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Abstract. Multi-user (mu) security considers large-scale attackers that,
given access to a number of cryptosystem instances, attempt to compro-
mise at least one of them. We initiate the study of mu security of the
so-called GGM tree that stems from the PRG-to-PRF transformation
of Goldreich, Goldwasser, and Micali, with a goal to provide references
for its recently popularized use in applied cryptography. We propose a
generalized model for GGM trees and analyze its mu prefix-constrained
PRF security in the random oracle model. Our model allows to derive
concrete bounds and improvements for various protocols, and we show-
case on the Bitcoin-Improvement-Proposal standard Bip32 hierarchical
wallets and function secret sharing (FSS) protocols. In both scenarios,
we propose improvements with better performance and concrete security
bounds at the same time. Compared with the state-of-the-art designs,
our SHACAL3- and Keccak-p-based Bip32 variants reduce the commu-
nication cost of MPC-based implementations by 73.3%∼93.8%, while
our AES-based FSS substantially improves mu security while reducing
computations by 50%.
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1 Introduction

GGM tree. Pseudorandom functions (PRFs) and Pseudorandom generators
(PRGs) are fundamental building blocks of virtually all cryptosystems. The
PRG-to-PRF transformation of Goldreich, Goldwasser, and Micali, dubbed GGM
tree [GGM86], was originally proposed to show the theoretical feasibility of con-
structing PRFs from any one-way function. Interestingly, subsequent works ex-
hibited various “beyond-PRF” security for the GGM tree. Importantly for us,
Boneh et al. [BW13,BGI14] showed a constrained PRF based on GGM tree
with prefix predicates, meaning that it allows to delegate “constrained” keys
that can only be used to evaluate the GGM PRF on a subset of inputs with
certain prefixes. This can also be used as a puncturable PRF, the “dual” of
constrained PRFs. These features have motivated extensive practical uses of
the GGM: as a constrained PRF in delegatable computations [KPTZ13] and



functional signatures [BGI14], as a hierarchical access mechanism in the Bip32
hierarchical deterministic wallets (HDWs), as a puncturable PRF in Function-
Secret Sharing (FSS) protocols [BGI15,BGI16]), and as part of the construc-
tion of a private puncturable PRF in Pseudorandom Correlation Generator
(PCG) [BCGI18,BCG+19b] which supports more sophisticated applications in-
cluding (RAM-based) secure multi-party computation [Ds17,SGRR19] and zero-
knowledge proofs [BMRS21,DIO21].

Multi-user security. The classical (constrained/puncturable) PRF security of
a function family F concerns with the behavior of F(K, ·) under a (fixed) secret
key K, which is now known as the single-user (su) setting. Due to the pervasive
uses, a large number of GGM tree instances using the same specification and
independently chosen keys become available from different entities across the
Internet. For example, the Exodus Platform is based on Bip32 and have millions
of active users [Exo21]. This effectively creates millions of independently keyed
“Bip32 key trees” or generalized GGM trees. As another example, to compute
stable marriage (as in [DEs16]), a two-party computation (2PC) protocol (like
GMW) needs to evaluate 238 AND gates using 239 OT executions. Using the
state-of-the-art PCG-based OT protocol [YWL+20] which need 1295 GGM trees
to generate 107 OTs, this requires executing FSS and instantiating GGM for
≈ 226 times. By these, once different users have conducted such computations
214 times, the total number of GGM instances approaches 240.

It could be sufficient to corrupt just one of the numerous instances: the breach
of any of the Bip32 users already incurs severe loss of funds, and the breach of any
of the trees in 2PC already breaks necessary (pseudo)randomness in the protocol.
This challenges security in the multi-user (mu) setting, in which for a parameter
u representing the maximal number of users, there are u independently chosen
secret keys K1, ...,Ku, and the adversary succeeds as long as it compromises at
least one out of u instances F(K1, ·), ..., F(Ku, ·) of the target F.

The mu setting was first formalized in public-key cryptography [BBM00].
Asymptotically, it is equivalent to su security: a scheme with κ bits su security
trivially ensures κ − log2 u bits mu security by a standard hybrid argument.
But, as discussed, u can be large in practice, and the log2 u bits degradation has
incurred serious concerns [BT16,GKW+20] and even practical Bitcoin crack-
ing project [LBC16] (see Appendix A). Formally exploring the relation between
concrete bounds and various parameters (including u) is technically challenging,
as made evident in recent works regarding public-key [BBM00,Ber15,KMP16]
and symmetric-key schemes [BBT16,BT16,BHT18,GKW+20], and results have
explicitly influenced real world designs [BT16,Ber15].

Despite the raised mu challenge, formal mu constrained or puncturable PRF
security treatments of GGM remain missing, and this undermines security of
applications. As discussed, trivial bounds are seldom satisfactory. Recall the
example of 2PC using 128-bit keys: the trivial bound indicates 88-bit security7

7 This is tight: since each key guess falls in the 240 keys with probability 240/2128,
with 288 computations or key guesses we can succeed to “hit” one of the 240 keys
with probability ≈ 1.
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and falls far below the expected 128 bits. For Bip32, recent work [DEF+21]
proved 111-bit su security, by which the trivial bound indicates 91-bit mu security
as long as 220 Bip32 users are available.

Facing the difficulty in providing dedicated mu security proofs for each appli-
cation, we seek for unified treatments with full proofs of non-trivial mu bounds,
in order to provide a systematic reference for their practical deployments (which
is the ultimate goal of cryptography).

1.1 Our Contribution

We provide generalized mu security definitions, a unified model of the GGM
tree, and concrete mu security proofs. Improved tree schemes with non-trivial,
proven mu bounds can be easily derived from our model, and we showcase on
Bip32 and recent FSS protocols. Below we elaborate in detail.

Generalized GGM tree and its mu security. To unify the models in various
settings, we extend both the constrained PRF (CPRF) security definition and the
GGM scheme. Regarding the former, we start with the fully adaptive constrained
PRF security notion of Hofheinz et al. [HKKW19], and extend it along two axes
to reach a mu leakage constrained PRF security definition in the simulation
paradigm:

(i) Multi-user: Hofheinz et al.’s (su) CPRF security definition [HKKW19] allows
the adversary to adaptively acquire constrained keys and function values, and
requires the function value F(K,x) to be pseudorandom for any x that has
never been constrained. Our natural mu extension considers u secret user
keys K1, ...,Ku, and requires the function values F(Ki, x),F(Kj , x

′) to be
pseudorandom and independent for any two involved user keys Ki,Kj , and
for x unconstrained w.r.t. Ki and x′ unconstrained w.r.t. Kj ;

(ii) Protocol-level Leakages: In some applications such as the Bip32, the (secret)
intermediate values of the F evaluations are used to derive public information
and incur protocol-level leakages. To formalize these settings, we augment
the real world with a (context-dependent) leakage oracle L outputting leak-
ages of the corresponding intermediate values upon every query, and the
ideal world with a leakage simulator S outputting faked leakages. The de-
tailed leakages depend on the concrete context, and we refer to Sect. 4.1 for
example.

Regarding the scheme, we propose a generalized model for GGM trees. Our
model is built upon a public cryptographic primitive Prim (that can be ac-
cessed by the adversary), uses κ-bit internal secrets, and allows for multiple
branches. To reflect influences of public parameters, every Prim-call in the tree
has an additional input which we informally called “label”. Modeling Prim as
either a fixed-input-length random oracle (FIL RO) H (to justify instantiat-
ing Prim with cryptographic hash functions) or a Davies-Meyer construction
DME(L, x) = E(L, x) ⊕ x based on an ideal cipher E (to justify instantiating
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Prim with blockciphers), we analyze the generalized tree w.r.t. our mu leakage
CPRF security definition. We prove κ− log2 C bits mu CPRF security, where C
is a parameter depending on the probability among distinct “label” inputs of the
internal Prim calls across all the users. When all “labels” are the same, security
becomes (inferior) κ − log2 D bits, where D, called effective data complexity, is
the total number of Prim-calls internally made by the u tree instances and is
related to the number of adversarial queries to the trees. When collisions among
“labels” are unlikely, security becomes nearly optimal ≈ κ bits. Moreover, the
leakage of certain intermediate values are indistinguishable from random “sim-
ulated leakages”, indicating that protocols can extract (a limited amount of)
pseudorandom bits from the intermediate values in the tree and use them in
arbitrary.

The random oracle-based trees can be instantiated with truncated Keccak-p
permutations of SHA3 [CLL19], while the results on Davies-Meyer-based trees
enable instantiations using the compression function of SHA512 or the AES in
Davies-Meyer mode. Note that even if E is ideal, the Davies-Meyer construction
DME cannot be modeled as a random oracle [DRST12], and we thus have to
appeal for a dedicated analysis, and the proved bounds differ by a factor of 2.

While our security definition, model and provable bounds appear compli-
cated, our analyses complete a large step of proofs for a wide range of GGM tree
variants and shed lights on the influences of parameters. To derive bounds for
concrete designs, designers just need to fill in the parameters and make some
additional counting for the aforementioned C and D. We believe this could help
characterize state-of-the-art designs and provide building blocks for the coming
NIST standardization [NIS21]. We will showcase on two applications.

We remark that our bounds are proven in the ideal (function or cipher) model,
and should be taken as a heuristic insurance for their practical instantiations.
This theoretical caveat is shared by similar works [DFL19,ADE+20,DEF+21].
Though, the use of ideal model appears necessary to characterize how local com-
putation (approximated by the number of ideal primitive queries) affects secu-
rity in the mu setting [BT16,BHT18,GKW+20]. Meanwhile, as noticed in [ST16],
standard model proofs fail to yield “realistic” mu security bounds for many sym-
metric schemes with rekeying [BHT18,GKW+20] (which is extensively used in
Bip32).8

Puncturable PRFs We make a natural step further and consider generalized
GGM as a puncturable pseudorandom function (PPRF) [KPTZ13,BW13,BGI16].
This is a PRF F such that given an input x and a key K, one can generate a punc-
tured key, denoted K{x}, which allows evaluating F at every point except for x,
and does not reveal any information about the function value F(K,x). The notion
was subsequently extended to allow for puncturing multiple inputs [HKW15].
This functionality is the “dual” of CPRFs. In this respect, we extend PPRFs

8 Though, we believe that assuming Prim is a weak PRF, inferior leakage security
bounds can be proven. This is an interesting open question.
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to the multi-user and leakage setting, and establish multi-user leakage PPRF
security for generalized GGM using the aforementioned CPRF results.

Mu security of Bip32, and improvements. Bip32 hierarchical deterministic
wallet (HDW) specifies a GGM tree-based approach to derive a collection of
digital signature keys organized under an access hierarchy [Med18]. We refer to
Fig. 1 for an overview and Sect. 6.1 for more details. Prior works on such HDWs
typically focused on enhancing functionalities or achieving new security notions
(see Related Work below). Despite the importance for practical assurance, (a)
the hierarchical security of Bip32 was never formally proved; (b) the concrete
bounds were never characterized even in the su setting (modulo a concurrent
work [DEF+21]: see Related Work below).

Along a parallel though related axis regarding efficiency, the HMAC-SHA512-
based Bip32 standard [Med18] consumes a huge number of AND gates and is
costly when implemented in the MPC setting (for distributed key management),
and improvements were mentioned by Lindell as an open problem [Lin19]. While
some ideas appear obvious (e.g., using more efficient hashing instead of HMAC-
SHA512), the soundness is unclear due to the lack of formalism and justification.

To address the gap, we consider mu hierarchical unforgeability and mu hi-
erarchical unlinkability of Bip32: the former guarantee that the collaboration
of several “accounts” cannot forge transactions for the other “accounts” (and
are thus unable to spend their money), while the latter ensure that in the
view of several “accounts”, the public signature keys derived by the other “ac-
counts” are pseudorandom and independent. Then, using our leakage CPRF
security of the RO-based trees, we prove that with u users, Bip32 achieves
(roughly) min{247, 256− log2 u} bits mu hierarchical unlinkability security and
min{247, 256− log2 u, f(qS)} bits mu hierarchical unforgeability security, where
f(qS) is the mu security of the underlying signature scheme for qS the number
of adversarial signing queries. By these, the concrete (even mu) unlinkability
bounds of the whole Bip32 system is mostly close to the expectation of its design-
ers (256 bits), and the degradation with u is limited. The concrete unforgeability
bounds, however, depend on f(qS) the mu security of the signature, and this is
unavoidable. This emphasizes on carefully choosing the signature. Besides, the
relation with CPRFs provide cryptographic insights on HDWs including Bip32.

Our formal analysis opens the way to improving Bip32 tree using SHACAL3,
the compression function underlying SHA512, and Keccak-p[800, 11], a crypto-
graphic permutation from the SHA3 family. Our proposals reduce the number of
AND gates by 73.3%∼93.8% compared with the standard Bip32, and are promis-
ing in the context of threshold cryptography and side-channel protections. To
demonstrate, we benchmark MPC implementations of our proposals and the
standard Bip32, with results in Table 1 indicating expected improvements.

Mu security of trees in FSS, and improvements. FSS is a cryptographic
primitive where the client can secretly share a function f to f1 and f2 such that
each of the function does not reveal the parameters of f . Two servers holding
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fi and x can locally evaluate fi(x) and the scheme ensures that f(x) = f1(x)⊕
f2(x). When f is a point function, such construction can be easily used for
private information retrieval. Furthermore, the splitting of function f can be
performed in a two-party computation protocol and thus eliminate the need of
a client.

As mentioned before, most such applications require a private puncturable
PRF, which is built upon a GGM tree. In detail, in PCG, a client (which could
be simulated by MPC) samples a key of a puncturable PRF, which is essentially
the root of a GGM tree, and then sends the key/root to one of the party. The
other party chooses a leaf (in an oblivious manner) and obtains the punctured
key enabling evaluating all but that leaf. A popular way to instantiate the GGM
tree is to define the length-doubling PRG as s 7→ AESfk(s)⊕s‖AESfk(s⊕1)⊕s⊕1
(denote FBTr), where AESfk is the AES using a fixed, publicly known keys fk.
However, security characterizations are lacked even in the su setting, leaving
gaps in both concrete bounds and design references.

We bridge both gaps. First, regarding security of the aforementioned scheme
FBTr, we formally prove (roughly tight) concrete mu puncturable PRF security
of 128− log2 d− log2 u bits, where d is the depth of the tree. These, as discussed,
suffer from the (notable) log2 u bit degradation.

We then show how to improve. 1) To overcome the log2 u degradation, we
propose to use random IV as the fixed AES key in every FSS protocol instance,
and this improves the mu security to 128− log2 d−2 bits which is a good bound
since d is typically small in practice. 2) We propose multi-branch generalizations
that offers a promising tradeoff with the same mu security, i.e., it saves 50%
computations at the expense of 50% larger puncturable keys.

While our analysis does not cover the full FSS, it indicates the trees exhibit
no practical security issues. We leave the full characterization for future work.

1.2 Related Work

Regarding CPRFs/PPRFs, a series of works overcame standard model challenges
(which is complementary to our goal of providing practical reference) and greatly
advance the theory [FKPR14,HKW15,BLW17,HKKW19].

Regarding HDW, Das et al. [DFL19,ADE+20] appeared the first to formalize
security of deterministic wallets as unforgeability and unlinkability. Concurrently
to ours, they extend their treatment to Bip32 [DEF+21]. Das et al.’s hierarchi-
cal unforgeability definition is stronger than ours, as it requires unforgeability
of signatures even if the parent chain codes are leaked. This models the set-
tings of “hot wallet breach” and granting chain codes to auditors. Due to this,
they have to resort to rerandomizable signatures and related-key properties of
ECDSA. In contrast, our unforgeability definition assumes parent chain codes
secret. Thus our bounds do not cover the “audit” use case [Med18, Use cases].
Moreover, our analysis does not distinguish “hardened” and “non-hardened”
derivations (since parent chain codes are always secret). Our model mostly cov-
ers security against a subset of malicious offices in an enterprise. On the other
hand, our treatments provided non-trivial multi-user security bounds. Thanks
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to the fine-grained analysis using multi-collisions, our mu unlinkability bound is
much better than [DEF+21, Theorem A.1]. In all, our analysis of Bip32 offers
another complementary viewpoint. Perhaps more importantly, our main focus
in the generalized GGM tree construction and its results, with Bip32 a mere
application.

Luzio et al. provided a systematic study of HDW and a new design Arcula [LFA20].
Their work emphasized more on offering a new proposal with richer functions
than characterizing security of existing schemes (i.e., Bip32). In comparison, we
emphasize more on schemes already used “in the wild”. For a survey of earlier
works [TVR16,AGKK19,MPs19], we refer to [DFL19, Sect. 1.3].

1.3 Organization

We establish notations and models in Sect. 2. Our extensions of constrained
and puncturable PRF notions are also in Sect. 2. Then, we formally define our
general GGM tree model in Sect. 3, and prove the mu leakage CPRF security
in Sect. 4. The mu leakage PPRF security is established in Sect. 5. We finally
demonstrate applications to Bip32 and FSS in Sect. 6 and Sect. 7 respectively.

2 Preliminaries

Denote by [i]m the m-bit binary encoding of the non-negative integer i, and by
⊥ the empty string. Given an n-bit string x and a ≤ n, denote by lefta(x) (resp.,
righta(x)) the a leftmost (resp., rightmost) bits of x.

To describe Bip32 wallets in Sect. 3 and 6, denote by G the group of the ellip-
tic curve in use and G its primitive element. Denote by Z+

|G| the set {1, ..., |G|−1}.
The function int(X) interprets a 256-bit string X as a 256-bit number. The func-
tion serP (sk ·G) = serP (pk) serializes the coordinate pk = (ex, ey) as a bit string
in the SEC1’s compressed form, i.e., serP (ex, ey) = [2]8‖[ex]256 when ey = 0
mod 2, while serP (ex, ey) = [3]8‖[ex]256 when ey = 1 mod 2.

