗ Ir1nα

)
· s1

e :=
(
c⊤1 ⊗ Ir1r2nα

)
· s2

v1 := (Ir1 ⊗ x⊤
2 ) ·Gr1r2n · e

y1,v1 -
P ← χλ×r2nαd

P�
#»p := (Ir1 ⊗ P ) · #»e

#»p -
B ← Zl×λ

q

B�
Parse #»e = ( #»e 1, . . . ,

#»e r1)

Parse B := (
#»

b ⊤
i )i∈[l], B · P := ( #»n⊤

i )i∈[l]

For i ∈ [l], j ∈ [r1] :
γi,j := ⟨σ−1(ni), ej⟩

(γi,j)i∈[l],j∈[r1]-
c2 ← Cr1

c2�
y2 := (c⊤2 ⊗ Ir2nα) · e

y2 -
Parse B := (

#»

b ⊤
i )i∈[l], B · P := ( #»n⊤

i )i∈[l]

Parse #»p := ( #»p 1, . . . ,
#»p r1)

N := (σ−1(n)
⊤
i )i∈[l]

γ :=
[
γ1,1 . . . γl,r1

]⊤
Accept if all the following hold:
x⊤
0 · v0 = u,

x⊤
1 · v1 = c⊤1 · v0,

x⊤
2 ·Gr2n · y2 = c⊤2 · v1,

∀i ∈ [l], j ∈ [r1], γ̃i,j = ⟨ #»

b i,
#»p j⟩,

A1 · y1 = (c⊤1 ⊗ In) · t,
A2 · y2 = (c⊤2 ⊗ In) ·Gr1n · y1,

V · y2 = (c⊤2 ⊗ Il) · γ,
∥y1∥ ≤ β1, ∥ #»p ∥ ≤ βp, ∥y2∥ ≤ β2

Fig. 7. Interactive proof for the relation R defined in Equation (18). Here, we define l := ⌈λ/ log q⌉.

Proof. Note that

x⊤1 · (Ir1 ⊗ x⊤2 ) ·Gr1r2n · e = x⊤1 · (Ir1 ⊗ x⊤2 ) ·Gr1r2n ·
(
c⊤1 ⊗ Ir1r2nα

)
· s2

= x⊤1 · (Ir1 ⊗ x⊤2 ) · (c⊤1 ⊗ Ir1r2n) ·Gr0r1r2n · s2
= x⊤1 · (c⊤1 ⊗ Ir1) · (Ir0r1 ⊗ x⊤2 ) ·Gr0r1r2n · s2
= c⊤1 · (Ir0 ⊗ x⊤1 ) · (Ir0r1 ⊗ x⊤2 ) ·Gr0r1r2n · s2
= c⊤1 · v0.

30



⊓⊔

Motivated by the observations above, the prover now sends (y1,v1) ∈ Rr1nα
q ×Rr1

q , where

v1 := (Ir1 ⊗ x⊤2 ) ·Gr1r2n · e = (Ir1 ⊗ x⊤2 ·Gr2n) · e.

The current “partial witness” (cf. Definitions 4 and 7) becomes e. The verifier then checks whether

A1 · y1
?
= (c⊤1 ⊗ In) · t, ∥y1∥

?
≤ β1, and x⊤1 · v1

?
= c⊤1 · v0.

Now, the prover only needs to prove knowledge of short e which satisfies the following tensor-style equations:

(Ir1 ⊗A2) · e = Gr1n · y1,(
Ir1 ⊗ x⊤2 ·Gr2n

)
· e = v1.

(19)

To prove shortness, we apply an approximate range proof. Namely, the verifier outputs a challenge matrix P ←
χλ×r2nαd, where χ is a probability distribution over {−1, 0, 1} defined earlier. The prover returns the projection

#»p := (Ir1 ⊗ P ) · #»e ∈ Zλr1
q (20)

where #»e ∈ Zr1r2nαd
q is the coefficient vector of e. The verifier then checks whether ∥ #»p ∥ ≤ βp. The current partial

witness is still e.
The prover now needs to prove that #»p is well-formed as in Equation (20), i.e. λr1 inner product relations over

Zq . For efficiency, we will randomly linear-combine the relations. So, the verifier outputs a challenge B ← Zl×λ
q ,

where l := ⌈ λ
log q ⌉ (used for boosting soundness). Then we have

(Ir1 ⊗B) · #»p = (Ir1 ⊗B) · (Ir1 ⊗ P ) · #»e = (Ir1 ⊗B · P ) · #»e .

Let us split #»e = ( #»e 1, . . . ,
#»e r1) and similarly #»p = ( #»p 1, . . . ,

#»p r1). Also, denote #»

b i ∈ Zλ
q and #»n i ∈ Zr2nαd

q to be the
i-th rows of B and B · P respectively. Then, from the equation above we get that for any j ∈ [r1] and i ∈ [l]:〈

#»

b i,
#»p j

〉
= ⟨ #»n i,

#»e j⟩ .

Then, if we define all ni ∈ Rr2n
q and ej ∈ Rr2n

q as the polynomial vectors with coefficient vectors #»n i and #»e j

respectively, then the constant coefficient of ⟨σ−1(ni), ej⟩ ∈ Rq is equal to ⟨ #»

b i,
#»p j⟩. Therefore, the prover outputs

polynomials
(γi,j := ⟨σ−1(ni), ej⟩)i∈[l],j∈[r1] ∈ R

r1l
q (21)

and the verifier checks for all i, j that the constant coefficient of γi,j is ⟨ #»

b i,
#»p j⟩ ∈ Zq . As expected, e is still the

partial witness.
Next, observe that Equation (21) can be written equivalently as:γ1,1...

γl,r1

 = (Ir1 ⊗N) · e where N :=

σ−1(n1)
⊤

...
σ−1(nl)

⊤

 ∈ Rl×r2n
q (22)

Thus, the prover only needs to prove the three tensor-style linear equations overRq : Equations (19) and (22). To this
end, the verifier sends a challenge c2 ← Cr1 , and the prover outputs the final message

y2 := (c⊤2 ⊗ Ir2nα) · e ∈ Rr2nα
q .

31



The verifier concludes by checking whether

A2 · y2
?
= (c⊤2 ⊗ In) ·Gr1n · y1

x⊤2 ·Gr2n · y2
?
= c⊤2 · n1

N · y2
?
= (c⊤2 ⊗ Il) ·

γ1,1...
γl,r1


∥y2∥

?
≤ β2.

We note that the first three equations follow directly from the mixed-product property, that is:

1. A · y2 = A · (c⊤2 ⊗ Ir2nα) · e = (c⊤2 ⊗ In) · (Ir1 ⊗A2) · e = (c⊤2 ⊗ In) ·Gr1n · y1,
2. x⊤2 ·Gr2n ·y2 = x⊤2 ·Gr2n ·(c⊤2 ⊗Ir2nα) ·e = x⊤2 ·(c⊤2 ⊗Ir2n) ·Gr1r2n ·e = c⊤2 ·(Ir1⊗x⊤2 ) ·Gr1r2n ·e = c⊤ ·n1,

3. N · y2 = N · (c⊤2 ⊗ Ir2nα) · e = (c⊤2 ⊗ Il) · (Ir1 ⊗N) = (c⊤2 ⊗ Il) ·

γ1,1...
γl,r1

.

The norm bounds will be set appropriately to satisfy completeness.

A.2 Completeness and Security Analysis

In this section we prove completeness and coordinate-wise special soundness.
Lemma 5 (Completeness). Let β1 ≥ βr0κd, βp ≥ β1r2nαd and β2 ≥ β1r1κd. Then, the protocol in Figure 7 for
relation Rβ satisfies completeness.

Proof. All the algebraic relations hold for an honest prover as described in the overview above. Hence, we only focus
on the norm bound checks. Let us parse ci := (ci,1, . . . , ci,ri−1

) and si := (si,1, . . . , si,r0) for i = 1, 2. Then, by the
triangle inequality we have

∥y1∥ = ∥
(
c⊤1 ⊗ Ir1nα

)
· s1∥ = ∥

r0∑
i=1

c1,i · s1,i∥ ≤
r0∑
i=1

∥c1,i · s1,i∥ ≤ βr0κd ≤ β1. (23)

Similarly, ∥e∥ = ∥ #»e ∥ ≤ β1. Next, we parse e := (e1, . . . , er1) and #»e := ( #»e 1, . . . ,
#»e r1). Then

∥ #»p ∥ = ∥(Ir1 ⊗ P ) · #»e ∥ ≤ max
i∈[r1]

∥P · #»e i∥ ≤ β1r2nαd ≤ βp.

Finally,

∥y2∥ = ∥(c⊤2 ⊗ Ir2nα) · e∥ = ∥
r1∑
i=1

c2,i · ei∥ ≤
r1∑
i=1

∥c2,i · ei∥ ≤ β1r1κd ≤ β2.

⊓⊔

As standard in lattice-based proof systems, we define an extractor which finds a witness w.r.t. a relaxed relation –
here we define it as:

R∗β,η :=


pp := (q, d, n, α, r0, r1, r2),

((A1,A2), t,x0,x1,x2, u),
(s1, s2, c)


∣∣∣∣∣∣∣∣

maxi∈[2],j∈[r0] ∥cj · si,j∥ ≤ β, ∥c∥ ≤ η,
c ∈ (R×q )

r0 , t = (Ir0 ⊗A1) · s1,
Gr0r1n · s1 = (Ir0r1 ⊗A2) · s2,

x⊤0 · (Ir0 ⊗ x⊤1 ) · (Ir0r1 ⊗ x⊤2 ) ·Gr0r1r2n · s2 = u


where we denote si := (si,1, . . . , si,r0) for i = 1, 2 and c := (c1, . . . , cr0). The witness now consists of a vector
of invertible scalars c ∈ (R×q )

r0 of small norm such that ∥cj · si,j∥ is short for i = 1, 2 and j ∈ [r0]. In particular,
the vectors s1, s2 do not need to be short anymore. Similar reasoning as in [ALS20] can be applied to show that the
commitment scheme is binding w.r.t. relaxed openings (s1, s2, c) under the Module-SIS assumption.