Signature schemes. Due to Bip32, we need the definition and security of digital
signature schemes.

Definition 1 (Signature Scheme). A signature scheme Sig = (KGen, Sign,Vrfy)
is a triple of algorithms. The randomized key generation algorithm KGen takes
as input public parameters pp and returns a pair (pk, sk) ∈ Ksign of public
and secret keys. The randomized signing algorithm Sign takes as input a se-
cret key sk and a message m and returns a signature σ. The deterministic
verification algorithm Vrfy takes as input a public key pk, a signature σ, and
a message m. It returns 1 (accept) or 0 (reject). We require correctness, i.e.,
∀(pk, sk)← KGen(pp) ∀m : Vrfy

(
pk, Sign(sk,m),m

)
= 1.

We will reduce the security of the Bip32 wallet to the standard existential
unforgeability under chosen message attacks (UFCMA) security of the signatures
in the multi-user setting. For this, we adopt the formalism of Bernstein [Ber15].
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Definition 2 (Multi-user UFCMA Security). A (digital) signature scheme
Sig = (KGen, Sign,Vrfy) is (u, qS , t, ε)-muUFCMA secure, if for any adversary
A making qS queries to Sign(sk1, ·), ..., Sign(sku, ·) and running in time t, it
holds Pr

[
ASign(sk1,·),...,Sign(sku,·)(pk1, ..., pku) forges

]
≤ ε, where the event “forges”

means A outputs a pair (m∗, σ∗) such that Vrfy(pki,m
∗, σ∗) = 1 for some i ∈

{1, ..., u} and A never queried Sign(ski′ ,m
∗) for any i′ with ski′ = ski.

A naive hybrid argument establishes κ− log2 u muUFCMA security from κ bit
UFCMA security. For the Schnorr and BLS schemes, this multi-user security loss
can be overcame in the random oracle model [KMP16,Lac18]—for example, using
256-bit secret keys, the muUFCMA security of Schnorr is of 128 bits according
to [KMP16],—or by using the key-prefixing technique [Ber15,Lac18].

Constrained PRF and its Multi-user security. Our formalism of con-
strained PRFs (CPRFs) basically follows [BW13,KPTZ13,BGI14], which is as
follows.

Definition 3 (Constrained PRF). With key space K, domain X , and range
Y, a constrained pseudorandom function for a set system S ⊆ 2X is a keyed
function F with an additional constrained key space Kc and four probabilistic
polynomial-time algorithms (F.KGen,F.Ev,F.Co,F.SubCo,F.CEv):

– the key generation algorithm F.KGen returns K = (k, pp) ∈ K, where k is the
ordinary secret master key and pp is the public parameter;

– the (ordinary) evaluation algorithm F.Ev(K,x) (always) outputs F(K,x) for
the inputs K ∈ K and x ∈ X ;

– the constraining algorithm F.Co(K,S) outputs a constrained key K{S} ∈ Kc

on input a key K ∈ K and a set S ∈ S;
– the constrained evaluation algorithm F.CEv(K{S}, x): on input K{S} con-

straining all points in S and x, outputs F(K,x) if x ∈ S, and ⊥ otherwise.

We will focus on CPRFs built upon a public ideal primitive Prim, and write
FPrim to highlight. For a CPRF FPrim, we follow [HKKW19] and formalize the
adversarial goal as distinguishing the real world oracles (FPrim.Co,FPrim.Ev,Prim)
from the ideal world oracles (FPrim.Co,R,Prim) for a random function R. We
extend it with multiple users and leakages, in the concrete security paradigm.
Before the formal presentation, we first elaborate on the new ingredients.

Multi-user. Let u be the maximal number of users.9 In the mu setting, the adver-
sarial goal becomes distinguishing the real world (FPrim.Co(K1, ·),FPrim.Ev(K1, ·), ..., FPrim.Co(Ku, ·),FPrim.Ev(Ku, ·))
and the ideal world (FPrim.Co(K1, ·),R(1, ·), ..., FPrim.Co(Ku, ·),R(u, ·)) for u
independent random keys K = (K1, ...,Ku) =

(
(k1, pp1), ..., (ku, ppu)

)
, where

R(1, ·), ..., R(u, ·) instantiate u independent random functions. To simplify nota-
tions, we will use a single oracle muEvK(i, ·) for the functionality of FPrim.Ev(Ki, ·),
and a single muCoK(i, ·) for FPrim.Co(Ki, ·).
9 This is equivalent to the alternative definitions allowing adaptively adding new in-

stances [BBT16,BT16].
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Protocol-level leakages. As mentioned, to capture the cases where (secret) inter-
mediate values become public information, we augment the real world oracles
muEvK and muCoK with a leakage oracle L. Every time the distinguisher issues
a query to either muEvK or muCoK, besides the ordinary response, it obtains
leakages due to the corresponding internal computations from L. To highlight,
we use the notations muCoLK and muEvLK for these “leaky oracles”.

For the ideal world oracles muCoK and R to produce consistent outputs,
we augment them with a leakage simulator S and obtain the “leaky ideal or-
acles” muCoSK and RS. Every time the distinguisher issues a query, it obtains
both ordinary responses and leakages produced by S. This enables formalizing
indistinguishability of the leaky real and ideal worlds, with L and S being param-
eters. The detailed definitions of L and S depend on the concrete applications
and security requirements, and we refer to Sect. 4.1 for example.

While our simulation-based definition seems quite strong, we have provided
positive results (Theorems 1 and 2) with explicit simulators, and our simulators
simply output random leakages, indicating pseudorandomness of (leaked) inter-
mediate values. This is in contrast with simulatability of side-channel leakages,
the achievability of which remains open [LMO+14].

Effective data complexity. Concrete security of a cryptosystem is qualified by the
attack advantage regarding adversaries with data and time complexities. In the
ideal model, time complexity is typically captured by T the number of queries to
the ideal function Prim. Data complexity shall reflect the amount of information
gained from the oracles muCoLK and muEvLK, which is a complicated function of
the true number of adversarial queries. To remedy, we follow [DRST12] and
introduce effective data complexity D, which is the total number of queries to
Prim internally made by FPrim during the interaction. As will be seen in Sect. 6
and 7, it is easy to count D for concrete applications. The output of every internal
Prim query, including the ordinary output and the corresponding leakage, will
be a part of the information collected by the distinguisher. Therefore, effective
data complexity does measure the amount of information gained from muCoLK
and muEvLK.

Formal definition. With the above, our formal definition is as follows.

Definition 4 (Multi-user Leakage CPRF Security). The keyed function
FPrim is a (u, T,D, ε)-(L, S)-constrained PRF, if for any distinguisher D making
T queries to Prim and having effective data complexity D, we have∣∣∣Pr[DmuCoLK,muEvLK,Prim = 1

]
− Pr

[
DmuCoSK,RS,Prim = 1

]∣∣∣ ≤ ε,

where the probability is taken over the u user keys K = (K1, . . . ,Ku) with
Ki ← KGen, over D’s random tape and the ideal primitive Prim, and where:

(i) muCoLK(i,S): for 1 ≤ i ≤ u, outputs the constrained key FPrim.Co(Ki,S)
and the corresponding information leakage L(Ki,S) for the i-th user;
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(ii) muEvLK(i, x): for 1 ≤ i ≤ u, outputs FPrim.Ev(Ki, x) and the corresponding
information leakage L(Ki, x) for the i-th user;

(iii) muCoSK(i,S): for 1 ≤ i ≤ u, outputs the constrained key FPrim.Co(Ki,S)
and the corresponding simulated leakage S(i,S) for the i-th user;10

(iv) RS(i, x): for 1 ≤ i ≤ u, outputs y
$←− Y for every new pair of inputs (i, x)

and the corresponding simulated leakage S(i, x).

D is not allowed to makes a constraining query muCoLK(i,S) and an evaluation
query muEvLK(i, x) with x ∈ S, in any order, since this leads to trivial win.

The classical CPRF security notion can be recovered by eliminating the leakages
L and S.

Puncturable PRF and its Multi-user security. Depending on its structure,
a PPRF scheme may impose certain relations among the multiple punctured
inputs. To capture this, we follow Definition 3 and define PPRF for set systems.

Definition 5 (Puncturable PRF). With key space K, domain X , and range
Y, a puncturable pseudorandom function for a set system S ⊆ 2X is a keyed
function F with an additional punctured key space Kp and four probabilistic
polynomial-time algorithms (F.KGen,F.Ev,F.Pu,F.PEv):

– the key generation algorithm F.KGen returns K = (k, pp) ∈ K, where k is the
ordinary secret master key and pp is the public parameter;

– the evaluation algorithm F.Ev(K,x) outputs F(K,x) for the inputs K ∈ K
and x ∈ X ;

– the puncturing algorithm F.Pu(K,S) outputs a punctured key K{S} ∈ Kp

on input a key K ∈ K and a set S ∈ S;
– the punctured evaluation algorithm F.PEv(K{S}, x): on input K{S} punc-

tured at all points in S and x, outputs F(K,x) if x /∈ S, and ⊥ otherwise.

For a secure PPRF FPrim, FPrim.Ev(K,x) shall be pseudorandom for any
x ∈ S, even if the punctured key K{S} has been given. This is just the dual of
a restricted form of CPRF. For a formal definition in the mu setting, we borrow
the ingredients from our Definition 4.

Definition 6 (Multi-user Leakage PPRF Security). FPrim is a (u, T,D, ε)-
(L, S)-puncturable PRF, if for any distinguisher D making T queries to Prim and
having effective data complexity D, we have∣∣∣Pr[DmuPuLK,muEvLK,Prim = 1

]
− Pr

[
DmuPuSK,RS,Prim = 1

]∣∣∣ ≤ ε,

where the probability is taken over the u user keys K = (K1, . . . ,Ku), with
Ki ← KGen, over D’s random tape and the ideal primitive Prim, and where:
10 This paper focuses on the setting where S does not have access to the Prim oracle,

which suffices for producing random leakages.
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(i) muPuLK(i,S): for 1 ≤ i ≤ u, outputs the punctured key FPrim.Pu(Ki,S) and
the corresponding information leakage L(Ki,S) for the i-th user;

(ii) muEvLK(i, x): for 1 ≤ i ≤ u, outputs FPrim.Ev(Ki, x) and the leakage L(Ki, x)
for the i-th user;

(iii) muPuSK(i,S): for 1 ≤ i ≤ u, outputs the punctured key FPrim.Pu(Ki,S) and
the corresponding simulated leakage S(i,S) for the i-th user;

(iv) RS(i, x): for 1 ≤ i ≤ u, outputs y
$←− Y and simulated leakage S(i, x) for

every new pair (i, x).

The following two restrictions are imposed on the distinguisher’s queries:
(a) D is not allowed to make a puncture query muPuLK(i,S) if a previous evalu-

ation query muEvLK(i, x) with x /∈ S is made;
(b) D is not allowed to make two distinct puncturing queries muPuLK(i,S) and

muPuLK(i′,S ′) with i = i′. Namely, each user is punctured (at most) once.

Restriction (a) is necessary to prevent trivial wins (i.e., query both muPuLK(i,S)
and muEvLK(i, x) with x /∈ S to check if the latter matches the result computed
from the former). Restriction (b) stems from the nature of PPRFs: note that
as the interaction proceeds, the number of F.Ev(K,x) that can be computed by
D can not decrease. Thus, if D makes two puncturing queries muPuLK(i,S) and
muPuLK(i,S ′) to the same i-th user/instance, then the later query S ′ has to be
a subset of S, otherwise the later puncturing request cannot succeed. But it’s
odd for D to make such two puncturing queries. Therefore, we simply forbid D
puncturing the same user/instance twice.
H-coefficient method. We use Patarin’s H-coefficient method [Pat09] to prove
security of the trees, and provide a quick overview here. Our presentation bor-
rows heavily from that of [CS14]. Fix a distinguisher D that makes at most q
queries to its oracles. As in the security definition presented above, D’s aim is
to distinguish between two worlds: a “real world” and an “ideal world”. Assume
wlog that D is deterministic. The execution of D defines a transcript that in-
cludes the sequence of queries and answers received from its oracles; D’s output is
a deterministic function of its transcript. Thus, if Tre, Tid denote the probability
distributions on transcripts induced by the real and ideal worlds, respectively,
then D’s distinguishing advantage is upper bounded by the statistical distance
SD(Tre, Tid) := 1

2

∑
Q
∣∣Pr[Tre = Q] − Pr[Tid = Q]

∣∣, with sum taken over all
possible transcripts Q.

Let Θ denote the set of all transcripts that can be generated by D in either
world. We look for a partition of Θ into two sets Θgood and Θbad of “good” and
“bad” transcripts, respectively, along with a constant ε1 ∈ [0, 1) such that

Q ∈ Θgood =⇒ Pr[Tre = Q]
Pr[Tid = Q]

≥ 1− ε1. (1)

It is then possible to show (see [CS14]) that the statistical distance is upper
bounded by

SD(Tre, Tid) ≤ ε1 + Pr[Tid ∈ Θbad]. (2)

12



3 A Framework for Generalized GGM Trees

Before presenting our model in Sect. 3.2, we first serve intuitions in Sect. 3.1 to
ease understanding.

3.1 Intuitions

Example 1. The classical GGM tree uses a length-doubling PRG G : {0, 1}n →
{0, 1}2n. Thus, every G invocation expands an n-bit intermediate value s into
two children, and this constitutes a binary tree. An instantiation of [GKWY20]
defines GAESfk(s) := DMAES(fk, s)‖DMAES(fk, s ⊕ [1]128) with n = 128, where
DMAES(x, y) := AESx(y)⊕y and AESfk is the AES using a fixed, publicly known
keys fk (though, distinct high-level protocols may use distinct fk). The secu-
rity of GAESfk is only justifiable by assuming AES is an ideal cipher. A natu-
ral extension is to increase “parallelization degree”, i.e., mapping s to θn bits
DMAES(fk, s)‖...‖DMAES(fk, s⊕[θ−1]128) for some integer θ ≥ 3. If we view AES
as a public primitive, then every internal secret s is involved in θ ≥ 2 distinct
primitive-calls.
Example 2. The Bip32 wallet defines a more sophisticated approach to gener-
ate a collection of keys organized in a key tree [Med18]. The tree has multiple
branches. The 256-bit “chain codes” in [Med18] (the value chp in the dashed
box in Fig. 1) essentially constitute the internal secret states of the tree. For
each such state, the key tree makes θ ≤ 232 calls to HMAC-SHA512 (henceforth
abbreviated as HMAC) to derive θ children. Every HMAC-call has additional
complicated inputs, including an index j and a signature key. A half of the
HMAC-output (the I values in Fig. 1) will be used to derive the child signature
(private and public) key, meaning that it may not be perfectly secret anymore.
The default key tree recommended in [Med18] has depth 3, as shown in Fig. 1.
If we replace HMAC by a general double-input function Prim that accept two
inputs of ν and λ bits, then the obtained key tree is depicted in Fig. 1.

Summary. Inspired by the above examples, we would like to have a unified
model compatible with flexible choices as follows.

First, we build our model GGGMPrim on a public primitive Prim functioning
as the sub-tree derivation function. In many scenarios the output size of AES may
be insufficient (since it may limit the security bound), and “larger” primitives
such as SHA512 and SHA3 may be preferred. In this respect, our results should
address both the case that Prim is a keyed random oracle, i.e., a function that
maps each (key,message) pair to an independent and uniform point [DRST12],
and the case that Prim is the the aforementioned Davies-Meyer mode of an
ideal cipher.

Second, to increase design choices, we prefer that all parameters are flexible,
including: the size n of the node in the tree, the size κ of the secret which can be
viewed as security parameter and “parallelization degree” θ. Moreover, when the
output size of Prim is long, a single Prim invocation may give rise to multiple
child nodes, and we denote by w the number of such children.
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Fig. 1. The key tree in default configuration of Bip32. Due to space, we omit some
nodes. S is the seed of the HDW instance, and “Bitcoin seed” is the 96-bit literal
string. The values wsk⊥,wsk0, ... are wallet secret keys of Bip32 and will be formalized
in Sect. 6.2 and 6.3. The dashed box in the corner shows the internal computations of
the function CKDpriv (which will be formally defined in Fig. 6). The functions lf and
of will be defined in Eqs. (25) and (26).
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Finally, to somewhat separate distinct Prim invocations, one may inject
“labels” into the inputs to Prim; one may also “disturb” the node input by e.g.,
xoring constants, as the aforementioned use of s and s⊕ [1]128 in the two parallel
calls [GKWY20]. We model these ideas as two input mappings sf and lf. We will
elaborate on the details in the next subsection.

3.2 Our General Tree Model

By the above intuitions, our general model GGGMPrim is built upon a public
primitive Prim : {0, 1}ν×{0, 1}λ 7→ {0, 1}wn functioning as the sub-tree deriva-
tion function, and is formally described in Fig. 2. Also see Fig. 3 for depiction.

In GGGMPrim, every node represents a string of n bits. Every “internal” node
is involved in θ calls to Prim, and every Prim-call gives rise to w new n-bit
node values. Hence, the tree is wθ-branched. Inspired by [Med18], we refer to
positions in a tree using “paths” of the form p = i1/i2/.../ij , referring to a node
at depth j. A node value at “position” p = i1/i2/.../ij is denoted Nd(p), and
Nd(⊥) = k denotes the root. By this, when the depth of the tree is d, the domain
of GGGMPrim.Ev is X =

{
i1/i2/.../id

}
iℓ∈{0,...,wθ−1} for ℓ=1,...,d

. We further define

– P∗ := {⊥}∪
{
i1/i2/.../id′

}
d′∈{1,...,d−1},iℓ∈{0,...,wθ−1} for ℓ=1,...,d′ denoting the

set of “incomplete” paths in such trees;
– P := X ∪ P∗ denoting the set of all valid paths in such trees;
– For any two paths p, p′ ∈ P , p is prefix of p′, if p = p′, or if there exist

i′1, ..., i
′
ℓ such that p′ = p/i′1/.../i

′
ℓ.

Correspondingly, the prefix set system is

Spre,GGGM =
{
Sp∗,GGGM : p∗ ∈ P

}
, with Sp∗,GGGM =

{
p ∈ X : p∗ is prefix of p

}
. (3)

Since every set Sp∗,GGGM ∈ Spre,GGGM has an associated path p∗, in Fig. 2 we
adopt the formalism of GGGMPrim.CEv taking a path p∗ as the second input.

For a node value z = Nd(p), p ∈ P∗, and an index j ∈ {0, 1, ..., θ − 1}, the
j-th derivation call of Nd(p) is Prim

(
lfp,j

(
leftn−κ(z), pp

)
, sfp,j

(
rightκ(z)

))
(as

shown in StepDown, Fig. 2), where the two input map functions sf and lf are
such that:

– The labeling function lfp,j
(
leftn−κ(z), pp

)
maps the left most n− κ bits of a

node value z and the public parameter pp to the ν-bit 1st input for Prim.
Subsequently, we call this ν-bit value the label of the derivation call.

– The seeding function sfp,j
(
rightκ(z)

)
is injective, and maps the right most

κ bits of a node value z to the λ-bit 2nd input for Prim. In some sense,
sfp,j

(
rightκ(z)

)
serves as the “secret seed” of the sub-tree, and κ is security

parameter of the tree;

The output of the Prim-call I = Prim
(
lfp,j

(
leftn−κ(z), pp

)
, sfp,j

(
rightκ(z)

))
does not immediately give rise to children nodes. Instead, an outputting func-
tion of

(
z, leftn

(
rightbn(I)

))
maps the parent node Nd(p) and the b-th chunk

leftn
(
rightbn(I)

)
to the child node Nd(p/b).
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Algorithm Ev(K, p)
// Function value of p ∈ X under the key K
parse (k, pp)← K
return StepDown(k, pp, p)

Algorithm Co(K, p∗)
// Constrain a (incomplete) path p∗ ∈ P
parse (k, pp)← K
K{p∗} ←

(
StepDown(k, pp, p∗), pp

)
return K{p∗}

Algorithm CEv(K{p∗}, p)
// Evaluate Ev(K, p) using constrained
K{p∗}
parse (node, pp)← K{p∗}
if p∗ = p then return node
if ∃id′+1, ..., id s.t. p = p∗/id′+1/.../id then

return StepDown(node, pp, id′+1/.../id)
return ⊥

Algorithm StepDown(node, pp, p∗)
// Starting from node and stepping down along
the path p∗ in the tree, |node| = n
if p∗ = ⊥ then return node
parse i1/i2/.../id′ ← p∗

p← ⊥, Nd(p)← node
for j = 1, ..., d′ do
b← ij mod w, a← ⌊

ij
w ⌋

// Thus aw + b = ij , a ∈ {0, ..., θ − 1},
// b ∈ {0, ..., w − 1}
I ←

Prim
(
lfp,a

(
leftn−κ(Nd(p)), pp

)
, sfp,a

(
rightκ(Nd(p))

))
p← p/ij
b← b + 1
Nd(p)← of

(
Nd(p), leftn

(
rightbn(I)

))
end for
return Nd(p)

Fig. 2. Constrained PRF based on the generalized GGM tree
GGGMPrim[κ, n, ν, θ, w, d, sf, lf]. For simplicity, below we omit the suffix [κ, ..., lf].

For the input functions, we require that j 6= j′ ⇒
(
lfp,j

(
leftn−κ(z), pp

)
, sfp,j

(
rightκ(z)

))
6=(

lfp,j′
(
leftn−κ(z), pp

)
, sfp,j′

(
rightκ(z)

))
for any p ∈ P∗, i.e., distinct Prim-calls

using the same node value z ∈ {0, 1}n are necessarily on distinct inputs. For the
outputting function, we limit our discussion to seeded bijections, i.e., of(z, ·) is a
bijection on {0, 1}n for any z ∈ {0, 1}n. This means of has an inverse of−1 such
that of−1

(
z, of(z, I)

)
= I for any z, I ∈ {0, 1}n.

The complexity of our model is worthy, and it has covered the intuitive
examples. We refer to Sect. 6 and 7 for details.

Nd(p)

Prim
...

Nd(p/0) Nd(p/1) Nd(p/w − 1) Nd(p/w) Nd(p/w + 1) Nd(p/2w − 1)

...

Nd(p/(θ − 1)w) Nd(p/wθ − 1)

Prim

lfp,0

n− κ κ

n

pp sfp,0 pp

of ofNd(p) ofNd(p)

Prim
...

Prim

lfp,1

n− κ κ

n

pp sfp,1 pp

of ofNd(p) ofNd(p)

Prim
...

Prim

n− κ κ

n

pp sfp,θ−1 pp

of ofNd(p) ofNd(p)

lfp,θ−1

Fig. 3. Derivation calls relevant to a single node Nd(p) in the tree GGGMPrim.

4 Multi-user Leakage CPRF Security of GGGM Trees

For clarity, below in Sect. 4.1 we first cast our general formalism in Sect. 2
into the concrete setting of GGGMPrim. We also elaborate on the information
leakages to-be-considered in this paper, as well as useful structural properties.
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Algorithm S(i0, p
∗)

leakages← ∅
parse i1/i2/.../id′ ← p∗

for ℓ = 0, ..., d′ − 1 do
if Table(i0, p

∗) = ⊥ then
r

$←− {0, 1}n−κ, Table(i0, i
∗
1/i

∗
2/.../i

∗
ℓ )← r

leakages← leakages ∪
{(

i0/i
∗
1/i

∗
2/.../i

∗
ℓ , Table(i0, i

∗
1/i

∗
2/.../i

∗
ℓ )

)}
end for
return leakages

Fig. 4. Leakage simulator S for Theorems 1, 2, and 3.
With these preparations, we consider GGGMPrim with Prim being a FIL RO
H in Sect. 4.2, and then the case of Prim being the Davies-Meyer construction
DME for an ideal cipher E in Sect. 4.3.

4.1 Concrete Settings

The oracles and leakage simulator. We assume the leakage oracle L in
muCoLK and muEvLK leaks the leftmost bits leftn−κ(z) for every intermediate
node z ∈ {0, 1}n appeared during the computations. In detail, note that by our
convention, a query to the evaluation oracle muEvLK is of the form (i0, p), p =
i1/i2/.../id. In the real world, muEvK will return Nd(i0, p) the n-bit node value
at the end of the path p in the i0-th tree. As the corresponding leakages, we
assume that L(Ki0 , p) will provide d additional values of n− κ bits, i.e.,

leftn−κ
(
Nd(i0,⊥)

)
, leftn−κ

(
Nd(i0, i1)

)
, ..., leftn−κ

(
Nd(i0, i1/.../id−1)

)
.

To wit, after issuing a query to muEvLK, D obtains n+d(n−κ) bits information.
Similarly, a query to the constraining oracle muCoLK is of the form (i0, p

∗),
p∗ = i∗1/.../i

∗
d′ (see Fig. 2) which may be incomplete (i.e., d′ ≤ d), and muCoK will

return the n-bit node value Nd(i0, p∗). As the leakages, we assume that L(Ki0 , p
∗)

provides d′ values leftn−κ
(
Nd(i0,⊥)

)
, leftn−κ

(
Nd(i0, i

∗
1)
)
, ..., leftn−κ

(
Nd(i0, i

∗
1/.../i

∗
d′−1)

)
,

which resembles the evaluation queries. This means a single query to muCoLK(i0, i
∗
1/.../i

∗
d′)

gives rise to n+ d′(n− κ) bits.
As in Definition 4, the ideal oracle R returns an n-bit random value which is

of the same size as Nd(i0, p), and we consider a simulator S that simply outputs
random simulated leakages. Formally, S is described in Fig. 4. Consequently,
D obtains the same amount of random bits (i.e., n + d′(n − κ) bits) as in the
real world. We stress that, while our security definition is simulation-based, our
leakage simulator never “hijacks” adversarial random oracle queries. Therefore,
our subsequent results only need non-programmable random oracles.

Query restrictions. Besides the query restriction imposed in Definition 4, we
additionally assume that the distinguisher D never makes redundant queries.
Clearly, this cannot decrease attack advantage. For GGGMPrim, these indicate:

a. D never queries both muEvLK(i0, p) and muCoLK(i0, p
∗) such that p∗ is prefix

of p (otherwise p ∈ Sp∗,GGGM).
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b. D never makes distinct queries (i0, p
∗), (i0, p

∗∗) to muCoLK such that p∗ is
prefix of p∗∗ (otherwise (i0, p

∗∗) is redundant);

Brother paths. Given a path p = i1/.../id′−1/id′ ∈ P , we define a set Br(p) =
{p1, p2, ..., pw} of w paths, where for 1 ≤ ℓ ≤ w,

pℓ = i1/.../id′−1/i
(ℓ)
d′ , i

(ℓ)
d′ = b id

′

w
c · w + ℓ− 1.

These w nodes Nd(i0, p1), ...,Nd(i0, pw) are attributed to the same wn-bit output
of a single call to Prim in the i0-th tree. We thus call them brother paths (of p).
This notion will be used in subsequent analyses.

Concentration of labels. In the random oracle model, distinct labels separate
corresponding Prim-calls. To formalize, consider the following sampling process.
Given D distinct pairs I =

{
(i

(ℓ)
0 , p(ℓ)) ∈ {1, ..., u} × P

}
ℓ=1,...,D

,

1. We invoke KGen for u times to have u public parameters P = (pp1, ..., ppu);
2. We follow the strategy of S and sample D strings of n− κ bits with replace-

ment and define the list L = {(i(1)0 , p(1), r(1)), ..., (i
(D)
0 , p(D), r(D))}.

Based on L, we define a quantity for the maximal frequency of a certain label
value, i.e.,

µ(L) := max
t∈{0,1}ν

{∣∣∣{(i0, p, r) ∈ L : lfp,j(r, ppi0) = t
}∣∣∣}. (4)

We denote this sampling process by P ← KGen,L ← S. Note that the quantity
reflects a property across multiple users in the ideal world. A trivial upper bound
is µ(L) ≤ D, see Sect. 4.2 below. As will be seen in Theorems 1—3, the smaller
µ(L), the better concrete security. A promising choice is to define µ(L) to be a
(pseudo)random variable, as will be treated in Theorems 1-3. For example, one
can choose a random initialization vector IV for every GGGMPrim instances/users
and define lfp,j(r, pp) := ·‖IV. This limits collisions between labels in distinct
GGGMPrim instances and decreases µ(L). This approach will be used to improve
FSS (see Sect. 7). As will be seen, a more sophisticated approach is to extract a
part of the intermediate values as pseudorandom bits and “embed” them in the
images of lfp,j(r, pp). This approach is used in Bip32 key tree (see Sect. 6).

4.2 Random Oracle-based Trees

In detail, we consider defining Prim(x, y) := H(x‖y) for an FIL RO H :
{0, 1}ν+ω 7→ {0, 1}wn. Obviously, this is equivalent with Prim(x, y) := KH(x, y)
for a keyed FIL random oracle KH : {0, 1}ν × {0, 1}λ 7→ {0, 1}wn. Our main
result is as follows.

Theorem 1. Assume using the simulator S defined in Fig. 4, and:
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(i) H : {0, 1}ν+ω 7→ {0, 1}wn is modeled as a random oracle, and
(ii) L leaks leftn−κ(Nd(i0, p

∗)) for every intermediate node Nd(i0, p
∗) (see Sect.

4.1), and
(iii) There exist quantities C and εµ such that

PrP←KGen,L←S

[
µ(L) > C

]
≤ εµ. (5)

Then, GGGMH is a (u, T,D, ε)-(L, S)-constrained PRF for set system Spre,GGGM
of Eq. (3), where

ε = 2εµ +
2C · (T +D)

2κ
. (6)

Interpretation. The “leakages” and its simulator can be eliminated from Theo-
rem 1 by setting κ = n. Therefore, the result implies the classical CPRF security
of GGGMH.

If pp1, ..., ppu are picked according to some distribution, then µ(L) remains
a random variable. An example is FMTrDMAES

in Sect. 7. If pp1, ..., ppu are not
random, then µ(L) will be fixed by the design of the GGGMH instance. In partic-
ular, when lf is a constant function, we could (only) appeal for the trivial upper
bound C = D. In this case, εµ = 0, and the obtained bound DT/2κ + D2/2κ

indicates the κ− log2 D bits security mentioned in the introduction.
The leaked intermediate values are indistinguishable with the random simu-

lated leakages. This means protocols can extract n− κ pseudorandom bits from
every n-bit intermediate value in GGGMH for arbitrary uses, as if these bits are
“leaked” (to everyone including the adversaries). Indeed, Bip32 does use these
n− κ bits to derive signature keys: see Fig. 1 or Sect. 6.

Proof idea. Recall that the goal is to derive a bound for∣∣∣Pr[DmuCoLK,muEvLK,H = 1
]
− Pr

[
DmuCoSK,RS,H = 1

]∣∣∣.
In the ideal world DmuCoSK,RS,H, the outputs of the oracle muCoSK (i.e., the
constrained keys) depend on the secret keys k1, ..., ku. This complicates the
H-coefficient based analysis. To remedy, we introduce a random constraining
oracle $ConsS, which accepts queries of the same form (i0, p

∗) as muCoSK (and
muCoLK), but $Cons returns true random n-bit strings as the constrained key
Nd(i0, p

∗) (while S returns random leakages as before). This means for a query
(i0, i

∗
1/.../i

∗
d′), the random constraining oracle $ConsS returns in total n+d′(n−κ)

random bits. We take ($ConsS,RS,H) as an intermediate world. In this vein,
when interacting with ($ConsS,RS,H), the information gained by D is com-
pletely independent of any CPRF key, easing the analysis.

We then proceed with two steps: first, we prove indistinguishability of the
real and the intermediate worlds; and then, we prove indistinguishability of the
intermediate and the ideal worlds.
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Indistinguishability of (muCoLK,muEvLK,H) and ($ConsS,RS,H). For this
step, we view the real (muCoLK,muEvLK,H) as the real world, and the intermedi-
ate world ($ConsS,RS,H) the ideal world. We prove the following bound using
the H-coefficient method.∣∣∣Pr[DmuCoLK,muEvLK,H = 1

]
− Pr

[
D$ConsS,RS,H = 1

]∣∣∣ ≤ εµ +
C · (T +D)

2κ
. (7)

Transcripts Since we are in the Random Oracle Model and aim at statisti-
cal indistinguishability, we could, without loss of generality [Pat09], consider
a deterministic distinguisher D interacting with the three oracles as reflected
in Definition 4. To summarize the information gained by D in a clear form,
we introduce two list QH and QNd. The list QH = {(x(1), y(1)), . . .} records
D’s queries/answers to/from H, with (x, y) ∈ QH meaning H(x) = y. The list
QNd =

{
(i

(1)
0 , p(1), z(1), b(1)), . . .

}
records the values in the tree obtained by D via

either the “standard” responses or the leakages. Every tuple (i0, p, z, b) ∈ QNd is
such that p ∈ P , and:

– z ∈ {0, 1}n−κ when b = 0, meaning that z is a leaked intermediate value;
– z ∈ {0, 1}n when b = 1, meaning that z is either a constrained key or an

output of muEvK.

To simplify our proof language, we follow [GKWY20,GKW+20] and reveal
a number of internal secrets to D at the end of the interaction. In detail, we
will reveal the κ-bit internal seeds to D, and add them to the transcript QNd. In
this respect, note that in the real world (muCoLK,muEvLK,H), for every resulted
tuple (i0, p, z, b) ∈ QNd, the corresponding node value Nd(i0, p) necessarily ap-
peared during processing the queries. Moreover, z = Nd(i0, p) when b = 1, and
z = leftn−κ

(
Nd(i0, p)

)
when b = 0. We will thus reveal the “missing” κ bits

zR = rightκ
(
Nd(i0, p)

)
to D and add them to QNd. Since ki0 = Nd(i0,⊥), this

means the u user keys k1, ..., ku are also completely given. In the ideal world,
we reveal and add random “dummy” bits to the transcript. We also append to
the transcript u public parameters P = (pp1, ..., ppu) that are sampled accord-
ing to the same distribution as the real world. By this, we obtain an extended
list QX

Nd =
{
(i

(1)
0 , p(1), z(1), b(1)), . . .

}
, among which (i

(1)
0 , p(1)), (i

(2)
0 , p(2)), ... are

exactly the same as those in QNd, while z(1), z(2), ... are all “full” n-bit strings
regardless of the values of b(1), b(2), ... In all, we define

Q = (QX
Nd,QH,P)

as a transcript. It is without loss of generality to provide these additional values,
since the distinguisher is free to ignore them. Below we will first define the set
Θbad of bad transcripts, and then analyze good transcripts.