32



Lemma 6 (Relaxed Binding). Let pp := (q, d, n, α, r0, r1, r2) and x := ((A1,A2), t,x0,x1,x2, u). Given two
tuples w := (s1, s2, c) and w′ := (s′1, s

′
2, c
′) such that (pp, x, w), (pp, x, w′) ∈ R∗β,η and si ̸= s′i for some i ∈ [2],

there is an efficient deterministic algorithm which finds a non-zero vector z ∈ Rrinα
q such that ∥z∥ ≤ 2ηβd and

Ai · z = 0.

Proof. We start with a trivial observation that finding a short, non-zero solution to (Ir0...ri−1 ⊗Ai) directly implies
finding a short and non-zero solution to Ai.

Suppose i = 1, say s1,j ̸= s′1,j for some j ∈ [r0]. Then, by definition of R∗β,η we have A1 · (s1,j − s′1,j) = 0. Also,
since cj , c′j are invertible, cj · c′j · (s1,j − s′1,j) is non-zero. Hence, to conclude we notice that

∥cj · c′j · (s1,j − s′1,j)∥ ≤ ∥c′j · (cj · s1,j)∥+ ∥cj · (c′j · s′1,j)∥ ≤ 2ηβd.

Now assume that s1 = s′1 and s2 ̸= s′2 - say s2,j ̸= s′2,j for some j ∈ [r0]. Note that we have (Ir1⊗A2)·(s2,j−s′2,j) =
0. Using the same argument as before, we deduce that cj ·c′j ·(s2,j−s′2,j) is non-zero and ∥cj ·c′j ·(s2,j−s′2,j)∥ ≤ 2ηβd.

⊓⊔
We focus on coordinate-wise special soundness with respect to the relaxed relation above. Note that having the ver-
ifier sample P ← χλ×r2nαd is the same as generating a uniformly random binary matrix [P0|P1]← {0, 1}λ×2r2nαd,
and then both the prover and verifier computing P := P0 − P1. We will use this modification when arguing
coordinate-wise special soundness. In this case, we think of the challenge being sampled from ({0, 1}λ)2r2nαd, i.e.
there are 2r2nαd coordinates.
Lemma 7 (Coordinate-Wise Special Soundness). Let the protocol in Figure 7 be a nine-round public-coin interac-
tive proof with challenge spaces Cr0 , ({0, 1}λ)2r2nαd, (Zl

q)
λ and Cr1 . Fix

pp := (q, d, n, α, r0, r1, r2) and x := ((A1,A2), t,x0,x1,x2, u).

Then, the protocol is coordinate-wise special sound for relation R∗2max(β1,βp),2κ
under theMSISn,r2nα,q,d,8κβ2d assump-

tion on matrix A2.

Proof. We follow Definition 11 and implicitly define the extractor Ext via the sequence of claims below.
Claim. There is an efficient deterministic algorithm that, given as input pp, x and r1 + 1 transcripts π0, . . . , πr1 of
the form

πk := (v0, c1, (y1,v1), (P0, P1),
#»p ,B, (γi,j)i,j , c

(k)
2 ,y

(k)
2 ),

where (c
(0)
2 , . . . , c

(r1)
2 ) ∈ Γ (C, r1), such that V0(pp, x, πk) = 1 for all k = 0, 1, . . . , r1, outputs a tuple (π∗, e∗, c∗2)

for which V1(pp, x, π∗, (e∗, c∗2)) = 1.

Proof. By Lemma 4 we can find a matrix H ∈ R(r1+1)×r1
q and a vector c∗2 ∈ (R×q )

r1 such that

[c
(0)
2 | · · · | c(r1)2 ] ·H = Ir1

and ∥c∗2,i∥ ≤ 2κ for all i ∈ [r1]. Hence,

(H⊤ ⊗ In) ·


(c

(0)
2

⊤
⊗ In)

...
(c

(r1)
2

⊤
⊗ In)

 ·Gr1n · y1 = (H⊤ ⊗ In) ·



c
(0)
2

⊤

...
c
(r1)
2

⊤

⊗ In

 ·Gr1n · y1 = Gr1n · y1.

Moreover, by the verification equations in V0 we have

(H⊤ ⊗ In) ·


(c

(0)
2

⊤
⊗ In)

...
(c

(r1)
2

⊤
⊗ In)

 ·Gr1n · y1 = (H⊤ ⊗ In) · (Ir1+1 ⊗A2) ·


y
(0)
2
...

y
(r1)
2



= (Ir1 ⊗A2) ·
(
H⊤ ⊗ Ir2nα

)
·


y
(0)
2
...

y
(r1)
2

 .
33



V0(pp, x, π)
1: Parse π := (v0, c1, (y1,v1), (P0, P1),

#»p ,B, (γi,j)i,j , c2,y2)
2: P := P0 − P1

3: Parse B := (
#»

b ⊤
i )i∈[l], B · P := ( #»v ⊤

i )i∈[l]

4: Parse #»p := ( #»p 1, . . . ,
#»p r1)

5: V := (σ−1(v)
⊤
i )i∈[l]

6: γ :=
[
γ1,1 . . . γl,r1

]⊤
7: Return 1 if all the following hold:
8: x⊤

0 · v0 = u,
9: x⊤

1 · v1 = c⊤1 · v0,
10: x⊤

2 ·Gr2n · y2 = c⊤2 · v1,
11: ∀i ∈ [l], j ∈ [r1], γ̃i,j = ⟨ #»

b i,
#»p j⟩,

12: A1 · y1 = (c⊤1 ⊗ In) · t,
13: A2 · y2 = (c⊤2 ⊗ In) ·Gr1n · y1,
14: V · y2 = (c⊤2 ⊗ Il) · γ,
15: ∥y1∥ ≤ β1, ∥ #»p ∥ ≤ βp, ∥y2∥ ≤ β2

16: Else, return 0
V2(pp, x, π, (e∗, c∗2))

1: Parse e∗ := (e∗
1, . . . , e

∗
r1) and c∗2 := (c∗2,1, . . . , c

∗
2,r1)

2: Parse π := (v0, c1, (y1,v1), (P0, P1),
#»p )

3: P := P0 − P1

4: Return 1 if all the following hold:
5: x⊤

0 · v0 = u,
6: x⊤

1 · v1 = c⊤1 · v0,
7: A1 · y1 = (c⊤1 ⊗ In) · t,
8: ∥y1∥ ≤ β1, ∥ #»p ∥ ≤ βp

9: (Ir1 ⊗A2) · e∗ = Gr1n · y1

10:
(
Ir1 ⊗ x⊤

2 ·Gr2n

)
· e∗ = v1

11: (Ir1 ⊗ P ) · #»e ∗ = #»p
12: ∀ ∈ [r1], ∥c∗2,i · e∗

i ∥ ≤ 2β2 and ∥|c∗2,i∥ ≤ 2κ
13: Else, return 0

V1(pp, x, π, (e∗, c∗2))

1: Parse e∗ := (e∗
1, . . . , e

∗
r1) and c∗2 := (c∗2,1, . . . , c

∗
2,r1)

2: Parse π := (v0, c1, (y1,v1), (P0, P1),
#»p ,B, (γi,j)i,j)

3: P := P0 − P1

4: Parse B := (
#»

b ⊤
i )i∈[l], B · P := ( #»v ⊤

i )i∈[l]

5: Parse #»p := ( #»p 1, . . . ,
#»p r1)

6: V := (σ−1(v)
⊤
i )i∈[l]

7: γ :=
[
γ1,1 . . . γl,r1

]⊤
8: Return 1 if all the following hold:
9: x⊤

0 · v0 = u,
10: x⊤

1 · v1 = c⊤1 · v0,
11: ∀i ∈ [l], j ∈ [r1], γ̃i,j = ⟨ #»

b i,
#»p j⟩,

12: A1 · y1 = (c⊤1 ⊗ In) · t,
13: ∥y1∥ ≤ β1, ∥ #»p ∥ ≤ βp

14: (Ir1 ⊗A2) · e∗ = Gr1n · y1

15:
(
Ir1 ⊗ x⊤

2 ·Gr2n

)
· e∗ = v1

16: (Ir1 ⊗V) · e∗ =

γ1,1
...

γl,r1


17: ∀ ∈ [r1], ∥c∗i · e∗

i ∥ ≤ 2β2 and ∥c∗i ∥ ≤ 2κ
18: Else, return 0
V3(pp, x, π, e∗)

1: Parse e∗ := (e∗
1, . . . , e

∗
r1)

2: Parse π := (v0, c1, (y1,v1))
3: Return 1 if all the following hold:
4: x⊤

0 · v0 = u,
5: x⊤

1 · v1 = c⊤1 · v0,
6: A1 · y1 = (c⊤1 ⊗ In) · t,
7: ∥y1∥ ≤ β1, ∥e∗∥ ≤ 2βp

8: (Ir1 ⊗A2) · e∗ = Gr1n · y1

9:
(
Ir1 ⊗ x⊤

2 ·Gr2n

)
· e∗ = v1

10: Else, return 0

Fig. 8. Partial verification algorithms used for the proof of coordinate-wise special soundness.

Hence, define

e∗ :=
(
H⊤ ⊗ Ir2nα

)
·


y
(0)
2
...

y
(r1)
2

 ∈ Rr1r2nα
q

and split e∗ = (e∗1, . . . , e
∗
r1). Then, again by Lemma 4 we have

∥c∗2,i · e∗i ∥ =

∥∥∥∥∥∥∥∥c
∗
2,i · (h⊤i ⊗ Ir2nα) ·


y
(0)
2
...

y
(r1)
2


∥∥∥∥∥∥∥∥ ≤ 2 · ∥y2∥ ≤ 2β2.