Internal evaluation list Qx
H Regarding QX

Nd, we make crucial observations as fol-
lows. For any (i0, p, z, b) ∈ QX

Nd, p = i1/.../id′ with d′ ≥ 1,
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– it holds (i◦0, p
◦,Nd(p◦), ⋆) ∈ QX

Nd for every prefix p◦ of p, since Nd(i◦0, p
◦)

indeed appeared during computing Nd(i0, p) = z;
– it holds (i0, p

′,Nd(p′), ⋆) ∈ QX
Nd for every brother path p′ ∈ Br(p) of p. To

see this, note that for any path p ∈ P , (i0, p,Nd(p), ⋆) /∈ QX
Nd only if the

corresponding value Nd(i0, p) is never computed during the interaction. The
only possibility is that there exists a constraining query muCoLK(i0, p

∗) such
that p∗ is a prefix of p, and this forbids querying (i0, p) due to the query
restrictions mentioned in Sect. 4.1. This essentially implies Nd(i0, p′) is never
computed for any p′ ∈ Br(p). By this, (i0, p,Nd(i0, p), ⋆) /∈ QX

Nd ⇔ ∀p′ ∈
Br(p) : (i0, p′,Nd(i0, p′), ⋆) /∈ QX

Nd, and thus the claim.

By these, consider any (i0, p, z, ⋆) ∈ QX
Nd with p = i1/.../id′−1/id′ , 1 ≤ d′ ≤ d.

Let p∗ = i1/.../id′−1, j∗ = b id′w c, and let pℓ = i1/.../id′−1/wj
∗+ℓ−1 (1 ≤ ℓ ≤ w).

ThenQx
H includes the “internal evaluation tuple” (i0, p

∗, j∗, x∗, y∗), where (recall
from Sect. 3.2 that of(z, ·) is bijective)

x∗ = lfp∗,j∗
(
leftn−κ

(
Nd(i0, p

∗)
)
, ppi0

) ∥∥ sfp∗,j∗
(
rightκ

(
Nd(i0, p

∗)
))
,

y∗ = of−1
(
Nd(i0, p

∗),Nd(i0, p1)
)
‖ of−1

(
Nd(i0, p

∗),Nd(i0, p2)
)
‖ of−1

(
Nd(i0, p

∗),Nd(i0, pw)
)
.

(8)

By the above two observations, all the mentioned node values can be found
in QX

Nd, and x∗, y∗ are thus well-defined. The additional fields p∗ and j∗ will
significantly simplify proof languages. It can be seen that the set Qx

H records
all the internal random oracle evaluations that appeared during the real world
interaction, and |Qx

H| = D is the aforementioned effective data complexity of D.
Indeed, this constitutes its motivation.

Bad transcripts A transcript Q = (QX
Nd,QH) is bad, if any of the following

conditions is fulfilled:

– (B-1) µ ≥ C.
– (B-2) There exist a tuple (i∗0, p

∗, j∗, x∗, y∗) ∈ Qx
H and a pair (x, y) ∈ QH

such that x∗ = x.
– (B-3) There are distinct tuples (i∗0, p

∗, j∗, x∗, y∗), (i∗∗0 , p∗∗, j∗∗, x∗∗, y∗∗) ∈
Qx

H such that x∗ = x∗∗.

The 1st condition captures that the “labels” of the internal calls are too concen-
trated. The 2nd condition addresses the case where an internal random oracle
evaluation in a muCoLK/muEvLK query collide with an adversarial offline ran-
dom oracle query, while the 3rd condition addresses the case where distinct
muCoLK/muEvLK queries issue the same internal random oracle evaluation.

First, Pr[(B-1)] ≤ εµ immediately follows from Eq. (5), since leakages in
D$ConsS,RS,H are purely random. For (B-2), consider each choice of ((x, y), (i∗0, p∗, j∗, x∗, y∗)) ∈
QH×Qx

H. By the definition ofQx
H, x = x∗ means x = lfp∗,j∗

(
leftn−κ

(
z∗
)
, ppi∗0

)
‖sfp∗,j∗

(
rightκ

(
z∗
))

for (i∗0, p∗, z∗, ⋆) ∈ QX
Nd. Since the seed rightκ(z

∗) is uniform in {0, 1}κ in the ideal
world (it is the random “dummy” value appended to Q), and since sfp∗,j∗

(
·
)

is
injective, the probability to have sfp∗,j∗

(
rightκ

(
z∗
))

= rightλ(x) is 1/2κ.
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Now, the condition x = x∗ is fulfilled only if leftν(x) = lfp∗,j∗
(
leftn−κ

(
z∗
)
, ppi∗0

)
.

By this, for any t ∈ {0, 1}ν , we define QH[t] :=
{
s ∈ {0, 1}λ : (t‖s, ⋆) ∈ QH

}
.

Then, the probability that (B-2) is fulfilled w.r.t. the above tuple (i∗0, p∗, j∗, x∗, y∗)
is

∣∣QH

[
lfp∗,j∗

(
leftn−κ

(
z∗
)
, ppi∗0

)]∣∣/2κ. By the above and our definition Eq. (4),

Pr
[
(B-2) | ¬(B-1)

]
=

∑
(i∗0 ,p

∗,j∗,x∗,y∗)∈Qx
H

∣∣QH

[
lfp∗,j∗

(
leftn−κ(Nd(i

∗
0, p
∗)), ppi∗0

)]∣∣
2κ

=
∑

t∈{0,1}ν

∑
(i∗0 ,p

∗,j∗,x∗,y∗)∈Qx
H:lfp∗,j∗

(
leftn−κ(Nd(i∗0 ,p

∗)),ppi∗0

)
=t

∣∣QH

[
t
]∣∣

2κ

≤
∑

t∈{0,1}ν

C ·
∣∣QH[t]

∣∣
2κ

(By ¬(B-1))

≤ C · T
2κ

(Since
∑

t∈{0,1}ν

∣∣QH[t]
∣∣ = ∣∣QH

∣∣ = T ).

For (B-3), consider each pair (i∗0, p
∗, j∗, x∗, y∗), (i∗∗0 , p∗∗, j∗∗, x∗∗, y∗∗) ∈ Qx

H.
By the definition ofQx

H, it holds x∗ = lfp∗,j∗
(
leftn−κ

(
z∗
)
, ppi∗0

)
‖sfp∗,j∗

(
rightκ

(
z∗
))

and x∗∗ = lfp∗∗,j∗∗
(
leftn−κ

(
z∗∗

)
, ppi∗∗0

)
‖

sfp∗∗,j∗∗
(
rightκ

(
z∗∗

))
for (i∗0, p

∗, z∗, ⋆), (i∗∗0 , p∗∗, z∗∗, ⋆) ∈ QX
Nd respectively. Then

the condition x∗ = x∗∗ is fulfilled only if (i∗0, p∗) 6= (i∗∗0 , p∗∗), as per our restric-
tion on sf and lf. By this, rightκ(z∗) and rightκ(z

∗∗) are uniform and independent.
Moreover, sfp∗,j∗

(
·
)

and sfp∗∗,j∗∗
(
·
)

are injective. Hence, the probability to have
sfp∗,j∗

(
rightκ

(
z∗
))

= sfp∗∗,j∗∗
(
rightκ

(
z∗∗

))
is 1/2κ. Further, x∗ = x∗∗ requires

lfp∗,j∗
(
leftn−κ

(
z∗
)
, ppi∗0

)
= lfp∗∗,j∗∗

(
leftn−κ

(
z∗∗

)
, ppi∗∗0

)
. Therefore,

Pr
[
(B-3) | ¬(B-1)

]
=

∑
(i∗0 ,p

∗,j∗,x∗,y∗)∈Qx
H

( ∑
(i∗∗0 , p∗∗, j∗∗, x∗∗, y∗∗) 6= (i∗0, p

∗, j∗, x∗, y∗) :
lfp∗,j∗

(
leftn−κ(Nd(i

∗
0, p
∗)), ppi∗0

)
= lfp∗∗,j∗∗

(
leftn−κ(Nd(i

∗∗
0 , p∗∗)), ppi∗∗0

)
1

2κ

)

≤
∑

(i∗0 ,p
∗,j∗,x∗,y∗)∈Qx

H

C

2κ
(By ¬(B-1))

≤ C ·D
2κ

.

In all, a union bound yields

Pr
[
Tid ∈ Θbad

]
≤ εµ +

C · (T +D)

2κ
. (9)

Ratio of probabilities of good transcripts. One key insight of the H-coefficient
method is that, for anyQ ∈ Θgood, the probability ratio Pr[Tre = Q]/Pr[Tid = Q]
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is equal to the ratio between the probability that the real-world oracles are
consistent with Q and the probability that the ideal-world oracles are consistent
with Q. Now, for any attainable transcript Q = (QX

Nd,QH,P), the probability
that the ideal world transcript is consistent with Q is always exactly

1

2Twn
× 1

2|Q
X
Nd|n
× Pr

[
P← KGen

]
(10)

This is so since in D$ConsS,RS,H,

(i) the probability that a random oracle with wn-bit outputs is consistent with
the T queries in QH is exactly 1/2Twn;

(ii) the probability that the random node values equal those in QX
Nd is 1/2|QX

Nd|n.
Note that these nodes include the u secret keys k1, ..., ku since Nd(i0,⊥) =
ki0 ;

(iii) the probability that the public parameter vector P is produced by KGen is
Pr

[
P← KGen

]
.

Bounding the distinguishing advantage of D thus reduces to bounding the prob-
ability that the real world is consistent with transcripts Q ∈ Θgood.

Let H ` QH denote the event that a function H is consistent with the
queries/answers in QH, i.e., that H(x) = y for all (x, y) ∈ QH. Since, in the
real world, the information in QX

Nd is completely determined by H and the user
keys K = (K1, ...,Ku), we can also write (H,K) ` QX

Nd to denote the event that
the function H and keys K are consistent with the queries/answers in QX

Nd. For
a (good) transcript Q = (QX

Nd,QH,P), the probability that the real world is
consistent with Q is exactly

Pr
[
(H,K) ` QX

Nd | H ` QH

]
× Pr

[
H ` QH

]
× Pr

[
K← KGen

]
= Pr

[
(H,K) ` QX

Nd | H ` QH

]
× Pr

[
H ` QH

]
× 1

2un
× Pr

[
P← KGen

]
(11)

(using independence of K and H). We have Pr[H ` QH] = 1/2Twn exactly as
before. The crux of the proof thus reduces to bounding Pr[(H,K) ` QX

Nd | H `
QH]. For this, note that in the real world, the list Qx

H essentially summarizes
all the random oracle queries internally issued by GGGMH for producing the
transcript QX

Nd. Therefore,

Pr
[
(H,K) ` QX

Nd | H ` QH

]
= Pr

[
∀(i∗0, p∗, j∗, x∗, y∗) ∈ Qx

H : H(x∗) = y∗ | H ` QH

]
.

We further show that the latter probability concerns with H satisfying “new” and
distinct equations. LetQx

H =
(
(i

(1)
0 , p(1), j(1), x(1), y(1)), ..., (i

(D)
0 , p(D), j(D), x(D), y(D))

)
in arbitrary order. The probability can be expressed as

D∏
ℓ=1

Pr
[
H(x(ℓ)) = y(ℓ) | H ` QH ∧ ∀ℓ′ < ℓ : H(x(ℓ′)) = y(ℓ

′)
]
.
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Fix some ℓ. Since the transcript is good, there is no query of the form (x(ℓ), ⋆)
in QH (since (B-2) does not occur), nor is H(x(ℓ)) determined by the fact that
H(x(ℓ′)) = y(ℓ

′) for all ℓ′ < ℓ (since (B-3) does not occur). Thus, we have

Pr
[
H(x(ℓ)) = y(ℓ) | H ` QH ∧ ∀ℓ′ < ℓ : H(x(ℓ′)) = y(ℓ

′)
]
= 1/2wn.

for all i. The term 1/2Dwn thus follows.
It remains to determine the size of Qx

H. Recall that, for every pair(
i0, p, j, lfp,j

(
leftn−κ

(
Nd(i0, p)

)
, ppi0

)∥∥sfp,j(rightκ(Nd(i0, p))), z1
∥∥...∥∥zw) ∈ Qx

H,

it holds
(
i0, p/jw, of(Nd(i0, p), z1), ⋆

)
, ...,

(
i0, p/jw+w−1, of(Nd(i0, p), zw), ⋆

)
∈

QX
Nd. On the other hand, it can be seen that, for every set of w triples (i0, p1, z1, ⋆), ..., (i0, pw, zw, ⋆) ∈
QX

Nd such that p1 = p∗/j∗w, p1, ..., pw ∈ Br(p1), the n-bit values Nd(i0, p
∗) = z∗

and z1, ..., zw correspond to a unique tuple (i0, p
∗, j∗, x∗, y∗) ∈ Qx

H with y∗ =
of−1(z∗, z1)‖...‖of−1(z∗, zw). By this, there is a one-to-one correspondence be-
tween sets of w tuples in QX

Nd with associated paths being brothers and tuples in
Qx

H, and thus ∣∣Qx
H

∣∣ = ∣∣{(i0, p, z, b) ∈ QX
Nd : p 6= ⊥}

∣∣
w

.

Note that |QX
Nd| −

∣∣{(i0, p, z, b) ∈ QX
Nd : p 6= ⊥}

∣∣ = u, and the u entries are
(1,⊥, k1, ⋆), ..., (u,⊥, ku, ⋆). By this,

Eq. (11) =
( 1

2wn

)D

× 1

2Twn
× 1

2un
× Pr

[
P← KGen

]
=

( 1

2n

)∣∣{(i0,p,z,b)∈QX
Nd:p ̸=⊥}

∣∣
× 1

2Twn
× 1

2un
× Pr

[
P← KGen

]
=

1

2Twn
×
( 1

2n

)|QX
Nd|
× Pr

[
P← KGen

]
.

So the probability that the real world is consistent with the transcript is the
same as Eq. (10). This means Eq. (9), the probability of obtaining bad tran-
scripts, constitutes the gap between the real world (muCoLK,muEvLK,H) and the
intermediate world ($ConsS,RS,H).

Indistinguishability of ($ConsS,RS,H) and (muCoSK,RS,H). For this, we
view (muCoSK,RS,H) as the real world and ($ConsS,RS,H) as the ideal, and
prove the following bound:∣∣∣Pr[D$ConsS,RS,H = 1

]
− Pr

[
DmuCoSK,RS,H = 1

]∣∣∣ ≤ εµ +
C · (T +D)

2κ
. (12)

Essentially, this step requires establishing pseudorandomness of the constrained
keys, which follows the same idea as the first step with a number of changes.
In detail, we employ four list QH,QS,QNd, and QR to keep the information
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gained by D. The RO-query list QH is just the same as before. The list QS ={
(i

(1)
0 , p(1), r(1)), . . .

}
records all the leakages returned by S, where i(ℓ)0 ∈ {1, ...u},

p(ℓ) ∈ P∗, and r(ℓ) ∈ {0, 1}n−κ indicates that at the position p(ℓ) in the i
(1)
0 -th

tree, the leakage block returned by S is r(ℓ). The list QNd is modified such that
QNd =

{
(i

(1)
0 , p(1), z(1)), . . .

}
records the queries and responses of $Cons/muCoK.

Namely, the ℓ-th tuple (i
(ℓ)
0 , p(ℓ), z(ℓ)) ∈ QNd indicates that D made a query

(i
(ℓ)
0 , p(ℓ)) to $Cons/muCoK and the n-bit “standard” response is z(ℓ). Finally,
QR =

{
(i

(1)
0 , p(1), z(1)), . . .

}
records the queries and responses of R, where (i(ℓ)0 , p(ℓ), z(ℓ)) ∈

QNd indicates that D made a query (i
(ℓ)
0 , p(ℓ)) to RS and the n-bit (random) re-

sponse of R is z(ℓ).
We also reveal the internal values corresponding to muCoSK’s evaluations to

D at the end of the interaction to extend QNd, but the strategy differs from
the previous step (Sect. 4.2). In detail, note that every tuple (i0, p, z) ∈ QNd

indicates D making a query (i0, p) to muCoSK, and for every p′ that is prefix
of p, the corresponding node value z′ = Nd(i0, p

′) necessarily appeared during
processing the query. We thus reveal all such node values z′ = Nd(i0, p

′) to
D and add the corresponding triple (i0, p

′, z′) to QNd. We also reveal all the
u secret keys k1, ..., ku and add the corresponding triple (i0,⊥, ki0) to QNd. In
the ideal world, we reveal random “dummy” n-bit blocks z′

$←− {0, 1}n to D
and add (i0, p

′, z′) to QNd correspondingly. By this, we obtain an extended list
QX

Nd =
{
(i

(1)
0 , p(1), z(1)), . . .

}
, among which (i

(1)
0 , p(1)), (i

(2)
0 , p(2)), ... represents

the positions to the nodes in QNd, while z(1), z(2), ... are all “full” n-bit strings
that are either “real” intermediate values (in the real world) or random “dummy”
blocks (in the ideal world). Finally, we also sample u public parameters P in the
ideal world. In all, we define

Q = (QX
Nd,QR,QS,QH,P)

as a transcript. Clearly, |QX
Nd| ≤ D. The real world probability Pr

[
Tre = Q

]
is

then written as
Pr

[
H ` QH

]
× Pr

[
S ` QS

]
× Pr

[
R ` QR

]
× Pr

[
(H,K) ` QX

Nd | H ` QH

]
× Pr

[
P← KGen

]
,

(13)
where S ` QS denotes the event that the random leakages returned by S are
consistent with those inQS, R ` QR denotes R(i0, p) = z for every (i0, p, z) ∈ QR,
and (H,K) ` QX

Nd denotes the event that values generated by the oracle muCoK
(using H) are consistent with the records inQX

Nd. The above expansion is possible
since S, R, and (H,K) are independent. Similarly,

Pr
[
Tid = Q

]
= Pr

[
H ` QH

]
× Pr

[
S ` QS

]
× Pr

[
R ` QR

]
× Pr

[
($Cons,K) ` QX

Nd

]
× Pr

[
P← KGen

]
, (14)

since ($Cons,K) is independent from H. Gathering Eqs. (13) and (14) yields
Pr

[
Tre = Q

]
Pr

[
Tid = Q

] =
Pr

[
(H,K) ` QX

Nd | H ` QH

]
Pr

[
($Cons,K) ` QX

Nd

] , (15)
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and the problem thus reduces to bounding Pr[(H,K) ` QX
Nd | H ` QH]. Subse-

quent analyses thus simply follow the same line as the 1st step. The definition
of bad transcripts is the same as the first step, resulting in Pr[Tid ∈ Θbad] ≤
εµ + C·(T+D)

2κ . For a good transcript Q = (QX
Nd,QR,QS,QH,P), following the

same line as the previous step, it can be shown that

Pr
[
(H,K) ` QX

Nd | H ` QH

]
=

( 1

2n

)∣∣{(i0,p,z,b)∈QX
Nd:p ̸=⊥}

∣∣
.