Thus, the algorithm outputs

π∗ := (v0, c1, (y1,v1), (P0, P1),
#»p ,B, (γi,j)i,j), (e∗, c∗2).

Similarly as done above, one can check that all the verification equations in V1 are satisfied. ⊓⊔

Claim. There is an efficient deterministic algorithm that, given as input pp, x andλ+1 tuples
(
πk, e

∗(k), c∗2
(k)
)
0≤k≤λ

where
πk := (v0, c1, (y1,v1), (P0, P1),

#»p ,B(k), (γ
(k)
i,j )i,j)

and (B(0), . . . , B(λ)) ∈ Γ (Zl
q, λ) such that V1

(
pp, x, πk, e

∗(k), c∗2
(k)
)
= 1 for all k = 0, 1, . . . , λ, either outputs a

tuple (π∗, e∗, c∗2) for whichV2(pp, x, π∗, (e∗, c∗2)) = 1, or a non-zero vector z such that ∥z∥ ≤ 8κβ2d andA2 ·z = 0.

Proof. First of all, if there exist some i ̸= j such that e∗(i) = e∗(j), then by arguing as in Lemma 6 we can find a short
non-zero solution z to A2 of norm at most 8κβ2d. Otherwise, define e∗ := e∗(0) = . . . = e∗(λ) and c∗2 := c∗2

(0). We

34



only need to show that
(Ir1 ⊗ P ) · #»e ∗ = #»p .

To this end, assume that for some j ∈ [r1] we have P · #»e ∗j ̸= #»p j and let i ∈ [λ] be the index for which #»φ⊤i · #»e ∗j ̸= pj,i,
where #»φ⊤j is the i-th row of P .

Suppose without loss of generality thatB(0) andB(i) differ exactly in the i-th column, say position t ∈ [l]. From
verification equations of V1 and the relationship between constant coefficients of Rq elements and inner products
over Zq we know that

B(0) · ( #»p j − P · #»e j) =
#»
0 and B(i) · ( #»p j − P · #»e j) =

#»
0 .

By subtracting the two equations, and focusing on the t-th row of B(0) −B(i), we note that

(B(0)[i, t]−B(i)[i, t]) · (pj,i − #»φ⊤i · #»e ∗j ) = 0.

Since B(0)[i, t]−B(i)[i, t] ∈ Z×q , we deduce that pj,i = #»φ⊤i · #»e ∗j which leads to a contradiction. ⊓⊔

Claim. There is an efficient deterministic algorithm that, given as input pp, x and 2r2nαd tuples
(
πk, e

∗(k), c∗2
(k)
)
0≤k≤2r2nαd

:

πk := (v0, c1, (y1,v1), (P
(k)
0 , P

(k)
1 ), #»p k)

where ([P
(0)
0 |P

(0)
1 ], . . . , [P

(2r2nαd)
0 |P (2r2nαd)

1 ]) ∈ Γ ({0, 1}λ, 2r2nαd),

such thatV2(pp, x, πk, e∗(k), c∗2(k)) for all k = 0, 1, . . . , 2r2nαd, either outputs a pair (π∗, e∗) for whichV3(pp, x, π∗, e∗) =
1, or a non-zero vector z such that ∥z∥ ≤ 8κβ2d and A2 · z = 0.

Proof. Similarly as above, we can only focus on the case e∗ := e∗(0) = . . . = e∗(λ). To conclude the claim, we need
to show that ∥e∗∥ = ∥ #»e ∗∥ ≤ 2βp. Suppose for some j ∈ [r1] we have ∥ #»e ∗j∥ = |e∗j,i| > 2βp for some i ∈ [r2nαd].
Assume without loss of generality that [P (0)

0 | P (0)
1 ] and [P

(i)
0 | P (i)

1 ] differ exactly in the i-th column, say position
t ∈ [λ]. Since i ≤ r2nαd, we have P (0)

1 = P
(i)
1 . Next, from the verification equations for V2 we know that

(P
(0)
0 − P (0)

1 ) · #»e ∗j = #»p
(0)
j and (P

(i)
0 − P

(i)
1 ) · #»e ∗j = #»p

(i)
j .

By subtracting the two equations we obtain

(P
(0)
0 − P (i)

0 ) · #»e ∗j = #»p
(0)
j − #»p

(i)
j .

Looking at the t-th row of P (0)
0 − P (i)

0 , it is equal, up to a sign, to the unit vector with 1 in the i-th position and 0

everywhere else. This means that |e∗j,i| = |p
(0)
j,t − p

(i)
j,t | ≤ 2βp which yields a contradiction. ⊓⊔

To conclude the proof of coordinate-wise special soundness, consider having r0+1 tuples (πk, e∗(k))0≤k≤r0 , where
we denote

πk := (v0, c
(k)
1 , (y

(k)
1 ,v

(k)
1 )),

such that V3(pp, x, πk, e∗(k)) for all k = 0, 1, . . . , r0. First, by Lemma 4 we can find a matrix H ∈ R(r0+1)×r0
q and a

vector c∗1 ∈ (R×q )
r0 such that

[c
(0)
1 | · · · | c(r0)1 ] ·H = Ir0

35



and ∥c∗1,i∥ ≤ 2κ for all i ∈ [r0]. Hence, from the verification equations for V3:

(Ir0 ⊗A1) · (H⊤ ⊗ Ir1nα) ·


y
(0)
1
...

y
(r1)
1

 = (H⊤ ⊗ In) · (Ir+1 ⊗A1) ·


y
(0)
1
...

y
(r1)
1



= (H⊤ ⊗ In) ·


(c

(0)
1

⊤
⊗ In)

...
(c

(r1)
1

⊤
⊗ In)

 · t

= (H⊤ ⊗ In) ·



c
(0)
1

⊤

...
c
(r1)
1

⊤

⊗ In

 · t
= t.

Therefore, we set the extracted witness:

s∗1 := (H⊤ ⊗ Ir1nα) ·


y
(0)
1
...

y
(r1)
1

 and s∗2 := (H⊤ ⊗ Ir1r2nα) ·

 e∗(0)

...
e∗(r0)

 .

Indeed, note that

Gr0r1n · s∗1 = (Ir0 ⊗Gr1n) · (H⊤ ⊗ Ir1nα) ·


y
(0)
1
...

y
(r1)
1



= (H⊤ ⊗ Ir1n) · (Ir+1 ⊗Gr1n) ·


y
(0)
1
...

y
(r1)
1


= (H⊤ ⊗ Ir1n) ·

 (Ir1 ⊗A2) · e∗(0)
...

(Ir1 ⊗A2) · e∗(r0)



= (H⊤ ⊗ Ir1n) · (Ir0+1 ⊗ (Ir1 ⊗A2)) ·

 e∗(0)

...
e∗(r0)



= (Ir0r1 ⊗A2) · (H⊤ ⊗ Ir1r2nα) ·

 e∗(0)

...
e∗(r0)


= (Ir0r1 ⊗A2) · s∗2.

36



Next, we need to show that x⊤0 · (Ir0 ⊗ x⊤1 ) · (Ir0r1 ⊗ x⊤2 ) ·Gr0r1r2n · s2 = u. Since we know that t⊤0 · v0 = u, it is
sufficient to show that (Ir0 ⊗ x⊤1 ) · (Ir0r1 ⊗ x⊤2 ) ·Gr0r1r2n · s2 = v0. By the verification equations of V3 we get:

(Ir0 ⊗ x⊤1 ) · (Ir0r1 ⊗ x⊤2 ) ·Gr0r1r2n · s∗2

= (Ir0 ⊗ x⊤1 ) · (Ir0r1 ⊗ x⊤2 ) ·Gr0r1r2n · (H⊤ ⊗ Ir1r2nα) ·

 e∗(0)

...
e∗(r0)



= (Ir0 ⊗ x⊤1 ) · (Ir0r1 ⊗ x⊤2 ) · (H⊤ ⊗ Ir1r2n) · (Ir0+1 ⊗Gr1r2n) ·

 e∗(0)

...
e∗(r0)



= (Ir0 ⊗ x⊤1 ) · (H⊤ ⊗ Ir1) · (Ir0+1 ⊗ (Ir1 ⊗ x⊤2 )) · (Ir0+1 ⊗Gr1r2n) ·

 e∗(0)

...
e∗(r0)



= (Ir0 ⊗ x⊤1 ) · (H⊤ ⊗ Ir1) · (Ir0+1 ⊗ (Ir1 ⊗ x⊤2 Gr1r2n)) ·

 e∗(0)

...
e∗(r0)



= (Ir0 ⊗ x⊤1 ) · (H⊤ ⊗ Ir1) ·


v
(0)
1
...

v
(r0)
1



= H⊤ · (Ir0+1 ⊗ x⊤1 ) ·


v
(0)
1
...

v
(r0)
1



= H⊤ ·


c
(0)
1

⊤

...
c
(r0)
1

⊤

 · v0

= v0.

Finally, we show the norm bounds. Let us split s∗i := (s∗i,1, . . . , s
∗
i,r0

) for i = 1, 2. Then, by Lemma 4 for j ∈ [r0] we
get

∥c∗1,j · s∗1,j∥ =

∥∥∥∥∥∥∥∥c
∗
1,j · (h⊤j ⊗ Ir1nα) ·


y
(0)
1
...

y
(r1)
1


∥∥∥∥∥∥∥∥ ≤ 2β1.

Similarly, we show that ∥c∗1,j · s∗2,j∥ ≤ 2βp. Therefore, we conclude that

(pp, x, (s∗1, s
∗
2, c
∗
1)) ∈ R∗2max(β1,βp),2κ

.

⊓⊔

We highlight that, in a concrete instantiation, matrix A2 will be uniformly random. This means that the extraction
algorithms will either extract the (partial) witnesses, or find a valid Module-SIS solution.

37



L 212 216 220

log q 60 60 64
d 32 32 32
n 76 69 76
α 3 4 4
κ 8 8 8
l 3 3 2

r0 6 13 29
r1 3 9 28
r2 3 8 17

commitment size 106KB 242KB 542KB
proof size 185KB 602KB 1.77MB

Table 4. Concrete parameters, together with commitment and proof sizes, for security level λ = 128.