The above established Eq. (12). Gathering Eqs. (7) and (12) yields Eq. (6) and
completes the proof.

4.3 Davies-Meyer-based Trees

Using a block cipher E : {0, 1}ν × {0, 1}wn 7→ {0, 1}wn, the Davies-Meyer-based
derivation function is defined by Prim(x, y) := DME(x, y) = E(x, y)⊕ y (there-
fore, λ = wn). This setting is interesting when we are to instantiate the tree
using (fixed-key) block ciphers in their Davies-Meyer modes.

Security of this model crucially relies on the feeding forward in Davies-Meyer,
i.e., feeding the κ-bit secret rightκ(z) forward. However, a bad outputting func-
tion of may cancel these bits. In this respect, we additionally require that the
outputting function of only relies on the leftmost n − κ bits of its seed, i.e.,
of
(
z, I

)
= of

(
leftn−κ

(
z
)
, I
)

for any inputs z, I ∈ {0, 1}n. Our formal results
regarding GGGMDME

will emphasize on this additional restriction.

Theorem 2. Assume using the simulator S defined in Fig. 4, and:

(i) E : {0, 1}ν × {0, 1}wn 7→ {0, 1}wn is modeled as an ideal cipher;
(ii) of : {0, 1}n × {0, 1}n → {0, 1}n is such that of(z, I) = of(leftn−κ(z), I) for

any z, I ∈ {0, 1}n;
(iii) L leaks leftn−κ(Nd(i0, p

∗)) for every intermediate node Nd(i0, p
∗);

(iv) There exist quantities C and εµ such that

PrP←KGen,L←S

[
µ(L) > C

]
≤ εµ. (16)

Then, GGGMDME

is a (u, T,D, ε)-(L, S)-constrained PRF for the set system
Spre,GGGM of Eq. (3), where

ε = 2εµ +
4C ·

(
T +D

)
2κ

. (17)

We also rely on the random intermediate system ($ConsS,RS,E) for “relay”.

26



Indistinguishability of (muCoLK,muEvLK,E) and ($ConsS,RS,E) View (muCoLK,muEvLK,E)

as the real world, and ($ConsS,RS,E) the ideal world. We prove the following
bound.∣∣∣Pr[DmuCoLK,muEvLK,E = 1

]
− Pr

[
D$ConsS,RS,E = 1

]∣∣∣ ≤ εµ +
2C ·

(
T +D

)
2κ

. (18)

The setting is similar to that studied in Sect. 4.2, except that the random or-
acle H is replaced with an ideal cipher E : {0, 1}ν × {0, 1}wn 7→ {0, 1}wn that
can be queried in both forward and backward directions, with wn = λ. By
this, the transcript of D’s interaction consists of QNd and QE, where QE =
{(L1, x1, y1), . . .} records D’s queries/answers to/from E (with (L, x, y) ∈ QE

meaning E(L, x) = y), while the transcript QNd =
{
(i

(1)
0 , p(1), z(1), b(1)), . . .

}
,

i
(ℓ)
0 ∈ {1, ..., u}, p(ℓ) ∈ P , z(ℓ) ∈ {0, 1}n ∪ {0, 1}n−κ, b(ℓ) ∈ {0, 1}, is just sim-

ilar to Sect. 4.2. We also append the κ bit internal secrets to QNd to have
the extended list QX

Nd as in Sect. 4.2, and concentrate on Q = (QX
Nd,QE,P)

with QX
Nd =

(
(i

(1)
0 , p(1), z(1), b(1)), ...

)
, i(ℓ)0 ∈ {1, ..., u}, p(ℓ) ∈ P , z(ℓ) ∈ {0, 1}n,

b(ℓ) ∈ {0, 1}. Denote by E ` QE the event that a block cipher E is consistent
with the queries/answers in QE, i.e., that E(L, x) = y for all (L, x, y) ∈ QE.
Then the probability of E ` QE for an ideal cipher E (with wn-bit blocks and
ν-bit keys) is exactly

(∏
L∈{0,1}ν (2

wn)TL

)−1. where for integers 1 ≤ b ≤ a, we
set (a)b = a · (a − 1) · · · (a − b + 1) with (a)0 = 1 by convention, and TL is the
number of tuples of the form (L, ⋆, ⋆) in QE (thus

∑
L∈{0,1}ν TL = T ). Therefore,

for any attainable transcript Q = (QX
Nd,QE,P), the probability that the ideal

world is consistent with Q is

1∏
L∈{0,1}ν (2

wn)TL

× 1

2|Q
X
Nd|n
× Pr

[
P← KGen

]
. (19)

For the real world, we also write (E,K) ` QX
Nd to denote the event that the

cipher E and keys K are consistent with the values in QX
Nd. Similarly to Sect.

4.2, the real world probability is exactly

Pr
[
(E,K) ` QX

Nd | E ` QE

]
× 1∏

L∈{0,1}ν (2
wn)TL

× 1

2un
× Pr

[
P← KGen

]
,

(20)

and the problem also reduces to bounding Pr[(E,K) ` QX
Nd | E ` QE].

Internal evaluation list Qx
E. As in Sect. 4.2, we will show that, conditioned on

E ` QE, the event (E,K) ` QX
Nd is equivalent to E satisfying a series of new and

distinct equations. The conditions for bad transcripts are essentially defined to
ensure these equations. We start by explicitly constructing the list Qx

E of such
equations. For this, consider any (i0, p, z, ⋆) ∈ QX

Nd with p = p∗/id′ 6= ⊥. Let j∗ =
b id′w c and pℓ = p∗/(wj∗+ ℓ−1) (1 ≤ ℓ ≤ w). Then the extended list Qx

E includes
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an “internal evaluation tuple” (i0, p
∗, j∗, L∗, x∗, y∗), where (z∗ = Nd(i0, p

∗))

L∗ := lfp∗,j∗
(
leftn−κ

(
z∗
)
, ppi0

)
, x∗ := sfp∗,j∗

(
rightκ

(
z∗
))

y∗ :=
(
of−1

(
z∗,Nd(i0, p1)

)
‖ ... ‖ of−1

(
z∗,Nd(i0, pw)

))
⊕ sfp∗,j∗

(
rightκ

(
z∗
))

(21)

Bad transcripts. An extended transcript Q = (QX
Nd,QE,P) is bad, if any of the

following conditions is fulfilled:

– (B-1) µ ≥ C.
– (B-2) There exist a pair of tuples ((L, x, y), (i∗0, p∗, j∗, L∗, x∗, y∗)) ∈ QE×Qx

E

such that (L, x) = (L∗, x∗), or (L, y) = (L∗, y∗);
– (B-3) There exist distinct (i∗0, p

∗, j∗, L∗, x∗, y∗), (i∗∗0 , p∗∗, j∗∗, L∗∗, x∗∗, y∗∗) ∈
Qx

E with (L∗, x∗) = (L∗∗, x∗∗) or (L∗, y∗) = (L∗∗, y∗∗).

The bound Pr[(B-1)] ≤ εµ also follows from Eq. (16) straightforwardly. For
(B-2), consider each choice of ((L, x, y), (i∗0, p

∗, j∗, L∗, x∗, y∗)) ∈ QE × Qx
E. By

the fact that rightκ(z
∗) is uniform in {0, 1}κ for (i∗0, p

∗, z∗, ⋆) ∈ QX
Nd, and that

sfp∗,j∗
(
⋆
)

is injective, the probability to have x = x∗ is 1/2κ.
The other condition y = y∗ translates into

y =
(
of−1

(
r∗,Nd(i∗0, p

∗
1)
) ∥∥...∥∥ of−1

(
r∗,Nd(i∗0, p

∗
w)

))
⊕ sfp∗,j∗

(
rightκ

(
Nd(i∗0, p

∗)
))
,

where p∗ℓ = p∗/(wj∗+ℓ−1) (1 ≤ ℓ ≤ w) and r∗ = leftn−κ
(
Nd(i∗0, p

∗)
)
. In the ideal

world, rightκ
(
Nd(i∗0, p

∗)
)

is uniform, and is independent from leftn−κ(Nd(i
∗
0, p
∗)),Nd(i∗0, p1), ...,Nd(i

∗
0, p
∗)

(since rightκ
(
Nd(i∗0, p

∗)
)

is the random “dummy” value sampled at the end of
the ideal world interaction). By this and by the injectivity of sfp∗,j∗

(
⋆
)
, the

probability to have y = y∗ is 1/2κ.
Finally, note that L = lfp∗,j∗

(
leftn−κ

(
Nd(i∗0, p

∗)
)
, ppi∗0

)
is necessary for both

(L, x) = (L∗, x∗) and (L, y) = (L∗, y∗). By this, for any L ∈ {0, 1}ν , we define

Q+
E[L] :=

{
x ∈ {0, 1}wn : (L, x, ⋆) ∈ QE

}
, Q−E [L] :=

{
y ∈ {0, 1}wn : (L, ⋆, y) ∈ QE

}
.

Then, the condition (B-2) is equivalent with ∃(i∗0, p∗, j∗, L∗, x∗, y∗) ∈ Qx
E : x∗ ∈

Q+
E[L

∗] ∨ y∗ ∈ Q−E [L∗], the probability of which is

Pr
[
(B-2) | ¬(B-1)

]
≤

∑
(i∗0 ,p

∗,j∗,L∗,x∗,y∗)∈Qx
E

2
∣∣Q+

E[L
∗]
∣∣

2κ

≤
∑

L∈{0,1}ν

∑
(i∗0 ,p

∗,j∗,L∗,x∗,y∗)∈Qx
E:lfp∗,j∗

(
leftn−κ(Nd(i∗0 ,p

∗)),ppi∗0

)
=L

2
∣∣Q+

E[L]
∣∣

2κ

≤ 2C · T
2κ

.

The last inequality follows from
∑

L∈{0,1}ν
∣∣Q+

E[L
∗]
∣∣ = ∑

L∈{0,1}ν
∣∣Q−E [L∗]∣∣ = T .
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For (B-3), consider each pair (i∗0, p∗, j∗, L∗, x∗, y∗), (i∗∗0 , p∗∗, j∗∗, L∗∗, x∗∗, y∗∗) ∈
Qx

E. Due to our restriction on sf and lf, if (i∗0, p
∗) = (i∗∗0 , p∗∗) then (j∗ 6= j∗∗

and) x∗ 6= x∗∗. Thus we could focus on the case p∗ 6= p∗∗, meaning that the
probability to have sfp∗,j∗

(
rightκ

(
Nd(i∗0, p

∗)
))

= sfp∗∗,j∗∗
(
rightκ

(
Nd(i∗∗0 , p∗∗)

))
is

1/2κ since both Nd(i∗0, p
∗) and Nd(i∗∗0 , p∗∗) are independent and uniform. On the

other side, the equality y∗ = y∗∗ translates into(
of−1

(
r∗,Nd(i∗0, p

∗
1)
)
‖...‖of−1

(
r∗,Nd(i∗0, p

∗
w)

))
⊕ sfp∗,j∗

(
rightκ

(
Nd(i∗0, p

∗)
))
,

=
(
of−1

(
r∗∗,Nd(i∗∗0 , p∗∗1 )

)
‖...‖of−1

(
r∗∗,Nd(i∗∗0 , p∗∗w )

))
⊕ sfp∗∗,j∗∗

(
rightκ

(
Nd(i∗∗0 , p∗∗)

))
,

where p∗ℓ = p∗/(wj∗ + ℓ − 1) (1 ≤ ℓ ≤ w), r∗ = leftn−κ
(
Nd(i∗0, p

∗)
)
, p∗∗ℓ =

p∗∗/(wj∗∗ + ℓ − 1) (1 ≤ ℓ ≤ w) and r∗∗ = leftn−κ
(
Nd(i∗∗0 , p∗∗)

)
. In the ideal

world, rightκ
(
Nd(i∗0, p

∗)
)

and rightκ
(
Nd(i∗∗0 , p∗∗)

)
are uniform and independent.

By the injectivity of sf, the probability to have y∗ = y∗∗ is 1/2κ.
Last, (L∗, x∗) = (L∗∗, x∗∗) and (L∗, y∗) = (L∗∗, y∗∗) hold only if lfp∗,j∗

(
leftn−κ(Nd(i

∗
0, p
∗)), ppi∗0

)
=

lfp∗∗,j∗∗
(
leftn−κ(Nd(i

∗∗
0 , p∗∗)), ppi∗∗0

)
. Meanwhile, by our definition Eq. (4) and by

¬(B-1), for each pair (p∗, j∗), the number of pairs (p∗∗, j∗∗) satisfying leftn−κ(Nd(i
∗
0, p
∗)) =

leftn−κ(Nd(i
∗∗
0 , p∗∗)) cannot exceed C. By these, the probability Pr

[
(B-3) | ¬(B-1)

]
is bounded by

∑
(i∗0 ,p

∗,j∗,L∗,x∗,y∗)∈Qx
E

( ∑
(i∗∗0 , p∗∗, j∗∗, L∗∗, x∗∗, y∗∗) 6= (i∗0, p

∗, j∗, L∗, x∗, y∗) :
lfp∗,j∗

(
leftn−κ(Nd(i

∗
0, p
∗)), ppi∗0

)
= lfp∗∗,j∗∗

(
leftn−κ(Nd(i

∗∗
0 , p∗∗)), ppi∗∗0

)
2

2κ

)

≤ 2C · |QX
Nd|

2κ
.

In all, a union bound yields

Pr
[
Tid ∈ Θbad

]
≤ εµ +

2C ·
(
T +D

)
2κ

. (22)

Ratio of Probabilities of Good Transcripts. Fix a good transcript Q. The idea re-
sembles Sect. 4.2, concentrating on analyzing Pr[(E,K) ` QX

Nd | E ` QE] = Pr[E `
Qx

E | E ` QE]. Let

Qx
E =

(
(i

(1)
0 , p(1), j(1), L(1), x(1), y(1)), ..., (i

(D)
0 , p(D), j(D), L(D), x(D), y(D))

)
in arbitrary order, then the latter probability can be expressed as

D∏
ℓ=1

Pr
[
E(L(ℓ), x(ℓ)) = y(ℓ) | E ` QE ∧ ∀ℓ′ < ℓ : E(L(ℓ′), x(ℓ′)) = y(ℓ′)].

Fix some ℓ. Since the transcript is good, there is no query of the form (L(ℓ), x(ℓ), ⋆)
in QE (since (B-2) does not occur), nor is E(L(ℓ), x(ℓ)) determined by the fact that
E(L(ℓ′), x(ℓ′)) = y(ℓ′) for all ℓ′ < ℓ (since (B-3) does not occur). Similarly by symmetry,
there is no query of the form (L(ℓ), ⋆, y(ℓ)) in QE (since (B-2) does not occur), nor is
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Algorithm Pu(K,S) // Puncture a set S ⊆ X
parse (k, pp)← K
list← ∅
Let Pc ⊆ P be such that p /∈ S if and only if there exists p∗ ∈ Pc and p∗ is prefix of p
for p∗ ∈ Pc do
ckeyp∗ ← StepDown(k, pp, p∗), list← list ∪ (p∗, ckeyp∗ )

end for
return K{S} ← (pp, list)

Fig. 5. The Pu algorithm corresponding to GGGMPrim[κ, n, ν, θ, w, d, sf, lf].
E−1(L(ℓ), y(ℓ)) determined by the fact that E(L(ℓ′), y(ℓ′)) = x(ℓ′) for all ℓ′ < ℓ (since
(B-3) does not occur). Thus, we have

Pr
[
E(L(ℓ), x(ℓ)) = y(ℓ) | E ` QE ∧ ∀ℓ′ < ℓ : E(L(ℓ′), x(ℓ′)) = y(ℓ′)] ≥ 1/2wn.

for all ℓ. Finally, it also holds |Qx
E| = |{(i0, p, z, b) ∈ QX

Nd : p 6= ⊥}|/w, which resembles
Sect. 4.2. By the above,

Eq. (20) ≥
( 1

2wn

)D
× 1∏

L∈{0,1}ν (2
wn)TL

× 1

2un
× Pr

[
P← KGen

]
=
( 1

2n

)|QX
Nd| × 1∏

L∈{0,1}ν (2
wn)TL

× Pr
[
P← KGen

]
,

meaning that the probability that the real world is consistent with the transcript is at
least Eq. (19). This completes the proof.

Indistinguishability of ($ConsS,RS,E) and (muCoSK,RS,E) For this step,
we view (muCoSK,RS,E) as the real world and ($ConsS,RS,E) as the ideal. The core
step is to establish pseudorandomness of the constrained keys, which combines the
ideas of Sect. 4.2 and 4.3. In all, the bound remains.∣∣∣Pr[D$ConsS,RS,E = 1

]
− Pr

[
DmuCoSK,RS,E = 1

]∣∣∣ ≤ εµ +
2C ·

(
T +D

)
2κ

. (23)

Gathering Eqs. (18) and (23) yields Eq. (17) and completes the proof.