Soundness error. By a simple generalisation of [FMN23, Lemma 2.31] to multiple (possibly distinct) challenge spaces,
we deduce that the knowledge soundness error of the protocol is at most

r0 + r1
(2κ+ 1)d

+
2r2nαd

2λ
+
λ

ql
≤ r0 + r1

(2κ+ 1)d
+

2r2nαd+ λ

2λ
.

This term becomes negligible for d = O(λ) and κ = O(1).

A.3 Parameters and Efficiency

We propose concrete instantiation of our protocol for various values of L. To begin with, one can bound the com-
mitment size by r0 · nd⌈log q⌉, and the prover messages as follows:

r0 · d⌈log q⌉+ r1 · (nαd⌈log(2β1)⌉+ d⌈log q⌉+ λ⌈log(2βp)⌉+ ld⌈log q⌉) + r2 · nαd⌈log(2β2)⌉.

Assuming that lattice parameters n, d are polynomial in λ, by picking r0, r1, r2 ∈ Oλ(
3
√
L), we yield proofs of size

Oλ(
3
√
L) ring elements. Similar reasoning can be applied to show that the verifier runs in sublinear time.

We instantiate our protocol with parameters shown in Table 4. For comparison with prior works, e.g. [BS23,FMN23],
we aim for 128-bit security. This corresponds to the root Hermite factor δrhf being around 1.0044. To measure hard-
ness of (Module-)SIS, we first naively translate the infinity norm of our solution to the ℓ2 norm, and then we follow
the heuristic methodology from [MR09], i.e., MSISn,m,q,d,β∗ is hard when β∗

√
md ≤ 22

√
nd log q log δrhf . Note that

one may get smaller sizes by considering cryptanalysis of the infinity norm Module-SIS as in Dilithium [DKL+18].
As shown in the table, picking small values for d results in the smallest sizes. The reason is that having small

d implies large n to maintain security. Hence, keeping in mind that r0r1r2 = L/n, we can pick smaller values for
r0, r1 and r2. Of course, we cannot choose very small ring dimension d, since then κ needs to be increased drastically
to keep the challenge space C exponential-size. Consequently, we found the trade-off in (d, κ) = (32, 8).

Optimizations. As shown in Lemmas 5 and 7, parameters β1, β2, βp have significant impact on both security and
performance. In order to increase efficiency, we can derive smaller values for β1, β2, βp using probabilistic bounds.
For example, to bound #»p , we can use the heuristic from [GHL22, Corollary 3.2] which says that for any vector
#»s ∈ Zk , with an overwhelming probability over #»φ ← χk , we have |⟨ #»φ, #»s ⟩| < 9.75 · ∥ #»s ∥

√
n. This allows us to

pick βp := 9.75 · β1
√
r2nαd. As for β1 (and analogously for β2) we heuristically find an upper-bound on the largest

singular values of the row vectors #»c ⊤1 ← [−κ, κ]r0d, which enables us to estimate ∥
∑r0

i=1 c1,is1,i∥ in Equation (23)
more efficiently.

Another important optimization is to rely on the Hermite Normal Form Module-SIS problem instead of the plain
Module-SIS. Concretely, we assume that matrices Ai are of the form Ai := [A′i | In]. The advantage comes from the
fact that then we do not need some parts of the vectors y1,y2, since they can be computed directly by the verifier.

38



L 215 220 225 230

commitment size 65KB 118KB 570KB 2.20MB
proof size 120KB 501KB 1.51MB 5.17MB

Table 5. Efficiency of our polynomial commitment scheme over a finite field Zq , where q ≈ 260. We aim for 128-bit security and
include the linear loss Q from the Fiat-Shamir transformation. Concretely, we assume that the adversary makes at most Q = 264

queries.

For instance, if we write y1 := (y1,0,y1,1) ∈ Rr1nα
q × Rn

q , then it is sufficient to only send y1,0 to the verifier.
Indeed, they can compute y1,1 as follows:

y1,1 := (c⊤1 ⊗ In) · t−A′1 · y1,0.

All the other verification relations can be checked using the newly generated y1,1. A natural future step for opti-
mization would be to also drop the low-order bits of the commitment t as in [DKL+18].

A.4 Polynomial commitments over Zq

We provide an efficient instantiation of a polynomial commitment scheme over finite fields Zq using the evaluation
protocol from Appendix A. For fair comparison, we include the security loss from the Fiat-Shamir transformation
and assume the adversary makes at most 264 random oracle queries. To accommodate for this loss, we set λ = 192.
All the other parameters are picked as in Appendix A.3 and the resulting sizes are summarized in Table 5.

To achieve this, we first apply the generic transformation from [AFLN23, Section 5.5], which reduces proving
polynomial evaluations over Zq for degree L polynomials to proving polynomial evaluations over Rq for degree
L/d polynomials. This comes at a cost of sending an extra Rq element. Motivated by this observation, we choose
d = 256. Then, instead of picking arbitrary binary/ternary polynomials from C, which would result in a challenge
space much bigger than 2192, we define C to contain polynomials with ternary coefficients in {−1, 0, 1} and fixed
Hamming weight ω = 39. This allows us to moderately reduce β1, β2, βp, as well as the norms of the extracted
witness.

B Post-Quantum Security

In the following we show a general theorem for post-quantum security of polynomial commitments. Specifically,
we show that coordinate-wise special soundness implies knowledge soundness, even against quantum attackers.
Combining this the fact that the scheme in Section 5 is last-round collapsing (to be defined later), this implies the
post-quantum security of our basic polynomial commitment. For notational convenience, we will denote by

Vpp,x(c1, . . . , cℓ, z1, . . . , zℓ, zℓ+1) ∈ {0, 1}

the predicate that, on input a set of challenges and the corresponding responses, determines whether they form an
accepting transcript. For notational convenience, we drop the identifiers pp and x whenever clear from the context
and use (slightly) different indexing of the prover’s message and witnesses to the one used in Definition 4. In par-
ticular, we will start by counting from 1 here, compared to 0 as used before. We recall the following consequence of
Markov’s inequality.

Lemma 8. Let X be a random variable supported on [0, 1]. Then for all α ≥ 0 it holds that Pr[X ≥ α] ≥ E[X]− α.

B.1 Quantum Information

We recall some basic concepts of quantum information, and we refer the reader to [NC11] for a comprehensive
introduction. A (pure) quantum state is a vector |ψ⟩ in a complex Hilbert spaceH with ∥|ψ⟩∥ = 1; in this work,H is
finite-dimensional. A density matrix is a positive semi-definite Hermitian operator ρ ∈ H with Tr(ρ) = 1. A density

39



matrix represents a probabilistic mixture of pure states (a mixed state); the density matrix corresponding to the pure
state |ψ⟩ is ⟨ψ| |ψ⟩. Typically we divide a Hilbert space into registers, e.g., H = H0 ⊗ H1. A unitary operation is
a complex square matrix U such that UU† = Id. The operation U transforms the pure state |ψ⟩ to the pure state
U |ψ⟩, and the density matrix ρ to the density matrix UρU†.

A projectorΠ is a Hermitian operator such thatΠ2 = Π . A projective measurement is a collection of projectors

P = {Πi}i∈S such that
∑
i∈S

Πi = Id,

which implies that ΠiΠj = 0 for all distinct i and j. The application of P to a pure state |ψ⟩ yields outcome i ∈ S
with probability pi = ∥Πi |ψ⟩∥2, in which case the post-measurement state is |ψi⟩ = Πi |ψ⟩ /

√
pi. We refer to the

post-measurement state |ψi⟩ as the result of applying P to |ψ⟩ and post-selecting (conditioning) on outcome i. A
two-outcome projective measurement is called a binary projective measurement, and is written as P = {Π, Id−Π}.

General (non-unitary) evolution of a quantum state can be represented via a completely-positive trace- preserving
(CPTP) map, whose precise definition is not important for this work. We only use the fact that for every CPTP map
there exists a unitary dilation U , that operates on an extended Hilbert space. The unitary dilation is not necessarily
unique, but its circuit complexity is linear in that of the original CPTP map.

Interactive Quantum Circuits. In this work, we model the attacker as an interactive quantum circuits, where an
ℓ-round interactive circuit consists of a sequence of unitaries U1, . . . , Uℓ where

Ui : Ci → U(A⊗Z)

and we think of Z as the register containing the response of the adversary, whereasA contains its internal state. We
denote by Ui(ci) the i-th unitary classically controlled on ci, i.e.,

Ui =
∑
ci∈Ci

|ci⟩ ⟨ci|Ui(ci).

The size of an interactive quantum circuit is the sum of the sizes of the circuits implementing the unitariesU1, . . . , Uℓ.
We can then simulate an interaction with the adversary with initial state |ψ⟩ as follows.

– Initialize A⊗Z1 with |ψ⟩ and τ as an empty string.
– Measure Z1 in the computational basis to obtain a first message z1.
– Append z1 to τ .
– For i = 1, . . . , ℓ:
• Sample ci ← Ci.
• Apply the unitary Ui(ci) to A⊗Zi+1.
• Measure Zi+1 in the computational basis to obtain a response zi+1.
• Append (ci, zi+1) to τ .

– Return V (τ).

In particular, the interaction is public coin. Note again that we restrict the operation of the adversary in each round
to be unitary except for the measurement of Zi+1 in the computational basis.

B.2 Last-Round Collapsing

We recall the definition of last-round collapsing adapted from [LMS22].

Definition 10 (Last Round Collapsing). LetΠ = (Setup,P,V) be a (2ℓ+1)-round recursive-friendly proof system
Π = (Setup,P,V) for the relation Rℓ with associated relations (Rℓ−i)i∈[ℓ+1]. For each i ∈ [ℓ + 1], let Πi be the
(2i+ 1)-message protocol obtained by running the first 2i-round of Π and where the last message is the witness of the
reduced relation Rℓ−i+1. The verifier of Πi accepts the interactions if and only if Vj(pp, xj , zj) = 1 for all j ∈ [i] and

40



(pp, xi, wi) ∈ Rℓ−i+1. The protocolΠ is said to be last-round collapsing if for all i ≤ [ℓ+1] and for any QPT adversary
P∗ ∣∣∣Pr [1 = LRCollapsing

(0)
Πi,P∗

]
− Pr

[
1 = LRCollapsing

(1)
Πi,P∗

]∣∣∣ ≤ negl(λ)

where the experiment LRCollapsing(b)Πi,P∗ is defined as follows:

– The challenger runs pp← Setup(1λ).
– The challenger activates the prover x1 ← P∗(pp).
– The challenger and the prover jointly execute the Πi up until measuring the last message of the adversary. Let

(pp, x1, c, z) where c = (c1, . . . , ci−1) and z = (z1, . . . , zi−1)

denote the transcript thus far (excluding the last message) and let W be the register that contains the state corre-
sponding to the last message of the adversary.

– For j ∈ [i], let xj = NextX≤j−1(pp, x1, z1, . . . , zj−1, c1, . . . , cj−1).10 If Vj(pp, xj , zj) = 0 for any j ∈ [i − 1]
abort the experiment, else proceed.

– LetVpp,x1(c, z) denote some unitary dilation of the verification predicate, i.e., the predicate checking that (pp, xi, wi) ∈
Rℓ−i+1, where wi is the content ofW . Apply Vpp,x1(c, z) toW along with some fresh ancillas, measure the register
that contains the output bit, then apply Vpp,x1

(c, z)†.
– If the output of the measurement is 0 abort the experiment, else proceed.
– If b = 0: Do nothing.
– If b = 1: MeasureW in the computational basis, and discard the outcome of the measurement.
– Return all registers to the prover and return whatever the prover returns.

Next, we show that the protocol specified in Section 5 is last-round collapsing. For each i ∈ [ℓ+1], the last message
of Πi consists of the “reduced witness” wi which is composed of a tuple of vectors

(
(s

(i)
j )i∈[0,ℓ−i+1], f

(i)
)

such that
(I⊗A) · s(i)0 = t(i)

(I⊗A) · s(i)j+1 = G · s(i)j

f (i) = G · s(i)ℓ−i

and ∥s(i)j ∥ ≈ 0

where t(i) is a variable that can be publicly computed from the previous messages. Since f (i) is uniquely determined
by s

(i)
ℓ−i+1, undetectability of the measurement follows immediately by the LWE assumption, by invoking recent

works [LZ19,LMZ23] that show that the SIS-function is collapsing [Unr16] The collapsing property of A extends to
(I⊗A) via hybrid argument.

B.3 TheQuantum Extractor

In the following we specify the quantum extractor, which shows that coordinate-wise special soundness implies
knowledge soundness.

Simplifying Assumptions. We are going to make the following simplifying assumptions on the adversary, which
will be later lifted using generic compilers.

– Persistent: Let M = {Π, Id−Π} be a binary-outcome projective measurement and let p be the probability that
of the first outcome, for a given state of the adversary ρ. Then there exists an estimate procedure ValEstM acting
on two registers

ValEstM : H → H⊗O.
In an abuse of notation, we will denote by (ρ∗, p∗) ← ValEstM(ρ) application of the map on a state ρ ∈ H,
followed by a measurement in the computational basis of the O register. Then the following two properties
hold:

10 NextX≤j is defined recursively via NextX≤j(pp, x1, z1, . . . , zj , zj , c1, . . . , cj , cj) :=
NextXj(pp,NextX≤j−1(pp, x1, z1, . . . , zj−1, c1, . . . , cj−1), zj , cj) and NextX≤1(pp, x1, z1, c1) = NextX1(pp, x1, z1, c1)

41



• E[p∗] = p.
• For any inverse-polynomial η, it holds that

maxi |p∗ − pi| ≤ η

where pi is the success probability ofM on the attacker state, after the i-th application of any other k-outcome
projective measurement.

The runtime of the adversary will depend polynomially on η and k, although in this work we will only consider
the case where k = 2 so we will ignore this factor in what follows.

– Stateless: The output or the runtime of the adversary does not depend on the number of the invocation, nor on
previous queries. In particular, this means that successive invocations of the adversary will always result in the
same output distribution.

To lift the first restriction, we will use the state-repair procedure from [CMSZ22], which allows us to restore the
success probability for a given predicate, provided that the state was not disturbed too much. To lift the second
restriction, we will use the technique from [BBK22], which allows us to simulate an stateless adversary, even though
the original adversary might be stateful. Importantly, the latter transformation relies on the queries sent to the
adversary to be non-adaptive. We provide more details in Appendix B.5.

Parameters. The description of the extractor below will induce the following parameters. For ease of understanding,
we report them below, along with an intuitive explanation of what the parameter describes.

– ℓ : Number of rounds of the protocol.
– ξ + 1 : Arity of the extraction tree, i.e., number of transcripts that the extractor needs at each round of the

protocol.
– η: The persistence parameter of the algorithm (see above).
– n: Number of iteration necessary to amplify the success probability of the extractor.
– γ0, . . . , γℓ : Threshold gap necessary for the extractor to visit a subtree in the recursion.

As we shall see in the analysis below, we will set

γi =

(
η + ξ

(
e−
√
n+ηn +

1√
n
+

1

|S|

)
+

1√
n

)
(ℓ− i)

whereas n will be a fixed polynomial in the security parameter and η a larger polynomial in the security parameter
one. In particular we want that e−

√
n should be a negligible function in the security parameter, whereas ηn should

be close to 0.

Last-Round Extractor. The description of our extractor will be recursive, where the i-th recursion of the extractor
will take as input the previous set of randomnesses (c1, . . . , cℓ−1) and responses z = (z1, . . . , zℓ) and will extract
the witness for the last round of the protocol, given the current state of the attacker. The base case extractor Extℓ
takes as input:

– A set of challenges c = (c1, . . . , cℓ−1).
– A set of adversarial responses z = (z1, . . . , zℓ).
– The state of the attacker ρ.
– A success probability pℓ.

The extractor Extℓ proceeds as follows.

– For s = 1, . . . , n:
• Sample cℓ ← Sξ uniformly at random.

42



• Denote by V(c, cℓ, z) the projective measurement defined as

V (c, cℓ, z) = {Πc,cℓ,z, Id−Πc,cℓ,z} where Πc,cℓ,z =
∑

w:V (c,cℓ,z,w)=1

Uℓ(cℓ)
† |w⟩ ⟨w|Uℓ(cℓ). (24)

Apply V (c, cℓ, z) to the state of the attacker and denote by b the observed outcome.
• If b = 1:

∗ Apply Uℓ(cℓ) to the state of the attacker.
∗ LetW be the register that contains the response of the adversary. Measure the register in the computa-

tional basis and let w0 be the result of the measurement. Add {0, cℓ, w0} to the set Ws.
∗ Apply Uℓ(cℓ)

† to the state of the attacker.
• For j = 1, . . . , ξ, let sj be the j-th coordinate of cℓ. Then run the following loop n times:

∗ Sample s∗ ← S \ {sj} and substitute the j-th coordinate with s∗.
∗ Apply V (c, cℓ, z) as defined in Eq. (24) to the state of the attacker and denote by b the observed outcome.
∗ If b = 1:

· Apply Uℓ(cℓ) to the state of the attacker.
· LetW be the register that contains the response of the adversary. Measure the register in the com-

putational basis and let wj be the result of the measurement. If no entry starting with j is present,
add {j, cℓ, wj} to the set Ws.

· Apply Uℓ(cℓ)
† to the state of the attacker.

– If there exists no s such that |Ws| = ξ + 1, then return ⊥. Else return the output of the classical extractor on
such a set Ws.

General Extractor. Before describing the extractor in its full generality, it is useful to define a few additional
subroutines. For a set of challenges c = (c1, . . . , ci−1) and a set of responses z = (z1, . . . , zi−1), we define the
projective measurement M(i, c, z) = {Πi,c,z, Id−Πi,c,z} where

Πi,c,z =
∑

ci+1,...,cℓ∈C

∑
w:V (c,ci+1,...,cℓ,z,w)=1

Ui(ci)
† . . . Uℓ(cℓ)

† |w⟩ ⟨w|Uℓ(cℓ) . . . Ui(ci) (25)

i.e., Πi,c,z projects onto all valid transcripts for randomly chosen subsequent challenges. Note that ValEstM(i,c,z)

estimates the success probability of the adversary, for a given prefix. Let us denote byE(i, c, z) some unitary dilation
of the procedure ValEstM(i,c,z). We then define the projective measurement Thresh(c, z, γi−1) = {Πc,z,γi−1

, Id −
Πc,z,γi−1

} where
Πc,z,γi−1

=
∑

p∗≥γi−1

E(i, c, z)† |p∗⟩ ⟨p∗|E(i, c, z) (26)

where the projection acts on the O register and it is tensored with Id appropriately. We are now ready to describe
the extractor in its full generality. Our top-level extractor Ext proceeds as follows:

– On input a state ρ ∈ Z1 ⊗A
– Run (ρ∗, p∗)← ValEstM(1)(ρ) and abort if p∗ < γ0.
– Run a unitary dilation of Ext1(ρ∗, p∗) and return the result of measuring the output register in the computational

basis.

We then define the i-the level extractor recursively. On input:

– A set of challenges c = (c1, . . . , ci−1).
– A set of adversarial responses z = (z1, . . . , zi)
– The state of the attacker ρ.
– A success probability pi.

The extractor Exti proceeds as follows.