5 Multi-user Leakage PPRF Security of GGGM Trees

While it was believed obvious, we first formally describe the puncturing algorithm
Pu of GGGMPrim in Fig. 5 for completeness. This specification would also be used in
subsequent proof of Theorem 3.

The leakage assumption and simulator S are roughly the same as Sect. 4.1 and Fig.
4. With these, the leakage PPRF security of GGGM is as follows.

Theorem 3. Assume using the simulator S defined in Fig. 4, and that there exist
quantities C and εµ such that PrP←KGen,L←S

[
µ(L) > C

]
≤ εµ. Then:

– The tree GGGMH built upon a random oracle H : {0, 1}ν+ω 7→ {0, 1}wn is a
(u, T,D, ε)-(L, S)-puncturable PRF, where ε = 2εµ + 2C·(T+D)

2κ
;
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– With the additional restriction that of : {0, 1}n × {0, 1}n → {0, 1}n is such that
of(z, I) = of(leftn−κ(z), I) for any z, I ∈ {0, 1}n, the tree GGGMDME built upon an
ideal cipher E : {0, 1}ν × {0, 1}wn 7→ {0, 1}wn is a (u, T,D, ε)-(L, S)-puncturable

PRF, where ε = 2εµ +
4C·
(
T+D

)
2κ

.

Proof. A distinguisher D1 against the PPRF security of GGGMPrim can be transformed
to a distinguisher D2 against the CPRF security of GGGMPrim. Indeed, D2 runs D1

and simulates the muPuLK oracle for D1 using its muCoLK oracle, as shown in Fig. 5 (the
algorithm Pu(K,S) calls StepDown(K, p∗), but as shown in Fig. 2, this internal proce-
dure functions the same as Co(K, p∗)). It is easy to see D2’s effective data complexity
D and query complexity T are the same as D1. The bounds thus follow Theorems 1
and 2.

6 Improving Hierarchical Deterministic Wallets

We first review hierarchical deterministic wallet: its basic ideas in Sect. 6.1, its formal-
ism in Sect. 6.2, and specification of Bip32 in Sect. 6.3. Then, in Sect. 6.4, we introduce
mu security definitions for HDWs; in Sect. 6.5, we establish mu security for Bip32 using
Theorem 1. Finally, we present improvements in Sect. 6.6.

6.1 Hierarchical Deterministic Wallets

Briefly, a wallet in blockchain consists of a pair of secret and public keys for a digital
signature scheme. To transfer assets, the user signs transactions (i.e., messages) with its
secret key, with the digital identity named “address” of the receiver (e.g., the receiver’s
public key) embedded in the transactions. A deterministic wallet derives a sequence
of session key pairs from a single master key and uses distinct public session keys as
multiple identities for receiving, in order to achieve anonymity and limit the damage
of (session) key exposure.

A hierarchical deterministic wallet (HDW) makes one step further, derives a col-
lection of signing keys from a master and organizes them under an access hierarchy,
where each element represents a group of users and each user has its associated keys.
Users staying higher in the hierarchy must be able to derive the keys of users on lower
levels and to further sign transactions on their behalf. Users on lower levels, how-
ever, should not be able to escalate their privileges along the hierarchy, not even when
colluding with others. This hierarchical access control exactly fits into the manager(s)-
departments architecture of large-scale enterprises. It also eases wallet delegation and
auditing, which turns out to be crucial for e-commerce and Decentralized Finance.

Clearly, secret signing keys are central in wallets. To achieve decentralized key
managements, a promising approach is to use threshold signatures [Des88,Lin19]. In
a threshold signature, the secret signing key is divided into shares held by multiple
parties. A threshold number (i.e., a subset) of these parties can follow the protocol
(typically the TSS protocol [AHS20]) to collaboratively sign cryptocurrency transac-
tion. The protocol is fully decentralized, and the collapse of fewer parties/shares will
not incur loss of funding. See [AHS20] for a survey.

Decentralized key managements for HDW, however, require dividing the master
key into shares and computing the signing key shares from the master key shares with-
out combining any one. Thus, multiple parties holding the master key shares have to
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evaluate the hierarchical key derivations in MPC. Probably, the best approach is to
garble the key derivation functions. The bottleneck is communication overhead, which
is mainly determined by the number of AND gates in key derivations. The default
Bip32 configuration consumes 4 HMAC-SHA512 executions with nearly 1 million AND
gates to derive a concrete signing key from the wallet seed (see Fig. 1). This incurs
a heavy communication cost and prohibits the use, especially for mobile users. While
some ideas to remedy appear obvious, the soundness is unclear due to the lack of
formalism and justification.

6.2 Formalism of Public-underivable HDW
Luzio et al. introduced a model for HDW [LFA20]. Their formalism particularly em-
phasizes public-derivability, i.e., the ability of generating all public keys of the wal-
let without relying on any secret information. As they discussed [LFA20, Sect. 7],
public-derivability somewhat contradicts the privacy notion (transaction) unlinkability.
However, Bip32 [Med18, Security] indeed insisted on unlinkability rather than public-
derivability (see Sect. 6.4 for elaboration). Bip32 tries to achieve unlinkability-like no-
tion by using secret “chain codes”, which essentially disables public-derivability. Audit-
ing was intended to be carried out by granting certain secret “chain codes” to the audi-
tor. With these considerations, we henceforth refer to Luzio et al.’s formalism [LFA20,
Sect. 5] as public-derivable HDW, and resort to a natural relaxation (pub-underivable)
HDW.11

Despite disabling public-derivability, our formalism of HDW still follows [LFA20].
Concretely, let G = (V, E) be a directed acyclic graph (DAG) representing the access
hierarchy of the HDW, where:

(i) V = {v⊥, vp1 , vp2 , vp3 ...} is the set of vertexes, where v⊥ has indegree 0 (meaning
that v⊥ has the highest privilege in the hierarchy defined by G).

(ii) E is the set of edges, and elements in E are of the form (vp
ij−→ vp/ij ) indicating an

edge from vp to vp/ij (of lower privilege) with label ij . To ease understanding and
highlight the concrete hierarchy in G, we use the path notation system of Sect. 3.2
for subscripts. This means a vertex vi1/i2/.../id is in V if and only if the d edges
(v⊥

i1−→ vi1), (vi1
i2−→ vi1/i2)..., (vi1/i2/.../id−1

id−→ vi1/i2/.../id) are all in E .

We define the set of descendants Desc(G, vp) of node vp to be the set of nodes vp′ such
that there exists a direct path from vp to vp′ in G. By our notations, this means there
exists p∗ ∈ P∗ such that p′ = p/p∗.

With these, a (public-underivable) hierarchical deterministic wallet Wal = (Setup,DPub,DPriv, Sign,Vrfy),
defined over seed space S and message space M, is defined in the following way:

– Setup(G, S): The deterministic setup algorithm (a.k.a. master key generation due
to [DFL19]) takes as input an initial seed S ∈ S and a DAG G that has a unique
node with indegree 0, and returns the keys (wsk⊥,wpk⊥) of the node v⊥ ∈ V with
indegree 0 (with the highest privileges). (wsk⊥,wpk⊥) are also viewed as the master
wallet secret and public keys of the HDW.

– DPub(G,wpkp, vp, vp′): The delegated deterministic public derivation algorithm takes
as input the wallet public key wpkp associated to node vp ∈ V and a target node
vp′ ∈ Desc(G, vp), and outputs the wallet public key wpkp′ of vp. This functionality
fits into the “audit” use case of [Med18, Use cases].

11 Concurrently to us, Das et al. [DEF+21] also proposed a model for HDW.
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– DPriv(G,wskp, vp, vp′): The deterministic private derivation algorithm takes as in-
put the wallet secret key wskp associated to node vp ∈ V and a target node
vp′ ∈ Desc(G, vp), and outputs the wallet secret key wskp′ of vp′ .

– WSign(wskp,m): The randomized signing algorithm takes as input a message m ∈
M and a wallet secret key wskp, and outputs a signature σ.

– WVrfy(pk,m, σ): The deterministic verification algorithm takes as input a signature
public key pk, a message m, and a signature σ. It outputs 1 (accept) or 0 (reject).

A hierarchical deterministic wallet is correct, if any user vp (that holds the wallet
secret key wskp) can derive the private and public keys wskp′ and wpkp′ of any of its
descendants vp′ ∈ Desc(G, vp) and create a valid signature on behalf of vp′ (i.e., that
passes the verification process against the public key pkp′ obtained through public key
derivation). We omit the formalism.

6.3 Bip32 HDW and the Underlying GGGM Instance

The Bitcoin Improvement Proposal Bip32 [Med18] uses a double-input function Prim :
{0, 1}512 × {0, 1}256 7→ {0, 1}512. In Fig. 6, we provide a description of Bip32 following
the formalism in Sect. 6.2. Briefly speaking,

(i) During Setup(G, S), the wallet first invokes Prim with the seed S to derive mas-
ter keys (ch⊥, sk⊥, pk⊥) that are intended to be held by the enterprise, where
(sk⊥, pk⊥) are the signature secret and public key and mch is an additional secret
called chain code. Essentially, the chain code functions as secret seeds of pseudo-
random primitives. As shown in Fig. 1, wsk⊥ = (sk⊥, ch⊥) and wpk⊥ = (pk⊥, ch⊥)
are viewed as the extended private and public keys of the enterprise.

(ii) Given the extended secret key wskp = (skp, chp) of a node vp, the CKDpriv algo-
rithm derives the extended secret key wskp/i = (skp/i, chp/i) of a child node vp/i
via invoking Prim once and calculating a modular addition.

(iii) Given the extended public key wpkp = (pkp, chp) of a node vp, the CKDpub al-
gorithm derives the extended public key wpkp/i = (pkp/i, chp/i) of a child node
vp/i, thanks to the homomorphism property between the secret key and public key
space.

Note that by the specification, a node vp specified by G may still have wskp = ⊥,
although the probability is extremely low. A default configuration for an enterprise
with several offices is recommended in [Med18]. The default key tree is essentially a
GGGM tree with depth d = 3, as illustrated in Fig. 1.

As discussed in Sect. 3.1, the key tree of Bip32 is actually a major motivation of
our model. Actually, the definition and analysis of Bip32 can be based on an instance
of GGGM that (roughly) takes the 512-bit strings zp = [skp]256‖chp as nodes (with
chain code chp functioning as the secrets). In detail, consider the GGGM instance with
parameters as follows.

– Node size n = 512, security parameter κ = 256;
– θ ≤ 232, and w = 1, i.e., output size wn = n = 512;
– Depth d equals the length of the longest (directed) path in G. In this vein, a

(directed) path v⊥
i1−→ vi1

i2−→ ...
id′−−→ vi1/.../id′ in G identifies a path p∗ = i1/.../id′

in this tree;
– The root node Nd(⊥) = Prim

(
S, “Bitcoin seed”

)
;
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Algorithm Setup(G, S) // 128 ≤ |S| ≤ 512
I⊥ ← HMAC

(
S, “Bitcoin seed”

)
sk⊥ ← int(left256(I⊥)) mod |G|
if sk⊥ = 0 or sk⊥ ≥ |G| then return ⊥
pk⊥ ← sk⊥ ·G, ch⊥ ← right256(I⊥)
wsk⊥ ← (sk⊥, ch⊥), wpk⊥ ← (pk⊥, ch⊥)

Algorithm DPub(G,wpkp, vp, vp′ )

if vp′ /∈ Desc(G, vp) then return ⊥
parse p/i1/i2/.../id′ ← p′

wpk← wpkp, p∗ ← p

for j = 1, ..., d′ do
wpk← CKDpub(wpk, ij)
p∗ ← p∗/ij

endfor
return wpk

Algorithm DPriv(G,wskp, vp, vp′ )

if vp′ /∈ Desc(G, vp) then return ⊥
parse p/i1/i2/.../id′ ← p′

wsk← wskp, p∗ ← p
for j = 1, ..., d′ do

wsk← CKDpriv(wsk, ij)
p∗ ← p∗/ij

endfor
return wsk

Algorithm WVrfy(pk,m, σ)
return Sig.Vrfy(pk,m, σ)

Algorithm WSign(wsk,m)
(sk, ch)← wsk
return Sig.Sign(sk,m)

Algorithm CKDpriv(wsk, i)
(sk, ch)← wsk
if i ≥ 231 then // “hardened derivation”

I ← HMAC
(
[0]8∥[sk]256∥[i]32, ch

)
else // 0 ≤ i < 231, normal derivation

pk ← sk ·G
I ← HMAC

(
serP (pk)∥[i]32, ch

)
endif
∆← int(left256(I)), ch′ ← right256(I)
if ∆ ≥ |G| then return ⊥
sk′ ←

(
sk + ∆

)
mod |G|

if sk′ = 0 then return ⊥
return (sk′, ch′)

Algorithm CKDpub(wpk, i)
(pk, ch)← wpk
if i ≥ 231 then // invalid “hardened”

return ⊥
else // 0 ≤ i < 231, normal derivation

I ← HMAC
(
serP (pk)∥[i]32, ch

)
endif
∆← int(left256(I)), ch′ ← right256(I)
if ∆ ≥ |G| then return ⊥
pk′ ← pk + ∆ ·G // ECC addition
if pk′ is the point at infinity then return ⊥
return (pk′, ch′)

Fig. 6. Specification of Bip32 HDW following the formalism of Sect. 6.2.
– For a node value z ∈ {0, 1}512 and (p, j) ∈

(
{⊥} ∪

{
i1/i2/.../id′

}
d′∈{1,...,d−1}

)
×

{0, ..., 232−1}, let r = left256(z), then the seeding, labeling and outputting functions
are as follows.

sfp,j
(
right256(z)

)
= right256(z) (24)

lfp,j
(
r, pp

)
=


[0]8 ‖ r ‖ [j]32 if 231 ≤ j < 232

serP (int(r) ·G) ‖ [j]32 if 0 ≤ j < 231 and int(r) ∈ Z+
|G|

[0]8 ‖ r ‖ [j]32 if 0 ≤ j < 231 and int(r) /∈ Z+
|G|

(25)

of(z, I) =

{
I if int

(
left256(I)

)
≥ |G|[

int(r) + int(left256(I)) mod |G|
]
256

∥∥ right256(I) if 0 ≤ int
(
left256(I)

)
< |G|

(26)

The above GGGM instance is not exactly the same as a Bip32 key tree: it may contain
nodes z ∈ {0, 1}512 such that int

(
left256(z)

)
/∈ Z+
|G| cannot be interpreted as a “correct”

signature private key (and lf computes differently from Bip32 key tree), while the Bip32
key tree discards such “unparsable” values. But the gap is limited, as will be reflected
in the subsequent reduction in Sect. 6.5. In all, the algorithm DPriv(G,wskp, vp, vp′) in
Fig. 6 can be redefined based on the Co algorithm of the above GGGM instance. In
particular, when the “staring” node v⊥ is the root node, the key can be derived via
querying the constraining oracle of F. This will be the core idea of our reduction in
Sect. 6.5.
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main GamemuHEUF
WalPrim,A

(G)

for i0 = 1, ..., u do
Si0

$←− S
(wsk

(i0)

⊥ ,wpk
(i0)

⊥ )← Setup(Gi0 , Si0
)

mpk← (wpk
(1)
⊥ , ...,wpk

(u)
⊥ )

QCrupt ← ∅, QWSign ← ∅
(i0,m

∗, σ∗, v(i0)
p )←

ACrupt,PKReq,muWSign,Prim(mpk)

if (i0, v
(i)
p ) ∈ QCrupt or (i0,m

∗, v(i)
p ) ∈ QWSign

then return 0
pk(i0)

p ← PKReq(i0, v
(i0)
p )

if WVrfy(pk(i0)
p ,m∗, σ∗) = 0 then return 0

return 1

Oracle muWSign(i0,m, v(i0)
p )

wsk(i0)
p ← DPriv(Gi0 ,wsk

(i0)

⊥ , v
(i0)

⊥ , v(i0)
p )

σ ← WSign(wsk(i0)
p ,m)

QWSign ← QWSign ∪ {(i0,m, v(i0)
p )}

return σ

Oracle PKReq(i0, v
(i0)
p )

// This oracle returns the public signature
// key pk(i0)

p of the node v(i0)
p in the i0-th

// HDW instance to A, mimicking the
// publicity of such keys

wpk(i0)
p ← DPub(Gi0 ,wpk

(i0)

⊥ , v
(i0)

⊥ , v(i0)
p )

Recover pk(i0)
p from wpk(i0)

p

return pk(i0)
p

Oracle Crupt(i0, v
(i0)
p )

if ∃v(i0)

p′ ∈ QReqed : v
(i0)

p′ = v(i0)
p

or v
(i0)

p′ ∈ Desc(Gi0 , v
(i0)
p ) then

return
wsk(i0)

p ← DPriv(Gi0 ,wsk
(i0)

⊥ , v
(i0)

⊥ ,wsk(i0)
p )

QCrupt ← QCrupt ∪ {v(i0)
p } ∪ Desc(Gi0 , v

(i0)
p )

return wsk(i0)
p

Fig. 7. Multi-user HEUF security game GamemuHEUF
WalPrim,A(G). The invoked Setup, DPub,

DPriv, WSign, and WVrfy belongs to the wallet WalPrim.
6.4 mu Security Definitions for Hierarchical Deterministic Wallet

We follow Luzio et al.’s hierarchical unforgeability notion [LFA20], which allows an
attacker to corrupt an arbitrary number of users (and their descendants) in the hierar-
chy, and challenges the attacker to forge a signature on behalf of an uncorrupted node.
The ability of corruption is formalized by the oracle Crupt in Fig. 7, which also models
multiple nodes colluding and sharing their secrets. Below we extend it into the mu
setting. Also we consider the case wallet is built upon a public ideal function Prim,
and write WalPrim to highlight. Another parameter that helps characterizing adversar-
ial power is the maximal number of allowed sessions. Concretely, let G = (G1, ...,Gu)
be a sequence of DAGs that defines the configurations for the u wallet users, and let
Gi0 = (Vi0 , Ei0) for i0 = 1, ..., u. Then, the maximal number of allowed sessions is de-
fined as V (G) :=

∑u
i0=1 |Vi0 |. I.e., the DAGs limit the total number of derived keys in

the system.