– For s = 1, . . . , n:

43



• Sample ci ← Sξ uniformly.
• Apply Ui(ci) to the state of the attacker.
• Apply Thresh(c, ci, z, γi) as defined in Eq. (26) to the state of the attacker and let b′ be the observed outcome.
• If b′ = 1:

∗ Apply E(i+ 1, c, ci, z) to the state of the attacker.
∗ Run an arbitrary unitary dilation of the extractor Exti+1(c, ci, z) on the registers A⊗O ⊗Zi+1

∗ Apply the projective measurement that determines whether the witness contained in registerW is valid,
and denote by b the observed outcome.

∗ If b = 1 measureW in the computational basis and denote by w0 the result of the measurement. Add
{0, ci, w0} to Ws.

∗ Apply the conjugate transpose of the unitary implementation of Exti+1(c, ci, z).
∗ Apply E(i+ 1, c, ci, z)

† to the state of the attacker.
• Apply Ui(ci)

† to the state of the attacker.
• For j = 1, . . . , ξ, let sj be the j-th coordinate of ci. Then run the following loop n times:

∗ Sample s∗ ← S \ {sj} and substitute the j-th coordinate of ci with s∗.
∗ Apply Ui(ci) to the state of the attacker.
∗ Apply Thresh(c, ci, z, γi) as defined in Eq. (26) to the state of the attacker and let b′ be the observed

outcome.
∗ If b′ = 1:

· Apply E(i+ 1, c, ci, z) to the state of the attacker.
· Run an arbitrary unitary dilation of the extractor Exti+1(c, ci, z) on the registers A⊗O ⊗Zi+1.
· Apply the projective measurement that determines whether the witness contained in registerW is

valid, and denote by b the observed outcome.
· If b = 1 measureW in the computational basis and denote by wj the result of the measurement.

Add {j, ci, wj} to Ws.
· Apply the conjugate transpose of the unitary implementation of Exti+1(c, ci, z).
· Apply E(i+ 1, c, ci, z)

† to the state of the attacker.
∗ Apply Ui(ci)

† to the state of the attacker.
– If there exists no s such that |Ws| = ξ + 1, then return ⊥. Else return the output of the classical extractor on

such a set Ws.

B.4 Analysis of the Extractor

Soundness Gap. In the following we bound the gap between the success probability of the attacker and the proba-
bility that the extractor succeeds in recovering a valid witness. Here we state the main technical statement that will
be useful for our analysis.

Lemma 9. For all i = 1, . . . , ℓ, all c = (c1, . . . , ci−1), all z = (z1, . . . , zi−1) , and all states ρ ∈ Zi⊗A, the following
distributions are computationally indistinguishable

Apply (ρ∗, p∗)← ValEstM(i,c,z)(ρ)
Return 0 if p∗ < γi−1

Run {w,⊥} ← Exti(c, z, ρ
∗, p∗)

Return 1 if w is a valid witness, and 0 otherwise

 ≈ {Apply Thresh(c, z, γi−1) to ρ}

where γi =
(
η + ξ

(
e−
√
n+ηn + 1√

n
+ 1
|S|

)
+ 1√

n

)
(ℓ− i).

Proof. First we recall that the projective measurement Thresh(c, z, γi−1) partitions the state space into states where
the probability p∗ estimated by ValEstM(i,c,z) is smaller or greater equal than γi−1. In the latter case, both distribu-
tions output 0 with certainty, so to prove the statement it suffices to bound the probability that ValEstM(i,c,z) outputs
some p∗ ≥ γi−1 but the extractor Exti fails. We prove this bound by induction.

44



Base Case i = ℓ. We consider the following sequence of hybrids distribution.

– Hyb0: This is the original distribution on the LHS.
– Hyb1: We modify the last round extractor so that the answer of the adversary on registerW is no longer measured

and instead the tuple {j, ·,⊥} is added to Ws (if b = 1). The extraction is considered successful if there exists an
s such that |Ws| = ξ + 1.

By the last-round collapsing property of the protocol, the distributions induced by the two hybrids are compu-
tationally indistinguishable. Importantly, in the latter hybrid all measurements performed after ValEstM(i,c,z) are
binary-outcome, and therefore from this point on we can assume that the adversary is η-persistent.

Let us now consider one of the s iterations of the external loop of the last round extractor. We define the following
random variables

X0 =

{
1 if 1 = V (c, cℓ)

0 otherwise
and

{
Xj =

{
1 {j, ·, ·} /∈Ws

0 otherwise

}
j=1,...,ξ

.

Then we have that

Pr

X0 = 1 &
∑
j

Xj = ξ

 = Pr [X0 = 1]− Pr

X0 = 1 &
∑
j

Xj < ξ


= Pr [X0 = 1]− Pr [X0 = 1 & ∃ j : Xj = 0]

≥ Pr [X0 = 1]−
ξ∑

j=1

Pr [X0 = 1 & Xj = 0]

by a union bound. We are now going to bound the term Pr [X0 = 1 & Xj = 0] for any j. Let us define the set of
challenges

Badj =

{
cℓ ∈ Sξ : ∃ sj s.t. Pr

s∗←S\{sj}
[1 = V(c,Sub(cℓ, j, s

∗), z)] < 1/
√
n

}
where Sub(cℓ, j, s

∗) returns the string cℓ, except with the j-coordinate set to s∗. Then we consider two cases.

– cℓ /∈ Badj : Taking the contrapositive, we can conclude that, no matter the choice of sj , the success probability
of the measurement is at least 1/

√
n. Thus, the probability that none of the iterations in the inner loop succeeds

is bounded by (
1− 1√

n
+ η

)n

≤ e−n/
√
n+ηn = e−

√
n+ηn

where the additive component η comes from the fact that the algorithm is assumed to be η-persistent and the
independence of the measurement is guaranteed by the fact that the algorithm is stateless.

– cℓ ∈ Badj : In this case we bound the probability that X0 = 1 alone. It is useful to observe that if a challenge
cℓ ∈ Badj then all challenges which differ only on the j-th coordinate also belong to Badj . This means that we
can partition the set Badj into sets each of size exactly |S|. For a given set B, we denote by Rep(B) an element
representative of this set, chosen arbitrarily. We also denote the union of such sets as BadSj . Then we have that

Pr
cℓ←Badj

[X0 = 1] =
∑

cℓ∈Badj

1

|Badj |
Pr [1 = V(c, cℓ, z)]

=
∑

B∈BadSj

|S|
|Badj |

Pr
s∗←S

[1 = V(c,Sub(Rep(B), j, s∗), z)]

<
1√
n
+

1

|S|

45



where the last inequality holds because for any cℓ ∈ R with j-th coordinate sj we have that

Pr
s∗←S\{sj}

[1 = V(c,Sub(cℓ, j, s
∗), z)] =

∑
s∗←S\{sj}

1

|S| − 1
Pr [1 = V(c,Sub(cℓ, j, s

∗), z)]

≥
∑

s∗←S\{sj}

1

|S|
Pr [1 = V(c,Sub(cℓ, j, s

∗), z)] +
1

|S|
− 1

|S|

≥
∑
s∗←S

1

|S|
Pr [1 = V(c,Sub(cℓ, j, s

∗), z)]− 1

|S|

= Pr
s∗←S

[1 = V(c,Sub(cℓ, j, s
∗), z)]− 1

|S|
.

By an application of the triangle inequality, and recalling that the success probability of the adversary is p∗ ≥ γt−1,
we can conclude that

Pr

X0 = 1 &
∑
j

Xj = ξ

 ≥ Pr [X0 = 1]− ξ
(
e−
√
n+ηn +

1√
n
+

1

|S|

)

≥ p∗ − η − ξ
(
e−
√
n+ηn +

1√
n
+

1

|S|

)
≥ 1√

n

where we have used the fact that the algorithm is η-persistent. Appealing to the independence of different measure-
ments across the outer loop, we can conclude that the probability that the extractor fails is bounded by(

1− 1√
n

)n

≤ e−
√
n.

Inductive Step. We consider the following sequence of hybrids distribution.

– Hyb0: This is the original distribution on the LHS.
– Hyb1: We modify the extractor so that the answer of the adversary on register W is no longer measured and

instead the tuple {j, ·,⊥} is added to Ws (if b = 1). The extraction is considered successful if there exists an s
such that |Ws| = ξ + 1.

Indistinguishability follows by last-round collapsing. At this point, all measurements performed after ValEstM(i,c,z)

are binary-outcome, and therefore from this point on we can assume that the adversary is η-persistent.

– Hyb2: We now add the tuple {j, ·,⊥} to Ws if b′ = 1 and we skip the call of the the extractor Exti+1.

Indistinguishability of this hybrid follows by induction hypothesis. Using the same notation and argument as we
used above (barring some obvious syntactical modifications) we can show that

Pr

X0 = 1 &
∑
j

Xj = ξ

 ≥ Pr [X0 = 1]− η − ξ
(
e−
√
n+ηn +

1√
n
+

1

|S|

)
.

At this point we can appeal to Lemma 8 (Markov) to bound

Pr [X0 = 1] ≥ E[X0]− γi ≥ γi+1 − γi = η + ξ

(
e−
√
n+ηn +

1√
n
+

1

|S|

)
+

1√
n
.

Plugging things together, we obtain that each iteration of the outer loop is successful with probability at least 1/
√
n.

We can therefore bound the probability that at least one iteration is successful to be at least 1 − e
√
n, similarly as

above. This concludes our proof.

46



We are now ready to state the main theorem.

Theorem 5. Let Π = (Setup,P,V) be public-coin ℓ-round interactive recursive friendly proof system for relation
R and suppose the challenge space of V in each round is Sξ . If Π is ξ-coordinate-wise special-sound and last-round
collapsing, then for any polynomial ℓ, the protocol is knowledge sound with knowledge error

ℓ · ξ
|S|

+
1

poly(λ)

for a vanishing inverse-polynomial 1/poly(λ). The runtime of the extractor depends on poly(λ).

Proof. The proof follows by observing that the expected value of ValEstM(1)(ρ) is precisely the success probability
of the attacker. Thus, by an application of Lemma 8 (Markov) and Lemma 9, we obtain that the soundness gap is
negligibly close to

γ0 =

(
η + ξ

(
e−
√
n+ηn +

1√
n
+

1

|S|

)
+

1√
n

)
· ℓ.

We obtain the theorem statement by setting η and n to be growing polynomials in the security parameter.

Runtime of the Extractor. To bound the runtime of the extractor it suffices to observe that Lemma 9 shows that
the (unitary dilation of the) extractor Exti+1 is invoked at most n2 ·2(ξ+1) times by the extractor Exti. Therefore, the
above extraction procedure can be implemented (approximately, up to negligible factors) with a quantum algorithm
of size

|Exti| ≤ poly(λ) + n2(2ξ + 2)|Exti|
where the dependency in η is absorbed in the first summand. Solving the recursion, we obtain that the total runtime
of the extractor is bounded by

poly(λ) ·
ℓ∑

i=1

2n2i(2ξ + 2)i.

For constant-round protocols, the above bound is a polynomial in the security parameters. For log-round protocol,
the runtime of the extractor is slightly super-polynomial.

B.5 From Simplified Adversaries to General Adversaries

In the following we discuss how to lift the simplifying assumptions on the nature of the attacker.

Persistence. First, we show how to make sure that the attacker is persistent, i.e., that the success probability drops
by at most η. The transformation relies on the following (adapted) state-repair lemma from [CMSZ22]. We recall a
special case of the statement proven in [CMSZ22], where we restrict our attention to binary-outcome measurements
(as opposed to general projective measurements), which will suffice for our purposes.

Lemma 10. LetH be a Hilbert space. There exist efficient quantum algorithms:

– (ρ∗, p∗)← ValEstM(ρ, 1
ε): On input a binary-outcome projective measurementM, and an accuracy parameter 1ε,

outputs a quantum state ρ∗ ∈ H and a value p∗ ∈ [0, 1].
– σ∗ ← RepairM,N(σ, y, p, 1

ε): On input two binary-outcome projective measurements M and N, a state σ ∈ H, an
outcome y ∈ {0, 1}, a probability p ∈ [0, 1] and an accuracy parameter 1ε, outputs a quantum state σ∗ ∈ H.

Such that the following properties hold:

– (Value Estimate) E[p∗ : (ρ∗, p∗)← ValEstM(ρ, 1
ε)] = Pr[(·, 1)← M(ρ)].

– (Estimate is Almost Projective) For any ε ≥ ε′ > 0 it holds that:

Pr

[
|p∗ − p∗∗| ≥ ε : (ρ

∗, p∗)← ValEstM(ρ, 1
ε)

(ρ∗∗, p∗∗)← ValEstM(ρ
∗, 1ε

′
)

]
≤ ε.

47



– (State Repair) For any ε > 0 it holds that:

Pr

|p∗ − p∗∗| ≥ ε :
(ρ∗, p∗)← ValEstM(ρ, 1

ε)
(σ, y)← N(ρ∗)
σ∗ ← RepairM,N(σ, y, p

∗, 1ε)
(ρ∗∗, p∗∗)← ValEstM(σ

∗, 1ε)

 ≤ ε.
Equipped with this lemma, it is easy to modify the extractor to make sure that persistence is maintained: At the
beginning of each iteration, we run the estimation procedure ValEstM(i,c,z), where the measurement M(i, c, z) is
defined in Eq. (25). Then, at the end of each loop (specifically, after applying the unitary Ui(ci)

†) we run the state
repair procedure appropriately, regardless of the outcome. Note that this excludes the measurements on the register
W , which are not binary-outcome. In that case, we simply perform these measurement without any state repair. In
the analysis, we can argue that these measurement do not affect the success probability of the attacker, by appealing
to the last-round collapsing property of the protocol.

Statelessness. In general, the only guarantee of the above theorem is that the success probability of the attacker is
preserved across calls, however the distribution of the attacker’s answers may change arbitrarily. On the other hand,
our analysis crucially relies on the attacker’s answers being independent even for correlated queries. To make sure
that this is the case, we will leverage the technique of [BBK22]. We recall the following (adapted) lemma.

Lemma 11. There exists a polynomial time simulator Sim such that the following holds. LetAdv be an η-persistent solver
(with a state of size θ) for a given verification predicateP , and let {Dλ}λ be an efficiently samplable distribution ensemble
over problem instances for Adv. Then there exits an η-persistent (by possibly inefficient) distribution over stateless solvers
Adv∗. Consider the process of samplingx← Dλ and denote byAdv∗(1λ,x) the transcript of the process that sequentially
feeds the queries in x to Adv∗. Then the simulator Sim makes non-adaptive black-box access to Adv and the statistical
distance of the following distributions is at most δ:

Adv∗(1λ,x) ≈ SimAdv,D(1λ, 1θ, 11/δ,x)

for an arbitrary inverse-polynomial δ.

To get some context, the way the simulation proceeds is by alternating real queries by fake queries (but sampled
from the correct distribution) to ensure that the state of the adversary cannot reliably memorize prior queries, thus
biasing the output distribution. Importantly, the simulator needs to fix the set of real queries ahead of time. In our
protocol, we can use this technique to lift the extraction against stateful adversary as follows:

– The i-th extractor samples the set of challenges ahead of time. Note that this is just a syntactical modification,
since the queries to the adversary are correlated but already chosen non-adaptively.

– Instead of running the adversary directly, run the simulator Sim with appropriately set parameters. For the last-
round extractor we will set the verification predicate P to be the predicate that checks whether the answer of
the adversary is valid or not, whereas for the general extractor we will set the predicate P to be the Thresh
measurement. Note that in both cases the predicates have binary output.

In the analysis, we can then appeal to the above lemma, to ensure that the response of the adversary are statistically
close to that of a stateless one.

B.6 Non-Interactive Security in the QROM

To argue security of the non-interactive variant of the protocol in the quantum random oracle model (QROM), it
suffices to recall the following statement from [DFM20].

Lemma 12. Let ℓ be an integer, andX0, X, Y be finite sets. There exists an ℓ-message polynomial-time quantum algo-
rithm Sim that is receives yi only after outputting xi−1, such that the following holds. Let Adv be an arbitrary quantum

48



oracle algorithm that makes Q queries to a uniformly random function H : (X0 ∪ Y ) ×X → Y and outputs a tuple
(x0, . . . , xℓ). Then for any x̃ ∈ X0 ×Xℓ without duplicate entries, any predicate V :

Pr
[
(x0, . . . , xℓ) = x̃ & V (x0, y1, . . . , yℓ, xℓ) = 1 : (x0, . . . , xℓ)← SimAdv(y1, . . . , yℓ)

]
≥ ℓ!

(Q+ ℓ+ 1)2ℓ
Pr
[
(x0, . . . , xℓ) = x̃ & V (x0, H(x0), . . . ,H(yc−1, xc−1), xℓ) = 1 : (x0, . . . , xℓ)← AdvH

]
− εx̃

where the first probability is taken over the random choice of (y1, . . . , yℓ) and the second probability is taken over the
random choice of H . Furthermore ∑

x̃

εx̃ =
ℓ!

|Y |
.

For constant-round protocols, the simulator Sim is a valid prover (since it receives and sends message in sequence)
with success probability polynomially related to that of Adv. This allows us to reduce the soundness to that of the
interactive protocol in a black-box manner.

C Omitted Proofs from Section 3

Theorem 1. LetΠ = (Setup,P,V) be a (2ℓ+1)-message public-coin recursive friendly argument system for a relation
R with associated relations (Rℓ−i)i∈[0,ℓ]. If Π is round-by-round for the tuple of relations (Rℓ−i)i∈[0,ℓ], then Π is
complete for the relation R.

Proof. By definition of round-by-round completeness (Definition 7) we know that the following two implications are
true for all i ∈ [0, ℓ− 1]

– if (pp, xi, wi) ∈ Rℓ−i, then bi = 1 ,
– if (pp, xi, wi) ∈ Rℓ−i, then (pp, xi+1, wi+1) ∈ Rℓ−i−1.

It follows that, if (pp, x0, w0) ∈ Rℓ, then

– bi = 1, for all i ∈ [0, ℓ− 1],
– (pp, xℓ, wℓ) ∈ R0,

which means that the verifier V accepts. Notice that Rℓ = R. This concludes the proof. ⊓⊔

Before proving Theorem 2, let us recall the definition of coordinate-wise special soundness.

Definition 11 (Coordinate-Wise Special Soundness [FMN23]). LetΠ = (Setup,P,V) be public-coin (2ℓ+1)-
round interactive proof system for relationR, where in each round the verifier picks a uniformly random challenge from
Sℓ. A tree of transcripts is a set of (ξ+1)ℓ arranged in the following tree structure. The nodes in the tree correspond to the
prover’s messages and the edges correspond to the verifier’s challenges. Each node at depth i has exactly ξ + 1 children
corresponding to ξ+1 distinct challenges which, as a concatenated vector, lie in Γ (S, ξ). Every transcript corresponds to
exactly one path from the root to a leaf node. We say that Π is ξ-coordinate-wise special sound if there is a polynomial
time algorithm E that given a statement x and the tree of transcripts, outputs a witness w such that (pp, x, w) ∈ R

Theorem 2. Let Π = (Setup,P,V) be a (2ℓ + 1)-message public-coin recursive friendly argument system for a
relation R with associated relations (Rℓ−i)i∈[0,ℓ]. If Π is round-by-round ξ-coordinate-wise special sound for the tuple
of relations (R∗ℓ−i)i∈[0,ℓ] and (ξ +1)ℓ = poly(λ), thenΠ is knowledge sound for the relationR∗ℓ with knowledge error
ℓξ/|S|.