Definition 7 (Multi-user HEUF Security). An HDW scheme WalPrim is (u, qC , qD, qS , T,D, t, ε)-
multi-user hierarchically existentially unforgeable, if for every sequence of u DAGs
G = (G1, ...,Gu) such that V (G) ≤ D and any adversary A making qC queries to the
Crupt oracle, qD queries to the PKReq oracle, qS queries to the signing oracle muWSign,
and T queries to the ideal primitive Prim, it holds

Pr
[
GamemuHEUF

WalPrim,A(G) = 1
]
≤ ε,

where the experiment GamemuHEUF
WalPrim,A(G) is defined in Fig. 7.

Luzio et al. mentioned hierarchical unlinkability without a detailed formalism [LFA20].
This notion intends to capture that there is no “non-trivial” relation between distinct
child public keys of the same node. We formalize this idea in the mu setting, allow-
ing an attacker to corrupt an arbitrary number of users/sessions in the hierarchy, and
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main GamemuHULk
WalPrim,A,b

(G)

Initializes all entries of kTable to ⊥
for i0 = 1, ..., u do

Si0

$←− S
(wsk

(i0)

⊥ ,wpk
(i0)

⊥ )← Setup(Gi0 , Si0
)

endfor
mpk← (wpk

(1)
⊥ , ...,wpk

(u)
⊥ )

QCrupt ← ∅, QReqed ← ∅
return ACrupt,PKReq,muWSign,Prim(mpk)

Oracle muWSign(i0,m, v(i0)
p )

if b = 0 then
if kTable[i0, p] = ⊥ then

(sk(i0)
p , pk(i0)

p )
$←− Ksign

kTable[i0, p]← (sk(i0)
p , pk(i0)

p )
endif
(sk(i0)

p , pk(i0)
p )← kTable[i0, p]

else // b = 1

wsk(i0)
p ← DPriv(Gi0 ,wsk

(i0)

⊥ , v
(i0)

⊥ , v(i0)
p )

Recover sk(i0)
p from wsk(i0)

p
endif
σ ← Sig.Sign(sk(i0)

p ,m)
return σ

Oracle Crupt(i0, v
(i0)
p )

if ∃v(i0)

p′ ∈ QReqed : v
(i0)

p′ = v(i0)
p

or v
(i0)

p′ ∈ Desc(Gi0 , v
(i0)
p ) then

return
wsk(i0)

p ← DPriv(Gi0 ,wsk
(i0)

⊥ , v
(i0)

⊥ ,wsk(i0)
p )

QCrupt ← QCrupt ∪ {v(i0)
p } ∪ Desc(Gi0 , v

(i0)
p )

return wsk(i0)
p

Oracle PKReq(i0, v
(i0)
p )

if v(i0)
p ∈ QCrupt then return ⊥

if b = 0 then
if kTable[i0, p] = ⊥ then

(sk(i0)
p , pk(i0)

p )
$←− Ksign

endif
(sk(i0)

p , pk(i0)
p )← kTable[i0, p]

else // b = 1

wpk(i0)
p ← DPub(Gi0 ,wpk

(i0)

⊥ , v
(i0)

⊥ , v(i0)
p )

Recover pk(i0)
p from wpk(i0)

p
endif
QReqed ← QReqed ∪ {v(i0)

p }
return pk(i0)

p

Fig. 8. Multi-user muHULk security game GamemuHULk
WalPrim,A,b(G).

challenging it to distinguish public signature keys of uncorrupted nodes from random
points. This is formalized by the oracle PKReq in Fig. 8, which returns the true re-
quested public signature key when b = 1, and random public key when b = 0. These
two definitions essentially capture desired security in the intended use case “Per-office
balances” in [Med18].

Definition 8 (Multi-user HULk Security). An HDW scheme WalPrim is (u, qC , qD, qS , T,D, t, ε)-
multi-user hierarchically unlinkable, if for every sequence of u DAGs G = (G1, ...,Gu)
such that V (G) ≤ D and any adversary A making qC queries to the Crupt oracle, qD
queries to the oracle PKReq, qS queries to the signing oracle muWSign, and T queries
to the ideal primitive Prim, it holds∣∣∣Pr[GamemuHULk

WalPrim,A,0(G) = 1
]
− Pr

[
GamemuHULk

WalPrim,A,1(G) = 1
]∣∣∣ ≤ ε,

where the experiment GamemuHULk
WalPrim,A,b(G) is defined in Fig. 8.

6.5 Multi-user Security of Bip32

For simplicity and clearness, we assume using parameters close to the 256-bit elliptic
curve secp256k1 recommended in [Med18]. In the standard Bip32, the double-input
function Prim is instantiated by HMAC, i.e., Prim(x, y) := HMAC(y, x) (using y as
the key of HMAC). We note that the first input x is not always secret in Bip32. By
Dodis et al. [DRST12, Theorem 4.4], with such parameters, HMAC instantiates a keyed
FIL random oracle. Therefore, this subsection considers Prim(x, y) = KH(x, y) for a
keyed RO KH : {0, 1}512 × {0, 1}256 7→ {0, 1}512, and our results are formally stated
as follows.
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Theorem 4. The Bip32KH HDW built upon a keyed random oracle KH : {0, 1}512 ×
{0, 1}256 7→ {0, 1}512 is (u, qC , qD, qS , T,D, t, ε)-multi-user hierarchically existentially
unforgeable, where (assuming D ≤ |G|/2)

ε ≤ 2u(T +D)

2s
+

u2

2s
+

D

|G| +
29 · (T +D)

2256
+D ×

(
1− |G| − 1

2256

)
. (27)

The Bip32KH HDW built upon a keyed random oracle KH : {0, 1}512×{0, 1}256 7→
{0, 1}512 and a (qS , qS , O(t+D), εmuUFCMA)-mu unforgeable digital signature scheme is
(u, qC , qD, qS , T,D, t, ε)-multi-user hierarchically existentially unforgeable, where (as-
suming D ≤ |G|/2)

ε ≤ u(T +D)

2s
+

u2

2s
+

D

|G| +
29 · (T +D)

2256
+D ×

(
1− |G| − 1

2256

)
+ εmuUFCMA. (28)

When the 256-bit elliptic curse domain parameters recommended in [Res10, Sect.
2.4] is used, it can be checked that D ×

(
1− |G|−1

2256

)
≤ D/2127 (as claimed in [Med18])

and |G|/2 ≈ 2255.
As mentioned, with the parameters in Bip32, HMAC instantiates a keyed FIL ran-

dom oracle KH : {0, 1}512 × {0, 1}256 7→ {0, 1}512 with 256-bit security [DRST12,
Theorem 4.4]. Thus, this is not the bottleneck. Otherwise, Eq. (27) indicates compu-
tational security of min{247, s − log2 u} bits, as long as the total number D of active
Bip32 sessions across the world does not exceed min{2s/u, |G|/2, 2127}. Whereas Eq.
(28) indicate computational security of min{247, s− log2 u, f(qS)} bits, as long as the
signature scheme delivers f(qS) bit muUFCMA security (Definition 2). Importantly,
this means the amount of computations needed for attacks does not decrease as the
number D of “active sessions” increases.

Consider the case of s ≥ 256. In the su setting, i.e., u = 1, the amount of compu-
tations needed to break unlinkability with a notable success probability is 2247. The
log2 u bit loss in the multi-user setting is inevitable, as it matches the effort for guess-
ing one out of s-bit seeds S1, ..., Su. Fortunately, u reflects the number of “enterprises”
using Bip32 excluding their sub-accounts, and would not be too large.

On the other hand, the mu security loss due to the signature scheme has to be seri-
ously addressed, as it straightforwardly determines the concrete unforgeability security
even in the su setting. Any signature with sufficient mu security could be employed:
see Sect. 2. For example, using 256-bit secret keys, the mu security of Schnorr is of
128 bits [KMP16], giving rise to min{247, s− log2 u, 128} bits computational security.
We are not aware of ECDSA variants with good mu bounds, which is a natural open
problem.

In the remaining of this subsection, we devote to prove the unlinkability and un-
forgeability claims in turn.

Unlinkability. Consider any adversary A1 against the muHULk security of Bip32KH.
By construction, the security game G1 = GamemuHULk

WalKH,A1,0
(G) first invokes Setup(Gi0 , Si0)

for i0 = 1, ..., u, which derives the u master keys or root nodes Nd(1,⊥) = wsk
(1)
⊥ =

KH
(
S1, “Bitcoin seed”

)
, ..., Nd(u,⊥) = wsk

(u)
⊥ = KH

(
Su, “Bitcoin seed”

)
for the u in-

stances. Similarly for the game G∗1 = GamemuHULk
WalKH,A1,1

(G). We first replace these nodes
by uniform and independent strings. After this, we construct an adversary A2 that sim-
ulates the muHULk security game using the CPRF oracles in front of A1. The advantage
of A1 is then bounded by Theorem 1. We describe the two steps in the subsequent two
paragraphs in turn.
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The initial derivation We start by replacing the u 512-bit root nodes Nd(1,⊥), ...,Nd(u,⊥)
by u 512-bit independent and uniform strings, and obtain an intermediate game G2.
The gap between G1 and G2 is at most u(T+D)/2s+u2/2s+1, i.e., the mu PRF security
of KH

(
S, “Bitcoin seed”

)
(viewing S as the secret key):

(i) The u master key derivation calls Nd(i0,⊥) = KH
(
Si0 , “Bitcoin seed”

)
, i0 =

1, ..., u, are fresh and produce u random strings Nd(1,⊥), ...,Nd(u,⊥), as long as
none of the u arguments

(
S1, “Bitcoin seed”

)
, ...,(

Su, “Bitcoin seed”
)

collides with the other queries to KH in this system. Here
“other queries” include queries made by both A1 and the subsequent derivations
in the Bip32 instances. The number of the former type is at most T , while the
number of the latter type does not exceed V (G) ≤ D. Therefore, the probability
of this type of collision event is at most u(T +D)/2s;

(ii) The u outputs Nd(1,⊥), ...,Nd(u,⊥) are independent if and only if the u seeds
S1, ..., Su are collision free. This probability is at most

(
u
2

)
× 1

2s
≤ u2/2s+1.

Similarly, we obtain an intermediate game G∗2 from G∗1 = GamemuHULk
WalKH,A1,1

(G) via
replacing the u 512-bit root nodes by random, with a gap at most u(T+D)/2s+u2/2s+1.

G2 versus G∗2 using Theorem 1 For the remaining argument, A2 runs A1 and simu-
lates the oracles as follows, and outputs A1’s decision bit at the end.

– Upon A1 querying Crupt(i0, v
(i0)

i1/.../id′
), A2 queries muCoLK(i0, i1/.../id′) to have the

constrained key Nd(i0, i1/.../id′) and the leakages left256(Nd(i0,⊥)), ..., left256(Nd(i0, i1/.../id′)).
A2 returns⊥ to A1, if any of the d′+1 256-bit integers int

(
left256(Nd(i0,⊥))

)
, ..., int

(
left256(Nd(i0, i1/.../id′))

)
is not in Z+

|G| (recall from Sect. 6.3 that this is consistent with the actual Bip32 spec-
ification). Otherwise, A2 sets sk(i0)

i1/.../id′
← int

(
left256

(
Nd(i0, i1/.../id′)

))
, ch(i0)

i1/.../id′
←

right256
(
Nd(i0, i1/.../id′)

)
, and passes wsk

(i0)

i1/.../id′
= (sk

(i0)

i1/.../id′
, ch

(i0)

i1/.../id′
) to A1.

– Upon A1 querying muWSign(i0,m, v
(i0)

i1/.../id′
), A2 queries muCoLK(i0, i1/.../id′) for

the constrained key Nd(i0, i1/.../id′) and the leakages left256(Nd(i0,⊥)), ..., left256(Nd(i0, i1/.../id′)).
If any of these d′+1 integers int

(
left256(Nd(i0,⊥))

)
, ..., int

(
left256(Nd(i0, i1/.../id′))

)
is not in Z+

|G| then A2 returns ⊥ to A1. Otherwise, A2 computes the chain code
ch

(i0)

i1/.../id′
← right256

(
Nd(i0, i1/.../id′)

)
and the secret signing key sk

(i0)

i1/.../id′
←

int
(
left256(Nd(i0, i1/.../id′))

)
and returns WSign

(
(sk

(i0)

i1/.../id′
, ch

(i0)

i1/.../id′
),m

)
to A1.

– Upon A1 querying PKReq(i0, v
(i0)

i1/.../id′
), A2 pinpoints the longest path in Gi0

that contains the node v
(i0)
j . Formally, A2 pinpoints v

(i0)
0

i1−→ v
(i0)
i1

i2−→ ...
id′−−→

v
(i0)

i1/.../id′

id′+1−−−→ ...
id−→ v

(i0)

i1/.../id
such that the outdegree of v(i0)i1/.../id

is zero. A1 then
queries muEvLK(i0, i1/.../id)

12 to have left256(Nd(i0, i1/.../id)) and the leakages
left256(Nd(i0,⊥)), ..., left256(Nd(i0, i1/.../id′)),... Again, if any of the d′+1 integers
int
(
left256(Nd(i0,⊥))

)
, ..., int

(
left256(Nd(i0, i1/.../id′))

)
is not in Z+

|G|, then A2 re-
turns ⊥ to A1. Otherwise, A2 computes sk

(i0)

i1/.../id′
← int

(
left256(Nd(i0, i1/.../id′))

)
and pk

(i0)

i1/.../id′
← sk

(i0)

i1/.../id′
·G and returns pk

(i0)

i1/.../id′
to A1.

– Upon A1 querying KH, A2 simply relays the query and response.
12 A2 cannot simply query muCoLK(i0, i1/.../id′), otherwise it cannot react to A1 query-

ing PKReq(i0, v
(i0)

i1/.../id′/.../id
) later.
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When A2 is interacting with the real world (muCoLK,muEvLK,KH), A1 is playing
with the game G2: the actions are exactly the same, despite the gap between the GGGM
instance and the Bip32 key tree.

On the other hand, when A2 is interacting with the ideal (muCoSK,RS,KH), a
public key pk

(i0)

i1/.../id′
returned by A2 due to A1 querying PKReq(i0, v

(i0)

i1/.../id′
) query is

computed via pk
(i0)

i1/.../id′
← int(r

(i0)

i1/.../id′
) ·G, where r

(i0)

i1/.../id′

$←− {0, 1}256 is a block of
simulated leakage (it corresponds to left256(Nd(i0, i1/.../id′)) in the real world). This
resembles the game G∗2, except that A2 may respond A1 with ⊥. Denote this event by
“AmuCoSK,RS,KH

2 returns ⊥”. Then, as long as this event does not occur, the computed
key pk

(i0)

i1/.../id′
is uniformly distributed in G. Moreover, the key computed due to any

other query PKReq(i′0, v
(i′0)
i′1/.../i

′
d′′

) has pk
(i′0)
i′1/.../i

′
d′′
← int(r

(i′0)
i′1/.../i

′
d′′

) ·G and r
(i′0)
i′1/.../i

′
d′′

is

independent from r
(i0)

i1/.../id′
. Therefore, as long as the event “AmuCoSK,RS,KH

2 returns ⊥”
does not occur, A2 perfectly emulates the game G∗2 in front of A1, i.e.,∣∣∣Pr[G∗2 = 1

]
− Pr

[
A

muCoSK,RS,KH
2 = 1

]∣∣∣ ≤ Pr
[
A

muCoSK,RS,KH
2 returns ⊥

]
≤ D ×

(
1− |G| − 1

2256

)
,

and thus∣∣∣Pr[G∗2 = 1
]
− Pr

[
G2 = 1

]∣∣∣ ≤ ∣∣∣Pr[AmuCoLK,muEvLK,KH
2 = 1

]
− Pr

[
A

muCoSK,RS,KH
2 = 1

]∣∣∣+D ×
(
1− |G| − 1

2256

)
.

Concrete bounds It remains to calculate the concrete bounds. Regardless of the adver-
sarial strategy, it can be seen the effective data complexity cannot exceed V (G) ≤ D.
For the quantity C, using the uniformness of the private/public keys (in the ideal
world) and a multi-collision argument (we defer the details to the next paragraph),
when C = 256 = 28 and D ≤ |G|/2 (so that 2D/|G| ≤ 1), it can be shown that
Pr
[
µ(I) ≥ C

]
≤ D/2|G|. Then, using Theorem 1, we obtain∣∣∣Pr[G∗2 = 1
]
− Pr

[
G2 = 1

]∣∣∣ ≤ D

|G| +
29 · (T +D)

2256
+D ×

(
1− |G| − 1

2256

)
. (29)

Gathering this with the gaps between G1, G2, G∗1 and G∗2 (which is 2×
(
u(T +D)/2s +

u2/2s+1
)
) yields Eq. (27).

Proof of Pr
[
µ(I) ≥ C

]
≤ D/2|G| For the quantity µ(L), we will rely on the uni-

formness of the private/public keys. In detail, consider any (i0, p, j) 6= (i′0, p
′, j′). Then,

– Case 1: 0 ≤ j < 231, whereas 231 ≤ j′ < 232. Then it is impossible to have
lfp,j

(
left256(Nd(i0, p)), ppi0

)
= lfp′,j′

(
left256(Nd(i

′
0, p
′)), ppi′0

)
, since the former has

leftmost byte [0]8 while the latter has [2]8 or [3]8;
– Case 2: 231 ≤ j < 232, 0 ≤ j′ < 231. Then lfp,j

(
left256(Nd(i0, p)), ppi0

)
6= lfp′,j′

(
left256(Nd(i

′
0, p
′)), ppi′0

)
which resembles Case 1;

– Case 3: 0 ≤ j, j′ < 231. Then lfp,j
(
left256(Nd(i0, p)), ppi0

)
6= lfp′,j′

(
left256(Nd(i

′
0, p
′)), ppi′0

)
holds with probability at most Pr

[
sk, sk′

$←− Z|G| : sk = sk′
]
= 1/|G|;

– Case 4: 231 ≤ j, j′ < 232. Then lfp,j
(
left256(Nd(i0, p)), ppi0

)
6= lfp′,j′

(
left256(Nd(i

′
0, p
′)), ppi′0

)
holds with probability at most Pr

[
pk, pk′

$←− G : serP (pk) = serP (pk
′)
]
. The map

serP : G 7→ {0, 1}264 is bijective, and thus the probability is 1/|G|.
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By the above, in any case, the probability to have lfp,j
(
left256(Nd(i0, p)), ppi0

)
=

lfp′,j′
(
left256(Nd(i

′
0, p
′)), ppi′0

)
does not exceed 1/|G|. Thus, for any integer C ≥ 2,

Pr
[
µ(L) ≥ C

]
= Pr

[
∃(i(1)0 , p(1), j(1)), ..., (i

(C)
0 , p(C), j(C)) : lfp(1),j(1)

(
left256(Nd(i

(1)
0 , p(1))), pp

i
(1)
0

)
= ... = lfp(C),j(C)

(
left256(Nd(i

(C)
0 , p(C))), pp

i
(C)
0

)]
≤

(
D

C

)
·
( 1

|G|

)C−1

.

For C = 256, using |G| < 2256 in our context and as long as D ≤ |G|/2 (so that
2D/|G| ≤ 1), it further holds

Pr
[
µ(L) ≥ C

]
≤ |G|

C!

( D

|G|

)C
≤ 1

C!

(2D
|G|

)256
≤ 1

256!

2D

|G| ≤
D

2|G| .

Unforgeability. Let G1 = GamemuHEUF
WalKH,A1

(G) be the real hierarchical unforgeability
game. We modify G1 by replacing the oracles PKReq and muWSign with the oracles
PKReq and muWSign with b = 0 in Fig. 8. Denote by G2 the obtained modified game. It
is easy to see that, the gap between G1 and G2 is the already established unlinkability
bound, i.e.,∣∣∣Pr[G2 = 1

]
− Pr

[
G1 = 1

]∣∣∣ ≤ 2u(T +D)

2s
+

u2

2s
+

D

|G| +
29 · (T +D)

2256
+D ×

(
1− |G| − 1

2256

)
.

Signing keys generated in the game G2 are independent and uniformly distributed.
Thus, the forgery probability Pr

[
G2 = 1

]
is bounded by the multi-user existential un-

forgeability security of the signature in use (see Definition 2). Informally, consider
an adversary A2 having access to qS signing oracles of the signature instantiated
with qS independent secret keys, and it makes qS signing queries and runs in time
O(tA1) and succeeds as long as it forges for any of the qS keys. If the signature
is (qS , qS , O(t + D), εmuUFCMA)-mu unforgeable, then the success probability of A2 is
bounded by εmuUFCMA. These establish the bound in Eq. (28).

6.6 Improving Prim for Bip32, and Performance of MPC
Implementations

Since the security of Bip32 (variants) simply follow from our results on GGGM, sound
improvements addressing Lindell’s question [Lin19] become clear. In detail, the initial
seed S is of 128 ≤ s ≤ 512 bits. The string “Bitcoin seed” is of 96 bits. However, as the
security of the entire system cannot exceed 256 bits due to the limitation κ = 256—and
in fact, practical uses typically adopt s = 256,—we focus on the case 128 ≤ s ≤ 256, and
pad the seed S to S‖[0]296−s, i.e., of 296 bits. With these considerations, we describe
our Bip32 variants using a general function Prim : {0, 1}296 × {0, 1}256 → {0, 1}256.

(i) The HMAC-call in Setup(G, S) is replaced by I⊥ ← Prim
(
S, “Bitcoin seed”

)
;

(ii) The HMAC-calls in CKDpriv(wsk, i) are replaced by I ← Prim
(
[0]8‖[sk]256‖[i]32, ch

)
and I ← Prim

(
serP (pk)‖[i]32, ch

)
correspondingly;

(iii) The HMAC-call in CKDpub(wpk, i) is replaced by I ← Prim
(
serP (pk)‖[i]32, ch

)
.
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We then propose two instantiations of Prim with less AND gates as follows.
– SHACAL instantiation Bip32SHACAL3: define the function Prim(x, y) := SHACAL3(x, y‖[0]256)⊕

(y‖[0]256), i.e., using a single call to SHACAL3 : {0, 1}1024 × {0, 1}512 7→ {0, 1}512,
the block cipher underlying SHA512. The reliability is essentially the same as
Bip32HMAC, since the two wallets rely on the same assumption (i.e., the security of
SHACAL3).

– Fast instantiation Bip32kp800: define Prim(x, y) := Trunc288
(
Keccak-p[800, 11](x‖y‖[0]248)

)
,

i.e., using a call to the permutation Keccak-p[800, 11], which is a member of the
Keccak-p permutation family [BDP+17] with number of rounds halved (this fol-
lows the SHA3 designers, and its still has security margin of 6 rounds [BDP+17]).
To shorten notations, we abbreviate Keccak-p[800, 11] as kp800.
The security analysis of Bip32kp800 just follows Bip32KH in Sect. 6.5, since truncat-

ing Keccak-p[800, 11] also yields an FIL RO with 248-bit security [CLL19, Theorem 1].
By these, Bip32kp800 achieves min{247, s − log2 u} bits unlinkability and min{247, s −
log2 u, f(qS)} unforgeability (as long as we model the permutation kp800 as a pub-
lic random 800-bit permutation). On the other hand, analysis of Bip32SHACAL3 follows
Bip32KH, except that the terms in Eq. (29) are replaced with terms from Theorem
2. According to Theorems 1 and 2, the concrete bounds differ by only a factor of 2.
Thus, Bip32SHACAL3 achieves min{246, s − log2 u} bits unlinkability and min{246, s −
log2 u, f(qS)} unforgeability. Concrete mu security of the two improved instantiations
are thus comparable with the original Bip32 standard.

We benchmark the two-party protocols based on garbled circuit which securely com-
pute various instantiations of Bip32. Our implementations focus on the (most widely
deployed) default configuration of the key tree [Med18] (see Fig. 1). In particular, we
consider the process of deriving the shares of a session key ski1/i2/i3 from the shares of
the seed S. As discussed and as shown in Fig. 1, this consists of 4 Prim executions (in
the MPC manner). We use EMP-Toolkit [WMK16] as the backend of our implementa-
tions, and choose the state-of-the-art garbling schemes with semi-honest security. Our
experiments are performed in a virtual machine with an Intel(R) Core(TM) i5-1038NG7
CPU at 2.0GHZ with localhost communication, and the performance is reported in Ta-
ble 1. By the results, Bip32SHACAL3 achieves much better performance while retaining
the same reliability as Bip32HMAC, while Bip32kp800 achieves the best performance with
a moderate security margin.

Table 1. Performance of Bip32 instantiations. # AND presents the number of
involved AND gates, and roughly match theoretical results on 4 Prim executions.
They deliver similar mu security: see Sect. 6.5 and 6.6.

Scheme # AND Time (ms) Comm. (KB) Unlink. Sec. (bit) Note

Bip32HMAC 944628 87 29790 min{247, s− log2 u} Standard
Bip32SHACAL3 245172 33 7937 min{246, s− log2 u} Reliability
Bip32kp800 49908 19 1835 min{247, s− log2 u} High perform.

7 Improving Function Secret Sharing

The state-of-art. Function secret sharing of point functions [GI14] crucially relies on
GGM trees functioning as PPRFs. The closest provably secure construction [GKWY20]
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instantiates the classical GGM with the length-doubling PRG GAESfk (s) := AESfk(s)⊕
s‖AESfk(s⊕ [1]128)⊕ s⊕ [1]128, where AESfk is the AES using a fixed, publicly-known
key fk (as discussed in Sect. 3.1). To characterize its concrete mu security, we model
AES as an ideal cipher E : {0, 1}wn × {0, 1}wn 7→ {0, 1}wn. Then, this state-of-the-art
FBTrDMAES (i.e., FSS’s Binary Tree), is an instance of GGGMDME given in Sect. 4.3,
with Prim(x, y) := AESx(y)⊕ y and parameters as follows.

– Node size equals the security parameter n = κ = 128. Note that in our model, this
means there is no “leakage” at all, and we are essentially in the classical puncturable
PRF setting;

– θ = 2, and w = 1, i.e., branch number wθ = 2, and output size wn = n = 128;
– sfp,j

(
rightκ(z)

)
= sfp,j

(
z
)
= z ⊕ [j]128 (which is indeed injective);

– pp = fk which is a fixed constant, and lfp,j
(
⊥, pp

)
= fk, i.e., labels don’t depend on

p, j at all. The restriction j 6= j′ ⇒ (lfp,j
(
⊥, pp

)
, sfp,j

(
z
)
) 6= (lfp,j′

(
⊥, pp

)
, sfp,j′

(
z
)
)

holds since sfp,j
(
z
)
= z ⊕ [j]128 6= z ⊕ [j′]128 = sfp,j′

(
z
)
;

– For any z, I ∈ {0, 1}128, of(z, I) = I. This satisfies restriction (ii), i.e., of(z, I) =
of
(
left128−128(z), I

)
= I.

– Depth d = log2Nleaf, where Nleaf is the desired number of leaves.

FSS uses a FBTrDMAES instance as a puncturable PRF (PPRF): see Definition 5.
In detail, assume that the MPC system executes u FSS instances using independent
keys K1, ...,Ku. For i0 = 1, ..., u, the i0-th FSS instance generates a punctuated key
Ki0{pi0} for a single punctured point pi0 ∈ {0, 1}d, i.e., an entity holding the punc-
tured key Ki0{pi0} is able to evaluate exactly |X | − 1 functions values, except for
FBTrDMAES

.Ev(Ki0 , pi0). The i0-th punctured key Ki0{pi0} can be written in 128d bits.
The effective data complexity is 2ud, since (it is easy to count) the number of AES
calls in each tree is exactly 2d.

It remains to determine the quantity C. Unfortunately, the label lfp,j
(
⊥, pp

)
= fk

is a constant, and we can only expect C = 2ud and εµ = Pr[µ(L) > C] = 0. Injecting
all the above parameters into Theorem 2, we conclude that FBTrDMAES is a (u, T,D, ε)-
puncturable PRF with effective data complexity D = 2ud and

ε ≤ 8udT + 16(ud)2

2128
. (30)

As a concrete example, consider the 2PC discussed in the introduction: assuming
N2pc = 214 2PC protocol instances and each protocol instantiating Ntr = 226 FSS or
FBTrDMAES tree instances with depth d ≤ 16. Then, u = N2pc×Ntr = 240 and 8ud = 247,
indicating security up to T ≈ 2128/247 = 281 AES “queries” or computations (i.e., a
theoretical degradation up to 36.7%). Such computations are hardly infeasible.

Improving mu security and flexibility. We first address the mu security degra-
dation, which mainly requires to overcome the factor u = N2pc · Ntr due to the nu-
merous instances. Following Sect. 6.6, we define the public parameter pp := IV for
IV

$←− {0, 1}128 that is picked at uniform during the setup of every FSS instance,
and propose to use AESIV instead of AESfk. Then, labels lf⋆,⋆

(
⊥, ppi0

)
= IVi0 and

lf⋆,⋆
(
⊥, ppi′0

)
= IVi′0

in distinct trees collide only if IVi0 = IVi′0
. Thus, for any thresh-

old t ≥ 2, if there is no t-collision IV
i
(1)
0

= ... = IV
i
(t)
0

among the u trees, then the
number of tree instances with their IVs equaling a certain value is at most t− 1. As all
IVs are uniform and independent, the probability to have a t-collision is

(
u
t

)
/2128(t−1) ≤

ut

t!·2128(t−1) .
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Then, observing that increasing branches trades punctured key size for computa-
tions and improves flexibility, we propose to “naturally” increase the “parallelization
degree” of FBTrDMAES to θ ≥ 3, i.e., using large-expansion PRG G(s) = AESIV(s) ⊕
s‖AESIV(s⊕ [1]128)⊕ s⊕ [1]128‖...‖AESIV(s⊕ [θ− 1]128)⊕ s⊕ [θ− 1]128. We denote this
by FMTrDMAES , meaning FSS’s Multi-branch Tree.

– The depth decreases to d = logθNleaf;
– The punctured key for a single tree has 128(θ − 1)logθNleaf + 128 bits (including

the 128-bit pp = IV);
– The effective data complexity D = uθlogθNleaf.

By the above, for C = (t − 1)θlogθNleaf, Pr[µ(L) > C] ≤ ut

t!·2128(t−1) , meaning that
FMTrDMAES is a (u, T,D, ε)-puncturable PRF, with

ε ≤ 2ut

t! · 2128(t−1)
+

4(t− 1)θT · logθNleaf + 4(t− 1)u(θlogθNleaf)
2

2128
. (31)

Eq. (31) holds for any threshold t. Since the parameters u, T,Nleaf are incomparable,
it is difficult to conclude on optimizing t. But certain choices already yield satisfactory
bounds. E.g., with t = 5, Eq. (31) becomes

ε ≤ u5

2517
+

16θT · logθNleaf + 16u(θlogθNleaf)
2

2128
, (32)

indicating security up to T ≈ 2112 computations and u ≈ 2103 users.
More concretely, when θ = 2, Eq. (32) indicates security up to ≈ 2128/29 = 2119

computations (which is nearly optimal for κ = 128) and running the FSS protocol u ≤
2103 times. The additional computation compared to the state-of-art FSS protocol is
the mere generation of a 128-bit (pseudo)random IV, which is negligible. The punctured
key is 128 · log2Nleaf + 128 bits. Setting θ to 4, Eq. (32) indicates the same security,
whereas the computation cost for each input is reduced by 50% due to the halved depth
at the expense of a 50% blow-up in the punctured key size. We list the parameters in
Table 2 for clarity.

Table 2. Comparison with prior works. The execution time is benchmarked on an
AWS machine of type m5.large. Nleaf represents the number of leaves in the generated
FSS trees. For clearness, the mu security column demonstrates numerical results for
the specific case Nleaf = 216 and u = N2pc ×Ntr = 240 trees.

Scheme # Prim Cost of Prim (ns) Total time (ns) Seed size (Bytes) mu sec. (bits)

State-of-art FBTrDMAES

Nleaf 3.5 3.5Nleaf 16 log2 Nleaf 81
FMTrDMAES with θ = 2 Nleaf 3.5 3.5Nleaf 16 log2 Nleaf 119
FMTrDMAES with θ = 4 Nleaf/3 7 2.3Nleaf 24 log2 Nleaf 119

In Table 2, we compare the performance of our protocol against the state-of-the-art.
FMTrDMAES with θ = 2 has the same overhead as FBTrDMAES , while FMTrDMAES with θ = 4
incurs a 50% increase in seed size (and communication) but 1.5× faster computation.
In major applications such as MPC based on preprocessed correlation [BCG+19a], the
communication overhead due to the GGM punctuated key is less than 10%. Thus,
using FMTrDMAES with θ = 4 accelerates computations much with only insignificant
communication overheads.
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A The LBC Bitcoin Cracking Project

Briefly speaking, given a pair of signature keys (sk1, pk1), a Bitcoin user could sign with
sk1 to spend funds associated with the public “address” addr1 = RIPEMD160

(
SHA256(pk1)

)
,

i.e., a 160-bit hash digest of the public key pk1.13 But this means the map from sig-
nature keys to “addresses” is not bijective, and an adversary holding (sk′, pk′) with
RIPEMD160

(
SHA256(pk′)

)
= addr1 can also spend funding associated with the address

addr1. Since |addr1| = 160, the success probability to guess such a key pair (sk′, pk′)
with T computations is nearly T/2160 (this is much higher than T/2256 of straight-
forwardly guessing the “original” secret key sk1). While T/2160 remains small, with
u targeted Bitcoin users (sk1, pk1), ..., (sku, pku), the probability to successfully guess
(sk′, pk′) such that RIPEMD160

(
SHA256(pk′)

)
= addri = RIPEMD160

(
SHA256(pki)

)
for some i increases to uT

2160
. It can be seen this is a variant of multi-user secret (signing)

key recovery attack, and the concrete security is of 160 − log2 u bits which degrades
significantly with the number of targeted Bitcoin users. The LBC Bitcoin cracking
project instantiates this idea in a distributed manner to gather computation power
from multiple participants, and it recovered more than a dozen secret (signing) keys
in 2016 and 2017 [LBC16].

It is tempting to ask how our treatments capture this attack. To clarity, note that
our security definitions in Sect. 6.2 implicitly assume that the cryptocurrency address
of an account is its public signature key, rather than the hash digest of the key. This
ensures a bijective mapping between cryptocurrency addresses and signature key pairs
(sk, pk), and the success probability to guess a key pair (sk, pk) corresponding to a
certain address with T computations is T/2256. In this case, the success probability of
the above multi-user attack decreases to (much smaller) uT/2256.

13 This slightly deviates from the choice mentioned in Sect. 6.1, i.e., simply using pk1
as the address.
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