49



Proof. We will prove thatΠ is ξ-coordinate-wise special sound for relation Rℓ,β∗
ℓ

. By [FMN23, Definition 2.30], since
β∗ℓ = (2rκ)ℓβ, this will prove the theorem. Let(

pp, x0, z0, c
(k1)
1 , . . . , z

(k1,...,ki−1)
i−1 , c

(k1,...,ki)
i , . . . , z

(k1,...,kℓ−1)
ℓ−1 , c

(k1,...,kℓ)
ℓ , w

(k1,...,kℓ)
ℓ

)
where k1, . . . , kℓ ∈ [ξ + 1], be a tree of transcripts. For each i ∈ [ℓ], k1, . . . , kℓ ∈ [ξ + 1], let

x
(k1,...,ki)
i := NextX≤i−1

(
pp, x0, z0, . . . , z

(k1,...,ki−1)
i−1 , c

(k1)
1 , . . . , c

(k1,...,ki)
i

)
where NextX≤i is defined recursively.11

By definition of tree of transcripts, we have

– Vi

(
pp, x

(k1,...,ki)
i , z

(k1,...,ki)
i

)
= 1, for all i ∈ [0, ℓ− 1], k1, . . . , ki ∈ [ξ + 1],

–
(
pp, x

(k1,...,kℓ)
ℓ , w

(k1,...,kℓ)
ℓ

)
∈ R0, for all k1, . . . , kℓ ∈ [ξ + 1].

Claim. For each i ∈ [0, ℓ], k1, . . . , ki ∈ [ξ+1], there exists an extractor Exti that, given as input a tree of transcripts,
outputs w(k1,...,ki−1,ki)

i such that(
pp,NextXi−1

(
pp, x

(k1,...,ki−1)
i−1 , z

(k1,...,ki−1)
i−1 , c

(k1,...,ki−1,ki)
i

)
, w

(k1,...,ki−1,ki)
i

)
∈ R∗ℓ−i

Given the claim, we can finish the proof of the theorem. For ℓ = 0, we have that there exists Ext0 that outputs w0

such that
(pp, x0, w0) ∈ R∗ℓ

as desired. ⊓⊔

It remains to prove the claim.

Proof. We are going to proceed by induction on i.
Base Case: i = ℓ. The extractor Extℓ, on input a tree of transcripts, simply outputs w(k1,...,kℓ)

ℓ from the tree of
transcripts. Indeed, by definition of tree of transcripts, one has that(

pp, x
(k1,...,kℓ)
ℓ , w

(k1,...,kℓ)
ℓ

)
∈ R0

for all k1, . . . , kℓ ∈ [ξ + 1], as required.
Induction Hypothesis. Let i + 1 ≤ ℓ. There exists an extractor Exti+1 that, given as input a tree of transcripts,
outputs w(k1,...,ki,ki+1)

i+1 such that(
pp,NextXi

(
pp, x

(k1,...,ki)
i , z

(k1,...,ki)
i , c

(k1,...,ki,ki+1)
i+1

)
, w

(k1,...,ki,ki+1)
i+1

)
∈ R∗ℓ−i−1

Inductive Step. Given the induction hypothesis, we need to show the existence of an extractor Exti. Notice that

x
(k1,...,ki)
i , z

(k1,...,ki)
i , c

(k1,...,ki,ki+1)
i+1 , w

(k1,...,ki,ki+1)
i+1 (27)

are such that

– Vi

(
pp, x

(k1,...,ki)
i , z

(k1,...,ki)
i

)
= 1,

–
(
c
(k1,...,ki,ki+1)
i+1

)
ki+1∈[0,ξ]

∈ Γ (S, ξ),

11 via NextX≤i(pp, x0, z0, . . . , zi−1, zi, c1, . . . , ci, ci+1) := NextXi(pp,NextX≤i−1(pp, x0, z0, . . . , zi−1, c1, . . . , ci), zi, ci+1)
and NextX≤0(pp, x0, z0, c1) = NextX0(pp, x0, z0, c1)

50



–
(
pp, x

(k1,...,ki,ki+1)
i+1 , w

(k1,...,ki,ki+1)
i+1

)
∈ R∗ℓ−i−1 wherex(k1,...,ki,ki+1)

i+1 = NextXi

(
pp, x

(k1,...,ki)
i , z

(k1,...,ki)
i , c

(k1,...,ki,ki+1)
i+1

)
,

where the first two properties follow by definition of tree of transcripts, and the last one by the induction hypothesis.
This means that the tuple on Equation (27) satisfies Definition 9: there exists an extractor Extrbri that, on input such
a tuple, outputs w(k1,...,ki)

i such that (
pp, x

(k1,...,ki)
i , w

(k1,...,ki)
i

)
∈ R∗ℓ−i.

Then, we define recursively the extractor Exti as follows: on input a tree of transcripts, Exti runs Exti+1 to obtain
w

(k1,...,ki,ki+1)
i+1 . It then runs Extrbri on input the tuple from Equation (27), and return whatever Extrbri returns. This

concludes the proof of the claim. ⊓⊔

D Omitted Proofs from Section 4

Theorem 4 (Binding). The commitment scheme CM is binding assuming SISn,rnα,q,β′ with β′ ≥ 2β.

Proof. We reduce directly to the hardness of the SISn,rnα,q,β′ problem. ParseA ∈ Zn×rnα
q from the SISn,(ℓ+1)rnα,q,β′

instance, and let and pp = {A}. Such pp is distributed exactly as in the real scheme. Now, suppose by contradiction
that an adversaryA, on input pp, breaks the binding property, i.e., it produces (t, ((s0,j)j∈[0,ℓ], f0), ((s1,j)j∈[0,ℓ], f1))
such that f0 ̸= f1 and

(Irκτ ⊗A) · sb,0 = t mod q,

Grj+1κnτ · sb,j = (Irj+1κnτ ⊗A) · sb,j+1 for all j ∈ [0, ℓ− 1],

Grℓ+1κnτ · sb,ℓ = fb mod q,

∥sb,j∥ ≤ β for all j ∈ [0, ℓ].

(28)

for b ∈ {0, 1}. We are going to use the following observation

– if SIS is hard w.r.t. B, then SIS is hard w.r.t. Ik ⊗B, for any k ∈ N.

Consider the largest j ∈ [0, ℓ] such that

(Irjκnτ ⊗A) · s0,j = (Irjκnτ ⊗A) · s1,j mod q (29)

Such a j exists because (Iκτ ⊗A) · s0,0 = t = (Iκτ ⊗A) · s1,0 mod q. Next, we claim that

Grj+1κnτ · s0,j ̸= Grj+1κnτ · s1,j

This follows by a case analysis:

– if j = ℓ, then since f0 ̸= f1, we have Grℓ+1κnτ · s0,ℓ = f0 ̸= f1 = Grℓ+1κnτ · s1,ℓ;
– if j < ℓ, then by the maximality of j, we have

Grj+1κnτ ·s0,j︷ ︸︸ ︷
(Irj+1κnτ ⊗A) · s0,j+1 ̸=

Grj+1κnτ ·s1,j︷ ︸︸ ︷
(Irj+1κnτ ⊗A) · s1,j+1

Since Grj+1κnτ · s0,j ̸= Grj+1κnτ · s1,j , we deduce that s0,j ̸= s1,j , and therefore s0,j − s1,j is a valid SIS solution
w.r.t. (Irjκnτ ⊗A). Using the observations mentioned before, this concludes the proof. ⊓⊔

51



E Omitted Proofs from Section 6

Lemma 13. Let x[i] denote the i-th entry of the vector x (counting from 1). Consider vectors xi ∈ Zri
q , i ∈ [0, ℓ] and

the vector
x⊤ := x⊤ℓ · (Irℓ ⊗ x⊤ℓ−1) · · · (Irℓ···r1 ⊗ x⊤0 ).

Then, for all ji ∈ [ri],

x[1 +

ℓ∑
i=0

Ri(ji − 1)] =

ℓ∏
i=0

xi[ji].

where Ri = r0 · · · ri−1.

Proof. We prove the claim by induction on ℓ.

Base Case: ℓ = 0. We have x⊤ = x⊤0 . Therefore, for all j0 ∈ [r0],

x[1 +

ℓ∑
i=0

Ri,ℓ(ji − 1)] = x[1 +R0(j0 − 1)]

= x0[1 + (j0 − 1)]

= x0[j0]

=

ℓ∏
i=0

xi[j0].

Inductive Step. Suppose the claim is true for some ℓ ≥ 1, and consider

x⊤ = x⊤ℓ · (Irℓ ⊗ x⊤ℓ−1) · (Irℓrℓ−1
⊗ x⊤ℓ−2) · · · (Irℓ···r2r1 ⊗ x⊤r0)

= x⊤ℓ ·
(
Irℓ ⊗

(
x⊤ℓ−1 · (Irℓ−1

⊗ x⊤ℓ−2) · · · (Irℓ−1···r1 ⊗ x⊤0 )
)

︸ ︷︷ ︸
x̄

)

By induction hypothesis, we have that for all ji ∈ [ri]

x[1 +

ℓ−1∑
i=0

Ri(ji − 1)] =

ℓ−1∏
i=0

xi[ji].

On the other hand, for jℓ ∈ [rℓ] and j ∈ [r0 · · · rℓ−1] we have

x[1 + (r0 · · · rℓ−1) · (jℓ − 1) + (j − 1)] = xℓ[jℓ] · x̄[j]

Writing j = 1 +
∑ℓ−1

i=0 Ri(ji − 1) for ji ∈ [ri], and using that Rℓ = r0 . . . rℓ−1, we deduce that

x[1 +

ℓ∑
i=0

Ri(ji − 1)] = x[1 +Rℓ(jℓ − 1) +

ℓ−1∑
i=0

Ri(ji − 1)]

= x[1 + (r0 · · · rℓ−1) · (jℓ − 1) + (j − 1)]

= xℓ[jℓ] · x̄[j]

= xℓ[jℓ] ·
ℓ−1∏
i=0

xi[ji]

=

ℓ∏
i=0

xi[ji],

as claimed. This concludes the proof. ⊓⊔

52


	Polynomial Commitments from Lattices: Post-Quantum Security, Fast Verification and Transparent Setup 

